WO2017185324A1 - Group 8 transition metal catalysts and method for making same and process for use of same in olefin disproportionation reactions - Google Patents

Group 8 transition metal catalysts and method for making same and process for use of same in olefin disproportionation reactions Download PDF

Info

Publication number
WO2017185324A1
WO2017185324A1 PCT/CN2016/080636 CN2016080636W WO2017185324A1 WO 2017185324 A1 WO2017185324 A1 WO 2017185324A1 CN 2016080636 W CN2016080636 W CN 2016080636W WO 2017185324 A1 WO2017185324 A1 WO 2017185324A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl
group
substituted
aryl
catalysts
Prior art date
Application number
PCT/CN2016/080636
Other languages
French (fr)
Inventor
Francis Walter Cornelius Verpoort
Original Assignee
Xia, Ling
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xia, Ling filed Critical Xia, Ling
Priority to PCT/CN2016/080636 priority Critical patent/WO2017185324A1/en
Publication of WO2017185324A1 publication Critical patent/WO2017185324A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2265Carbenes or carbynes, i.e.(image)
    • B01J31/2278Complexes comprising two carbene ligands differing from each other, e.g. Grubbs second generation catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/226Sulfur, e.g. thiocarbamates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2265Carbenes or carbynes, i.e.(image)
    • B01J31/2269Heterocyclic carbenes
    • B01J31/2273Heterocyclic carbenes with only nitrogen as heteroatomic ring members, e.g. 1,3-diarylimidazoline-2-ylidenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C6/00Preparation of hydrocarbons from hydrocarbons containing a different number of carbon atoms by redistribution reactions
    • C07C6/02Metathesis reactions at an unsaturated carbon-to-carbon bond
    • C07C6/04Metathesis reactions at an unsaturated carbon-to-carbon bond at a carbon-to-carbon double bond
    • C07C6/06Metathesis reactions at an unsaturated carbon-to-carbon bond at a carbon-to-carbon double bond at a cyclic carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/30Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/333Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by isomerisation; by change of size of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/04Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms
    • C08G61/06Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds
    • C08G61/08Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds of carbocyclic compounds containing one or more carbon-to-carbon double bonds in the ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/50Redistribution or isomerisation reactions of C-C, C=C or C-C triple bonds
    • B01J2231/54Metathesis reactions, e.g. olefin metathesis
    • B01J2231/543Metathesis reactions, e.g. olefin metathesis alkene metathesis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/821Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/825Osmium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • C07C2531/22Organic complexes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/06Systems containing only non-condensed rings with a five-membered ring
    • C07C2601/10Systems containing only non-condensed rings with a five-membered ring the ring being unsaturated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/33Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain
    • C08G2261/332Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms
    • C08G2261/3323Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms derived from other monocyclic systems
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/418Ring opening metathesis polymerisation [ROMP]

Definitions

  • This invention relates to Group 8 transition metal catalysts and method for making same and process for use of same in olefin disproportionation reactions.
  • Olefin disproportionation is a catalytic process including, as a key step, a reaction between a first olefin and a first transition metal alkylidene complex, thus producing an unstable intermediate metallacyclobutane ring which then undergoes transformation into a second olefin and a second transition metal alkylidene complex according to equation (1) hereunder. Reactions of this kind are reversible and in competition with one another, so the overall result heavily depends on their respective rates and, when formation of volatile or insoluble products occurs, displacement of equilibrium.
  • Olefin disproportionation reactions are extensively applied in the field of chemical reactions, e.g. Ring closing metathesis (RCM) , Cross metathesis (CM) , Ring opening metathesis (ROM) , Ring opening metathesis polymerization (ROMP) , acyclic diene metathesis (ADMET) , self-metathesis, conversion of olefins with alkynes (enyne metathesis) , polymerization of alkynes, and so on.
  • RCM Ring closing metathesis
  • CM Cross metathesis
  • ROM Ring opening metathesis
  • ROMP Ring opening metathesis polymerization
  • ADMET acyclic diene metathesis
  • Typical applications of olefin disproportionation are Reaction Injection Molding (RIM) , filament winding, pultrusion of dicyclopentadiene (DCPD) , which is an example of the ring opening metathesis polymerization.
  • RIM Reaction Injection Molding
  • DCPD dicyclopentadiene
  • Industrial application in DCPD polymerization requires latent catalysts, which can allow for longer handling of a monomer-catalyst mixture before the polymerization starts.
  • Other examples of ring opening metathesis polymerization are ROMP of norbornene and its derivatives, copolymerization of different cyclic olefins.
  • Ethenolysis a chemical process in which internal olefins are degraded using ethylene as the reagent, is an example of cross metathesis; CM of ethene with 2-butene; depolymerization of unsaturated polymers and so fort.
  • Cyclic olefins can be opened and oligomerised or polymerised (ring opening metathesis polymerisation shown in equation 5) .
  • the alkylidene catalyst reacts more rapidly with the cyclic olefin (e.g. a norbornene or a cyclobutene) than with a carbon-carbon double bond in the growing polymer chain, then a "living ring opening metathesis polymerisation" may result, i.e. there is little termination during or after the polymerization reaction.
  • Strained rings may be opened using an alkylidene catalyst with a second alkene following the mechanisms of the Cross Metathesis. The driving force is the relief of ring strain. As the products contain terminal vinyl groups, further reactions of the Cross Metathesis variety may occur.
  • the reaction conditions (time, concentrations, ... ) must be optimized to favour the desired product (equation 4) .
  • the enyne metathesis is a metalcarbene-catalysed bond reorganization reaction between alkynes and alkenes to produce 1, 3-dienes.
  • the intermolecular process is called Cross-Enyne Metathesis (7)
  • intramolecular reactions are referred as Ring-Closing Enyne Metathesis (RCEYM) .
  • cross-metathesis of two reactant olefins, where each reactant olefin comprises at least one unsaturation site, to produce new olefins, which are different from the reactant olefins, is of significant commercial importance.
  • Linear -olefins are useful as monomers or co-monomers in certain (co) polymers poly -olefins and/or as intermediates in the production of epoxides, amines, oxo alcohols, synthetic lubricants, synthetic fatty acids and alkylated aromatics.
  • Olefins Conversion Technology TM is an example of an ethenolysis reaction converting ethylene and 2-butene into propylene. These processes apply heterogeneous catalysts based on tungsten and rheniumoxides, which have not proven effective for internal olefins containing functional groups such as cis-methyl oleate, a fatty acid methyl ester.
  • Alkyl oleates are fatty acid esters that can be major components in biodiesel produced by the transesterification of alcohol and vegetable oils. Vegetable oils containing at least one site of unsaturation include canola, soybean, palm, peanut, mustard, sunflower, tung, tall, perilla, grapeseed, rapeseed, linseed, safflower, pumpkin, corn and many other oils extracted from plant seeds. Alkyl erucates similarly are fatty acid esters that can be major components in biodiesel.
  • Useful biodiesel compositions are those, which typically have high concentrations of oleate and erucate esters. These fatty acid esters preferably have one site of unsaturation such that cross-metathesis with ethylene yields 1-decene as a co-product.
  • Vegetables oils used in food preparation can be recuperated and after purification, be converted applying e.g. ethenolysis into useful products applicable in biodiesel.
  • Biodiesel is a fuel prepared from renewable sources, such as plant oils or animal fats. To produce biodiesel, triacylglycerides, the major compound in plant oils and animal fats, are converted to fatty acid alkyl esters (i.e., biodiesel) and glycerol via reaction with an alcohol in the presence of a base, acid, or enzyme catalyst.
  • Biodiesel fuel can be used in diesel engines, either alone or in a blend with petroleum-based diesel, or can be further modified to produce other chemical products.
  • Patents WO96/04289 and WO97/06185 are examples of metathesis catalysts having the general structure
  • M is Os or Ru
  • R and R 1 organic parts from the carbene fragment which have a great structural variability
  • X and X 1 are anionic ligands
  • L and L 1 represents neutral electron donors.
  • anionic ligands are, according the literature in the field of olefin metathesis catalysts, ligands which are negative charged and thus bearing a full electron shell when they are removed from the metal center
  • catalyst initiation be controllable.
  • a trigger such as light activation (e.g. photoirradiation) , chemical activation (e.g. acid addition) , temperature activation (e.g. heating of the sample) or mechanical activation (e.g. ultrason) can help to control initiation.
  • Efficient ring-opening metathesis polymerization (ROMP) reactions require adequate mixing of monomer and catalyst before polymerization occurs.
  • catalysts that initiate polymerization at a high rate only upon activation are desirable.
  • Grubbs 1 st and 2 nd gen, Hoveyda 1 st and 2 nd gen., Furstner and Nolan catalysts are competent metathesis catalysts at or below room temperature, so alone are not suited for applications where catalyst latency is beneficial (Org. Lett. 1999, 1, 953-956; J. Am. Chem. Soc. 2000, 122, 8168-8179; Tetrahedron Lett. 2000, 41, 9973-9976) .
  • Scheme 1 Strategies to control catalyst initiation.
  • Scheme 3 Examples of type IV systems to control the initiation.
  • the latent catalysts are of prominent importance for Ring-Opening Metathesis Polymerizations of low-strained cyclic olefins, as they allow for mixing of monomer and catalyst without concomitant gelation or microencapsulation of the precatalyst.
  • catalysts of which their performance is easy tunable by a simple straightforward modification are highly desired.
  • catalysts which can be modified from completely latent to highly active latent catalysts find easily application in ROMP e.g. DCPD polymerization via RIM, highly active catalysts find easily application in cross metathesis e.g. ethenolysis, depolymerization of 1, 4-polybutadiene, etc.
  • the catalysts of present invention afford latent catalysts stable in the monomer and highly active after an industrially acceptable activation process, a property of which there is still a high demand.
  • the instant invention's metathesis catalyst compounds provide both a mild and commercially economical and an "atom-economical" route to desirable olefins, which in turn may be useful in the preparation of linear alpha-olefins, unsaturated polymers, cyclic olefins, etc...
  • reaction-injection molding processes
  • resin transfer molding RTM
  • RRM reactive rotational molding
  • the present invention is directed to addressing one or more of the above-mentioned issues.
  • the invention is based on the unexpected finding that improved metathesis of unsaturated compounds such as olefins and alkynes can be obtained by catalysts having a general structure of formula (I) by modifying the alkylidene part of group 8 catalysts of the prior art in combination with a monotopic or ditopic bridging ligand.
  • the present invention provides catalysts which can be easily and efficiently activated by a chemical activator ( and Lewis acids) or a photo-activator (Photo acid generator, PAG) showing exceptional activity after activation.
  • the catalysts of present invention can also be activated by in-situ generation of a acid by combining a Lewis acid, which at least contains one halogen atom, with any -OH or –SH containing molecule (s) (liquid or solid, organic or inorganic) .
  • unsaturated carboxylic acids and /or esters of unsaturated carboxylic acids individually and/or mixtures of the unsaturated carboxylic acids or mixtures of esters of unsaturated carboxylic acids can be converted.
  • the catalysts of this invention are preferably used in concentrations of less than or equal to 1000 ppm, in particular in the range from 1 to 1000 ppm, preferably 1 to 200 ppm.
  • the inventive method can be carried out at temperatures between 0 to 100 °C, preferably between 20 to 90 °C, are carried out in particular between 20 to 80 °C.
  • the method can be performed using conventional solvents, in which the reactant (s) and the catalyst are dissolved, e.g. hydrocarbons or alcohols. In a preferred embodiment of the invention the method may be carried out solventless.
  • unsaturated ⁇ , ⁇ dicarboxylic acids and unsaturated ⁇ , ⁇ dicarboxylic acid diesters are obtained together with the corresponding unsaturated hydrocarbons.
  • a separation of the mixture can be done, for example, by distillation, by fractionated crystallization or by extraction.
  • unsaturated ⁇ , ⁇ dicarboxylic acids and unsaturated ⁇ , ⁇ dicarboxylic acid diester can be used in e.g. cosmetic preparations.
  • the products thus obtained can be subjected to hydrogenation.
  • the present invention is also based on the unexpected finding that the synthesis time of the organometallic compounds of formula (I) can be reduced to 2 hour or less while maintaining high to excellent yields.
  • the organometallic catalyst compounds of the present invention can be prepared by contacting a Group 8 metal alkylidene precursor compound with a monotopic chelating ligand which alternatively can bear at least an extra chelating moiety,
  • M is a Group 8 metal, preferably ruthenium or osmium,
  • R 1 -R 5 are identical or different and selected from hydrogen, hydrocarbyl, substituted hydrocarbyl, heteroatom containing hydrocarbyl, substituted heteroatom-containing hydrocarbyl, and functional groups
  • radicals from the group of R 1 -R 5 including the carbon atoms to which they are attached, generating one or more cyclic structures, including aromatic structures.
  • X 1 , X 2 preferably represents an anionic ligand.
  • L 1 preferably represents a neutral electron donor.
  • L 1 and X 1 or/and X 2 may be joined to form a multidentate monoanionic/dianionic group and may form single/double ring of up to 30 non-hydrogen atoms or a multinuclear ring system of up to 30 non-hydrogen atoms;
  • A is selected from the group consisting of oxygen, sulphur, selenium, NR”, PR”, POR”, AsR” , AsOR” , SbR” and SbOR” .
  • R’and R are identical or different and selected from hydrogen, hydrocarbyl, substituted hydrocarbyl, heteroatom containing hydrocarbyl, substituted heteroatom-containing hydrocarbyl, and functional groups;
  • the invention provides a method for performing a catalytic metathesis reaction comprising contacting at least one olefin or olefinic compound with the metathesis catalyst of the invention.
  • An olefin includes a single olefin, multi-olefin as well as a combination or mixture of two or more olefins, reference to "a substituent" encompasses a single substituent as well as two or more substituents, and the like.
  • the present invention is based on the unexpected finding that superior catalysts (I) useful in the metathesis of unsaturated compounds such as olefins and alkynes, their activity can even be extra enhanced by bringing into contact a metal complex (I) with an activating compound (hereinafter also referred as “activator” ) selected from acids ( acids are proton donors, which is the commonly accepted practice among chemists) .
  • activating compound hereinafter also referred as “activator”
  • acids are proton donors, which is the commonly accepted practice among chemists
  • the nature of the acid can be liquid, solid, inorganic or organic.
  • Well-know representative compounds of acids, but not limited, are HCl, HBr, H 2 SO 4 , CH 3 COOH, sulphonic acid resins, etc.
  • the present invention is based on the unexpected finding that superior catalysts useful in the metathesis of unsaturated compounds such as olefins and alkynes can be obtained by bringing into contact a metal complex (I) with an activating compound (hereinafter also referred as “activator” ) selected from the group consisting of:
  • R a is equal to R 1 -R 5 defined as herein-above
  • X is atom of the halogen group and identical or different in case more then one halogen atom is present, and
  • M a is an atom having an atomic mass from 27 to 124 and being selected from the group consisting of groups IB, IIB, IIIA, IVB, IVA and VA of the Periodic Table of elements under conditions such that at least partial cleavage of a bond between the metal and the ditopic or multitopic ligand of said catalyst occurs.
  • the present invention is based on the unexpected finding that useful catalytic species can be suitably obtained by reacting an activator such as defined hereinabove, provided that said activator includes at least one halogen atom, in the presence of at least one further reactant having the formula RYH, wherein Y is selected from the group consisting of oxygen, sulphur and selenium, and R as defined hereinabove.
  • an activator such as defined hereinabove
  • said activator includes at least one halogen atom
  • Y is selected from the group consisting of oxygen, sulphur and selenium, and R as defined hereinabove.
  • a strong acid such as a hydrogen halide
  • cleavage of a bond between the metal and the monotopic ligand of said metal complex occurs like in the absence of the further reactant having the formula RYH, but coordination of A or both atoms of the monotopic ligand to the activator occurs less frequently because it competes unfavourably with the protonation/decoordination mechanism resulting from the in situ generation of a strong acid (such as a hydrogen halide) .
  • a strong acid such as a hydrogen halide
  • the new catalytic species of the invention may be produced extra-temporaneously, separated, purified and conditioned for separate use in organic synthesis reactions later on, or they may be produced in-situ during the relevant chemical reaction (e.g. metathesis of unsaturated organic compounds) by introducing a suitable amount of the activator into the reaction mixture before, simultaneously with, or alternatively after the introduction of the starting catalyst compound.
  • the present invention also provides catalytic systems including, in addition to said new catalytic species or reaction products, a carrier suitable for supporting said catalytic species or reaction products.
  • the present invention also provides methods and processes involving the use of such new catalytic species or reaction products, or any mixture of such species, or such catalytic systems, in a wide range of organic synthesis reactions including the metathesis of unsaturated compounds such as olefins and alkynes and
  • this invention provides an improved process for the ring opening polymerization of strained cyclic olefins such as, but not limited to, dicyclopentadiene.
  • substituted means that a hydrogen atom or an atom is replaced by a specified group or an atom, and the valence of the atom indicated is not exceeded and the substitution leads to a stable compound.
  • Fig. 1 Crystal structure of dichloro (tricyclohexylphosphine) (1, 3-bis (2, 4, 6-trimethylphenyl) -2-imidazolidinylidene) (N-4-F-phenyl-N-H) aminomethylenephenylmethylylidene ruthenium (C NHC 14)
  • Fig: 2 Comparison of 6-membered 1 st generation catalysts (C2, C3, C4) with prior art catalyst H1 for ROMP of COD
  • Fig. 3 Comparison of 6-membered catalysts (C NHC 2, C2, C NHC 7 and C7) for RCM reaction of DEDAM
  • Fig. 4 Different activation methods of C NHC 19 for RCM of DEDAM (reactions conditions: 1 mol%catalyst; substrate concentration: 0.1M; solvent: toluene; temperature see figure) .
  • Fig. 5 Influence of different activators on the activity of C NHC 20 for ROMP of COD.
  • alkyl refers to a linear, branched, or cyclic saturated hydrocarbon group typically although not necessarily containing 1 to about 24 carbon atoms, preferably 1 to about 12 carbon atoms, such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, t-butyl, octyl, decyl, and the like, as well as cycloalkyl groups such as cyclopentyl, cyclohexyl and the like. Generally, although again not necessarily, alkyl groups herein contain 1 to about 12 carbon atoms.
  • C 1 -C 6 -alkyl intends an alkyl group of 1 to 6 carbon atoms
  • cycloalkyl intends a cyclic alkyl group, typically having 3 to 8 carbon atoms.
  • substituted alkyl refers to alkyl substituted with one or more substituent groups
  • heteroatom-containing alkyl and “heteroalkyl” refer to alkyl in which at least one carbon atom is replaced with a heteroatom. If not otherwise indicated, the term “alkyl” includes linear, branched, cyclic, unsubstituted, substituted, and/or heteroatom-containing alkyl.
  • alkylene refers to a difunctional linear, branched, or cyclic alkyl group, where "alkyl” is as defined above.
  • alkenyl refers to a linear, branched, or cyclic hydrocarbon group of 2 to about 24 carbon atoms containing at least one double bond, such as ethenyl, n-propenyl, isopropenyl, n-butenyl, isobutenyl, octenyl, decenyl, tetradecenyl, hexadecenyl, eicosenyl, and the like.
  • Preferred alkenyl groups herein contain 2 to about 12 carbon atoms.
  • cycloalkenyl intends a cyclic alkenyl group, preferably having 5 to 8 carbon atoms.
  • substituted alkenyl refers to alkenyl substituted with one or more substituent groups
  • heteroatom-containing alkenyl and “heteroalkenyl” refer to alkenyl in which at least one carbon atom is replaced with a heteroatom. If not otherwise indicated, the term “alkenyl” include linear, branched, cyclic, unsubstituted, substituted, and/or heteroatom-containing alkenyl.
  • alkenylene refers to a difunctional linear, branched, or cyclic alkenyl group, where "alkenyl” is as defined above.
  • alkynyl refers to a linear or branched hydrocarbon group of 2 to about 24 carbon atoms containing at least one triple bond, such as ethynyl, n-propynyl, and the like. Preferred alkynyl groups herein contain 2 to about 12 carbon atoms.
  • substituted alkynyl refers to alkynyl substituted with one or more substituent groups, and the terms “heteroatom-containing alkynyl” and “heteroalkynyl” refer to alkynyl in which at least one carbon atom is replaced with a heteroatom. If not otherwise indicated, the term “alkynyl” include linear, branched, unsubstituted, substituted, and/or heteroatom-containing alkynyl respectively.
  • alkoxy intends an alkyl group bound through a single, terminal ether linkage; that is, an "alkoxy” group may be represented as -O-alkyl where alkyl is as defined above.
  • alkenyloxy refers to an alkenyl group bound through a single, terminal ether linkage
  • alkynyloxy refers to an alkynyl group bound through a single, terminal ether linkage.
  • aryl refers to an aromatic substituent containing a single aromatic ring or multiple aromatic rings that are fused together, directly linked, or indirectly linked (such that the different aromatic rings are bound to a common group such as a methylene or ethylene moiety) .
  • Preferred aryl groups contain 5 to 24 carbon atoms, and particularly preferred aryl groups contain 5 to 14 carbon atoms.
  • Exemplary aryl groups contain one aromatic ring or two fused or linked aromatic rings, e.g., phenyl, naphthyl, biphenyl, diphenylether, diphenylamine, benzophenone, and the like.
  • Substituted aryl refers to an aryl moiety substituted with one or more substituent groups
  • heteroatom-containing aryl and “heteroaryl” refer to aryl substituents in which at least one carbon atom is replaced with a heteroatom, as will be described in further detail infra.
  • aryloxy refers to an aryl group bound through a single, terminal ether linkage, wherein "aryl” is as defined above.
  • An "aryloxy” group may be represented as -O-aryl where aryl is as defined above.
  • Preferred aryloxy groups contain 5 to 24 carbon atoms, and particularly preferred aryloxy groups contain 5 to 14 carbon atoms.
  • aryloxy groups include, without limitation, phenoxy, o-halo-phenoxy, m-halo-phenoxy, p-halo-phenoxy, o-methoxyphenoxy, m-methoxy-phenoxy, p-methoxy-phenoxy, 2, 4-dimethoxy-phenoxy, 3, 4, 5-trimethoxy-phenoxy, and the like.
  • alkaryl refers to an aryl group with an alkyl substituent
  • aralkyl refers to an alkyl group with an aryl substituent, wherein “aryl” and “alkyl” are as defined above.
  • Preferred alkaryl and aralkyl groups contain 6 to 24 carbon atoms.
  • Alkaryl groups include, but not limit to, for example, p-methylphenyl, 2, 4-dimethylphenyl, p-cyclohexylphenyl, 2, 7-dimethylnaphthyl, 7-cyclooctylnaphthyl, 3-ethyl-cyclopenta-1, 4-diene, and the like.
  • aralkyl groups include, without limitation, benzyl, 2-phenyl-ethyl, 3-phenyl-propyl, 4-phenyl-butyl, 5-phenyl-pentyl, 4-phenylcyclohexyl, 4-benzylcyclohexyl, 4-phenylcyclohexylmethyl, 4-benzylcyclohexylmethyl, and the like.
  • alkaryloxy and aralkyloxy refer to substituents of the formula -OR wherein R is alkaryl or aralkyl, respectively, as just defined.
  • acyl refers to substituents having the formula - (CO) -alkyl, - (CO) -aryl, or - (CO) -aralkyl
  • acyloxy refers to substituents having the formula -O (CO) -alkyl, -O (CO) aryl, or -O (CO) -aralkyl, wherein “alkyl, " "aryl, and “aralkyl” are as defined above.
  • cyclic and ring refer to alicyclic or aromatic groups that may or may not be substituted and/or heteroatom containing, and that may be monocyclic, bicyclic, or polycyclic.
  • alicyclic is used in the conventional sense to refer to an aliphatic cyclic moiety, as opposed to an aromatic cyclic moiety, and may be monocyclic, bicyclic, or polycyclic.
  • halo and halogen are used in the conventional sense to refer to a chloro, bromo, fluoro, or iodo substituent.
  • Hydrocarbyl refers to univalent hydrocarbyl radicals containing 1 to about 30 carbon atoms, preferably 1 to about 24 carbon atoms, most preferably 1 to about 12 carbon atoms, including linear, branched, cyclic, saturated, and unsaturated species, such as alkyl groups, alkenyl groups, aryl groups, and the like.
  • hydrocarbylene intends a divalent hydrocarbyl moiety containing 1 to about 30 carbon atoms, preferably 1 to about 24 carbon atoms, most preferably 1 to about 12 carbon atoms, including linear, branched, cyclic, saturated and unsaturated species.
  • Substituted hydrocarbyl refers to hydrocarbyl substituted with one or more substituent groups
  • heteroatom-containing hydrocarbyl and “heterohydrocarbyl” refer to hydrocarbyl in which at least one carbon atom is replaced with a heteroatom
  • substituted hydrocarbylene refers to hydrocarbylene substituted with one or more substituent groups
  • heteroatomcontaining hydrocarbylene and “heterohydrocarbylene” refer to hydrocarbylene in which at least one carbon atom is replaced with a heteroatom.
  • hydrocarbyl and hydrocarbylene are to be interpreted as including substituted and/or heteroatom-containing hydrocarbyl and hydrocarbylene moieties, respectively.
  • heteroatom-containing refers to a hydrocarbon molecule or a hydrocarbyl molecular fragment in which one or more carbon atoms is replaced with an atom other than carbon, e.g., nitrogen, oxygen, sulfur, phosphorus or silicon, typically nitrogen, oxygen or sulfur.
  • heteroalkyl refers to an alkyl substituent that is heteroatom-containing
  • heterocyclic refers to a cyclic substituent that is heteroatom-containing
  • heteroaryl and “heteroaromatic” respectively refer to "aryl” and "aromatic” substituents that are heteroatom-containing, and the like.
  • heterocyclic group or compound may or may not be aromatic, and further that “heterocycles” may be monocyclic, bicyclic, or polycyclic as described above with respect to the term "aryl.
  • heteroalkyl groups include alkoxyalkyl, alkylsulfanyl-substituted alkyl, N-alkylated amino alkyl, and the like.
  • heteroaryl substituents include pyrrolyl, pyrrolidinyl, pyridinyl, quinolinyl, indolyl, pyrimidinyl, imidazolyl, 1, 2, 4-triazolyl, 1, 2, 3 triazolyl, tetrazolyl, etc., and examples of heteroatom containing alicyclic groups are pyrrolidino, morpholino, piperazino, piperidino, etc.
  • substituted as in “substituted hydrocarbyl, " “substituted alkyl, “ “substituted aryl, “ and the like, as alluded to in some of the aforementioned definitions, is meant that in the hydrocarbyl, alkyl, aryl, or other moiety, at least one hydrogen atom bound to a carbon (or other) atom is replaced with one or more non-hydrogen substituents.
  • substituents include, without limitation: functional groups such as halo, hydroxyl, sulfhydryl, C 1 -C 24 alkoxy, C 2 -C 24 alkenyloxy, C 2 -C 24 alkynyloxy, C 5 -C 24 aryloxy, C 6 -C 24 aralkyloxy, C 6 -C 24 alkaryloxy, acyl (including C 2 C 24 alkylcarbonyl (-CO-alkyl) and C 6 -C 24 arylcarbonyl (-CO-aryl) ) , acyloxy (-O-acyl, including C 2 C 24 alkylcarbonyloxy (-O-CO-alkyl) and C 6 -C 24 arylcarbonyloxy (-O-CO-aryl) ) , C 2 C 24 alkoxycarbonyl (- (CO) -O-alkyl) , C 6 -C 24 aryloxycarbonyl (- (CO) -O-O-
  • the aforementioned functional groups may, if a particular group permits, be further substituted with one or more additional functional groups or with one or more hydrocarbyl moieties such as those specifically enumerated above.
  • the above-mentioned hydrocarbyl moieties may be further substituted with one or more functional groups or additional hydrocarbyl moieties such as those specifically enumerated.
  • the present invention comprises a novel family of metathesis catalyst compounds useful for the different types of olefin and alkyne metathesis reactions, including but not limited to Ring closing metathesis (RCM) , Cross metathesis (CM) , Ring opening metathesis (ROM) , Ring opening metathesis polymerization (ROMP) , acyclic diene metathesis (ADMET) , self-metathesis, conversion of olefins with alkynes (enyne metathesis) , polymerization of alkynes, ethylene cross-metathesis, depolymerization of poly-butadiene, and so on.
  • RCM Ring closing metathesis
  • CM Cross metathesis
  • ROM Ring opening metathesis
  • ROMP Ring opening metathesis polymerization
  • ADMET acyclic diene metathesis
  • M is a Group 8 metal, preferably ruthenium or osmium,
  • R 1 -R 5 are identical or different and represents hydrogen, halogen, hydroxyl, aldehyde, keto, thiol, CF 3 , nitro, nitroso, cyano, thiocyano, isocyanates, carbodiimide, carbamate, thiocarbamate, dithiocarbamate, amino, amido, imino, ammonium, silyl, sulphonate (-SO 3 - ) , -OSO 3 - , -PO 3 - or -OPO 3 - , acyl, acyloxy or represents alkyl, cycloalkyl, alkenyl, cycloalkenyl, substituted alkenyl, heteroalkenyl, heteroatom-containing alkynyl, alkenylene, alkynyl, substituted alkynyl, aryl, substituted aryl, heteroaryl, carboxylate, alkoxy, alkenyloxy, alkynyloxy
  • C 1 -C 6 alkyl is, but not limited to, for example methyl, ethyl, n-propyl, iso-propyl, n-butyl, sec-butyl, tert-butyl, n-pentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, neo-pentyl, 1-ethyl-propyl and n-hexyl.
  • C 3 -C 8 cycloalkyl includes, but not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl and cyclooctyl.
  • C 6 -C 24 aryl includes an aromatic radical having 6 to 24 skeletal carbon atoms.
  • Preferred mono-, bi-or tricyclic carbocyclic aromatic radicals have 6 to 10 skeletal carbon atoms, for example but not limited to, phenyl, biphenyl, naphthyl, phenanthrenyl or anthracenyl.
  • X 1 and X 2 preferably represent an anionic ligand.
  • X 1 and X 2 can be for example, hydrogen, halogen, pseudohalogen, straight-chain or branched C 1 -C 30 alkyl, C 6 -C 24 aryl, C 1 -C 20 alkoxy, C 6 -C 24 aryloxy, C 3 -C 20 alkyl diketonate, C 6 -C 24 aryl diketonate, C 1 -C 20 carboxylate, C 1 -C 20 alkylsulfonate, C 6 -C 24 aryl sulfonate, C 1 -C 20 alkyl thiol, C 6 -C 24 aryl thiol, C 1 -C 20 alkylsulfonyl or C 1 -C 20 alkylsulfinyl-radicals.
  • radicals X 1 and X 2 may further be substituted by one or more additional residues, for example by halogen, preferably fluorine, C 1 -C 20 alkyl, C 1 -C 20 -alkoxy or C 6 -C 24 aryl, where these groups may optionally be in turn be substituted by one or more substituents from the group comprising halogen, preferable fluorine, C 1 -C 5 alkyl, C 1 -C 5 alkoxy, and phenyl.
  • halogen preferably fluorine, C 1 -C 20 alkyl, C 1 -C 20 -alkoxy or C 6 -C 24 aryl, where these groups may optionally be in turn be substituted by one or more substituents from the group comprising halogen, preferable fluorine, C 1 -C 5 alkyl, C 1 -C 5 alkoxy, and phenyl.
  • L 1 and X 1 or /and X 2 may be joined to form a multidentate monoanionic/dianionic group and may form a single /double ring of up to 30 non-hydrogen atoms or a multinuclear ring system of up to 30 non-hydrogen atoms;
  • X 1 and X 2 denote halogen, in particular, fluorine, chlorine, bromine or iodine, benzoate, nitrate, C 1 -C 5 carboxylate, C 1 -C 5 alkyl, phenoxy, C 1 -C 5 alkoxy, C 1 -C 5 alkyl thiol, C 6 -C 24 arylthiol, C 6 -C 24 aryl or C 1 -C 5 alkyl sulfonate.
  • halogen in particular, fluorine, chlorine, bromine or iodine, benzoate, nitrate, C 1 -C 5 carboxylate, C 1 -C 5 alkyl, phenoxy, C 1 -C 5 alkoxy, C 1 -C 5 alkyl thiol, C 6 -C 24 arylthiol, C 6 -C 24 aryl or C 1 -C 5 alkyl sulfonate.
  • X 1 and X 2 are chlorine, CF 3 COO, CH 3 COO, CFH 2 COO, (CH 3 ) 3 CO, nitrate, (CF 3 ) 2 (CH 3 ) CO, (CF 3 ) (CH 3 ) 2 CO, PhO (phenoxy) , C 6 F 5 O (pentafluorophenoxy) , MeO (methoxy) , EtO (ethoxy) , tosylate (p-CH 3 -C 6 H 4 -SO 3 ) , mesylate (2, 4, 6-trimethylphenyl) or CF 3 SO 3 (trifluoromethanesulfonate) .
  • A is selected from the group consisting of oxygen, sulphur, selenium, NR”, PR”, POR”, AsR”, AsOR”, SbR”and SbOR”.
  • R’and R are identical or different and represents hydrogen, halogen, hydroxyl, aldehyde, keto, CF 3 or represents alkyl, cycloalkyl, alkenyl, cycloalkenyl, substituted alkenyl, heteroalkenyl, heteroatom-containing alkynyl, alkenylene, alkynyl, substituted alkynyl, aryl, substituted aryl, heteroaryl, carboxylate, alkoxy, alkenyloxy, alkynyloxy, aryloxy, alkaryl, aralkyl, alkaryloxy, aralkyloxy, alkoxycarbonyl, alkylamino-, alkylthio-, arylthio, alkylsulfonyl, alkylsulfinyl, dialkylamino, alkylammonium, alkylsilyl or alkoxysilyl, where these radicals may each optionally all be substituted by one or more aforementioned
  • C 1 -C 6 alkyl is, but not limited to, for example methyl, ethyl, n-propyl, iso-propyl, n-butyl, sec-butyl, tert-butyl, n-pentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, neo-pentyl, 1-ethyl-propyl and n-hexyl.
  • C 3 -C 8 cycloalkyl includes, but not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl and cyclooctyl.
  • C 6 -C 24 aryl includes an aromatic radical having 6 to 24 skeletal carbon atoms.
  • Preferred mono-, bi-or tricyclic carbocyclic aromatic radicals have 6 to 10 skeletal carbon atoms, for example but not limited to, phenyl, biphenyl, naphthyl, phenanthrenyl or anthracenyl.
  • R’or/and R” is optionally substituted with a neutral donor ligand (L 2 ) as defined by L 1 .
  • L 1 preferably represent neutral electron donor.
  • the ligand L 1 may, for example, represent a phosphine, sulphonated phosphine, phosphate, phosphinite, phosphonite, phosphite, arsine, stibine, ether, amine, amide, sulfoxide, carboxyl, nitrosyl, pyridine, substituted pyridine, pyrazine, thiocarbonyl, thioether, triazole carbene, mesionic carbene (MIC) , N-Heterocyclic carbene ( "NHC” ) , substituted NHC, or cyclic alkyl amino carbene (CAAC) or substituted CAAC.
  • ligand L 1 represents a phosphine ligand having the formula P (Q 1 ) 3 with Q 1 are identical or different and are alkyl, preferably C 1 -C 10 alkyl, more preferably C 1 -C 5 -alkyl, cycloalkyl-, preferably C 3 -C 20 cycloalkyl, more preferably C 3 -C 8 cycloalkyl, preferably cyclopentyl, cyclohexyl, and neopentyl, aryl, preferably C 6 -C 24 aryl, more preferably phenyl or toluyl, C 1 -C 10 alkyl-phosphabicyclononane, C 3 -C 20 cycloalkyl phospha-bicyclononane, a sulfonated phosphine ligand of formula P (Q 2 ) 3 wherein Q 2 represents a mono-or poly-sulfonated Q 1
  • phosphine includes, for example, PPh 3 , P (p-Tol) 3 , P (o-Tol) , PPh (CH 3 ) 2 , P (CF 3 ) 3 , P (p-FC 6 H 4 ) 3 , P (p-CF 3 C 6 H 4 ) 3 , P (C 6 H 4 -SO 3 Na) 3 , P (CH 2 C 6 H 4 -SO 3 Na) 3 , P (iso-Propyl) 3 , P (CHCH 3 (CH 2 CH 3 ) ) 3 , P (cyclopentyl) 3 , P (cyclohexyl) 3 , P (Neopentyl) 3 and cyclohexyl-phosphabicyclononane.
  • phosphinite includes for example triphenylphosphinite, tricyclohexylphosphinite, triisopropylphosphinite and methyldiphenylphosphinite.
  • phosphite includes, for example, triphenyl phosphite, tricyclohexyl phosphite, tri-tert-butyl phosphite, triisopropyl phosphite and methyldiphenylphosphite.
  • substitute includes, for example triphenylstibine, tricyclohexylstibine and Trimethylstibene.
  • sulfonate includes, for example, trifluoromethanesulfonate, tosylate and mesylate.
  • thioether includes, for example CH 3 SCH 3 , C 6 H 5 SCH 3 , CH 3 OCH 2 CH 2 SCH 3 and tetra-hydrothiophene.
  • pyridine in this application is a generic term and includes all the nitrogen-containing ligands described by Grubbs in WO-A-03/011455 but not limited to. Examples are: pyridine, picolines ( ⁇ -, ⁇ -, and ⁇ -picoline) , lutidines (2, 3-, 2, 4-, 2, 5-, 2, 6-, 3, 4-and 3, 5-lutidine) , collidine (2, 4, 6-trimethylpyridine) , trifluoromethylpyridine, phenylpyridine, 4- (dimethylamino) pyridine, chloropyridines (2-, 3-and 4-chloropyridine) , bromopyridines (2-, 3-and 4-bromopyridine) , nitropyridines (2-, 3-and 4-nitropyridine) , quinoline, pyrimidine, pyrrole, imidazole and phenylimidazole.
  • ligand L 1 represents a N-Heterocyclic carbene (NHC) usually having a structure of the formulas (IIa) or (IIb) :
  • R 6 -R 13 , R 10’ , R 11’ are identical or different and are hydrogen, halogen, hydroxyl, aldehyde, keto, thiol, CF 3 , nitro, nitroso, cyano, thiocyano, isocyanates, carbodiimide, carbamate, thiocarbamate, dithiocarbamate, amino, amido, imino, ammonium, silyl, sulphonate (-SO 3 - ) , -OSO 3 - , -PO 3 - or -OPO 3 - , acyl, acyloxy or represents alkyl, cycloalkyl, alkenyl, cycloalkenyl, substituted alkenyl, heteroalkenyl, heteroatom-containing alkynyl, alkenylene, alkynyl, substituted alkynyl, aryl, substituted aryl, heteroaryl, carboxylate, alkoxy, alken
  • one or more of the radicals R 6 -R 13 , R 10’ , R 11’ independently of one another can be substituted by one or more substituents, preferably straight or branched C 1 -C 10 alkyl, C 3 -C 8 cycloalkyl, C 1 -C 10 alkoxy or C 6 -C 24 aryl, where these aforementioned substituents may in turn be substituted by one or more radicals, preferably selected from the group comprising halogen, especially chlorine or bromine, C 1 -C 5 alkyl, C 1 -C 5 alkoxy and phenyl.
  • R 6 , R 7 , R 10 , R 10’ , R 11 and R 11’ are independently of one another denote hydrogen, C 6 -C 24 -aryl, particularly preferably phenyl, straight or branched C 1 -C 10 alkyl, particularly preferably propyl or butyl, or together with the inclusion of the carbon atoms to which they are attached form a cycloalkyl or aryl radical, where all the abovementioned radicals are optionally substituted may be substituted by one or more further radicals selected from the group comprising straight or branched C 1 -C 10 alkyl, C 1 -C 10 alkoxy, C 6 -C 24 aryl, and a functional group selected from the group consisting of hydroxy, thiol, thioether, ketone, aldehyde, ester, ether, amine, imine, amide, nitro, carboxylic
  • the catalysts of the general formula (I) has one N-Heterocyclic carbene (NHC) as ligand L 1 , where the radicals R 8 , R 9 , R 12 and R 13 are identical or different and are straight or branched C 1 -C 10 alkyl, particularly preferably i-propyl or neopentyl, C 3 -C 10 cycloalkyl, preferably adamantyl, C 6 -C 24 aryl, particularly preferably phenyl, C 1 -C 10 alkylsulfonate, particularly preferably methanesulphonate, C 1 -C 10 arylsulphonate, particularly preferably p-toluenesulfonate.
  • N-Heterocyclic carbene N-Heterocyclic carbene
  • the above-mentioned residues are substituted as the meanings of R 8 , R 9 , R 12 and R 13 by one or more further radicals selected from the group comprising straight or branched C 1 -C 5 alkyl, especially methyl, C 1 -C 5 alkoxy, aryl and a functional group selected from the group consisting of hydroxy, thiol, thioether, ketone, aldehyde, ester, ether, amine imine, amide, nitro, carboxylic acid, disulfide, carbonate, isocyanate, carbodiimide, carboalkoxy, carbamate, and halogen.
  • one or more further radicals selected from the group comprising straight or branched C 1 -C 5 alkyl, especially methyl, C 1 -C 5 alkoxy, aryl and a functional group selected from the group consisting of hydroxy, thiol, thioether, ketone, aldehyde, ester, ether,
  • radicals R 8 , R 9 , R 12 and R 13 can be identical or different and denote i-propyl, neopentyl, adamantyl, mesityl or 2, 6-diisopropylphenyl.
  • N-Heterocyclic carbenes have the following structure (IIIa) - (IIIf) , in which Mes stands for a 2, 4, 6-trimethylphenyl radical or alternatively, in all cases, for a 2, 6-diisopropylphenyl radical
  • the neutral ligand L may be selected from a ligand of any of the formulas (IVg -IVk)
  • R 7 , R 8 , R 9 , R 10 , R 10’ , R 11 , R 12 , R 13 are identical or different and are equal to R 1 -R 5 defined as herein-above. Any adjacent group of R 10 , R 10’ and R 11 in structure (IVb) and (IVc) may form a 3, 4, 5, 6, or 7 membered cycloalkyl, alkylene bridge, or aryl.
  • one of the N groups bound to the carbene in Formula (IIa) or (IIb) is replaced with another heteroatom, preferably S, O or P, preferably an S heteroatom.
  • Other useful N-heterocyclic carbenes include the compounds described in Chem. Eur. J 1996, 2, 772 and 1627; Angew. Chem. Int. Ed. 1995, 34, 1021; Angew. Chem. Int. Ed. 1996, 35, 1121; and Chem. Rev. 2000, 100, 39.
  • CAACs cyclic alkyl amino carbenes
  • ring E is a 4-, 5-, 6-, or 7-membered ring
  • T is a linking group comprising from one to four linked vertex atoms selected from the group comprising C, O, N, B, Al, P, S and Si with available valences optionally occupied by hydrogen, oxo or R-substituents
  • R is independently selected from the group comprising C 1 to C 12 hydrocarbyl groups, substituted C 1 to C 12 hydrocarbyl groups, and halides
  • each R 14 is independently a hydrocarbyl group or substituted hydrocarbyl group having 1 to 40 carbon atoms, preferably methyl, ethyl, propyl, butyl (including isobutyl and n-butyl) , pentyl, cyclopentyl, hexyl, cyclohexyl, octyl, cyclooctyl, nonyl, decyl, cyclodecyl,
  • CAACs include:
  • CAACs include the compounds described in U.S. 7,312,331, in Angew. Chem. Int. Ed. 2005, 44, 7236-7239 and in Angew. Chem. Int. Ed. 2015, 54, 1919–1923.
  • the ring G is a 4-, 5-, 6-, 7-, 8-, 9-or 10-membered ring
  • Z is a linking group comprising from one to seven linked vertex atoms selected from the group comprising C, O, N, P, S and Si with available valences optionally occupied by hydrogen, halogen, hydroxyl, aldehyde, keto, thiol, CF 3 , nitro, nitroso, cyano, thiocyano, isocyanates, carbodiimide, carbamate, thiocarbamate, dithiocarbamate, amino, amido, imino, ammonium, silyl, sulphonate (-SO 3 - ) , -OSO 3 - , -PO 3 - or -OPO 3 - , acyl, acyloxy or represents alkyl, cycloalkyl, alkenyl, cycloalkenyl, substituted alkenyl, heteroalkeny
  • L 1 and L 2 are identical or different ligands, preferably represent neutral electron donors, and L 2 has the same meaning as L 1 as defined in structure (I)
  • the catalyst compound employed in the olefin metathesis processes may be bound to or deposited on a solid catalyst support.
  • the solid catalyst support will make the catalyst compound heterogeneous, which will simplify catalyst recovery.
  • the catalyst support may increase catalyst strength and attrition resistance.
  • Suitable catalyst supports include, without limitation, silica’s, alumina’s, silicaalumina’s, aluminosilicates, including zeolites and other crystalline porous aluminosilicates; as well as titania’s, zirconia, magnesium oxide, carbon, carbon nanotubes, graphene, Metal organic frameworks and cross-linked, reticular polymeric resins, such as functionalized cross-linked polystyrenes, e.g., chloromethyl-functionalized cross-linked polystyrenes.
  • the catalyst compound may be deposited onto the support by any method known to those skilled in the art, including, for example, impregnation, ion-exchange, deposition-precipitation, ⁇ interactions and vapor deposition.
  • the catalyst compound may be chemically bound to the support via one or more covalent chemical bonds, for example, the catalyst compound may be immobilized by one or more covalent bonds with one or more of substituents of the indenylidene ligand or directly immobilized via one or more chemical bounds on the Group 8 metal by substituting one or more anionic ligands or immobilized via one or more chemical bounds between the L 1 ligand and the support.
  • the catalyst compound may be loaded onto the catalyst support in any amount, provided that the metathesis process proceeds to the desired metathesis products. Generally, the catalyst compound is loaded onto the support in an amount that is greater than about 0.01 wt%of the Group 8 metal, based on the total weight of the catalyst compound plus support. Generally, the catalyst compound is loaded onto the support in an amount that is less than about 20 wt%of the Group 8 metal, based on the total weight of the catalyst compound and support.
  • the catalysts are obtainable starting from the ligand precursors by a cross metathesis reaction with known Ru alkylidene compounds (e.g. Ru-benzylidene, Ru-indenylidene, ...) complexes in a single-reaction step. This ensures a cost-effective and time-saving preparation route resulting in products with high purity and high yield.
  • the catalysts of the present invention are especially suitable to catalyze olefin metathesis reactions with a superior activity even at low catalyst loadings and low to moderate temperatures.
  • the monotopic chelating ligands, which alternatively can bear at least an extra chelating moiety, for production of the ruthenium-based metathesis catalysts of the present invention are characterized by the formula (VII)
  • monotopic vinyl compounds useful in this invention may contain a chelating moiety of the formula (VII)
  • R 1 -R 5 , R’and R have the same meanings as defined in the general structure (I) .
  • Preferred organic vinylic compounds include:
  • the catalyst compounds described in this invention may be synthesized by any methods known to those skilled in the art.
  • Representative methods of synthesizing the Group 8 catalyst compound of the type described herein include, for example, treating a solution of the monotopic (or ditopic) chelating ligand (vinylbenzyl compound) in a suitable solvent, such as toluene, with a reactant complex of a Group 8 metal, such as but not limited to benzylidene [1, 3-bis (2, 4, 6-trimethylphenyl) -2-imidazolidinylidene] dichloro (tricyclohexylphosph ine) ruthenium (G2) , phenyl indenylidene [1, 3-bis (2, 4, 6-trimethylphenyl) -2-imidazolidinylidene] dichloro (tricyclohexylphosphine) ruthenium (N) , benzylidene-bis (tricyclohexylphosphine) dichloro-ruthenium (G1) , phenylindenylidene-bis (tricyclo
  • the reaction mixture may be heated, for a time period appropriate to yield the desired modified catalyst compound.
  • a time period appropriate to yield the desired modified catalyst compound.
  • the synthetic procedure is cost-effective and reproducible even at large scale
  • a N-Heterocyclic carbenes such as 1, 3-Bis (2, 4, 6-trimethylphenyl) -2-imidazolidinylidene, 1, 3-Bis (2, 4, 6-trimethylphenyl) -2-imidazolylidene, 1, 3-Bis (2, 6-diisopropylphenyl) -2-imidazolidinylidene, 1, 3-Bis (2, 6-diisopropylphenyl) -2-imidazolylidene or a CAAC may be added to 1 st generation compound (Scheme 4) , if desired.
  • Scheme 4 1 st generation compound
  • the reaction conditions typically include mixing the Group 8 reactant 1 st generation compound (Scheme 4) and the preferred NHC, CAAC ligand in a suitable solvent, e.g. toluene, for a time sufficient to effectuate the phosphine ligand exchange, at a suitable temperature typically between ambient and 80°C. Addition of isopropanol followed by filtration and washing, generates the desired 2 nd generation compound (Scheme 4) in high yield (> 85%) .
  • a suitable solvent e.g. toluene
  • Tetrahydrofuran (THF) was dried over sodium and distilled onto molecular sieves (3 A) .
  • CAAC ligand synthesis is illustrated with 1- (2, 6-diisopropylphenyl) 2, 2, 4-trimethyl-4-phenyl-pyrrole chloride and is exactly the same for all other CAAC
  • the mixture is cooled to room temperature, poured into 50 ml of saturated ammonium chloride solution, and extracted with diethyl ether (3 ⁇ 50 ml) .
  • the organic phases are combined, washed with water and saturated brine, dried over anhydrous sodium sulfate and filtered.
  • the solvent is evaporated and the product is passed through a column to give a colorless to pale yellow oily liquid in a yield of 85 to 93%.
  • L2, L3, L5, L6 were characterized by 1 H-and 13 C-NMR spectroscopy.
  • L10 -L11 and L13-L16 were characterized by 1 H-and 13 C-NMR spectroscopy.
  • the ditopic ligand (L17) was characterized by 1 H-and 13 C-NMR spectroscopy.
  • L20 was characterized by 1 H-and 13 C-NMR spectroscopy.
  • Catalyst code used C from Catalyst followed by ligand number, e.g. C4 is first generation catalyst made by using ligand L4, C NHC 4 is catalyst bearing a NHC ligand (2 nd generation catalyst) combined with ligand 4.
  • Scheme 7 Procedure to produce 1 st generation type catalysts.
  • Catalyst code used is C NHC (NHC-type catalysts) followed by ligand number, e.g. C NHC 2 is second-generation catalyst based on NHC and using ligand L4.
  • Figure 1 Crystal structure of dichloro (tricyclohexylphosphine) (1, 3-bis (2, 4, 6-trimethylphenyl) -2-imidazolidinylidene ) (N-4-F-phenyl-N-H) aminomethylenephenylmethylylidene ruthenium (C NHC 14)
  • 2 nd generation catalyst of the type C CAAC were characterized by 1 H, 13 C NMR spectroscopy.
  • the new catalysts have exemplarily been evaluated in ring-closing metathesis reactions (RCM) , Ring-opening metathesis polymerization (ROMP) and Cross Metathesis. Furthermore, the activity has been compared with precatalysts known from the prior art, i.e. catalysts of formulas H1, H2, 4 and 5 shown above.
  • 6-membered 1 st generation catalysts C2, C3, C4 of this invention and prior art 1st generation Hoveyda catalyst H1 (5-membered 1 st generation catalyst) were compared for RCM of DEDAM as well as 6-membered 2 nd generation catalyst C NHC 2 with prior art 2 nd generation catalyst H2.
  • the reaction was carried out at 30 °C using 1.0 mol%of catalyst to DEDAM (0.1 M in CDCl 3 ) .
  • the tested catalysts allow excellent conversion ( ⁇ 75%) of the substrate within 15 min.
  • catalyst of formula C3 turned out to be more efficient than C2 and C4.
  • the catalysts of the present invention show exceptional improved activity in RCM and various other metathesis reactions.
  • the same behavior can be seen for the second generation NHC type catalyst (C NHC 2) of this invention compared with H2. Full conversion is obtained in less then 5 min which is an exceptional improvement compared with prior art catalyst H2.
  • Fig: 2 Comparison of 6-membered 1 st generation catalysts (C2, C3, C4) with prior art catalyst H1 for ROMP of COD
  • the present invention not only focuses on improvement of the initiation rate of the catalyst also generation of latent catalyst is another target of this invention.
  • a variation from very fast initiating catalysts to latent catalysts is obtained via the replacement of the oxygen-containing by the sulfur-containing ligand in the catalyst and is demonstrated for the RCM of DEDAM, see eq. 1.
  • Fig. 3 Comparison of 6-membered catalysts (C NHC 2, C2, C NHC 7 and C7) for RCM reaction of DEDAM
  • the oxygen containing catalyst of this invention clearly demonstrate the fast initiation, C NHC 2 is much faster initiating then C2 since it is a second generation type.
  • the sulfur containing catalysts demonstrate a very slow initiation (C NHC 7) or no initiation (C7) , demonstrating the latent character of the S-containing catalysts.
  • Latent catalysts which is a target of this invention, are also generated with the N-containing ligands.
  • the activation of latent catalyst can be executed using thermal energy which has been demonstrated with the 6-membered S-containing catalysts.
  • another target of this invention which is the chemical activation of latent catalysts.
  • these catalysts can be activated thermally by increasing the temperature and chemically by adding an activator for the RCM of DEDAM, see eq. 1.
  • Fig. 4 Different activation methods of C NHC 19 for RCM of DEDAM (reactions conditions: 1 mol%catalyst; substrate concentration: 0.1 M; solvent: toluene; temperature see figure) .
  • latent catalysts can be chemically activated. Applying this activation procedure the activated catalyst even perform better in time then when using the thermally activated procedure. Via chemical activation full conversion can be obtained in 1 hour while via thermal activation 87%conversion is obtained.
  • Fig. 5 Influence of different activators on the activity of C NHC 20 for ROMP of COD.
  • Table 3 ROMP of COD by using different activators (silanes, and Lewis acids) .
  • Table 4 RCM of different substrate using C NHC 9, C NHC 10, C NHC 12, C NHC 13 demonstrating the tunability of the catalysts of this invention.
  • the tested catalysts allow excellent conversion (>99%) of substrates, using catalyst loadings between 25 and 100 ppm. Thereby, catalysts of formulas C NHC 9 and C NHC 10 turned out to have nearly the same efficiency.
  • the catalysts of the present invention show improved activity in RCM and various other metathesis reactions. Conversion (in %) in RCM reactions of various substrates for catalysts of the invention (C NHC 9, C NHC 10) and prior art catalysts (b) and (c) at different catalyst loadings is presented in table 5.
  • Table 5 Comparison of 6-membered ring containing 2 nd gen. catalysts with 2 nd gen. catalysts of prior art for RCM.
  • the required amount was of catalyst was dissolved in a minimum amount of dichloromethane (CH 2 Cl 2 ) , and thereafter added to 80 g of DCPD which contains the required amount of activator (PhSiCl 3 ) .
  • the mixture was stirred and the polymerization reaction was monitored as a function of time starting at 20 °C by a thermocouple which was placed inside the reaction mixture to collect the temperature data.
  • catalyst/DCPD 1/50000.
  • the catalysts used are C NHC8 , C NHC9 , C NHC10 and C NHC19 .
  • a ruthenium catalyst Verpoort (WO 03/062253) comprising one bidentate Schiff base ligand has been used as a reference catalyst; see table 3.
  • Variation of the A-atom e.g. S, N
  • substituents on the A-atom of the chelating ligand of the catalysts results in a weaker coordination of the A-atom to the central metal which promotes the initiation of the catalyst using an activator.
  • All catalysts of this invention show an excellent latency towards DCPD (with C NHC8 a fair latency) , they are inactive at room temperature. All catalysts of this invention show an improved stability and are superior to other prior art used as a reference (VP) , see table 6.
  • the catalyst e.g. C NHC8 and C NHC10 , according to the present invention, demonstrate an increased initiation compared to the reference catalyst (VP) because it requires less equivalents of PhSiCI 3 to generate a highly active system.
  • VP reference catalyst
  • ROMP of DCPD is catalysed by the chemical activated VP complex (reference) , under the same conditions (1 equivalent of PhSiCI 3 ) a low catalytic activity was observed.
  • ratio catalyst/monomer is increased with 66%compared to the reference catalyst (VP) which clearly stress out their superior performance of the catalysts of the present invention.
  • the catalysts of this invention are superior compared with prior art catalyst for the ethenolysis of methyloleate. Using very low catalyst concentration very high TON are reached. Accordingly, by using catalyst C CAAC 9 a TON of 3.9 x10 4 has been observed. This is a significant improvement with respect to the prior art. For other catalyst of this invention when using 3 ppm still significant improvements are made compared with prior art, table 7.
  • the reaction mixtures were passed through silica gel (3 g per 0.006 mmol of catalyst C17) with different eluents (see Table 8) .
  • the silica gel can also be introduced directly into the reaction mixture. Complete decolorization was observed within 10 minutes of intense stirring.
  • the ruthenium content of some selected metathesis products were determined by ICP-AES analysis. Using a basic filtration through silica gel, the ruthenium content of the products with an initial ruthenium content of 500 ppm were reduced to 1 ppm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Catalysts (AREA)

Abstract

These catalyst compounds are represented by the formula (I and VI): wherein M is a Group 8 metal; X is an anionic ligand; L is a neutral two-electron donor ligand; A is a monotopic or ditopic chelating ligand. The present invention also relates to an easy applicable catalyst synthesis and the application in different olefin metathesis processes, e.g. Reaction Injection Molding (RIM), rotational molding, vacuum infusion, vacuum forming, process for conversion of fatty acids and fatty acid esters or mixtures thereof, in -olefins, dicarboxylic acids or dicarboxylic esters, etc.

Description

Group 8 transition metal catalysts and method for making same and process for use of same in olefin disproportionation reactions FIELD OF THE INVENTION
This invention relates to Group 8 transition metal catalysts and method for making same and process for use of same in olefin disproportionation reactions.
BACKGROUND OF THE INVENTION
Olefin disproportionation is a catalytic process including, as a key step, a reaction between a first olefin and a first transition metal alkylidene complex, thus producing an unstable intermediate metallacyclobutane ring which then undergoes transformation into a second olefin and a second transition metal alkylidene complex according to equation (1) hereunder. Reactions of this kind are reversible and in competition with one another, so the overall result heavily depends on their respective rates and, when formation of volatile or insoluble products occurs, displacement of equilibrium.
Figure PCTCN2016080636-appb-000001
Olefin disproportionation reactions are extensively applied in the field of chemical reactions, e.g. Ring closing metathesis (RCM) , Cross metathesis (CM) , Ring opening metathesis (ROM) , Ring opening metathesis polymerization (ROMP) , acyclic diene metathesis (ADMET) , self-metathesis, conversion of olefins with alkynes (enyne metathesis) , polymerization of alkynes, and so on.
Figure PCTCN2016080636-appb-000002
Figure PCTCN2016080636-appb-000003
Typical applications of olefin disproportionation but not limited are Reaction Injection Molding (RIM) , filament winding, pultrusion of dicyclopentadiene (DCPD) , which is an example of the ring opening metathesis polymerization. Industrial application in DCPD polymerization requires latent catalysts, which can allow for longer handling of a monomer-catalyst mixture before the polymerization starts. Other examples of ring opening metathesis polymerization are ROMP of norbornene and its derivatives, copolymerization of different cyclic olefins. Ethenolysis, a chemical process in which internal olefins are degraded using ethylene as the reagent, is an example of cross metathesis; CM of ethene with 2-butene; depolymerization of unsaturated polymers and so fort.
Although homo-coupling (equation 3a) is of high interest, the same is true for cross-coupling between two different terminal olefins (equation 3b) . Coupling reactions involving dienes lead to linear and cyclic dimers, oligomers, and, ultimately, linear or cyclic polymers (equation 6) . In general, the latter reaction is favoured in highly concentrated solutions or in bulk, while cyclisation is favoured at low concentrations. When intra-molecular coupling of a diene occurs so as to produce a cyclic alkene, the process is called ring-closing metathesis (equation 2) . Cyclic olefins can be opened and oligomerised or polymerised (ring opening metathesis polymerisation shown in equation 5) . When the alkylidene catalyst reacts more rapidly with the cyclic olefin (e.g. a norbornene or a cyclobutene) than with a carbon-carbon double bond in the growing polymer chain, then a "living ring opening metathesis polymerisation" may result, i.e. there is little termination during or after the polymerization reaction. Strained rings may be opened using an alkylidene catalyst with a second alkene following the mechanisms  of the Cross Metathesis. The driving force is the relief of ring strain. As the products contain terminal vinyl groups, further reactions of the Cross Metathesis variety may occur. Therefore, the reaction conditions (time, concentrations, ... ) must be optimized to favour the desired product (equation 4) . The enyne metathesis is a metalcarbene-catalysed bond reorganization reaction between alkynes and alkenes to produce 1, 3-dienes. The intermolecular process is called Cross-Enyne Metathesis (7) , whereas intramolecular reactions are referred as Ring-Closing Enyne Metathesis (RCEYM) .
The cross-metathesis of two reactant olefins, where each reactant olefin comprises at least one unsaturation site, to produce new olefins, which are different from the reactant olefins, is of significant commercial importance. One or more catalytic metals, usually one or more transition metals, usually catalyse the cross-metathesis reaction.
One such commercially significant application is the cross-metathesis of ethylene and internal olefins to produce alpha-olefins, which is generally referred to as ethenolysis. More specific, the cross-metathesis of ethylene and an internal olefin to produce linear -olefins is of particular commercial importance. Linear -olefins are useful as monomers or co-monomers in certain (co) polymers poly -olefins and/or as intermediates in the production of epoxides, amines, oxo alcohols, synthetic lubricants, synthetic fatty acids and alkylated aromatics. Olefins Conversion TechnologyTM, based upon the Phillips Triolefin Process, is an example of an ethenolysis reaction converting ethylene and 2-butene into propylene. These processes apply heterogeneous catalysts based on tungsten and rheniumoxides, which have not proven effective for internal olefins containing functional groups such as cis-methyl oleate, a fatty acid methyl ester.
1-Decene is a co-product typically produced in the cross-metathesis of ethylene and methyl oleate. Alkyl oleates are fatty acid esters that can be major components in biodiesel produced by the transesterification of alcohol and vegetable oils. Vegetable oils containing at least one site of unsaturation include canola, soybean, palm, peanut, mustard, sunflower, tung, tall, perilla, grapeseed, rapeseed, linseed, safflower, pumpkin, corn and many other oils extracted from plant seeds. Alkyl erucates similarly are fatty acid esters that can be major components in biodiesel. Useful biodiesel compositions are those, which typically have high concentrations of oleate and erucate esters. These fatty acid esters preferably have one site of unsaturation such that cross-metathesis with ethylene yields 1-decene as a co-product.
Vegetables oils used in food preparation (fritting of meat, vegetables, …) can be recuperated and after purification, be converted applying e.g. ethenolysis into useful products applicable in biodiesel.
Biodiesel is a fuel prepared from renewable sources, such as plant oils or animal fats. To produce biodiesel, triacylglycerides, the major compound in plant oils and animal fats, are converted to fatty acid alkyl esters (i.e., biodiesel) and glycerol via reaction with an alcohol in the presence of a base, acid, or enzyme catalyst. Biodiesel fuel can be used in diesel engines, either alone or in a blend with petroleum-based diesel, or can be further modified to produce other chemical products.
Several metal-carbene complexes are known for olefin disproportionation however the difference between those structures can be found in the carbene part. Patents WO96/04289 and WO97/06185 are examples of metathesis catalysts having the general structure
Figure PCTCN2016080636-appb-000004
Where:
M is Os or Ru, R and R1 organic parts from the carbene fragment which have a great structural variability, X and X1 are anionic ligands and L and L1 represents neutral electron donors. “anionic ligands” are, according the literature in the field of olefin metathesis catalysts, ligands which are negative charged and thus bearing a full electron shell when they are removed from the metal center
A well-known example of this class of compounds is the Grubbs 1st generation catalysts
Figure PCTCN2016080636-appb-000005
Another well-known example of this class of compounds is the Grubbs’ 2nd generation catalyst which is described in WO0071554 and the hexa-coordinated “Grubbs 3rd generation catalyst described in WO03/011455.
Figure PCTCN2016080636-appb-000006
Grubbs’ 2nd gen. (G2) Grubbs 3rd gen. (G3) Hoveyda 1st gen. (H1) Hoveyda 2nd gen. (H2)
There are still some other well-known catalysts described in literature which are very useful in the area of olefin metathesis, and which serve as background information for this application, eg. H1, H2.
Furthermore, other catalysts are known where both carbon atoms of the carbene fragment are bridged, a few of these representatives are given:
Figure PCTCN2016080636-appb-000007
Fürstner et al. was the first to describe this structure (J. Org. Chem. 1999, 64, 8275-8280 and Chem. Eur. J. 2001, 7, No 22, 4811-4820) . Analogues of this catalyst bearing one NHC-ligand and one phosphine ligand where described by Nolan in WO00/15339 and Verpoort (Eur. J. Inorg. Chem. 2008, 432–440) . These types of compounds are not only catalysts for the olefin metathesis; they also can be used as starting product to produce other ruthenium-carbene compounds via cross metathesis (WO2004/112951) .
Furthermore, in US2003/0100776 on page 8, paragraph [0087] are catalysts described where the carbon atoms of the carbene part are bridged and whereby the newly formed cyclic group can be aliphatic or aromatic and can bear substituents or hetero atoms. Additionally, it is said that the generated ring structure is constructed of 4 to 12 and preferable 5 to 8 atoms contains. However, no explicit ring structures or examples are described or given.
For some processes it is desirable that catalyst initiation be controllable. Much less work has focused on decreasing the initiation rate of ruthenium-based catalysts. In these cases, the use of a trigger such as light activation (e.g. photoirradiation) , chemical activation (e.g. acid addition) , temperature activation (e.g. heating of the sample) or mechanical activation (e.g. ultrason) can help to control initiation. Efficient ring-opening metathesis polymerization (ROMP) reactions require adequate mixing of monomer and catalyst before polymerization occurs. For these applications, catalysts that initiate polymerization at a high rate only upon activation are desirable. However, Grubbs 1st and 2nd gen, Hoveyda 1st and 2nd gen., Furstner and Nolan catalysts are competent metathesis catalysts at or below room temperature, so alone are not suited for applications where catalyst latency is beneficial (Org. Lett. 1999, 1, 953-956; J. Am. Chem. Soc. 2000, 122, 8168-8179; Tetrahedron Lett. 2000, 41, 9973-9976) .
Experimental studies have shown that, for the majority of ruthenium catalysts, dissociation of a donor ligand provides entry to the catalytic cycle. Several design strategies for slowing ligand dissociation can be envisioned. An important consideration is that the method used to slow initiation should not disrupt the catalyst activity. The addition of excess phosphine to the reaction can serve to slow initiation as shown in case I (Scheme 1) (J. Am. Chem. Soc. 1997, 119, 3887-3897) . Unfortunately the addition of phosphine commonly results in propagation rates also being reduced.
Figure PCTCN2016080636-appb-000008
Scheme 1: Strategies to control catalyst initiation.
Another strategy to slow catalyst initiation is to replace the Schrock-type ruthenium carbene with a Fischer carbene (Type II, Scheme 1) . This approach has been used to generate  several latent metathesis catalysts with Fischer carbenes featuring oxygen, sulphur, and nitrogen substitution. (Organometallics 2002, 21, 2153-2164.; J. Organomet. Chem. 2000, 606, 65-74) . In some cases, the decrease in activity with these systems is so great that they are considered metathesis-inactive. In fact, addition of ethyl vinyl ether to form a Fischer carbene complex is a standard method of quenching ROMP reactions.
In another methodology towards rationally designed thermally stable olefin metathesis catalyst, efforts were directed towards the development of an O, N-bidentate Schiff base ligated Ru-carbene catalysts elaborated by Grubbs (U.S. Patent No. 5,977,393; Scheme 2, 2 wherein L= PR3) and Verpoort (WO 03/062253; Scheme 2, 2 wherein L=SIMes and 3 wherein L=PR3, SIMes) . It was shown that such complexes are inactive at room temperature towards the polymerization of low-strain, cyclic olefins and can be thermally activated to yield increased activity for the bulk-polymerization of DCPD, but from industrial point of view, catalysts of which their performance is easy tunable by a simple straightforward modification are not described (EP1468004; J. Mol. Cat. A: Chem. 2006, 260, 221-226) .
Figure PCTCN2016080636-appb-000009
Scheme 2: Examples of type III systems to control the initiation
Recently a series of latent olefin metathesis catalysts bearing bidentate K2- (O, O) ligands were synthesized (Scheme 2, 1) . Complex 1, proved to be inactive for the solvent-free polymerization of DCPD. It was furthermore illustrated that complex 1 (Scheme 2, L = PCy3, SIMes) is readily activated upon irradiation of a catalyst/monomer mixture containing a photoacid generator and was found applicable in ROMP of DCPD (WO 99/22865) . Nevertheless irradiation of a solution of DCPD and 1 (L=SlMes) in a minimal amount of CH2CI2 resulted in complete gelation within 1 h but solidified and cross-linked monomer was not obtained.
Van der Schaaf and co-workers followed another approach (type IV, scheme 1) to develop the temperature activated, slow initiating olefin metathesis catalyst  (PR3) (CI) 2Ru (CH (CH22-C, N-2-C5H4N) (4 in Scheme 3) in which initiation temperatures were tuned by changing the substitution pattern of the pyridine ring (J. Organomet. Chem. 2000, 606, 65-74) . Unfortunately, activities of the reported complexes were undesirably low; restricted to 12000 equiv DCPD. Later, Ung reported on analogous tunable catalytic systems obtained by partially isomerizing trans- (SIMes) (CI) 2Ru (CH (CH2) 2-C, N-2-C5H4N) (5 in scheme 3) into the cis analogue (Organometallics 2004, 23, 5399-5401) . However, none of these catalysts allowed for storage in DCPD monomer for long time as the ROMP of DCPD is completed in 25 minutes after catalyst introduction.
Figure PCTCN2016080636-appb-000010
Scheme 3: Examples of type IV systems to control the initiation.
This indicates low catalyst activity and the operation on a low amount of the active species. Thus the general trends of modifying Hoveyda-Grubbs type complexes were based on the replacement of O by N and the use of different substituents on N. For example, in 2010, the Plenio group reported an active catalyst 6 with Ph2N (alkyl) -derived styrene ligand for ring closing metathesis (RCM) reaction. (Chem. □ Eur. J., 2012, 18, 12845) Complex 7 with monoarylamine moiety had a decreased initiation rate. (Chem. □ Eur. J., 2014, 20, 2819) 
Summarizing, the latent catalysts are of prominent importance for Ring-Opening Metathesis Polymerizations of low-strained cyclic olefins, as they allow for mixing of monomer and catalyst without concomitant gelation or microencapsulation of the precatalyst.
Despite the advances achieved in the preparation and development of olefin metathesis catalysts, a continuing need exists for new improved synthetic methods and new catalysts. Of particular interest are methods that provide the preparation of new catalysts, which easily can be prepared on industrial scale.
Notwithstanding the different available catalysts, from industrial point of view, catalysts of which their performance is easy tunable by a simple straightforward modification are highly desired. Of particular interest are catalysts which can be modified from completely latent to highly active; latent catalysts find easily application in ROMP e.g. DCPD polymerization via RIM, highly active catalysts find easily application in cross metathesis e.g. ethenolysis, depolymerization of 1, 4-polybutadiene, etc.
Moreover, easy tunable catalysts can be obtained by tuning of the electron density of the catalyst by variation of the neutral ligand (e.g. NHC, CAAC, …) in combination with coordinating ligands (e.g. monotopic or ditopic alkylidenes) . However, the combination of chelating substituted /functionalised benzylidene with monotopic or ditopic ligands generating a 6-membered ring is still not existing and offers extra advantage in terms of initiation tunability which results in catalysts which can be varied from real latent to highly active.
Additionally, the catalysts of present invention afford latent catalysts stable in the monomer and highly active after an industrially acceptable activation process, a property of which there is still a high demand.
Furthermore, the instant invention's metathesis catalyst compounds provide both a mild and commercially economical and an "atom-economical" route to desirable olefins, which in turn may be useful in the preparation of linear alpha-olefins, unsaturated polymers, cyclic olefins, etc…
Another important parameter for the evaluation of metathesis catalysts is the need for catalysts that can be separated from the final metathesis product easily. For applications of metathesis reactions in pharmaceutical industry, the ruthenium level in drugs must not exceed 5 ppm. (http: //www. emea. europa. eu/pdfs/human/swp/444600en. pdf for EMEA regulations) Up to date, different protocols were reported to remove ruthenium from metathesis products to meet these criteria. The employed protocols include removal of ruthenium by oxidation reactions (H2O2, PPh3O, DMSO or Pb (OAc) 4, water extraction, scavengers, supported phosphine ligands, or treatment with active charcoal combined with chromatography. These protocols only decreased the ruthenium concentration in the final product to 100-1200 ppm, which is far from the required criteria for pharmaceutical applications. The immobilization of  catalysts (organic or inorganic support) gave promising results with moderate success for efficient removal of ruthenium. As another strategy, modification of the ligands by more polar groups or alternation of their steric hindrance to ease their separation from metathesis products was also reported. Grela successfully modified Hoveyda-Grubbs type catalysts with ionic-tagged ligands which exhibits a good affinity towards silica gel. (Green Chem., 2012, 14, 3264. ) However, the synthesis of an ionic-tagged ligand is cumbersome. The catalysts of this invention, obtained via a straightforward synthesis procedure, show an extremely high affinity for silica especially catalysts bearing ditopic ligands making them extremely useful and attractive for pharmaceutical and fine chemical applications.
The synthesis of RuCl2 (PCy32 (3-phenylindenylidene) has proven useful in providing an easy route to ruthenium alkylidenes which avoids costly diazo preparations (Platinum Metals Rev. 2005, 49, 33) .
In order to obtain an economically viable process for linear -olefins (e.g. 1-decene) production via the cross-metathesis of ethylene and biodiesel (such as animal or vegetable oils) , higher activity catalysts or more stable catalysts must be developed. Moreover, there is still a need for the development of catalysts with equivalent or better performance characteristics but synthesized directly from less expensive and readily available starting materials.
As there is a continuous need in the art for improving catalyst efficiency, i.e. improving the yield of the reaction catalysed by the said catalyst component after a certain period of time under given conditions (e.g. temperature, pressure, solvent and reactant/catalyst ratio) or else, at a given reaction yield, providing milder conditions (lower temperature, pressure closer to atmospheric pressure, easier separation and purification of product from the reaction mixture) or requiring a smaller amount of catalyst (i.e. a higher reactant/catalyst ratio) and thus resulting in more economic and environment-friendly operating conditions. This need is still more stringent for use in reaction-injection molding (RIM) processes such as, but not limited to, the bulk polymerisation of endo-or exo-dicyclopentadiene, or formulations thereof.
There is also a specific need in the art, which is yet another goal of this invention, for improving reaction-injection molding (RIM) processes, resin transfer molding (RTM) processes and reactive rotational molding (RRM) processes such as, but not limited to, the bulk polymerisation of endo-or exo-dicyclopentadiene, or copolymerization thereof with other monomers, or formulations thereof. More specifically there is a need to improve such processes which are performed in the presence of multicoordinated transition metal complexes, in particular ruthenium complexes. All the above needs constitute the various  goals to be achieved by the present invention; nevertheless other advantages of this invention will readily appear from the following description.
SUMMARY OF THE INVENTION
The present invention is directed to addressing one or more of the above-mentioned issues. The invention is based on the unexpected finding that improved metathesis of unsaturated compounds such as olefins and alkynes can be obtained by catalysts having a general structure of formula (I) by modifying the alkylidene part of group 8 catalysts of the prior art in combination with a monotopic or ditopic bridging ligand. The present invention provides catalysts which can be easily and efficiently activated by a chemical activator (
Figure PCTCN2016080636-appb-000011
 and Lewis acids) or a photo-activator (Photo acid generator, PAG) showing exceptional activity after activation. The catalysts of present invention can also be activated by in-situ generation of a 
Figure PCTCN2016080636-appb-000012
 acid by combining a Lewis acid, which at least contains one halogen atom, with any -OH or –SH containing molecule (s) (liquid or solid, organic or inorganic) .
In a preferred embodiment of the invention, unsaturated carboxylic acids and /or esters of unsaturated carboxylic acids individually and/or mixtures of the unsaturated carboxylic acids or mixtures of esters of unsaturated carboxylic acids can be converted. The catalysts of this invention are preferably used in concentrations of less than or equal to 1000 ppm, in particular in the range from 1 to 1000 ppm, preferably 1 to 200 ppm. The inventive method can be carried out at temperatures between 0 to 100 ℃, preferably between 20 to 90 ℃, are carried out in particular between 20 to 80 ℃.
The method can be performed using conventional solvents, in which the reactant (s) and the catalyst are dissolved, e.g. hydrocarbons or alcohols. In a preferred embodiment of the invention the method may be carried out solventless.
Via this inventive method unsaturated α, ω dicarboxylic acids and unsaturated α, ω dicarboxylic acid diesters are obtained together with the corresponding unsaturated hydrocarbons. A separation of the mixture can be done, for example, by distillation, by fractionated crystallization or by extraction. These products produced by the inventive method unsaturated α, ω dicarboxylic acids and unsaturated α, ω dicarboxylic acid diester can be used in e.g. cosmetic preparations.
If necessary, the products thus obtained can be subjected to hydrogenation.
The present invention is also based on the unexpected finding that the synthesis time of the organometallic compounds of formula (I) can be reduced to 2 hour or less while maintaining high to excellent yields.
Figure PCTCN2016080636-appb-000013
The organometallic catalyst compounds of the present invention can be prepared by contacting a Group 8 metal alkylidene precursor compound with a monotopic chelating ligand which alternatively can bear at least an extra chelating moiety,
Wherein,
M is a Group 8 metal, preferably ruthenium or osmium,
R1-R5 are identical or different and selected from hydrogen, hydrocarbyl, substituted hydrocarbyl, heteroatom containing hydrocarbyl, substituted heteroatom-containing hydrocarbyl, and functional groups
wherein alternatively the radicals from the group of R1-R5, including the carbon atoms to which they are attached, generating one or more cyclic structures, including aromatic structures.
X1, X2 preferably represents an anionic ligand.
L1 preferably represents a neutral electron donor.
L1 and X1 or/and X2 may be joined to form a multidentate monoanionic/dianionic group and may form single/double ring of up to 30 non-hydrogen atoms or a multinuclear ring system of up to 30 non-hydrogen atoms;
A is selected from the group consisting of oxygen, sulphur, selenium, NR”, PR”, POR”, AsR” , AsOR” , SbR” and SbOR” .
R’and R”are identical or different and selected from hydrogen, hydrocarbyl, substituted hydrocarbyl, heteroatom containing hydrocarbyl, substituted heteroatom-containing hydrocarbyl, and functional groups;
wherein alternatively in each case two directly adjacent radicals from the group of R’and R”including the carbon atoms to which they are attached, generating one or more cyclic structures, including aromatic structures.
In an extra aspect, the invention provides a method for performing a catalytic metathesis reaction comprising contacting at least one olefin or olefinic compound with the metathesis catalyst of the invention. An olefin includes a single olefin, multi-olefin as well as a combination or mixture of two or more olefins, reference to "a substituent" encompasses a single substituent as well as two or more substituents, and the like.
In a further aspect the present invention is based on the unexpected finding that superior catalysts (I) useful in the metathesis of unsaturated compounds such as olefins and alkynes, their activity can even be extra enhanced by bringing into contact a metal complex (I) with an activating compound (hereinafter also referred as “activator” ) selected from 
Figure PCTCN2016080636-appb-000014
 acids (
Figure PCTCN2016080636-appb-000015
 acids are proton donors, which is the commonly accepted practice among chemists) . The nature of the 
Figure PCTCN2016080636-appb-000016
 acid can be liquid, solid, inorganic or organic. Well-know representative compounds of 
Figure PCTCN2016080636-appb-000017
 acids, but not limited, are HCl, HBr, H2SO4, CH3COOH, sulphonic acid resins, etc.
In a further aspect the present invention is based on the unexpected finding that superior catalysts useful in the metathesis of unsaturated compounds such as olefins and alkynes can be obtained by bringing into contact a metal complex (I) with an activating compound (hereinafter also referred as “activator” ) selected from the group consisting of:
- Ma (I) halides.
- compounds represented by the formula MaX2-yRa y (0≤y≤2) .
wherein
Ra is equal to R1-R5 defined as herein-above,
X is atom of the halogen group and identical or different in case more then one halogen atom is present, and
Ma is an atom having an atomic mass from 27 to 124 and being selected from the group consisting of groups IB, IIB, IIIA, IVB, IVA and VA of the Periodic Table of elements under conditions such that at least partial cleavage of a bond between the metal and the ditopic or multitopic ligand of said catalyst occurs.
- compounds represented by the formula MaX3-yRa y (0≤y≤3) wherein Ra, X and Ma defined as herein-above.
- compounds represented by the formula MaX4-yRa y (0≤y≤4) wherein Ra, X and Ma defined as herein-above.
- compounds represented by the formula MaX5-yRa y (0≤y≤5) wherein Ra, X and Ma defined as herein-above.
- compounds represented by the formula MaX6-yRa y (0≤y≤6) wherein Ra, X and Ma defined as herein-above.
In yet another specific embodiment, the present invention is based on the unexpected finding that useful catalytic species can be suitably obtained by reacting an activator such as defined hereinabove, provided that said activator includes at least one halogen atom, in the presence of at least one further reactant having the formula RYH, wherein Y is selected from the group consisting of oxygen, sulphur and selenium, and R as defined hereinabove. According to this specific embodiment, a strong acid (such as a hydrogen halide) may be formed in situ by the reaction of said activator, with said further reactant having the formula RYH, and said strong acid if produced in sufficient amount may in turn be able:
- to protonate the monotopic (or ditopic) ligand and decoordinate A of structure (I) of said monotopic chelating ligand from the complexed metal
In this specific embodiment, cleavage of a bond between the metal and the monotopic ligand of said metal complex occurs like in the absence of the further reactant having the formula RYH, but coordination of A or both atoms of the monotopic ligand to the activator occurs less frequently because it competes unfavourably with the protonation/decoordination mechanism resulting from the in situ generation of a strong acid (such as a hydrogen halide) . This alternative mechanism is however quite effective in the catalysis of metathesis reactions of olefins and alkynes since it provides a more random distribution of the strong acid in the reaction mixture than if the same strong acid is introduced directly in the presence of catalyst (I) .
The new catalytic species of the invention may be produced extra-temporaneously, separated, purified and conditioned for separate use in organic synthesis reactions later on, or they may be produced in-situ during the relevant chemical reaction (e.g. metathesis of unsaturated organic compounds) by introducing a suitable amount of the activator into the reaction mixture before, simultaneously with, or alternatively after the introduction of the starting catalyst compound. The present invention also provides catalytic systems including, in addition to said new catalytic species or reaction products, a carrier suitable for supporting said catalytic species or reaction products.
The present invention also provides methods and processes involving the use of such new catalytic species or reaction products, or any mixture of such species, or such catalytic systems, in a wide range of organic synthesis reactions including the metathesis of unsaturated compounds such as olefins and alkynes and In particular, this invention provides an improved process for the ring opening polymerization of strained cyclic olefins such as, but not limited to, dicyclopentadiene.
In the context of this invention, all the above and below mentioned, general or preferred ranges of definitions, parameters or elucidations among one another, or also between the respective ranges and preferred ranges can be combined in any manner.
In the context of this invention, related to the different types of metathesis catalysts, the term "substituted" means that a hydrogen atom or an atom is replaced by a specified group or an atom, and the valence of the atom indicated is not exceeded and the substitution leads to a stable compound.
BRIEF DESCRIPTION OF THE FIGURES
Fig. 1: Crystal structure of dichloro (tricyclohexylphosphine) (1, 3-bis (2, 4, 6-trimethylphenyl) -2-imidazolidinylidene) (N-4-F-phenyl-N-H) aminomethylenephenylmethylylidene ruthenium (CNHC14)
Fig: 2: Comparison of 6-membered 1st generation catalysts (C2, C3, C4) with prior art catalyst H1 for ROMP of COD
Fig. 3: Comparison of 6-membered catalysts (CNHC2, C2, CNHC7 and C7) for RCM reaction of DEDAM
Fig. 4: Different activation methods of CNHC19 for RCM of DEDAM (reactions conditions: 1 mol%catalyst; substrate concentration: 0.1M; solvent: toluene; temperature see figure) .
Fig. 5: Influence of different activators on the activity of CNHC20 for ROMP of COD.
DETAILED DESCRIPTION
Terminology and Definitions
Unless otherwise mentioned, the invention is not limited to specific reactants, substituents, catalysts, reaction conditions, or the like, as such may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting.
In this specification and in the claims that follow, reference will be made to a number of terms, which shall be defined to have the following meanings:
The term "alkyl" as used herein refers to a linear, branched, or cyclic saturated hydrocarbon group typically although not necessarily containing 1 to about 24 carbon atoms, preferably 1 to about 12 carbon atoms, such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, t-butyl, octyl, decyl, and the like, as well as cycloalkyl groups such as cyclopentyl, cyclohexyl and the like. Generally, although again not necessarily, alkyl groups herein contain 1 to about 12 carbon atoms. The term "C1-C6-alkyl" intends an alkyl group of 1 to 6 carbon atoms, and the specific term "cycloalkyl" intends a cyclic alkyl group, typically having 3 to 8 carbon atoms.
The term "substituted alkyl" refers to alkyl substituted with one or more substituent groups, and the terms "heteroatom-containing alkyl" and "heteroalkyl" refer to alkyl in which at least one carbon atom is replaced with a heteroatom. If not otherwise indicated, the term "alkyl" includes linear, branched, cyclic, unsubstituted, substituted, and/or heteroatom-containing alkyl.
The term "alkylene" as used herein refers to a difunctional linear, branched, or cyclic alkyl group, where "alkyl" is as defined above.
The term "alkenyl" as used herein refers to a linear, branched, or cyclic hydrocarbon group of 2 to about 24 carbon atoms containing at least one double bond, such as ethenyl, n-propenyl, isopropenyl, n-butenyl, isobutenyl, octenyl, decenyl, tetradecenyl, hexadecenyl, eicosenyl, and the like. Preferred alkenyl groups herein contain 2 to about 12 carbon atoms. The term "cycloalkenyl" intends a cyclic alkenyl group, preferably having 5 to 8 carbon atoms. The term "substituted alkenyl" refers to alkenyl substituted with one or more substituent groups, and the terms "heteroatom-containing alkenyl" and "heteroalkenyl" refer to alkenyl in which at least one carbon atom is replaced with a heteroatom. If not otherwise indicated, the term "alkenyl" include linear, branched, cyclic, unsubstituted, substituted, and/or heteroatom-containing alkenyl.
The term "alkenylene" as used herein refers to a difunctional linear, branched, or cyclic alkenyl group, where "alkenyl" is as defined above.
The term "alkynyl" as used herein refers to a linear or branched hydrocarbon group of 2 to about 24 carbon atoms containing at least one triple bond, such as ethynyl, n-propynyl, and the like. Preferred alkynyl groups herein contain 2 to about 12 carbon atoms. The term "substituted alkynyl" refers to alkynyl substituted with one or more substituent groups, and the terms "heteroatom-containing alkynyl" and "heteroalkynyl" refer to alkynyl in which at least one carbon atom is replaced with a heteroatom. If not otherwise indicated, the term "alkynyl"  include linear, branched, unsubstituted, substituted, and/or heteroatom-containing alkynyl respectively.
The term "alkoxy" as used herein intends an alkyl group bound through a single, terminal ether linkage; that is, an "alkoxy" group may be represented as -O-alkyl where alkyl is as defined above. Analogously, "alkenyloxy" refers to an alkenyl group bound through a single, terminal ether linkage, and "alkynyloxy" refers to an alkynyl group bound through a single, terminal ether linkage.
The term "aryl" as used herein, and unless otherwise specified, refers to an aromatic substituent containing a single aromatic ring or multiple aromatic rings that are fused together, directly linked, or indirectly linked (such that the different aromatic rings are bound to a common group such as a methylene or ethylene moiety) . Preferred aryl groups contain 5 to 24 carbon atoms, and particularly preferred aryl groups contain 5 to 14 carbon atoms. Exemplary aryl groups contain one aromatic ring or two fused or linked aromatic rings, e.g., phenyl, naphthyl, biphenyl, diphenylether, diphenylamine, benzophenone, and the like. "Substituted aryl" refers to an aryl moiety substituted with one or more substituent groups, and the terms "heteroatom-containing aryl" and "heteroaryl" refer to aryl substituents in which at least one carbon atom is replaced with a heteroatom, as will be described in further detail infra.
The term "aryloxy" as used herein refers to an aryl group bound through a single, terminal ether linkage, wherein "aryl" is as defined above. An "aryloxy" group may be represented as -O-aryl where aryl is as defined above. Preferred aryloxy groups contain 5 to 24 carbon atoms, and particularly preferred aryloxy groups contain 5 to 14 carbon atoms. Examples of aryloxy groups include, without limitation, phenoxy, o-halo-phenoxy, m-halo-phenoxy, p-halo-phenoxy, o-methoxyphenoxy, m-methoxy-phenoxy, p-methoxy-phenoxy, 2, 4-dimethoxy-phenoxy, 3, 4, 5-trimethoxy-phenoxy, and the like.
The term "alkaryl" refers to an aryl group with an alkyl substituent, and the term "aralkyl" refers to an alkyl group with an aryl substituent, wherein "aryl" and "alkyl" are as defined above. Preferred alkaryl and aralkyl groups contain 6 to 24 carbon atoms. Alkaryl groups include, but not limit to, for example, p-methylphenyl, 2, 4-dimethylphenyl, p-cyclohexylphenyl, 2, 7-dimethylnaphthyl, 7-cyclooctylnaphthyl, 3-ethyl-cyclopenta-1, 4-diene, and the like. Examples of aralkyl groups include, without limitation, benzyl, 2-phenyl-ethyl, 3-phenyl-propyl, 4-phenyl-butyl, 5-phenyl-pentyl, 4-phenylcyclohexyl, 4-benzylcyclohexyl, 4-phenylcyclohexylmethyl, 4-benzylcyclohexylmethyl, and the like. The terms "alkaryloxy" and  "aralkyloxy" refer to substituents of the formula -OR wherein R is alkaryl or aralkyl, respectively, as just defined.
The term "acyl" refers to substituents having the formula - (CO) -alkyl, - (CO) -aryl, or - (CO) -aralkyl, and the term "acyloxy" refers to substituents having the formula -O (CO) -alkyl, -O (CO) aryl, or -O (CO) -aralkyl, wherein "alkyl, " "aryl, and "aralkyl" are as defined above.
The terms "cyclic" and "ring" refer to alicyclic or aromatic groups that may or may not be substituted and/or heteroatom containing, and that may be monocyclic, bicyclic, or polycyclic. The term "alicyclic" is used in the conventional sense to refer to an aliphatic cyclic moiety, as opposed to an aromatic cyclic moiety, and may be monocyclic, bicyclic, or polycyclic.
The terms "halo" and "halogen" are used in the conventional sense to refer to a chloro, bromo, fluoro, or iodo substituent.
"Hydrocarbyl" refers to univalent hydrocarbyl radicals containing 1 to about 30 carbon atoms, preferably 1 to about 24 carbon atoms, most preferably 1 to about 12 carbon atoms, including linear, branched, cyclic, saturated, and unsaturated species, such as alkyl groups, alkenyl groups, aryl groups, and the like. The term "hydrocarbylene" intends a divalent hydrocarbyl moiety containing 1 to about 30 carbon atoms, preferably 1 to about 24 carbon atoms, most preferably 1 to about 12 carbon atoms, including linear, branched, cyclic, saturated and unsaturated species. "Substituted hydrocarbyl" refers to hydrocarbyl substituted with one or more substituent groups, and the terms "heteroatom-containing hydrocarbyl" and "heterohydrocarbyl" refer to hydrocarbyl in which at least one carbon atom is replaced with a heteroatom. Similarly, "substituted hydrocarbylene" refers to hydrocarbylene substituted with one or more substituent groups, and the terms "heteroatomcontaining hydrocarbylene" and “heterohydrocarbylene" refer to hydrocarbylene in which at least one carbon atom is replaced with a heteroatom. Unless otherwise indicated, the term "hydrocarbyl" and "hydrocarbylene" are to be interpreted as including substituted and/or heteroatom-containing hydrocarbyl and hydrocarbylene moieties, respectively.
The term "heteroatom-containing" as in a "heteroatom-containing hydrocarbyl group" refers to a hydrocarbon molecule or a hydrocarbyl molecular fragment in which one or more carbon atoms is replaced with an atom other than carbon, e.g., nitrogen, oxygen, sulfur, phosphorus or silicon, typically nitrogen, oxygen or sulfur. Similarly, the term "heteroalkyl" refers to an alkyl substituent that is heteroatom-containing, the term "heterocyclic" refers to a cyclic substituent that is heteroatom-containing, the terms "heteroaryl" and “heteroaromatic" respectively refer to "aryl" and "aromatic" substituents that are heteroatom-containing, and the like. It should be  noted that a "heterocyclic" group or compound may or may not be aromatic, and further that "heterocycles" may be monocyclic, bicyclic, or polycyclic as described above with respect to the term "aryl. " Examples of heteroalkyl groups include alkoxyalkyl, alkylsulfanyl-substituted alkyl, N-alkylated amino alkyl, and the like. Examples of heteroaryl substituents include pyrrolyl, pyrrolidinyl, pyridinyl, quinolinyl, indolyl, pyrimidinyl, imidazolyl, 1, 2, 4-triazolyl, 1, 2, 3 triazolyl, tetrazolyl, etc., and examples of heteroatom containing alicyclic groups are pyrrolidino, morpholino, piperazino, piperidino, etc.
By "substituted" as in "substituted hydrocarbyl, " "substituted alkyl, " "substituted aryl, " and the like, as alluded to in some of the aforementioned definitions, is meant that in the hydrocarbyl, alkyl, aryl, or other moiety, at least one hydrogen atom bound to a carbon (or other) atom is replaced with one or more non-hydrogen substituents. Examples of such substituents include, without limitation: functional groups such as halo, hydroxyl, sulfhydryl, C1-C24 alkoxy, C2-C24 alkenyloxy, C2-C24 alkynyloxy, C5-C24 aryloxy, C6-C24 aralkyloxy, C6-C24 alkaryloxy, acyl (including C2C24 alkylcarbonyl (-CO-alkyl) and C6-C24 arylcarbonyl (-CO-aryl) ) , acyloxy (-O-acyl, including C2C24 alkylcarbonyloxy (-O-CO-alkyl) and C6-C24 arylcarbonyloxy (-O-CO-aryl) ) , C2C24 alkoxycarbonyl (- (CO) -O-alkyl) , C6-C24 aryloxycarbonyl (- (CO) -O-aryl) , halocarbonyl (-CO) X where X is halo) , C2-C24 alkylcarbonato (-O- (CO) -O-alkyl) , C6-C24 arylcarbonato (-O- (CO) -O-aryl) , carboxy (-COOH) , carboxylato (-COO-) , carbamoyl (- (CO) -NH2) , mono- (C1-C24 alkyl) substituted carbamoyl (- (CO) -NH (C1-C24 alkyl) ) , di- (C1-C24 alkyl) -substituted carbamoyl (- (CO) N (C1-C24 alkyl) 2) , mono- (C5-C24 aryl) -substituted carbamoyl (- (CO) -NH-aryl) , di- (C5-C24 aryl) substituted carbamoyl (- (CO) -N (C5-C24 aryl) 2) , N ( (C1-C24 alkyl) (C5-C24 aryl) ) -substituted carbamoyl, thiocarbamoyl (- (CS) -NH2) , mono- (C1-C24 alkyl) -substituted thiocarbamoyl (- (CS) NH (C1-C24 alkyl) ) , di- (C1-C24 alkyl) -substituted thiocarbamoyl (- (CS) -N (C1-C24 alkyl) 2) , mono- (C5-C24 aryl) -substituted thiocarbamoyl (- (CS) -NH-aryl) , di- (C5-C24 aryl) -substituted thiocarbamoyl ( (CS) -N (C5-C24 aryl) 2) , N- (C1-C24 alkyl) N- (C5-C24 aryl) -substituted thiocarbamoyl, carbamido (NH- (CO) -NH2) , cyano (-C=N) , cyanato (-O-C=N) , thiocyanato (-S-C=N) , formyl (- (CO) -H) , thioformyl (- (CS) -H) , amino (-NH2) , mono- (C1-C24 alkyl) -substituted amino, di- (C1-C24 alkyl) substituted amino, mono- (C5-C24 aryl) -substituted amino, di- (C5-C24 aryl) -substituted amino, C2-C24 alkylamido (-NH- (CO) -alkyl) , C6-C24 arylamido (-NH- (CO) -aryl) , imino (-CR=NH where R = hydrogen, C1-C24 alkyl, C5-C24 aryl, C6-C24 alkaryl, C6-C24 aralkyl, etc. ) , C2-C20 alkylimino (-CR=N (alkyl) , where R =hydrogen, C1-C24 alkyl, C5-C24 aryl, C6-C24 alkaryl, C6-C24 aralkyl, etc. ) , arylimino (-CR=N (aryl) , where R =hydrogen, C1-C20 alkyl, C5-C24 aryl, C6-C24 alkaryl, C6-C24 aralkyl, etc. ) , nitro (-NO2) , nitroso (-NO) , sulfo (-SO2-OH) , sulfonato (-SO2-O-) , C1-C24 alkylsulfanyl (-S-alkyl; also termed "alkylthio" ) , C5-C24 arylsulfanyl (-S-aryl; also termed "arylthio") , C1-C24 alkylsulfinyl (- (SO) -alkyl) , C5-C24 arylsulfinyl (- (SO) -aryl) , C1-C24 alkylsulfonyl (-SO2-alkyl) , C5-C24 arylsulfonyl (-SO2-aryl) , boryl (-BH2) , borono (-B (OH) 2) , boronato (-B (OR) 2 where R is alkyl or other hydrocarbyl) ,  phosphono (-P (O) (OH) 2) , phosphonato (-P (O) (O-2) , phosphinato (-P (O) (O-) ) , phosphor (-PO2) , and phosphino (-PH2) ; and the hydrocarbyl moieties C1-C24 alkyl (preferably C1-C12 alkyl, more preferably C1-C6 alkyl) , C2-C24 alkenyl (preferably C2-C12 alkenyl, more preferably C2-C6 alkenyl) , C2-C24 alkynyl (preferably C2-C12 alkynyl, more preferably C2-C6 alkynyl) , C5-C24 aryl (preferably C5-C24 aryl) , C6-C24 alkaryl (preferably C6-C16 alkaryl) , and C6-C24 aralkyl (preferably C6-C16 aralkyl) .
By "functionalized" as in "functionalized hydrocarbyl" , "functionalized alkyl" , "functionalized olefin" , "functionalized cyclic olefin" , and the like, is meant that in the hydrocarbyl, alkyl, olefin, cyclic olefin, or other moiety, at least one hydrogen atom bound to a carbon (or other) atom is replaced with one or more functional groups such as those described hereinabove.
In addition, the aforementioned functional groups may, if a particular group permits, be further substituted with one or more additional functional groups or with one or more hydrocarbyl moieties such as those specifically enumerated above. Analogously, the above-mentioned hydrocarbyl moieties may be further substituted with one or more functional groups or additional hydrocarbyl moieties such as those specifically enumerated.
The present invention comprises a novel family of metathesis catalyst compounds useful for the different types of olefin and alkyne metathesis reactions, including but not limited to Ring closing metathesis (RCM) , Cross metathesis (CM) , Ring opening metathesis (ROM) , Ring opening metathesis polymerization (ROMP) , acyclic diene metathesis (ADMET) , self-metathesis, conversion of olefins with alkynes (enyne metathesis) , polymerization of alkynes, ethylene cross-metathesis, depolymerization of poly-butadiene, and so on.
Figure PCTCN2016080636-appb-000018
M is a Group 8 metal, preferably ruthenium or osmium,
R1-R5 are identical or different and represents hydrogen, halogen, hydroxyl, aldehyde, keto, thiol, CF3, nitro, nitroso, cyano, thiocyano, isocyanates, carbodiimide, carbamate, thiocarbamate, dithiocarbamate, amino, amido, imino, ammonium, silyl, sulphonate (-SO3 -) , -OSO3 -, -PO3 -or -OPO3 -, acyl, acyloxy or represents alkyl, cycloalkyl, alkenyl, cycloalkenyl, substituted alkenyl, heteroalkenyl, heteroatom-containing alkynyl, alkenylene, alkynyl, substituted alkynyl, aryl, substituted aryl, heteroaryl, carboxylate, alkoxy, alkenyloxy,  alkynyloxy, aryloxy, alkaryl, aralkyl, alkaryloxy, aralkyloxy, alkoxycarbonyl, alkylamino-, alkylthio-, arylthio, alkylsulfonyl, alkylsulfinyl, dialkylamino, alkylammonium, alkylsilyl or alkoxysilyl, where these radicals may each optionally all be substituted by one or more aforementioned groups defined for R1-R5
or alternatively in each case two directly adjacent radicals from the group of R1-R5, including the ring carbon atoms to which they are attached by a cyclic bridging group, generating one or more cyclic structures, including aromatic structures.
C1-C6 alkyl is, but not limited to, for example methyl, ethyl, n-propyl, iso-propyl, n-butyl, sec-butyl, tert-butyl, n-pentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, neo-pentyl, 1-ethyl-propyl and n-hexyl.
C3-C8 cycloalkyl includes, but not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl and cyclooctyl.
C6-C24 aryl includes an aromatic radical having 6 to 24 skeletal carbon atoms. Preferred mono-, bi-or tricyclic carbocyclic aromatic radicals have 6 to 10 skeletal carbon atoms, for example but not limited to, phenyl, biphenyl, naphthyl, phenanthrenyl or anthracenyl.
X1 and X2 preferably represent an anionic ligand.
In the general formula X1 and X2 can be for example, hydrogen, halogen, pseudohalogen, straight-chain or branched C1-C30 alkyl, C6-C24 aryl, C1-C20 alkoxy, C6-C24 aryloxy, C3-C20 alkyl diketonate, C6-C24 aryl diketonate, C1-C20 carboxylate, C1-C20 alkylsulfonate, C6-C24 aryl sulfonate, C1-C20 alkyl thiol, C6-C24 aryl thiol, C1-C20 alkylsulfonyl or C1-C20 alkylsulfinyl-radicals.
The abovementioned radicals X1 and X2 may further be substituted by one or more additional residues, for example by halogen, preferably fluorine, C1-C20 alkyl, C1-C20-alkoxy or C6-C24 aryl, where these groups may optionally be in turn be substituted by one or more substituents from the group comprising halogen, preferable fluorine, C1-C5 alkyl, C1-C5 alkoxy, and phenyl.
L1 and X1 or /and X2 may be joined to form a multidentate monoanionic/dianionic group and may form a single /double ring of up to 30 non-hydrogen atoms or a multinuclear ring system of up to 30 non-hydrogen atoms;
In a preferred embodiment, X1 and X2 denote halogen, in particular, fluorine, chlorine, bromine or iodine, benzoate, nitrate, C1-C5carboxylate, C1-C5 alkyl, phenoxy, C1-C5 alkoxy, C1-C5alkyl thiol, C6-C24 arylthiol, C6-C24aryl or C1-C5 alkyl sulfonate.
In a particularly preferred embodiment, X1 and X2 are chlorine, CF3COO, CH3COO, CFH2COO, (CH33CO, nitrate, (CF32 (CH3) CO, (CF3) (CH32CO, PhO (phenoxy) , C6F5O (pentafluorophenoxy) , MeO (methoxy) , EtO (ethoxy) , tosylate (p-CH3-C6H4-SO3) , mesylate (2, 4, 6-trimethylphenyl) or CF3SO3 (trifluoromethanesulfonate) .
A is selected from the group consisting of oxygen, sulphur, selenium, NR”, PR”, POR”, AsR”, AsOR”, SbR”and SbOR”.
R’and R”are identical or different and represents hydrogen, halogen, hydroxyl, aldehyde, keto, CF3 or represents alkyl, cycloalkyl, alkenyl, cycloalkenyl, substituted alkenyl, heteroalkenyl, heteroatom-containing alkynyl, alkenylene, alkynyl, substituted alkynyl, aryl, substituted aryl, heteroaryl, carboxylate, alkoxy, alkenyloxy, alkynyloxy, aryloxy, alkaryl, aralkyl, alkaryloxy, aralkyloxy, alkoxycarbonyl, alkylamino-, alkylthio-, arylthio, alkylsulfonyl, alkylsulfinyl, dialkylamino, alkylammonium, alkylsilyl or alkoxysilyl, where these radicals may each optionally all be substituted by one or more aforementioned groups defined for R’, and R”, except that R’and R”do not represent methyl when L1 = 1, 3-bis (2, 4, 6-trimethylphenyl) -2-imidazolidinylidene;
wherein alternatively in each case two directly adjacent radicals from the group of R’and R”, including the atoms to which they are attached, generating one or more cyclic structures, including aromatic structures.
C1-C6 alkyl is, but not limited to, for example methyl, ethyl, n-propyl, iso-propyl, n-butyl, sec-butyl, tert-butyl, n-pentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, neo-pentyl, 1-ethyl-propyl and n-hexyl.
C3-C8 cycloalkyl includes, but not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl and cyclooctyl.
C6-C24 aryl includes an aromatic radical having 6 to 24 skeletal carbon atoms. Preferred mono-, bi-or tricyclic carbocyclic aromatic radicals have 6 to 10 skeletal carbon atoms, for example but not limited to, phenyl, biphenyl, naphthyl, phenanthrenyl or anthracenyl.
Alternatively R’or/and R”is optionally substituted with a neutral donor ligand (L2) as defined by L1.
L1 preferably represent neutral electron donor.
The ligand L1 may, for example, represent a phosphine, sulphonated phosphine, phosphate, phosphinite, phosphonite, phosphite, arsine, stibine, ether, amine, amide, sulfoxide, carboxyl, nitrosyl, pyridine, substituted pyridine, pyrazine, thiocarbonyl, thioether, triazole carbene, mesionic carbene (MIC) , N-Heterocyclic carbene ( "NHC" ) , substituted NHC, or cyclic alkyl amino carbene (CAAC) or substituted CAAC.
Preferably, ligand L1 represents a phosphine ligand having the formula P (Q13 with Q1 are identical or different and are alkyl, preferably C1-C10 alkyl, more preferably C1-C5-alkyl, cycloalkyl-, preferably C3-C20 cycloalkyl, more preferably C3-C8 cycloalkyl, preferably cyclopentyl, cyclohexyl, and neopentyl, aryl, preferably C6-C24 aryl, more preferably phenyl or toluyl, C1-C10 alkyl-phosphabicyclononane, C3-C20 cycloalkyl phospha-bicyclononane, a sulfonated phosphine ligand of formula P (Q23 wherein Q2 represents a mono-or poly-sulfonated Q1-ligand; C6-C24aryl or C1-C10 alkyl-phosphinite ligand, a C6-C24aryl or C1-C10 alkyl phosphonite ligand, a C6-C24aryl or C1-C10 alkyl phosphite-ligand, a C6-C24 aryl C1-C10 alkyl arsine ligand, a C6-C24aryl or C1-C10 alkyl amine ligands, a pyridine ligand, a C6-C24aryl or C1-C10 alkyl-sulfoxide ligand, a C6-C24 aryl or C1-C10 alkyl ether ligand or a C6-C24 aryl or C1-C10 alkyl amide ligands which all can be multiply substituted, for example by a phenyl group, wherein these substituents are in turn optionally substituted by one or more halogen, C1-C5 alkyl or C1-C5alkoxy radicals.
The term "phosphine" includes, for example, PPh3, P (p-Tol) 3, P (o-Tol) , PPh (CH32, P (CF33, P (p-FC6H43, P (p-CF3C6H43, P (C6H4-SO3Na) 3, P (CH2C6H4-SO3Na) 3, P (iso-Propyl) 3, P (CHCH3 (CH2CH3) ) 3, P (cyclopentyl) 3, P (cyclohexyl) 3, P (Neopentyl) 3 and cyclohexyl-phosphabicyclononane.
The term "phosphinite" includes for example triphenylphosphinite, tricyclohexylphosphinite, triisopropylphosphinite and methyldiphenylphosphinite.
The term "phosphite" includes, for example, triphenyl phosphite, tricyclohexyl phosphite, tri-tert-butyl phosphite, triisopropyl phosphite and methyldiphenylphosphite.
The term "stibine" includes, for example triphenylstibine, tricyclohexylstibine and Trimethylstibene.
The term "sulfonate" includes, for example, trifluoromethanesulfonate, tosylate and mesylate.
The term "sulfoxide" includes, for example, CH3S (=O) CH3 and (C6H52SO.
The term "thioether" includes, for example CH3SCH3, C6H5SCH3, CH3OCH2CH2SCH3 and tetra-hydrothiophene.
The term "pyridine" in this application is a generic term and includes all the nitrogen-containing ligands described by Grubbs in WO-A-03/011455 but not limited to. Examples are: pyridine, picolines (α-, β-, and γ-picoline) , lutidines (2, 3-, 2, 4-, 2, 5-, 2, 6-, 3, 4-and 3, 5-lutidine) , collidine  (2, 4, 6-trimethylpyridine) , trifluoromethylpyridine, phenylpyridine, 4- (dimethylamino) pyridine, chloropyridines (2-, 3-and 4-chloropyridine) , bromopyridines (2-, 3-and 4-bromopyridine) , nitropyridines (2-, 3-and 4-nitropyridine) , quinoline, pyrimidine, pyrrole, imidazole and phenylimidazole.
In other useful embodiment ligand L1 represents a N-Heterocyclic carbene (NHC) usually having a structure of the formulas (IIa) or (IIb) :
Figure PCTCN2016080636-appb-000019
by which
R6 -R13, R10’, R11’are identical or different and are hydrogen, halogen, hydroxyl, aldehyde, keto, thiol, CF3, nitro, nitroso, cyano, thiocyano, isocyanates, carbodiimide, carbamate, thiocarbamate, dithiocarbamate, amino, amido, imino, ammonium, silyl, sulphonate (-SO3 -) , -OSO3 -, -PO3 -or -OPO3 -, acyl, acyloxy or represents alkyl, cycloalkyl, alkenyl, cycloalkenyl, substituted alkenyl, heteroalkenyl, heteroatom-containing alkynyl, alkenylene, alkynyl, substituted alkynyl, aryl, substituted aryl, heteroaryl, carboxylate, alkoxy, alkenyloxy, alkynyloxy, aryloxy, alkaryl, aralkyl, alkaryloxy, aralkyloxy, alkoxycarbonyl, alkylammonium, alkylamino-, alkylthio-, arylthio, alkylsulfonyl, alkylsulfinyl, dialkylamino, alkylsilyl or alkoxysilyl, where these radicals may each optionally all be substituted by one or more aforementioned groups defined for R1-R5,
Optionally, one or more of the radicals R6 -R13, R10’, R11’independently of one another can be substituted by one or more substituents, preferably straight or branched C1-C10 alkyl, C3-C8 cycloalkyl, C1-C10 alkoxy or C6-C24 aryl, where these aforementioned substituents may in turn be substituted by one or more radicals, preferably selected from the group comprising halogen, especially chlorine or bromine, C1-C5 alkyl, C1-C5alkoxy and phenyl.
Just for clarification, the depicted structures of the N-Heterocyclic carbene in the general formulas (IIa) and (IIb) are equal with the N-Heterocyclic carbenes described in the literature, where frequently the structures (IIa') and (IIb') are used, which highlighting the carbene  character of N-Heterocyclic carbene. This also applies to the corresponding preferred, structures shown below (IIIa) - (IIIf)
Figure PCTCN2016080636-appb-000020
In a preferred embodiment of the catalysts the general formulas (IIa) and (IIb) R6, R7, R10, R10’, R11 and R11’are independently of one another denote hydrogen, C6-C24-aryl, particularly preferably phenyl, straight or branched C1-C10 alkyl, particularly preferably propyl or butyl, or together with the inclusion of the carbon atoms to which they are attached form a cycloalkyl or aryl radical, where all the abovementioned radicals are optionally substituted may be substituted by one or more further radicals selected from the group comprising straight or branched C1-C10 alkyl, C1-C10 alkoxy, C6-C24 aryl, and a functional group selected from the group consisting of hydroxy, thiol, thioether, ketone, aldehyde, ester, ether, amine, imine, amide, nitro, carboxylic acid, disulfide, carbonate, isocyanate, carbodiimide, carboalkoxy, carbamate, and halogen.
In a particularly preferred embodiment, the catalysts of the general formula (I) has one N-Heterocyclic carbene (NHC) as ligand L1, where the radicals R8, R9, R12 and R13 are identical or different and are straight or branched C1-C10 alkyl, particularly preferably i-propyl or neopentyl, C3-C10 cycloalkyl, preferably adamantyl, C6-C24 aryl, particularly preferably phenyl, C1-C10 alkylsulfonate, particularly preferably methanesulphonate, C1-C10 arylsulphonate, particularly preferably p-toluenesulfonate.
If necessary, the above-mentioned residues are substituted as the meanings of R8, R9, R12 and R13 by one or more further radicals selected from the group comprising straight or branched C1-C5 alkyl, especially methyl, C1-C5 alkoxy, aryl and a functional group selected from the group consisting of hydroxy, thiol, thioether, ketone, aldehyde, ester, ether, amine imine, amide, nitro, carboxylic acid, disulfide, carbonate, isocyanate, carbodiimide, carboalkoxy, carbamate, and halogen.
In particular, the radicals R8, R9, R12 and R13can be identical or different and denote i-propyl, neopentyl, adamantyl, mesityl or 2, 6-diisopropylphenyl.
Particularly preferred N-Heterocyclic carbenes (NHC) have the following structure (IIIa) - (IIIf) , in which Mes stands for a 2, 4, 6-trimethylphenyl radical or alternatively, in all cases, for a 2, 6-diisopropylphenyl radical
Figure PCTCN2016080636-appb-000021
In alternative embodiment, the neutral ligand L may be selected from a ligand of any of the formulas (IVg -IVk)
Figure PCTCN2016080636-appb-000022
R7, R8, R9, R10, R10’, R11, R12, R13are identical or different and are equal to R1-R5 defined as herein-above. Any adjacent group of R10, R10’and R11in structure (IVb) and (IVc) may form a 3, 4, 5, 6, or 7 membered cycloalkyl, alkylene bridge, or aryl.
In other useful embodiments, one of the N groups bound to the carbene in Formula (IIa) or (IIb) is replaced with another heteroatom, preferably S, O or P, preferably an S heteroatom. Other useful N-heterocyclic carbenes include the compounds described in Chem. Eur. J 1996, 2, 772 and 1627; Angew. Chem. Int. Ed. 1995, 34, 1021; Angew. Chem. Int. Ed. 1996, 35, 1121; and Chem. Rev. 2000, 100, 39.
For purposes of this invention and claims thereto, "cyclic alkyl amino carbenes" (CAACs) are represented by the Formula (V) :
Figure PCTCN2016080636-appb-000023
Wherein the ring E is a 4-, 5-, 6-, or 7-membered ring, and T is a linking group comprising from one to four linked vertex atoms selected from the group comprising C, O, N, B, Al, P, S and Si with available valences optionally occupied by hydrogen, oxo or R-substituents, wherein R is independently selected from the group comprising C1 to C12 hydrocarbyl groups, substituted C1 to C12 hydrocarbyl groups, and halides, and each R14 is independently a hydrocarbyl group or substituted hydrocarbyl group having 1 to 40 carbon atoms, preferably methyl, ethyl, propyl, butyl (including isobutyl and n-butyl) , pentyl, cyclopentyl, hexyl, cyclohexyl, octyl, cyclooctyl, nonyl, decyl, cyclodecyl, dodecyl, cyclododecyl, mesityl, adamantyl, phenyl, benzyl, toluyl, chlorophenyl, phenol, or substituted phenol.
Some particularly useful CAACs include:
Figure PCTCN2016080636-appb-000024
Other useful CAACs include the compounds described in U.S. 7,312,331, in Angew. Chem. Int. Ed. 2005, 44, 7236-7239 and in Angew. Chem. Int. Ed. 2015, 54, 1919–1923.
For the case that the radical R of the inventive catalysts with the general formula (I) is further substituted with a neutral donor ligand, the following examples can be generated with the structures of the general formula (VI) .
Figure PCTCN2016080636-appb-000025
Wherein the ring G is a 4-, 5-, 6-, 7-, 8-, 9-or 10-membered ring, and Z is a linking group comprising from one to seven linked vertex atoms selected from the group comprising C, O, N, P, S and Si with available valences optionally occupied by hydrogen, halogen, hydroxyl,  aldehyde, keto, thiol, CF3, nitro, nitroso, cyano, thiocyano, isocyanates, carbodiimide, carbamate, thiocarbamate, dithiocarbamate, amino, amido, imino, ammonium, silyl, sulphonate (-SO3 -) , -OSO3 -, -PO3 -or -OPO3 -, acyl, acyloxy or represents alkyl, cycloalkyl, alkenyl, cycloalkenyl, substituted alkenyl, heteroalkenyl, heteroatom-containing alkynyl, alkenylene, alkynyl, substituted alkynyl, aryl, substituted aryl, heteroaryl, carboxylate, alkoxy, alkenyloxy, alkynyloxy, aryloxy, alkaryl, aralkyl, alkaryloxy, aralkyloxy, alkoxycarbonyl, alkylamino-, alkylthio-, arylthio, alkylsulfonyl, alkylsulfinyl, dialkylamino, alkylammonium, alkylsilyl or alkoxysilyl, where these vertex atoms may each optionally all be substituted by one or more aforementioned groups defined for R1, R5, or alternatively in each case two directly adjacent vertex atoms from Z generate one or more cyclic structures, including aromatic structures.
L1 and L2 are identical or different ligands, preferably represent neutral electron donors, and L2 has the same meaning as L1 as defined in structure (I) 
wherein M, X1, X2, A, L1, R1-R5 and R’and R”have the same meanings as defined in the general structure (I) .
As examples of the catalysts of the invention, the following structures may be mentioned:
Figure PCTCN2016080636-appb-000026
Figure PCTCN2016080636-appb-000027
In certain embodiments, the catalyst compound employed in the olefin metathesis processes may be bound to or deposited on a solid catalyst support. The solid catalyst support will make the catalyst compound heterogeneous, which will simplify catalyst recovery. In addition, the catalyst support may increase catalyst strength and attrition resistance. Suitable catalyst supports include, without limitation, silica’s, alumina’s, silicaalumina’s, aluminosilicates, including zeolites and other crystalline porous aluminosilicates; as well as titania’s, zirconia, magnesium oxide, carbon, carbon nanotubes, graphene, Metal organic frameworks and cross-linked, reticular polymeric resins, such as functionalized cross-linked polystyrenes, e.g., chloromethyl-functionalized cross-linked polystyrenes. The catalyst compound may be deposited onto the support by any method known to those skilled in the art, including, for example, impregnation, ion-exchange, deposition-precipitation, ~ interactions and vapor deposition. Alternatively, the catalyst compound may be chemically bound to the support via one or more covalent chemical bonds, for example, the catalyst compound may be immobilized by one or more covalent bonds with one or more of substituents of the indenylidene ligand or directly immobilized via one or more chemical bounds on the Group 8 metal by substituting one or more anionic ligands or immobilized via one or more chemical bounds between the L1 ligand and the support.
If a catalyst support is used, the catalyst compound may be loaded onto the catalyst support in any amount, provided that the metathesis process proceeds to the desired metathesis  products. Generally, the catalyst compound is loaded onto the support in an amount that is greater than about 0.01 wt%of the Group 8 metal, based on the total weight of the catalyst compound plus support. Generally, the catalyst compound is loaded onto the support in an amount that is less than about 20 wt%of the Group 8 metal, based on the total weight of the catalyst compound and support.
The catalysts are obtainable starting from the ligand precursors by a cross metathesis reaction with known Ru alkylidene compounds (e.g. Ru-benzylidene, Ru-indenylidene, …) complexes in a single-reaction step. This ensures a cost-effective and time-saving preparation route resulting in products with high purity and high yield. The catalysts of the present invention are especially suitable to catalyze olefin metathesis reactions with a superior activity even at low catalyst loadings and low to moderate temperatures. The monotopic chelating ligands, which alternatively can bear at least an extra chelating moiety, for production of the ruthenium-based metathesis catalysts of the present invention are characterized by the formula (VII)
In general, monotopic vinyl compounds useful in this invention may contain a chelating moiety of the formula (VII)
Figure PCTCN2016080636-appb-000028
wherein,
A, R1-R5, R’and R”have the same meanings as defined in the general structure (I) .
Preferred organic vinylic compounds include:
Figure PCTCN2016080636-appb-000029
Figure PCTCN2016080636-appb-000030
Synthesis of Metathesis Catalyst Compounds
The catalyst compounds described in this invention may be synthesized by any methods known to those skilled in the art.
Representative methods of synthesizing the Group 8 catalyst compound of the type described herein include, for example, treating a solution of the monotopic (or ditopic) chelating ligand (vinylbenzyl compound) in a suitable solvent, such as toluene, with a reactant complex of a Group 8 metal, such as but not limited to benzylidene [1, 3-bis (2, 4, 6-trimethylphenyl) -2-imidazolidinylidene] dichloro (tricyclohexylphosph ine) ruthenium (G2) , phenyl indenylidene [1, 3-bis (2, 4, 6-trimethylphenyl) -2-imidazolidinylidene] dichloro (tricyclohexylphosphine) ruthenium (N) , benzylidene-bis (tricyclohexylphosphine) dichloro-ruthenium (G1) , phenylindenylidene-bis (tricyclohexylphosphine) dichloro ruthenium (F) , dichloro (o-isopropoxyphenylmethylene) (tricyclohexylphosphine) ruthenium (II) (H1) , (1, 3-bis- (2, 4, 6-trimethylphenyl) -2-imidazolidinylidene) dichloro (o-isopropoxyphenylmethylene) ruthenium (H2) employing Amberlyst 15 as phosphine scavenger if required. The reaction mixture may be heated, for a time period appropriate to yield the desired modified catalyst compound. Typically, removal of the phosphine scavenger by filtration and the volatiles by evaporation affords the Group 8 modified catalyst compounds (Scheme 4) in high yields. (>80%) as air-stable solids. The synthetic procedure is cost-effective and reproducible even at large scale
A N-Heterocyclic carbenes (NHC) , such as 1, 3-Bis (2, 4, 6-trimethylphenyl) -2-imidazolidinylidene, 1, 3-Bis (2, 4, 6-trimethylphenyl) -2-imidazolylidene, 1, 3-Bis (2, 6-diisopropylphenyl) -2-imidazolidinylidene, 1, 3-Bis (2, 6-diisopropylphenyl) -2-imidazolylidene or a CAAC may be added to 1st generation compound (Scheme 4) , if desired. The reaction conditions typically include mixing the Group 8 reactant 1st generation compound (Scheme 4) and the preferred NHC, CAAC ligand in a suitable solvent, e.g. toluene, for a time sufficient to effectuate the phosphine ligand exchange, at a suitable temperature typically between ambient and 80℃. Addition of isopropanol  followed by filtration and washing, generates the desired 2nd generation compound (Scheme 4) in high yield (> 85%) .
Figure PCTCN2016080636-appb-000031
Scheme 4: different generations of 6-membered coordinated catalysts.
The invention is further described by the following Examples without limiting or narrowing the scope of protection.
EXAMPLES
General remarks
All chemicals were purchased as reagent grade from commercial suppliers and used without further purification, unless otherwise noted. All reactions involving Ruthenium complexes were performed under an atmosphere of nitrogen. CH2CI2 (99.5%) and pentane (99%) and toluene (99%) were obtained from Aladdin. These solvents were dried and degassed by using a solvent purification system. In this system, the solvents are pressurized with nitrogen (0.1 to 1 bar) , followed by successive passing through a column filled with activated alumina and a second column, either filled with a supported copper catalyst (toluene, pentane) or again activated alumina (CH2CI2) . Tetrahydrofuran (THF) was dried over sodium and distilled onto molecular sieves (3 A) . 1H and 13C nuclear magnetic resonance spectra were recorded with a Bruker Avance III 500. The chemical shifts are given in parts per million (ppm) on the delta scale (δ) and are referenced to tetramethylsilane (1H-, 13C-NMR = 0 ppm) or the residual peak of CHCI3 (1H-NMR = 7.26 ppm, 13C-NMR = 77.16 ppm) . Abbreviations for NMR data: s =singlet; d = doublet; t = triplet; q = quartet; sep = septet; m = multiplet; bs = broad signal; Ar =aromatic protons.
1. Ligand synthesis
1.1. CAAC ligands
The CAAC ligand synthesis is illustrated with 1- (2, 6-diisopropylphenyl) 2, 2, 4-trimethyl-4-phenyl-pyrrole chloride and is exactly the same for all other CAAC
Figure PCTCN2016080636-appb-000032
Scheme 5: Synthesis procedure for CAAC ligands exemplified with L1.
1.1.1. Preparation 2, 4 dimethyl-2-phenyl-pentenal
To a two-neck 50 ml flask equipped with a reflux condenser was added NaOH (1.34 g, 33.5 mmol) , tetrabutylammonium iodide (332 mg, 0.9 mmol) , 1.4 ml of distilled water and 30 ml of toluene. The mixture was stirred and heated at 60℃ thereafter a mixture of 2-phenyl-propanal (3.0 g, 22.4 mmol) and methyl allyl bromide (3.0 g, 22.4 mmol) was added dropwise, and continued heated at 60℃ for 4 h. After cooling to room temperature, 30 ml of distilled water was added and extracted with toluene (3 × 10 ml) . The organic layers were combined and dried over anhydrous sodium sulfate, filtered, and toluene was distilled under reduced pressure to give a transparent liquid 3.5 g, 83%yield.
1.1.2. Preparation of N- (2, 4-dimethyl-2-phenyl-4-penten-1-methylene) 2, 6-diisopropyl aniline
In a 100 ml single-neck flask with a trap was added 2, 4-dimethyl-2-phenyl-4-pentenal (3.5 g, 18.6 mmol) , 2.6-diisopropyl aniline (3.0 g, 16.9 mmol) and 50 ml of toluene. The mixture was refluxed for 4 h till no water droplets were generated and cooled to room temperature. Evaporation of toluene results in a pale yellow crude product 5.7 g, 97%yield.
1.1.3. Preparation 1- (2, 6-diisopropylphenyl) 2, 2, 4-trimethyl-4-phenyl-pyrrole chloride
Under an argon atmosphere, a 100 ml Schlenk flask was charged with N- (2, 4-dimethyl-2-phenyl-4-penten-1-methylene) -2, 6-diisopropyl aniline (5.7 g, 16.4 mmol) and 50 ml of dry toluene. The mixture was cooled to -10 ℃, and a 4.0 M HCl /dioxane (8.2 ml, 32.8 mmol) solution was slowly added dropwise. Addition resulted in dissolving plenty of the white precipitate. Then the reaction temperature was raised to 50 ℃ and stirred overnight, the white  precipitate was filtered, washed with ether, and dried in vacuum to give a white solid 5.7 g, 90%yield.
L1: 1H NMR (500 MHz, CDCl3) : δ 11.95 (s, 1H) , 7.78 (d, J = 8.0 Hz, 2H) , 7.48 (t, J = 7.8 Hz, 1H) , 7.44 (t, J = 7.7 Hz, 2H) , 7.34 (t, J = 7.5 Hz, 2H) , 7.27 (d, J = 7.9 Hz, 1H) , 3.23 (d, J = 13.9 Hz, 1H) , 2.70 (dp, J = 13.5, 6.6 Hz, 1H) , 2.63 (d, J = 13.9 Hz, 1H) , 2.31 (dq, J = 13.3, 6.6 Hz, 1H) , 1.99 (s, 3H) , 1.54 (s, 3H) , 1.37 (d, J = 6.7 Hz, 3H) , 1.34 (d, J = 6.7 Hz, 3H) , 1.30 (s, 3H) , 1.19 (d, J = 6.7 Hz, 3H) , 1.14 (d, J = 6.7 Hz, 3H) ppm. 13C NMR (126 MHz, CDCl3) : δ 192.9, 144.6, 144.4, 140.9, 131.7, 129.8, 128.9, 128.3, 126.2, 125.3, 125.1, 82.4, 82.4, 55.9, 48.4, 30.4, 30.2, 29.3, 27.3, 26.6, 26.6, 22.0, 21.9 ppm.
1.2. 2-vinyl benzyl derivatives.
Figure PCTCN2016080636-appb-000033
Figure PCTCN2016080636-appb-000034
Scheme 6: Synthesis procedures for the different 2-vinyl benzyl derivates.
1.2.1. Preparation of 2- (2-bromoethyl) benzyl bromide (LA)
Isochroman (5.4 g, 40 mmol) and 33%hydrogen bromide in acetic acid (30 ml) are transferred in a 100 ml thick wall pressure flask, closed and placed in an oil bath at 110 ℃ for 18 h. Thereafter, the mixture is cooled to room temperature, poured into 200 ml water and extracted with diethyl ether (3 × 200 ml) . The organic phases are collected, combined and washed with a 1.0 M NaOH solution (200 ml) and saturated brine (200 ml) , dried over anhydrous sodium sulfate and filtered. Evaporation of the solvent gives the product 10.2 g, 92%yield. The compound was characterized by 1 H-and 13C-NMR spectroscopy.
1.2.2. Preparation of 2-vinylbenzyl ethers ligand (L2 –L6)
Sodium metal (0.7 g, 30 mmol) or 60%dispersion in mineral oil of sodium hydride (1.2 g, 30 mmol) is added to 50 ml THF in a 100 ml Schlenk flask under argon atmosphere, which contains 30 mmol of the required alcohol (ROH) . The reaction is performed at room temperature or reflux for 1 ~ 4 h until no gas bubbles are generated. Thereafter 2- (2-bromoethyl) benzyl bromide (2.8 g, 10 mmol) is added and continuous stirred at reflux for 1 to 5h. After completion of the reaction (detected using TLC) , the mixture is cooled to room temperature, poured into 50 ml of saturated ammonium chloride solution, and extracted with diethyl ether (3 × 50 ml) . The organic phases are combined, washed with water and saturated brine, dried over anhydrous sodium sulfate and filtered. The solvent is evaporated and the product is passed through a column to give a colorless to pale yellow oily liquid in a yield of 85 to 93%.
L4: 1H NMR (500 MHz, CDCl3) δ 7.60 –7.55 (m, 1H) , 7.41 (dd, J = 7.1, 1.4 Hz, 1H) , 7.34 –7.28 (m, 2H) , 7.09 (dd, J = 17.5, 11.0 Hz, 1H) , 5.72 (dd, J = 17.4, 1.2 Hz, 1H) , 5.37 (dd, J =11.0, 1.2 Hz, 1H) , 4.60 (s, 2H) , 3.74 (dq, J = 12.2, 6.1 Hz, 1H) , 1.28 (d, J = 6.1 Hz, 6H) ppm. 13C NMR (126 MHz, CDCl3) δ 137.1, 135.8, 134.3, 129.0, 127.9, 127.7, 125.8, 115.8, 71.1, 68.3, 22.1 ppm.
L2, L3, L5, L6 were characterized by 1 H-and 13C-NMR spectroscopy.
1.2.3. Preparation of 2-bromo-methylstyrene (LB)
2- (2-bromoethyl) benzyl bromide (2.8 g, 10 mmol) and 50 ml of THF were added in a Schlenk flask. The mixture was stirred until completely dissolved and cooled below 0 ℃. Then potassium tert-butoxide (1.2 g, 11 mmol) was added in three portions, warmed to room temperature and stirred overnight. The reaction mixture was poured into 50 ml of saturated ammonium chloride solution, and extracted with diethyl ether (3 × 50 ml) . The organic phases are combined and washed with water and saturated brine, dried over anhydrous sodium sulfate, filtered. Evaporation of the solvent yielded a yellow oily liquid 1.8 g, 90%yield. The compound was characterized by 1 H-and 13C-NMR spectroscopy.
1.2.4. Preparation of 2-vinylbenzyl thioether ligands (L7 –L8)
To a 50 ml Schlenk flask was added 2-bromo-methylstyrene (1.0 g, 5 mmol) , the required sodium thiolate (or phenolate in case of ethers) (5.5 mmol) and 25 ml of THF. The mixture was stirred overnight at room temperature, after completion of the reaction (using TLC) the reaction mixture was poured in 25 ml of water, and extracted with diethyl ether (3 × 25 ml) . The organic phases were combined and washed with water and saturated brine, dried over anhydrous sodium sulfate, and filtered. The solvent was evaporated, the product was purified using column chromatography yielding a pale yellow oily liquid, yield 85%to 90%.
L7: : 1H NMR (500 MHz, CDCl3) δ 7.59 –7.52 (m, 1H) , 7.34 –7.21 (m, 3H) , 7.16 (dd, J = 17.4, 11.0 Hz, 1H) , 5.73 (dd, J = 17.4, 1.2 Hz, 1H) , 5.39 (dd, J = 11.0, 1.2 Hz, 1H) , 3.84 (s, 2H) , 2.92 (dq, J = 13.2, 6.6 Hz, 1H) , 1.33 (d, J = 6.7 Hz, 6H) ppm. 13C NMR (126 MHz, CDCl3) δ136.9, 135.5, 134.3, 130.0, 127.7, 127.4, 126.1, 116.0, 35.1, 32.9, 23.3 ppm.
L8: 1H NMR (500 MHz, CDCl3) δ 7.58 (d, J = 7.7 Hz, 1H) , 7.33 –7.24 (m, 3H) , 7.21 (dd, J =17.5, 11.0 Hz, 1H) , 5.71 (dd, J = 17.5, 1.4 Hz, 1H) , 5.34 (dd, J = 11.0, 1.4 Hz, 1H) , 3.47 (s, 2H) , 2.27 (d, J = 1.4 Hz, 6H) . 13C NMR (126 MHz, CDCl3) δ 137.59, 136.09, 134.55, 130.50, 127.42, 127.40, 125.56, 115.22, 61.98, 45.47.
1.2.5. Preparation of vinyl benzyl amine ligands
1.2.5.1. Preparation of vinyl benzyl aryl amine monotopic ligands (L9 –L16)
To a 50 ml Schlenk flask was added 2-bromo-methylstyrene (1.0 g, 5 mmol) , the required aromatic amine (6 mmol) , K2CO3 (0.8 g, 6 mmol) and 25 ml of THF. The mixture was stirred at  room temperature, after completion (using TLC) , the reaction mixture was poured in 25 ml of water and extracted with diethyl ether (3 × 25 ml) . The combined organic phase was washed with water and saturated brine, dried over anhydrous sodium sulfate and filtered. The solvent was evaporated yielding a light yellow liquid or solid, yield 65 ~ 92%.
L9: 1H NMR (500 MHz, CDCl3) δ 7.59 (d, J = 7.5 Hz, 1H) , 7.36 –7.24 (m, 4H) , 7.22 (d, J = 7.5 Hz, 1H) , 7.03 (dd, J = 17.3, 11.0 Hz, 1H) , 6.79 (d, J = 7.5 Hz, 3H) , 5.74 (d, J = 17.3 Hz, 1H) , 5.40 (d, J = 10.9 Hz, 1H) , 4.63 (s, 2H) , 3.07 (s, 3H) ppm. 13C NMR (126 MHz, CDCl3) δ 149.7, 136.5, 135.4, 133.8, 129.2, 128.0, 127.1, 126.8, 126.2, 116.6, 116.4, 112.3, 54.6, 38.3 ppm.
L12: 1H NMR (500 MHz, CDCl3) δ 7.61 (d, J = 7.5 Hz, 1H) , 7.40 (d, J = 7.5 Hz, 1H) , 7.35 (t, J =6.9 Hz, 1H) , 7.31 (dd, J = 7.4, 1.2 Hz, 1H) , 7.26 –7.23 (m, 2H) , 7.06 (dd, J = 17.4, 11.0 Hz, 1H) , 6.78 (t, J = 7.3 Hz, 1H) , 6.69 (d, J = 7.7 Hz, 2H) , 5.76 (dd, J = 17.4, 1.2 Hz, 1H) , 5.38 (dd, J = 11.0, 1.2 Hz, 1H) , 4.37 (s, 2H) , 3.87 (brs, 1H) ppm. 13C NMR (126 MHz, CDCl3) δ 148.1, 136.9, 135.9, 133.9, 129.3, 129.1, 128.0, 127.9, 126.0, 117.6, 116.4, 112.8, 46.4 ppm.
L10 -L11 and L13-L16 were characterized by 1 H-and 13C-NMR spectroscopy.
1.2.5.2. Preparation of vinyl benzyl ditopic ligand (L17)
To a 50 ml Schlenk flask was added 2-bromo-methylstyrene (1.0 g, 5 mmol) , the required ditopic chelating amine (1- (3-aminopropyl) imidazole (=API) , 6 mmol) , K2CO3 (0.8 g, 6 mmol) and 25 ml of THF. The mixture was stirred at room temperature, after completion (using TLC) , the reaction mixture was poured in 25 ml of water and extracted with diethyl ether (3 × 25 ml) . The combined organic phase was washed with water and saturated brine, dried over anhydrous sodium sulfate and filtered. The solvent was evaporated yielding 75 %of product.
The ditopic ligand (L17) was characterized by 1 H-and 13C-NMR spectroscopy.
1.2.6. Preparation of 2-vinyl benzyl dimethyl amine ligands (L18)
To a 50 ml Schlenk flask was added 2-bromo-methylstyrene (1.0 g, 5 mmol) , the required aromatic phosphine salt (6 mmol) and 25 ml of THF. The mixture was stirred at -25℃ for 1h and then the temperature was raised to room temperature, after completion (using TLC) , the reaction mixture was poured in 25 ml of water and extracted with diethyl ether (3 × 25 ml) . The combined organic phase was washed with water and saturated brine, dried over anhydrous sodium sulfate and filtered. The solvent was evaporated yielding a white solid, yield 75%.
L18: 1H NMR (500 MHz, CDCl3) δ 7.45 (m, 6H) , 7.38 –7.26 (m, 7H) , 7.21 –7.18 (m, 3H) , 6.90 (dd, 1H) , 5.44 (dd, J = 11.0, 1.4 Hz, 1H) , 5.34 (dd, 1H) , 2.27 (d, 1H) ppm. 13C NMR (126 MHz, CDCl3) δ 138.9, 136.2, 135.4, 134.5, 132.7, 128.7, 127.8, 126.2, 125.6, 36.0 ppm.
1.2.7. Preparation of 2-vinyl benzyl dimethyl amine ligands (L19 –L20)
To a two-neck 1 L flask provided with a reflux condenser was added 1, 2, 3, 4-tetrahydroisoquinoline (13.3 g, 0.1 mol) in case of L19 or 6, 7-dimethoxyl-1, 2, 3, 4-tetrahydroisoquinline (19, 3 g, 0.1 mol) in case of L20, K2CO3 (69 g, 0.5 mol) and 500 ml of methanol. Then, iodine methane (71.0 g, 0.5 mol) was slowly added drop wise, stirred at room temperature for 4 h. Thereafter KOH (28 g, 0.5 mol) was added in three portions and the mixture was refluxed for 4 h. After completion of the reaction (using TLC) , the mixture was cooled to room temperature, and water was added slowly to dissolve all solid, followed by extraction with hexane (3 × 500 ml) . The combined organic phase was washed with water and saturated brine, dried over anhydrous sodium sulfate and filtered. Evaporation of hexane under reduced pressure gave a transparent liquid, in 85%yield for L19 and 84%for L20.
L19: 1H NMR (500 MHz, CDCl3) δ 7.58 (d, J = 7.7 Hz, 1H) , 7.33 –7.24 (m, 3H) , 7.21 (dd, J =17.5, 11.0 Hz, 1H) , 5.71 (dd, J = 17.5, 1.4 Hz, 1H) , 5.34 (dd, J = 11.0, 1.4 Hz, 1H) , 3.47 (s, 2H) , 2.27 (d, J = 1.4 Hz, 6H) ppm. 13C NMR (126 MHz, CDCl3) δ 137.6, 136.1, 134.6, 130.5, 127.4, 127.4, 125.6, 115.2, 62.0, 45.5 ppm.
L20 was characterized by 1 H-and 13C-NMR spectroscopy.
2. Catalyst synthesis:
2.1. Synthesis of 1st generation type catalysts:
Catalyst code used: C from Catalyst followed by ligand number, e.g. C4 is first generation catalyst made by using ligand L4, CNHC4 is catalyst bearing a NHC ligand (2nd generation catalyst) combined with ligand 4.
Figure PCTCN2016080636-appb-000035
Scheme 7: Procedure to produce 1st generation type catalysts.
Under an argon atmosphere, bis (tricyclohexylphosphine phosphorus) -1H-inden-3-phenyl-ruthenium dichloride (923 mg, 1.0 mmol) , 2-vinylbenzyl ether, thioether or amine ligand (2.0 mmol) and dry Amberlyst 15 resin (851 mg, 4.70 mmol H+/g, 4.0 mmol) were added to a 50 ml Schlenk flask followed by 25 ml CH2Cl2, stirred and heated at 40℃. After completion (detection using TLC) < 4 h, the mixture was cooled to room temperature. The mixture was purified using column (eluent: n-hexane/dichloromethane = 1/1) to give gray or gray-green solid, yield 80%or more.
C4: 
Figure PCTCN2016080636-appb-000036
1H NMR (500 MHz, CDCl3) δ 19.03 (d, J=7.9 Hz, 1H, Ru=CHR) , 7.56 (t, J=8.3 Hz, 2H, ArH) , 7.39 (t, J=7.4 Hz, 1H, ArH) , 7.16 (d, J=7.3 Hz, 1H, ArH) , 4.98 (s, 2H, OCH2Ar) , 4.56 –4.50 (m, 1H, (CH32CH) , 2.34 (q, J=11.9 Hz, 3H, Cy) , 2.08 (d, J=10.7 Hz, 6H, Cy) , 1.87 –1.72 (m, 12H, Cy) , 1.49 (d, J=6.4 Hz, 6H, (CH32CH) , 1.30 (s, 12H, Cy) ppm. 13C NMR (126 MHz, CDCl3) δ292.4, 148.1, 134.2, 130.0, 129.6, 128.3, 124.3, 68.0, 35.2, 35.0, 31.6, 30.0, 27.9, 27.8, 26.4, 22.7, 21.7, 14.1 ppm. 31P NMR (202 MHz, CDCl3) δ 49.27 ppm. HRMS (ESI) calcd for C29H47Cl2OPRu [M-Cl] -579.2093, found 579.2092, [M-Cl+HCN] -618.2352, found 618.2346.
Table 1: Overview of the characteristic values of Ru=CHAr, Ru=CHAr and RuPCy3.
Figure PCTCN2016080636-appb-000037
C7: 
Figure PCTCN2016080636-appb-000038
1H NMR (500 MHz, CDCl3) δ 19.30 (d, J = 12.6 Hz, 1H) , 7.52 (t, J = 7.4 Hz, 1H) , 7.46 (d, J =7.5 Hz, 1H) , 7.33 (t, J = 7.5 Hz, 1H) , 7.22 (d, J = 7.5 Hz, 1H) , 4.59 (d, J = 11.9 Hz, 1H) , 4.10 (d, J = 11.0 Hz, 1H) , 3.51 (dq, J = 13.5, 6.6 Hz, 1H) , 2.53 –2.38 (m, 3H) , 2.10 (d, J = 10.5 Hz, 6H) , 1.90 –1.68 (m, 14H) , 1.35 (d, J = 6.7 Hz, 6H) , 1.30 (s, 10H) ppm. 13C NMR (126 MHz, CDCl3) δ 299.4, 149.9, 149.9, 133.1, 132.1, 129.2, 128.9, 126.6, 36.6, 36.2, 34.5, 34.4, 31.6, 30.1, 27.9, 27.9, 26.4, 22.7, 22.1, 21.8, 14.1 ppm. 31P NMR (202 MHz, CDCl3) δ 28.96 ppm.
C8: 
Figure PCTCN2016080636-appb-000039
1H NMR (500 MHz, CDCl3) δ 18.76 (s, 1H) , δ 7.58 (d, J = 7.7 Hz, 1H) , 7.33 –7.24 (m, 3H) , 7.21 (dd, J = 17.5, 11.0 Hz, 1H) , 5.71 (dd, J = 17.5, 1.4 Hz, 1H) , 5.34 (dd, J = 11.0, 1.4 Hz, 1H) , 3.47 (s, 2H) , 2.27 (d, J = 1.4 Hz, 6H) . 13C NMR (126 MHz, CDCl3) δ 137.59, 136.09, 134.55, 130.50, 127.42, 127.40, 125.56, 115.22, 61.98, 45.47.31P NMR (202 MHz, CDCl3) δ28.96 ppm.
C17: 
Figure PCTCN2016080636-appb-000040
Characteristic value of 31P: 36.95 ppm
Other 1st generation catalyst C2, C3, C5, C6, C18, C19 and C20 were characterized by 1H, 13C and 31P-NMR spectroscopy.
2.2. Synthesis of 2nd generation NHC-type catalysts:
Catalyst code used is CNHC (NHC-type catalysts) followed by ligand number, e.g. CNHC2 is second-generation catalyst based on NHC and using ligand L4.
Two routes are depicted to demonstrate the possible procedures and serve only as examples.
Route A 
Figure PCTCN2016080636-appb-000041
Route B 
Figure PCTCN2016080636-appb-000042
Scheme 8: Procedures to generate 2nd generation NHC type catalysts.
2.2.1. Preparation according to rout A:
CNHC
Figure PCTCN2016080636-appb-000043
(o-methoxymethylene) benzylidene (tricyclohexylphosphine) ruthenium dichloride (60 mg, 0.1 mmol) and 5 ml of dry toluene were added in a 50 ml flask and stirred to dissolve. Thereafter, 1, 3-bis (2, 4, 6-trimethylphenyl) -2-imidazolidinylidene carbene (37 mg, 0.12 mmol) was added and the mixture was stirred for 5 min, followed by addition of CuCl (20 mg, 0.2 mmol) . The color of the solution changes from purple to grass green. Purification using column chromatography (eluent: n-hexane/dichloromethane = 1/1) and evaporation of the solvent yielded 87%catalyst as a green solid.
1H NMR (500 MHz, CDCl3) δ 18.76 (s, 1H) , 7.44 (t, J = 7.4 Hz, 1H) , 7.17 (t, J = 7.5 Hz, 1H) , 7.08 (s, 4H) , 6.92 (d, J = 7.3 Hz, 1H) , 6.68 (d, J = 7.6 Hz, 1H) , 4.79 (s, 2H) , 4.15 (s, 4H) , 3.09 (s, 3H) , 2.51 (s, 12H) , 2.41 (s, 6H) ppm. 13C NMR (126 MHz, CDCl3) δ 309.4, 309.2, 210.2, 147.5, 138.8, 132.1, 129.5, 129.3, 129.2, 128.0, 126.5, 74.7, 61.1, 51.6, 21.1, 19.4 ppm.
2.2.2. Preparation according to route B
[1, 3-bis (2, 4, 6-trimethylphenyl) -2-imidazolidinylidene] (3-phenyl-1H-inden-1ylidene) (tricyclohexylphosphine) ruthenium dichloride (949 mg, 1.0 mmol) , 2-vinylbenzyl sulfide or amine ligand (2.0 mmol) and dry Amberlyst 15 resin (851 mg, 4.70 mmol H+/g, 4.0 mmol) was  transferred in a 50 ml Schlenk flask, 25 ml of toluene was added and the reaction mixture was stirred and heated at 60 ℃ for 4 h. After completion of the reaction (TLC detection) the mixture was cooled to room temperature, toluene was removed in vacuo, and the obtained compound was purified using column chromatography (eluent: n-hexane/diethyl chloride = 1/1) to give a green solid in 85%yield or higher.
CNHC
Figure PCTCN2016080636-appb-000044
1H NMR (500 MHz, CDCl3) δ 18.96 (s, 1H) , 7.41 (s, 1H) , 7.07 –6.98 (m, 6H) , 6.45 (d, J = 6.9 Hz, 1H) , 4.92 (d, J = 11.2 Hz, 1H) , 4.11 (s, 4H) , 3.59 (d, J = 11.3 Hz, 1H) , 3.32 –3.06 (m, 1H) , 2.50 (d, J = 103.8 Hz, 18H) , 1.21 (d, J = 3.4 Hz, 3H) , 0.55 (d, J = 4.1 Hz, 3H) ppm. 13C NMR (126 MHz, CDCl3) δ 314.4, 211.9, 150.5, 138.7, 131.8, 131.7, 129.6, 129.4, 128.9, 128.4, 128.3, 38.7, 35.8, 21.7, 21.2, 21.1 ppm.
CNHC
Figure PCTCN2016080636-appb-000045
1H NMR (500 MHz, CDCl3) δ18.99 (s, 1H) , 7.44 (t, J= 7.4 Hz, 1H) , 7.28 (s, 1H) , 7.25 –6.89 (m, 11H) , 6.56 (d, J= 7.7 Hz, 1H) , 5.23 (s, 1H) , 4.13 (s, 5H) , 2.53–2.38 (m, 18H) ppm. 13C NMR (126 MHz, CDCl3) δ 314.2, 211.1, 150.2, 138.6, 132.0, 131.7, 131.5, 130.8, 129.6, 129.2, 129.0, 128.8, 128.6, 128.5, 128.2, 125.3, 51.8, 39.6, 21.4, 21.2, 19.4 ppm.
CNHC19 
Figure PCTCN2016080636-appb-000046
1H NMR (500 MHz, CDCl3) δ 18.73 (s, 1H) , 7.47 (t, J = 7.4 Hz, 1H) , 7.14 (t, J = 7.4 Hz, 1H) , 7.06 (s, 4H) , 6.97 (d, J = 7.4 Hz, 1H) , 6.71 (d, J = 7.4 Hz, 1H) , 4.11 (s, 6H) , 2.47 (d, 18H) , 1.90 (s, 6H) ppm. 13C NMR (126 MHz, CDCl3) : δ = 313.7, 313.6, 213.6, 148.3, 138.4, 133.5, 130.6, 129.3, 128.5, 128.4, 127.0, 65.8, 51.5, 50.8, 47.8, 21.1 ppm. HRMS (ESI) m/z calcd. for  C31H37Cl2N3Ru, [M□Cl+ 588.1870, found 588.1873; IR (neat) : 2852, 1607, 1472, 1418, 1396, 1258, 1020, 852, 804, 744, 640 cm-1.
CNHC
Figure PCTCN2016080636-appb-000047
1H NMR (500 MHz, CDCl3) δ 18.89 (s, 1H) , 7.55 (t, J = 7.4 Hz, 1H) , 7.26 –7.00 (m, 9H) , 6.92 (s, 1H) , 6.74 (s, 1H) , 6.71 (d, J = 7.7 Hz, 1H) , 6.17 (d, J = 12.7 Hz, 1H) , 4.10 (s, 2H) , 3.92 (s, 2H) , 3.51 (d, J = 12.7 Hz, 1H) , 2.89 (s, 3H) , 2.76 (s, 3H) , 2.46 (s, 3H) , 2.41 (s, 3H) , 2.25 (s, 3H) , 2.11 (s, 3H) , 2.01 (s, 3H) ppm. 13C NMR (126 MHz, CDCl3) δ 314.7, 314.5, 211.2, 150.8, 148.1, 139.1 138.8 138.0, 137.6, 135.3, 133.0, 131.3, 129.7, 129.5, 129.2, 129.0, 128.8, 128.8, 128.2, 127.0, 125.3, 123.9, 119.9, 61.6, 58.5, 52.2, 51.1, 48.9, 31.6, 22.7, 21.4, 21.2, 20.5, 19.8, 18.8, 18.4, 18.1, 14.1 ppm. HRMS (ESI) : m/z calcd for C36H41ClN3Ru+: 652.2027; found: 652.2020.
CNHC12 
Figure PCTCN2016080636-appb-000048
1H NMR (500 MHz, CDCl3) δ 19.13 (s, 1H) , 7.49 (t, J = 7.4 Hz, 1H) , 7.21 (t, J = 7.6 Hz, 1H) , 7.15 –7.05 (m, 5H) , 7.03 (d, J = 7.5 Hz, 1H) , 6.87 (m, 4H) , 6.75 (d, J = 7.7 Hz, 1H) , 5.33 (t, J = 12.9 Hz, 1H) , 4.34 (d, J = 12.8 Hz, 1H) , 4.07 (s, 4H) , 3.64 (d, J = 13.0 Hz, 1H) , 2.48 –2.36 (br, 18H) ppm. 13C NMR (126 MHz, CDCl3) δ 315.3, 213.0, 149.6, 144.5, 138.4, 138.2, 135.3, 133.6, 131.6, 130.6, 129.7, 129.4, 129.3, 129.3, 129.0, 128.8, 128.4, 128.2, 128.2, 125.9, 125.3, 124.2, 122.2, 120.6, 53.9, 51.5, 30.8, 21.4, 21.1, 20.6, 19.2, 14.5 ppm. HRMS (ESI) m/z calcd. for C35H39ClN3Ru+, [M□Cl+638.1870, found 638.1862.
Table 2: Overview of the characteristic values of Ru=CHAr, Ru=CHAr and Ru=C (NHC) for CNHC-type catalysts.
Figure PCTCN2016080636-appb-000049
Figure PCTCN2016080636-appb-000050
Figure 1: Crystal structure of dichloro (tricyclohexylphosphine) (1, 3-bis (2, 4, 6-trimethylphenyl) -2-imidazolidinylidene ) (N-4-F-phenyl-N-H) aminomethylenephenylmethylylidene ruthenium (CNHC14)
2.2. Synthesis of 2nd generation CAAC-type catalysts:
2nd generation CAAC 6-membered chelating catalysts have been exemplarily been generated from the 1st generation 6-membered chelating catalyst, see scheme 9.
Figure PCTCN2016080636-appb-000051
Scheme 9: Procedures to generate 2nd generation CAAC type catalysts
1- (2, 6-Isopropylphenyl) -2, 2, 4-trismethyl-4-phenyl 3, 4-dihydro-2H-pyrrolium chloride (96 mg, 0.25 mmol) and 5 ml dry toluene were transferred in a 50 ml Schlenk flask to which 0.5 M KHMDS (K (SiMe32) toluene solution (0.6 ml, 0.3 mmol) dropwise was added at room temperature. After stirring for 5 min, 1st generation type catalyst (1.0 mmol) is added and the mixture is stirred for 2 -4h. Thereafter, the solvent is removed and the obtained product is purified using column chromatography (Eluent: hexane /dichloromethane = 1/1) All obtained catalysts (O-, S-, N-based) are green solid and obtained yields vary between 72 ~ 95%.
CCAAC
Figure PCTCN2016080636-appb-000052
1H NMR (500 MHz, CDCl3) δ 18.60 (s, 1H) , 8.46 (d, J = 7.9 Hz, 2H) , 7.65 (t, J = 7.8 Hz, 1H) , 7.59 (t, J = 7.8 Hz, 2H) , 7.51 (d, J = 7.8 Hz, 1H) , 7.47 (t, J = 7.3 Hz, 2H) , 7.41 (t, J = 7.3 Hz, 1H) , 7.19 (t, J = 7.5 Hz, 1H) , 7.03 (d, J = 7.5 Hz, 1H) , 6.49 (d, J = 7.7 Hz, 1H) , 4.96 (d, J = 12.1  Hz, 1H) , 4.70 (d, J = 12.1 Hz, 1H) , 3.42 (s, 3H) , 3.21 (d, J = 12.6 Hz, 1H) , 3.06 (dq, J = 12.8, 6.4 Hz, 2H) , 2.34 (d, J = 12.6 Hz, 1H) , 2.31 (s, 3H) , 1.52 (s, 3H) , 1.42 (s, 3H) , 1.37 (d, J = 6.7 Hz, 3H) , 1.28 (d, J = 6.6 Hz, 3H) , 0.87 (d, J = 6.5 Hz, 3H) , 0.54 (d, J = 6.3 Hz, 3H) ppm. 13C NMR (126 MHz, CDCl3) δ 311.34, 263.53, 148.28, 148.04, 145.94, 144.88, 135.91, 133.33, 129.61, 129.45, 129.15, 128.66, 127.89, 127.43, 127.26, 125.94, 125.65, 77.88, 74.72, 63.62, 62.74, 46.38, 32.39, 28.73, 28.08, 27.89, 27.20, 26.24, 24.12, 23.95 ppm.
Table 3: Overview of the characteristic values of Ru=CHAr, Ru=CHAr and Ru=C (CAAC) for CCAAC-type catalysts.
Figure PCTCN2016080636-appb-000053
CCAAC10 
Figure PCTCN2016080636-appb-000054
1H NMR (500 MHz, CDCl3) δ 18.82 (s, 0.67H) , 18.77 (s, 0.34H) , 8.35 -6.70 (m, 15H) , 6.43 (d, J = 7.7 Hz, 2H) , 3.74 –1.93 (m, 11H) , 1.50 –0.43 (m, 18H) ppm. 13C NMR (126 MHz, CDCl3) δ 311.3, 309.6, 267.6, 266.8, 206.9, 163.7, 161.7, 154.6, 154.5, 148.5, 148.3, 146.9, 144.0, 143.4, 136.1, 133.3, 131.4, 129.5, 129.4, 129.3, 129.2, 129.0, 128.7, 128.5, 128.2, 127.9, 127.8, 127.6, 126.9, 126.7, 126.1, 125.8, 125.8, 125.3, 116.2, 110.7, 110.6, 109.0, 108.8, 78.6, 78.3, 64.3, 62.8, 62.4, 53.4, 51.6, 49.4, 48.7, 47.8, 46.9, 31.6, 31.6, 30.9, 30.1, 29.6, 29.3, 29.0, 28.6, 28.3, 28.0, 27.2, 27.0, 26.9, 26.7, 24.7, 24.3, 24.2, 22.7, 21.5, 20.7, 14.1, 10.9 ppm. 19F NMR (471 MHz, CDCl3) δ -111.22, -111.83 ppm.
Other 2nd generation catalyst of the type CCAAC were characterized by 1H, 13C NMR spectroscopy.
2. Catalyst testing
The new catalysts have exemplarily been evaluated in ring-closing metathesis reactions (RCM) , Ring-opening metathesis polymerization (ROMP) and Cross Metathesis. Furthermore, the activity has been compared with precatalysts known from the prior art, i.e. catalysts of formulas H1, H2, 4 and 5 shown above.
2.1. Ring –Closing Metathesis (RCM) of DiEthylDiAllylMallonate (DEDAM)
Figure PCTCN2016080636-appb-000055
6-membered 1st generation catalysts C2, C3, C4 of this invention and prior art 1st generation Hoveyda catalyst H1 (5-membered 1st generation catalyst) were compared for RCM of DEDAM as well as 6-membered 2nd generation catalyst CNHC2 with prior art 2nd generation catalyst H2. The reaction was carried out at 30 ℃ using 1.0 mol%of catalyst to DEDAM (0.1 M in CDCl3 ) . The tested catalysts allow excellent conversion (≥75%) of the substrate within 15 min. Thereby, catalyst of formula C3 turned out to be more efficient than C2 and C4. In comparison to prior art catalysts H1, the catalysts of the present invention show exceptional improved activity in RCM and various other metathesis reactions. The same behavior can be seen for the second generation NHC type catalyst (CNHC2) of this invention compared with H2. Full conversion is obtained in less then 5 min which is an exceptional improvement compared with prior art catalyst H2.
Table1: Conversion (in %) in RCM reactions of DEDAM for catalysts of the invention (C2, C3, C4 and CNHC2) and prior art catalysts (H1 and H2)
Figure PCTCN2016080636-appb-000056
(Grey columns aim to make comparison between 2nd generation type catalysts of this invention and prior art easier. )
Reaction conditions: CDCl3 solvent, 0.1 M substrate, T = 30℃, reaction time 15 min., conversions detected by NMR, average of two runs.
These results demonstrate that the main advantage of the catalyst of this invention is the short time required for the RCM transformations.
2.2. Ring Opening Metathesis Polymerization of cyclo-octadiene (COD)
In the ROMP of COD at 30℃ catalysts of invention are significantly faster than the prior art catalysts
Figure PCTCN2016080636-appb-000057
Fig: 2: Comparison of 6-membered 1st generation catalysts (C2, C3, C4) with prior art catalyst H1 for ROMP of COD
Fast initiation translates into excellent catalytic activities compared to catalyst (H1) known from the art, which initiate considerably more slowly. Figure 1 shows the results of the ROMP reaction.
This result strongly suggests that the more difficult ring-opening reaction of COD requires catalyst with a strong capacity.
2.3. Influence of the variation of the donating atom (A) for RCM of DEDAM
The present invention not only focuses on improvement of the initiation rate of the catalyst also generation of latent catalyst is another target of this invention. A variation from very fast initiating catalysts to latent catalysts is obtained via the replacement of the oxygen-containing by the sulfur-containing ligand in the catalyst and is demonstrated for the RCM of DEDAM, see eq. 1.
Figure PCTCN2016080636-appb-000058
Fig. 3: Comparison of 6-membered catalysts (CNHC2, C2, CNHC7 and C7) for RCM reaction of DEDAM
The oxygen containing catalyst of this invention clearly demonstrate the fast initiation, CNHC2 is much faster initiating then C2 since it is a second generation type. The sulfur containing catalysts demonstrate a very slow initiation (CNHC7) or no initiation (C7) , demonstrating the latent character of the S-containing catalysts.
2.4. Influence of the temperature on the catalytic performance
Since the present invention not only focuses on generation of latent catalyst still another target of this invention is to activate the latent catalyst thermally. Furthermore, a strong influence of temperature on the catalyst performance has been noted. It is demonstrated that when the temperature is increased that the catalytic performance of the S-containing catalyst is as good as or even better then the O-containing catalyst (see Table 2) .
This demonstrates that the sulfur-chelating catalyst can be thermally activated when required.
Table2 : Conversion (in %) in RCM reactions for catalysts of the invention (CNHC2 and CNHC7) demonstrating the effect of temperature on CNHC7.
Figure PCTCN2016080636-appb-000059
Reaction conditions: CDCl3 solvent, 0.1 M substrate, conversions detected by NMR, average of two runs.
2.5. Monitoring of RCM using DEDAM as substrate
Latent catalysts, which is a target of this invention, are also generated with the N-containing ligands. The activation of latent catalyst can be executed using thermal energy which has been demonstrated with the 6-membered S-containing catalysts. Yet, in this example we also focus on another target of this invention which is the chemical activation of latent catalysts. Here we demonstrate that these catalysts can be activated thermally by increasing the temperature and chemically by adding an activator for the RCM of DEDAM, see eq. 1.
Complex CNHC19 was employed in RCM of diethyl diallylmalonate under standard conditions. In this case, toluene instead of CH2Cl2 was used as solvent for wide range of reaction temperature tuning. According to Fig. 3, there is no reactivity at 30 ℃ after 1 h. When the temperature was increased to 80 ℃, CNHC19 displayed a rapid initiation rate. However, incomplete conversion was observed. Addition of PhSiCl3 (catalyst/silane: 1/10) , the catalytic activity of CNHC19 increased steadily and 100%conversion was obtained after 60 min.
Figure PCTCN2016080636-appb-000060
Fig. 4: Different activation methods of CNHC19 for RCM of DEDAM (reactions conditions: 1 mol%catalyst; substrate concentration: 0.1 M; solvent: toluene; temperature see figure) .
It is clearly demonstrated from Fig 3 that latent catalysts can be chemically activated. Applying this activation procedure the activated catalyst even perform better in time then when using the thermally activated procedure. Via chemical activation full conversion can be obtained in 1 hour while via thermal activation 87%conversion is obtained.
2.6. Monitoring of ROMP using COD as substrate
Incorporation of two methoxy groups on the aromatic ring drastically improves the latent character. Catalyst CNHC20 does not exhibit any activity after 24h even after several days. Therefor this is an excellent candidate to demonstrate the effect of chemical activation using different activators.
Figure PCTCN2016080636-appb-000061
Figure PCTCN2016080636-appb-000062
Fig. 5: Influence of different activators on the activity of CNHC20 for ROMP of COD.
It is demonstrate that the catalysts of this invention can be chemically activated using different types of activators e.g. Lewis acids and 
Figure PCTCN2016080636-appb-000063
 acids. In all cases a drastic improvement of the catalytic performance is obtained.
In yet another target of this invention the in-situ generation of 
Figure PCTCN2016080636-appb-000064
 acid (e.g. HCl) was demonstrated by using the combination of MeOH and TiCl4. The catalysts of this invention could be activated by this in-situ generation of acid proving the versatility of the chemical activation procedures.
2.7. ROMP of COD using different activators.
Procedure of the ROMP of COD: From a stock solution of complex CNHC20 (0.01 M) was transferred 33.3 μL, COD (1.0 mmol, 108.2 mg) and toluene (737.0 μL) in to a vial with stir bar. The mixture was equilibrated at 30 ℃ for 5 minutes, then the required amount of activator was added. The polymerization reaction was monitored as a function of time at 20 ℃ by integrating olefinic 1H-signals of the formed polymer (5.38 -4.44 ppm) and the consumed monomer (5.58 ppm) .
Table 3: ROMP of COD by using different activators (silanes, 
Figure PCTCN2016080636-appb-000065
 and Lewis acids) .
Figure PCTCN2016080636-appb-000066
a] Determined by 1H NMR spectroscopy. [b] Percent olefin with cis configuration in the polymer backbone; ratio based on data from 1H and 13C NMR spectra (13C NMR spectroscopy: δ = 32.9 ppm allylic carbon trans; δ = 27.6 ppm allylic carbon cis) . c) see Nature 2007, 450, 243-251. ] . d) monomer/catalyst = 300.
At lower catalyst loadings, catalyst lifetime becomes increasingly important. The catalysts described herein, upon activation by HSiCl3, yield quantitative ROMP of COD even at a catalyst loading 0.3 ppm in CDCl3, at 30℃. Moreover, not only the catalyst loading can be extremely low also the reaction time is short. In all cases, the performance of the catalysts of  this invention are superior to the prior art catalysts e.g. G2, F, N, V, 4, 5. Extreme high TOF are obtained using the catalysts of this invention, TOF of nearly 1000 times higher are obtained compared with catalyst from prior art
2.8 Tunability of catalysts of this invention
In yet another aspect of this invention easy-tunable catalytic performance via functional group modification is another target of this invention.
This is demonstrated using the catalysts CNHC9, CNHC10, CNHC12, CNHC13 for the RCM of several substrates.
Table 4: RCM of different substrate using CNHC9, CNHC10, CNHC12, CNHC13 demonstrating the tunability of the catalysts of this invention.
Figure PCTCN2016080636-appb-000067
Conditions: Ru: 1 mol%; Temp. 15℃, substrate concentration 0.1 M, CH2Cl2 as solvent
The results demonstrate that a small modification results in drastic change of catalytic performance e.g. the substitution of a proton by a methyl group on the nitrogen. Comparing CNHC13 with CNHC10 (only difference is the Me-group on the nitrogen) it is clear that when the substrate is more difficult to ring-close that the methyl-containing catalyst (CNHC10)  demonstrate a much better performance. Not only the conversion-%is higher also the reaction time is at least 4 times less. Similar observation can be made for CNHC12 and CNHC9. Comparing CNHC10 with CNHC9 (influence of F substituent instead of H) also has an effect on the catalytic performance. Electron withdrawing groups on the phenyl ring promote the catalytic performance drastically, e.g. for entry 3 the conversion increases from 54 to 84 and in entry 4 from 35 to 71!
These results clearly demonstrate the tunability of the catalyst.
2.9 Comparison of 2nd generation catalysts (this invention) with 2nd generation prior art for RCM
The tested catalysts allow excellent conversion (>99%) of substrates, using catalyst loadings between 25 and 100 ppm. Thereby, catalysts of formulas CNHC9 and CNHC10 turned out to have nearly the same efficiency. In comparison to prior art catalysts (b) and (c) , the catalysts of the present invention show improved activity in RCM and various other metathesis reactions. Conversion (in %) in RCM reactions of various substrates for catalysts of the invention (CNHC9, CNHC10) and prior art catalysts (b) and (c) at different catalyst loadings is presented in table 5.
Table 5: Comparison of 6-membered ring containing 2nd gen. catalysts with 2nd gen. catalysts of prior art for RCM.
Figure PCTCN2016080636-appb-000068
Conditions: Toluene solvent, 0.5 M substrate, T = 25℃, reaction time 15 mins, conversions detected by NMR, average of two runs. a: Temperature : 50℃
Apart from the low catalyst loading the short time required for such reactions is most notable -all of the reactions studied are completed within less than 15 min. Moreover, the catalysts from prior art use double or even quadruple amount of catalyst on the one hand and on the other hand the temperature is double as high.
2.10 Monitoring Ring Opening Metathesis Polymerization (ROMP) of dicyclopentadiene (DCPD)
The required amount was of catalyst was dissolved in a minimum amount of dichloromethane (CH2Cl2) , and thereafter added to 80 g of DCPD which contains the required amount of activator (PhSiCl3) . The mixture was stirred and the polymerization reaction was monitored as a function of time starting at 20 ℃ by a thermocouple which was placed inside the reaction mixture to collect the temperature data. catalyst/DCPD: 1/50000.
The catalysts used are CNHC8, CNHC9, CNHC10 and CNHC19. For catalyst CNHC9 and CNHC19 the catalyst/activator = 1/5 while for the CNHC8 and CNHC10the catalyst/activator = 1/1. A ruthenium catalyst Verpoort (WO 03/062253) comprising one bidentate Schiff base ligand has been used as a reference catalyst; see table 3.
Figure PCTCN2016080636-appb-000069
It is clear that the catalysts of this invention outperform the catalysts described in WO 03/062253 ( (a) Tetrahedron Lett., 2002, 43, 9101-9104; (b) J. Mol. Catal. A: Chern., 2006, 260, 221-226; (c) J. Organomet. Chem., 2006, 691, 5482-5486) ) .
Variation of the A-atom (e.g. S, N) or introducing extra groups, substituents on the A-atom of the chelating ligand of the catalysts results in a weaker coordination of the A-atom to the central metal which promotes the initiation of the catalyst using an activator.
Table 6: Comparison between prior art (VP) and catalysts of this invention (CNHC8, CNHC9, CNHC10 and CNHC19) for the ROMP of DCPD
Figure PCTCN2016080636-appb-000070
*for reference only
All catalysts of this invention show an excellent latency towards DCPD (with CNHC8 a fair latency) , they are inactive at room temperature. All catalysts of this invention show an improved stability and are superior to other prior art used as a reference (VP) , see table 6.
Upon chemical activation, the catalyst, e.g. CNHC8 and CNHC10, according to the present invention, demonstrate an increased initiation compared to the reference catalyst (VP) because it requires less equivalents of PhSiCI3 to generate a highly active system. When ROMP of DCPD is catalysed by the chemical activated VP complex (reference) , under the same conditions (1 equivalent of PhSiCI3) a low catalytic activity was observed.
Moreover the ratio catalyst/monomer is increased with 66%compared to the reference catalyst (VP) which clearly stress out their superior performance of the catalysts of the present invention.
2.11 Comparison of CAAC catalysts of this invention with prior art for ethenolysis.
The catalysts of this invention are superior compared with prior art catalyst for the ethenolysis of methyloleate. Using very low catalyst concentration very high TON are reached. Accordingly, by using catalyst CCAAC9 a TON of 3.9 x104 has been observed. This is a significant improvement with respect to the prior art. For other catalyst of this invention when using 3 ppm still significant improvements are made compared with prior art, table 7.
Table 7: Comparison of prior art with catalyst of this invention for the ethenolysis of methyl oleate.
Figure PCTCN2016080636-appb-000071
Figure PCTCN2016080636-appb-000072
Reaction conditions: ethene 10 atm., 99.9%from Matheson) , 40℃ a: Angew Chem Int Ed Engl. 2015, 54, 1919–1923; b: addition of HSiCl3; ethylene gas 99.995%.
2.12. Removal of the residual ruthenium (C17) from the reaction mixture.
Subsequent to the RCM or cross-metathesis applications, in order to remove the residual ruthenium in final metathesis products, the reaction mixtures were passed through silica gel (3 g per 0.006 mmol of catalyst C17) with different eluents (see Table 8) . The silica gel can also be introduced directly into the reaction mixture. Complete decolorization was observed within 10 minutes of intense stirring. The ruthenium content of some selected metathesis products were determined by ICP-AES analysis. Using a basic filtration through silica gel, the ruthenium content of the products with an initial ruthenium content of 500 ppm were reduced to 1 ppm.
Table 8: Residual ruthenium from reaction mixtures after column chromatography.
Figure PCTCN2016080636-appb-000073

Claims (32)

  1. An organometallic catalyst, wherein the catalysts are of the formula (I)
    Figure PCTCN2016080636-appb-100001
    wherein,
    M   is a Group 8 transition metal;
    X1 and X2  are identical or different and represent any anionic ligands;
    R1-R5   are identical or different and selected from hydrogen, substituted or unsubstituted hydrocarbyl, heteroatom-containing hydrocarbyl or substituted heteroatom-containing hydrocarbyl;
    wherein alternatively in each case two directly adjacent radicals from the group of R1-R5, including the ring carbon atoms to which they are attached by a cyclic bridging group, generating one or more cyclic structures, including aromatic structures,
    L1 represent a neutral electron donor;
    L1 and X1 or/and X2 may be joined to form a multidentate monoanionic/dianionic group and may form single/double ring of up to 30 non-hydrogen atoms or a multinuclear ring system of up to 30 non-hydrogen atoms;
    A is selected from the group consisting of oxygen, sulphur, selenium, NR” , PR” , POR” , AsR” , AsOR” , SbR” and SbOR” ;
    R’ and R” are identical or different and selected from hydrogen, substituted or unsubstituted hydrocarbyl, heteroatom-containing hydrocarbyl or substituted heteroatom-containing hydrocarbyl, except that R’ and R” do not represent methyl when L1 = 1 , 3-bis (2, 4, 6-trimethylphenyl) -2-imidazolidinylidene; wherein alternatively in each case two directly  adjacent radicals from the group of R’ and R” , including the atoms to which they are attached, generating one or more cyclic structures, including aromatic structures.
  2. The catalysts according to claim 1, wherein M is Ru or Os.
  3. The catalysts according to claim 1, wherein L1 is selected from phosphine, sulphonated phosphine, phosphate, phosphinite, phosphonite, phosphite, arsine, stibine, ether, amine, amide, sulfoxide, carboxyl, nitrosyl, pyridine, substituted pyridine, pyrazine, thiocarbonyl, thioether, N-Heterocyclic carbene ("NHC") , substituted NHC, mesoionic carbene, or a cyclic alkyl amino carbene (CAAC) .
  4. The catalysts according to claim 3, wherein ligand L1 represent a phosphine ligand having the formula P (Q13 with Q1 are identical or different and are alkyl, preferably C1-C10 alkyl, more preferably C1-C5-alkyl, cycloalkyl-, preferably C3-C20 cycloalkyl, more preferably C3-C8 cycloalkyl, preferably cyclopentyl, cyclohexyl, and neopentyl, aryl, preferably C6-C24 aryl, more preferably phenyl or toluyl, C1-C10 alkyl-phosphabicyclononane, C3-C20 cycloalkyl phospha-bicyclononane, a sulfonated phosphine ligand of formula P (Q23 wherein Q2 represents a mono-or poly-sulfonated Q1-ligand; C6-C24 aryl or C1-C10 -alkyl-phosphinite ligand, a C6-C24 aryl or C1-C10 alkyl phosphonite ligand, a C6-C24 aryl or C1-C10 alkyl phosphite-ligand, a C6-C24 aryl C1-C10 alkyl arsine ligand, a C6-C24 aryl or C1-C10 alkyl amine ligands, a pyridine ligand, a C6-C24 aryl or C1-C10 alkyl-sulfoxide ligand, a C6-C24-aryl or C1-C10 alkyl ether ligand or a C6-C24 aryl or C1-C10 alkyl amide ligands which all can be multiply substituted, for example by a phenyl group, wherein these substituents are in turn optionally substituted by one or more halogen, C1-C5 alkyl or C1-C5 alkoxy radicals.
  5. The catalysts according to claim 3, wherein ligand L1 represent a N-Heterocyclic carbene (NHC) having a general structure of the formulas (IIa) or (IIb) , 
    Figure PCTCN2016080636-appb-100002
    wherein
    R6 -R13, R10’ , R11’ are identical or different and are hydrogen, straight or branched C1-C30 alkyl, C3-C20 cycloalkyl, C2-C20 alkenyl, C2-C20 alkynyl, C6-C24 aryl, C1-C20 carboxylate, C1-C20 alkoxy, C2-C20 alkenyloxy, C2-C20, alkynyloxy, C6-C20 aryloxy, C2-C20 alkoxycarbonyl, C1-C20 alkylthio, C6-C20 arylthio, C1-C20 alkylsulfonyl, C1-C20 alkyl sulfonate, C6-C20 aryl sulfonate or C1-C20 alkyl sulfinyl, and one or more of the radicals R6 -R13, R10’ , R11’ can independently of one another be substituted by one or more substituents, preferably straight or branched C1-C10 alkyl, C3-C8 cycloalkyl, C1-C10 alkoxy or C6-C24 aryl, where these aforementioned substituents may in turn be substituted by one or more radicals, preferably selected from the group comprising halogen, especially chlorine or bromine, C1-C5 alkyl, C1-C5alkoxy and phenyl.
  6. The catalysts according to claim 3, wherein one of the two ligands L1 represents a "cyclic alkyl amino carbenes" (CAACs) having a general structure of the Formula (V) :
    Figure PCTCN2016080636-appb-100003
    Wherein the ring E is a 4-, 5-, 6-, or 7-membered ring, and T is a linking group comprising from one to four linked vertex atoms selected from the group comprising C, O, N, B, Al, P, S and Si with available valences optionally occupied by hydrogen, oxo or R-substituents, wherein R is independently selected from the group comprising C1 to C12 hydrocarbyl groups, substituted C1 to C12 hydrocarbyl groups, and halides, and each R14 is independently a hydrocarbyl group or substituted hydrocarbyl group having 1 to 40 carbon atoms, preferably methyl, ethyl, propyl,  butyl (including isobutyl and n-butyl) , pentyl, cyclopentyl, hexyl, cyclohexyl, octyl, cyclooctyl, nonyl, decyl, cyclodecyl, dodecyl, cyclododecyl, mesityl, adamantyl, phenyl, benzyl, toluyl, chlorophenyl, phenol, or substituted phenol.
  7. The catalysts according to claim 1, wherein X1 and X2 are independently selected from hydrogen, halogen, nitrate, pseudohalogen, straight-chain or branched C1-C30-alkyl, C6-C24 aryl, C1-C20 alkylthiol, C6-C24 arylthiol, C1-C20 alkoxy, C6-C24 aryloxy, C2-C24 alkoxycarbonyl, C6-C20 aryloxycarbonyl, C2-C20 acyl, C2-C20 acyloxy, C3-C20 alkyl diketonate, C6-C24 aryl diketonate, C1-C20 carboxylate, C1-C20 alkylsulfonato, C5-C20 arylsulfonato, C1-C20 alkylsulfanyl, C5-C20 arylsulfanyl, C1-C20 alkylsulfinyl, or C5-C20 arylsulfinyl, any of which, with the exception of hydrogen and halide, are optionally further substituted with one or more groups selected from halide, C1-C6 alkyl, C1-C6 alkoxy, and C5-C20 aryl.
  8. The catalysts according to claim 1, wherein X1 and X2 may be joined to form a dianionic group and may form single ring of up to 30 non-hydrogen atoms or a multinuclear ring system of up to 30 non-hydrogen atoms.
  9. The catalysts according to claim 1, wherein L1 and X1 or /and X2 may be joined to form a multidentate monoanionic/dianionic group and may form a single /double ring of up to 30 non-hydrogen atoms or a multinuclear ring system of up to 30 non-hydrogen atoms.
  10. The catalysts according to claim 7, wherein X1 and X2 are identical or different and denote halogen, in particular, fluorine, chlorine, bromine or iodine, nitrate, benzoate, C1-C5 carboxylate, C1-C5 alkyl, phenoxy, C1-C5 alkoxy, C1-C5 alkylthiol, C6-C24 arylthiol, C6-C24 aryl or C1-C5 alkyl sulfonate.
  11. The catalysts according to claim 10, wherein X1 and X2 are identical and are chlorine, nitrate, CF3COO, CH3COO, CFH2COO, (CH33CO, (CF32 (CH3) CO, (CF3) (CH32CO, PhO (phenoxy) , C6F5O (pentafluorophenoxy) , MeO (methoxy) , EtO (ethoxy) , tosylate (p-CH3-C6H4-SO3) , mesylate (2, 4, 6-trimethylphenyl) or CF3SO3 (trifluoromethanesulfonate) .
  12. The catalysts according to claim 1, wherein R1-R5 are identical or different and represents hydrogen, halogen, hydroxyl, aldehyde, keto, thiol, CF3, nitro, nitroso, cyano, thiocyano, isocyanates, carbodiimide, carbamate, thiocarbamate, dithiocarbamate, amino, amido, imino, silyl, sulphonate (-SO3 -) , -OSO3 -, -PO3 -or OPO3 -, acyl, acyloxy or represents alkyl, cycloalkyl, alkenyl, cycloalkenyl, substituted alkenyl, heteroalkenyl, heteroatom-containing alkynyl, alkenylene, alkynyl, substituted alkynyl, aryl, substituted aryl, heteroaryl, carboxylate, alkoxy, alkenyloxy, alkynyloxy, aryloxy, alkaryl, aralkyl, alkaryloxy, aralkyloxy, alkoxycarbonyl, alkylamino-, alkylthio-, arylthio, alkylsulfonyl, alkylsulfinyl, dialkylamino, alkylsilyl or alkoxysilyl, where these radicals may each optionally all be substituted by one or more aforementioned groups defined for R1-R5, or alternatively in each case two directly adjacent radicals from the group of R1-R5, including the ring carbon atoms to which they are attached by a cyclic bridging group, generating one or more cyclic structures, including aromatic structures.
  13. An organometallic catalyst, wherein the catalysts are of the formula (VI)
    Figure PCTCN2016080636-appb-100004
    wherein,
    M   is a Group 8 transition metal as defined in claim 2;
    X1 and X2  are identical or different and represent two ligands, preferably anionic ligands as defined in claim 7-11;
    R1-R5  are identical or different and selected from hydrocarbyl, substituted hydrocarbyl, heteroatom containing hydrocarbyl, substituted heteroatom-containing hydrocarbyl;
    wherein alternatively in each case two directly adjacent radicals from the group of R1-R5, including the ring carbon atoms to which they are attached by a cyclic bridging group, generating one or more cyclic structures, including aromatic structures as defined in claim 12;  L1 and L2 are identical or different and represent two ligands, preferably neutral electron donor ligands as defined in claim 3-6;
    L1 and X1 or /and X2 may be joined to form a multidentate monoanionic/dianionic group and may form a single /double ring of up to 30 non-hydrogen atoms or a multinuclear ring system of up to 30 non-hydrogen atoms;
    A, R’ , R” are as defined in claim 1-12;
    A and L2 may be joined to form a ditopic ligand and may form single ring of up to 30 non-hydrogen atoms or a multinuclear ring system of up to 30 non-hydrogen atoms;
    Wherein the ring G is a 4-, 5-, 6-, 7-, 8-, 9-or 10-membered ring, and Z is a linking group comprising from one to seven linked vertex atoms selected from the group comprising C, O, N, P, S and Si with available valences optionally occupied by hydrogen, halogen, hydroxyl, aldehyde, keto, thiol, CF3, nitro, nitroso, cyano, thiocyano, isocyanates, carbodiimide, carbamate, thiocarbamate, dithiocarbamate, amino, amido, imino, ammonium, silyl, sulphonate (-SO3 -) , -OSO3 -, -PO3 -or -OPO3 -, acyl, acyloxy or represents alkyl, cycloalkyl, alkenyl, cycloalkenyl, substituted alkenyl, heteroalkenyl, heteroatom-containing alkynyl, alkenylene, alkynyl, substituted alkynyl, aryl, substituted aryl, heteroaryl, carboxylate, alkoxy, alkenyloxy, alkynyloxy, aryloxy, alkaryl, aralkyl, alkaryloxy, aralkyloxy, alkoxycarbonyl, alkylamino-, alkylthio-, arylthio, alkylsulfonyl, alkylsulfinyl, dialkylamino, alkylammonium, alkylsilyl or alkoxysilyl, where these vertex atoms may each optionally all be substituted by one or more aforementioned groups defined for R’ , R” ; or alternatively in each case two directly adjacent vertex atoms from Z generate one or more cyclic structures, including aromatic structures.
  14. A method for synthesizing catalysts according to any claim of 1-13 comprising contacting an organometallic compound of the formula (X1X2M=CRbRcL1L2) with a vinylic chelating compound, optionally comprising a second chelating moiety,
    Wherein for the precursor compound,
    M is a Group 8 transition metal;
    X1 and X2  are identical or different and represent any (anionic) ligands;
    L1 and L2  are identical or different and represent neutral electron donor ligands;
    =CRbRc represent an alkylidene, benzylidene, allenylidene, vinylidene,
    indenylidene;
    wherein Rband Rc are identical or different and selected from hydrocarbyl, substituted hydrocarbyl, heteroatom-containing hydrocarbyl, substituted heteroatom-containing hydrocarbyl;
    wherein alternatively the radicals from the group of Rb-Rc, including the carbon atom to which they are attached, generating one or more cyclic structures, including aromatic structures wherein alternatively Rc is optionally bridged with a different ligand of the metal carbene complex catalyst.
  15. The method according to claim 14, wherein M is Ru or Os.
  16. The method according to claim 14, wherein L1 and L2are defined as in claims 3-6.
  17. The method according to claim 14, wherein X1 and X2 are defined as in claims 7-11.
  18. The method according to claim 14, wherein L1 and X1 or /and X2 may be joined to form a multidentate monoanionic/dianionic group and may form a single /double ring of up to 30 non-hydrogen atoms or a multinuclear ring system of up to 30 non-hydrogen atoms.
  19. The method according to claim 14, wherein the vinylic compound having the general formula (VII)
    Figure PCTCN2016080636-appb-100005
    wherein
    R1-R5, A and R’ have the same meanings as defined in the general structure (I) .
  20. A supported catalyst comprising the catalysts according to claims 1 to 13 and a carrier.
  21. The supported catalyst according to claim 20 wherein the carrier is selected from the group consisting of porous inorganic solids, such as amorphous or paracrystalline materials, crystalline molecular sieves and modified layered materials including one or more inorganic oxides and organic polymers as well as carbon, carbon nanotubes, graphene, Metal organic frameworks and cross-linked, reticular polymeric resins, such as functionalized cross-linked polystyrenes, e. g. , chloromethyl-functionalized cross-linked polystyrenes; the catalysts can bedeposited onto the support by, impregnation, ion-exchange, deposition-precipitation, 
    Figure PCTCN2016080636-appb-100006
    Π interactions and vapor deposition; alternatively, the catalysts are chemically bound to the support via one or more covalent chemical bonds.
  22. The method according to claim 14, comprising:
    contacting X1X2M=CRbRcL1L2 and the vinylic chelating compound (optionally comprising a second chelating moiety) in a molar ratio between 1 to 15, preferable between 1 to 10, more preferable between 1 to 5, most preferable between 1 to 3 are added to a solvent followed by addition of phosphine scavenger in a molar ration (Ru/scavenger) between 1 to 20, preferable between 1 to 15, more preferable between 1 to 10, most preferable between 1 to 5. After heating the mixture between 20℃ and 200℃, more preferable between 25℃ and 150℃, most preferable between 30℃ and 80℃ for a time less then 10 hours, preferable less then 8 hours, more preferable less then 5 hours, most preferable less then 3 hours the mixture is  filtered and solvent is removed, after drying a pure catalyst is obtained.
  23. The method according to claims 22 comprising:
    contacting X1X2M=CRbRcL1L2 and the vinylic chelating compound (optionally comprising a second chelating moiety) in a molar ratio between 1 to 15 are added to a solvent followed by addition of phosphine scavenger in a molar ratio (Ru/scavenger) between 1 to 20; heating the mixture between 20℃ and 200℃ for a time less then 10 hours, the mixture is filtered and solvent is removed. After drying a pure catalyst is obtained; modified benzylidene complex is 1st generation compound or 2nd generation compound produced by mixing the 1st generation compound and the preferred NHC or CAAC ligand in a suitable solvent for a time sufficient to effectuate the ligand exchange.
  24. An use of the catalysts according to any of claims 1 to 13 in olefin and alkyne metathesis reactions, especially for ring-closing metathesis (RCM) , cross metathesis (CM) , ring-opening metathesis (ROM) , ring-opening metathesis polymerization (ROMP) , cyclic diene metathesis (ADMET) , self-metathesis, reaction of alkenes and alkynes, polymerization of alkynes, depolymerization of polyalkenes and the olefination of carbonyls in neat conditions, in the presence of protic solvents, polar aprotic or non-polar solvents.
  25. A process to produce alpha-olefin comprising contacting an unsaturated fatty acid with an alkene and the catalysts according to any one of claim 1 to 13 and 20 to 21, preferably wherein the alpha olefin produced has at least one more carbon atom than the alkene.
  26. A process to produce alpha-olefin comprising contacting an unsaturated fatty acid ester and or unsaturated fatty acid alkyl ester with an alkene and the catalysts according to any one of claim 1 to 13 and 20 to 21, preferably wherein the alpha olefin produced has at least one more carbon atom than the alkene.
  27. An activation method comprising:
    bringing the catalysts according to any one of claim 1 to 13 and 20 to 21 into contact with an activator under conditions such that said activator is able to at least partly cleave a bond between the metal and the monotopic/ditopic ligand of the catalysts.
  28. The method of claim 27, wherein the activator is selected from
    Figure PCTCN2016080636-appb-100007
    acids, preferable the nature of the
    Figure PCTCN2016080636-appb-100008
    acid can be liquid, solid, inorganic or organic, more preferable a liquid, most preferable selected HCl, HBr, H2SO4, CH3COOH, and sulphonic acid resins.
  29. The method of claim 27, wherein the activator is a Lewis acid which can be selected from the group consisting of:
    -Ma (I) halides,
    -compounds represented by the formula MaX2-yRay (0≤y≤2) ;
    wherein
    Ra is equal to R1-R5 defined as herein-above,
    X is atom of the halogen group and identical or different in case more then one halogen atom is present, and
    Ma is an atom having an atomic mass from 27 to 124 and being selected from the group consisting of groups IB, IIB, IIIA, IVB, IVA and VA of the Periodic Table of elements under conditions such that at least partial cleavage of a bond between the metal and the ditopic or multitopic ligand of the catalysts occurs;
    -compounds represented by the formula MaX3-yRay (0≤y≤3) wherein Ra, X and Ma defined as herein-above.
    -compounds represented by the formula MaX4-yRa y (0≤y≤4) wherein Ra, X and Ma defined as herein-above.
    -compounds represented by the formula MaX5-yRa y (0≤y≤5) wherein Ra, X and Ma defined as herein-above.
    -compounds represented by the formula MaX6-yRa y (0≤y≤6) wherein Ra, X and Ma defined as herein-above.
  30. An activation method comprising: bringing the catalysts according to any one of claim 1 to 13 and 20 to 21 into contact with an acid wherein the acid is an acid generated in situ from bringing into contact a molecule of the formula RYH with a Lewis acid which at least contains one halogen atom or from a photo-acid generator under conditions such that acid is able to at least partly cleave a bond between the metal and said monotopic/ditopic ligand; wherein Y is selected from the group consisting of oxygen, sulphur and selenium, and R as defined hereinabove.
  31. The method of claim 27-30, wherein the conditions include:
    -amolar ratio between the acid and the catalysts being above 0.2 and below 2000;
    -a contact time from 2 seconds to 150 hours;
    -a contact temperature from about -100℃ to about +100℃.
  32. A process to produce polymers or thermoset networks by combining a mixture A containing a cyclic olefin or a mixture of cyclic olefins and a catalyst of the formula (I or VI) and a mixture B containing a cyclic olefin or a mixture of cyclic olefins and an activator as defined in claims 27-30 preferable to be applied in casting processes, reaction-injection molding (RIM) processes, resin transfer molding (RTM) processes, vacuum infusion and vacuum forming processes and reactive rotational molding (RRM) processes. 
PCT/CN2016/080636 2016-04-29 2016-04-29 Group 8 transition metal catalysts and method for making same and process for use of same in olefin disproportionation reactions WO2017185324A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/080636 WO2017185324A1 (en) 2016-04-29 2016-04-29 Group 8 transition metal catalysts and method for making same and process for use of same in olefin disproportionation reactions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/080636 WO2017185324A1 (en) 2016-04-29 2016-04-29 Group 8 transition metal catalysts and method for making same and process for use of same in olefin disproportionation reactions

Publications (1)

Publication Number Publication Date
WO2017185324A1 true WO2017185324A1 (en) 2017-11-02

Family

ID=60160551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/080636 WO2017185324A1 (en) 2016-04-29 2016-04-29 Group 8 transition metal catalysts and method for making same and process for use of same in olefin disproportionation reactions

Country Status (1)

Country Link
WO (1) WO2017185324A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019202509A1 (en) * 2018-04-16 2019-10-24 Apeiron Synthesis S.A. Novel ruthenium complexes and their use in olefin metathesis reactions
WO2020109217A3 (en) * 2018-11-29 2020-07-09 Umicore Ag & Co. Kg Ruthenium and osmium cyclic alkyl amino carbene complexes
CN112723986A (en) * 2020-12-24 2021-04-30 衢州康鹏化学有限公司 Preparation method of p-chloromethyl styrene
US20210237045A1 (en) * 2018-07-12 2021-08-05 Apeiron Synthesis S.A. Use of n-chelating ruthenium complexes in the metathesis reaction
WO2022038121A1 (en) 2020-08-17 2022-02-24 Apeiron Synthesis S.A. Novel ruthenium complexes, methods of their preparation and application thereof in olefin cross metathesis
WO2023156802A1 (en) * 2022-02-18 2023-08-24 Pannon Egyetem Catalyst system and process for the preparation of alpha olefins and alpha olefin-containing products from long-chain paraffins
US11753501B2 (en) 2021-01-12 2023-09-12 The Board Of Trustees Of The University Of Illinois Frontally polymerized polymeric body and method of producing a polymeric body having spatially varying properties
US11999754B2 (en) 2018-04-16 2024-06-04 Apeiron Synthesis S.A. Ruthenium complexes and their use in olefin metathesis reactions

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1757613A1 (en) * 2005-08-22 2007-02-28 Viacatt N.V. Multicoordinated metal complexes for use in metathesis reactions
CN101684075A (en) * 2008-09-27 2010-03-31 詹正云 Metal complex ligand, metal complex, preparation method and application thereof, high molecular polymer, preparation method and application thereof
EP2280033A1 (en) * 2008-05-22 2011-02-02 Limited Liability Company "United Research and Development Centre" Dicyclopentadiene metathesis polymerisation catalyst

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1757613A1 (en) * 2005-08-22 2007-02-28 Viacatt N.V. Multicoordinated metal complexes for use in metathesis reactions
EP2280033A1 (en) * 2008-05-22 2011-02-02 Limited Liability Company "United Research and Development Centre" Dicyclopentadiene metathesis polymerisation catalyst
CN101684075A (en) * 2008-09-27 2010-03-31 詹正云 Metal complex ligand, metal complex, preparation method and application thereof, high molecular polymer, preparation method and application thereof

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
MARX, VANESSA M. ET AL.: "Cyclic Alkyl Amino Carbene (CAAC) Ruthenium Complexes as Remarkably Active Catalysts for Ethenolysis", ANGEW. CHEM. INT. ED., vol. 54, 17 December 2014 (2014-12-17), XP055302574 *
PUMP, EVA ET AL.: "A theoretical view on the thermodynamic cis-trans equilibrium of dihalo ruthenium olefin metathesis (pre-)catalysts", MONATSH. CHEM., vol. 146, 24 February 2015 (2015-02-24), XP055435576 *
SHCHEGLOVA, N.M. ET AL.: "Latent ruthenium carbine complex with six-membered N- and S-chelate rings", RUSSIAN CHEMICAL BULLETIN, INTERNATIONAL EDITION, vol. 65, 29 February 2016 (2016-02-29) *
SHCHEGLOVA, N.M. ET AL.: "Latent ruthenium carbine complex with six-membered N- and S-chelate rings", RUSSIAN CHEMICAL BULLETIN, INTERNATIONAL EDITION, vol. 65, no. 2, 29 February 2016 (2016-02-29) *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019202509A1 (en) * 2018-04-16 2019-10-24 Apeiron Synthesis S.A. Novel ruthenium complexes and their use in olefin metathesis reactions
JP2021522207A (en) * 2018-04-16 2021-08-30 アペイロン シンセシス エス アー Novel ruthenium complexes and their use in olefin metathesis reactions
US11999754B2 (en) 2018-04-16 2024-06-04 Apeiron Synthesis S.A. Ruthenium complexes and their use in olefin metathesis reactions
US20210237045A1 (en) * 2018-07-12 2021-08-05 Apeiron Synthesis S.A. Use of n-chelating ruthenium complexes in the metathesis reaction
JP2021530432A (en) * 2018-07-12 2021-11-11 アペイロン シンセシス エス アー Use of N-chelated ruthenium complex in metathesis reaction
WO2020109217A3 (en) * 2018-11-29 2020-07-09 Umicore Ag & Co. Kg Ruthenium and osmium cyclic alkyl amino carbene complexes
WO2022038121A1 (en) 2020-08-17 2022-02-24 Apeiron Synthesis S.A. Novel ruthenium complexes, methods of their preparation and application thereof in olefin cross metathesis
CN112723986A (en) * 2020-12-24 2021-04-30 衢州康鹏化学有限公司 Preparation method of p-chloromethyl styrene
US11753501B2 (en) 2021-01-12 2023-09-12 The Board Of Trustees Of The University Of Illinois Frontally polymerized polymeric body and method of producing a polymeric body having spatially varying properties
WO2023156802A1 (en) * 2022-02-18 2023-08-24 Pannon Egyetem Catalyst system and process for the preparation of alpha olefins and alpha olefin-containing products from long-chain paraffins

Similar Documents

Publication Publication Date Title
EP3164409B1 (en) Group 8 transition metal catalysts and method for making same and process for use of same in metathesis reaction
WO2017185324A1 (en) Group 8 transition metal catalysts and method for making same and process for use of same in olefin disproportionation reactions
US10159966B2 (en) Catalyst complexes with carbene ligand and method for making same and use in metathesis reaction
KR101291468B1 (en) Transition metal carbene complexes containing a cationic substituent as catalysts of olefin metathesis reactions
EP1056538B1 (en) Acid activation of ruthenium metathesis catalysts and living romp metathesis polymerization in water
US6313332B1 (en) Synthesis of ruthenium or osmium metathesis catalysts
US5710298A (en) Method of preparing ruthenium and osmium carbene complexes
US20130296511A1 (en) Latent, high-activity olefin metathesis catalysts containing an n-heterocyclic carbene ligand
WO2012097379A2 (en) Z-selective olefin metathesis catalysts and their synthetic procedure
AU2012206966A1 (en) Z-selective olefin metathesis catalysts and their synthetic procedure
US8039566B2 (en) Olefin metathesis initiators bearing thiazol-2-ylidene ligands
Byun et al. Fluoro-imidazopyridinylidene Ruthenium Catalysts for Cross Metathesis with Ethylene
CN109364998B (en) Catalyst for olefin metathesis reaction and preparation and application methods thereof
Endo et al. Cationic ruthenium alkylidene catalysts bearing phosphine ligands
CN1896085B (en) Synthesis of recyclable chiral metathesis catalysts
Thomas The design, synthesis, and application of ruthenium metathesis catalysts for the preparation of small molecules and polymers
Takahashi et al. Syntheses and characterization of diruthenium (III) alkyl-alkyl and alkyl-alkynyl complexes with two bridging thiolate ligands [Cp∗ RuR (μ-SPri) 2RuCp∗ R′](Cp∗= ν5-C5Me5). X-ray structure of [Cp∗ Ru (CH2CH2Ph)(μ-SPri) 2RuCp∗(CH2CH2Ph)]
Courchay Metathesis and isomerization activity of ruthenium carbene catalysts in acyclic diene metathesis polymerization
Krause Development of new Ruthenium Catalysts for homogeneous and heterogeneous Olefin-Metathesis
WO2014169055A9 (en) Cross metathesis of poly-branched poly-olefins

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16899836

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16899836

Country of ref document: EP

Kind code of ref document: A1