WO2017183536A1 - Method for removing protein aggregates - Google Patents

Method for removing protein aggregates Download PDF

Info

Publication number
WO2017183536A1
WO2017183536A1 PCT/JP2017/014974 JP2017014974W WO2017183536A1 WO 2017183536 A1 WO2017183536 A1 WO 2017183536A1 JP 2017014974 W JP2017014974 W JP 2017014974W WO 2017183536 A1 WO2017183536 A1 WO 2017183536A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
column
monomer
aggregate
buffer
Prior art date
Application number
PCT/JP2017/014974
Other languages
French (fr)
Japanese (ja)
Inventor
菜津乃 松井
謙 小木戸
青木 裕史
米田 正
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Publication of WO2017183536A1 publication Critical patent/WO2017183536A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • C07K1/18Ion-exchange chromatography

Definitions

  • the present invention relates to a method for removing protein aggregates from a solution containing protein monomers and protein aggregates.
  • proteins may form aggregates such as dimers and trimers, and the formed protein aggregates may become impurities derived from the target substance.
  • Proteins are known to associate between molecules in the manufacturing process (concentration, acidic pH exposure, heating operation) and storage processes (solution, frozen solution, freeze-drying) to form aggregates, which reduces the efficacy of the protein.
  • concentration, acidic pH exposure, heating operation concentration, acidic pH exposure, heating operation
  • storage processes solution, frozen solution, freeze-drying
  • Patent Document 1 As a reported method, there is a method in which an egg white protein is separated using an anion exchange porous membrane (Patent Document 1). In that case, it is necessary to adsorb all proteins on the anion exchange porous membrane, and separation with a large volume is difficult. Therefore, a method that can be separated more industrially and economically has been demanded.
  • Patent Document 2 a method for purifying antibody monomers using a porous adsorption membrane having anion exchange groups immobilized thereon has been reported.
  • Patent Document 2 a method for purifying antibody monomers using a porous adsorption membrane having anion exchange groups immobilized thereon has been reported.
  • mass purification is required not only for antibodies but also for various proteins, and a method that can be used for purification of various protein monomers has been demanded.
  • an object of the present invention is to obtain protein monomers useful as raw materials for pharmaceuticals and the like, industrially and economically in high yield and high purity. More specifically, an object of the present invention is to provide a method for removing protein aggregates from a mixture containing protein monomers and protein aggregates at a high speed to obtain protein monomers at a high yield.
  • the present inventors conducted extensive studies on a method for removing protein aggregates. As a result, it was found that protein monomers can be recovered under high flow rate conditions by performing chromatography using a column holding a porous polymer self-supporting structure to which an anion exchange functional group is fixed, and the present invention has been completed. .
  • the present invention is as follows. [1] Using a salt-containing buffer as a mobile phase, passing through a column holding a porous polymer self-supporting structure to which an anion exchange group is fixed, to thereby remove a mixture containing protein monomers and protein aggregates. A method for removing a protein aggregate, comprising adsorbing the protein aggregate on a column and recovering the protein monomer. [2] The mixture is a salt-containing buffer containing a protein monomer and a protein aggregate, The salt-containing buffer containing the protein monomer and the protein aggregate is used as a mobile phase to pass through the column, thereby adsorbing the protein aggregate to the column and recovering the protein monomer by flow-through.
  • protein monomers useful as raw materials for pharmaceuticals and the like can be obtained industrially and economically with high yield and high purity. More specifically, the protein aggregate can be removed at a high speed from the mixture containing the protein monomer and the protein aggregate, and the protein monomer can be obtained in a high yield.
  • the method for removing a protein aggregate of the present invention uses a salt-containing buffer as a mobile phase and passes it through a column holding a porous polymer self-supporting structure having an anion exchange group immobilized thereon, thereby The protein aggregate is adsorbed on a column from a mixture containing the protein aggregate, and the protein monomer is recovered.
  • the anion exchange group is not particularly limited as long as it can adsorb a negatively charged protein or the like in the liquid.
  • a diethylamino group, a quaternary ammonium group, a quaternary aminoethyl group examples thereof include a diethylaminoethyl group and a diethylaminopropyl group.
  • a diethylamino group and a quaternary ammonium group are preferable, and a quaternary ammonium group is more preferable.
  • the structure of a quaternary ammonium group is illustrated by the following chemical formula (1).
  • R 1 , R 2 , R 3 and R 4 are each independently H, a hydrocarbon group such as a methyl group, an ethyl group, a methylene group or an ethylene group, or a hydrocarbon having a functional group such as a hydroxyl group.
  • An aromatic alkylene group such as a benzyl group or the like, and at least one is a divalent group such as an alkylene group.
  • R 1 , R 2 , R 3 and R 4 are each preferably a methyl group, an alkyl group or a propyl group, more preferably a methyl group.
  • the porous polymer self-supporting structure is a crosslinked polymer structure and is porous.
  • the self-supporting structure means a structure that is not in the form of particles or the like but is itself a lump and can retain its shape.
  • a porogen (described later) is added to a monomer having two or more ethylenic double bonds (polyvinyl monomer) and a monomer having one ethylenic double bond (monovinyl monomer). Can be obtained by bulk polymerization. It becomes porous by removing the inert solvent.
  • the porous pores have a uniform pore size distribution throughout. The pore diameter is in the range of 1 to 1000 nm.
  • the shape is an integral structure such as a plate, a tube, or a cylinder.
  • the monomer for constituting the porous polymer self-supporting structure for example, a polyvinyl monomer and a monovinyl monomer can be used.
  • polyvinyl monomers include divinylbenzene, divinylnaphthalene, divinylpyridine, dimethacrylates, diacrylates, vinyl esters, vinyl ethers such as divinyl ether, alkylene bisacrylamides such as ethylene bisacrylamide and propylene bisacrylamide, and mixtures thereof.
  • dimethacrylates include alkylene dimethacrylates such as ethylene glycol dimethacrylate and propylene glycol dimethacrylate.
  • pentaerythritol di-, tri- or tetramethacrylate, trimethylolpropane trimethacrylate or acrylate can be used.
  • Diacrylates include ethylene glycol diacrylates. Further, pentaerythritol di-, tri-, or tetraacrylate can be used.
  • Monovinyl monomers include styrene, substituted styrene (wherein the substituent is a chloromethyl group, an alkyl group having up to 18 carbon atoms, a hydroxyl group, a t-butyloxycarbonyl group, a halogen group, a nitro group, an amino group, a protected hydroxyl group or (Including amino groups), vinyl naphthalene, acrylic esters such as ethyl acrylate, methacrylic esters such as glycidyl methacrylate, methyl methacrylate, hydroxyethyl methacrylate, vinyl acetate and N-vinyl pyrrolidone, and mixtures thereof can do.
  • a monomer having a functional group capable of holding an anion exchange group is preferable.
  • Specific examples include glycidyl methacrylate and alkylene dimethacrylates, preferably glycidyl methacrylate and ethylene glycol dimethacrylate.
  • porous polymer self-supporting structures include CIM (registered trademark) QA DISK, QA-1 Tube Monolithic Column, CIM QA-8 Tube Monolithic Column, CIM QA-80 Tube Monolithic Column Q Tube Monolithic Column, CIM q, A-8000 Tube Monolithic Column, DEAE DISK, DEAE-1Tube Monolothic Column, CIM DEAE-8 Tube Monolithic Column, CIM QA-80 Tube Monolithic Column, CIM QA-800 Tube Monolithic Column, CIM DEAE- 8 00 Tube Monolithic Column and the like. These are all modified products of copolymers of glycidyl methacrylate and ethylene glycol dimethacrylate.
  • This copolymer is produced from a mixture of glycidyl methacrylate and ethylene glycol dimethacrylate in the presence of a porogen and a polymerization initiator.
  • Porogen is an additive material for forming pores, such as aliphatic hydrocarbons, aromatic hydrocarbons, esters, alcohols, ketones, ethers, soluble polymers, and mixtures thereof. Different types of materials can be used. Normal hexane is preferred.
  • a free radical generating initiator can be used as the polymerization initiator.
  • azo compounds such as azobisisobutyronitrile and 2,2′-azobis (isobutylamide) dihydrate, and peroxides such as benzoyl peroxide and dipropyl dicarboxylic acid ester can be used.
  • peroxides such as benzoyl peroxide and dipropyl dicarboxylic acid ester
  • pore structures having different shapes can be formed.
  • the amount of the polymerization initiator is preferably 0.5 to 4 parts by mass with respect to 100 parts by mass of the monomer.
  • a soluble polymer may be added as a porogen. The soluble polymer is dissolved and removed by a washing solvent after polymerization.
  • the amount of the soluble polymer is preferably 10 to 40 parts by mass with respect to 100 parts by mass of the whole monomer.
  • the mixture of glycidyl methacrylate and ethylene glycol dimethacrylate containing a porogen or polymerization initiator is preferably degassed using an inert gas such as nitrogen or argon before being placed in the mold.
  • the mold is preferably sealed to prevent air contamination.
  • the polymerization can be performed, for example, by heating at a temperature of 50 ° C. to 90 ° C. for 40 to 50 hours. After the polymerization, the tube is washed, and the solvent and soluble polymer used as the porogen are removed.
  • a solvent for washing methanol, ethanol, benzene, toluene, acetone, tetrahydrofuran or the like can be used.
  • the washing process may be repeated a plurality of times.
  • a quaternary ammonium group as an anion exchange group a quaternary trimethylamino group can be introduced using triethylamine hydrochloride.
  • This structure when left standing, retains mechanical strength that can support its shape. That is, the physical structure is different from that using a bead-like porous polymer carrier or a porous membrane.
  • the thickness of the porous polymer self-supporting structure in the liquid passing direction is preferably 1 to 100 mm.
  • the thickness is preferably 2 to 70 mm, more preferably 3 to 60 mm, and still more preferably 3 to 50 mm.
  • By setting the thickness of the porous polymer self-supporting structure to 1 mm or more it has sufficient mechanical strength.
  • the column includes a porous polymer self-supporting structure having an anion exchange group immobilized thereon. That is, the column may be composed of only a porous polymer self-supporting structure having a plate shape, a tubular shape, a cylindrical shape, etc., and a predetermined amount of the porous polymer self-supporting structure is formed into a cylindrical shape. It may be accommodated (held) in a container.
  • the column size (column volume) is not particularly limited, and is appropriately adjusted according to the amount of protein aggregate to be adsorbed.
  • the protein capable of removing protein aggregates by the method of the present invention is not particularly limited, but is preferably an aggregating protein that easily causes aggregation in an aqueous solution.
  • the likelihood of aggregation of an aggregating protein depends on the composition of amino acids constituting the protein, its sequence, and steric configuration.
  • Protein structures that are prone to aggregation include proteins in which amino acids with hydrophilic side chains are localized on a part of the surface of the molecule, and specific higher-order structures that induce association by hydrogen bonding force, such as ⁇ sheets. Examples thereof include a protein presented on the surface, a protein having a chelating site by binding of metal ions and the like.
  • proteins having these structures are not limited to proteins having these structures as a result of the proper folding of the respective proteins, but the pH and hydrophobicity of the solution, presence of denaturing agents, denaturation caused by physical actions such as heating, shaking and stirring, and charge Proteins altered to have these structures as a result of neutralization and the like are also included.
  • Proteins having these structures include IgG, IgA, IgM and other immunoglobulins, interleukins, chemokines, interferons, G-CSF, erythropoietin, EGF, FGF, TGF, BDNF, VEGF, GM-CSF, PDGF, EPO, Cytokines such as TPO, bFGF, HGF, TNF- ⁇ , TGF- ⁇ , PAI-1, HB-EGF, leptin, adiponeptin, NGF, protein hormones such as human growth hormone, insulin, glucagon, blood coagulation factors, albumin , Lysozyme, RNase A, cytochrome c and the like.
  • proteins with highly hydrophobic amino acids oriented outside the molecule or proteins in which such amino acids are localized on a part of the surface of the molecule, anions that tend to cause electrostatic association between molecules based on dipolarity More preferred are proteins in which amino acids having a cationic or cationic charge are localized and have a polarization tendency.
  • proteins include immunoglobulins such as IgG, IgA, and IgM, and albumin.
  • a protein monomer means one protein molecule.
  • a protein aggregate is a protein complex in which protein monomers are adsorbed and aggregated reversibly or irreversibly by hydrophobic interaction, electrostatic interaction, and other interactions.
  • a protein monomer and a protein aggregate are dissolved in a salt-containing buffer to prepare a solution (hereinafter, this solution is referred to as “protein solution”), and this solution is used as a mobile phase.
  • protein solution a solution
  • the protein aggregate can be adsorbed to the column and the protein monomer can be recovered by flow-through by passing the solution through a column holding the porous polymer self-supporting structure to which the anion exchange group is fixed.
  • the salt-containing buffer used for the protein solution is preferably a salt-containing buffer in which an inorganic salt is dissolved in the buffer.
  • the flow-through mode means that an object to be collected passes through without being adsorbed on the chromatography device.
  • protein aggregates are adsorbed to a column and protein monomers are recovered in this manner.
  • a buffer solution for example, a phosphate buffer solution, a citrate buffer solution, a tris (trishydroxymethylaminomethane) buffer solution, an acetate buffer solution, a borate buffer solution etc. can be used.
  • a phosphate buffer solution, a citrate buffer solution, and a Tris buffer solution are preferable from the point of use pH range having buffer capacity.
  • the concentration of the buffer is not particularly limited, but is preferably 1 to 100 mM, more preferably 2 to 50 mM, and further preferably 5 to 30 mM.
  • the pH of the buffer solution is not particularly limited, but is preferably 2 to 9, more preferably 3 to 8, and still more preferably 4 to 7.5.
  • salt used in the salt-containing buffer examples include, but are not limited to, sodium chloride, sodium sulfate, sodium acetate, ammonium sulfate, and metal salts of citric acid, phosphoric acid, or glycine.
  • Sodium chloride, sodium sulfate, sodium acetate, ammonium sulfate are preferable, and sodium chloride is more preferable.
  • the salt concentration is preferably an amount sufficient to adsorb only protein aggregates without adsorbing protein monomers on the column.
  • the amount is preferably small enough not to cause binding or precipitation of protein monomers and protein aggregates.
  • the concentration relative to the buffer is preferably 0.05 to 0.50M, more preferably 0.05 to 0.30M, and even more preferably 0.10 to 0.30M. It is. For each purification process, it is preferable to select the optimum amount and preferred type of salt by preliminary experiments and the like.
  • the concentration is preferably 0.01 to 10 mg / mL, more preferably 0.1 to 5 mg / mL, and still more preferably 0.2 to 3 mg / mL.
  • the protein loading per mL of column volume is preferably 250 ⁇ g to 60 mg, more preferably 500 ⁇ g to 50 mg, and even more preferably 750 ⁇ g to 40 mg.
  • the kind, concentration, and pH of the buffer used for equilibration can be the same as the salt-containing buffer that dissolves the protein.
  • the amount of the buffer solution required for equilibration is not particularly limited, but is preferably 1 CV (column volume multiple) or more, more preferably 2 CV or more, and further preferably 4 CV or more.
  • the temperature of the column and the protein solution is not particularly limited, but is preferably 2 to 50 ° C., more preferably 4 to 40 ° C., and still more preferably 8 to 30 ° C. By setting it within this range, freezing of protein solution and destruction of protein can be prevented.
  • the flow rate of the protein solution is not limited as long as the purpose can be achieved, but is preferably 2 to 12.5 CV / min, more preferably 2.5 to 5 CV / min, and further preferably 4 to 5 CV / min.
  • the pH range of the protein solution is not limited. Moreover, this invention may be performed independently and may be performed after the refinement
  • the conditions for selectively recovering protein monomers are examined using the above knowledge, the conditions can be shortened.
  • the ion exchange groups, constituent monomers, temperature, pressure, buffer solution, salt-containing buffer solution, mobile phase flow rate of the column are changed. Since it is possible to purify without changing the conditions such as (CV / min), it is possible to shorten the time required for studying the conditions.
  • a protein aggregate can be eluted by letting the salt containing buffer solution which raised salt concentration pass to a column. After eluting the protein aggregate, the column can be regenerated by passing again the same buffer as that used for equilibration.
  • the “loading of protein monomer and protein aggregate to the column” step and the “elution of protein monomer” step can be performed separately.
  • a buffer solution containing a protein monomer and a protein aggregate is supplied to a column holding a porous polymer self-supporting structure to which an anion exchange group is fixed.
  • the buffer solution and salt used in this step can be used.
  • the type, concentration, and pH of the buffer can be the same as the buffer used to equilibrate the column, and may be different, but are preferably the same.
  • the temperature of the column and the mobile phase is not particularly limited, but is preferably 2 to 50 ° C., more preferably 4 to 40 ° C., and still more preferably 8 to 30 ° C. . By setting it in this range, freezing of protein solution and destruction of protein can be prevented.
  • the protein aggregates can be eluted and the column regenerated as in the first embodiment of the present invention.
  • recovery rate, purity, and aggregate content are defined as follows, using albumin as an example of protein.
  • the recovery rate of the present invention is the albumin monomer recovered in the flow-through mode with respect to the total amount of albumin exiting the column in the flow-through mode and the total amount of albumin aggregate adsorbed on the column, ie, the sum of albumin and albumin aggregates.
  • the purity of the present invention is calculated as the ratio of albumin monomer to the total amount of albumin in the collected sample, ie the sum of albumin monomer and albumin aggregate.
  • the amount recovered by flow-through is determined by measuring using size exclusion chromatography with Shodex (registered trademark) KW403-4F manufactured by Showa Denko KK.
  • Purity is the value obtained by dividing the peak area of the protein monomer on the chromatogram by the area of the total amount of albumin.
  • the total albumin area is the sum of the aggregate peak area and the monomer peak area.
  • a UV-VIS detector SPD-M30A manufactured by Shimadzu Corporation was used for preparation of the chromatogram.
  • the unit is%.
  • the aggregate content of the present invention is defined as 100-purity (%), where 100 is a state where no aggregate is contained. Purity (%) is calculated as an area ratio in the chromatogram.
  • CIM QA-1 Tube is a modified product of a copolymer of glycidyl methacrylate and ethylene glycol dimethacrylate, and is a porous polymer self-supporting structure in which quaternary ammonium groups are held in some glycidyl methacrylates. is there. Further, since the central hole of the column is blocked by the structure of the apparatus, the injected liquid does not pass through the central hole of the column as it is.
  • the aggregate content of this solution was approximately 85%. 10 mL of this solution was injected into the column equilibrated in (1) and purified. That is, the albumin load per 1 mL of column volume is 10 mg. The solution flow rate was 5 CV / min. (3) Flow-through of albumin Albumin monomer when 10 mL of the albumin solution was passed was collected in a flow-through manner. The solution flow rate was 5 CV / min. (4) Elution of albumin aggregate A 20 mM phosphate buffer (pH 7.4) containing 4 M sodium chloride was then passed through a 7.5 mL column to elute the albumin aggregate. The solution flow rate was 5 CV / min. In Example 1, the temperature of the column, protein solution, and mobile phase was 25 ° C., and the column pressure was 0.3 to 2 MPa.
  • Example 2> The same operation as in Example 1 was performed except that the sodium chloride concentration in Step (2) of Example 1 was 0.15M.
  • Example 3> The same procedure as in Example 1 was conducted except that the albumin load per mL of column volume in step (2) of Example 1 was changed to 30 mL (30 mg) and the sodium chloride concentration was changed to 0.07M.
  • Example 4 CIM (registered trademark) DEAE-1 Tube (thickness: 4.2 mm, outer diameter: 18.6 mm, inner diameter: 6.7 mm, porosity: 60 v / v%) was used as the column in step (1) of Example 1. The same operation as in Example 1 was carried out except that it was used.
  • CIM DEAE-1 Tube is a porous polymer self-supporting structure in which diethylamino groups are held in a copolymer of glycidyl methacrylate and ethylene glycol dimethacrylate based on product information.
  • Example 5 The same procedure as in Example 1 was performed except that the pH of the buffer solution in step (2) of Example 1 was 7.0. The results of Examples 1 to 5 are shown in Table 1.
  • Comparative Example 2 Example except that HiTrap Q FF (average particle size 90 ⁇ m) manufactured by GE Healthcare was used as the porous polymer beads constituting the column, and the flow rate of the protein solution in the column was 2 CV / min. In the same manner as in 1, the protein solution was injected into the column. As a result, the column pressure increased, exceeded the column allowable pressure, and could not be operated. The results of Comparative Examples 1 and 2 are shown in Table 1.
  • Comparative Example 1 using porous polymer beads, the elution flow rate of the protein solution was set to about 1/5 of the example, and the recovery rate and purity comparable to those of the example were achieved. However, in Comparative Example 2 in which the elution flow rate was increased to about 2/5 of the example, the process could not be continued because the allowable pressure was exceeded.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Peptides Or Proteins (AREA)

Abstract

The purpose of the present invention is to produce a protein monomer that is useful as a raw material for medicines and the like in an industrially and economically efficient manner with high yield and high purity. A method for removing protein aggregates, characterized by allowing a mobile phase, e.g., a salt-containing buffer solution that contains a protein monomer and the protein aggregates, to pass through a column on which a porous polymer self-supporting structure having an anion exchange group fixed thereto is carried, thereby adsorbing the aggregates onto the column to collect the monomer in a flow-through manner.

Description

タンパク質凝集体の除去方法Method for removing protein aggregates
 本発明は、タンパク質モノマーとタンパク質凝集体とを含む溶液からタンパク質凝集体を除去する方法に関する。
 本願は、2016年4月18日に、日本に出願された特願2016-082707号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a method for removing protein aggregates from a solution containing protein monomers and protein aggregates.
This application claims priority based on Japanese Patent Application No. 2016-082707 filed in Japan on April 18, 2016, the contents of which are incorporated herein by reference.
 バイオ医薬品の製造工程の中で、タンパク質が二量体、三量体等の凝集体を形成し、形成されたタンパク質凝集体が目的物質由来の不純物となることがある。タンパク質は製造過程(濃縮、酸性pH暴露、加温操作)や保存過程(溶液、凍結溶液、凍結乾燥)において分子間で会合し、凝集体を形成することが知られており、これが薬効の低下や免疫原性の発現等、医薬品にとって有害な影響をもたらすことが懸念されている。そのため、不純物である凝集体を人体に有害な影響がなくなる程度まで除去することが望まれている。
 これをふまえ、医薬用タンパク質、特に抗体タンパク質などを精製することを目的として、クロマトグラフィーによって凝集体を除去する方法が多数開発された。
In the manufacturing process of biopharmaceuticals, proteins may form aggregates such as dimers and trimers, and the formed protein aggregates may become impurities derived from the target substance. Proteins are known to associate between molecules in the manufacturing process (concentration, acidic pH exposure, heating operation) and storage processes (solution, frozen solution, freeze-drying) to form aggregates, which reduces the efficacy of the protein. There is concern that it may cause harmful effects on pharmaceuticals, such as development of immunogenicity. Therefore, it is desired to remove the aggregate which is an impurity to such an extent that harmful effects on the human body are eliminated.
Based on this, many methods for removing aggregates by chromatography have been developed for the purpose of purifying pharmaceutical proteins, particularly antibody proteins.
 報告された方法としてはアニオン交換多孔性膜を用いて、卵白タンパク質の分離を実施しているものがある(特許文献1)。その際にはアニオン交換多孔性膜に全てのタンパク質を吸着させる必要があり、大容量での分離は困難である。そこで、より工業的・経済的に分離できる方法が求められていた。 As a reported method, there is a method in which an egg white protein is separated using an anion exchange porous membrane (Patent Document 1). In that case, it is necessary to adsorb all proteins on the anion exchange porous membrane, and separation with a large volume is difficult. Therefore, a method that can be separated more industrially and economically has been demanded.
 また、アニオン交換基が固定された多孔質吸着膜を用いた抗体モノマーの精製方法について報告されている(特許文献2)。しかし、バイオテクノロジー産業において大量精製が必要となるのは、抗体だけに限らず種々のタンパク質であり、様々なタンパク質モノマーの精製に用いることが可能な方法が求められていた。 In addition, a method for purifying antibody monomers using a porous adsorption membrane having anion exchange groups immobilized thereon has been reported (Patent Document 2). However, in the biotechnology industry, mass purification is required not only for antibodies but also for various proteins, and a method that can be used for purification of various protein monomers has been demanded.
特開平11-12300号公報Japanese Patent Laid-Open No. 11-12300 特開2010-241761号公報JP 2010-241761 A
 本発明は、上記事情に鑑みてなされたものであり、医薬品等の原料として有用なタンパク質モノマーを、工業的かつ経済的に、高収率かつ高純度で得ることを目的とする。より具体的にはタンパク質モノマーとタンパク質凝集体とを含む混合物からタンパク質凝集体を高速で除去し、タンパク質モノマーを高収率で得るための方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to obtain protein monomers useful as raw materials for pharmaceuticals and the like, industrially and economically in high yield and high purity. More specifically, an object of the present invention is to provide a method for removing protein aggregates from a mixture containing protein monomers and protein aggregates at a high speed to obtain protein monomers at a high yield.
 本発明らは、タンパク質凝集体の除去方法について鋭意検討を行った。その結果、陰イオン交換官能基が固定された多孔性高分子自己支持構造物を保持するカラムを用いてクロマトグラフィーを行うと、タンパク質モノマーを高流速条件で回収できることを見出し、本発明を完成した。 The present inventors conducted extensive studies on a method for removing protein aggregates. As a result, it was found that protein monomers can be recovered under high flow rate conditions by performing chromatography using a column holding a porous polymer self-supporting structure to which an anion exchange functional group is fixed, and the present invention has been completed. .
 本発明は以下の通りである。
[1] 塩含有緩衝液を移動相として、陰イオン交換基が固定された多孔性高分子自己支持構造物を保持するカラムに通液することにより、タンパク質モノマーとタンパク質凝集体とを含む混合物から、前記タンパク質凝集体をカラムに吸着させ、前記タンパク質モノマーを回収することを特徴とするタンパク質凝集体の除去方法。
[2] 前記混合物は、タンパク質モノマーとタンパク質凝集体とを含む塩含有緩衝液であり、
 前記タンパク質モノマーと前記タンパク質凝集体とを含む前記塩含有緩衝液を移動相として、前記カラムに通液することにより、前記タンパク質凝集体を前記カラムに吸着させ、前記タンパク質モノマーをフロースルーで回収することを特徴とする[1]に記載のタンパク質凝集体の除去方法
[3] 前記混合物が前記タンパク質モノマーと前記タンパク質凝集体とを含む緩衝液であり、
 前記タンパク質モノマーと前記タンパク質凝集体とを含む前記緩衝液を、前記カラムに給液することにより、前記タンパク質モノマーと前記タンパク質凝集体とを前記カラムに負荷する工程と、
 前記タンパク質モノマーと前記タンパク質凝集体とを負荷した前記カラムに、前記塩含有緩衝液を移動相として通液することにより前記タンパク凝集体を吸着させたまま、前記タンパク質モノマーを溶出し、回収する工程と、を有することを特徴とする[1]に記載のタンパク質凝集体の除去方法。
[4] 前記多孔性高分子自己支持構造物を構成するためのモノマーが、グリシジルメタクリレートとアルキレンジメタクリレート類である[1]~[3]のいずれかに記載の除去方法。
[5] 前記多孔性高分子自己支持構造物を構成するためのモノマーが、グリシジルメタクリレートとエチレングリコールジメタクリレートである[4]に記載の除去方法。
[6] 前記陰イオン交換基が、4級アンモニウム基である[1]~[5]のいずれかに記載の除去方法。
[7] 前記多孔性高分子自己支持構造物の通液方向の厚さが、1~100mmである[1]~[6]のいずれかに記載の除去方法。
[8] 移動相の流速が2CV/分以上である[1]~[7]のいずれかに記載の除去方法。
[9] 前記タンパク質が、アルブミン、またはイムノグロブリンである[1]~[8]に記載の除去方法。
The present invention is as follows.
[1] Using a salt-containing buffer as a mobile phase, passing through a column holding a porous polymer self-supporting structure to which an anion exchange group is fixed, to thereby remove a mixture containing protein monomers and protein aggregates. A method for removing a protein aggregate, comprising adsorbing the protein aggregate on a column and recovering the protein monomer.
[2] The mixture is a salt-containing buffer containing a protein monomer and a protein aggregate,
The salt-containing buffer containing the protein monomer and the protein aggregate is used as a mobile phase to pass through the column, thereby adsorbing the protein aggregate to the column and recovering the protein monomer by flow-through. The protein aggregate removal method [3] according to [1], wherein the mixture is a buffer containing the protein monomer and the protein aggregate,
Loading the buffer containing the protein monomer and the protein aggregate onto the column by supplying the buffer with the protein monomer and the protein aggregate;
Elution and recovery of the protein monomer while adsorbing the protein aggregate by passing the salt-containing buffer as a mobile phase through the column loaded with the protein monomer and the protein aggregate And the method for removing a protein aggregate according to [1].
[4] The removal method according to any one of [1] to [3], wherein the monomers for constituting the porous polymer self-supporting structure are glycidyl methacrylate and alkylene dimethacrylates.
[5] The removal method according to [4], wherein monomers for constituting the porous polymer self-supporting structure are glycidyl methacrylate and ethylene glycol dimethacrylate.
[6] The removal method according to any one of [1] to [5], wherein the anion exchange group is a quaternary ammonium group.
[7] The removal method according to any one of [1] to [6], wherein the porous polymer self-supporting structure has a thickness in the liquid passing direction of 1 to 100 mm.
[8] The removal method according to any one of [1] to [7], wherein the flow rate of the mobile phase is 2 CV / min or more.
[9] The removal method according to [1] to [8], wherein the protein is albumin or immunoglobulin.
 本発明のタンパク質凝集体の除去方法によれば、医薬品等の原料として有用なタンパク質モノマーを、工業的かつ経済的に、高収率かつ高純度で得ることができる。より具体的にはタンパク質モノマーとタンパク質凝集体とを含む混合物からタンパク質凝集体を高速で除去し、タンパク質モノマーを高収率で得ることができる。 According to the method for removing protein aggregates of the present invention, protein monomers useful as raw materials for pharmaceuticals and the like can be obtained industrially and economically with high yield and high purity. More specifically, the protein aggregate can be removed at a high speed from the mixture containing the protein monomer and the protein aggregate, and the protein monomer can be obtained in a high yield.
 以下、本発明を実施するための好適な形態について説明する。なお、以下に説明する実施形態は、本発明の代表的な実施形態の一例を示したものであり、本発明はそれらに限定されるものではない。 Hereinafter, preferred embodiments for carrying out the present invention will be described. In addition, embodiment described below shows an example of typical embodiment of this invention, and this invention is not limited to them.
[タンパク質凝集体の除去方法]
 本発明のタンパク質凝集体の除去方法は、塩含有緩衝液を移動相として、陰イオン交換基が固定された多孔性高分子自己支持構造物を保持するカラムに通液することにより、タンパク質モノマーとタンパク質凝集体とを含む混合物から、前記タンパク質凝集体をカラムに吸着させ、前記タンパク質モノマーを回収することを特徴とする。
[Method for removing protein aggregates]
The method for removing a protein aggregate of the present invention uses a salt-containing buffer as a mobile phase and passes it through a column holding a porous polymer self-supporting structure having an anion exchange group immobilized thereon, thereby The protein aggregate is adsorbed on a column from a mixture containing the protein aggregate, and the protein monomer is recovered.
<陰イオン交換基>
 本実施の形態において、陰イオン交換基は、液中で負に帯電したタンパク質等を吸着することができればよく、特に限定されないが、例えば、ジエチルアミノ基、四級アンモニウム基、四級アミノエチル基、ジエチルアミノエチル基、ジエチルアミノプロピル基などが挙げられる。陰イオン交換基としてはジエチルアミノ基及び四級アンモニウム基が好ましく、四級アンモニウム基がより好ましい。
 例えば、四級アンモニウム基の構造を例示すれば下記化学式(1)となる。
<Anion exchange group>
In the present embodiment, the anion exchange group is not particularly limited as long as it can adsorb a negatively charged protein or the like in the liquid. For example, a diethylamino group, a quaternary ammonium group, a quaternary aminoethyl group, Examples thereof include a diethylaminoethyl group and a diethylaminopropyl group. As the anion exchange group, a diethylamino group and a quaternary ammonium group are preferable, and a quaternary ammonium group is more preferable.
For example, the structure of a quaternary ammonium group is illustrated by the following chemical formula (1).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
(式中、R、R、R、Rは、それぞれ独立にH、あるいはメチル基、エチル基、メチレン基、エチレン基などの炭化水素基、もしくは水酸基等の官能基を有する炭化水素基、ベンジル基等の芳香族アルキレン基であり、少なくとも1つはアルキレン基等の2価の基である。)
 R、R、R、Rは、それぞれメチル基、アルキル基、プロピル基が好ましく、メチル基がより好ましい。
(Wherein R 1 , R 2 , R 3 and R 4 are each independently H, a hydrocarbon group such as a methyl group, an ethyl group, a methylene group or an ethylene group, or a hydrocarbon having a functional group such as a hydroxyl group. An aromatic alkylene group such as a benzyl group or the like, and at least one is a divalent group such as an alkylene group.)
R 1 , R 2 , R 3 and R 4 are each preferably a methyl group, an alkyl group or a propyl group, more preferably a methyl group.
<多孔性高分子自己支持構造物>
 多孔性高分子自己支持構造物とは、架橋された高分子構造体であり、多孔質である。自己支持構造物とは、粒子状等ではなく、それ自体が一つの塊であり、形状を保持できるものを意味する。この多孔性高分子自己支持構造物は、2つ以上のエチレン性二重結合を有するモノマー(ポリビニルモノマー)と、一つのエチレン性二重結合を有するモノマー(モノビニルモノマー)にポロゲン(後述)を加えてバルク重合することで得ることができる。不活性溶媒を除くことで多孔質となる。多孔質のその孔は全体にわたって均一な孔径分布を有する。孔径は1~1000nmの範囲である。形状は、板状、管状、円筒状等、一体構造に形成されている。
<Porous polymer self-supporting structure>
The porous polymer self-supporting structure is a crosslinked polymer structure and is porous. The self-supporting structure means a structure that is not in the form of particles or the like but is itself a lump and can retain its shape. In this porous polymer self-supporting structure, a porogen (described later) is added to a monomer having two or more ethylenic double bonds (polyvinyl monomer) and a monomer having one ethylenic double bond (monovinyl monomer). Can be obtained by bulk polymerization. It becomes porous by removing the inert solvent. The porous pores have a uniform pore size distribution throughout. The pore diameter is in the range of 1 to 1000 nm. The shape is an integral structure such as a plate, a tube, or a cylinder.
 多孔性高分子自己支持構造物を構成するためのモノマーとしては、例えば、ポリビニルモノマーおよびモノビニルモノマーを使用することができる。 As the monomer for constituting the porous polymer self-supporting structure, for example, a polyvinyl monomer and a monovinyl monomer can be used.
 ポリビニルモノマーとしては、ジビニルベンゼン、ジビニルナフタレン、ジビニルピリジン、ジメタクリレート類、ジアクリレート類、ビニルエステル類、ジビニルエーテルなどのビニルエーテル類、エチレンビスアクリルアミドやプロピレンビスアクリルアミドなどのアルキレンビスアクリルアミド類及びそれらの混合物を使用することができる。
 ジメタクリレート類としては、エチレングリコールジメタクリレートやプロピレングリコールジメタクリレートなどのアルキレンジメタクリレート類が挙げられる。さらにペンタエリトリトールジ-、トリ-若しくはテトラメタクリレート、トリメチロールプロパントリメタクリレートまたはアクリレートを使用することができる。
 ジアクリレート類としては、エチレングリコールジアクリレート類が挙げられる。さらにペンタエリトリトールジ-、トリ-、もしくはテトラアクリレートを使用することができる。
Examples of polyvinyl monomers include divinylbenzene, divinylnaphthalene, divinylpyridine, dimethacrylates, diacrylates, vinyl esters, vinyl ethers such as divinyl ether, alkylene bisacrylamides such as ethylene bisacrylamide and propylene bisacrylamide, and mixtures thereof. Can be used.
Examples of the dimethacrylates include alkylene dimethacrylates such as ethylene glycol dimethacrylate and propylene glycol dimethacrylate. Furthermore, pentaerythritol di-, tri- or tetramethacrylate, trimethylolpropane trimethacrylate or acrylate can be used.
Diacrylates include ethylene glycol diacrylates. Further, pentaerythritol di-, tri-, or tetraacrylate can be used.
 モノビニルモノマーとしては、スチレン、置換スチレン(ただし、置換基はクロロメチル基、18までの炭素原子を有するアルキル基、水酸基、t-ブチルオキシカルボニル基、ハロゲン基、ニトロ基、アミノ基、保護水酸基またはアミノ基を包含する)、ビニルナフタレン、アクリル酸エチルなどのアクリル酸エステル類、グリシジルメタクリレート、メチルメタクリレート、ヒドロキシエチルメタクリレートなどのメタクリル酸エステル類、酢酸ビニル及びN-ビニルピロリドン、並びにそれらの混合物を使用することができる。 Monovinyl monomers include styrene, substituted styrene (wherein the substituent is a chloromethyl group, an alkyl group having up to 18 carbon atoms, a hydroxyl group, a t-butyloxycarbonyl group, a halogen group, a nitro group, an amino group, a protected hydroxyl group or (Including amino groups), vinyl naphthalene, acrylic esters such as ethyl acrylate, methacrylic esters such as glycidyl methacrylate, methyl methacrylate, hydroxyethyl methacrylate, vinyl acetate and N-vinyl pyrrolidone, and mixtures thereof can do.
 多孔性高分子自己支持構造物を構成するモノビニルモノマーとしては、陰イオン交換基を保持することのできる官能基を有するモノマーが好ましい。具体的にはグリシジルメタクリレートとアルキレンジメタクリレート類、好ましくはグリシジルメタクリレートとエチレングリコールジメタクリレートが挙げられる。 As the monovinyl monomer constituting the porous polymer self-supporting structure, a monomer having a functional group capable of holding an anion exchange group is preferable. Specific examples include glycidyl methacrylate and alkylene dimethacrylates, preferably glycidyl methacrylate and ethylene glycol dimethacrylate.
 多孔性高分子自己支持構造物としては、具体的には、CIM(登録商標) QA DISK、QA-1Tube Monolothic Column, CIM QA-8 Tube Monolithic Column, CIM QA-80 Tube Monolithic Column, CIM QA-800 Tube Monolithic Column, CIM q、A-8000 Tube Monolithic Column, DEAE DISK、DEAE-1Tube Monolothic Column, CIM DEAE-8 Tube Monolithic Column, CIM QA-80 Tube Monolithic Column, CIM QA-800 Tube Monolithic Column, CIM DEAE-8000 Tube Monolithic Columnが挙げられる。 なお、これらは全てグリシジルメタクリレートとエチレングリコールジメタクリレートの共重合体の変性物である。この共重合体は、ポロゲンと重合開始剤の存在下で、グリシジルメタクリレートとエチレングリコールジメタクリレートの混合物から製造される。
 ポロゲンとは、多孔を形成するための添加物質であり、脂肪族炭化水素類、芳香族炭化水素類、エステル類、アルコール類、ケトン類、エーテル類、可溶性高分子、およびそれらの混合物のような異なる種類の材料などが使用できる。好ましくはノルマルヘキサンである。
Specific examples of porous polymer self-supporting structures include CIM (registered trademark) QA DISK, QA-1 Tube Monolithic Column, CIM QA-8 Tube Monolithic Column, CIM QA-80 Tube Monolithic Column Q Tube Monolithic Column, CIM q, A-8000 Tube Monolithic Column, DEAE DISK, DEAE-1Tube Monolothic Column, CIM DEAE-8 Tube Monolithic Column, CIM QA-80 Tube Monolithic Column, CIM QA-800 Tube Monolithic Column, CIM DEAE- 8 00 Tube Monolithic Column and the like. These are all modified products of copolymers of glycidyl methacrylate and ethylene glycol dimethacrylate. This copolymer is produced from a mixture of glycidyl methacrylate and ethylene glycol dimethacrylate in the presence of a porogen and a polymerization initiator.
Porogen is an additive material for forming pores, such as aliphatic hydrocarbons, aromatic hydrocarbons, esters, alcohols, ketones, ethers, soluble polymers, and mixtures thereof. Different types of materials can be used. Normal hexane is preferred.
 重合開始剤としては、フリーラジカル発生開始剤が使用できる。具体的にはアゾビスイソブチロニトリルや2,2’-アゾビス(イソブチルアミド)ジヒドレートなどのアゾ化合物、過酸化ベンゾイルや過酸化ジプロピル二カルボン酸エステルなどの過酸化物が使用できる。種類の異なる重合開始剤を用いると、形の異なる孔構造を形成することができる。重合開始剤の量は、モノマー100質量部に対して好ましくは0.5~4質量部である。
 共重合体を製造するとき、ポロゲンとして可溶性高分子が添加されていてもよい。可溶性高分子は重合後に洗浄溶媒により溶解し除去される。可溶性高分子が添加されていると、孔構造がより多く形成される。可溶性高分子の量は、全体のモノマー100質量部に対して、好ましくは10~40質量部の量である。
 ポロゲンや重合開始剤を含むグリシジルメタクリレートとエチレングリコールジメタクリレートの混合物は、成形型の中に入れる前に、窒素又はアルゴンのような不活性ガスを用いて脱気することが好ましい。成形型は、空気汚染を防ぐために密封することが好ましい。
 重合は、例えば、40~50時間、50℃~90℃の温度で加熱して行うことができる。
 重合後、管を洗浄し、かつポロゲンとして用いた溶媒や可溶性高分子を除去する。洗浄のための溶媒としては、メタノール、エタノール、ベンゼン、トルエン、アセトン、テトラヒドロフランなどが使用できる。洗浄工程は複数回繰り返してもよい。
 また、陰イオン交換基として4級アンモニウム基を導入する場合の例としては、トリエチルアミンヒドロクロライドを使用して四級トリメチルアミノ基の導入を行うことができる。
A free radical generating initiator can be used as the polymerization initiator. Specifically, azo compounds such as azobisisobutyronitrile and 2,2′-azobis (isobutylamide) dihydrate, and peroxides such as benzoyl peroxide and dipropyl dicarboxylic acid ester can be used. When different types of polymerization initiators are used, pore structures having different shapes can be formed. The amount of the polymerization initiator is preferably 0.5 to 4 parts by mass with respect to 100 parts by mass of the monomer.
When producing the copolymer, a soluble polymer may be added as a porogen. The soluble polymer is dissolved and removed by a washing solvent after polymerization. When a soluble polymer is added, more pore structures are formed. The amount of the soluble polymer is preferably 10 to 40 parts by mass with respect to 100 parts by mass of the whole monomer.
The mixture of glycidyl methacrylate and ethylene glycol dimethacrylate containing a porogen or polymerization initiator is preferably degassed using an inert gas such as nitrogen or argon before being placed in the mold. The mold is preferably sealed to prevent air contamination.
The polymerization can be performed, for example, by heating at a temperature of 50 ° C. to 90 ° C. for 40 to 50 hours.
After the polymerization, the tube is washed, and the solvent and soluble polymer used as the porogen are removed. As a solvent for washing, methanol, ethanol, benzene, toluene, acetone, tetrahydrofuran or the like can be used. The washing process may be repeated a plurality of times.
As an example of introducing a quaternary ammonium group as an anion exchange group, a quaternary trimethylamino group can be introduced using triethylamine hydrochloride.
 この構造体は、静置したとき、その形状を自己支持できる機械的強度を保持する。すなわち、ビーズ状の多孔質高分子担体や、多孔膜を用いるものとは物理的構造が異なる。 This structure, when left standing, retains mechanical strength that can support its shape. That is, the physical structure is different from that using a bead-like porous polymer carrier or a porous membrane.
 多孔性高分子自己支持構造物の通液方向の厚さは1~100mmであることが好ましい。好ましくは2~70mm、より好ましくは3~60mm、さらに好ましくは3~50mmである。多孔性高分子自己支持構造物の厚さを1mm以上とすることにより、十分な機械的強度を持つ。多孔性高分子自己支持構造物の厚さを100mm以下とすることにより、多孔性高分子自己支持構造物の破壊を生じない圧力を保ち、ポンプ圧の上昇を防ぐことができる。 The thickness of the porous polymer self-supporting structure in the liquid passing direction is preferably 1 to 100 mm. The thickness is preferably 2 to 70 mm, more preferably 3 to 60 mm, and still more preferably 3 to 50 mm. By setting the thickness of the porous polymer self-supporting structure to 1 mm or more, it has sufficient mechanical strength. By setting the thickness of the porous polymer self-supporting structure to 100 mm or less, it is possible to maintain a pressure that does not cause the porous polymer self-supporting structure to be destroyed and to prevent an increase in pump pressure.
<カラム>
 カラムは、陰イオン交換基が固定された多孔性高分子自己支持構造物を含んでいる。すなわち、カラムは、板状、管状、円筒状等の形状をなす多孔性高分子自己支持構造物のみから構成されていてもよく、所定量の多孔性高分子自己支持構造物を、筒状に容器に収容(保持)してなるものであってもよい。
 カラムの大きさ(カラムボリューム)は特に制限されず、吸着させるタンパク質凝集体の量に応じて適宜調整される。
<Column>
The column includes a porous polymer self-supporting structure having an anion exchange group immobilized thereon. That is, the column may be composed of only a porous polymer self-supporting structure having a plate shape, a tubular shape, a cylindrical shape, etc., and a predetermined amount of the porous polymer self-supporting structure is formed into a cylindrical shape. It may be accommodated (held) in a container.
The column size (column volume) is not particularly limited, and is appropriately adjusted according to the amount of protein aggregate to be adsorbed.
<タンパク質>
 本発明の方法によってタンパク質凝集体を除去できるタンパク質としては、特に制限されないが、水性溶液中で凝集を生じやすい凝集性タンパク質であることが好ましい。凝集性タンパク質の凝集の生じやすさは、タンパク質を構成するアミノ酸の組成及びその配列、立体的配置に依存するとされる。凝集を生じやすいタンパク質の構造としては、親水性側鎖を持つアミノ酸が分子表面の一部に局在するタンパク質、また水素結合力による会合を誘発する特定の高次構造、たとえばβシートなどを分子表面に提示するタンパク質、金属イオン等の結合によるキレート性の部位をもつタンパク質、等が挙げられる。これらはそれぞれのタンパク質の適正なフォールディングの結果これらの構造を有するタンパク質に限定されず、溶液のpHや疎水性、変性剤の存在、加熱、振盪・撹拌などの物理的作用
により生じる変性、電荷の中和等の結果これら構造を有するよう変化したタンパク質も含まれる。これらの構造を有するタンパク質としては、IgG、IgA、IgM等のイムノグロブリン、インターロイキン、ケモカイン、インターフェロン、G-CSF、エリスロポエチン、EGF、FGF、TGF、BDNF、VEGF、GM-CSF、PDGF、EPO、TPO、bFGF、HGF、TNF-α、TGF-β、PAI-1、HB-EGF、レプチン、アディポネプチン、NGF等のサイトカイン、ヒト成長ホルモン、インスリン、グルカゴン等のタンパク質ホルモン、血液凝固因子、アルブミン、リゾチーム、RNaseA、シトクロムcなどが挙げられる。なかでも、疎水性の高いアミノ酸を分子の外側に多く配向する、またはそのようなアミノ酸が分子表面の一部に局在するタンパク質、双極子性に基づく分子間の静電的会合を生じやすいアニオン性またはカチオン性の電荷をもつアミノ酸がそれぞれ局在し分極傾向にあるタンパク質がさらに好ましく、このようなタンパク質として具体的には、IgG、IgA、IgM等のイムノグロブリン、アルブミンが挙げられる。
<Protein>
The protein capable of removing protein aggregates by the method of the present invention is not particularly limited, but is preferably an aggregating protein that easily causes aggregation in an aqueous solution. The likelihood of aggregation of an aggregating protein depends on the composition of amino acids constituting the protein, its sequence, and steric configuration. Protein structures that are prone to aggregation include proteins in which amino acids with hydrophilic side chains are localized on a part of the surface of the molecule, and specific higher-order structures that induce association by hydrogen bonding force, such as β sheets. Examples thereof include a protein presented on the surface, a protein having a chelating site by binding of metal ions and the like. These are not limited to proteins having these structures as a result of the proper folding of the respective proteins, but the pH and hydrophobicity of the solution, presence of denaturing agents, denaturation caused by physical actions such as heating, shaking and stirring, and charge Proteins altered to have these structures as a result of neutralization and the like are also included. Proteins having these structures include IgG, IgA, IgM and other immunoglobulins, interleukins, chemokines, interferons, G-CSF, erythropoietin, EGF, FGF, TGF, BDNF, VEGF, GM-CSF, PDGF, EPO, Cytokines such as TPO, bFGF, HGF, TNF-α, TGF-β, PAI-1, HB-EGF, leptin, adiponeptin, NGF, protein hormones such as human growth hormone, insulin, glucagon, blood coagulation factors, albumin , Lysozyme, RNase A, cytochrome c and the like. Among them, proteins with highly hydrophobic amino acids oriented outside the molecule, or proteins in which such amino acids are localized on a part of the surface of the molecule, anions that tend to cause electrostatic association between molecules based on dipolarity More preferred are proteins in which amino acids having a cationic or cationic charge are localized and have a polarization tendency. Specific examples of such proteins include immunoglobulins such as IgG, IgA, and IgM, and albumin.
<タンパク質モノマー>
 タンパク質モノマーとは、タンパク質1分子のことを示す。
<Protein monomer>
A protein monomer means one protein molecule.
<タンパク質凝集体>
 タンパク質凝集体とは、タンパク質モノマーが疎水性相互作用、静電的相互作用、その他の相互作用により可逆的または不可逆的に吸着、凝集したタンパク質複合体のことである。
<Protein aggregate>
A protein aggregate is a protein complex in which protein monomers are adsorbed and aggregated reversibly or irreversibly by hydrophobic interaction, electrostatic interaction, and other interactions.
(第1実施態様)
<タンパク質凝集体のカラムへの吸着とタンパク質モノマーのフロースルー>
 本発明の第1実施態様として、タンパク質モノマーとタンパク質凝集体とを、塩含有緩衝液に溶解させて溶液を調整し(以下、この溶液を「タンパク質溶液」と言う。)、この溶液を移動相として陰イオン交換基が固定された多孔性高分子自己支持構造物を保持するカラムに通液することにより、タンパク質凝集体をカラムに吸着させ、タンパク質モノマーをフロースルーで回収することができる。タンパク質溶液に用いる前記塩含有緩衝液としては、緩衝液に無機塩を溶解させた塩含有緩衝液が好ましい。
(First embodiment)
<Adsorption of protein aggregate to column and flow through of protein monomer>
As a first embodiment of the present invention, a protein monomer and a protein aggregate are dissolved in a salt-containing buffer to prepare a solution (hereinafter, this solution is referred to as “protein solution”), and this solution is used as a mobile phase. As a result, the protein aggregate can be adsorbed to the column and the protein monomer can be recovered by flow-through by passing the solution through a column holding the porous polymer self-supporting structure to which the anion exchange group is fixed. The salt-containing buffer used for the protein solution is preferably a salt-containing buffer in which an inorganic salt is dissolved in the buffer.
<フロースルー様式>
 フロースルー様式とは、回収したい目的物がクロマトグラフィーデバイスに吸着されず、通過することを意味する。本発明においては、タンパク質凝集体をカラムに吸着させ、タンパク質モノマーをこの様式により回収する。
<Flow-through style>
The flow-through mode means that an object to be collected passes through without being adsorbed on the chromatography device. In the present invention, protein aggregates are adsorbed to a column and protein monomers are recovered in this manner.
 緩衝液としては特に制限されないが、例えば、リン酸緩衝液、クエン酸緩衝液、トリス(トリスヒドロキシメチルアミノメタン)緩衝液、酢酸緩衝液、ホウ酸緩衝液等が使用できる。これらの中でも、緩衝能を有する使用pH範囲の点から、リン酸緩衝液、クエン酸緩衝液、トリス緩衝液が好ましい。
 緩衝液の濃度は特に制限されないが、好ましくは1~100mM、より好ましくは2~50mM、さらに好ましくは5~30mMである。
 緩衝液のpHは特に制限されないが、好ましくはpH2~9、より好ましくはpH3~8、さらに好ましくはpH4~7.5である。
Although it does not restrict | limit especially as a buffer solution, For example, a phosphate buffer solution, a citrate buffer solution, a tris (trishydroxymethylaminomethane) buffer solution, an acetate buffer solution, a borate buffer solution etc. can be used. Among these, a phosphate buffer solution, a citrate buffer solution, and a Tris buffer solution are preferable from the point of use pH range having buffer capacity.
The concentration of the buffer is not particularly limited, but is preferably 1 to 100 mM, more preferably 2 to 50 mM, and further preferably 5 to 30 mM.
The pH of the buffer solution is not particularly limited, but is preferably 2 to 9, more preferably 3 to 8, and still more preferably 4 to 7.5.
<塩>
 塩含有緩衝液に用いる塩としては、例えば塩化ナトリウム、硫酸ナトリウム、酢酸ナトリウム、硫酸アンモニウムなどのほか、クエン酸、リン酸またはグリシンの金属塩が挙げられるが、これらに限定されるものではない。好ましくは、塩化ナトリウム、硫酸ナトリウム、酢酸ナトリウム、硫酸アンモニウム、さらに好ましくは塩化ナトリウムである。
<Salt>
Examples of the salt used in the salt-containing buffer include, but are not limited to, sodium chloride, sodium sulfate, sodium acetate, ammonium sulfate, and metal salts of citric acid, phosphoric acid, or glycine. Sodium chloride, sodium sulfate, sodium acetate, ammonium sulfate are preferable, and sodium chloride is more preferable.
 塩濃度はカラムにタンパク質モノマーは吸着せず、タンパク質凝集体のみが吸着するのに十分な量であることが好ましい。かつタンパク質モノマーとタンパク質凝集体との結合または沈殿を引き起こさないほど十分に少ない量であることが好ましい。具体的には、塩として塩化ナトリウムを用いる場合、緩衝液に対する濃度は、好ましくは0.05~0.50M、より好ましくは0.05~0.30M、さらに好ましくは0.10~0.30Mである。それぞれの精製プロセスについて、予備実験等により塩の最適な量および好ましい種類を選択することが好ましい。 The salt concentration is preferably an amount sufficient to adsorb only protein aggregates without adsorbing protein monomers on the column. The amount is preferably small enough not to cause binding or precipitation of protein monomers and protein aggregates. Specifically, when sodium chloride is used as the salt, the concentration relative to the buffer is preferably 0.05 to 0.50M, more preferably 0.05 to 0.30M, and even more preferably 0.10 to 0.30M. It is. For each purification process, it is preferable to select the optimum amount and preferred type of salt by preliminary experiments and the like.
 タンパク質を塩含有緩衝液に溶解させるとき、濃度は、好ましくは0.01~10mg/mL、より好ましくは0.1~5mg/mL、さらに好ましくは0.2~3mg/mLである。
 カラム体積1mLあたりのタンパク質負荷量は、好ましくは250μg~60mg、より好ましくは500μg~50mg、さらに好ましくは750μg~40mgである。
When the protein is dissolved in a salt-containing buffer, the concentration is preferably 0.01 to 10 mg / mL, more preferably 0.1 to 5 mg / mL, and still more preferably 0.2 to 3 mg / mL.
The protein loading per mL of column volume is preferably 250 μg to 60 mg, more preferably 500 μg to 50 mg, and even more preferably 750 μg to 40 mg.
 タンパク質溶液をカラムに通液する前に、カラムに緩衝液を通して平衡化しておくことが好ましい。
 平衡化に用いる緩衝液の種類、濃度、pHは、タンパク質を溶解する塩含有緩衝液と同様のものを用いることができる。
 平衡化に要する緩衝液の量は特に制限されないが、好ましくは1CV(カラム容積倍数)以上、より好ましくは2CV以上、さらに好ましくは4CV以上である。
Before passing the protein solution through the column, it is preferable to equilibrate the column with a buffer solution.
The kind, concentration, and pH of the buffer used for equilibration can be the same as the salt-containing buffer that dissolves the protein.
The amount of the buffer solution required for equilibration is not particularly limited, but is preferably 1 CV (column volume multiple) or more, more preferably 2 CV or more, and further preferably 4 CV or more.
 カラムにタンパク質溶液を通液する際、カラムおよびタンパク質溶液の温度は、特に制限されないが、好ましくは2~50℃、より好ましくは4~40℃、さらに好ましくは8~30℃である。当該範囲にすることにより、タンパク質溶液の凍結、タンパク質の破壊を防ぐことができる。 When the protein solution is passed through the column, the temperature of the column and the protein solution is not particularly limited, but is preferably 2 to 50 ° C., more preferably 4 to 40 ° C., and still more preferably 8 to 30 ° C. By setting it within this range, freezing of protein solution and destruction of protein can be prevented.
 タンパク質溶液の流速は目的を達成できる範囲であれば制限されないが、好ましくは2~12.5CV/分、より好ましくは2.5~5CV/分、さらに好ましくは4~5CV/分である。 The flow rate of the protein solution is not limited as long as the purpose can be achieved, but is preferably 2 to 12.5 CV / min, more preferably 2.5 to 5 CV / min, and further preferably 4 to 5 CV / min.
 本発明においては、タンパク質溶液のpH範囲は限定されない。また、本発明は単独で行ってもよく、イオン交換クロマトグラフィー、アフィ二ティークロマトグラフィーによる精製行程のあとに行ってもよい。
 したがって本発明はより自由な条件のもとで、タンパク質モノマーを高収率かつ高純度で得ることができる。
In the present invention, the pH range of the protein solution is not limited. Moreover, this invention may be performed independently and may be performed after the refinement | purification process by an ion exchange chromatography and affinity chromatography.
Therefore, the present invention can obtain a protein monomer in high yield and high purity under more free conditions.
 以上の知見を用いてタンパク質モノマーを選択的に回収するための条件検討を行えば、条件検討を短時間化することができる。特に、本発明においては、カラムの通液方向の厚さまたはカラムの直径を変更しても、カラムのイオン交換基・構成モノマー・温度・圧力、緩衝液、塩含有緩衝液、移動相の流速(CV/分)等の条件を変更せずに精製することができるので、条件検討を短時間化することができる。 If the conditions for selectively recovering protein monomers are examined using the above knowledge, the conditions can be shortened. In particular, in the present invention, even if the thickness of the column passage direction or the column diameter is changed, the ion exchange groups, constituent monomers, temperature, pressure, buffer solution, salt-containing buffer solution, mobile phase flow rate of the column are changed. Since it is possible to purify without changing the conditions such as (CV / min), it is possible to shorten the time required for studying the conditions.
<タンパク質凝集体の溶出とカラムの再生>
 なお、上述の方法でタンパク質モノマーを溶出させた後に、塩濃度を高めた塩含有緩衝液をカラムに通すことにより、タンパク質凝集体を溶出させることができる。タンパク質凝集体を溶出させた後、平衡化に用いる前述の緩衝液と同様のものを再び通すことにより、カラムを再生することもできる。
<Elution of protein aggregates and column regeneration>
In addition, after eluting a protein monomer by the above-mentioned method, a protein aggregate can be eluted by letting the salt containing buffer solution which raised salt concentration pass to a column. After eluting the protein aggregate, the column can be regenerated by passing again the same buffer as that used for equilibration.
(第2実施態様)
 本発明の一実施態様においてはまた、カラムの平衡化の後、「タンパク質モノマーとタンパク質凝集体とのカラムへの負荷」工程と、「タンパク質モノマーの溶出」工程とを分けて行うこともできる。
(Second embodiment)
In one embodiment of the present invention, after the column equilibration, the “loading of protein monomer and protein aggregate to the column” step and the “elution of protein monomer” step can be performed separately.
 第2実施態様のタンパク質凝集体の除去方法は、タンパク質モノマーとタンパク質凝集体とを含む緩衝液を、陰イオン交換基が固定された多孔性高分子自己支持構造物を保持するカラムに給液することにより、前記タンパク質モノマーとタンパク質凝集体とをカラムに負荷する工程と、前記タンパク質モノマー、前記タンパク質凝集体を負荷したカラムに、塩含有緩衝液を通すことにより前記タンパク質凝集体を吸着させ、前記タンパク質モノマーを溶出させ回収する工程と、を有することを特徴とする。 In the method for removing a protein aggregate according to the second embodiment, a buffer solution containing a protein monomer and a protein aggregate is supplied to a column holding a porous polymer self-supporting structure to which an anion exchange group is fixed. A step of loading the protein monomer and the protein aggregate onto the column, and adsorbing the protein aggregate by passing a salt-containing buffer through the column loaded with the protein monomer and the protein aggregate, And a step of eluting and recovering the protein monomer.
 本工程に用いる緩衝液と塩は、上述第1実施態様に用いる緩衝液と塩を使用することができる。
 緩衝液の種類、濃度、pHは、カラムを平衡化する緩衝液と同様のものを用いることができるし、異なっていてもよいが、同じであることが望ましい。
As the buffer solution and salt used in this step, the buffer solution and salt used in the first embodiment can be used.
The type, concentration, and pH of the buffer can be the same as the buffer used to equilibrate the column, and may be different, but are preferably the same.
 カラムに移動相として塩含有緩衝液を通す際、カラムおよび移動相の温度は、特に制限されないが、好ましくは2~50℃、より好ましくは4~40℃、さらに好ましくは8~30℃である。当該範囲にすることによりタンパク質溶液の凍結、タンパク質の破壊を防ぐことができる。 When the salt-containing buffer is passed through the column as a mobile phase, the temperature of the column and the mobile phase is not particularly limited, but is preferably 2 to 50 ° C., more preferably 4 to 40 ° C., and still more preferably 8 to 30 ° C. . By setting it in this range, freezing of protein solution and destruction of protein can be prevented.
<タンパク質凝集体の溶出とカラムの再生>
 本発明の第2実施態様において、本発明の第1実施態様と同様に、タンパク質凝集体の溶出とカラムの再生をすることができる。
<Elution of protein aggregates and column regeneration>
In the second embodiment of the present invention, the protein aggregates can be eluted and the column regenerated as in the first embodiment of the present invention.
 以下、実施例により本発明の効果をより明らかなものとする。なお本発明は、以下の実施例に限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することができる。
 実施例において、回収率、純度、凝集体含量を、タンパク質の例としてアルブミンを用いて、次のように定義する。
<回収率>
 本発明の回収率は、フロースルー様式でカラムから出たアルブミン全量とカラムに吸着させたアルブミン凝集体の全量、すなわちアルブミンおよびアルブミン凝集体の合計に対して、フロースルー様式で回収されたアルブミンモノマーの比率として計算される。具体的には、クロマトグラム上でのフロースルー部分の面積を、フロースルー部分とカラム再生時の塩含有緩衝液によるタンパク質凝集体溶出部分との面積の和で割った値を回収率とする。
<純度>
 本発明の純度は、回収されたサンプル中のアルブミンの全量、すなわちアルブミンモノマーおよびアルブミン凝集体の合計に対してのアルブミンモノマーの比率として計算される。具体的にはフロースルーでの回収分を昭和電工株式会社製のShodex(登録商標)KW403-4Fによるサイズ排除クロマトグラフィーを用いて測定することにより求める。クロマトグラム上でのタンパク質モノマーのピーク面積をアルブミン全量の面積で割った値を純度とする。なお、アルブミン全量の面積は凝集体ピーク面積とモノマーのピーク面積との和とする。クロマトグラム作成には、島津製作所のUV-VIS検出器 SPD-M30Aを用いた。単位は%である。
<凝集体含量>
 本発明の凝集体含量は、凝集体が全く含まれない状態を100としたとき、100-純度(%)と定義する。なお、純度(%)はクロマトグラムにおける面積比として計算される。
Hereinafter, the effects of the present invention will be made clearer by examples. In addition, this invention is not limited to a following example, In the range which does not change the summary, it can change suitably and can implement.
In the examples, recovery rate, purity, and aggregate content are defined as follows, using albumin as an example of protein.
<Recovery rate>
The recovery rate of the present invention is the albumin monomer recovered in the flow-through mode with respect to the total amount of albumin exiting the column in the flow-through mode and the total amount of albumin aggregate adsorbed on the column, ie, the sum of albumin and albumin aggregates. Calculated as the ratio of Specifically, the value obtained by dividing the area of the flow-through part on the chromatogram by the sum of the areas of the flow-through part and the protein aggregate elution part by the salt-containing buffer during column regeneration is defined as the recovery rate.
<Purity>
The purity of the present invention is calculated as the ratio of albumin monomer to the total amount of albumin in the collected sample, ie the sum of albumin monomer and albumin aggregate. Specifically, the amount recovered by flow-through is determined by measuring using size exclusion chromatography with Shodex (registered trademark) KW403-4F manufactured by Showa Denko KK. Purity is the value obtained by dividing the peak area of the protein monomer on the chromatogram by the area of the total amount of albumin. The total albumin area is the sum of the aggregate peak area and the monomer peak area. For preparation of the chromatogram, a UV-VIS detector SPD-M30A manufactured by Shimadzu Corporation was used. The unit is%.
<Aggregate content>
The aggregate content of the present invention is defined as 100-purity (%), where 100 is a state where no aggregate is contained. Purity (%) is calculated as an area ratio in the chromatogram.
<実施例1>
 以下の工程(1)~(4)で、アルブミンモノマーとアルブミン凝集体とを含む混合溶液から、アルブミンモノマーを回収し、アルブミン凝集体を除去した。
(1)カラムの平衡化
 BIA separations社製のCIM(登録商標)QA-1 Tube(厚さ:4.2mm、外径:18.6mm、内径:6.7mm、空隙率:60v/v%)に、0.10Mの塩化ナトリウムを含んだ20mMリン酸緩衝液(pH7.4)を5CV以上通して平衡化した。なお、CIM QA-1 Tubeは、グリシジルメタクリレートとエチレングリコールジメタクリレートの共重合体の変性物であり、一部のグリシジルメタクリレートに四級アンモニウム基が保持されている多孔性高分子自己支持構造物である。また、装置の構造によりカラムの中心の孔がふさがれるので、インジェクトされた液がカラムの中心の孔をそのまま通り抜けることはない。
(2)アルブミンモノマーおよびアルブミン凝集体
 ヒト血清アルブミン(Sigma Aldrich社製)10mgを、0.10Mの塩化ナトリウムを含有させた10mLのpH7.4の20mMリン酸溶液溶解させた。この溶液をアルブミン溶液とする。この溶液の凝集体含量はおよそ85%であった。この溶液を(1)で平衡化したカラムに10mL注入し精製した。すなわちカラム体積1mLあたりのアルブミン負荷量は10mgである。溶液の流速は5CV/分とした。
(3)アルブミンのフロースルー
 上記アルブミン溶液を10mL通液した際のアルブミンモノマーをフロースルー様式にて回収した。溶液の流速は5CV/分とした。
(4)アルブミン凝集体の溶出
 その後、4Mの塩化ナトリウムを含む20mMリン酸緩衝液(pH7.4)を7.5mLカラムに通し、アルブミン凝集体を溶出させた。溶液の流速は5CV/分とした。なお実施例1においてカラム、タンパク質溶液、移動相の温度は25℃とし、カラムの圧力は0.3~2MPaとした。
<Example 1>
In the following steps (1) to (4), albumin monomer was recovered from the mixed solution containing albumin monomer and albumin aggregate, and the albumin aggregate was removed.
(1) Equilibration of column CIM (registered trademark) QA-1 Tube manufactured by BIA separations (thickness: 4.2 mm, outer diameter: 18.6 mm, inner diameter: 6.7 mm, porosity: 60 v / v%) Then, 20 mM phosphate buffer (pH 7.4) containing 0.10 M sodium chloride was allowed to pass through 5 CV or more for equilibration. CIM QA-1 Tube is a modified product of a copolymer of glycidyl methacrylate and ethylene glycol dimethacrylate, and is a porous polymer self-supporting structure in which quaternary ammonium groups are held in some glycidyl methacrylates. is there. Further, since the central hole of the column is blocked by the structure of the apparatus, the injected liquid does not pass through the central hole of the column as it is.
(2) Albumin monomer and albumin aggregate 10 mg of human serum albumin (manufactured by Sigma Aldrich) was dissolved in 10 mL of a pH 7.4 20 mM phosphoric acid solution containing 0.10 M sodium chloride. This solution is defined as an albumin solution. The aggregate content of this solution was approximately 85%. 10 mL of this solution was injected into the column equilibrated in (1) and purified. That is, the albumin load per 1 mL of column volume is 10 mg. The solution flow rate was 5 CV / min.
(3) Flow-through of albumin Albumin monomer when 10 mL of the albumin solution was passed was collected in a flow-through manner. The solution flow rate was 5 CV / min.
(4) Elution of albumin aggregate A 20 mM phosphate buffer (pH 7.4) containing 4 M sodium chloride was then passed through a 7.5 mL column to elute the albumin aggregate. The solution flow rate was 5 CV / min. In Example 1, the temperature of the column, protein solution, and mobile phase was 25 ° C., and the column pressure was 0.3 to 2 MPa.
<実施例2>
 実施例1の工程(2)の塩化ナトリウム濃度を0.15Mとした以外は実施例1と同様に実施した。
<実施例3>
 実施例1の工程(2)のカラム体積1mLあたりのアルブミン負荷量を30mL(30mg)に変更し、塩化ナトリウム濃度を0.07Mにしたこと以外は実施例1と同様に行った。
<Example 2>
The same operation as in Example 1 was performed except that the sodium chloride concentration in Step (2) of Example 1 was 0.15M.
<Example 3>
The same procedure as in Example 1 was conducted except that the albumin load per mL of column volume in step (2) of Example 1 was changed to 30 mL (30 mg) and the sodium chloride concentration was changed to 0.07M.
<実施例4>
 実施例1の工程(1)のカラムとしてCIM(登録商標)DEAE-1 Tube(厚さ:4.2mm、外径:18.6mm、内径:6.7mm、空隙率:60v/v%)を用いたこと以外は実施例1と同様に実施した。なお、CIM DEAE-1Tubeは、製品情報よりグリシジルメタクリレートとエチレングリコールジメタクリレートの共重合体にジエチルアミノ基が保持されている多孔性高分子自己支持構造物である。
<実施例5>
 実施例1の工程(2)の緩衝液のpHを7.0としたこと以外は実施例1と同様に実施した。
 実施例1~5の結果を表1に記載した。
<Example 4>
CIM (registered trademark) DEAE-1 Tube (thickness: 4.2 mm, outer diameter: 18.6 mm, inner diameter: 6.7 mm, porosity: 60 v / v%) was used as the column in step (1) of Example 1. The same operation as in Example 1 was carried out except that it was used. CIM DEAE-1 Tube is a porous polymer self-supporting structure in which diethylamino groups are held in a copolymer of glycidyl methacrylate and ethylene glycol dimethacrylate based on product information.
<Example 5>
The same procedure as in Example 1 was performed except that the pH of the buffer solution in step (2) of Example 1 was 7.0.
The results of Examples 1 to 5 are shown in Table 1.
<比較例1>
 カラムを構成する多孔性高分子ビーズとして、GEヘルスケア社製の強陰イオン交換クロマトグラフィー HiTrap Q FF(平均粒子径90μm)を用い、カラム内におけるタンパク質溶液の流速を1CV/分とした以外は、実施例1と同様に実施して、アルブミンモノマーを溶出させた。
<Comparative Example 1>
As the porous polymer beads constituting the column, strong anion exchange chromatography HiTrap Q FF (average particle size 90 μm) manufactured by GE Healthcare was used, and the flow rate of the protein solution in the column was 1 CV / min. In the same manner as in Example 1, albumin monomer was eluted.
<比較例2>
 カラムを構成する多孔性高分子ビーズとして、GEヘルスケア社製のHiTrap Q FF(平均粒子径90μm)を用い、カラム内におけるタンパク質溶液の流速が2CV/分となるようにした以外は、実施例1と同様にして、タンパク質溶液をカラムに注入した。その結果、カラム圧が上昇し、カラム許容圧を超え、運用できなかった。比較例1、2の結果を表1に記載した。
<Comparative Example 2>
Example except that HiTrap Q FF (average particle size 90 μm) manufactured by GE Healthcare was used as the porous polymer beads constituting the column, and the flow rate of the protein solution in the column was 2 CV / min. In the same manner as in 1, the protein solution was injected into the column. As a result, the column pressure increased, exceeded the column allowable pressure, and could not be operated. The results of Comparative Examples 1 and 2 are shown in Table 1.
 多孔性高分子ビーズを用いた比較例1では、タンパク質溶液の溶出流速を実施例の1/5程度として、実施例と同程度の回収率、純度を達成した。しかし、溶出流速を実施例の2/5程度まで上げた比較例2では、許容圧力を超えたため処理を継続することができなかった。 In Comparative Example 1 using porous polymer beads, the elution flow rate of the protein solution was set to about 1/5 of the example, and the recovery rate and purity comparable to those of the example were achieved. However, in Comparative Example 2 in which the elution flow rate was increased to about 2/5 of the example, the process could not be continued because the allowable pressure was exceeded.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002

Claims (9)

  1.  塩含有緩衝液を移動相として、陰イオン交換基が固定された多孔性高分子自己支持構造物を保持するカラムに通液することにより、タンパク質モノマーとタンパク質凝集体とを含む混合物から、前記タンパク質凝集体をカラムに吸着させ、前記タンパク質モノマーを回収することを特徴とするタンパク質凝集体の除去方法。 From the mixture containing protein monomers and protein aggregates, the protein is passed through a column holding a porous polymer self-supporting structure having anion exchange groups immobilized, using a salt-containing buffer as a mobile phase. A method for removing a protein aggregate, comprising adsorbing the aggregate to a column and recovering the protein monomer.
  2.  前記混合物は、タンパク質モノマーとタンパク質凝集体とを含む塩含有緩衝液であり、
     前記タンパク質モノマーと前記タンパク質凝集体とを含む前記塩含有緩衝液を移動相として、前記カラムに通液することにより、前記タンパク質凝集体を前記カラムに吸着させ、前記タンパク質モノマーをフロースルーで回収することを特徴とする請求項1に記載のタンパク質凝集体の除去方法。
    The mixture is a salt-containing buffer containing protein monomers and protein aggregates,
    The salt-containing buffer containing the protein monomer and the protein aggregate is used as a mobile phase to pass through the column, thereby adsorbing the protein aggregate to the column and recovering the protein monomer by flow-through. The method for removing a protein aggregate according to claim 1.
  3.  前記混合物は、前記タンパク質モノマーと前記タンパク質凝集体とを含む緩衝液であり、
     前記タンパク質モノマーと前記タンパク質凝集体とを含む前記緩衝液を、前記カラムに給液することにより、前記タンパク質モノマーと前記タンパク質凝集体とを前記カラムに負荷する工程と、
     前記タンパク質モノマーと前記タンパク質凝集体とを負荷した前記カラムに、前記塩含有緩衝液を移動相として通液することにより前記タンパク凝集体を吸着させたまま、前記タンパク質モノマーを溶出し、回収する工程と、
    を有することを特徴とする請求項1に記載のタンパク質凝集体の除去方法。
    The mixture is a buffer containing the protein monomer and the protein aggregate,
    Loading the buffer containing the protein monomer and the protein aggregate onto the column by supplying the buffer with the protein monomer and the protein aggregate;
    Elution and recovery of the protein monomer while adsorbing the protein aggregate by passing the salt-containing buffer as a mobile phase through the column loaded with the protein monomer and the protein aggregate When,
    The method for removing a protein aggregate according to claim 1, comprising:
  4.  前記多孔性高分子自己支持構造物を構成するためのモノマーが、グリシジルメタクリレートとアルキレンジメタクリレート類である請求項1~3のいずれかに記載の除去方法。 The removal method according to any one of claims 1 to 3, wherein monomers for constituting the porous polymer self-supporting structure are glycidyl methacrylate and alkylene dimethacrylates.
  5.  前記アルキレンジメタクリレート類が、エチレングリコールジメタクリレートである請求項4に記載の除去方法。 The removal method according to claim 4, wherein the alkylene dimethacrylate is ethylene glycol dimethacrylate.
  6.  前記陰イオン交換基が、4級アンモニウム基である請求項1~5のいずれかに記載の除去方法。 The removal method according to any one of claims 1 to 5, wherein the anion exchange group is a quaternary ammonium group.
  7.  前記多孔性高分子自己支持構造物の通液方向の厚さが、1~100mmである請求項1~6のいずれかに記載の除去方法。 The removal method according to any one of claims 1 to 6, wherein a thickness of the porous polymer self-supporting structure in a liquid passing direction is 1 to 100 mm.
  8.  移動相の流速が2CV/分以上である請求項1~7のいずれかに記載の除去方法。 The removal method according to any one of claims 1 to 7, wherein the flow rate of the mobile phase is 2 CV / min or more.
  9.  前記タンパク質が、アルブミン、またはイムノグロブリンである請求項1~8に記載の除去方法。 The removal method according to any one of claims 1 to 8, wherein the protein is albumin or immunoglobulin.
PCT/JP2017/014974 2016-04-18 2017-04-12 Method for removing protein aggregates WO2017183536A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-082707 2016-04-18
JP2016082707A JP2019108274A (en) 2016-04-18 2016-04-18 Removing method of protein aggregate

Publications (1)

Publication Number Publication Date
WO2017183536A1 true WO2017183536A1 (en) 2017-10-26

Family

ID=60115874

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/014974 WO2017183536A1 (en) 2016-04-18 2017-04-12 Method for removing protein aggregates

Country Status (2)

Country Link
JP (1) JP2019108274A (en)
WO (1) WO2017183536A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010209068A (en) * 2009-03-11 2010-09-24 Wyeth Llc Method for purifying small modular immunopharmaceutical protein
JP2016507588A (en) * 2013-02-26 2016-03-10 エイジェンシー・フォー・サイエンス,テクノロジー・アンド・リサーチ Protein purification in the presence of nonionic organic polymers and electropositive surfaces
JP2016509068A (en) * 2013-02-28 2016-03-24 エイジェンシー・フォー・サイエンス,テクノロジー・アンド・リサーチ Chromatographic purification of antibodies from chromatin-deficient cell culture harvests.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010209068A (en) * 2009-03-11 2010-09-24 Wyeth Llc Method for purifying small modular immunopharmaceutical protein
JP2016507588A (en) * 2013-02-26 2016-03-10 エイジェンシー・フォー・サイエンス,テクノロジー・アンド・リサーチ Protein purification in the presence of nonionic organic polymers and electropositive surfaces
JP2016509068A (en) * 2013-02-28 2016-03-24 エイジェンシー・フォー・サイエンス,テクノロジー・アンド・リサーチ Chromatographic purification of antibodies from chromatin-deficient cell culture harvests.

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DHIVYA, A. P. ET AL.: "Purification of monoclonal antibodies from cell -culture supernatant by use of anion-exchange convective interaction media (CIM) monolithic columns", CHROMATOGRAPHIA, vol. 72, no. 11-12, 2010, pages 1183 - 1188, XP019867480, DOI: doi:10.1365/s10337-010-1787-3 *
NASCIMENTO, A. ET AL.: "Polishing of monoclonal antibodies streams through convective flow devices", SEPARATION AND PURIFICATION TECHNOLOGY, vol. 132, 2014, pages 593 - 600, XP029038460, DOI: doi:10.1016/j.seppur.2014.06.005 *

Also Published As

Publication number Publication date
JP2019108274A (en) 2019-07-04

Similar Documents

Publication Publication Date Title
Alkan et al. Antibody purification with protein A attached supermacroporous poly (hydroxyethyl methacrylate) cryogel
EP3570974B1 (en) Multimodal chromatographic media for protein separation
JP6326499B2 (en) Protein separation using acrylamide-containing filters
CA2942134C (en) Robust antibody purification
KR101354473B1 (en) Process for making improved chromatography media and method of use
JP5234727B2 (en) Method for producing temperature-responsive chromatographic carrier, chromatographic carrier obtained therefrom, and use thereof
US20100047904A1 (en) Materials, methods and systems for purification and/or separation
JP5631271B2 (en) Method for making and using improved chromatographic media
Zhang et al. Preparation of poly (N-isopropylacrylamide)-grafted polymer monolith for hydrophobic interaction chromatography of proteins
Babanejad et al. Applications of cryostructures in the chromatographic separation of biomacromolecules
JP2016041688A (en) Purification of immunoglobulin from plasma
WO2016175306A1 (en) Protein purification method
JP5631869B2 (en) Graft polymerization initiated by Ce (IV) on a polymer containing no hydroxyl group
WO2017183536A1 (en) Method for removing protein aggregates
US10617975B2 (en) Target molecule capture from crude solutions
US20180079778A1 (en) Method of removing protein aggregate
EP3233230B1 (en) Target molecule capture from crude solutions
JP2022554165A (en) Materials and methods for performing halogen bond-based separations

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17785875

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17785875

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP