WO2017183867A1 - Forged-fingerprint distinguishing apparatus and method capable of distinguishing forged fingerprint on basis of slight change in brightness of fingerprint image, caused by living body's heartbeat - Google Patents

Forged-fingerprint distinguishing apparatus and method capable of distinguishing forged fingerprint on basis of slight change in brightness of fingerprint image, caused by living body's heartbeat Download PDF

Info

Publication number
WO2017183867A1
WO2017183867A1 PCT/KR2017/004093 KR2017004093W WO2017183867A1 WO 2017183867 A1 WO2017183867 A1 WO 2017183867A1 KR 2017004093 W KR2017004093 W KR 2017004093W WO 2017183867 A1 WO2017183867 A1 WO 2017183867A1
Authority
WO
WIPO (PCT)
Prior art keywords
fingerprint
difference
images
image
cumulative histogram
Prior art date
Application number
PCT/KR2017/004093
Other languages
French (fr)
Korean (ko)
Inventor
백영현
신요식
Original Assignee
주식회사 유니온커뮤니티
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 유니온커뮤니티 filed Critical 주식회사 유니온커뮤니티
Publication of WO2017183867A1 publication Critical patent/WO2017183867A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/1382Detecting the live character of the finger, i.e. distinguishing from a fake or cadaver finger
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/22Matching criteria, e.g. proximity measures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/44Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
    • G06V10/443Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components by matching or filtering
    • G06V10/449Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1318Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing

Definitions

  • the present invention relates to a method for determining a forgery fingerprint in the optical fingerprint image acquisition method, and forgery that judges a fingerprint without such a change as a forgery fingerprint based on a minute change in a biometric fingerprint caused by a heartbeat of a living body.
  • a fingerprint identification device and a method thereof are provided.
  • Normal personal authentication is mainly used in areas where security is important, such as access control, e-commerce, financial transactions, security of personal computers (PCs), and office payment systems. The most important thing is to effectively distinguish fingerprints (hereinafter referred to as 'false fingerprints').
  • An object of the present invention is to provide a counterfeit fingerprint discrimination apparatus and method for determining a fingerprint without such a change as a fake fingerprint based on a minute change in a biometric fingerprint generated according to the heartbeat of a living body.
  • a method for determining a fake fingerprint including: obtaining first and second fingerprint images within a unit time from a fingerprint in contact with an optical fingerprint sensor unit; Calculating a difference in brightness between pixels of the same coordinates of the first and second fingerprint images, and obtaining a cumulative histogram of the number of pixels having the same difference; And determining the fingerprint as a biofingerprint when there are at least two peak points in the cumulative histogram.
  • the step of obtaining a cumulative histogram may include extracting an object region having a fingerprint region from the first and second fingerprint images; And extracting only LL frequency components by performing discrete wavelet transformation on the object region to obtain a first LL fingerprint image and a second LL fingerprint image.
  • the difference in brightness between the pixels is calculated based on the first and second LL fingerprint images.
  • a method of determining a fake fingerprint includes: obtaining an average brightness value of each of the first and second fingerprint images; And performing first-order filtering to determine the fingerprint as a fake fingerprint when the difference between the average brightness values is smaller than the first reference value, so that there is no change in the brightness value without using the above method. Fingerprints can be determined. Naturally, the step of obtaining the cumulative histogram is not performed on the first filtered fingerprint.
  • Counterfeit fingerprint discrimination apparatus includes a fingerprint sensor unit and the color distribution analysis unit.
  • the fingerprint sensor unit includes a photorefractor to obtain first and second fingerprint images within a unit time from a fingerprint optically contacting the fingerprint contact surface of the photorefractor.
  • the color distribution analyzer calculates a difference of brightness values between pixels of the same coordinates of the first and second fingerprint images, and calculates the number of pixels having the same difference as a cumulative histogram. Subsequently, the color distribution analyzer determines the fingerprint as a bioprint when the cumulative histogram has at least two peak points, and determines that the fingerprint is a fake fingerprint when the peak point is less than two.
  • the counterfeit fingerprint discrimination apparatus may extract an object region having a fingerprint region from the first and second fingerprint images, and perform discrete wavelet transform on the object region to extract only LL frequency components.
  • the apparatus may further include a wavelet converter configured to obtain a first LL fingerprint image and a second LL fingerprint image.
  • the color distribution analyzer calculates a difference in brightness values between the pixels based on the first and second LL fingerprint images.
  • the fake fingerprint recognition device may further include a color information extraction unit for the primary filtering.
  • the color information extracting unit obtains an average brightness value of each of the first and second fingerprint images, and performs the first filtering to determine the fingerprint as a fake fingerprint when the difference between the average brightness values is smaller than the first reference value.
  • the color distribution analyzer does not obtain the cumulative histogram of the first filtered fingerprint.
  • the light source of the fingerprint sensor unit used for acquiring the first and second fingerprint images may use a visible light region of 500 to 700 nm band or an infrared region of 800 to 900 nm band.
  • the forgery fingerprint discrimination apparatus may generate a fingerprint image and determine whether the fingerprint is a bio fingerprint or a fake fingerprint by using a change in the average brightness value and the brightness value per pixel generated within the unit time of the images.
  • FIG. 1 is a block diagram of a fake fingerprint discrimination apparatus of the present invention
  • FIG. 2 is a diagram showing an example of a color fingerprint image obtained from a bio fingerprint and a fake fingerprint
  • FIG. 3 is a block diagram of a neural network learning system for discriminating forged fingerprints according to the present invention.
  • FIG. 4 is a diagram illustrating an example of performing wavelet transformation on a fingerprint image
  • FIG. 5 is a diagram showing an example of a cumulative histogram for a bio fingerprint.
  • FIG. 6 is a diagram showing an example of a cumulative histogram for a fake fingerprint.
  • the counterfeit fingerprint discrimination apparatus 100 of the present invention includes a fingerprint sensor unit 110, a biopsy unit 130, a feature point extractor 150, and a fingerprint authentication unit 170.
  • the fingerprint sensor unit 110 includes an optical refractor 111, a light source 113, a lens 115, and an image sensor 117, and the fingerprint contact surface 111a of the optical refractor 111 by an optical fingerprint authentication method. Obtain a fingerprint image of the fingerprint in contact with). Any method of generating an optical fingerprint image may be applied, including a scattering method or an absorption method known as a method of optically obtaining a fingerprint.
  • the photorefractor 111 is usually a triangular or trapezoidal prism in the shape of its cross-section, but can replace a prism of a broad concept of the optical refractor.
  • the optical refractor 111 has a fingerprint contact surface 111a through which the fingerprint is in contact, an emission surface 111b through which light (fingerprint image) reflected or scattered from the fingerprint contact surface 111a is emitted, and the light source 113 therein.
  • the incident surface 111c on which the emitted light is incident is provided.
  • the light source 113 preferably uses a visible light region of 500 to 700 nm band or an infrared region of 800 to 900 nm band.
  • the basic fingerprint image acquisition process of the fingerprint sensor 110 is as follows.
  • the light irradiated from the light source 113 passes through the incident surface 111c, the fingerprint contact surface 111a, and the exit surface 111b of the optical refractor 111. It is imaged at 115 and is input to the image sensor 117.
  • the scattering fingerprint sensor unit 110 as shown in FIG. 1, the light emitted from the light source 113 is incident on the fingerprint contact surface 111a at an angle smaller than a critical angle for right angle or total reflection.
  • the light emitted from the light source 113 passes or scatters along the valleys and ridges of the fingerprint in contact with the fingerprint contact surface 111a to form a color fingerprint image.
  • the image sensor 117 outputs a digital fingerprint image signal, which is an electrical signal corresponding to the incident fingerprint image, to obtain a color image of the fingerprint in contact with the fingerprint contact surface 111a. Therefore, the fingerprint image generated by the fingerprint sensor 110 becomes a color fingerprint image.
  • the biopsy unit 130 receives at least two first and second fingerprint images from the fingerprint sensor unit 110 and then prints the biometric fingerprint on the fingerprint contact surface 111a based on the color change of the fingerprint image. Determines whether fingerprints or fake fingerprints. At this time, the color change is to extract a small change in brightness according to the heartbeat of the living body.
  • the blood flow in the finger or fingerprint changes, and this change in blood flow is represented by the change in brightness of the fingerprint image.
  • the blood fills the finger finely, and in the diastolic phase, the blood escapes and becomes slightly brighter.
  • Forgery fingerprints of paper / rubber / film material have almost no such brightness change, and such brightness change is very small even in silicon having a color information similar to a living body.
  • the present invention is to determine whether or not the forgery fingerprint.
  • the biological determination unit 130 performs this process using an image processing technique such as a wavelet, and for this purpose, the object extractor 201, the color information extractor 203, the wavelet transform unit 205, and the color distribution are performed.
  • the analysis unit 207 is included.
  • the biodetermination unit 130 may perform a two-step forgery fingerprint determination process of primary filtering and secondary filtering. These operations will be described again below.
  • the feature point extraction unit 150 and the fingerprint authentication unit 170 is not an essential configuration of the present invention. However, most of the devices for acquiring the fingerprint image perform a fingerprint registration or fingerprint authentication process, and accordingly, the feature point extracting unit 150 and the fingerprint authentication unit 170 are provided.
  • the feature extraction unit 150 extracts the feature point from the original fingerprint image acquired by the fingerprint sensor unit 110, and the fingerprint authentication unit 170 extracts the feature point.
  • the extraction unit 150 performs the registration process of the corresponding fingerprint by using the extracted feature points or determines whether or not it matches the pre-registered fingerprint.
  • Feature point extraction or fingerprint registration / authentication can use a conventionally known method.
  • the fingerprint sensor 110 obtains the first and second fingerprint images from the fingerprint in contact with the fingerprint contact surface 111a. Two first fingerprint images and a second fingerprint image are sufficient for the image processing of the present invention.
  • the fingerprint sensor 110 may acquire a fingerprint image of 20 frames or more per second, but selects a fingerprint image from which all of the fingerprints are obtained, and uses the fingerprint image as the first and second fingerprint images. Accordingly, the first and second fingerprint images become fingerprint images acquired from the same fingerprint within a predetermined unit time.
  • First filtering is performed using the two fingerprint images acquired in step S301.
  • a fake fingerprint is determined by determining that the difference between the average brightness values of the fingerprint regions (or the object regions) of the two fingerprint images is equal to or less than the first reference value.
  • the first reference value may be set to a very low value and may be determined by an experimental value.
  • the primary filtering process is not an essential process of the present invention.
  • the object extractor 201 first extracts an object region from each fingerprint image.
  • the object area refers to an area in which the background is excluded, that is, an area corresponding to the fingerprint in the fingerprint image.
  • the image processing method for extracting the object region a conventionally known method may be used as it is.
  • the first object image is extracted from the first fingerprint image
  • the second object image is extracted from the second fingerprint image.
  • the color information extracting unit 203 calculates average brightness values of the first and second object images.
  • the difference in the average brightness value obtained in the next step S305 is relatively small for the person having a small fingerprint size (in the case of non-inverted image, it becomes large). Significant error may occur in a simple comparison with the first reference value. Therefore, the color information extractor 203 extracts only average brightness values of the first and second object images, that is, the fingerprint region, obtained by the object extractor 201.
  • the color information extracting unit 203 obtains a difference between average brightness values of the first and second object images, and compares the difference with the first reference value.
  • a biometric fingerprint there is a slight change in the color (brightness) of the fingerprint due to blood flow in the fingerprint, which varies in the systolic and diastolic phases of the heartbeat, and the change appears as a difference in the average brightness value.
  • the difference in average brightness is almost zero.
  • the color information extracting unit 203 determines that the difference in the average brightness value is smaller than the first reference value as a fake fingerprint.
  • a simple comparison such as first order filtering
  • a difference in average brightness occurs in a fake fingerprint of a silicon or gelatin material, and it is difficult to distinguish the difference from the average brightness value in a biometric fingerprint. Therefore, second order filtering is performed.
  • the wavelet transform unit 205 performs discrete wavelet transform on each of the first and second object images extracted by the object extractor 201, and as a result, the first LL including only the components of the low frequency band LL.
  • the fingerprint image and the second LL fingerprint image are extracted.
  • wavelet transform is performed by applying a pair of filters (high frequency filter and low frequency filter) to an image and separating it into a low frequency band and a high frequency band. Each band is subsampled with an element of 2, so it contains n / 2 samples. Applying a lowpass filter and a highpass filter to each row of the two-dimensional image and downsampling to two produces four sub-images LL, LH, HL, and HH. Recombining these four subband images again produces the original original image.
  • FIG. 4 is a diagram illustrating an example of performing one-step wavelet transformation on a first object image in horizontal and vertical directions.
  • Figure 4 (a) is the LL frequency band image is a subsampled to 2 by applying a low pass filter in the horizontal and vertical direction to the original image, (b) is a LH frequency band image is applied to the high pass filter in the horizontal direction It includes the error component of the horizontal frequency. (c) is the HL frequency band image, which is a high pass filter applied in the vertical direction, and includes an error component of the frequency in the vertical direction, and (d) is a HH frequency band image, which is a high pass filter applied in the horizontal and vertical directions.
  • high frequency components may be removed from a fingerprint image, and only low frequency (LL band) regions may be extracted.
  • LL band low frequency
  • most of the high frequency region is close to noise, and as in (a), most of the fingerprint information is included in the low frequency region, so the characteristics of the fingerprint can be read as it is in the low frequency region LL alone.
  • the size of the fingerprint image is down sampled (eg, 320 ⁇ 240 size ⁇ 160 ⁇ 120 size) to 1/4 to speed up subsequent image processing.
  • the size of the fingerprint image is down sampled (eg, 320 ⁇ 240 size ⁇ 160 ⁇ 120 size) to 1/4 to speed up subsequent image processing.
  • the feature point is extracted from the fingerprint image and the fingerprint authentication is performed, the first fingerprint image or the second fingerprint image as the original is used.
  • the wavelet transform unit 205 discards the remaining region for second order filtering and extracts the first LL fingerprint image and the second LL fingerprint image of the LL frequency band.
  • the color distribution analyzer 207 uses the following equation 1 to calculate the difference between the brightness values of each pixel for the two LL fingerprint images extracted by the wavelet converter 205 from the first and second object images, respectively. Difference) is obtained as an absolute value.
  • x p1 (n) is the brightness value of the n-th pixel of the first LL image
  • x p2 (n) is the brightness value of the n-th pixel of the second LL image
  • y (n) is the absolute value of the difference in brightness values between the n th two pixels of the first and second LL fingerprint images.
  • the color distribution analyzer 207 obtains a cumulative histogram as shown in FIG. 5 or 6 by obtaining y (n) of all pixels of the first and second LL fingerprint images.
  • the cumulative histogram is a cumulative number of pixels having the same difference.
  • FIG. 5 is an example of a cumulative histogram obtained from a bio fingerprint
  • FIG. 6 is an example of a cumulative histogram obtained from a fake fingerprint such as silicon. 5 and 6, the horizontal axis represents difference, that is, y, and the vertical axis represents the number of pixels.
  • the color distribution analyzer 207 determines the fingerprint as a bio fingerprint, and when only less than two peak points are identified, the fingerprint is a fake fingerprint. Judging by.
  • the analysis may be determined whether there is a slight difference in brightness values between the two fingerprint images, and whether or not a fake fingerprint is determined using the point that the difference is confirmed only in the bio fingerprint.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Human Computer Interaction (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Data Mining & Analysis (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Artificial Intelligence (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Collating Specific Patterns (AREA)

Abstract

Disclosed is a forged-fingerprint distinguishing apparatus and method capable of distinguishing a forged fingerprint on the basis of a slight change in the brightness of a fingerprint image, caused by a living body's heartbeat. On the basis of a slight change in a biometric fingerprint, caused by a living body's heartbeat, the forged-fingerprint distinguishing apparatus according to the present invention can determine a fingerprint not having such a change as a forged fingerprint. To this end, at least two fingerprint images are acquired from a relevant fingerprint, the difference between the brightness values of each two pixels at identical coordinates in the two fingerprint images is extracted, the number of pixels having the same difference is derived in the form of a cumulative histogram, and then, the number of peak points in the corresponding cumulative histogram is calculated to determine whether a fingerprint is a forged fingerprint.

Description

생체의 심장 박동에 따른 지문 이미지의 미세한 밝기 변화에 기초하여 위조지문을 판별할 수 있는 위조지문 판별 장치 및 그 방법Counterfeit fingerprint discrimination apparatus and method for discriminating forged fingerprint based on minute change of brightness of fingerprint image according to heartbeat of living body
본 발명은 광학식 지문 이미지 획득 방법에 있어서 위조지문을 판별하는 방법에 관한 것으로서, 생체의 심장 박동에 따라 발생하는 생체 지문 내에서의 미세한 변화를 기초하여 그러한 변화가 없는 지문을 위조지문으로 판단하는 위조 지문판별장치 및 그 방법에 관한 것이다. The present invention relates to a method for determining a forgery fingerprint in the optical fingerprint image acquisition method, and forgery that judges a fingerprint without such a change as a forgery fingerprint based on a minute change in a biometric fingerprint caused by a heartbeat of a living body. A fingerprint identification device and a method thereof are provided.
정보기기를 이용한 개인 인증에 불변성과 유일성이 뛰어난 사용자 생체 정보를 이용하는 것은 이미 일반화되었으며, 그 중에서도 지문인식은 구조는 매우 간단한데 그 성능은 매우 뛰어난 편이기 때문에 다른 수단에 비해 가장 주목되고 일반화된 인증수단이 되고 있다.The use of user's biometric information with invariability and uniqueness for personal authentication using information devices has already been generalized. Among them, fingerprint recognition has a very simple structure, and its performance is very excellent. It is becoming.
통상의 개인인증은, 출입제어, 전자상거래, 금융거래, 개인용 컴퓨터(PC)의 보안 및 사무적 결재체계 등과 같이 보안이 중요하게 요구되는 분야에 주로 사용되는 바, 인간의 지문이 아닌 인위적으로 제작된 지문(이하 '위조지문'이라 함)을 효과적으로 구분하는 것이 무엇보다 중요하다.Normal personal authentication is mainly used in areas where security is important, such as access control, e-commerce, financial transactions, security of personal computers (PCs), and office payment systems. The most important thing is to effectively distinguish fingerprints (hereinafter referred to as 'false fingerprints').
본 발명의 목적은 생체의 심장 박동에 따라 발생하는 생체 지문 내에서의 미세한 변화를 기초로 그러한 변화가 없는 지문을 위조지문으로 판단하는 위조 지문판별장치 및 그 방법을 제공함에 있다. Disclosure of Invention An object of the present invention is to provide a counterfeit fingerprint discrimination apparatus and method for determining a fingerprint without such a change as a fake fingerprint based on a minute change in a biometric fingerprint generated according to the heartbeat of a living body.
상기 목적을 달성하기 위한 본 발명에 따른 위조지문 판별방법은, 광학식 지문센서부에 접촉한 지문으로부터 단위 시간 내에 제1 및 제2 지문 이미지를 획득하는 단계; 상기 제1 및 제2 지문 이미지의 동일 좌표의 픽셀 간의 밝기값의 차이(Difference)를 계산하고, 상기 차이가 동일한 픽셀의 수를 누적히스토그램으로 구하는 단계; 및 상기 누적히스토그램에서 피크 포인트(Peak Point)가 적어도 2개 이상인 경우에 상기 지문을 생체지문으로 판단하는 단계를 포함한다.In accordance with another aspect of the present invention, there is provided a method for determining a fake fingerprint, the method including: obtaining first and second fingerprint images within a unit time from a fingerprint in contact with an optical fingerprint sensor unit; Calculating a difference in brightness between pixels of the same coordinates of the first and second fingerprint images, and obtaining a cumulative histogram of the number of pixels having the same difference; And determining the fingerprint as a biofingerprint when there are at least two peak points in the cumulative histogram.
실시 예에 따라, 누적히스토그램으로 구하는 단계는, 상기 제1 및 제2 지문 이미지에서 지문 영역이 있는 객체 영역을 추출하는 단계; 및 상기 객체 영역에 대하여 이산 웨이브릿 변환을 수행하여 LL 주파수 성분만을 추출하여 제1 LL 지문 이미지 및 제2 LL 지문 이미지를 획득하는 단계를 더 포함할 수 있다. 이 경우, 상기 픽셀 간의 밝기값의 차이는 상기 제1 및 제2 LL 지문 이미지를 대상으로 계산하게 된다. According to an embodiment, the step of obtaining a cumulative histogram may include extracting an object region having a fingerprint region from the first and second fingerprint images; And extracting only LL frequency components by performing discrete wavelet transformation on the object region to obtain a first LL fingerprint image and a second LL fingerprint image. In this case, the difference in brightness between the pixels is calculated based on the first and second LL fingerprint images.
다른 실시 예에 따라 위조지문 판별방법은, 상기 제1 및 제2 지문 이미지 각각의 평균 밝기값을 구하는 단계; 및 상기 평균 밝기값의 차이가 제1 기준값 보다 작은 경우에 상기 지문을 위조지문으로 판단하는 1차 필터링을 수행하는 단계를 포함함으로써 위의 방법을 사용하지 않고도 전혀 밝기값의 변화가 없는 형태의 위조지문을 판별할 수 있다. 당연히 상기 1차 필터링된 지문에 대하여는 상기 누적히스토그램으로 구하는 단계를 수행하지 않는다. According to another exemplary embodiment, a method of determining a fake fingerprint includes: obtaining an average brightness value of each of the first and second fingerprint images; And performing first-order filtering to determine the fingerprint as a fake fingerprint when the difference between the average brightness values is smaller than the first reference value, so that there is no change in the brightness value without using the above method. Fingerprints can be determined. Naturally, the step of obtaining the cumulative histogram is not performed on the first filtered fingerprint.
본 발명의 다른 실시 예에 따른 위조지문 판별장치는 지문센서부와 색상분포분석부를 포함한다. 지문센서부는 광굴절기를 구비하여 광학식으로 상기 광굴절기의 지문접촉면에 접촉한 지문으로부터 단위 시간 내에 제1 및 제2 지문 이미지를 획득한다. 색상분포분석부는 상기 제1 및 제2 지문 이미지의 동일 좌표의 픽셀 간의 밝기값의 차이(Difference)를 계산하고, 상기 차이가 동일한 픽셀의 수를 누적히스토그램으로 구한다. 이후에 상기 색상분포분석부는 상기 누적히스토그램에서 피크 포인트(Peak Point)가 적어도 2개 이상인 경우에 상기 지문을 생체지문으로 판단하고, 피크 포인트가 2개 미만이면 위조지문으로 판단한다. Counterfeit fingerprint discrimination apparatus according to another embodiment of the present invention includes a fingerprint sensor unit and the color distribution analysis unit. The fingerprint sensor unit includes a photorefractor to obtain first and second fingerprint images within a unit time from a fingerprint optically contacting the fingerprint contact surface of the photorefractor. The color distribution analyzer calculates a difference of brightness values between pixels of the same coordinates of the first and second fingerprint images, and calculates the number of pixels having the same difference as a cumulative histogram. Subsequently, the color distribution analyzer determines the fingerprint as a bioprint when the cumulative histogram has at least two peak points, and determines that the fingerprint is a fake fingerprint when the peak point is less than two.
실시 예에 따라, 위조지문판별장치는 상기 제1 및 제2 지문 이미지에서 지문 영역이 있는 객체 영역을 추출하는 객체추출부와, 상기 객체 영역에 대하여 이산 웨이브릿 변환을 수행하여 LL 주파수 성분만을 추출하여 제1 LL 지문 이미지 및 제2 LL 지문 이미지를 획득하는 웨이브릿변환부를 더 포함할 수 있다. 이 경우, 상기 색상분포분석부는 상기 픽셀 간의 밝기값의 차이를 상기 제1 및 제2 LL 지문 이미지를 대상으로 계산한다. According to an embodiment, the counterfeit fingerprint discrimination apparatus may extract an object region having a fingerprint region from the first and second fingerprint images, and perform discrete wavelet transform on the object region to extract only LL frequency components. The apparatus may further include a wavelet converter configured to obtain a first LL fingerprint image and a second LL fingerprint image. In this case, the color distribution analyzer calculates a difference in brightness values between the pixels based on the first and second LL fingerprint images.
다른 실시 예에 따라, 위조지문판별장치는 1차 필터링을 위한 색상정보추출부를 더 포함할 수 있다. 색상정보추출부는 상기 제1 및 제2 지문 이미지 각각의 평균 밝기값을 구하고, 상기 평균 밝기값의 차이가 제1 기준값 보다 작은 경우에 상기 지문을 위조지문으로 판단하는 1차 필터링을 수행한다. 당연히, 상기 색상분포분석부는 상기 1차 필터링된 지문에 대하여는 상기 누적히스토그램으로 구하지 않는다. According to another embodiment, the fake fingerprint recognition device may further include a color information extraction unit for the primary filtering. The color information extracting unit obtains an average brightness value of each of the first and second fingerprint images, and performs the first filtering to determine the fingerprint as a fake fingerprint when the difference between the average brightness values is smaller than the first reference value. Naturally, the color distribution analyzer does not obtain the cumulative histogram of the first filtered fingerprint.
실시 예에 따라, 여기서, 제1 및 제2 지문 이미지의 획득에 사용되는 지문센서부의 광원은 500 ~ 700 nm 대역의 가시광선 영역이나 800 ~ 900 nm 대역의 적외선영역을 사용하는 것이 바람직하다.According to an embodiment, the light source of the fingerprint sensor unit used for acquiring the first and second fingerprint images may use a visible light region of 500 to 700 nm band or an infrared region of 800 to 900 nm band.
본 발명에 따른 위조지문 판별장치는 지문 이미지를 생성하고 그 이미지들의 단위 시간 내에 발생하는 평균 밝기 값와 픽셀 당 밝기값의 변화를 이용하여 지문이 생체지문인지 위조지문인지 판별할 수 있다. The forgery fingerprint discrimination apparatus according to the present invention may generate a fingerprint image and determine whether the fingerprint is a bio fingerprint or a fake fingerprint by using a change in the average brightness value and the brightness value per pixel generated within the unit time of the images.
도 1은 본 발명의 위조지문 판별장치의 블록도, 1 is a block diagram of a fake fingerprint discrimination apparatus of the present invention,
도 2는 생체지문과 위조지문으로부터 획득한 컬러 지문 이미지의 예를 도시한 도면, 그리고2 is a diagram showing an example of a color fingerprint image obtained from a bio fingerprint and a fake fingerprint; and
도 3은 본 발명에 따른 위조지문 판별을 위한 신경망 학습시스템의 블록도, 3 is a block diagram of a neural network learning system for discriminating forged fingerprints according to the present invention;
도 4는 지문 이미지에 대한 웨이브릿 변환을 수행한 예를 도시한 도면, 4 is a diagram illustrating an example of performing wavelet transformation on a fingerprint image;
도 5는 생체지문에 대한 누적히스토그램의 예를 도시한 도면, 그리고5 is a diagram showing an example of a cumulative histogram for a bio fingerprint; and
도 6은 위조지문에 대한 누적히스토그램의 예를 도시한 도면이다.6 is a diagram showing an example of a cumulative histogram for a fake fingerprint.
이하 도면을 참조하여 본 발명을 더욱 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings.
도 1을 참조하면, 본 발명의 위조지문 판별장치(100)는 지문센서부(110), 생체판단부(130), 특징점추출부(150) 및 지문인증부(170)를 포함한다. Referring to FIG. 1, the counterfeit fingerprint discrimination apparatus 100 of the present invention includes a fingerprint sensor unit 110, a biopsy unit 130, a feature point extractor 150, and a fingerprint authentication unit 170.
지문센서부(110)는 광굴절기(111), 광원(113), 렌즈(115) 및 이미지센서(117)를 포함하며, 광학식 지문인증방법에 의해 광굴절기(111)의 지문접촉면(111a)에 접촉한 지문의 지문 이미지를 획득한다. 지문을 광학식으로 획득하는 방법으로 알려진 산란식이나 흡수식을 포함하여 어떠한 방식의 광학식 지문이미지 생성방식이라도 적용할 수 있다. The fingerprint sensor unit 110 includes an optical refractor 111, a light source 113, a lens 115, and an image sensor 117, and the fingerprint contact surface 111a of the optical refractor 111 by an optical fingerprint authentication method. Obtain a fingerprint image of the fingerprint in contact with). Any method of generating an optical fingerprint image may be applied, including a scattering method or an absorption method known as a method of optically obtaining a fingerprint.
광굴절기(111)는 통상 그 단면의 형상이 삼각형 또는 사다리꼴의 프리즘을 사용하지만, 프리즘을 대신하여 넓은 개념의 광굴절기를 사용할 수 있다. 광굴절기(111)는 지문이 접촉되는 지문접촉면(111a)과, 지문접촉면(111a)에서 반사 또는 산란된 광(지문영상)이 출사되는 출사면(111b)과, 내부의 광원(113)에서 출사된 광이 입사되는 입사면(111c)을 구비한다. The photorefractor 111 is usually a triangular or trapezoidal prism in the shape of its cross-section, but can replace a prism of a broad concept of the optical refractor. The optical refractor 111 has a fingerprint contact surface 111a through which the fingerprint is in contact, an emission surface 111b through which light (fingerprint image) reflected or scattered from the fingerprint contact surface 111a is emitted, and the light source 113 therein. The incident surface 111c on which the emitted light is incident is provided.
실시 예에 따라, 여기서, 광원(113)은 500 ~ 700 nm 대역의 가시광선 영역이나 800 ~ 900 nm 대역의 적외선영역을 사용하는 것이 바람직하다.According to an embodiment, the light source 113 preferably uses a visible light region of 500 to 700 nm band or an infrared region of 800 to 900 nm band.
먼저, 지문센서부(110)의 기본적인 지문 이미지 획득 과정을 살피면 다음과 같다. 사용자가 지문접촉면(111a)에 지문을 접촉시키면, 광원(113)에서 조사된 광이 광굴절기(111)의 입사면(111c), 지문접촉면(111a) 및 출사면(111b)을 거치면서 렌즈(115)에 결상되어 이미지센서(117)로 입력된다. 도 1과 같은 산란식 지문센서부(110)에서, 광원(113)에서 출사된 광은 직각 또는 전반사를 위한 임계각보다 작은 각도로 지문접촉면(111a)에 입사된다. 광원(113)에서 출사된 광은 지문접촉면(111a)에 접촉된 지문의 골과 융선에 따라 통과되거나 산란되어 컬러 지문영상을 형성한다. 이미지센서(117)는 입사되는 지문영상에 대응하는 전기적 신호인 디지털 지문영상 신호를 출력함으로써 지문접촉면(111a)에 접촉된 지문의 컬러 이미지를 획득한다. 따라서 지문센서부(110)가 생성하는 지문 이미지는 컬러 지문 이미지가 된다. First, the basic fingerprint image acquisition process of the fingerprint sensor 110 is as follows. When the user contacts the fingerprint with the fingerprint contact surface 111a, the light irradiated from the light source 113 passes through the incident surface 111c, the fingerprint contact surface 111a, and the exit surface 111b of the optical refractor 111. It is imaged at 115 and is input to the image sensor 117. In the scattering fingerprint sensor unit 110 as shown in FIG. 1, the light emitted from the light source 113 is incident on the fingerprint contact surface 111a at an angle smaller than a critical angle for right angle or total reflection. The light emitted from the light source 113 passes or scatters along the valleys and ridges of the fingerprint in contact with the fingerprint contact surface 111a to form a color fingerprint image. The image sensor 117 outputs a digital fingerprint image signal, which is an electrical signal corresponding to the incident fingerprint image, to obtain a color image of the fingerprint in contact with the fingerprint contact surface 111a. Therefore, the fingerprint image generated by the fingerprint sensor 110 becomes a color fingerprint image.
생체판단부(130)는 지문센서부(110)로부터 적어도 두 장의 제1 및 제2 지문 이미지를 제공받은 다음에, 해당 지문 이미지의 색상 변화를 기초로 지문접촉면(111a)에 접촉한 지문이 생체지문인지 위조지문인지 판별한다. 이때, 색상 변화는 생체의 심장 박동에 따른 미세한 밝기 변화를 추출하는 것이다. 심장 박동의 수축기와 이완기에 손가락 또는 지문 내에서의 혈유량이 변하게 되고, 이러한 혈유량의 변화는 지문 이미지의 밝기 변화로 나타난다. 수축기에는 손가락에 혈액이 채워지면서 미세하게 어두워지고, 이완기에는 혈액이 빠져나가 미세하게 밝아진다.The biopsy unit 130 receives at least two first and second fingerprint images from the fingerprint sensor unit 110 and then prints the biometric fingerprint on the fingerprint contact surface 111a based on the color change of the fingerprint image. Determines whether fingerprints or fake fingerprints. At this time, the color change is to extract a small change in brightness according to the heartbeat of the living body. During the systolic and diastolic phases of the heartbeat, the blood flow in the finger or fingerprint changes, and this change in blood flow is represented by the change in brightness of the fingerprint image. In the systolic phase, the blood fills the finger finely, and in the diastolic phase, the blood escapes and becomes slightly brighter.
종이/고무/필름 재질의 위조지문에서는 이러한 밝기 변화가 거의 없고, 생체와 유사한 색상 정보를 가지는 실리콘 등에서도 이러한 밝기 변화는 매우 작게 나타난다. 이러한 특징을 이용하여 본 발명은 위조지문 여부를 판별하는 것이다. Forgery fingerprints of paper / rubber / film material have almost no such brightness change, and such brightness change is very small even in silicon having a color information similar to a living body. By using this feature the present invention is to determine whether or not the forgery fingerprint.
생체판단부(130)는 웨이브릿 등의 영상처리 기법을 이용하여 이러한 과정을 수행하며, 이를 위해 객체추출부(201), 색상정보추출부(203), 웨이브릿변환부(205) 및 색상분포분석부(207)를 포함한다. 생체판단부(130)는 1차 필터링과 2차 필터링의 두 단계 위조지문 판별과정을 수행할 수 있다. 이들의 동작에 대하여는 아래에서 다시 설명한다. The biological determination unit 130 performs this process using an image processing technique such as a wavelet, and for this purpose, the object extractor 201, the color information extractor 203, the wavelet transform unit 205, and the color distribution are performed. The analysis unit 207 is included. The biodetermination unit 130 may perform a two-step forgery fingerprint determination process of primary filtering and secondary filtering. These operations will be described again below.
위조지문 여부의 판별이라는 측면에서, 특징점추출부(150)와 지문인증부(170)는 본 발명의 필수적인 구성은 아니다. 다만, 지문 이미지를 획득하는 대부분의 장치는 지문 등록이나 지문 인증 과정을 수행하며, 이에 따라 특징점추출부(150)와 지문인증부(170)를 구비한다. In terms of the determination of whether the forgery fingerprint, the feature point extraction unit 150 and the fingerprint authentication unit 170 is not an essential configuration of the present invention. However, most of the devices for acquiring the fingerprint image perform a fingerprint registration or fingerprint authentication process, and accordingly, the feature point extracting unit 150 and the fingerprint authentication unit 170 are provided.
생체판단부(130)에 의해 현재 지문이 생체지문으로 판단되면, 특징점추출부(150)는 지문센서부(110)가 획득한 원본 지문 이미지로부터 특징점을 추출하고, 지문인증부(170)는 특징점추출부(150)가 추출한 특징점을 이용하여 해당 지문의 등록과정을 수행하거나, 기등록된 지문과 일치하는지 여부를 판단한다. 특징점 추출이나 지문 등록/인증은 종래에 알려진 방법을 그대로 사용할 수 있다. If the current fingerprint is determined to be a bio fingerprint by the biopsy unit 130, the feature extraction unit 150 extracts the feature point from the original fingerprint image acquired by the fingerprint sensor unit 110, and the fingerprint authentication unit 170 extracts the feature point. The extraction unit 150 performs the registration process of the corresponding fingerprint by using the extracted feature points or determines whether or not it matches the pre-registered fingerprint. Feature point extraction or fingerprint registration / authentication can use a conventionally known method.
이하에서는 도 3을 참조하여, 본 발명의 위조지문 판별과정을 설명한다. Hereinafter, with reference to Figure 3, the forgery fingerprint determination process of the present invention will be described.
<복수 개의 지문 이미지 획득: S301><Acquisition of multiple fingerprint images: S301>
지문센서부(110)는 지문접촉면(111a)에 접촉한 지문으로부터 제1 및 제2 지문 이미지를 획득한다. 본 발명의 영상처리에는 2장의 제1 지문 이미지와 제2 지문 이미지로 충분하다. 지문센서부(110)는 통상 초당 20 프레임 이상의 지문 이미지를 획득할 수 있지만, 이 중에서 지문 전체가 모두 획득된 것으로 파악되는 지문 이미지를 골라 제1 및 제2 지문 이미지로 사용하게 된다. 따라서 제1 및 제2 지문 이미지는 기설정된 단위 시간 내에 동일한 지문으로부터 획득한 지문 이미지가 된다.The fingerprint sensor 110 obtains the first and second fingerprint images from the fingerprint in contact with the fingerprint contact surface 111a. Two first fingerprint images and a second fingerprint image are sufficient for the image processing of the present invention. The fingerprint sensor 110 may acquire a fingerprint image of 20 frames or more per second, but selects a fingerprint image from which all of the fingerprints are obtained, and uses the fingerprint image as the first and second fingerprint images. Accordingly, the first and second fingerprint images become fingerprint images acquired from the same fingerprint within a predetermined unit time.
<1차 필터링: S303 내지 S305><First-order filtering: S303 to S305>
S301 단계에서 획득한 두 장의 지문 이미지를 이용하여 1차 필터링을 수행한다. 1차 필터링은 두 개 지문 이미지의 지문 영역(또는 객체 영역)의 평균 밝기 값의 차이가 제1 기준값 이하인 것을 위조지문으로 판단하여 1차 걸러내는 것이다. 예를 들어, 종이, 고무, 필름 등의 소재로 제작된 위조지문의 경우에는 제1 및 제2 지문 이미지 사이에 시차가 있더라도 그 색상정보에는 차이가 거의 없고, 마찬가지로 지문영역의 평균 밝기값의 차이도 거의 없다. 따라서 제1 기준값은 매우 낮은 값으로 정하여도 충분하며, 실험치로 결정할 수 있다. 다만, 1차 필터링 과정은 본 발명의 필수적인 과정은 아니다. First filtering is performed using the two fingerprint images acquired in step S301. In the primary filtering, a fake fingerprint is determined by determining that the difference between the average brightness values of the fingerprint regions (or the object regions) of the two fingerprint images is equal to or less than the first reference value. For example, in the case of a fake fingerprint made of a material such as paper, rubber or film, even if there is a parallax between the first and second fingerprint images, there is almost no difference in the color information, and similarly, the difference in the average brightness value of the fingerprint area. There is almost no. Therefore, the first reference value may be set to a very low value and may be determined by an experimental value. However, the primary filtering process is not an essential process of the present invention.
<각 지문이미지의 객체 영역의 평균 밝기값 계산: S303><Calculation of average brightness value of the object area of each fingerprint image: S303>
1차 필터링을 위해, 우선 객체추출부(201)는 각 지문 이미지로부터 객체 영역을 추출한다. 객체 영역은 지문 이미지 내에서 배경이 제외된 영역, 즉 지문에 해당하는 영역을 의미한다. 객체 영역 추출에 관한 영상처리방법은 종래에 알려진 방법을 그대로 사용할 수 있다. 제1 지문 이미지로부터 제1 객체 이미지를 추출하고, 제2 지문 이미지로부터 제2 객체 이미지를 추출한다. For primary filtering, the object extractor 201 first extracts an object region from each fingerprint image. The object area refers to an area in which the background is excluded, that is, an area corresponding to the fingerprint in the fingerprint image. As the image processing method for extracting the object region, a conventionally known method may be used as it is. The first object image is extracted from the first fingerprint image, and the second object image is extracted from the second fingerprint image.
이후에, 색상정보추출부(203)는 제1 및 제2 객체 이미지의 평균 밝기값을 계산한다. 제1 및 제2 지문 이미지 전체에 대해 평균 밝기값을 구할 경우에는 지문의 크기가 작은 사람은 다음의 S305 단계에서 구하게 되는 평균 밝기값의 차이가 상대적으로 작게 되어(비반전 영상의 경우는 커지게 되고) 제1 기준값과의 단순 비교에 상당한 오류가 발생할 수 있다. 따라서 색상정보추출부(203)는 객체추출부(201)가 구한 제1 및 제2 객체 이미지, 즉 지문 영역에 대한 평균 밝기값만을 추출한다.Thereafter, the color information extracting unit 203 calculates average brightness values of the first and second object images. When the average brightness value is obtained for the entire first and second fingerprint images, the difference in the average brightness value obtained in the next step S305 is relatively small for the person having a small fingerprint size (in the case of non-inverted image, it becomes large). Significant error may occur in a simple comparison with the first reference value. Therefore, the color information extractor 203 extracts only average brightness values of the first and second object images, that is, the fingerprint region, obtained by the object extractor 201.
<1차 필터링 수행: S305><Perform primary filtering: S305>
색상정보추출부(203)는 제1 및 제2 객체 이미지 평균 밝기값의 차이를 구하고, 그 차이를 제1 기준값과 비교한다. 생체 지문의 경우에는 심장 박동의 수축기와 이완기에서 달라지는 지문 내의 혈유량으로 인해 지문 색상(밝기)에 미세한 변화가 발생하며, 그 변화는 평균 밝기값의 차이로 나타난다. 그러나 종이, 고무, 필름 등의 소재로 제작된 위조지문의 경우에는 평균 밝기값의 차이가 거의 0에 가깝다. The color information extracting unit 203 obtains a difference between average brightness values of the first and second object images, and compares the difference with the first reference value. In the case of a biometric fingerprint, there is a slight change in the color (brightness) of the fingerprint due to blood flow in the fingerprint, which varies in the systolic and diastolic phases of the heartbeat, and the change appears as a difference in the average brightness value. However, in the case of forged fingerprints made of materials such as paper, rubber and film, the difference in average brightness is almost zero.
색상정보추출부(203)는 평균 밝기값의 차이가 제1 기준값보다 작으면 위조지문으로 판단한다. 다만, 1차 필터링과 같은 단순 비교에서는, 실리콘이나 젤라틴 소재의 위조지문에서는 평균 밝기값의 차이가 발생하며 그 차이를 생체 지문에서의 평균 밝기값의 차이와 구분하기는 어렵다. 따라서 2차 필터링을 수행한다. The color information extracting unit 203 determines that the difference in the average brightness value is smaller than the first reference value as a fake fingerprint. However, in a simple comparison such as first order filtering, a difference in average brightness occurs in a fake fingerprint of a silicon or gelatin material, and it is difficult to distinguish the difference from the average brightness value in a biometric fingerprint. Therefore, second order filtering is performed.
<2차 필터링: S307 내지 S313>Second order filtering: S307 to S313
<이산 웨이브릿 변환을 수행하여 저주파수 대역(LL)의 성분 추출: S307><Performance of Low Frequency Band (LL) by Discrete Wavelet Transform: S307>
웨이브릿변환부(205)는 객체추출부(201)가 추출한 제1 및 제2 객체 이미지 각각에 대하여 이산 웨이브릿 변환을 수행하고, 그 결과로서 저주파수 대역(LL)의 성분만 포함된 제1 LL 지문 이미지와 제2 LL 지문 이미지를 추출한다.The wavelet transform unit 205 performs discrete wavelet transform on each of the first and second object images extracted by the object extractor 201, and as a result, the first LL including only the components of the low frequency band LL. The fingerprint image and the second LL fingerprint image are extracted.
영상처리에서 웨이브릿(Wavelet) 변환은 이미지에 대해 한 쌍의 필터(고주파 필터와 저주파 필터)를 적용하여 저주파 대역과 고주파 대역으로 분리한다. 각 대역은 2라는 요소로 서브 샘플링되었으므로 n/2개의 샘플을 포함한다. 2차원 이미지의 각 행에 대해 저역 통과 필터와 고역 통과 필터를 적용시키고 2로 다운 샘플링을 수행하면 4개의 서브 이미지 LL, LH, HL, HH가 생성된다. 이러한 4개의 서브 밴드 이미지를 다시 재결합하면 원래의 원본 이미지가 만들어진다. 예를 들어, 도 4는 제1 객체 이미지에 대해 수평 및 수직방향으로 1단계의 웨이브릿 변환을 수행한 예를 도시한 도면이다. In image processing, wavelet transform is performed by applying a pair of filters (high frequency filter and low frequency filter) to an image and separating it into a low frequency band and a high frequency band. Each band is subsampled with an element of 2, so it contains n / 2 samples. Applying a lowpass filter and a highpass filter to each row of the two-dimensional image and downsampling to two produces four sub-images LL, LH, HL, and HH. Recombining these four subband images again produces the original original image. For example, FIG. 4 is a diagram illustrating an example of performing one-step wavelet transformation on a first object image in horizontal and vertical directions.
도 4의 (a)는 LL 주파수 대역 이미지로서 원본 이미지에 수평과 수직방향으로 저역 통과 필터를 적용하여 2로 서브 샘플링한 것이고, (b)는 LH 주파수 대역 이미지로서 수평 방향으로 고역 통과 필터를 적용한 것으로 수평방향 주파수의 오차 성분을 포함한다. (c)는 HL 주파수 대역 이미지로서 수직방향으로 고역 통과 필터를 적용한 것으로 수직 방향의 주파수의 오차 성분을 포함하며, (d)는 HH 주파수 대역 이미지로서 수평과 수직 방향에 고역 통과 필터를 적용한 것이다. Figure 4 (a) is the LL frequency band image is a subsampled to 2 by applying a low pass filter in the horizontal and vertical direction to the original image, (b) is a LH frequency band image is applied to the high pass filter in the horizontal direction It includes the error component of the horizontal frequency. (c) is the HL frequency band image, which is a high pass filter applied in the vertical direction, and includes an error component of the frequency in the vertical direction, and (d) is a HH frequency band image, which is a high pass filter applied in the horizontal and vertical directions.
웨이브릿(Wavelet) 변환을 통해, 지문 이미지에서 고주파 성분을 제거하고, 저주파(LL band) 영역만을 추출할 수 있다. (d)처럼 고주파 영역은 대부분 잡음에 가깝고, (a)처럼 저주파 영역에 대부분의 지문 정보가 포함되므로 저주파 영역(LL)만으로도 해당 지문의 특징이 그대로 읽어올 수 있다. 대신에, 고주파 영역을 제거하는 과정에서 지문 이미지의 사이즈는 1/4로 다운 샘플링(Down Sampling)(예컨대, 320×240 size → 160×120 size)된 효과가 있어서 이후의 영상처리 과정의 속도를 향상시킨다. 물론, 지문 이미지로부터 특징점을 추출하고 지문 인증을 수행할 때는 원본인 제1 지문 이미지 또는 제2 지문 이미지를 사용한다. Through wavelet transformation, high frequency components may be removed from a fingerprint image, and only low frequency (LL band) regions may be extracted. As in (d), most of the high frequency region is close to noise, and as in (a), most of the fingerprint information is included in the low frequency region, so the characteristics of the fingerprint can be read as it is in the low frequency region LL alone. Instead, in the process of removing the high frequency region, the size of the fingerprint image is down sampled (eg, 320 × 240 size → 160 × 120 size) to 1/4 to speed up subsequent image processing. Improve. Of course, when the feature point is extracted from the fingerprint image and the fingerprint authentication is performed, the first fingerprint image or the second fingerprint image as the original is used.
웨이브릿변환부(205)는 2차 필터링을 위해 나머지 영역을 버리고 LL 주파수 대역의 제1 LL 지문 이미지와 제2 LL 지문 이미지를 추출한다. The wavelet transform unit 205 discards the remaining region for second order filtering and extracts the first LL fingerprint image and the second LL fingerprint image of the LL frequency band.
<픽셀 단위로 밝기값의 차이(Difference)의 절대값을 계산: S309><Calculate absolute value of difference of brightness value in pixel: S309>
색상분포분석부(207)는 다음의 수학식 1을 이용하여, 웨이브릿변환부(205)가 제1 및 제2 객체 이미지에서 각각 추출한 두 장의 LL 지문 이미지에 대해 각 픽셀별 밝기값의 차이(Difference)를 절대값으로 구한다.The color distribution analyzer 207 uses the following equation 1 to calculate the difference between the brightness values of each pixel for the two LL fingerprint images extracted by the wavelet converter 205 from the first and second object images, respectively. Difference) is obtained as an absolute value.
Figure PCTKR2017004093-appb-M000001
Figure PCTKR2017004093-appb-M000001
여기서, xp1(n)은 제1 LL 이미지의 n번째 픽셀의 밝기값이고, xp2(n)은 제2 LL 이미지의 n번째 픽셀의 밝기값이다. y(n)는 제1 및 제2 LL 지문 이미지의 n 번째 두 개 픽셀 간의 밝기값의 차이의 절대값이다. Here, x p1 (n) is the brightness value of the n-th pixel of the first LL image, and x p2 (n) is the brightness value of the n-th pixel of the second LL image. y (n) is the absolute value of the difference in brightness values between the n th two pixels of the first and second LL fingerprint images.
<동일한 y 값을 가지는 픽셀들의 개수에 대한 누적히스토그램 작성: S311><Create cumulative histogram of the number of pixels with the same y value: S311>
색상분포분석부(207)는 제1 및 제2 LL 지문 이미지의 모든 픽셀에 대하여 y(n)을 구하여 도 5 또는 도 6과 같은 누적 히스토그램을 구한다. 누적히스토그램은 동일한 차이(Difference)를 가지는 픽셀의 수를 누적한 것이다. 예를 들어, 도 5는 생체지문으로부터 구한 누적 히스토그램의 예이고, 도 6은 실리콘과 같은 위조지문으로부터 구한 누적 히스토그램의 예이다. 도 5와 도 6에서 가로축은 차이(Difference), 즉 y를 나타내고, 세로축은 픽셀의 수를 나타낸다. The color distribution analyzer 207 obtains a cumulative histogram as shown in FIG. 5 or 6 by obtaining y (n) of all pixels of the first and second LL fingerprint images. The cumulative histogram is a cumulative number of pixels having the same difference. For example, FIG. 5 is an example of a cumulative histogram obtained from a bio fingerprint, and FIG. 6 is an example of a cumulative histogram obtained from a fake fingerprint such as silicon. 5 and 6, the horizontal axis represents difference, that is, y, and the vertical axis represents the number of pixels.
<누적히스토그램에 2개 이상의 피크 포인트가 있으면 생체 지문으로 인식: S313><If the cumulative histogram has two or more peak points, it is recognized as a biometric fingerprint: S313>
색상분포분석부(207)는 S311에서 구한 누적히스토그램에서 2개 이상의 피크 포인트(Peak Points)가 확인되면 해당 지문을 생체지문으로 판단하고, 2개 미만의 피크 포인트만이 확인되면 해당 지문을 위조지문으로 판단한다. When two or more peak points are identified in the cumulative histogram obtained in S311, the color distribution analyzer 207 determines the fingerprint as a bio fingerprint, and when only less than two peak points are identified, the fingerprint is a fake fingerprint. Judging by.
예를 들어, 도 5를 참조하면, 3개의 피크 포인트가 보인다. 각 피크 포인트가 있는 지점(y=54, 95, 211)은 그 정도의 밝기 차이(y=54, 95, 211)가 있는 픽셀의 수가 많다는 것으로서, 두 개 LL 지문 이미지의 밝기값이 변하고 있음을 나타내며, 결국 두 개 지문 이미지에 미세한 밝기 값의 차이가 있음을 나타낸다. For example, referring to FIG. 5, three peak points are shown. The point at each peak point (y = 54, 95, 211) is a large number of pixels with that much brightness difference (y = 54, 95, 211), indicating that the brightness values of the two LL fingerprint images are changing. As a result, there is a slight difference in brightness value between the two fingerprint images.
이에 대응하여, 도 6에는 1개의 피크 포인트가 보이며, 그 피크 포인트에서의 픽셀 수도 상당히 적음을 알 수 있다. 결국 두 개 LL 지문 이미지의 밝기값의 차이가 거의 없음을 나타내며, 결국 두 개 지문 이미지의 밝기 값이 거의 동일함을 나타낸다. Correspondingly, one peak point is shown in Fig. 6, and it can be seen that the number of pixels at the peak point is considerably small. As a result, there is almost no difference in the brightness values of the two LL fingerprint images, and thus, the brightness values of the two fingerprint images are almost the same.
이처럼, S307 내지 S311 단계를 통해 분석하면, 두 개 지문 이미지 사이의 밝기값에 미세한 차이가 있는지를 확인할 수 있고, 그러한 차이가 생체지문에서만 확인되는 점을 이용하여 위조지문 여부를 판별할 수 있다. As such, if the analysis is performed through steps S307 to S311, it may be determined whether there is a slight difference in brightness values between the two fingerprint images, and whether or not a fake fingerprint is determined using the point that the difference is confirmed only in the bio fingerprint.
이상에서는 본 발명의 바람직한 실시 예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시 예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어서는 안 될 것이다.Although the above has been illustrated and described with respect to preferred embodiments of the present invention, the present invention is not limited to the above-described specific embodiments, it is usually in the technical field to which the invention belongs without departing from the spirit of the invention claimed in the claims. Various modifications can be made by those skilled in the art, and these modifications should not be individually understood from the technical spirit or the prospect of the present invention.

Claims (6)

  1. 광학식 지문센서부에 접촉한 지문으로부터 단위 시간 내에 제1 및 제2 지문 이미지를 획득하는 단계; Acquiring first and second fingerprint images within a unit time from a fingerprint in contact with the optical fingerprint sensor unit;
    상기 제1 및 제2 지문 이미지의 동일 좌표의 픽셀 간의 밝기값의 차이(Difference)를 계산하고, 상기 차이가 동일한 픽셀의 수를 누적히스토그램으로 구하는 단계; 및Calculating a difference in brightness between pixels of the same coordinates of the first and second fingerprint images, and obtaining a cumulative histogram of the number of pixels having the same difference; And
    상기 누적히스토그램에서 피크 포인트(Peak Point)가 적어도 2개 이상인 경우에 상기 지문을 생체지문으로 판단하는 단계를 포함하는 것을 특징으로 하는 위조지문 판별방법. And determining the fingerprint as a biometric fingerprint when at least two peak points are included in the cumulative histogram.
  2. 제1항에 있어서,The method of claim 1,
    누적히스토그램으로 구하는 단계는,The steps to find the cumulative histogram are
    상기 제1 및 제2 지문 이미지에서 지문 영역이 있는 객체 영역을 추출하는 단계; 및Extracting an object region having a fingerprint region from the first and second fingerprint images; And
    상기 객체 영역에 대하여 이산 웨이브릿 변환을 수행하여 LL 주파수 성분만을 추출하여 제1 LL 지문 이미지 및 제2 LL 지문 이미지를 획득하는 단계를 더 포함하여, Performing discrete wavelet transform on the object region to extract only LL frequency components to obtain a first LL fingerprint image and a second LL fingerprint image,
    상기 픽셀 간의 밝기값의 차이를 상기 제1 및 제2 LL 지문 이미지를 대상으로 계산하는 것을 특징으로 하는 위조지문 판별방법. And calculating the difference in brightness between the pixels based on the first and second LL fingerprint images.
  3. 제1항에 있어서,The method of claim 1,
    상기 제1 및 제2 지문 이미지 각각의 평균 밝기값을 구하는 단계; 및Obtaining an average brightness value of each of the first and second fingerprint images; And
    상기 평균 밝기값의 차이가 제1 기준값 보다 작은 경우에 상기 지문을 위조지문으로 판단하는 1차 필터링을 수행하는 단계를 포함하여, Performing primary filtering to determine the fingerprint as a fake fingerprint when the difference in the average brightness value is smaller than a first reference value;
    상기 1차 필터링된 지문에 대하여는 상기 누적히스토그램으로 구하는 단계를 수행하지 않는 것을 특징으로 하는 위조지문 판별방법. The method of claim 1, wherein the step of obtaining the cumulative histogram is not performed on the first filtered fingerprint.
  4. 광굴절기를 구비하여 광학식으로 상기 광굴절기의 지문접촉면에 접촉한 지문으로부터 단위 시간 내에 제1 및 제2 지문 이미지를 획득하는 지문센서부; 및A fingerprint sensor unit having a photorefractor to acquire first and second fingerprint images within a unit time from a fingerprint optically contacting the fingerprint contact surface of the photorefractor; And
    상기 제1 및 제2 지문 이미지의 동일 좌표의 픽셀 간의 밝기값의 차이(Difference)를 계산하고, 상기 차이가 동일한 픽셀의 수를 누적히스토그램으로 구하는 색상분포분석부를 포함하고,A color distribution analyzer configured to calculate a difference in brightness between pixels of the same coordinates of the first and second fingerprint images, and obtain a cumulative histogram of the number of pixels having the same difference;
    상기 색상분포분석부는 상기 누적히스토그램에서 피크 포인트(Peak Point)가 적어도 2개 이상인 경우에 상기 지문을 생체지문으로 판단하는 것을 특징으로 하는 위조지문 판별장치. And the color distribution analyzer determines the fingerprint as a bioprint when the cumulative histogram has at least two peak points.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 제1 및 제2 지문 이미지에서 지문 영역이 있는 객체 영역을 추출하는 객체추출부; 및An object extracting unit extracting an object region having a fingerprint region from the first and second fingerprint images; And
    상기 객체 영역에 대하여 이산 웨이브릿 변환을 수행하여 LL 주파수 성분만을 추출하여 제1 LL 지문 이미지 및 제2 LL 지문 이미지를 획득하는 웨이브릿변환부를 더 포함하여, The apparatus may further include a wavelet transform unit configured to perform discrete wavelet transform on the object region to extract only LL frequency components to obtain a first LL fingerprint image and a second LL fingerprint image.
    상기 색상분포분석부는 상기 픽셀 간의 밝기값의 차이를 상기 제1 및 제2 LL 지문 이미지를 대상으로 계산하는 것을 특징으로 하는 위조지문 판별장치. And the color distribution analyzer calculates a difference in brightness between the pixels based on the first and second LL fingerprint images.
  6. 제4항에 있어서,The method of claim 4, wherein
    상기 제1 및 제2 지문 이미지 각각의 평균 밝기값을 구하고, 상기 평균 밝기값의 차이가 제1 기준값 보다 작은 경우에 상기 지문을 위조지문으로 판단하는 1차 필터링을 수행하는 색상정보추출부를 더 포함하고, The apparatus further includes a color information extracting unit configured to obtain an average brightness value of each of the first and second fingerprint images, and to perform primary filtering to determine the fingerprint as a fake fingerprint when a difference between the average brightness values is smaller than a first reference value. and,
    상기 색상분포분석부는 상기 1차 필터링된 지문에 대하여는 상기 누적히스토그램으로 구하지 않는 것을 특징으로 하는 위조지문 판별장치. And the color distribution analyzer does not obtain the first filtered fingerprint as the cumulative histogram.
PCT/KR2017/004093 2016-04-18 2017-04-17 Forged-fingerprint distinguishing apparatus and method capable of distinguishing forged fingerprint on basis of slight change in brightness of fingerprint image, caused by living body's heartbeat WO2017183867A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160047186A KR101798395B1 (en) 2016-04-18 2016-04-18 Apparatus and Method for Recognizing Fake Fingerprint Using Brightness Change of Fingerprint Image According to Heart Beat
KR10-2016-0047186 2016-04-18

Publications (1)

Publication Number Publication Date
WO2017183867A1 true WO2017183867A1 (en) 2017-10-26

Family

ID=60116177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/004093 WO2017183867A1 (en) 2016-04-18 2017-04-17 Forged-fingerprint distinguishing apparatus and method capable of distinguishing forged fingerprint on basis of slight change in brightness of fingerprint image, caused by living body's heartbeat

Country Status (2)

Country Link
KR (1) KR101798395B1 (en)
WO (1) WO2017183867A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022241792A1 (en) * 2021-05-21 2022-11-24 深圳市汇顶科技股份有限公司 Fingerprint recognition method and apparatus, and electronic device and storage medium

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102002356B1 (en) 2017-12-26 2019-07-23 주식회사 바이오로그디바이스 Fingerprint Recognition System Using Inductance to Prevent Counterfeit Fingerprints
KR20190091705A (en) 2018-01-29 2019-08-07 주식회사 바이오로그디바이스 Fingerprint Recognition System Using Inductance to Prevent Counterfeit Fingerprints
US20190347786A1 (en) * 2018-05-08 2019-11-14 Pixart Imaging Inc. Method, apparatus, and electronic device having living body detection capability
KR20220082454A (en) 2020-12-10 2022-06-17 삼성전자주식회사 Method and apparatus of detecting whether biometric information is spoofed

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050010102A (en) * 2003-07-18 2005-01-27 학교법인연세대학교 Method for Acquire of Fingerprint Image by Sliding and Rolling
KR100789607B1 (en) * 2005-06-23 2007-12-27 엘지전자 주식회사 Apparatus and method of fingerprint recognition
KR20110093375A (en) * 2010-02-12 2011-08-18 주식회사 에스원 Fingerprint input apparatus and method, system and method for detecting forged fingerprint
KR20110107657A (en) * 2010-03-25 2011-10-04 조선대학교산학협력단 Fingerprint verification apparatus and method therefor
KR101419784B1 (en) * 2013-06-19 2014-07-21 크루셜텍 (주) Method and apparatus for recognizing and verifying fingerprint

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050010102A (en) * 2003-07-18 2005-01-27 학교법인연세대학교 Method for Acquire of Fingerprint Image by Sliding and Rolling
KR100789607B1 (en) * 2005-06-23 2007-12-27 엘지전자 주식회사 Apparatus and method of fingerprint recognition
KR20110093375A (en) * 2010-02-12 2011-08-18 주식회사 에스원 Fingerprint input apparatus and method, system and method for detecting forged fingerprint
KR20110107657A (en) * 2010-03-25 2011-10-04 조선대학교산학협력단 Fingerprint verification apparatus and method therefor
KR101419784B1 (en) * 2013-06-19 2014-07-21 크루셜텍 (주) Method and apparatus for recognizing and verifying fingerprint

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022241792A1 (en) * 2021-05-21 2022-11-24 深圳市汇顶科技股份有限公司 Fingerprint recognition method and apparatus, and electronic device and storage medium

Also Published As

Publication number Publication date
KR20170119245A (en) 2017-10-26
KR101798395B1 (en) 2017-11-16

Similar Documents

Publication Publication Date Title
WO2017183867A1 (en) Forged-fingerprint distinguishing apparatus and method capable of distinguishing forged fingerprint on basis of slight change in brightness of fingerprint image, caused by living body&#39;s heartbeat
Jia et al. Multi-scale local binary pattern with filters for spoof fingerprint detection
EP2041696B1 (en) Multibiometric multispectral imager
Zhu et al. Biometric personal identification based on iris patterns
US10558841B2 (en) Method and apparatus for recognizing fingerprint ridge point
WO2010008143A2 (en) Apparatus for discriminating live fingerprint and discriminating method therefor
WO2004029862A1 (en) Method and apparatus for palmprint identification
KR101601187B1 (en) Device Control Unit and Method Using User Recognition Information Based on Palm Print Image
Xiao et al. 3DMA: A multi-modality 3D mask face anti-spoofing database
CN110188684A (en) A kind of face identification device and method
Maddala et al. Implementation and evaluation of NIST Biometric Image Software for fingerprint recognition
CN117392404A (en) Method and system for improving image detection speed
CN110909601B (en) Beautiful pupil identification method and system based on deep learning
Pourreza et al. A radon transform based approach for extraction of blood vessels in conjunctival images
Szymkowski et al. Finger veins feature extraction algorithm based on image processing methods
Marcialis et al. Fingerprint liveness detection based on fake finger characteristics
Kakkar et al. Fingerprint image enhancement using Wavelet transform and Gabor filtering
KR100427181B1 (en) The system and method of face skin area extraction using combined information with color and edge
KR100359920B1 (en) Discrimination method for imitative iris in iris recognition system
Maddala et al. Implementation and evaluation of NIST Biometric Image Software for fingerprint recognition
Kyaw et al. Performance analysis of features extraction on iris recognition system
Telore Study of distortion detection and enhancement methods for fingerprint images
Shamil et al. Detection of Iris localization in facial images using haar cascade circular hough transform
Cheng et al. Fingerprint enhancement using oriented diffusion filter
WO2018194187A1 (en) Device for determining forged fingerprint by using neural network learning scheme and method therefor

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17786135

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17786135

Country of ref document: EP

Kind code of ref document: A1