WO2017183785A1 - Display apparatus - Google Patents

Display apparatus Download PDF

Info

Publication number
WO2017183785A1
WO2017183785A1 PCT/KR2016/013451 KR2016013451W WO2017183785A1 WO 2017183785 A1 WO2017183785 A1 WO 2017183785A1 KR 2016013451 W KR2016013451 W KR 2016013451W WO 2017183785 A1 WO2017183785 A1 WO 2017183785A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
protective film
polarizer protective
polarizer
display device
Prior art date
Application number
PCT/KR2016/013451
Other languages
French (fr)
Korean (ko)
Inventor
신동명
강경구
김도영
김영훈
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Publication of WO2017183785A1 publication Critical patent/WO2017183785A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/202LCD, i.e. liquid crystal displays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/206Organic displays, e.g. OLED

Definitions

  • the present invention relates to a display device.
  • the touch panel includes resistive film type, optical type, capacitive type, ultrasonic type and electromagnetic induction type.
  • the resistive film method has a feature that it is easy to reduce the weight of a relatively low-cost thin film, and external input is possible only by attaching it to the surface of a display, and is currently widely used, especially in a portable device.
  • the growth of portable devices such as mobile phones and information portable terminals has been remarkable, and visibility under sunlight and thin light weight are strongly demanded.
  • a fixed substrate with a transparent conductive film and a movable substrate with a transparent conductive film are disposed through spaces where the transparent conductive films face each other.
  • the contact position is detected by detecting the resistance value of the film when the transparent conductive films are in contact with each other by pressing.
  • the touch panel is mounted on the display surface. In this case, there are problems that the air layer becomes two layers and the visibility decrease due to reflection at each air interface is remarkable, and the device itself becomes thick.
  • a capacitive touch panel attaches a polarizing plate using a pressure sensitive adhesive (PSA) layer on one surface of a liquid crystal panel, and then uses an optically clear adhesive (OCA) layer thereon. It adhere
  • the touch panel having such a structure has a problem in that a multilayer structure is attached on the polarizer to increase the overall thickness of the device and deteriorate optical characteristics of the liquid crystal panel due to differences in refractive index, reflectance and transmittance of each layer.
  • the problem to be solved by the present invention is to provide a display device that can prevent the pattern of the transparent conductive layer from being visible and improve the visibility of the display device.
  • Another problem to be solved by the present invention is to provide a display device capable of stacking a transparent conductive layer on a polarizing film without a point / adhesive layer, thereby reducing the thickness of the display device and making it easy to manufacture.
  • Another object of the present invention is to provide a display device capable of suppressing polarizer damage caused by metal nanowires of a transparent conductive layer.
  • the display apparatus of the present invention includes a display unit and a polarization integrated transparent electrode film formed on the display unit, wherein the polarization integrated transparent electrode film includes a transparent conductive layer, a first polarizer protective film, a polarizer, and a second polarizer protective film. These are sequentially formed, the first polarizer protective film may be formed directly on the transparent conductive layer.
  • the present invention provides a display device capable of acting as a base layer of the transparent conductive layer and preventing the pattern of the transparent conductive layer from being visible from the outside, and at the same time, improving the visibility of the display device.
  • the present invention provides a display apparatus which can laminate a transparent conductive layer on a polarizing film without a point / adhesive layer, thereby making the display apparatus thin, and making it possible to manufacture in a simple process.
  • the present invention provides a display device capable of suppressing polarizer damage due to metal nanowires of a transparent conductive layer.
  • FIG. 1 is a cross-sectional view of a display device according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of a display device according to another embodiment of the present invention.
  • (meth) acryl refers to acrylic and / or methacryl.
  • point / adhesive layer includes a case where an adhesive layer, an adhesive layer alone or one or more adhesive layers, and an adhesive layer are stacked.
  • in-plane retardation (Re) is a value at a wavelength of 550 nm and may be represented by the following formula A:
  • nx denotes a refractive index in the x-axis direction of the optical element at a wavelength of 550 nm
  • ny denotes a refractive index in the y-axis direction of the optical element in a wavelength of 550 nm
  • d denotes a thickness (unit: nm) of the optical element.
  • FIG. 1 is a cross-sectional view of a display device according to an embodiment of the present invention.
  • the display apparatus 100 may include a display 110 and a polarization integrated transparent conductive film 120.
  • the display unit 110 drives the display apparatus 100 and may include a structure known to those skilled in the art according to the type of display apparatus.
  • the display unit 110 may include a substrate and an optical element such as an OLED, an LED, or an LCD formed on the substrate.
  • the substrate may be a glass substrate, but may be used in a flexible display device as a flexible substrate.
  • the flexible substrate may include, but is not limited to, a substrate formed of silicon, polyimide, polycarbonate, polyacrylate, or the like.
  • OLED, LED or LCD optical devices can include conventional structures known to those skilled in the art.
  • the display unit may be a panel for an organic light emitting display device including an OLED optical element including a substrate, a thin film transistor, an organic light emitting diode, a planarization layer, a protective film, an insulating film and the like.
  • the display unit may be a panel for a liquid crystal display including an LCD optical element having a liquid crystal layer formed on a substrate.
  • the liquid crystal layer may adopt VA (vertical alignment) mode, IPS (in plane switching) mode, PLS (plane to line switching) mode, PVA (patterned vertical alignment) mode, or S-PVA (super-patterned vertical alignment) mode.
  • VA vertical alignment
  • IPS in plane switching
  • PLS plane to line switching
  • PVA patterned vertical alignment
  • S-PVA super-patterned vertical alignment
  • the polarization integrated transparent conductive film 120 is formed on the display unit 110 to simultaneously implement a polarization function and a conductive function.
  • the polarization integrated transparent conductive film 120 is a transparent conductive layer 121, the first polarizer protective film 122, the polarizer 123 and the second polarizer protective film 124 are sequentially formed.
  • the polarizing integrated transparent conductive film 120 has a polarizing film and a transparent conductive layer 121 formed integrally so that a multilayer film is not laminated on the polarizing film and the lower protective film of the polarizer is the base layer of the transparent conductive layer 121. Since the base layer of the transparent conductive layer 121 does not need to be formed separately, it is advantageous for thinning and can be manufactured in a simple process, and the optical properties of the display are deteriorated or the visibility is deteriorated due to the characteristics of each layer having different optical properties. It doesn't work.
  • the transparent conductive layer 121 may be formed on the display unit 110 to provide conductive and touch panel functions to the display device.
  • the transparent conductive layer 121 may be patterned to form a touch panel. Therefore, in the display device 100 of the exemplary embodiment, since the transparent conductive layer 121 is formed under the polarizer 123, the pattern of the transparent conductive layer 121 is not visually recognized by the polarizer 123, and the display device is displayed. I can improve the visibility. In addition, in order for the transparent conductive layer 121 to operate by a finger touch, a certain distance must be maintained between the transparent conductive layer 121 and the finger.
  • the first polarizer protective film 122 is formed on the transparent conductive layer 121.
  • the multilayer film such as the polarizer 123 and the second polarizer protective film 124 is formed so that it can be operated without additional layers such as a conventional dummy film.
  • the transparent conductive layer 121 may function as a touch electrode while preventing a damage of the polarizer due to external moisture.
  • the "integrated type" means that the transparent conductive layer 121 and the first polarizer protective film 122 are not separated by physical force, and between the transparent conductive layer 121 and the first polarizer protective film 122. In other words, it means a state in which a point / adhesive layer is directly interposed without other layers such as a point / adhesive layer.
  • the thickness of the laminate of the transparent conductive layer 121 and the first polarizer protective film 122 may be about 10 ⁇ m to about 150 ⁇ m, specifically about 20 ⁇ m to about 100 ⁇ m.
  • a thinner device may be manufactured and easier to use in a flexible device.
  • the transparent conductive layer 121 is formed directly on the first polarizer protective film 122. Therefore, the transparent conductive layer 121 is laminated on the first polarizer protective film 122 without using a dot / adhesive layer such as an optical clear adhesive (OCA), so that the display device can be thinned and manufactured in a simple process. You can do that.
  • the transparent conductive layer 121 may be formed by applying a composition for forming a transparent conductive layer to the first polarizer protective film 122.
  • the transparent conductive layer 121 may include a conductive network and a matrix impregnated with the conductive network.
  • the conductive network is formed of metal nanowires to provide flexibility to the transparent conductive layer 121.
  • the aspect ratio of the metal nanowires may be about 10 to about 5,000.
  • the diameter of the cross section of the metal nanowire may be greater than about 0 nm and about 100 nm or less, specifically about 10 nm to about 100 nm, more specifically about 10 nm to about 30 nm.
  • the longest length of the metal nanowires may be about 20 ⁇ m or greater, specifically about 20 ⁇ m to about 50 ⁇ m. In the above range, it is possible to increase the conductivity of the transparent conductive layer and lower the sheet resistance.
  • the metal nanowires may be formed of a metal comprising at least one of silver, copper, aluminum, nickel and gold, specifically silver.
  • the conductive network may be formed by a wet thin film coating, but is not limited thereto.
  • the matrix is formed directly on the first polarizer protective film 122 to strengthen the bonding between the first polarizer protective film 122 and the transparent conductive layer 121 and to prevent oxidation of the metal nanowires, thereby preventing the sheet resistance of the transparent conductive layer. You can stop the rise.
  • the matrix is formed of a matrix composition containing a 5- or more functional (meth) acrylic compound, a trifunctional to tetrafunctional (meth) acrylic compound, and an initiator, thereby supporting the transparent conductive layer 121 to support the first polarizer protective film. Minimize the influence on the phase difference of the 122 and can improve the optical properties of the conductive network formed of metal nanowires.
  • the 5- or more functional (meth) acrylic compounds may include one or more of 5- to 10-functional (meth) acrylic monomers and 5- to 10-functional (meth) acrylic oligomers, and may include conventional types known to those skilled in the art. Can be. In this case, while the matrix supports the transparent conductive layer 121, the optical characteristics of the transparent conductive layer 121 can be further improved.
  • the 5- or 10-functional (meth) acrylic monomer is a 5- or 10-functional (meth) acrylic monomer of a C3 to C20 polyhydric alcohol, for example, dipentaerythritol penta (meth) acrylate or dipentaerytate. It may include one or more of ritol hexa (meth) acrylate, caprolactone modified dipentaerythritol penta (meth) acrylate, caprolactone modified dipentaerythritol hexa (meth) acrylate.
  • the 5- or 10-functional (meth) acrylic oligomer is a 5- or 10-functional urethane (meth) acrylate oligomer, polyester (meth) acrylate oligomer, epoxy (meth) acrylate oligomer, silicone-containing (meth) acryl One or more of the rate oligomers.
  • the trifunctional to tetrafunctional (meth) acrylic compound may include one or more of non-urethane based (meth) acrylic monomers having no urethane group, and may include conventional (meth) acrylic compounds known to those skilled in the art.
  • the matrix supports the transparent conductive layer 121, the optical characteristics of the transparent conductive layer 121 can be further improved.
  • the trifunctional or tetrafunctional (meth) acrylic monomers are, for example, trimethylolpropane tri (meth) acrylate, glycerol tri (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol tri (meth) (Meth) acrylic monomers of non-modified C3 to C20 polyhydric alcohols comprising at least one of acrylates, ethoxylated trimethylolpropanetri (meth) acrylates, propoxylated glyceryltri (meth) acrylates Alkoxy groups containing at least one of the (meth) acrylic monomers of C3 to C20 polyhydric alcohols modified with an alkoxy group containing at least one of the rates (e.g., C1 to C5 alkoxy groups such as ethoxy groups, propoxy groups Or a (meth) acrylic monomer of C3 to C20 polyhydric alcohol modified with a butoxy group).
  • the (meth) acrylic monomer of the C3 to C20 polyhydric alcohol modified with the alkoxy group can improve the light transmittance and reliability of the transparent conductive layer more than the (meth) acrylic monomer of the non-modified C3 to C20 polyhydric alcohol, and fine pattern May be more favorable to anger.
  • the initiator may comprise one or more of a photopolymerization initiator and a thermal polymerization initiator.
  • the initiator may comprise a photopolymerization initiator having an absorption wavelength of about 150 nm to about 500 nm.
  • the initiator may be at least one of an alpha-hydroxy ketone system or an alpha-amino ketone system, for example 1-hydroxycyclohexylphenylketone.
  • the matrix composition may further include at least one of an adhesion promoter, an antioxidant, a low refractive index agent, a solvent, and an additive.
  • the adhesion promoter may include one or more of a silane coupling agent, a monofunctional (meth) acrylic monomer, and a bifunctional (meth) acrylic monomer.
  • the silane coupling agent may use a conventionally known silane coupling agent.
  • the silane coupling agent has a silane having an epoxy group such as 3-glycidoxyoxytrimethoxysilane, 3-glycidoxyoxymethyldimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, and the like.
  • Coupling agents Polymerizable unsaturated group-containing silane coupling agents such as vinyl trimethoxysilane, vinyltriethoxysilane and (meth) acryloxypropyltrimethoxysilane; 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropylmethyl
  • amino group-containing silane coupling agents such as dimethoxysilane can be used.
  • Monofunctional or bifunctional (meth) acrylic monomers are mono- or difunctional (meth) acrylic monomers of C3 to C20 polyhydric alcohols, including isobornyl (meth) acrylate, cyclopentyl (meth) acrylate, Cyclohexyl (meth) acrylate, trimethylolpropane di (meth) acrylate, ethylene glycol di (meth) acrylate, tricyclodecane dimethanol di (meth) acrylate, neopentylglycol di (meth) acrylate, hexane Dioldi (meth) acrylate, cyclodecanedimethanol di (meth) acrylate.
  • Antioxidants include one or more of phosphorus antioxidants such as phosphite, HLS (Hinder amine light stabilizer) antioxidants, phenolic antioxidants, metal acetylacetonate antioxidants, triazole antioxidants, triazine antioxidants can do.
  • phosphorus antioxidants such as phosphite, HLS (Hinder amine light stabilizer) antioxidants, phenolic antioxidants, metal acetylacetonate antioxidants, triazole antioxidants, triazine antioxidants can do.
  • the phosphorus antioxidant is tris (2,4-di-tert-butylphenyl) phosphite
  • the phenolic antioxidant is pentaerythritol tetrakis (3- (3,5-di-tert-butyl-4-hydrate Hydroxyphenyl) propionate HALS-based antioxidants are bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (2,2,6,6-tetramethyl -4-piperidinyl) sebacate, bis (2,2,6,6-tetramethyl-5-piperidinyl) sebacate, 4-hydroxy-2,2,6,6-tetramethyl-1- Dimethylsuccinate copolymer with piperidine-ethanol, 2,4-bis [N-butyl-N- (1-cyclohexyloxy-2,2,6,6-tetramethylpiperidin-4-yl ) Amino] -6- (2-hydroxyethylamine) -1,3,5-tria
  • the low refractive index agent lowers the refractive index of the transparent conductive layer, and may include one or more of hollow silica and a fluorine compound.
  • the solvent increases the coating property of the composition for the matrix, and may include one or more of a ketone solvent and an alcohol solvent.
  • the additives may include one or more of antistatic agents, ultraviolet absorbers, viscosity modifiers, heat stabilizers, dispersants, thickeners.
  • the composition for the matrix comprises about 60% to about 85% by weight of the at least 5 functional (meth) acrylic compound, about 15% to about 30% by weight of the bifunctional to tetrafunctional (meth) acrylic compound, and an initiator About 1% to about 15% by weight.
  • the adhesion promoter, the antioxidant, and the low refractive index agent may be included in an amount of about 0.01 part by weight to about 15 parts by weight based on 100 parts by weight of a total of five or more functional (meth) acrylic compounds, bifunctional to tetrafunctional (meth) acrylic compounds, and an initiator. Can be.
  • the effect can be implemented without affecting the transparent conductivity.
  • the transparent conductive layer 121 may have a thickness of about 50 nm to about 150 nm, specifically about 50 nm to about 80 nm. In the above range, it can be used in the display device. Although not shown in FIG. 1, the transparent conductive layer 121 may be formed on the display unit 110 by a dot / adhesive layer.
  • the point / adhesive layer may be formed of conventional adhesives known to those skilled in the art, for example, (meth) acrylic, epoxy, silicone adhesives, and the like, but is not limited thereto.
  • the point / adhesive layer may have a thickness of about 200 ⁇ m or less, specifically about 20 ⁇ m to about 100 ⁇ m.
  • the first polarizer protective film 122 is formed on the polarizer 123, formed directly on the transparent conductive layer 121, to protect and support the polarizer 123, and to support the transparent conductive layer 121, Damage to the polarizer 123 due to the metal nanowires of the transparent conductive layer 121 may be prevented.
  • the first polarizer protective film 122 may be a phase-free film (zero retardation film) having a phase difference or no phase difference according to the type of the display unit 110.
  • the first polarizer protective film 122 is a phase difference film of which Re is substantially close to about 0 nm, there is no distortion of the light to improve the viewing angle and improve the response speed of the light.
  • the term "substantially close to about 0 nm" may include not only 0 nm but generally 10 nm or less.
  • the first polarizer protective film 122 is a phase difference film having a phase difference in a predetermined range, visibility of the display device may be improved.
  • the first polarizer protective film 122 may have a phase difference of Re of about 110 nm to about 160 nm, more specifically about 130 nm to about 140 nm, and more specifically, lambda / 4 phase difference film is a quarter-wave retardation film This can be Specifically, the first polarizer protective film 122 may have a phase difference of about 200 nm to about 350 nm, more specifically, about 225 nm to about 300 nm, and more specifically, a lambda / 2 phase difference film that is a half-wave retardation film. Can be.
  • the first polarizer protective film 122 may have Re of about 8,000 nm or more, more specifically about 10,000 nm or more, more than about 10,000 nm, and more specifically about 10,100 nm to about 15,000 nm. Within this range, rainbow stains can be prevented from being recognized.
  • the in-plane retardation Re of the laminate of the transparent conductive layer 121 and the first polarizer protective film 122 may be about 200 nm to about 300 nm at a wavelength of 550 nm. In the above range, the effect can be implemented.
  • the first polarizer protective film 122 may have the same or different in-plane retardation Re as the second polarizer protective film 124 described below.
  • the first polarizer protective film 122 may be an optically transparent polymer film or liquid crystal film. Specifically, the first polarizer protective film 122 may be a film having a light transmittance of about 80% or more, specifically about 80% to about 100% at a wavelength of 550nm.
  • the first polarizer protective film is a polyester, including polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, polybutylene naphthalate, cellulose esters including cycloolefin polymer, triacetyl cellulose, and the like, It may be a film formed of a non-liquid crystalline polymer formed of at least one of poly (meth) acrylate, silicone, including polycarbonate, polyimide, polystyrene, polyethersulfone, polymethylmethacrylate, and the like. Specifically, the first polarizer protective film may be a film obtained by stretching the film formed of the resin at a predetermined draw ratio.
  • the thickness of the first polarizer protective film having a phase difference may be significantly reduced by increasing the refractive index difference obtained by the film formed of the liquid crystal compared to the non-liquid crystalline polymer.
  • a liquid crystal material a liquid crystal monomer and a liquid crystal polymer are possible, and liquid crystal may be either lyotropic or thermotropic.
  • the liquid crystal monomer may be a nematic liquid crystal monomer, and after the alignment of the liquid crystal monomer, the alignment state of the liquid crystal may be fixed by polymerizing or crosslinking the liquid crystal monomer.
  • the first polarizer protective film 122 has a thickness of about 50 ⁇ m or less, specifically about 10 ⁇ m to about 50 ⁇ m, for example, 10 ⁇ m, 15 ⁇ m, 20 ⁇ m, 25 ⁇ m, 30 ⁇ m, 35 ⁇ m, 40 ⁇ m , 45 ⁇ m, 50 ⁇ m. In the above range, it can be used in the display device.
  • the polarizer 123 may be formed on the first polarizer protective film 122 to emit incident light by linearly polarized light.
  • the polarizer 123 is optically transparent and may be a polyvinyl alcohol polarizer or a liquid crystal polarizer.
  • the polarizer is a polyvinyl alcohol polarizer prepared by adsorbing a dichroic substance such as iodine on a polyvinyl alcohol film, uniaxially stretched, a polyene polarizer obtained by dehydrating a polyvinyl alcohol film with a dehydration catalyst such as an organic acid, Alternatively, a cholesteric liquid crystal, a lyotropic liquid crystal, or the like may be aligned in a specific direction after coating or transfer to form a liquid crystal polarizer that induces polarization according to the alignment direction.
  • the polarizer 123 has a thickness of about 50 ⁇ m or less, about 5 ⁇ m or less, specifically about 10 ⁇ m to about 30 ⁇ m, about 1 ⁇ m to about 5 ⁇ m, for example, 1 ⁇ m, 2 ⁇ m, 3 ⁇ m, 4 ⁇ m , 5 ⁇ m. In the above range, it can be used in the display device.
  • the second polarizer protective film 124 may be formed on the polarizer 123, that is, on the polarizer 123 to protect the polarizer 123.
  • the second polarizer protective film 124 may have the same or different Re as the first polarizer protective film 122. Specifically, when the first polarizer protective film 122 and heterogeneous Re, the second polarizer protective film 124 has a Re of about 8,000 nm or more, specifically about 10,000 nm or more, more specifically about 10,000 nm, More specifically, it may be about 10,100nm to about 15,000nm. Within this range, rainbow stains can be prevented from being recognized. By controlling the Re of the first polarizer protective film 121 and the second polarizer protective film 124, the visibility of the display device can be improved.
  • the second polarizer protective film 124 may specifically have a phase difference of about 110 nm to about 160 nm, more specifically about 130 nm to about 140 nm.
  • it may be a ⁇ / 4 retardation film which is a quarter-wave retardation film.
  • the second polarizer protective film 124 may have a phase difference of Re of about 200 nm to about 350 nm, more specifically about 225 nm to about 300 nm, and may be, for example, a lambda / 2 phase difference film that is a half-wave retardation film. Can be.
  • the first polarizer protective film may have a phase difference of Re of about 110 nm to about 160 nm, specifically about 130 nm to about 140 nm, and more specifically, may be a ⁇ / 4 phase difference film which is a quarter-wave retardation film.
  • the second polarizer protective film may have Re of about 8,000 nm or more, specifically about 10,000 nm or more, more specifically about 10,000 nm or more, and more specifically about 10,100 nm to about 15,000 nm.
  • the second polarizer protective film 124 may be an optically transparent polymer film.
  • the second polarizer protective film 124 may be a film having a light transmittance of about 80% or more, specifically about 80% to about 100% at a wavelength of 550nm.
  • the resin may be a polyester resin including polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, polybutylene naphthalate, or the like, a cellulose ester resin or polycarbonate resin including a cycloolefin polymer resin, triacetyl cellulose, or the like.
  • the second polarizer protective film 124 has a thickness of about 10 ⁇ m to about 200 ⁇ m, specifically about 30 ⁇ m to about 100 ⁇ m, for example, 30 ⁇ m, 35 ⁇ m, 40 ⁇ m, 45 ⁇ m, 50 ⁇ m, 55 ⁇ m , 60 ⁇ m, 65 ⁇ m, 70 ⁇ m, 75 ⁇ m, 80 ⁇ m, 85 ⁇ m, 90 ⁇ m, 95 ⁇ m, 100 ⁇ m. It can be used for the conductive window film in the above range.
  • a functional layer may be further formed on one or both surfaces of the second polarizer protective film 124.
  • the functional layer is anti-reflection, low reflection, hard coating, anti-glare, anti-finger, anti-contamination, diffusion, One or more of the refractive functions may be provided.
  • the functional layer may be formed as an independent layer separate from the second polarizer protective film 124 or may be formed by treating one surface of the second polarizer protective film 124 so that one surface of the second polarizer protective film 124 becomes a functional layer. Can be.
  • the polarizer 123 may be attached to each other by a dot / adhesive layer with the first polarizer protective film 122 and the second polarizer protective film 124, respectively.
  • the adhesive layer may be formed of a pressure sensitive adhesive (PSA), an optically clear adhesive (OCA), or the like.
  • the adhesive layer may be formed of a photocurable adhesive composition including an epoxy compound, a (meth) acrylic compound, and a photoinitiator.
  • the epoxy compound may include at least one of alicyclic epoxy, aromatic epoxy, aliphatic epoxy, and hydrogenated epoxy compounds, and the specific types thereof are as known to those skilled in the art.
  • the (meth) acrylic compound may include a conventional (meth) acrylic compound known to those skilled in the art, for example, one or more (meth) acrylates having one or more hydroxyl groups, or one having one or more hydroxyl groups.
  • the photoinitiator may include one or more of a photosensitizer and a photoacid generator, and the specific types thereof are as known to those skilled in the art.
  • the photocurable adhesive composition may further include conventional additives such as antioxidants, ultraviolet absorbers, conductivity giving additives, viscosity modifiers and the like, as long as they do not affect the adhesion.
  • the dot / adhesive layer may have a thickness of about 1 ⁇ m to about 200 ⁇ m, specifically about 10 ⁇ m to about 100 ⁇ m. In the above range, it can be used in the display device, it is possible to stably adhere the polarizer to the polarizer protective film. For this reason, peeling or bubble generation between the polarizer, the first polarizer protective film 122 and the second polarizer protective film 124 can be suppressed.
  • a window film may be formed on the second polarizer protective film 124.
  • the window film may display a display image, and may protect an optical element such as a polarizer.
  • the window film may be formed of a glass or plastic material, and specifically, may be formed of a silicone-based resin.
  • the window film may be laminated to the second polarizer protective film 124 by a point / adhesive layer.
  • FIG. 2 is a cross-sectional view of a display device according to another embodiment of the present invention.
  • the display device 200 includes the polarization integrated transparent conductive film 120 ′ instead of the polarization integrated transparent conductive film 120, but the display device according to the exemplary embodiment of the present invention. Substantially the same as (100).
  • a third polarizer protective film 125 is further formed between the first polarizer protective film 122 and the polarizer 123, such that the transparent conductive layer 121 and the first polarizer protective film are formed.
  • 122, the third polarizer protective film 125, the polarizer 123, and the second polarizer protective film 124 are as described above. Thus, only the third polarizer protective film 125 will be described.
  • the third polarizer protective film 125 is formed on the first polarizer protective film 122 and the polarizer 123 to protect the polarizer 123 and together with the first polarizer protective film 122 for visibility of the display device. It may also improve or reduce pattern visibility.
  • the third polarizer protective film 125 may have an in-plane phase difference at a wavelength of 550 nm of the same or different type as that of the first polarizer protective film 122 and the second polarizer protective film 124, thereby improving visibility of the display device.
  • the third polarizer protective film may have a phase difference of Re of about 110 nm to about 160 nm, specifically about 130 nm to about 140 nm, and more specifically, may be a ⁇ / 4 phase difference film, and in another embodiment, The third polarizer protective film may have a Re of about 200 nm to about 350 nm, in particular, a phase difference of about 225 nm to about 300 nm, more specifically, may be a ⁇ / 2 phase difference film, and in yet another embodiment, the third polarizer protective film Silver Re can be a zero retardation film with about 10 nm or less.
  • the first polarizer protective film 122, the second polarizer protective film 124, and the third polarizer protective film 125 are each polarized integrated transparent electrode film 120 at a wavelength of 550nm to be a film different from each other in-plane retardation Re It is possible to improve the visibility of the display by thinning ') and without laminating additional films.
  • the third polarizer protective film 125 may have an appropriate phase difference together with the first polarizer protective film 122 to improve visibility of the display device.
  • the third polarizer protective film 125 may have a retardation of Re of about 110 nm to about 160 nm, specifically about 130 nm to about 140 nm, and more specifically, may be a ⁇ / 4 phase difference film.
  • the polarizer protective film 122 may have a retardation of Re of about 200 nm to about 350 nm, specifically about 225 nm to about 300 nm, and more specifically, may be a ⁇ / 2 retardation film.
  • the third polarizer protective film 125 may have a retardation of Re of about 200 nm to about 350 nm, specifically about 225 nm to about 300 nm, and more specifically, may be a ⁇ / 2 retardation film.
  • the polarizer protective film 122 may have a retardation of Re of about 110 nm to about 160 nm, specifically about 130 nm to about 140 nm, and more specifically, may be a ⁇ / 4 retardation film.
  • the third polarizer protective film 125 may have a phase difference of Re of about 110 nm to about 160 nm, specifically about 130 nm to about 140 nm, and more specifically, may be a ⁇ / 4 phase difference film.
  • the one polarizer protective film 122 may be a phase difference film.
  • the third polarizer protective film 125 may be a phase-free film, and the first polarizer protective film 122 may have a retardation of Re of about 110 nm to about 160 nm, specifically about 130 nm to about 140 nm. And more specifically a ⁇ / 4 retardation film.
  • the second polarizer protective film 124 has a Re of about 8,000 nm or more, specifically about 10,000 nm or more, more specifically about 10,000 nm or more, and more specifically about 10,100 nm to about 15,000 nm, thereby preventing rainbow staining. And better visibility.
  • the third polarizer protective film 125 is optically transparent and may be formed of the same or different materials as the first polarizer protective film 122 described above.
  • the third polarizer protective film 125 has a thickness of about 10 ⁇ m to about 200 ⁇ m, specifically about 30 ⁇ m to about 100 ⁇ m, for example, 30 ⁇ m, 35 ⁇ m, 40 ⁇ m, 45 ⁇ m, 50 ⁇ m, 55 ⁇ m , 60 ⁇ m, 65 ⁇ m, 70 ⁇ m, 75 ⁇ m, 80 ⁇ m, 85 ⁇ m, 90 ⁇ m, 95 ⁇ m, 100 ⁇ m. In the above range, it can be used in the display device.
  • a dot / adhesive layer may be formed between the third polarizer protective film 125 and the first polarizer protective film 122, and the dot / adhesive layer is as described above.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

Provided is a display apparatus comprising: a display unit; and a polarization- integrated transparent electrode film on the display unit, wherein the polarization-integrated transparent electrode film sequentially comprises: a transparent conductive layer; a first polarizer protection film; a polarizer; and a second polarizer protection film, and the first polarizer protection film is directly disposed on the transparent conductive layer.

Description

디스플레이 장치Display device
본 발명은 디스플레이 장치에 관한 것이다.The present invention relates to a display device.
터치패널에는 저항막 방식, 광학식, 정전용량식, 초음파식 및 전자 유도식 등의 방식이 있다. 저항막 방식은 비교적 저비용인 박막 경량화가 용이하다고 하는 특징을 가지며, 디스플레이의 표면에 장착하는 것만으로 외부 입력이 가능해져, 현재, 특히 휴대 기기를 중심으로 해 넓게 이용되고 있다. 최근, 휴대전화, 정보 휴대 단말 등의 휴대 기기의 성장이 현저하고, 태양광 하에서의 시인성 및 박형 경량이 강하게 요구되고 있다.The touch panel includes resistive film type, optical type, capacitive type, ultrasonic type and electromagnetic induction type. The resistive film method has a feature that it is easy to reduce the weight of a relatively low-cost thin film, and external input is possible only by attaching it to the surface of a display, and is currently widely used, especially in a portable device. In recent years, the growth of portable devices such as mobile phones and information portable terminals has been remarkable, and visibility under sunlight and thin light weight are strongly demanded.
저항막 방식 터치패널은 투명도전막 부착 고정 기판과 투명도전막 부착 가동 기판이 투명 도전막이 서로 마주보고 공간을 통해 배치된 것이다. 압압에 의해 투명 도전막이 서로 접촉했을 때의 막의 저항값을 검출함으로써 접촉 위치를 검출한다. 일반적으로 터치패널은 디스플레이 표면에 장착된다. 이 경우, 공기층이 2층이 되어 각 공기 계면에서의 반사에 의한 시인성 저하가 현저하고 또한 장치 자체가 두꺼워진다고 하는 문제점이 있었다.In the resistive touch panel, a fixed substrate with a transparent conductive film and a movable substrate with a transparent conductive film are disposed through spaces where the transparent conductive films face each other. The contact position is detected by detecting the resistance value of the film when the transparent conductive films are in contact with each other by pressing. Generally, the touch panel is mounted on the display surface. In this case, there are problems that the air layer becomes two layers and the visibility decrease due to reflection at each air interface is remarkable, and the device itself becomes thick.
일반적으로, 정전용량식의 터치 패널은 액정 패널의 일면에 감압접착제(press sensitive adhesive, PSA)층을 이용하여 편광판을 부착하고, 그 위에 다시 광학적으로 투명한 접착제(optically clear adhesive; OCA)층을 이용하여 ITO 가 증착된 필름을 부착하고, 그 위에 유리 기판을 부착한 구조를 갖는다. 이와 같은 구조의 터치 패널은 편광판 상부에 다층의 구조가 부착되어 있어 장치의 전체 두께가 두꺼워지고 각 층의 굴절률, 반사율 및 투과율의 차이로 액정패널의 광 특성이 저하된다는 문제가 있다.In general, a capacitive touch panel attaches a polarizing plate using a pressure sensitive adhesive (PSA) layer on one surface of a liquid crystal panel, and then uses an optically clear adhesive (OCA) layer thereon. It adhere | attaches the film in which ITO was deposited, and has a structure which adhered the glass substrate on it. The touch panel having such a structure has a problem in that a multilayer structure is attached on the polarizer to increase the overall thickness of the device and deteriorate optical characteristics of the liquid crystal panel due to differences in refractive index, reflectance and transmittance of each layer.
본 발명의 배경기술은 일본공개특허 제2004-046729호에 개시되어 있다.Background art of the present invention is disclosed in Japanese Patent Laid-Open No. 2004-046729.
본 발명이 해결하고자 하는 과제는 투명 도전층의 패턴이 시인되지 않게 하고, 디스플레이 장치의 시인성을 좋게 할 수 있는 디스플레이 장치를 제공하는 것이다.The problem to be solved by the present invention is to provide a display device that can prevent the pattern of the transparent conductive layer from being visible and improve the visibility of the display device.
본 발명이 해결하고자 하는 다른 과제는 점/접착층 없이 투명 도전층을 편광필름에 적층시킬 수 있어서 디스플레이 장치를 박형화시킬 수 있고, 간단한 공정으로 제조할 수 있게 하는 디스플레이 장치를 제공하는 것이다.Another problem to be solved by the present invention is to provide a display device capable of stacking a transparent conductive layer on a polarizing film without a point / adhesive layer, thereby reducing the thickness of the display device and making it easy to manufacture.
본 발명이 해결하고자 하는 또 다른 과제는 투명 도전층의 금속 나노와이어로 인한 편광자 손상을 억제할 수 있는 디스플레이 장치를 제공하는 것이다.Another object of the present invention is to provide a display device capable of suppressing polarizer damage caused by metal nanowires of a transparent conductive layer.
본 발명의 디스플레이 장치는 디스플레이부, 및 상기 디스플레이부 상에 형성된 편광 일체형 투명 전극 필름을 포함하고, 상기 편광 일체형 투명 전극 필름은 투명 도전층, 제1편광자 보호필름, 편광자, 및 제2편광자 보호필름이 순차적으로 형성된 것이고, 상기 제1 편광자 보호필름은 상기 투명 도전층 상에 직접적으로 형성될 수 있다.The display apparatus of the present invention includes a display unit and a polarization integrated transparent electrode film formed on the display unit, wherein the polarization integrated transparent electrode film includes a transparent conductive layer, a first polarizer protective film, a polarizer, and a second polarizer protective film. These are sequentially formed, the first polarizer protective film may be formed directly on the transparent conductive layer.
본 발명은 편광자의 하부 보호필름이 투명 도전층의 기재층 역할을 할 수 있고 투명 도전층의 패턴이 외부에서는 시인되지 않게 하고, 동시에 디스플레이 장치의 시인성을 좋게 할 수 있는 디스플레이 장치를 제공하였다.The present invention provides a display device capable of acting as a base layer of the transparent conductive layer and preventing the pattern of the transparent conductive layer from being visible from the outside, and at the same time, improving the visibility of the display device.
본 발명은 점/접착층 없이 투명 도전층을 편광필름에 적층시킬 수 있어서 디스플레이 장치를 박형화시킬 수 있고, 간단한 공정으로 제조할 수 있게 하는 디스플레이 장치를 제공하였다.The present invention provides a display apparatus which can laminate a transparent conductive layer on a polarizing film without a point / adhesive layer, thereby making the display apparatus thin, and making it possible to manufacture in a simple process.
본 발명은 투명 도전층의 금속 나노와이어로 인한 편광자 손상을 억제할 수 있는 디스플레이 장치를 제공하였다.The present invention provides a display device capable of suppressing polarizer damage due to metal nanowires of a transparent conductive layer.
도 1은 본 발명의 일 실시예의 디스플레이 장치의 단면도이다.1 is a cross-sectional view of a display device according to an embodiment of the present invention.
도 2는 본 발명의 다른 실시예의 디스플레이 장치의 단면도이다.2 is a cross-sectional view of a display device according to another embodiment of the present invention.
첨부한 도면을 참고하여 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성 요소에 대해서는 동일한 도면 부호를 붙였다.DETAILED DESCRIPTION Hereinafter, exemplary embodiments will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention. The drawings and description are to be regarded as illustrative in nature and not restrictive. Like reference numerals designate like elements throughout the specification.
본 명세서에서 "상부"와 "하부"는 도면을 기준으로 정의한 것으로서, 시 관점에 따라 "상부"가 "하부"로 "하부"가 "상부"로 변경될 수 있고, "위(on)" 또는 "상(on)"으로 지칭되는 것은 바로 위뿐만 아니라 중간에 다른 구조를 개재한 경우도 포함할 수 있다. 반면, "직접 위(directly on)" 또는 "바로 위" 또는 "직접적으로 형성"으로 지칭되는 것은 중간에 다른 구조를 개재하지 않은 것을 의미한다.In the present specification, "upper" and "lower" are defined based on the drawings, and according to a viewpoint, "upper" may be changed to "lower" and "lower" to "upper", and "on" or What is referred to as “on” may include not only the above but also intervening other structures in the middle. On the other hand, what is referred to as "directly on" or "directly on" or "directly formed" means not intervening in the other structures.
본 명세서에서 "(메트)아크릴"은 아크릴 및/또는 메타아크릴을 의미한다. 본 명세서에서 "점/접착층"은 점착층, 접착층 단독 또는 하나 이상의 점착층, 접착층이 적층된 경우를 포함한다.As used herein, "(meth) acryl" refers to acrylic and / or methacryl. As used herein, “point / adhesive layer” includes a case where an adhesive layer, an adhesive layer alone or one or more adhesive layers, and an adhesive layer are stacked.
본 명세서에서 "면내 위상차(Re)"는 파장 550nm에서의 값이고, 하기 식 A로 표시될 수 있다:As used herein, "in-plane retardation (Re)" is a value at a wavelength of 550 nm and may be represented by the following formula A:
<식 A><Formula A>
Re = (nx - ny) x dRe = (nx-ny) x d
상기 식 A에서, nx는 파장 550nm에서 해당 광학 소자의 x축 방향의 굴절률, ny는 파장 550nm에서 해당 광학소자의 y축 방향의 굴절률, d는 해당 광학 소자의 두께(단위:nm)를 의미한다.In Equation A, nx denotes a refractive index in the x-axis direction of the optical element at a wavelength of 550 nm, ny denotes a refractive index in the y-axis direction of the optical element in a wavelength of 550 nm, and d denotes a thickness (unit: nm) of the optical element. .
이하, 도 1을 참고하여 본 발명의 일 실시예의 디스플레이 장치를 설명한다. 도 1은 본 발명의 일 실시예의 디스플레이 장치의 단면도이다.Hereinafter, a display device according to an embodiment of the present invention will be described with reference to FIG. 1. 1 is a cross-sectional view of a display device according to an embodiment of the present invention.
도 1을 참고하면, 일 실시예의 디스플레이 장치(100)는 디스플레이부(110) 및 편광 일체형 투명 도전 필름(120)을 포함할 수 있다.Referring to FIG. 1, the display apparatus 100 according to an exemplary embodiment may include a display 110 and a polarization integrated transparent conductive film 120.
디스플레이부(110)는 디스플레이 장치(100)를 구동시키는 것으로, 디스플레이 장치의 종류에 따라 당업자에게 알려진 구조를 포함할 수 있다.The display unit 110 drives the display apparatus 100 and may include a structure known to those skilled in the art according to the type of display apparatus.
디스플레이부(110)는 기판 및 기판 상에 형성된 OLED, LED 또는 LCD 등의 광학 소자를 포함할 수 있다. 기판은 유리 기판이 될 수도 있으나, 플렉시블 기판으로 플렉시블 디스플레이 장치에 사용 가능하게 할 수 있다. 구체적으로, 플렉시블 기판은 실리콘(silicone), 폴리이미드, 폴리카보네이트, 폴리아크릴레이트 등으로 형성된 기판을 포함할 수 있지만, 이에 제한되지 않는다. OLED, LED 또는 LCD 광학 소자는 당업자에게 알려진 통상의 구조를 포함할 수 있다. 일 구체예에서, 디스플레이부는 기판, 박막 트랜지스터, 유기발광다이오드, 평탄화층, 보호막, 절연막 등을 포함하는 OLED 광학 소자를 포함하는 유기발광표시장치용 패널이 될 수 있다. 다른 구체예에서, 디스플레이부는 기판 상에 액정층이 형성된 LCD 광학 소자를 포함하는 액정표시장치용 패널이 될 수 있다. 액정층은 VA(vertical alignment) 모드, IPS(in plane switching) 모드, PLS(plane to line switching) 모드, PVA(patterned vertical alignment) 모드 또는 S-PVA(super-patterned vertical alignment) 모드를 채용할 수 있지만, 이에 제한되지 않는다.The display unit 110 may include a substrate and an optical element such as an OLED, an LED, or an LCD formed on the substrate. The substrate may be a glass substrate, but may be used in a flexible display device as a flexible substrate. Specifically, the flexible substrate may include, but is not limited to, a substrate formed of silicon, polyimide, polycarbonate, polyacrylate, or the like. OLED, LED or LCD optical devices can include conventional structures known to those skilled in the art. In one embodiment, the display unit may be a panel for an organic light emitting display device including an OLED optical element including a substrate, a thin film transistor, an organic light emitting diode, a planarization layer, a protective film, an insulating film and the like. In another embodiment, the display unit may be a panel for a liquid crystal display including an LCD optical element having a liquid crystal layer formed on a substrate. The liquid crystal layer may adopt VA (vertical alignment) mode, IPS (in plane switching) mode, PLS (plane to line switching) mode, PVA (patterned vertical alignment) mode, or S-PVA (super-patterned vertical alignment) mode. However, it is not limited thereto.
편광 일체형 투명 도전 필름(120)은 디스플레이부(110) 상에 형성되어, 편광 기능과 도전성 기능을 동시에 구현한다.The polarization integrated transparent conductive film 120 is formed on the display unit 110 to simultaneously implement a polarization function and a conductive function.
편광 일체형 투명 도전 필름(120)은 투명 도전층(121), 제1 편광자 보호필름(122), 편광자(123) 및 제2 편광자 보호필름(124)이 순차적으로 형성된 것이다. 상기 편광 일체형 투명 도전 필름(120)은 편광필름과 투명 도전층(121)이 일체형으로 형성되어 편광필름 상에 다층의 필름이 적층되지 않고 편광자의 하부 보호필름이 투명 도전층(121)의 기재층 역할을 하여 투명 도전층(121)의 기재층이 별도로 형성되지 않아도 되어서 박막화에 유리하고 간단한 공정으로 제조할 수 있을 뿐만 아니라 광학 특성이 상이한 각층의 특성으로 인해 디스플레이의 광학적 특성이 열화되거나 시인성이 악화되지 않는다.The polarization integrated transparent conductive film 120 is a transparent conductive layer 121, the first polarizer protective film 122, the polarizer 123 and the second polarizer protective film 124 are sequentially formed. The polarizing integrated transparent conductive film 120 has a polarizing film and a transparent conductive layer 121 formed integrally so that a multilayer film is not laminated on the polarizing film and the lower protective film of the polarizer is the base layer of the transparent conductive layer 121. Since the base layer of the transparent conductive layer 121 does not need to be formed separately, it is advantageous for thinning and can be manufactured in a simple process, and the optical properties of the display are deteriorated or the visibility is deteriorated due to the characteristics of each layer having different optical properties. It doesn't work.
투명 도전층(121)은 디스플레이부(110) 상에 형성되어, 디스플레이 장치에 도전성 및 터치패널 기능을 제공할 수 있다. 투명 도전층(121)은 터치 패널을 형성하기 위해 패턴화되어 있을 수 있다. 따라서, 일 실시예의 디스플레이 장치(100)는 투명 도전층(121)이 편광자(123)의 하부에 형성되므로, 편광자(123)에 의해 투명 도전층(121)의 패턴이 시인되지 않게 되고, 디스플레이 장치의 시인성을 좋게 할 수 있다. 또한, 투명 도전층(121)이 손가락 터치에 의해 작동하기 위해서는 투명 도전층(121)과 손가락 사이에 일정 거리가 유지되어야 하는데, 투명 도전층(121) 상에 제1 편광자 보호필름(122), 편광자(123), 제2 편광자 보호필름(124) 등 다층의 필름이 형성되어 있어 종래 더미 필름 등의 추가적인 필름을 적층시키지 않더라도 작동되도록 할 수 있다.The transparent conductive layer 121 may be formed on the display unit 110 to provide conductive and touch panel functions to the display device. The transparent conductive layer 121 may be patterned to form a touch panel. Therefore, in the display device 100 of the exemplary embodiment, since the transparent conductive layer 121 is formed under the polarizer 123, the pattern of the transparent conductive layer 121 is not visually recognized by the polarizer 123, and the display device is displayed. I can improve the visibility. In addition, in order for the transparent conductive layer 121 to operate by a finger touch, a certain distance must be maintained between the transparent conductive layer 121 and the finger. The first polarizer protective film 122 is formed on the transparent conductive layer 121. The multilayer film such as the polarizer 123 and the second polarizer protective film 124 is formed so that it can be operated without additional layers such as a conventional dummy film.
투명 도전층(121)은 제1 편광자 보호필름(122)과 일체형으로 형성됨으로써, 외부의 수분에 의한 편광자의 손상을 막는 기능을 하면서 동시에 터치 전극의 기능을 할 수 있게 된다. 상기 "일체형"은 투명 도전층(121)과 제1 편광자 보호필름(122)이 물리적인 힘에 의해서는 분리되지 않은 것을 의미하며, 투명 도전층(121)과 제1 편광자 보호필름(122) 사이에 점/접착층 등 다른 층이 개재되지 않고 직접적으로 점/접착되어 있는 상태를 의미한다. 투명 도전층(121)과 제1 편광자 보호필름(122)의 적층체의 두께는 약 10㎛ 내지 약 150㎛, 구체적으로 약 20㎛ 내지 약 100㎛가 될 수 있다. 또한, 제 2편광자 보호필름(124)의 두께보다 투명 도전층(121)과 제1 편광자 보호필름(130)을 합한 두께가 얇을수록 박형의 장치를 제조할 수 있으며 플렉시블 장치에 사용하기 용이해진다.Since the transparent conductive layer 121 is integrally formed with the first polarizer protective film 122, the transparent conductive layer 121 may function as a touch electrode while preventing a damage of the polarizer due to external moisture. The "integrated type" means that the transparent conductive layer 121 and the first polarizer protective film 122 are not separated by physical force, and between the transparent conductive layer 121 and the first polarizer protective film 122. In other words, it means a state in which a point / adhesive layer is directly interposed without other layers such as a point / adhesive layer. The thickness of the laminate of the transparent conductive layer 121 and the first polarizer protective film 122 may be about 10 μm to about 150 μm, specifically about 20 μm to about 100 μm. In addition, as the thickness of the transparent conductive layer 121 and the first polarizer protective film 130 is thinner than the thickness of the second polarizer protective film 124, a thinner device may be manufactured and easier to use in a flexible device.
투명 도전층(121)은 제1 편광자 보호필름(122)에 직접적으로 형성되어 있다. 따라서, OCA(optical clear adhesive) 등의 점/접착층을 사용하지 않고서도 투명 도전층(121)이 제1 편광자 보호필름(122)에 적층되어 있어서, 디스플레이 장치를 박형화시킬 수 있고, 간단한 공정으로 제조되도록 할 수 있다. 예를 들면, 투명 도전층(121)은 투명 도전층 형성용 조성물을 제1 편광자 보호필름(122)에 도포하여 형성될 수 있다. 투명 도전층(121)은 도전성 네트워크 및 도전성 네트워크가 함침된 매트릭스를 포함할 수 있다. The transparent conductive layer 121 is formed directly on the first polarizer protective film 122. Therefore, the transparent conductive layer 121 is laminated on the first polarizer protective film 122 without using a dot / adhesive layer such as an optical clear adhesive (OCA), so that the display device can be thinned and manufactured in a simple process. You can do that. For example, the transparent conductive layer 121 may be formed by applying a composition for forming a transparent conductive layer to the first polarizer protective film 122. The transparent conductive layer 121 may include a conductive network and a matrix impregnated with the conductive network.
도전성 네트워크는 금속 나노와이어로 형성되어 있어, 투명 도전층(121)에 유연성을 제공할 수 있다. 금속 나노와이어의 종횡비는 약 10 내지 약 5,000일 수 있다. 금속 나노와이어의 단면의 직경은 약 0nm 초과 약 100nm 이하, 구체적으로 약 10nm 내지 약 100nm, 더 구체적으로 약 10nm 내지 약 30nm일 수 있다. 금속 나노와이어의 최장 길이는 약 20㎛ 이상, 구체적으로 약 20㎛ 내지 약 50㎛가 될 수 있다. 상기 범위에서, 투명 도전층의 전도성을 높이고 면 저항을 낮출 수 있다. 금속 나노와이어는 은, 구리, 알루미늄, 니켈, 금 중 하나 이상을 포함하는 금속, 구체적으로 은으로 형성될 수 있다. 도전성 네트워크는 습식 박막 코팅으로 형성될 수 있지만, 이에 제한되지 않는다. The conductive network is formed of metal nanowires to provide flexibility to the transparent conductive layer 121. The aspect ratio of the metal nanowires may be about 10 to about 5,000. The diameter of the cross section of the metal nanowire may be greater than about 0 nm and about 100 nm or less, specifically about 10 nm to about 100 nm, more specifically about 10 nm to about 30 nm. The longest length of the metal nanowires may be about 20 μm or greater, specifically about 20 μm to about 50 μm. In the above range, it is possible to increase the conductivity of the transparent conductive layer and lower the sheet resistance. The metal nanowires may be formed of a metal comprising at least one of silver, copper, aluminum, nickel and gold, specifically silver. The conductive network may be formed by a wet thin film coating, but is not limited thereto.
매트릭스는 제1 편광자 보호필름(122)에 직접적으로 형성되어, 제1 편광자 보호필름(122)과 투명 도전층(121)의 결합을 강하게 하고, 금속 나노와이어의 산화를 방지하여 투명 도전층의 면저항 상승을 막을 수 있다. The matrix is formed directly on the first polarizer protective film 122 to strengthen the bonding between the first polarizer protective film 122 and the transparent conductive layer 121 and to prevent oxidation of the metal nanowires, thereby preventing the sheet resistance of the transparent conductive layer. You can stop the rise.
매트릭스는 5관능 이상의 (메트)아크릴계 화합물, 3관능 내지 4관능의 (메트)아크릴계 화합물, 및 개시제를 포함하는 매트릭스용 조성물로 형성됨으로써, 투명 도전층(121)을 지지하고, 제1 편광자 보호필름(122)의 위상차에 대한 영향을 최소화하며 금속 나노와이어로 형성된 도전성 네트워크의 광학특성을 향상시킬 수 있다. The matrix is formed of a matrix composition containing a 5- or more functional (meth) acrylic compound, a trifunctional to tetrafunctional (meth) acrylic compound, and an initiator, thereby supporting the transparent conductive layer 121 to support the first polarizer protective film. Minimize the influence on the phase difference of the 122 and can improve the optical properties of the conductive network formed of metal nanowires.
5관능 이상의 (메트)아크릴계 화합물은 5관능 내지 10관능의 (메트)아크릴계 모노머, 5관능 내지 10관능의 (메트)아크릴계 올리고머 중 하나 이상을 포함할 수 있고, 당업자에게 알려진 통상의 종류를 포함할 수 있다. 이러한 경우, 매트릭스가 투명 도전층(121)을 지지하는 특성이 우수하면서, 투명 도전층(121)의 광학특성을 더욱 향상시킬 수 있다.The 5- or more functional (meth) acrylic compounds may include one or more of 5- to 10-functional (meth) acrylic monomers and 5- to 10-functional (meth) acrylic oligomers, and may include conventional types known to those skilled in the art. Can be. In this case, while the matrix supports the transparent conductive layer 121, the optical characteristics of the transparent conductive layer 121 can be further improved.
5관능 내지 10관능의 (메트)아크릴계 모노머는 C3 내지 C20의 다가 알코올의 5관능 내지 10관능의 (메트)아크릴계 모노머로서, 예를 들면, 디펜타에리트리톨펜타(메트)아크릴레이트, 디펜타에리트리톨헥사(메트)아크릴레이트, 카프로락톤 변성 디펜타에리트리톨펜타(메트)아크릴레이트, 카프로락톤 변성 디펜타에리트리톨헥사(메트)아크릴레이트 중 하나 이상을 포함할 수 있다. The 5- or 10-functional (meth) acrylic monomer is a 5- or 10-functional (meth) acrylic monomer of a C3 to C20 polyhydric alcohol, for example, dipentaerythritol penta (meth) acrylate or dipentaerytate. It may include one or more of ritol hexa (meth) acrylate, caprolactone modified dipentaerythritol penta (meth) acrylate, caprolactone modified dipentaerythritol hexa (meth) acrylate.
5관능 내지 10관능의 (메트)아크릴계 올리고머는 5관능 내지 10관능의, 우레탄 (메트)아크릴레이트 올리고머, 폴리에스테르 (메트)아크릴레이트 올리고머, 에폭시 (메트)아크릴레이트 올리고머, 실리콘 함유 (메트)아크릴레이트 올리고머 중 하나 이상을 포함할 수 있다. The 5- or 10-functional (meth) acrylic oligomer is a 5- or 10-functional urethane (meth) acrylate oligomer, polyester (meth) acrylate oligomer, epoxy (meth) acrylate oligomer, silicone-containing (meth) acryl One or more of the rate oligomers.
3관능 내지 4관능의 (메트)아크릴계 화합물은 우레탄기를 갖지 않는 비-우레탄계 (메트)아크릴계 모노머 중 하나 이상을 포함할 수 있고, 당업자에게 알려진 통상의 (메트)아크릴계 화합물을 포함할 수 있다. 이러한 경우, 매트릭스가 투명 도전층(121)을 지지하는 특성이 우수하면서, 투명 도전층(121)의 광학특성을 더욱 향상시킬 수 있다.The trifunctional to tetrafunctional (meth) acrylic compound may include one or more of non-urethane based (meth) acrylic monomers having no urethane group, and may include conventional (meth) acrylic compounds known to those skilled in the art. In this case, while the matrix supports the transparent conductive layer 121, the optical characteristics of the transparent conductive layer 121 can be further improved.
3관능 또는 4관능 (메트)아크릴계 모노머는 예를 들면, 트리메틸올프로판트리(메트)아크릴레이트, 글리세롤트리(메트)아크릴레이트, 펜타에리트리톨트리(메트)아크릴레이트, 디펜타에리트리톨트리(메트)아크릴레이트 중 하나 이상을 포함하는 비-개질된 C3 내지 C20의 다가알코올의 (메트)아크릴계 모노머, 에톡시화된 트리메틸올프로판트리(메트)아크릴레이트, 프로폭시화된 글리세릴트리(메트)아크릴레이트 중 하나 이상을 포함하는 알콕시기로 개질된 C3 내지 C20의 다가알코올의 (메트)아크릴계 모노머 중 하나 이상을 포함하는 알콕시기(예: C1 내지 C5의 알콕시기, 예를 들면 에톡시기, 프로폭시기, 또는 부톡시기)로 개질된 C3 내지 C20의 다가알코올의 (메트)아크릴계 모노머 중 하나 이상을 포함할 수 있다. 알콕시기로 개질된 C3 내지 C20의 다가알코올의 (메트)아크릴계 모노머는 비-개질된 C3 내지 C20의 다가알코올의 (메트)아크릴계 모노머 대비 투명 도전층의 광투과도, 신뢰성을 더 높일 수 있고, 미세 패턴화에 더 유리할 수 있다. The trifunctional or tetrafunctional (meth) acrylic monomers are, for example, trimethylolpropane tri (meth) acrylate, glycerol tri (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol tri (meth) (Meth) acrylic monomers of non-modified C3 to C20 polyhydric alcohols comprising at least one of acrylates, ethoxylated trimethylolpropanetri (meth) acrylates, propoxylated glyceryltri (meth) acrylates Alkoxy groups containing at least one of the (meth) acrylic monomers of C3 to C20 polyhydric alcohols modified with an alkoxy group containing at least one of the rates (e.g., C1 to C5 alkoxy groups such as ethoxy groups, propoxy groups Or a (meth) acrylic monomer of C3 to C20 polyhydric alcohol modified with a butoxy group). The (meth) acrylic monomer of the C3 to C20 polyhydric alcohol modified with the alkoxy group can improve the light transmittance and reliability of the transparent conductive layer more than the (meth) acrylic monomer of the non-modified C3 to C20 polyhydric alcohol, and fine pattern May be more favorable to anger.
개시제는 광중합 개시제, 열중합 개시제 중 하나 이상을 포함할 수 있다. 개시제는 흡수파장 약 150nm 내지 약 500nm의 광중합 개시제를 포함할 수 있다. 구체적으로, 개시제는 알파-히드록시 케톤계 또는 알파-아미노 케톤계 중 하나 이상, 예를 들면 1-히드록시시클로헥실페닐케톤이 될 수 있다. The initiator may comprise one or more of a photopolymerization initiator and a thermal polymerization initiator. The initiator may comprise a photopolymerization initiator having an absorption wavelength of about 150 nm to about 500 nm. Specifically, the initiator may be at least one of an alpha-hydroxy ketone system or an alpha-amino ketone system, for example 1-hydroxycyclohexylphenylketone.
매트릭스용 조성물은 부착 증진제, 산화 방지제, 저굴절률화제, 용제, 첨가제 중 하나 이상을 더 포함할 수 있다. The matrix composition may further include at least one of an adhesion promoter, an antioxidant, a low refractive index agent, a solvent, and an additive.
부착 증진제는 실란커플링제, 1관능의 (메트)아크릴계 모노머, 2관능의 (메트)아크릴계 모노머 중 하나 이상을 포함할 수 있다. The adhesion promoter may include one or more of a silane coupling agent, a monofunctional (meth) acrylic monomer, and a bifunctional (meth) acrylic monomer.
실란커플링제는 통상의 알려진 실란커플링제를 사용할 수 있다. 구체적으로, 실란커플링제는 3-글리시드옥시프로필트리메톡시실란, 3-글리시드옥시프로필메틸디메톡시실란, 2-(3,4-에폭시시클로헥실)에틸트리메톡실란 등의 에폭시기를 갖는 실란커플링제; 비닐 트리메톡시실란, 비닐트리에톡시실란, (메트)아크릴옥시프로필트리메톡시실란 등의 중합성 불포화기 함유 실란커플링제; 3-아미노프로필트리메톡시실란, 3-아미노프로필트리에톡시실란, N-(2-아미노에틸)-3-아미노프로필트리메톡시실란, N-(2-아미노에틸)-3-아미노프로필메틸디메톡시실란 등의 아미노기 함유 실란커플링제 중 하나 이상을 사용할 수 있다. The silane coupling agent may use a conventionally known silane coupling agent. Specifically, the silane coupling agent has a silane having an epoxy group such as 3-glycidoxyoxytrimethoxysilane, 3-glycidoxyoxymethyldimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, and the like. Coupling agents; Polymerizable unsaturated group-containing silane coupling agents such as vinyl trimethoxysilane, vinyltriethoxysilane and (meth) acryloxypropyltrimethoxysilane; 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropylmethyl One or more of amino group-containing silane coupling agents such as dimethoxysilane can be used.
1관능 또는 2관능의 (메트)아크릴계 모노머는 C3 내지 C20의 다가알코올의, 1관능 또는 2관능의 (메트)아크릴계 모노머로서, 이소보르닐(메트)아크릴레이트, 사이클로펜틸 (메트)아크릴레이트, 사이클로헥실(메트)아크릴레이트, 트리메틸올프로판 디(메트)아크릴레이트, 에틸렌글리콜디(메트)아크릴레이트, 트리사이클로데칸 디메탄올 디(메트)아크릴레이트, 네오펜틸글리콜 디(메트)아크릴레이트, 헥산디올디(메트)아크릴레이트, 사이클로데칸디메탄올 디(메트)아크릴레이트 중 하나 이상을 포함할 수 있다. Monofunctional or bifunctional (meth) acrylic monomers are mono- or difunctional (meth) acrylic monomers of C3 to C20 polyhydric alcohols, including isobornyl (meth) acrylate, cyclopentyl (meth) acrylate, Cyclohexyl (meth) acrylate, trimethylolpropane di (meth) acrylate, ethylene glycol di (meth) acrylate, tricyclodecane dimethanol di (meth) acrylate, neopentylglycol di (meth) acrylate, hexane Dioldi (meth) acrylate, cyclodecanedimethanol di (meth) acrylate.
산화 방지제는 포스파이트계 등의 인계 산화방지제, HALS(Hinder amine light stabilizer)계 산화방지제, 페놀계 산화방지제, 금속 아세틸아세토네이트계 산화방지제, 트리아졸계 산화방지제, 트리아진계 산화방지제 중 하나 이상을 포함할 수 있다. 구체적으로, 인계 산화방지제는 트리스(2,4-디-터트-부틸페닐)포스파이트, 페놀계 산화방지제는 펜타에리트리톨테트라키스(3-(3,5-디-터트-부틸-4-히드록시페닐)프로피오네이트가 될 수 있다. HALS계 산화방지제는 비스(2,2,6,6-테트라메틸-4-피페리딜)세바케이트, 비스(2,2,6,6-테트라메틸-4-피페리디닐)세바케이트, 비스(2,2,6,6-테트라메틸-5-피페리디닐)세바케이트, 4-히드록시-2,2,6,6-테트라메틸-1-피페리딘-에탄올을 갖는 디메틸숙시네이트 공중합체, 2,4-비스[N-부틸-N-(1-시클로헥실옥시-2,2,6,6-테트라메틸피페리딘-4-일)아미노]-6-(2-히드록시에틸아민)-1,3,5-트리아진 등을 포함할 수 있지만, 이에 제한되지 않는다. 금속 아세틸아세토네이트계 산화방지제는 트리스(아세틸아세토네이토)철(III), 트리스(아세틸아세토네이토)크롬(III) 등을 포함할 수 있지만, 이에 제한되지 않는다. Antioxidants include one or more of phosphorus antioxidants such as phosphite, HLS (Hinder amine light stabilizer) antioxidants, phenolic antioxidants, metal acetylacetonate antioxidants, triazole antioxidants, triazine antioxidants can do. Specifically, the phosphorus antioxidant is tris (2,4-di-tert-butylphenyl) phosphite, and the phenolic antioxidant is pentaerythritol tetrakis (3- (3,5-di-tert-butyl-4-hydrate Hydroxyphenyl) propionate HALS-based antioxidants are bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (2,2,6,6-tetramethyl -4-piperidinyl) sebacate, bis (2,2,6,6-tetramethyl-5-piperidinyl) sebacate, 4-hydroxy-2,2,6,6-tetramethyl-1- Dimethylsuccinate copolymer with piperidine-ethanol, 2,4-bis [N-butyl-N- (1-cyclohexyloxy-2,2,6,6-tetramethylpiperidin-4-yl ) Amino] -6- (2-hydroxyethylamine) -1,3,5-triazine, etc. The metal acetylacetonate-based antioxidant is tris (acetylacetonato) Iron (III), tris (acetylacetonato) chrome (III), and the like, but are not limited thereto. Do not.
저굴절률화제는 투명 도전층의 굴절률을 낮추는 것으로, 중공 실리카, 불소 화합물 중 하나 이상을 포함할 수 있다. 용제는 매트릭스용 조성물의 코팅성을 높이는 것으로, 케톤계 용매, 알코올계 용매 중 하나 이상을 포함할 수 있다. The low refractive index agent lowers the refractive index of the transparent conductive layer, and may include one or more of hollow silica and a fluorine compound. The solvent increases the coating property of the composition for the matrix, and may include one or more of a ketone solvent and an alcohol solvent.
첨가제는 대전방지제, 자외선 흡수제, 점도 조절제, 열안정제, 분산제, 증점제 중 하나 이상을 포함할 수 있다. The additives may include one or more of antistatic agents, ultraviolet absorbers, viscosity modifiers, heat stabilizers, dispersants, thickeners.
일 구체예에서, 매트릭스용 조성물은 5관능 이상의 (메트)아크릴계 화합물 약 60중량% 내지 약 85중량%, 2관능 내지 4관능의 (메트)아크릴계 화합물 약 15중량% 내지 약 30중량%, 및 개시제 약 1중량% 내지 약 15중량%를 포함할 수 있다. 상기 범위에서, 상술한 매트릭스의 효과가 모두 구현될 수 있다. 부착 증진제, 산화방지제, 저굴절률화제는 각각 5관능 이상의 (메트)아크릴계 화합물, 2관능 내지 4관능의 (메트)아크릴계 화합물 및 개시제의 총합 100중량부에 대해 약 0.01중량부 내지 약 15중량부로 포함될 수 있다. 상기 범위에서, 투명 도전성에 영향을 주지 않으면서 해당 효과를 구현할 수 있다.In one embodiment, the composition for the matrix comprises about 60% to about 85% by weight of the at least 5 functional (meth) acrylic compound, about 15% to about 30% by weight of the bifunctional to tetrafunctional (meth) acrylic compound, and an initiator About 1% to about 15% by weight. In this range, all the effects of the above-described matrix can be implemented. The adhesion promoter, the antioxidant, and the low refractive index agent may be included in an amount of about 0.01 part by weight to about 15 parts by weight based on 100 parts by weight of a total of five or more functional (meth) acrylic compounds, bifunctional to tetrafunctional (meth) acrylic compounds, and an initiator. Can be. In the above range, the effect can be implemented without affecting the transparent conductivity.
투명 도전층(121)은 두께가 약 50nm 내지 약 150nm, 구체적으로 약 50nm 내지 약 80nm가 될 수 있다. 상기 범위에서, 디스플레이 장치에 사용될 수 있다. 도 1에서 도시되지 않았지만, 투명 도전층(121)은 점/접착층에 의해 디스플레이부(110) 상에 형성될 수 있다. 점/접착층은 당업자에게 알려진 통상의 점착제 예를 들면 (메트)아크릴계, 에폭시계, 실리콘계 점착제 등으로 형성될 수 있지만, 이에 제한되지는 않는다. 점/접착층은 두께가 약 200㎛ 이하, 구체적으로 약 20㎛ 내지 약 100㎛가 될 수 있다.The transparent conductive layer 121 may have a thickness of about 50 nm to about 150 nm, specifically about 50 nm to about 80 nm. In the above range, it can be used in the display device. Although not shown in FIG. 1, the transparent conductive layer 121 may be formed on the display unit 110 by a dot / adhesive layer. The point / adhesive layer may be formed of conventional adhesives known to those skilled in the art, for example, (meth) acrylic, epoxy, silicone adhesives, and the like, but is not limited thereto. The point / adhesive layer may have a thickness of about 200 μm or less, specifically about 20 μm to about 100 μm.
제1 편광자 보호필름(122)은 편광자(123) 상에 형성되고, 투명 도전층(121) 상에 직접적으로 형성되어, 편광자(123)를 보호하고 지지하며 투명 도전층(121)을 지지하고, 투명 도전층(121)의 금속 나노와이어로 인한 편광자(123)의 손상을 막을 수 있다.The first polarizer protective film 122 is formed on the polarizer 123, formed directly on the transparent conductive layer 121, to protect and support the polarizer 123, and to support the transparent conductive layer 121, Damage to the polarizer 123 due to the metal nanowires of the transparent conductive layer 121 may be prevented.
제1 편광자 보호필름(122)은 디스플레이부(110)의 종류에 따라 소정 범위의 위상차를 갖거나 위상차가 없는 무위상차 필름(제로 위상차 필름)이 될 수 있다. 제1 편광자 보호필름(122)이 Re가 실질적으로 약 0nm에 가까운 무위상차 필름인 경우, 빛의 왜곡이 없게 하여 시야각을 좋게 하고, 빛의 응답 속도가 좋게 할 수도 있다. 상기 "실질적으로 약 0nm에 가까운"는 0nm뿐만 아니라 일반적으로 10nm 이하를 포함할 수 있다. 제1 편광자 보호필름(122)이 소정 범위의 위상차를 갖는 위상차 필름인 경우 디스플레이 장치의 시인성을 좋게 할 수 있다. 구체적으로, 제1 편광자 보호필름(122)은 Re가 약 110nm 내지 약 160nm, 더 구체적으로 약 130nm 내지 약 140nm인 위상차를 가질 수 있고, 보다 더 구체적으로 quarter-wave retardation film인 λ/4 위상차 필름이 될 수 있다. 구체적으로, 제1 편광자 보호필름(122)은 Re가 약 200nm 내지 약 350nm 더 구체적으로 약 225nm 내지 약 300nm의 위상차를 가질 수 있고, 보다 더 구체적으로 half-wave retardation film인 λ/2 위상차 필름이 될 수 있다. 또는, 구체적으로 제1 편광자 보호필름(122)은 Re가 약 8,000 nm 이상, 더 구체적으로 약 10,000nm 이상, 약 10,000nm 초과, 보다 더 구체적으로 약 10,100nm 내지 약 15,000nm가 될 수 있다. 상기 범위에서, 무지개 얼룩이 시인되지 않게 할 수 있다.The first polarizer protective film 122 may be a phase-free film (zero retardation film) having a phase difference or no phase difference according to the type of the display unit 110. When the first polarizer protective film 122 is a phase difference film of which Re is substantially close to about 0 nm, there is no distortion of the light to improve the viewing angle and improve the response speed of the light. The term "substantially close to about 0 nm" may include not only 0 nm but generally 10 nm or less. When the first polarizer protective film 122 is a phase difference film having a phase difference in a predetermined range, visibility of the display device may be improved. Specifically, the first polarizer protective film 122 may have a phase difference of Re of about 110 nm to about 160 nm, more specifically about 130 nm to about 140 nm, and more specifically, lambda / 4 phase difference film is a quarter-wave retardation film This can be Specifically, the first polarizer protective film 122 may have a phase difference of about 200 nm to about 350 nm, more specifically, about 225 nm to about 300 nm, and more specifically, a lambda / 2 phase difference film that is a half-wave retardation film. Can be. Alternatively, specifically, the first polarizer protective film 122 may have Re of about 8,000 nm or more, more specifically about 10,000 nm or more, more than about 10,000 nm, and more specifically about 10,100 nm to about 15,000 nm. Within this range, rainbow stains can be prevented from being recognized.
이때, 투명 도전층(121)과 제1 편광자 보호필름(122)의 적층체는 파장 550nm에서 면내 위상차 Re가 약 200nm 내지 약 300nm가 될 수 있다. 상기 범위에서, 해당 효과를 구현할 수 있다. 제1 편광자 보호필름(122)은 하기에 후술하는 제2 편광자 보호필름(124)와 동일 또는 서로 다른 면내 위상차 Re를 가질 수 있다.In this case, the in-plane retardation Re of the laminate of the transparent conductive layer 121 and the first polarizer protective film 122 may be about 200 nm to about 300 nm at a wavelength of 550 nm. In the above range, the effect can be implemented. The first polarizer protective film 122 may have the same or different in-plane retardation Re as the second polarizer protective film 124 described below.
제1 편광자 보호필름(122)은 광학적으로 투명한, 폴리머 필름 또는 액정 필름이 될 수 있다. 구체적으로, 제1 편광자 보호필름(122)은 파장 550nm에서 광투과도가 약 80% 이상, 구체적으로 약 80% 내지 약 100%인 필름이 될 수 있다. 일 구체예에서, 제1 편광자 보호필름은 폴리에틸렌테레프탈레이트, 폴리에틸렌나프탈레이트, 폴리부틸렌테레프탈레이트, 폴리부틸렌나프탈레이트 등을 포함하는 폴리에스테르, 시클로올레핀폴리머, 트리아세틸셀룰로스 등을 포함하는 셀룰로스에스테르, 폴리카보네이트, 폴리이미드, 폴리스티렌, 폴리에테르술폰, 폴리메틸메타아크릴레이트 등을 포함하는 폴리(메트)아크릴레이트, 실리콘 중 하나 이상으로 형성된 비액정성 폴리머로 형성된 필름이 될 수 있다. 구체적으로, 제1 편광자 보호필름은 상기 수지로 형성된 필름을 소정의 연신비로 연신시킨 필름이 될 수 있다. 다른 구체예에서, 제1 편광자 보호필름은 액정으로 형성된 필름이 됨으로써 얻어지는 굴절률 차이를 비액정성 폴리머에 비해 크게 함으로써 위상차를 갖는 제1 편광자 보호필름의 경우 두께를 현격히 작게 할 수 있다. 액정 재료로서는 액정 모노머, 액정 폴리머가 가능하고, 액정성은 리오트로픽(lyotropic) 또는 서모트로픽(thermotropic) 어느 것이어도 된다. 구체적으로, 액정 모노머는 네마틱(nematic) 액정 모노머가 될 수 있으며, 액정 모노머를 배향시킨 후에 액정 모노머를 중합 또는 가교시킴으로써 액정의 배향 상태를 고정시킬 수 있다. 제1 편광자 보호필름(122)은 두께가 약 50㎛ 이하, 구체적으로 약 10㎛ 내지 약 50㎛, 예를 들면, 10㎛, 15㎛, 20㎛, 25㎛, 30㎛, 35㎛, 40㎛, 45㎛, 50㎛가 될 수 있다. 상기 범위에서, 디스플레이 장치에 사용될 수 있다. The first polarizer protective film 122 may be an optically transparent polymer film or liquid crystal film. Specifically, the first polarizer protective film 122 may be a film having a light transmittance of about 80% or more, specifically about 80% to about 100% at a wavelength of 550nm. In one embodiment, the first polarizer protective film is a polyester, including polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, polybutylene naphthalate, cellulose esters including cycloolefin polymer, triacetyl cellulose, and the like, It may be a film formed of a non-liquid crystalline polymer formed of at least one of poly (meth) acrylate, silicone, including polycarbonate, polyimide, polystyrene, polyethersulfone, polymethylmethacrylate, and the like. Specifically, the first polarizer protective film may be a film obtained by stretching the film formed of the resin at a predetermined draw ratio. In another embodiment, the thickness of the first polarizer protective film having a phase difference may be significantly reduced by increasing the refractive index difference obtained by the film formed of the liquid crystal compared to the non-liquid crystalline polymer. As a liquid crystal material, a liquid crystal monomer and a liquid crystal polymer are possible, and liquid crystal may be either lyotropic or thermotropic. Specifically, the liquid crystal monomer may be a nematic liquid crystal monomer, and after the alignment of the liquid crystal monomer, the alignment state of the liquid crystal may be fixed by polymerizing or crosslinking the liquid crystal monomer. The first polarizer protective film 122 has a thickness of about 50 μm or less, specifically about 10 μm to about 50 μm, for example, 10 μm, 15 μm, 20 μm, 25 μm, 30 μm, 35 μm, 40 μm , 45 μm, 50 μm. In the above range, it can be used in the display device.
편광자(123)는 제1 편광자 보호필름(122) 상에 형성되어, 입사된 광을 선 편광으로 출사시킬 수 있다.The polarizer 123 may be formed on the first polarizer protective film 122 to emit incident light by linearly polarized light.
편광자(123)는 광학적으로 투명하며, 폴리비닐알콜계 편광자 또는 액정 편광자가 될 수 있다. 구체적으로, 편광자는 폴리비닐알콜계 필름에 요오드 등의 이색성 물질을 흡착시켜 1축 연신시켜 제조된 폴리비닐알콜계 편광자, 폴리비닐알콜계 필름을 유기산 등의 탈수 촉매로 탈수시킨 폴리엔계 편광자, 또는 콜레스테릭(cholesteric) 액정, 리오트로픽(lyotropic) 액정 등을 코팅 또는 전사 후 특정 방향으로 배향시켜 배향 방향에 따라 편광을 유도하는 액정 편광자가 될 수 있다. 편광자(123)는 두께가 약 50㎛ 이하, 약 5㎛ 이하, 구체적으로 약 10㎛ 내지 약 30㎛, 약 1㎛ 내지 약 5㎛, 예를 들면, 1㎛, 2㎛, 3㎛, 4㎛, 5㎛가 될 수 있다. 상기 범위에서, 디스플레이 장치에 사용될 수 있다. The polarizer 123 is optically transparent and may be a polyvinyl alcohol polarizer or a liquid crystal polarizer. Specifically, the polarizer is a polyvinyl alcohol polarizer prepared by adsorbing a dichroic substance such as iodine on a polyvinyl alcohol film, uniaxially stretched, a polyene polarizer obtained by dehydrating a polyvinyl alcohol film with a dehydration catalyst such as an organic acid, Alternatively, a cholesteric liquid crystal, a lyotropic liquid crystal, or the like may be aligned in a specific direction after coating or transfer to form a liquid crystal polarizer that induces polarization according to the alignment direction. The polarizer 123 has a thickness of about 50 μm or less, about 5 μm or less, specifically about 10 μm to about 30 μm, about 1 μm to about 5 μm, for example, 1 μm, 2 μm, 3 μm, 4 μm , 5 μm. In the above range, it can be used in the display device.
제2 편광자 보호필름(124)은 편광자(123) 상 즉, 편광자(123)의 상부에 형성되어 편광자(123)을 보호할 수 있다.The second polarizer protective film 124 may be formed on the polarizer 123, that is, on the polarizer 123 to protect the polarizer 123.
제2 편광자 보호필름(124)은 제1 편광자 보호필름(122)과 동일 또는 이종의 Re를 가질 수 있다. 구체적으로, 제1 편광자 보호필름(122)과 이종의 Re를 가질 경우, 제2 편광자 보호필름(124)은 Re가 약 8,000 nm 이상, 구체적으로 약 10,000nm 이상, 더 구체적으로 약 10,000nm 초과, 더 구체적으로 약 10,100nm 내지 약 15,000nm가 될 수 있다. 상기 범위에서, 무지개 얼룩이 시인되지 않게 할 수 있다. 제1 편광자 보호필름(121)과 제2 편광자 보호필름(124)의 Re를 제어함으로써 디스플레이 장치의 시인성을 좋게 할 수 있다. 제1 편광자 보호필름(122)과 동일한 Re를 가질 경우, 제2 편광자 보호필름(124)은 구체적으로 Re가 약 110nm 내지 약 160nm, 더 구체적으로 약 130nm 내지 약 140nm의 위상차를 가질 수 있고, 예를 들면, quarter-wave retardation film인 λ/4 위상차 필름이 될 수 있다. 또는 제2 편광자 보호필름(124)은 Re가 약 200nm 내지 약 350nm, 더 구체적으로 약 225nm 내지 약 300nm의 위상차를 가질 수 있고, 예를 들면, half-wave retardation film인 λ/2 위상차 필름이 될 수 있다.The second polarizer protective film 124 may have the same or different Re as the first polarizer protective film 122. Specifically, when the first polarizer protective film 122 and heterogeneous Re, the second polarizer protective film 124 has a Re of about 8,000 nm or more, specifically about 10,000 nm or more, more specifically about 10,000 nm, More specifically, it may be about 10,100nm to about 15,000nm. Within this range, rainbow stains can be prevented from being recognized. By controlling the Re of the first polarizer protective film 121 and the second polarizer protective film 124, the visibility of the display device can be improved. When the first polarizer protective film 122 has the same Re, the second polarizer protective film 124 may specifically have a phase difference of about 110 nm to about 160 nm, more specifically about 130 nm to about 140 nm. For example, it may be a λ / 4 retardation film which is a quarter-wave retardation film. Alternatively, the second polarizer protective film 124 may have a phase difference of Re of about 200 nm to about 350 nm, more specifically about 225 nm to about 300 nm, and may be, for example, a lambda / 2 phase difference film that is a half-wave retardation film. Can be.
일 구체예에서, 제1 편광자 보호필름은 Re가 약 110nm 내지 약 160nm 구체적으로 약 130nm 내지 약 140nm의 위상차를 가질 수 있고, 더 구체적으로 quarter-wave retardation film인 λ/4 위상차 필름이 될 수 있고, 제2 편광자 보호필름은 Re가 약 8,000 nm 이상, 구체적으로 약 10,000nm 이상, 더 구체적으로 약 10,000nm 초과, 더 구체적으로 약 10,100nm 내지 약 15,000nm가 될 수 있다.In one embodiment, the first polarizer protective film may have a phase difference of Re of about 110 nm to about 160 nm, specifically about 130 nm to about 140 nm, and more specifically, may be a λ / 4 phase difference film which is a quarter-wave retardation film. The second polarizer protective film may have Re of about 8,000 nm or more, specifically about 10,000 nm or more, more specifically about 10,000 nm or more, and more specifically about 10,100 nm to about 15,000 nm.
제2 편광자 보호필름(124)은 광학적으로 투명한, 폴리머 필름이 될 수 있다. 구체적으로, 제2 편광자 보호필름(124)은 파장 550nm에서 광투과도가 약 80% 이상, 구체적으로 약 80% 내지 약 100%인 필름이 될 수 있다. 구체적으로, 수지는 폴리에틸렌테레프탈레이트, 폴리에틸렌나프탈레이트, 폴리부틸렌테레프탈레이트, 폴리부틸렌나프탈레이트 등을 포함하는 폴리에스테르 수지, 시클로올레핀폴리머 수지, 트리아세틸셀룰로스 등을 포함하는 셀룰로스에스테르 수지, 폴리카보네이트 수지, 폴리이미드 수지, 폴리스티렌 수지, 폴리에테르술폰 수지, 폴리메틸메타아크릴레이트 등을 포함하는 폴리(메트)아크릴레이트 수지, 실리콘 수지 중 하나 이상을 포함할 수 있지만, 이에 제한되지 않는다. 제2 편광자 보호필름(124)은 두께가 약 10㎛ 내지 약 200㎛, 구체적으로 약 30㎛ 내지 약 100㎛, 예를 들면, 30㎛, 35㎛, 40㎛, 45㎛, 50㎛, 55㎛, 60㎛, 65㎛, 70㎛, 75㎛, 80㎛, 85㎛, 90㎛, 95㎛, 100㎛가 될 수 있다. 상기 범위에서 도전성 윈도우 필름에 사용될 수 있다.The second polarizer protective film 124 may be an optically transparent polymer film. Specifically, the second polarizer protective film 124 may be a film having a light transmittance of about 80% or more, specifically about 80% to about 100% at a wavelength of 550nm. Specifically, the resin may be a polyester resin including polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, polybutylene naphthalate, or the like, a cellulose ester resin or polycarbonate resin including a cycloolefin polymer resin, triacetyl cellulose, or the like. , Polyimide resin, polystyrene resin, polyether sulfone resin, poly (meth) acrylate resin, including polymethyl methacrylate, and the like may include one or more of, but not limited to. The second polarizer protective film 124 has a thickness of about 10 μm to about 200 μm, specifically about 30 μm to about 100 μm, for example, 30 μm, 35 μm, 40 μm, 45 μm, 50 μm, 55 μm , 60 μm, 65 μm, 70 μm, 75 μm, 80 μm, 85 μm, 90 μm, 95 μm, 100 μm. It can be used for the conductive window film in the above range.
도 1에서 도시되지 않았지만, 제2 편광자 보호필름(124)의 일면 또는 양면에는 기능층이 더 형성될 수 있다. 기능층은 반사방지(anti-reflection), 저반사(low reflection), 하드코팅(hard coating), 눈부심 방지(anti-glare), 내지문성(anti-finger), 방오(anti-contamination), 확산, 굴절 기능 중 하나 이상의 기능을 제공할 수 있다. 기능층은 제2 편광자 보호필름(124)과 별개의 독립적인 층으로 형성되거나 제2 편광자 보호필름(124)의 일면을 표면 처리하여 제2 편광자 보호필름(124)의 일면이 기능층이 되도록 형성될 수 있다. Although not shown in FIG. 1, a functional layer may be further formed on one or both surfaces of the second polarizer protective film 124. The functional layer is anti-reflection, low reflection, hard coating, anti-glare, anti-finger, anti-contamination, diffusion, One or more of the refractive functions may be provided. The functional layer may be formed as an independent layer separate from the second polarizer protective film 124 or may be formed by treating one surface of the second polarizer protective film 124 so that one surface of the second polarizer protective film 124 becomes a functional layer. Can be.
또한, 도 1에 도시되어 있지 않으나, 편광자(123)는 제1 편광자 보호필름(122) 및 제2 편광자 보호필름(124)과 각각 점/접착층에 의해 서로 점/접착될 수 있다. 접착층은 감압접착제(press sensitive adhesive; PSA) 또는 광학적으로 투명한 접착제(optically clear adhesive; OCA) 등으로 형성될 수 있다. 구체적으로 접착층은 에폭시계 화합물, (메트)아크릴계 화합물, 및 광개시제를 포함하는 광경화형 접착제 조성물로 형성될 수 있다. 에폭시계 화합물은 지환족 에폭시계, 방향족 에폭시계, 지방족 에폭시계, 수소화 에폭시계 화합물 중 하나 이상을 포함할 수 있으며, 해당 상세 종류는 당업자에게 알려진 바와 같다. In addition, although not shown in FIG. 1, the polarizer 123 may be attached to each other by a dot / adhesive layer with the first polarizer protective film 122 and the second polarizer protective film 124, respectively. The adhesive layer may be formed of a pressure sensitive adhesive (PSA), an optically clear adhesive (OCA), or the like. Specifically, the adhesive layer may be formed of a photocurable adhesive composition including an epoxy compound, a (meth) acrylic compound, and a photoinitiator. The epoxy compound may include at least one of alicyclic epoxy, aromatic epoxy, aliphatic epoxy, and hydrogenated epoxy compounds, and the specific types thereof are as known to those skilled in the art.
(메트)아크릴계 화합물은 당업자에게 알려진 통상의 (메트)아크릴계 화합물을 포함할 수 있는데, 예를 들면 하나 이상의 수산기를 갖는 탄소수 1 내지 10의 (메트)아크릴레이트 단독, 또는 하나 이상의 수산기를 갖는 탄소수 1 내지 10의 (메트)아크릴레이트 및 비치환된 탄소수 1 내지 10의 알킬기를 갖는 (메트)아크릴레이트, 탄소수 6 내지 20의 방향족기를 갖는 (메트)아크릴레이트, 탄소수 3 내지 10의 지환족기를 갖는 (메트)아크릴레이트 중 하나 이상을 포함할 수 있다. The (meth) acrylic compound may include a conventional (meth) acrylic compound known to those skilled in the art, for example, one or more (meth) acrylates having one or more hydroxyl groups, or one having one or more hydroxyl groups. (Meth) acrylate having from 10 to (meth) acrylate and unsubstituted alkyl group having 1 to 10 carbon atoms, (meth) acrylate having 6 to 20 carbon atoms aromatic group, having alicyclic group having 3 to 10 carbon atoms ( One or more of meth) acrylates.
광개시제는 광증감제, 광산발생제 중 하나 이상을 포함할 수 있으며, 해당 상세 종류는 당업자에게 알려진 바와 같다. 광경화형 접착제 조성물은 접착력에 영향을 주지 않는 한에서, 산화 방지제, 자외선 흡수제, 도전성 부여 첨가제, 점도 조절제 등의 통상의 첨가제를 더 포함할 수 있다. The photoinitiator may include one or more of a photosensitizer and a photoacid generator, and the specific types thereof are as known to those skilled in the art. The photocurable adhesive composition may further include conventional additives such as antioxidants, ultraviolet absorbers, conductivity giving additives, viscosity modifiers and the like, as long as they do not affect the adhesion.
점/접착층은 두께가 약 1㎛ 내지 약 200㎛, 구체적으로 약 10㎛ 내지 약 100㎛가 될 수 있다. 상기 범위에서, 디스플레이 장치에 사용될 수 있고, 편광자 보호필름에 편광자를 안정적으로 접착시킬 수 있다. 이로 인해 편광자와 제1 편광자 보호필름(122) 및 제2 편광자 보호필름(124) 간에 박리 또는 기포 발생을 억제할 수 있다.The dot / adhesive layer may have a thickness of about 1 μm to about 200 μm, specifically about 10 μm to about 100 μm. In the above range, it can be used in the display device, it is possible to stably adhere the polarizer to the polarizer protective film. For this reason, peeling or bubble generation between the polarizer, the first polarizer protective film 122 and the second polarizer protective film 124 can be suppressed.
또한, 도 1에서 도시되지 않았지만, 제2편광자 보호필름(124) 상에는 윈도우 필름이 형성될 수 있다. 윈도우 필름은 디스플레이 영상을 볼 수 있게 하고, 편광자 등의 광학 소자를 보호할 수 있다. 윈도우 필름은 유리 또는 플라스틱 소재로 형성될 수 있으며, 구체적으로 실리콘계 수지로 형성될 수 있다. 윈도우 필름은 점/접착층에 의해 제2편광자 보호필름(124)에 적층될 수 있다.In addition, although not shown in FIG. 1, a window film may be formed on the second polarizer protective film 124. The window film may display a display image, and may protect an optical element such as a polarizer. The window film may be formed of a glass or plastic material, and specifically, may be formed of a silicone-based resin. The window film may be laminated to the second polarizer protective film 124 by a point / adhesive layer.
이하, 도 2를 참고하여, 본 발명의 다른 실시예에 따른 디스플레이 장치를 설명한다. 도 2는 본 발명의 다른 실시예에 따른 디스플레이 장치의 단면도이다.Hereinafter, a display apparatus according to another exemplary embodiment of the present invention will be described with reference to FIG. 2. 2 is a cross-sectional view of a display device according to another embodiment of the present invention.
도 2를 참고하면, 다른 실시예의 디스플레이 장치(200)는 편광 일체형 투명 도전 필름(120) 대신에 편광 일체형 투명 도전 필름(120')을 포함하는 점을 제외하고는 본 발명의 일 실시예의 디스플레이 장치(100)와 실질적으로 동일하다. 편광 일체형 투명 도전 필름(120')은 제1편광자 보호필름(122)과 편광자(123) 사이에 제3편광자 보호필름(125)이 더 형성되어, 투명 도전층(121), 제1편광자 보호필름(122), 제3편광자 보호필름(125), 편광자(123) 및 제2편광자 보호필름(124)의 순서로 적층된 구조를 갖는다. 투명 도전층(121), 제1편광자 보호필름(122), 편광자(123) 및 제2편광자 보호필름(124)은 상술한 바와 같다. 이에, 제3편광자 보호필름(125)에 대해서만 설명한다.Referring to FIG. 2, the display device 200 according to another embodiment includes the polarization integrated transparent conductive film 120 ′ instead of the polarization integrated transparent conductive film 120, but the display device according to the exemplary embodiment of the present invention. Substantially the same as (100). In the polarization integrated transparent conductive film 120 ′, a third polarizer protective film 125 is further formed between the first polarizer protective film 122 and the polarizer 123, such that the transparent conductive layer 121 and the first polarizer protective film are formed. And 122, the third polarizer protective film 125, the polarizer 123, and the second polarizer protective film 124. The transparent conductive layer 121, the first polarizer protective film 122, the polarizer 123, and the second polarizer protective film 124 are as described above. Thus, only the third polarizer protective film 125 will be described.
제3편광자 보호필름(125)은 제1편광자 보호필름(122) 및 편광자(123) 상에 형성되어, 편광자(123)를 보호하고, 제1편광자 보호필름(122)과 함께 디스플레이 장치의 시인성을 개선하거나 패턴 시인을 저감시킬 수도 있다.The third polarizer protective film 125 is formed on the first polarizer protective film 122 and the polarizer 123 to protect the polarizer 123 and together with the first polarizer protective film 122 for visibility of the display device. It may also improve or reduce pattern visibility.
제3편광자 보호필름(125)은 제1편광자 보호필름(122), 제2편광자 보호필름(124)과 동일 또는 이종의 파장 550nm에서 면내위상차를 가져 디스플레이 장치의 시인성을 좋게 할 수 있다. 일 구체예에서, 제3편광자 보호필름은 Re가 약 110nm 내지 약 160nm 구체적으로 약 130nm 내지 약 140nm의 위상차를 가질 수 있고, 더 구체적으로 λ/4 위상차 필름이 될 수 있고, 다른 구체예에서, 제3편광자 보호필름은 Re가 약 200nm 내지 약 350nm 구체적으로 약 225nm 내지 약 300nm의 위상차를 가질 수 있고, 더 구체적으로 λ/2 위상차 필름이 될 수 있고, 또 다른 구체예에서 제3편광자 보호필름은 Re 가 약 10nm 이하인 제로 위상차 필름이 될 수 있다. 구체적으로, 제1 편광자 보호필름(122), 제2 편광자 보호필름(124) 및 제3 편광자 보호필름(125)은 각각 파장 550nm에서 면내 위상차 Re가 서로 상이한 필름이 됨으로써 편광 일체형 투명 전극 필름(120')을 박형화시키면서도 추가적인 필름을 적층시키지 않더라도 디스플레이의 시인성을 좋게 할 수 있다.The third polarizer protective film 125 may have an in-plane phase difference at a wavelength of 550 nm of the same or different type as that of the first polarizer protective film 122 and the second polarizer protective film 124, thereby improving visibility of the display device. In one embodiment, the third polarizer protective film may have a phase difference of Re of about 110 nm to about 160 nm, specifically about 130 nm to about 140 nm, and more specifically, may be a λ / 4 phase difference film, and in another embodiment, The third polarizer protective film may have a Re of about 200 nm to about 350 nm, in particular, a phase difference of about 225 nm to about 300 nm, more specifically, may be a λ / 2 phase difference film, and in yet another embodiment, the third polarizer protective film Silver Re can be a zero retardation film with about 10 nm or less. Specifically, the first polarizer protective film 122, the second polarizer protective film 124, and the third polarizer protective film 125 are each polarized integrated transparent electrode film 120 at a wavelength of 550nm to be a film different from each other in-plane retardation Re It is possible to improve the visibility of the display by thinning ') and without laminating additional films.
제3편광자 보호필름(125)은 제1편광자 보호필름(122)과 함께 적정 위상차를 가져 디스플레이 장치의 시인성을 좋게 할 수 있다. 일 구체예에서, 제3편광자 보호필름(125)은 Re가 약 110nm 내지 약 160nm 구체적으로 약 130nm 내지 약 140nm의 위상차를 가질 수 있고, 더 구체적으로 λ/4 위상차 필름이 될 수 있고, 제1편광자 보호필름(122)은 Re가 약 200nm 내지 약 350nm 구체적으로 약 225nm 내지 약 300nm의 위상차를 가질 수 있고, 더 구체적으로 λ/2 위상차 필름이 될 수 있다. 다른 구체예에서, 제3편광자 보호필름(125)은 Re가 약 200nm 내지 약 350nm 구체적으로 약 225nm 내지 약 300nm의 위상차를 가질 수 있고, 더 구체적으로 λ/2 위상차 필름이 될 수 있고, 제1편광자 보호필름(122)은 Re가 약 110nm 내지 약 160nm 구체적으로 약 130nm 내지 약 140nm의 위상차를 가질 수 있고, 더 구체적으로 λ/4 위상차 필름이 될 수 있다. 또 다른 구체예에서, 제3편광자 보호필름(125)은 Re가 약 110nm 내지 약 160nm 구체적으로 약 130nm 내지 약 140nm의 위상차를 가질 수 있고, 더 구체적으로 λ/4 위상차 필름이 될 수 있고, 제1편광자 보호필름(122)은 무위상차 필름이 될 수 있다. 또 다른 구체예에서, 제3편광자 보호필름(125)은 무위상차 필름이 될 수 있고, 제1편광자 보호필름(122)은 Re가 약 110nm 내지 약 160nm 구체적으로 약 130nm 내지 약 140nm의 위상차를 가질 수 있고, 더 구체적으로 λ/4 위상차 필름이 될 수 있다. 이때, 제2편광자 보호필름(124)은 Re가 약 8,000nm 이상, 구체적으로 약 10,000nm 이상, 더 구체적으로 약 10,000nm 초과, 더 구체적으로 약 10,100nm 내지 약 15,000nm가 됨으로써 무지개 얼룩 발생을 방지하고 시인성을 더 좋게 할 수 있다.The third polarizer protective film 125 may have an appropriate phase difference together with the first polarizer protective film 122 to improve visibility of the display device. In one embodiment, the third polarizer protective film 125 may have a retardation of Re of about 110 nm to about 160 nm, specifically about 130 nm to about 140 nm, and more specifically, may be a λ / 4 phase difference film. The polarizer protective film 122 may have a retardation of Re of about 200 nm to about 350 nm, specifically about 225 nm to about 300 nm, and more specifically, may be a λ / 2 retardation film. In another embodiment, the third polarizer protective film 125 may have a retardation of Re of about 200 nm to about 350 nm, specifically about 225 nm to about 300 nm, and more specifically, may be a λ / 2 retardation film. The polarizer protective film 122 may have a retardation of Re of about 110 nm to about 160 nm, specifically about 130 nm to about 140 nm, and more specifically, may be a λ / 4 retardation film. In another embodiment, the third polarizer protective film 125 may have a phase difference of Re of about 110 nm to about 160 nm, specifically about 130 nm to about 140 nm, and more specifically, may be a λ / 4 phase difference film. The one polarizer protective film 122 may be a phase difference film. In another embodiment, the third polarizer protective film 125 may be a phase-free film, and the first polarizer protective film 122 may have a retardation of Re of about 110 nm to about 160 nm, specifically about 130 nm to about 140 nm. And more specifically a λ / 4 retardation film. In this case, the second polarizer protective film 124 has a Re of about 8,000 nm or more, specifically about 10,000 nm or more, more specifically about 10,000 nm or more, and more specifically about 10,100 nm to about 15,000 nm, thereby preventing rainbow staining. And better visibility.
제3편광자 보호필름(125)은 광학적으로 투명하며, 상술한 제1편광자 보호필름(122)과 동종 또는 이종의 재료로 형성될 수 있다. 제3편광자 보호필름(125)은 두께가 약 10㎛ 내지 약 200㎛, 구체적으로 약 30㎛ 내지 약 100㎛, 예를 들면, 30㎛, 35㎛, 40㎛, 45㎛, 50㎛, 55㎛, 60㎛, 65㎛, 70㎛, 75㎛, 80㎛, 85㎛, 90㎛, 95㎛, 100㎛가 될 수 있다. 상기 범위에서, 디스플레이 장치에 사용될 수 있다. 도 2에서 도시되지 않았지만, 제3편광자 보호필름(125)과 제1편광자 보호필름(122) 사이에는 점/접착층이 형성될 수 있고, 점/접착층은 상기에서 상술한 바와 같다.The third polarizer protective film 125 is optically transparent and may be formed of the same or different materials as the first polarizer protective film 122 described above. The third polarizer protective film 125 has a thickness of about 10 μm to about 200 μm, specifically about 30 μm to about 100 μm, for example, 30 μm, 35 μm, 40 μm, 45 μm, 50 μm, 55 μm , 60 μm, 65 μm, 70 μm, 75 μm, 80 μm, 85 μm, 90 μm, 95 μm, 100 μm. In the above range, it can be used in the display device. Although not shown in FIG. 2, a dot / adhesive layer may be formed between the third polarizer protective film 125 and the first polarizer protective film 122, and the dot / adhesive layer is as described above.
본 발명의 단순한 변형 내지 변경은 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 실시될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.Simple modifications or changes of the present invention can be easily carried out by those skilled in the art, and all such modifications or changes can be seen to be included in the scope of the present invention.

Claims (13)

  1. 디스플레이부, 및 상기 디스플레이부 상에 형성된 편광 일체형 투명 전극 필름을 포함하고, A display unit, and a polarization-integrated transparent electrode film formed on the display unit,
    상기 편광 일체형 투명 전극 필름은 투명 도전층, 제1편광자 보호필름, 편광자, 및 제2편광자 보호필름이 순차적으로 형성된 것이고,The polarizing integrated transparent electrode film is a transparent conductive layer, a first polarizer protective film, a polarizer, and a second polarizer protective film is formed sequentially,
    상기 제1 편광자 보호필름은 상기 투명 도전층 상에 직접적으로 형성된 것인, 디스플레이 장치. The first polarizer protective film is formed directly on the transparent conductive layer, the display device.
  2. 제1항에 있어서, 상기 편광자는 점/접착층에 의해 상기 제1편광자 보호필름 및 상기 제2편광자 보호필름과 점/접착되는 것인, 디스플레이 장치.The display apparatus of claim 1, wherein the polarizer is spot / bonded with the first polarizer protective film and the second polarizer protective film by a dot / adhesive layer.
  3. 제1항에 있어서, 상기 투명 도전층은 금속 나노와이어로 형성된 도전성 네트워크, 및 상기 도전성 네트워크가 함침된 매트릭스를 포함하는 것인, 디스플레이 장치.The display device of claim 1, wherein the transparent conductive layer comprises a conductive network formed of metal nanowires, and a matrix impregnated with the conductive network.
  4. 제3항에 있어서, 상기 금속 나노와이어는 은 나노와이어를 포함하는 것인, 디스플레이 장치.The display device of claim 3, wherein the metal nanowires comprise silver nanowires.
  5. 제3항에 있어서, 상기 매트릭스는 5관능 이상의 (메트)아크릴계 화합물, 2관능 내지 4관능의 (메트)아크릴계 화합물, 및 개시제를 포함하는 매트릭스용 조성물로 형성되는 것인, 디스플레이 장치.The display device according to claim 3, wherein the matrix is formed of a composition for a matrix containing a 5- or more functional (meth) acrylic compound, a bifunctional to tetrafunctional (meth) acrylic compound, and an initiator.
  6. 제1항에 있어서, 상기 제1 편광자 보호필름 및 제2 편광자 보호필름은 각각파장 550nm에서 무위상차 필름, 파장 550nm에서 Re가 약 110nm 내지 약 160nm인 필름, 파장 550nm에서 Re가 약 200nm 내지 약 350nm인 필름 및 파장 550nm에서 Re가 8,000nm 이상인 필름으로 이루어진 군으로부터 선택된 것인, 디스플레이 장치.The method of claim 1, wherein the first polarizer protective film and the second polarizer protective film are respectively a phase difference film at a wavelength of 550 nm, a film having Re of about 110 nm to about 160 nm at a wavelength of 550 nm, and a Re of about 200 nm to about 350 nm at a wavelength of 550 nm. And a phosphorus film and a film having a Re of 8,000 nm or more at a wavelength of 550 nm.
  7. 제1항에 있어서, 상기 제1편광자 보호필름은 폴리머 필름 또는 액정 필름인 것인, 디스플레이 장치.The display device of claim 1, wherein the first polarizer protective film is a polymer film or a liquid crystal film.
  8. 제1항에 있어서, 상기 제1 편광자 보호필름과 상기 편광자 사이에 제3 편광자 보호 필름이 더 형성된 것인, 디스플레이 장치.The display apparatus of claim 1, wherein a third polarizer protective film is further formed between the first polarizer protective film and the polarizer.
  9. 제8항에 있어서, 상기 제3 편광자 보호필름은 파장 550nm에서 무위상차 필름, 파장 550nm에서 Re가 약 110nm 내지 약 160nm인 필름, 및 파장 550nm에서 Re가 약 200nm 내지 약 350nm인 필름으로 이루어진 군으로부터 선택된 것인, 디스플레이 장치.The film of claim 8, wherein the third polarizer protective film is formed from a phase-free film at a wavelength of 550 nm, a film having Re of about 110 nm to about 160 nm at a wavelength of 550 nm, and a film having Re of about 200 nm to about 350 nm at a wavelength of 550 nm. The selected display device.
  10. 제8항에 있어서, 상기 제1 편광자 보호필름, 상기 제2 편광자 보호필름 및 상기 제3 편광자 보호필름은 각각 파장 550nm에서 Re가 서로 상이한 필름인 것인, 디스플레이 장치.The display device according to claim 8, wherein the first polarizer protective film, the second polarizer protective film, and the third polarizer protective film are films different from each other at a wavelength of 550 nm.
  11. 제8항에 있어서, 상기 제1편광자 보호필름 및 제3편광자 보호필름은 파장 550nm에서 무위상차 필름 및 550nm에서 Re가 약 110nm 내지 약 160nm인 필름에서 각각 선택된 것인, 디스플레이 장치.The display device according to claim 8, wherein the first polarizer protective film and the third polarizer protective film are each selected from an out of phase difference film at a wavelength of 550 nm and a film having Re of about 110 nm to about 160 nm at 550 nm.
  12. 제8항에 있어서, 상기 제1편광자 보호필름 및 상기 제3편광자 보호필름은 각각 독립적으로 파장 550nm에서 Re가 약 110nm 내지 약 160nm인 필름 및 파장 550nm에서 Re가 약 200nm 내지 약 350nm인 필름으로 이루어진 군에서 선택된 것인, 디스플레이 장치.The method of claim 8, wherein the first polarizer protective film and the third polarizer protective film each independently include a film having a Re of about 110 nm to about 160 nm at a wavelength of 550 nm, and a film having a Re of about 200 nm to about 350 nm at a wavelength of 550 nm. And a display device selected from the group.
  13. 제1항에 있어서, 상기 디스플레이부는 유기발광표시장치용 패널 또는 액정표시장치용 패널을 포함하는 것인, 디스플레이 장치.The display apparatus of claim 1, wherein the display unit comprises an organic light emitting display panel or a liquid crystal display panel.
PCT/KR2016/013451 2016-04-21 2016-11-22 Display apparatus WO2017183785A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0048988 2016-04-21
KR1020160048988A KR20170120461A (en) 2016-04-21 2016-04-21 Display apparatus

Publications (1)

Publication Number Publication Date
WO2017183785A1 true WO2017183785A1 (en) 2017-10-26

Family

ID=60116203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/013451 WO2017183785A1 (en) 2016-04-21 2016-11-22 Display apparatus

Country Status (2)

Country Link
KR (1) KR20170120461A (en)
WO (1) WO2017183785A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020134678A (en) * 2019-02-19 2020-08-31 東洋紡株式会社 Retardation layer-laminated polarizing plate and image display device using the same
KR20200144181A (en) 2019-06-17 2020-12-29 삼성디스플레이 주식회사 Display device
EP4160281A4 (en) * 2021-07-04 2024-01-24 Beijing Zenithnano Tech Co Ltd Polaroid, touch-control liquid crystal panel and touch-control liquid crystal display module

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000011493A (en) * 1998-07-07 2000-02-25 우에마쯔 도미지 Polarizing plate unit
KR20110134573A (en) * 2010-06-09 2011-12-15 동우 화인켐 주식회사 Inner touch panel integrating polarizer and liquid crystal display device integrating touch panel
US20140302326A1 (en) * 2011-12-21 2014-10-09 Dong Myeong SHIN Conductive film composition, conductive film fabricated using the same, and optical display apparatus including the same
KR20150065597A (en) * 2013-12-04 2015-06-15 삼성에스디아이 주식회사 Transparent conductor, method for preparing the same, and optical display including the same
KR20150139960A (en) * 2013-04-10 2015-12-14 니폰 제온 가부시키가이샤 Display device with capacitive touch panel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000011493A (en) * 1998-07-07 2000-02-25 우에마쯔 도미지 Polarizing plate unit
KR20110134573A (en) * 2010-06-09 2011-12-15 동우 화인켐 주식회사 Inner touch panel integrating polarizer and liquid crystal display device integrating touch panel
US20140302326A1 (en) * 2011-12-21 2014-10-09 Dong Myeong SHIN Conductive film composition, conductive film fabricated using the same, and optical display apparatus including the same
KR20150139960A (en) * 2013-04-10 2015-12-14 니폰 제온 가부시키가이샤 Display device with capacitive touch panel
KR20150065597A (en) * 2013-12-04 2015-06-15 삼성에스디아이 주식회사 Transparent conductor, method for preparing the same, and optical display including the same

Also Published As

Publication number Publication date
KR20170120461A (en) 2017-10-31

Similar Documents

Publication Publication Date Title
US10259978B2 (en) Adhesive film, optical member including the same, and optical display including the same
TWI592306B (en) In-cell touch panel liquid crystal cell front-face optical laminate and in-cell touch panel type liquid crystal display device using the same
CN105793805B (en) Composite polarizing plate-integrates touch-control sensing electrode and the touch-screen panel including it
US9674947B2 (en) Transparent conductor, method for preparing the same, and optical display including the same
US11550413B2 (en) Touch sensor integrated color filter and manufacturing method for the same
JP6403936B2 (en) Polarizing plate and liquid crystal display panel using the same
TW201423173A (en) Optical laminate for front surface of in-cell touch panel liquid crystal element and in-cell touch panel liquid crystal display device using same
WO2017183785A1 (en) Display apparatus
KR102327415B1 (en) Hard coating film and image display device using the same
US20160299630A1 (en) Hybrid touch sensing electrode and touch screen panel comprising same
US20200319517A1 (en) Multilayer liquid crystal film, polarizing plate and method for preparing polarizing plate
WO2018043979A1 (en) Method for manufacturing multilayer liquid crystal film
KR20210102245A (en) Laminate and image display device using same
WO2018110801A1 (en) Adhesive composition for polarizing plate, polarizing plate, and optical display device
CN110554451B (en) Laminate and method for producing same
WO2015020336A1 (en) Touch sensing electrode and touch screen panel comprising same
WO2016047990A2 (en) Touch sensing electrode integrally formed with polarizing plate, display device comprising same, and manufacturing method therefor
KR20200123752A (en) Touch sensor panel and optical laminate
KR20220116503A (en) Optical laminate and image display device
KR20200107583A (en) Optical laminate
CN114144823B (en) Optical laminate and method for producing same
KR102598144B1 (en) Pressure sensitive adhesive polarizing plate
US11928272B2 (en) Composite panel
KR101942152B1 (en) Conductive window film and display apparatus comprising the same
KR102332887B1 (en) Hard coating film and image display device using the same

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16899553

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16899553

Country of ref document: EP

Kind code of ref document: A1