WO2017183364A1 - Toner for electrostatic latent image development and method for producing same - Google Patents

Toner for electrostatic latent image development and method for producing same Download PDF

Info

Publication number
WO2017183364A1
WO2017183364A1 PCT/JP2017/010383 JP2017010383W WO2017183364A1 WO 2017183364 A1 WO2017183364 A1 WO 2017183364A1 JP 2017010383 W JP2017010383 W JP 2017010383W WO 2017183364 A1 WO2017183364 A1 WO 2017183364A1
Authority
WO
WIPO (PCT)
Prior art keywords
toner
resin
core
particles
latent image
Prior art date
Application number
PCT/JP2017/010383
Other languages
French (fr)
Japanese (ja)
Inventor
皓平 寺▲崎▼
Original Assignee
京セラドキュメントソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラドキュメントソリューションズ株式会社 filed Critical 京セラドキュメントソリューションズ株式会社
Publication of WO2017183364A1 publication Critical patent/WO2017183364A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles

Definitions

  • the present invention relates to an electrostatic latent image developing toner and a manufacturing method thereof, and more particularly to a capsule toner and a manufacturing method thereof.
  • Patent Document 1 discloses a technique for improving the chargeability of toner by using conductive inorganic fine particles as an internal or external additive for toner particles.
  • the conductive inorganic fine particles when conductive inorganic fine particles are contained in the toner particles, there is a concern that the conductive inorganic fine particles may inhibit fixing of the toner or increase the cost.
  • the conductive inorganic fine particles when conductive inorganic fine particles are adhered to the surface of the toner particles, the conductive inorganic fine particles are embedded from the surface of the toner particles into the interior due to long-term use of the image forming apparatus or continuous printing. There is a concern that this will be insufficient.
  • the present invention has been made in view of the above problems, and provides a toner for developing an electrostatic latent image that hardly resists charge attenuation under a high-temperature and high-humidity environment and is excellent in both heat storage stability and low-temperature fixability, and a method for producing the same.
  • the purpose is to do.
  • the electrostatic latent image developing toner according to the present invention includes a plurality of toner particles each including a core and a shell layer covering the surface of the core.
  • the core contains a polyester resin.
  • the shell layer contains a resin composed only of one or more repeating units having no hydroxyl group.
  • regions of the said core is 60% or more and 80% or less.
  • the amount of hydrogen ions present on the surface of the toner particles is 5.0 ⁇ 10 ⁇ 11 mol or more and 5.0 ⁇ 10 ⁇ 10 mol or less per 1 g of the toner.
  • the method for producing a toner for developing an electrostatic latent image according to the present invention is a method for producing the toner for developing an electrostatic latent image according to the present invention.
  • the method for producing a toner for developing an electrostatic latent image according to the present invention includes a preparation step and a surface treatment step.
  • core-shell particles comprising:
  • the core-shell particles are placed in a liquid containing alkali metal ions, and the liquid is kept at a temperature of 35 ° C. or higher and 45 ° C. or lower and a pH of 7.0 or higher and 11.0 or lower for 30 minutes or longer. Keep for less than 4 hours.
  • a toner for developing an electrostatic latent image and a method for producing the same, which are not easily attenuated in a high-temperature and high-humidity environment and are excellent in both heat storage stability and low-temperature fixability.
  • the number average particle diameter of the powder is the number average value of the equivalent circle diameter of primary particles (diameter of a circle having the same area as the projected area of the particles) measured using a microscope unless otherwise specified. It is. Moreover, the measured value of the volume median diameter (D 50 ) of the powder is not specified, and the “Coulter Counter Multisizer 3” manufactured by Beckman Coulter Co., Ltd. is used. ) Measured based on. Further, the measured values of the acid value and the hydroxyl value are values measured according to “JIS (Japanese Industrial Standard) K0070-1992” unless otherwise specified. Moreover, each measured value of a number average molecular weight (Mn) and a mass average molecular weight (Mw) is the value measured using the gel permeation chromatography, if not prescribed
  • a compound and its derivatives may be generically named by adding “system” after the compound name.
  • the name of a polymer is expressed by adding “system” after the compound name, it means that the repeating unit of the polymer is derived from the compound or a derivative thereof.
  • Acrylic and methacrylic are sometimes collectively referred to as “(meth) acrylic”.
  • acryloyl (CH 2 ⁇ CH—CO—) and methacryloyl (CH 2 ⁇ C (CH 3 ) —CO—) may be collectively referred to as “(meth) acryloyl”.
  • the subscript “n” of the repeating unit in each chemical formula independently indicates the number of repeating units (number of moles) of the repeating unit. Unless otherwise specified, n (number of repetitions) is arbitrary.
  • the toner according to this embodiment can be suitably used for developing an electrostatic latent image, for example, as a positively chargeable toner.
  • the toner of the present exemplary embodiment is a powder that includes a plurality of toner particles (each having a configuration described later).
  • the toner may be used as a one-component developer.
  • a two-component developer may be prepared by mixing a toner and a carrier using a mixing device (more specifically, a ball mill or the like).
  • a ferrite carrier ferrite particle powder
  • the carrier core may be formed of a magnetic material (for example, a ferromagnetic substance such as ferrite), or the carrier core may be formed of a resin in which magnetic particles are dispersed. Good. Further, magnetic particles may be dispersed in the resin layer covering the carrier core.
  • the amount of toner in the two-component developer is preferably 5 parts by mass or more and 15 parts by mass or less with respect to 100 parts by mass of the carrier. The positively chargeable toner contained in the two-component developer is positively charged by friction with the carrier.
  • the toner particles contained in the toner according to the present embodiment include a core (hereinafter referred to as a toner core) and a shell layer (capsule layer) that covers the surface of the toner core.
  • the toner core contains a binder resin.
  • the toner core may contain internal additives (for example, a colorant, a release agent, a charge control agent, and magnetic powder).
  • An external additive may be attached to the surface of the shell layer (or the surface region of the toner core not covered with the shell layer). If not necessary, the external additive may be omitted.
  • the toner particles before the external additive adheres are referred to as toner mother particles.
  • a material for forming the toner core is referred to as a toner core material.
  • a material for forming the shell layer is referred to as a shell material.
  • the toner according to the present embodiment can be used for image formation in, for example, an electrophotographic apparatus (image forming apparatus).
  • an electrophotographic apparatus image forming apparatus
  • an example of an image forming method using an electrophotographic apparatus will be described.
  • an image forming unit (for example, a charging device and an exposure device) of an electrophotographic apparatus forms an electrostatic latent image on a photosensitive member (for example, a surface layer portion of a photosensitive drum) based on image data.
  • a developing device of the electrophotographic apparatus specifically, a developing device in which a developer containing toner is set
  • the toner is charged by friction with the carrier, the developing sleeve, or the blade in the developing device before being supplied to the photoreceptor.
  • a positively chargeable toner is positively charged.
  • toner specifically, charged toner
  • a developing sleeve for example, a surface layer portion of a developing roller in the developing device
  • the consumed toner is replenished to the developing device from a toner container containing replenishment toner.
  • the transfer device of the electrophotographic apparatus transfers the toner image on the photosensitive member to an intermediate transfer member (for example, a transfer belt), the toner image on the intermediate transfer member is further transferred to a recording medium (for example, paper). Transcript to.
  • a fixing device fixing method: nip formed by a heating roller and a pressure roller
  • an image is formed on the recording medium.
  • a full color image can be formed by superposing four color toner images of black, yellow, magenta, and cyan.
  • the transfer method may be a direct transfer method in which the toner image on the photosensitive member is directly transferred to the recording medium without using the intermediate transfer member.
  • the fixing method may be a belt fixing method.
  • the toner according to the present embodiment is an electrostatic latent image developing toner having the following configuration (hereinafter referred to as a basic configuration).
  • the electrostatic latent image developing toner includes a plurality of toner particles including a toner core and a shell layer.
  • the toner core contains a polyester resin.
  • a shell layer contains resin comprised only by 1 or more types of repeating units which do not have a hydroxyl group.
  • the area ratio of the area covered by the shell layer (hereinafter referred to as shell coverage) is 60% or more and 80% or less.
  • the amount of hydrogen ions present on the surface of the toner particles is 5.0 ⁇ 10 ⁇ 11 mol or more and 5.0 ⁇ 10 ⁇ 10 mol or less per 1 g of toner.
  • the measuring method of the amount of hydrogen ions is the same method as the Example mentioned later, or its alternative method.
  • “having no hydroxyl group” means having no hydroxyl group (—OH) even in the form of a carboxyl group (—COOH). That is, the repeating unit derived from (meth) acrylic acid has a hydroxyl group. On the other hand, the repeating unit derived from the (meth) acrylic acid alkyl ester does not have a hydroxyl group.
  • the area of the surface area of the toner core corresponds to the sum of the area of the core covering area and the area of the core exposed area.
  • the “core covered region” corresponds to a region covered with the shell layer in the surface region of the toner core, and the “core exposed region” corresponds to a region not covered with the shell layer in the surface region of the toner core.
  • a shell coverage of 100% means that the entire surface of the toner core is covered with the shell layer.
  • the method for measuring the shell coverage is the same method as in the examples described later or an alternative method thereof.
  • the shell coverage may be measured after the external addition treatment.
  • the measurement may be performed while avoiding the external additive, or the measurement may be performed after removing the external additive attached to the toner base particles.
  • the external additive may be dissolved and removed using a solvent (for example, an alkaline solution), or the external additive may be removed from the toner particles using an ultrasonic cleaner.
  • the toner core contains a polyester resin.
  • the shell coverage is 60% or more and 80% or less.
  • a polyester resin in the toner core, a toner having excellent low-temperature fixability can be easily obtained.
  • the shell coverage is too large, the heat-resistant storage stability of the toner increases, while the low-temperature fixability of the toner tends to be insufficient.
  • the shell coverage is 60% or more and 80% or less, the area of the surface area of the toner core that is more than 20% and less than 40% is not covered with the shell layer (exposed from the shell layer). ).
  • the polyester resin is exposed in the core exposed region (the region not covered by the shell layer in the surface region of the toner core), after the toner is charged (for example, after stirring the toner and the carrier) It has been confirmed that charge attenuation tends to occur. This reason is considered to be because the carboxylic acid component of the polyester resin has high hygroscopicity.
  • the inventor of the present application has found a method for easily and appropriately reducing the hygroscopicity of the toner particle surface (particularly, the hygroscopicity of the polyester resin). Specifically, after forming a shell layer on the surface of the toner core, the obtained core-shell particles are placed in a liquid containing an alkaline substance, and the liquid is heated to a temperature slightly higher than room temperature (for example, 35 ° C. or higher 45 Toner temperature having a low surface hygroscopicity by maintaining a neutral to weak alkaline pH (for example, a pH selected from 7.0 to 11.0) for a sufficient period of time. Particles are obtained.
  • the terminal hydrogen of the carboxyl group (—COOH) of the polyester resin is replaced with a counter ion (for example, alkali metal ion) of an alkaline substance.
  • a counter ion for example, alkali metal ion
  • the pH of the liquid tends to decrease. Therefore, in order to keep the pH of the liquid constant for a long time, it is considered necessary to add an alkaline substance (for example, sodium hydroxide) to the liquid.
  • an alkaline substance for example, sodium hydroxide
  • one or more repeating units having no hydroxyl group in the resin constituting the shell layer are all repeating units derived from the vinyl compound.
  • a monomer polymer containing one or more vinyl compounds has a repeating unit derived from the vinyl compound.
  • the vinyl compound is a compound having a vinyl group (CH 2 ⁇ CH—) or a group in which hydrogen in the vinyl group is substituted (more specifically, ethylene, propylene, butadiene, vinyl chloride, acrylic acid, acrylic Acid methyl, methacrylic acid, methyl methacrylate, acrylonitrile, or styrene).
  • the vinyl compound can be polymerized by addition polymerization with a carbon double bond “C ⁇ C” contained in the vinyl group or the like to become a polymer (resin).
  • the resin constituting the shell layer preferably contains a repeating unit derived from an acrylonitrile monomer (hereinafter referred to as an acrylonitrile unit), and is represented by the following formula (1). It is particularly preferred that the repeating unit is included.
  • R 11 and R 12 each independently represent a hydrogen atom, a halogen atom, an alkyl group that may have a substituent, or an alkoxy group that may have a substituent. However, none of the substituents has a hydroxyl group.
  • R 11 represents a hydrogen atom and R 12 represents a hydrogen atom or a methyl group is particularly preferred.
  • R 11 and R 12 each independently represent a hydrogen atom.
  • the repeating unit having the highest molar fraction among the repeating units contained in the resin constituting the shell layer is represented by an acrylonitrile-based unit (more preferably, the formula (1)). (Repeating unit).
  • the resin constituting the shell layer is a repeating unit derived from a styrene monomer in addition to the acrylonitrile unit. (Hereinafter referred to as a styrene-based unit) is preferable.
  • a styrene-based unit a repeating unit represented by the following formula (2) is particularly preferable.
  • R 21 to R 25 each independently represent a hydrogen atom, a halogen atom, an alkyl group which may have a substituent, an alkoxy group which may have a substituent, or a substituent.
  • the aryl group which may have is represented.
  • R 26 and R 27 each independently represent a hydrogen atom, a halogen atom, or an alkyl group that may have a substituent. However, none of the substituents has a hydroxyl group.
  • R 21 to R 25 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or a carbon number (specifically, alkoxy and alkyl The total number of carbon atoms) is preferably an alkoxyalkyl group having 2 to 6 carbon atoms.
  • R 26 and R 27 are each independently preferably a hydrogen atom or a methyl group, particularly preferably a combination in which R 27 represents a hydrogen atom and R 26 represents a hydrogen atom or a methyl group. In the repeating unit derived from styrene, each of R 21 to R 27 represents a hydrogen atom.
  • the resin constituting the shell layer is particularly preferably a crosslinked styrene-acrylonitrile resin.
  • the thickness of the shell layer is preferably 1 nm or more and 20 nm or less.
  • the thickness of the shell layer can be measured by analyzing a TEM (transmission electron microscope) image of the cross section of the toner particles using commercially available image analysis software (for example, “WinROOF” manufactured by Mitani Corporation). If the thickness of the shell layer is not uniform in one toner particle, four equally spaced locations (specifically, two straight lines that are perpendicular to each other at the approximate center of the cross section of the toner particle are drawn.
  • the thickness of the shell layer is measured at each of the four points where the straight line intersects the shell layer, and the arithmetic average of the four measured values obtained is taken as the evaluation value of the toner particles (shell layer thickness).
  • the boundary between the toner core and the shell layer can be confirmed, for example, by selectively dyeing only the shell layer of the toner core and the shell layer.
  • a characteristic element contained in the shell layer in the TEM photographed image is formed by combining TEM and electron energy loss spectroscopy (EELS). By performing the mapping, the boundary between the toner core and the shell layer can be clarified.
  • the toner core is roughly classified into a pulverized core (also referred to as a pulverized toner) and a polymerized core (also referred to as a chemical toner).
  • the toner core obtained by the pulverization method belongs to the pulverization core, and the toner core obtained by the aggregation method belongs to the polymerization core.
  • the toner core is preferably a pulverized core containing a polyester resin.
  • the toner core contains one or more types of melt-kneaded crystalline polyester resins and one or more types of amorphous polyester resins. preferable.
  • the volume median diameter (D 50 ) of the toner is preferably 3 ⁇ m or more and less than 10 ⁇ m.
  • toner core binder resin and internal additive
  • shell layer shell layer
  • external additive external additive
  • Toner core (Binder resin)
  • the binder resin In the toner core, the binder resin generally occupies most of the components (for example, 85% by mass or more). For this reason, it is considered that the properties of the binder resin greatly affect the properties of the entire toner core.
  • the properties of the binder resin (more specifically, the hydroxyl value, acid value, Tg, Tm, etc.) can be adjusted.
  • the toner core When the binder resin has an ester group, a hydroxyl group, an ether group, an acid group, or a methyl group, the toner core has a strong tendency to become anionic, and when the binder resin has an amino group or an amide group, The toner core is more prone to become cationic.
  • at least one of the hydroxyl value and the acid value of the binder resin is 10 mgKOH / g or more.
  • the toner core contains a polyester resin.
  • the toner core preferably contains a crystalline polyester resin and an amorphous polyester resin as the polyester resin.
  • the amount of the crystalline polyester resin contained in the toner core is the total amount of the polyester resin in the toner core (the sum of the crystalline polyester resin and the amorphous polyester resin).
  • the amount is preferably 1% by mass or more and 50% by mass or less, and more preferably 5% by mass or more and 25% by mass or less.
  • the amount of the crystalline polyester resin contained in the toner core is preferably 1 g or more and 50 g or less (more preferably 5 g or more and 25 g or less).
  • the toner core In order for the toner core to have an appropriate sharp melt property, it is preferable to contain a crystalline polyester resin having a crystallinity index of 0.90 or more and less than 1.15 in the toner core.
  • Tm softening point
  • Mp melting point
  • the measuring method of each of Mp and Tm of the resin is the same method as the examples described later or its alternative method.
  • the crystallinity index of the crystalline polyester resin can be adjusted by changing the type or amount of a material (for example, alcohol and / or carboxylic acid) for synthesizing the crystalline polyester resin.
  • the toner core may contain only one type of crystalline polyester resin, or may contain two or more types of crystalline polyester resins.
  • the polyester resin is composed of one or more polyhydric alcohols (more specifically, diol, bisphenol, trihydric or higher alcohol as shown below) and one or more polyhydric carboxylic acids (more specifically, Can be obtained by polycondensation with a divalent carboxylic acid or a trivalent or higher carboxylic acid as shown below.
  • polyhydric alcohols more specifically, diol, bisphenol, trihydric or higher alcohol as shown below
  • polyhydric carboxylic acids more specifically, Can be obtained by polycondensation with a divalent carboxylic acid or a trivalent or higher carboxylic acid as shown below.
  • Suitable examples of the aliphatic diol include diethylene glycol, triethylene glycol, neopentyl glycol, 1,2-propanediol, ⁇ , ⁇ -alkanediol (more specifically, ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, 1,12-dodecanediol, etc. ), 2-butene-1,4-diol, 1,4-cyclohexanedimethanol, dipropylene glycol, polyethylene glycol, polypropylene glycol, or polytetramethylene glycol.
  • suitable bisphenol include bisphenol A, hydrogenated bisphenol A, bisphenol A ethylene oxide adduct, or bisphenol A propylene oxide adduct.
  • trihydric or higher alcohols include sorbitol, 1,2,3,6-hexanetetrol, 1,4-sorbitan, pentaerythritol, dipentaerythritol, tripentaerythritol, 1,2,4-butane. Triol, 1,2,5-pentanetriol, glycerol, diglycerol, 2-methylpropanetriol, 2-methyl-1,2,4-butanetriol, trimethylolethane, trimethylolpropane, or 1,3,5- Trihydroxymethylbenzene is mentioned.
  • divalent carboxylic acids include aromatic dicarboxylic acids (more specifically, phthalic acid, terephthalic acid, or isophthalic acid), ⁇ , ⁇ -alkanedicarboxylic acids (more specifically, malonic acid).
  • Preferred examples of the trivalent or higher carboxylic acid include 1,2,4-benzenetricarboxylic acid (trimellitic acid), 2,5,7-naphthalenetricarboxylic acid, 1,2,4-naphthalenetricarboxylic acid, 2,4-butanetricarboxylic acid, 1,2,5-hexanetricarboxylic acid, 1,3-dicarboxyl-2-methyl-2-methylenecarboxypropane, 1,2,4-cyclohexanetricarboxylic acid, tetra (methylenecarboxyl)
  • Examples include methane, 1,2,7,8-octanetetracarboxylic acid, pyromellitic acid, or empole trimer acid.
  • the toner core contains a crystalline polyester resin having a melting point (Mp) of 50 ° C. or higher and 100 ° C. or lower.
  • the amorphous polyester resin comprises one or more bisphenols (more specifically, bisphenol A ethylene oxide adduct or bisphenol A propylene oxide adduct) and one or more dicarboxylic acids ( More specifically, it is a polymer of a monomer (resin raw material) containing terephthalic acid, fumaric acid, alkyl succinic acid, or the like, and the crystalline polyester resin has one or more carbon atoms of 6 or more and 12 or less.
  • bisphenols more specifically, bisphenol A ethylene oxide adduct or bisphenol A propylene oxide adduct
  • dicarboxylic acids More specifically, it is a polymer of a monomer (resin raw material) containing terephthalic acid, fumaric acid, alkyl succinic acid, or the like, and the crystalline polyester resin has one or more carbon atoms of 6 or more and 12 or less.
  • ⁇ , ⁇ -alkanedicarboxylic acid more specifically, adipic acid having 6 carbon atoms or suberic acid having 8 carbon atoms
  • one or more ⁇ , ⁇ -alkanediols having 2 to 6 carbon atoms More specifically, polymerization of a monomer (resin raw material) containing ethylene glycol having 2 carbon atoms, propanediol having 3 carbon atoms, or butanediol having 4 carbon atoms) It is.
  • the toner core preferably contains a plurality of types of non-crystalline polyester resins having different softening points (Tm) as the binder resin. It is particularly preferable to contain an amorphous polyester resin having a softening point of not lower than 90 ° C., an amorphous polyester resin having a softening point of not lower than 100 ° C. and not higher than 120 ° C., and an amorphous polyester resin having a softening point of not lower than 125 ° C.
  • amorphous polyester resin having a softening point of 90 ° C. or lower bisphenol (for example, bisphenol A ethylene oxide adduct and / or bisphenol A propylene oxide adduct) is included as an alcohol component, and an aromatic component is used as an acid component.
  • non-crystalline polyester resin having a softening point of 100 ° C. or higher and 120 ° C. or lower include bisphenol (for example, bisphenol A ethylene oxide adduct and / or bisphenol A propylene oxide adduct) as an alcohol component, and an acid component.
  • bisphenol for example, bisphenol A ethylene oxide adduct and / or bisphenol A propylene oxide adduct
  • Non-crystalline polyester resin containing aromatic dicarboxylic acid for example, terephthalic acid
  • unsaturated dicarboxylic acid for example, terephthalic acid
  • an alcohol component contains bisphenol (for example, bisphenol A ethylene oxide adduct and / or bisphenol A propylene oxide adduct) and carbon as an acid component.
  • bisphenol for example, bisphenol A ethylene oxide adduct and / or bisphenol A propylene oxide adduct
  • Dicarboxylic acid having an alkyl group of several tens or more and 20 or less for example, dodecyl succinic acid having an alkyl group having 12 carbon atoms
  • unsaturated dicarboxylic acid for example, fumaric acid
  • trivalent carboxylic acid for example, trimellitic acid
  • the number average molecular weight (Mn) of the amorphous polyester resin is 1000 or more and 2000 or less in order to improve the strength of the toner core and the toner fixing property. It is preferable.
  • the molecular weight distribution of amorphous polyester resin is preferably 9 or more and 21 or less.
  • the toner core may contain a resin other than the polyester resin as the binder resin.
  • the binder resin other than the polyester resin include, for example, a styrene resin, an acrylic resin (more specifically, an acrylic ester polymer or a methacrylic ester polymer), and an olefin resin (more specifically, A thermoplastic resin such as a vinyl chloride resin, a polyvinyl alcohol, a vinyl ether resin, an N-vinyl resin, a polyamide resin, or a urethane resin.
  • Copolymers of these resins that is, copolymers in which arbitrary repeating units are introduced into the resin (more specifically, styrene-acrylic acid resin or styrene-butadiene resin) are also bonded. It can be suitably used as a resin.
  • the toner core may contain a colorant.
  • a colorant a known pigment or dye can be used according to the color of the toner.
  • the amount of the colorant is preferably 1 part by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the binder resin.
  • the toner core may contain a black colorant.
  • a black colorant is carbon black.
  • the black colorant may be a colorant that is toned to black using a yellow colorant, a magenta colorant, and a cyan colorant.
  • the toner core may contain a color colorant such as a yellow colorant, a magenta colorant, or a cyan colorant.
  • the yellow colorant for example, one or more compounds selected from the group consisting of condensed azo compounds, isoindolinone compounds, anthraquinone compounds, azo metal complexes, methine compounds, and arylamide compounds can be used.
  • the yellow colorant include C.I. I. Pigment Yellow (3, 12, 13, 14, 15, 17, 62, 74, 83, 93, 94, 95, 97, 109, 110, 111, 120, 127, 128, 129, 147, 151, 154, 155 168, 174, 175, 176, 180, 181, 191, or 194), naphthol yellow S, Hansa yellow G, or C.I. I. Vat yellow can be preferably used.
  • the magenta colorant is, for example, selected from the group consisting of condensed azo compounds, diketopyrrolopyrrole compounds, anthraquinone compounds, quinacridone compounds, basic dye lake compounds, naphthol compounds, benzimidazolone compounds, thioindigo compounds, and perylene compounds.
  • One or more compounds can be used.
  • Examples of the magenta colorant include C.I. I. Pigment Red (2, 3, 5, 6, 7, 19, 23, 48: 2, 48: 3, 48: 4, 57: 1, 81: 1, 122, 144, 146, 150, 166, 169, 177 184, 185, 202, 206, 220, 221 or 254) can be preferably used.
  • cyan colorant for example, one or more compounds selected from the group consisting of a copper phthalocyanine compound, an anthraquinone compound, and a basic dye lake compound can be used.
  • cyan colorants include C.I. I. Pigment blue (1, 7, 15, 15: 1, 15: 2, 15: 3, 15: 4, 60, 62, or 66), phthalocyanine blue, C.I. I. Bat Blue, or C.I. I. Acid blue can be preferably used.
  • the toner core may contain a release agent.
  • the release agent is used, for example, for the purpose of improving the fixing property or offset resistance of the toner.
  • the amount of the release agent is preferably 1 part by mass or more and 30 parts by mass or less with respect to 100 parts by mass of the binder resin.
  • the release agent examples include low molecular weight polyethylene, low molecular weight polypropylene, polyolefin copolymer, polyolefin wax, microcrystalline wax, paraffin wax, or aliphatic hydrocarbon wax such as Fischer-Tropsch wax; oxidized polyethylene wax or a block thereof Oxides of aliphatic hydrocarbon waxes such as copolymers; plant waxes such as candelilla wax, carnauba wax, wood wax, jojoba wax, or rice wax; animal properties such as beeswax, lanolin, or whale wax Waxes; mineral waxes such as ozokerite, ceresin, or petrolatum; waxes based on fatty acid esters such as montanic ester waxes or castor waxes; such as deoxidized carnauba wax; Some or all of the fatty acid ester can be preferably used de oxidized wax.
  • the toner core contains two or more release agents.
  • Synthetic ester wax and natural ester wax It is particularly preferable to contain (more specifically, carnauba wax or the like).
  • a synthetic ester wax can be synthesized, for example, by reacting an alcohol and a carboxylic acid (or carboxylic acid halide) in the presence of an acid catalyst.
  • the raw material of the synthetic ester wax may be, for example, a substance derived from a natural product such as a long-chain fatty acid prepared from natural fats and oils or a commercially available synthetic product.
  • the toner core may contain a charge control agent.
  • the charge control agent is used, for example, for the purpose of improving the charge stability or charge rising property of the toner.
  • the charge rising characteristic of the toner is an index as to whether or not the toner can be charged to a predetermined charge level in a short time.
  • the anionicity of the toner core can be increased.
  • a positively chargeable charge control agent more specifically, pyridine, nigrosine, quaternary ammonium salt, or the like
  • the toner core can be made more cationic.
  • a charge control agent more specifically, pyridine, nigrosine, quaternary ammonium salt, or the like
  • the toner core may contain magnetic powder.
  • magnetic powder materials include ferromagnetic metals (more specifically, iron, cobalt, nickel, or alloys containing one or more of these metals), ferromagnetic metal oxides (more specifically, Ferrite, magnetite, chromium dioxide, or the like) or a material subjected to ferromagnetization treatment (more specifically, a carbon material or the like imparted with ferromagnetism by heat treatment) can be suitably used.
  • One type of magnetic powder may be used alone, or a plurality of types of magnetic powder may be used in combination.
  • the magnetic powder In order to suppress elution of metal ions (for example, iron ions) from the magnetic powder, it is preferable to surface-treat the magnetic powder.
  • metal ions for example, iron ions
  • a shell layer is formed on the surface of the toner core under acidic conditions, if the metal ions are eluted on the surface of the toner core, the toner cores are easily fixed to each other. It is considered that fixing of the toner cores can be suppressed by suppressing elution of metal ions from the magnetic powder.
  • the shell layer may be a film without graininess or a film with graininess.
  • resin particles When resin particles are used as the shell material, if the material (resin particles) is not completely melted and cured in a film-like form, a film having a form in which the resin particles are two-dimensionally linked (graininess) It is thought that a film with
  • the resin particles can be formed into a film by attaching the resin particles to the surface of the toner core in the liquid and heating the liquid.
  • the resin particles may be formed into a film by being heated in the drying step or receiving a physical impact force in the external addition step.
  • the entire shell layer is not necessarily formed integrally.
  • the shell layer may be a single film or an assembly of a plurality of films (islands) that are separated from each other.
  • Preferred examples of the resin constituting the shell layer include a crosslinked styrene-acrylonitrile resin and a crosslinked styrene-alkyl (meth) acrylate. Examples include ester resins and cross-linked styrene resins.
  • the crosslinked styrene-acrylonitrile resin is a polymer of one or more styrene monomers, one or more acrylonitrile monomers, and one or more crosslinking agents.
  • the crosslinked styrene- (meth) acrylic acid alkyl ester resin is a polymer of at least one styrene monomer, at least one (meth) acrylic acid alkyl ester, and at least one crosslinking agent.
  • the crosslinked styrene resin is a polymer of one or more styrene monomers and one or more crosslinking agents.
  • an aromatic compound having two or more “C ⁇ C” (carbon double bond portion) (more specifically, divinylbenzene or the like) is used as a crosslinking agent. It is preferable to use it.
  • the shell layer is substantially composed of a crosslinked styrene-acrylonitrile resin.
  • acrylonitrile monomer for introducing the acrylonitrile unit into the resin for example, acrylonitrile or methacrylonitrile is preferable.
  • styrenic monomer for introducing a styrenic unit into the resin examples include styrene, ⁇ -methylstyrene, 4-methylstyrene, 4-tert-butylstyrene, 4-methoxystyrene, 4-bromostyrene, or 3 -Chlorostyrene is preferred.
  • a crosslinking agent for introducing a crosslinked structure into the resin for example, divinylbenzene is preferable.
  • the glass transition point (Tg) of the resin constituting the shell layer is preferably 50 ° C. or higher and 100 ° C. or lower.
  • An external additive (specifically, a powder containing a plurality of external additive particles) may be adhered to the surface of the toner base particles. Unlike the internal additive, the external additive does not exist inside the toner base particles, but selectively exists only on the surface of the toner base particles (surface layer portion of the toner particles). For example, the toner base particles (powder) and the external additive (powder) are stirred together, so that the external additive adheres to the surface of the toner base particles. The toner base particles and the external additive particles do not chemically react with each other and are physically bonded instead of chemically.
  • the strength of the bond between the toner base particles and the external additive particles depends on the stirring conditions (more specifically, the stirring time, the rotation speed of the stirring, etc.), the particle diameter of the external additive particles, and the shape of the external additive particles. And the surface condition of the external additive particles.
  • the amount of the external additive (if multiple types of external additives are used,
  • the total amount of the additives is preferably 0.5 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the toner base particles.
  • the external additive particles are preferably inorganic particles such as silica particles or metal oxide particles (more specifically, alumina, titanium oxide, magnesium oxide, zinc oxide, strontium titanate, or barium titanate). Particularly preferred. However, particles of an organic acid compound such as a fatty acid metal salt (more specifically, zinc stearate) or resin particles may be used as the external additive particles. Moreover, you may use the composite particle which is a composite of a multiple types of material as external additive particle
  • the external additive particles may be surface-treated. One type of external additive may be used alone, or a plurality of types of external additives may be used in combination.
  • inorganic particles (powder) having a number average primary particle diameter of 5 nm to 30 nm are used as external additive particles. It is preferable to do.
  • a toner core is prepared. Subsequently, the toner core and the shell material are put in the liquid. In order to form a homogeneous shell layer, it is preferable to dissolve or disperse the shell material in the liquid by, for example, stirring the liquid containing the shell material. Subsequently, the shell material is adhered to the surface of the toner core in the liquid, and the shell material is formed on the surface of the toner core, whereby a shell layer (cured resin layer) is formed on the surface of the toner core.
  • a shell layer cured resin layer
  • the aqueous medium is a medium containing water as a main component (more specifically, pure water or a mixed liquid of water and a polar medium).
  • the aqueous medium may function as a solvent.
  • a solute may be dissolved in the aqueous medium.
  • the aqueous medium may function as a dispersion medium.
  • the dispersoid may be dispersed in the aqueous medium.
  • a polar medium in the aqueous medium for example, alcohol (more specifically, methanol or ethanol) can be used.
  • the boiling point of the aqueous medium is about 100 ° C.
  • the toner core is preferably produced by an agglomeration method or a pulverization method, and more preferably produced by a pulverization method.
  • a binder resin for example, a polyester resin
  • an internal additive for example, at least one of a colorant, a release agent, a charge control agent, and a magnetic powder
  • the obtained mixture is melt-kneaded.
  • the obtained melt-kneaded product is pulverized, and the obtained pulverized product is classified.
  • a toner core having a desired particle size can be obtained.
  • these particles are aggregated in an aqueous medium containing fine particles of a binder resin (for example, a polyester resin), a release agent, and a colorant until a desired particle diameter is obtained.
  • a binder resin for example, a polyester resin
  • a release agent for example, a release agent
  • a colorant for example, a colorant
  • the obtained aggregated particles are heated to unite the components contained in the aggregated particles.
  • an unnecessary substance such as a surfactant
  • the resin particles contained in the suspension are, for example, a crosslinked styrene-acrylonitrile resin composed only of repeating units having no hydroxyl group (for example, a co-polymer of a monomer (resin raw material) containing styrene having a crosslinked structure and acrylonitrile). It is substantially composed of a combination.
  • the glass transition point of the resin particles contained in the suspension is, for example, 50 ° C. or higher and 100 ° C. or lower.
  • a shell layer having a shell coverage of 100% (complete coating) is easily formed on the surface of the toner core.
  • pre-resinized particles resin particles
  • Resin particles adhere to the surface of the toner core in the liquid.
  • a surfactant may be included in the liquid, or the liquid is stirred using a powerful stirring device (for example, “Hibis Disper Mix” manufactured by Primics Co., Ltd.). May be.
  • a powerful stirring device for example, “Hibis Disper Mix” manufactured by Primics Co., Ltd..
  • the surfactant for example, sulfate ester salt, sulfonate salt, phosphate ester salt, or soap can be used.
  • an alkaline substance for example, sodium hydroxide
  • a pH selected from 7.0 to 8.0 for example, a pH selected from 7.0 to 8.0.
  • the temperature of the liquid is changed to a predetermined temperature (for example, 55 at a speed selected from 0.1 ° C./min to 3 ° C./min).
  • a temperature selected from 85 ° C. to 85 ° C. the temperature of the liquid is maintained at the temperature for a predetermined time (for example, a time selected from 30 minutes to 4 hours) while stirring the liquid.
  • a predetermined time for example, a time selected from 30 minutes to 4 hours
  • Core-shell particles (pre-treatment particles) comprising a layer can be prepared.
  • the resin particles are adhered to the surface of the toner core in the liquid, and the liquid is heated, whereby the resin particles can be dissolved (or deformed) to form a film.
  • the resin particles may be formed into a film by being heated in the drying step or receiving a physical impact force in the external addition step.
  • the temperature of the obtained dispersion of pre-treated particles is adjusted to a temperature slightly higher than room temperature (for example, a temperature selected from 35 ° C. to 50 ° C.).
  • a temperature slightly higher than room temperature for example, a temperature selected from 35 ° C. to 50 ° C.
  • an alkaline substance containing alkali metal ions for example, sodium hydroxide
  • the pH of the liquid is in a neutral to weakly alkaline range (for example, 7.0 to 11.0).
  • a pH selected from the dispersion liquid of the particles before the treatment is maintained at such a temperature and pH for a predetermined time (for example, a time selected from 30 minutes to 4 hours).
  • toner base particles particles surface-treated with an alkaline substance
  • an alkali metal ion for example, sodium ion
  • the dispersion of the toner base particles is filtered using, for example, a Buchner funnel. Thereby, the toner base particles are separated from the liquid (solid-liquid separation), and wet cake-like toner base particles are obtained. Subsequently, the obtained wet cake-like toner base particles are washed. Subsequently, the washed toner base particles are dried.
  • the toner base particles and the external additive are mixed using a mixer (for example, FM mixer manufactured by Nippon Coke Kogyo Co., Ltd.), and the external additive is adhered to the surface of the toner base particles. May be.
  • a mixer for example, FM mixer manufactured by Nippon Coke Kogyo Co., Ltd.
  • the content and order of the toner manufacturing method can be arbitrarily changed according to the required configuration or characteristics of the toner.
  • a material for example, a shell material
  • the material when reacting a material (for example, a shell material) in a liquid, the material may be reacted in the liquid for a predetermined time after the material is added to the liquid, or the material is added to the liquid over a long period of time. Then, the material may be reacted in the liquid while adding the material to the liquid.
  • the shell material may be added to the liquid at once, or may be added to the liquid in a plurality of times.
  • the toner may be sieved after the external addition step. Further, unnecessary steps may be omitted.
  • the step of preparing the material can be omitted by using a commercially available product. If an external additive is unnecessary, the external addition process may be omitted. When the external additive is not attached to the surface of the toner base particles (the step of external addition is omitted), the toner base particles correspond to the toner particles.
  • a prepolymer may be used instead of the monomer, if necessary.
  • a salt, ester, hydrate, or anhydride of the compound may be used as a raw material.
  • the toner particles produced at the same time are considered to have substantially the same configuration.
  • Table 1 shows toners TA-1 to TA-5, TB-1 to TB-3, and TC-1 to TC-4 (each toner for developing an electrostatic latent image) according to Examples or Comparative Examples.
  • crosslinked ST-AN resin indicates a crosslinked styrene-acrylonitrile resin.
  • toners TA-1 to TA-5, TB-1 to TB-3, and TC-1 to TC-4 will be described in order.
  • a considerable number of measurement values with sufficiently small errors are obtained, and the arithmetic average of the obtained measurement values is used as the evaluation value.
  • a scanning electron microscope (“JSM-7600F” manufactured by JEOL Ltd.) was used for measurement of the number average primary particle size of the powder.
  • methods for measuring Tg (glass transition point), Mp (melting point), and Tm (softening point) are as follows unless otherwise specified.
  • ⁇ Measurement method of Tg> As a measuring device, a differential scanning calorimeter (“DSC-6220” manufactured by Seiko Instruments Inc.) was used. The Tg (glass transition point) of the sample was determined by measuring the endothermic curve of the sample using a measuring device. Specifically, about 10 mg of a sample (for example, resin) was placed in an aluminum dish (aluminum container), and the aluminum dish was set in the measurement unit of the measuring device. In addition, an empty aluminum dish was used as a reference. In the measurement of the endothermic curve, the temperature of the measurement part was increased from the measurement start temperature of 25 ° C. to 200 ° C. at a rate of 10 ° C./min (RUN1).
  • the temperature of the measurement part was lowered from 200 ° C. to 25 ° C. at a rate of 10 ° C./min. Subsequently, the temperature of the measurement part was again raised from 25 ° C. to 200 ° C. at a rate of 10 ° C./min (RUN 2).
  • An endothermic curve (vertical axis: heat flow (DSC signal), horizontal axis: temperature) of the sample was obtained by RUN2.
  • the Tg of the sample was read from the obtained endothermic curve.
  • the temperature (onset temperature) of the specific heat change point corresponds to the Tg (glass transition point) of the sample.
  • ⁇ Tm measurement method A sample (for example, resin) is set on a Koka-type flow tester (“CFT-500D” manufactured by Shimadzu Corporation), a die pore diameter of 1 mm, a plunger load of 20 kg / cm 2 , and a temperature rising rate of 6 ° C./min. Then, a 1 cm 3 sample was melted and discharged, and an S-shaped curve (horizontal axis: temperature, vertical axis: stroke) of the sample was obtained. Subsequently, the Tm of the sample was read from the obtained S-shaped curve.
  • CFT-500D Koka-type flow tester
  • the temperature at which the stroke value in the S-curve is “(S 1 + S 2 ) / 2” Corresponds to the Tm (softening point) of the sample.
  • ⁇ Measurement method of Mp> As a measuring device, a differential scanning calorimeter (“DSC-6220” manufactured by Seiko Instruments Inc.) was used. The Mp (melting point) of the sample was determined by measuring the endothermic curve of the sample using a measuring device. Specifically, about 15 mg of a sample (for example, resin) was put in an aluminum dish (aluminum container), and the aluminum dish was set in the measurement unit of the measuring device. In addition, an empty aluminum dish was used as a reference. In the measurement of the endothermic curve, the temperature of the measurement part was increased from a measurement start temperature of 30 ° C. to 170 ° C. at a rate of 10 ° C./min.
  • the endothermic curve (vertical axis: heat flow (DSC signal), horizontal axis: temperature) of the sample was measured.
  • the Mp of the sample was read from the obtained endothermic curve.
  • the maximum peak temperature due to the heat of fusion corresponds to the Mp (melting point) of the sample.
  • reaction rate 100 ⁇ actual amount of reaction product water / theoretical product water amount”.
  • reaction rate 100 ⁇ actual amount of reaction product water / theoretical product water amount.
  • the flask contents were reacted under a reduced pressure atmosphere (pressure 8.3 kPa) and a temperature of 230 ° C. until the Tm of the reaction product (resin) reached a predetermined temperature (89 ° C.).
  • 89 ° C. a predetermined temperature
  • the method for synthesizing the non-crystalline polyester resin B is as follows. The method was the same as the synthesis method of the amorphous polyester resin A except that 2218 g of the oxide adduct and 1603 g of terephthalic acid were used. Regarding the obtained non-crystalline polyester resin B, Tm was 111 ° C. and Tg was 69 ° C.
  • a round bottom flask equipped with an anchor type stirring blade was set in a water bath at a temperature of 30 ° C., and 20 parts by mass of styrene, 80 parts by mass of acrylonitrile, 10 parts by mass of divinylbenzene, potassium persulfate (water solution) 4.5 parts by mass of a polymerization polymerization initiator) and 100 parts by mass of ion-exchanged water. And the temperature in a flask was heated up to 70 degreeC using the water bath, stirring the flask contents at a rotational speed of 100 rpm using the anchor type stirring blade.
  • emulsion polymerization (soap-free) is carried out at a temperature of 70 ° C. for 8 hours while stirring at a rotation speed of 100 rpm, and a dispersion of resin particles (specifically, crosslinked styrene-acrylonitrile resin particles) is obtained in the flask. It was.
  • the obtained dispersion was filtered (solid-liquid separation), and the resulting resin particles were washed, and then redispersed in an aqueous solution of sodium alkyl ether sulfate having a concentration of 10% by mass.
  • a suspension of resin particles having a solid content concentration of 8% by mass was obtained.
  • the number average primary particle diameter was 20 nm
  • Tg was 73 ° C.
  • the resin particles contained in the suspension were substantially composed of a crosslinked styrene-acrylonitrile resin.
  • the obtained mixture was subjected to conditions using a twin-screw extruder (“PCM-30” manufactured by Ikegai Co., Ltd.) at a material supply speed of 5 kg / hour, a shaft rotation speed of 160 rpm, and a set temperature (cylinder temperature) of 100 ° C. Was melt kneaded. Thereafter, the obtained kneaded material was cooled. Subsequently, the cooled kneaded material was coarsely pulverized using a pulverizer (“Rotoplex 16/8” manufactured by Toa Machinery Co., Ltd.).
  • the obtained coarsely pulverized product was finely pulverized using a jet mill (“Ultrasonic Jet Mill Type I” manufactured by Nippon Pneumatic Industry Co., Ltd.). Subsequently, the obtained finely pulverized product was classified using a classifier (“Elbow Jet EJ-LABO type” manufactured by Nippon Steel Mining Co., Ltd.). As a result, a toner core having a volume median diameter (D 50 ) of 6.8 ⁇ m was obtained.
  • toner TA-1 For example, in the production of toner TA-1, 20 g of suspension (solid content concentration: 8% by mass) was added as a shell material to the flask. Further, in the production of the toner TB-1, no shell material (suspension) was added.
  • toner core produced by the above procedure
  • anionic surfactant (“Emar (registered trademark) 0” manufactured by Kao Corporation, component: sodium lauryl sulfate)
  • toners containing a large number of toner particles (toners TA-1 to TA-5, TB-1, and TC-1 to TC-4 shown in Table 1) were obtained.
  • the production method of the toner TB-2 is the same as the production method of the toner TA-1, except that the suspension of the polyester resin prepared by the following method is used in the shell layer forming step instead of the suspension of the crosslinked styrene-acrylonitrile resin. Met.
  • the volume median diameter (D 50 ) was 20 nm.
  • a laser diffraction / scattering particle size distribution measuring device (“LA-920” manufactured by Horiba, Ltd.) was used.
  • the manufacturing method of toner TB-3 is the same as the manufacturing method of toner TA-1, except that, in the shell layer forming step, a crosslinked styrene resin suspension prepared by the following method was used instead of the crosslinked styrene-acrylonitrile resin suspension. It was the same.
  • a round bottom flask equipped with an anchor type stirring blade was set in a water bath at a temperature of 30 ° C., and 100 parts by mass of styrene, 10 parts by mass of divinylbenzene, and potassium persulfate (water-soluble polymerization initiator) 4 were placed in the flask. 0.5 parts by mass and 100 parts by mass of ion-exchanged water were added. And the temperature in a flask was heated up to 70 degreeC using the water bath, stirring the flask contents at a rotational speed of 100 rpm using the anchor type stirring blade.
  • emulsion polymerization (soap-free) was performed at a temperature of 70 ° C. for 6 hours while continuing stirring at a rotation speed of 100 rpm to obtain a dispersion of resin particles (specifically, crosslinked styrene resin particles) in the flask.
  • the obtained dispersion was filtered (solid-liquid separation), and the resulting resin particles were washed, and then redispersed in an aqueous solution of sodium alkyl ether sulfate having a concentration of 10% by mass.
  • a suspension of resin particles having a solid content concentration of 8% by mass (a suspension of a crosslinked styrene resin) was obtained.
  • the number average primary particle diameter was 20 nm
  • Tg was 75 ° C.
  • the resin particles contained in the suspension were substantially composed of a crosslinked styrene resin.
  • the shell coverage and the amount of hydrogen ions existing on the surface of the toner particles (Table 1 shows the result of measuring (per 1 g of toner).
  • the shell coverage was 72% and the hydrogen ion content was 3.0 ⁇ 10 ⁇ 10 mol / g.
  • Each measuring method of the shell coverage and the amount of hydrogen ions was as follows.
  • the toner base particles (toner before external addition) of each sample (any one of toners TA-1 to TA-5, TB-1 to TB-3, and TC-1 to TC-4) were measured. Specifically, the toner base particles (powder) to be measured are exposed to the vapor of 2 mL of a 0.5% by weight aqueous RuO 4 solution for 5 minutes in an air atmosphere at room temperature (25 ° C.), whereby the toner base is obtained. The particles were Ru stained.
  • the dyed toner base particles are observed with a field emission scanning electron microscope (FE-SEM) (“JSM-7600F” manufactured by JEOL Ltd.) at a magnification of 50000 times. I got a statue. Of the surface area of the toner core, the area covered with the shell layer was easily dyed with ruthenium.
  • ⁇ Method for measuring the amount of hydrogen ions present on the surface of toner particles 1 part by mass of the sample (toner) (50 g of toner) was placed in 2 parts by mass of ion-exchanged water (100 g of ion-exchanged water) to obtain a toner dispersion.
  • the toner dispersion was gently stirred while the temperature of the toner dispersion was kept at 25 ° C., and the pH of the toner dispersion was measured.
  • the toner dispersion liquid at a temperature of 25 ° C. is continuously stirred until the pH of the toner dispersion liquid is stabilized, and the measured pH value at the time when the pH of the toner dispersion liquid is stabilized is measured for the sample (toner).
  • the measured pH value was 10.22.
  • Minimum fixing temperature 100 parts by weight of developer carrier (carrier for “TASKalfa 5550ci” manufactured by Kyocera Document Solutions Co., Ltd.) and 10 parts by weight of sample (toner) were mixed for 30 minutes using a ball mill to prepare a two-component developer. .
  • An image was formed using the two-component developer prepared as described above, and the minimum fixing temperature was evaluated.
  • As an evaluation machine a color printer having a Roller-Roller type heat and pressure fixing device (an evaluation machine in which “FS-C5250DN” manufactured by Kyocera Document Solutions Co., Ltd. was modified to change the fixing temperature) was used.
  • the two-component developer prepared as described above was charged into the developing device of the evaluation machine, and the sample (replenishment toner) was charged into the toner container of the evaluation machine.
  • the measuring range of the fixing temperature was 100 ° C. or higher and 200 ° C. or lower.
  • the fixing temperature of the fixing device is increased from 100 ° C. by 5 ° C. (in the vicinity of the minimum fixing temperature by 2 ° C.), and the minimum temperature (minimum fixing temperature) at which a solid image (toner image) can be fixed on paper is set. It was measured. Whether or not the toner could be fixed was confirmed by a rubbing test as shown below. Specifically, the evaluation paper passed through the fixing device was bent so that the surface on which the image was formed was on the inside, and the image on the fold was rubbed 5 times with a 1 kg weight coated with a cloth.
  • the paper was spread and the bent portion of the paper (the portion where the solid image was formed) was observed. Then, the length (peeling length) of toner peeling at the bent portion was measured. The lowest temperature among the fixing temperatures at which the peeling length was 1 mm or less was defined as the lowest fixing temperature.
  • the minimum fixing temperature was 150 ° C. or lower, it was evaluated as “good”, and when the minimum fixing temperature exceeded 150 ° C., it was evaluated as “poor” (not good).
  • the obtained toner for evaluation was placed on a sieve having a known mass of 200 mesh (aperture 75 ⁇ m). Then, the mass of the sieve containing the toner was measured, and the mass of the toner before sieving was determined.
  • a sieve is set in a powder property evaluation apparatus (“Powder Tester (registered trademark)” manufactured by Hosokawa Micron Co., Ltd.), and according to the manual of the powder tester, the sieve is vibrated for 30 seconds under the condition of the rheostat scale 5 to evaluate toner. Was sieved. Then, after sieving, the mass of the toner remaining on the sieve was determined by measuring the mass of the sieve containing the toner.
  • the sample (toner) was put in the measurement cell.
  • the measurement cell was a metal cell in which a recess having an inner diameter of 10 mm and a depth of 1 mm was formed.
  • the sample was pushed in from above using a slide glass, and the concave portion of the cell was filled with the sample.
  • the sample overflowed from the cell was removed by reciprocating the slide glass on the surface of the cell.
  • the filling amount of the sample (toner) was 0.05 g.
  • the measurement cell filled with the sample was allowed to stand for 12 hours in an environment of a temperature of 32.5 ° C. and a humidity of 80% RH.
  • the measurement object was charged by corona discharge under the conditions of a voltage of 10 kV and a charging time of 0.5 seconds.
  • the surface potential of the measurement object was continuously recorded under the conditions of a sampling frequency of 10 Hz and a maximum measurement time of 300 seconds.
  • V V 0 exp ( ⁇ t)
  • the charge decay constant ⁇ is calculated for the decay time of 2 seconds (the period from the start of measurement to 2 seconds later). did.
  • V represents the surface potential [V]
  • V 0 represents the initial surface potential [V]
  • t represents the decay time [second].
  • the toners TA-1 to TA-3, TB-3, and TC-1 to TC-2 each had the above-described basic configuration.
  • the toners TA-1 to TA-3, TB-3, and TC-1 to TC-2 each include a plurality of toner particles including a toner core and a shell layer.
  • the toner core contained a polyester resin (specifically, non-crystalline polyester resins A to C and a crystalline polyester resin).
  • the shell layer contained a resin composed of only one or more repeating units having no hydroxyl group (specifically, a crosslinked styrene-acrylonitrile resin or a crosslinked styrene resin) (see Table 1).
  • the shell coverage (the area ratio of the area covered by the shell layer in the surface area of the toner core) was 60% or more and 80% or less (see Table 1).
  • the amount of hydrogen ions present on the surface of the toner particles was 5.0 ⁇ 10 ⁇ 11 mol or more and 5.0 ⁇ 10 ⁇ 10 mol or less per 1 g of toner (see Table 1).
  • the thickness of the shell layer was 10 nm or more and 20 nm or less.
  • the toners TA-1 to TA-3, TB-3, and TC-1 to TC-2 were excellent in all of heat-resistant storage stability, low-temperature fixability, and charge decay characteristics, respectively. .
  • the evaluation results of the heat resistant storage stability and the charge decay characteristic were worse than those of the toners TA-1 to TA-3 and TC-1 to TC-2.
  • the polyester resin (binder resin) in the toner core is hydrolyzed because the pH is excessively increased by adjusting the pH after the shell layer is formed on the surface of the toner core (after cooling) (see Table 1). it is conceivable that.
  • the shell layer was peeled off from the surface of the toner core due to hydrolysis of the polyester resin.
  • the electrostatic latent image developing toner according to the present invention can be used for forming an image in, for example, a copying machine, a printer, or a multifunction machine.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Developing Agents For Electrophotography (AREA)

Abstract

This toner for electrostatic latent image development contains a plurality of toner particles, each of which comprises a toner core and a shell layer. The toner core contains a polyester resin. The shell layer contains a resin that is configured only of one or more kinds of repeating units that have no hydroxyl group. The ratio of the area of the surface region of the toner core covered by the shell layer is from 60% to 80% (inclusive). The amount of hydrogen ions present on the surfaces of the toner particles is from 5.0 × 10-11 mol to 5.0 × 10-10 mol (inclusive) per 1 g of the toner.

Description

静電潜像現像用トナー及びその製造方法Toner for developing electrostatic latent image and method for producing the same
 本発明は、静電潜像現像用トナー及びその製造方法に関し、特にカプセルトナー及びその製造方法に関する。 The present invention relates to an electrostatic latent image developing toner and a manufacturing method thereof, and more particularly to a capsule toner and a manufacturing method thereof.
 特許文献1には、トナー粒子の内添剤又は外添剤として導電性無機微粒子を使用して、トナーの帯電性を向上させる技術が開示されている。 Patent Document 1 discloses a technique for improving the chargeability of toner by using conductive inorganic fine particles as an internal or external additive for toner particles.
特開2004-109716号公報JP 2004-109716 A
 しかし、トナー粒子の内部に導電性無機微粒子を含有させた場合には、その導電性無機微粒子が、トナーの定着を阻害したり、コストの増加を招いたりすることが懸念される。また、トナー粒子の表面に導電性無機微粒子を付着させた場合には、画像形成装置の長期使用又は連続印刷により、導電性無機微粒子がトナー粒子の表面から内部へ埋没して、トナーの帯電性が不十分になることが懸念される。 However, when conductive inorganic fine particles are contained in the toner particles, there is a concern that the conductive inorganic fine particles may inhibit fixing of the toner or increase the cost. In addition, when conductive inorganic fine particles are adhered to the surface of the toner particles, the conductive inorganic fine particles are embedded from the surface of the toner particles into the interior due to long-term use of the image forming apparatus or continuous printing. There is a concern that this will be insufficient.
 本発明は、上記課題に鑑みてなされたものであり、高温高湿環境下でも電荷減衰しにくく、耐熱保存性及び低温定着性の両方に優れる静電潜像現像用トナー及びその製造方法を提供することを目的とする。 The present invention has been made in view of the above problems, and provides a toner for developing an electrostatic latent image that hardly resists charge attenuation under a high-temperature and high-humidity environment and is excellent in both heat storage stability and low-temperature fixability, and a method for producing the same. The purpose is to do.
 本発明に係る静電潜像現像用トナーは、コアと、前記コアの表面を覆うシェル層とを備えるトナー粒子を、複数含む。前記コアは、ポリエステル樹脂を含有する。前記シェル層は、水酸基を有しない1種以上の繰返し単位のみで構成される樹脂を含有する。前記コアの表面領域のうち前記シェル層が覆う領域の面積割合は、60%以上80%以下である。前記トナー粒子の表面に存在する水素イオン量は、前記トナー1gあたり5.0×10-11モル以上5.0×10-10モル以下である。 The electrostatic latent image developing toner according to the present invention includes a plurality of toner particles each including a core and a shell layer covering the surface of the core. The core contains a polyester resin. The shell layer contains a resin composed only of one or more repeating units having no hydroxyl group. The area ratio of the area | region which the said shell layer covers among the surface area | regions of the said core is 60% or more and 80% or less. The amount of hydrogen ions present on the surface of the toner particles is 5.0 × 10 −11 mol or more and 5.0 × 10 −10 mol or less per 1 g of the toner.
 本発明に係る静電潜像現像用トナーの製造方法は、本発明に係る静電潜像現像用トナーを製造する方法である。本発明に係る静電潜像現像用トナーの製造方法は、準備工程と、表面処理工程とを含む。
 前記準備工程では、ポリエステル樹脂を含むトナーコアと、60%以上80%以下の面積割合で前記トナーコアの表面を覆い、水酸基を有しない1種以上の繰返し単位のみで構成される樹脂を含有するシェル層とを備えるコア-シェル粒子を準備する。
 前記表面処理工程では、前記コア-シェル粒子を、アルカリ金属イオンを含む液に入れて、前記液を、温度35℃以上45℃以下かつpH7.0以上11.0以下の状態に、30分間以上4時間以下の時間だけ保つ。
The method for producing a toner for developing an electrostatic latent image according to the present invention is a method for producing the toner for developing an electrostatic latent image according to the present invention. The method for producing a toner for developing an electrostatic latent image according to the present invention includes a preparation step and a surface treatment step.
In the preparation step, a toner core containing a polyester resin and a shell layer containing a resin composed of only one or more kinds of repeating units that cover the surface of the toner core at an area ratio of 60% to 80% and have no hydroxyl group And core-shell particles comprising:
In the surface treatment step, the core-shell particles are placed in a liquid containing alkali metal ions, and the liquid is kept at a temperature of 35 ° C. or higher and 45 ° C. or lower and a pH of 7.0 or higher and 11.0 or lower for 30 minutes or longer. Keep for less than 4 hours.
 本発明によれば、高温高湿環境下でも電荷減衰しにくく、耐熱保存性及び低温定着性の両方に優れる静電潜像現像用トナー及びその製造方法を提供することが可能になる。 According to the present invention, it is possible to provide a toner for developing an electrostatic latent image and a method for producing the same, which are not easily attenuated in a high-temperature and high-humidity environment and are excellent in both heat storage stability and low-temperature fixability.
 本発明の実施形態について詳細に説明する。なお、粉体(より具体的には、トナーコア、トナー母粒子、外添剤、又はトナー等)に関する評価結果(形状又は物性などを示す値)は、何ら規定していなければ、粉体から平均的な粒子を相当数選び取って、それら平均的な粒子の各々について測定した値の個数平均である。 Embodiments of the present invention will be described in detail. Note that the evaluation results (values indicating the shape or physical properties) of the powder (more specifically, the toner core, toner base particles, external additive, toner, etc.) are averaged from the powder unless otherwise specified. This is the number average of the values measured for each of the average particles by selecting a significant number of such particles.
 また、粉体の個数平均粒子径は、何ら規定していなければ、顕微鏡を用いて測定された1次粒子の円相当径(粒子の投影面積と同じ面積を有する円の直径)の個数平均値である。また、粉体の体積中位径(D50)の測定値は、何ら規定していなければ、ベックマン・コールター株式会社製の「コールターカウンターマルチサイザー3」を用いてコールター原理(細孔電気抵抗法)に基づき測定した値である。また、酸価及び水酸基価の各々の測定値は、何ら規定していなければ、「JIS(日本工業規格)K0070-1992」に従って測定した値である。また、数平均分子量(Mn)及び質量平均分子量(Mw)の各々の測定値は、何ら規定していなければ、ゲルパーミエーションクロマトグラフィーを用いて測定した値である。 The number average particle diameter of the powder is the number average value of the equivalent circle diameter of primary particles (diameter of a circle having the same area as the projected area of the particles) measured using a microscope unless otherwise specified. It is. Moreover, the measured value of the volume median diameter (D 50 ) of the powder is not specified, and the “Coulter Counter Multisizer 3” manufactured by Beckman Coulter Co., Ltd. is used. ) Measured based on. Further, the measured values of the acid value and the hydroxyl value are values measured according to “JIS (Japanese Industrial Standard) K0070-1992” unless otherwise specified. Moreover, each measured value of a number average molecular weight (Mn) and a mass average molecular weight (Mw) is the value measured using the gel permeation chromatography, if not prescribed | regulated at all.
 以下、化合物名の後に「系」を付けて、化合物及びその誘導体を包括的に総称する場合がある。化合物名の後に「系」を付けて重合体名を表す場合には、重合体の繰返し単位が化合物又はその誘導体に由来することを意味する。また、アクリル及びメタクリルを包括的に「(メタ)アクリル」と総称する場合がある。また、アクリロイル(CH2=CH-CO-)及びメタクリロイル(CH2=C(CH3)-CO-)を包括的に「(メタ)アクリロイル」と総称する場合がある。また、各化学式中の繰返し単位の添え字「n」は、各々独立して、その繰返し単位の繰返し数(モル数)を示している。何ら規定していなければ、n(繰返し数)は任意である。 Hereinafter, a compound and its derivatives may be generically named by adding “system” after the compound name. When the name of a polymer is expressed by adding “system” after the compound name, it means that the repeating unit of the polymer is derived from the compound or a derivative thereof. Acrylic and methacrylic are sometimes collectively referred to as “(meth) acrylic”. Further, acryloyl (CH 2 ═CH—CO—) and methacryloyl (CH 2 ═C (CH 3 ) —CO—) may be collectively referred to as “(meth) acryloyl”. The subscript “n” of the repeating unit in each chemical formula independently indicates the number of repeating units (number of moles) of the repeating unit. Unless otherwise specified, n (number of repetitions) is arbitrary.
 本実施形態に係るトナーは、例えば正帯電性トナーとして、静電潜像の現像に好適に用いることができる。本実施形態のトナーは、複数のトナー粒子(それぞれ後述する構成を有する粒子)を含む粉体である。トナーは、1成分現像剤として使用してもよい。また、混合装置(より具体的には、ボールミル等)を用いてトナーとキャリアとを混合して2成分現像剤を調製してもよい。高画質の画像を形成するためには、キャリアとしてフェライトキャリア(フェライト粒子の粉体)を使用することが好ましい。また、長期にわたって高画質の画像を形成するためには、キャリアコアと、キャリアコアを被覆する樹脂層とを備える磁性キャリア粒子を使用することが好ましい。キャリア粒子に磁性を付与するためには、磁性材料(例えば、フェライトのような強磁性物質)でキャリアコアを形成してもよいし、磁性粒子を分散させた樹脂でキャリアコアを形成してもよい。また、キャリアコアを被覆する樹脂層中に磁性粒子を分散させてもよい。高画質の画像を形成するためには、2成分現像剤におけるトナーの量は、キャリア100質量部に対して、5質量部以上15質量部以下であることが好ましい。なお、2成分現像剤に含まれる正帯電性トナーは、キャリアとの摩擦により正に帯電する。 The toner according to this embodiment can be suitably used for developing an electrostatic latent image, for example, as a positively chargeable toner. The toner of the present exemplary embodiment is a powder that includes a plurality of toner particles (each having a configuration described later). The toner may be used as a one-component developer. Further, a two-component developer may be prepared by mixing a toner and a carrier using a mixing device (more specifically, a ball mill or the like). In order to form a high-quality image, it is preferable to use a ferrite carrier (ferrite particle powder) as a carrier. In order to form a high-quality image over a long period of time, it is preferable to use magnetic carrier particles including a carrier core and a resin layer covering the carrier core. In order to impart magnetism to the carrier particles, the carrier core may be formed of a magnetic material (for example, a ferromagnetic substance such as ferrite), or the carrier core may be formed of a resin in which magnetic particles are dispersed. Good. Further, magnetic particles may be dispersed in the resin layer covering the carrier core. In order to form a high-quality image, the amount of toner in the two-component developer is preferably 5 parts by mass or more and 15 parts by mass or less with respect to 100 parts by mass of the carrier. The positively chargeable toner contained in the two-component developer is positively charged by friction with the carrier.
 本実施形態に係るトナーに含まれるトナー粒子は、コア(以下、トナーコアと記載する)と、トナーコアの表面を覆うシェル層(カプセル層)とを備える。トナーコアは結着樹脂を含有する。また、トナーコアは、内添剤(例えば、着色剤、離型剤、電荷制御剤、及び磁性粉)を含有してもよい。シェル層の表面(又は、シェル層で覆われていないトナーコアの表面領域)に外添剤が付着していてもよい。なお、必要がなければ外添剤を割愛してもよい。以下、外添剤が付着する前のトナー粒子を、トナー母粒子と記載する。また、トナーコアを形成するための材料を、トナーコア材料と記載する。また、シェル層を形成するための材料を、シェル材料と記載する。 The toner particles contained in the toner according to the present embodiment include a core (hereinafter referred to as a toner core) and a shell layer (capsule layer) that covers the surface of the toner core. The toner core contains a binder resin. The toner core may contain internal additives (for example, a colorant, a release agent, a charge control agent, and magnetic powder). An external additive may be attached to the surface of the shell layer (or the surface region of the toner core not covered with the shell layer). If not necessary, the external additive may be omitted. Hereinafter, the toner particles before the external additive adheres are referred to as toner mother particles. A material for forming the toner core is referred to as a toner core material. A material for forming the shell layer is referred to as a shell material.
 本実施形態に係るトナーは、例えば電子写真装置(画像形成装置)において画像の形成に用いることができる。以下、電子写真装置による画像形成方法の一例について説明する。 The toner according to the present embodiment can be used for image formation in, for example, an electrophotographic apparatus (image forming apparatus). Hereinafter, an example of an image forming method using an electrophotographic apparatus will be described.
 まず、電子写真装置の像形成部(例えば、帯電装置及び露光装置)が、画像データに基づいて感光体(例えば、感光体ドラムの表層部)に静電潜像を形成する。続けて、電子写真装置の現像装置(詳しくは、トナーを含む現像剤がセットされた現像装置)が、トナーを感光体に供給して、感光体に形成された静電潜像を現像する。トナーは、感光体に供給される前に、現像装置内のキャリア、現像スリーブ、又はブレードとの摩擦により帯電する。例えば、正帯電性トナーは正に帯電する。現像工程では、感光体の近傍に配置された現像スリーブ(例えば、現像装置内の現像ローラーの表層部)上のトナー(詳しくは、帯電したトナー)が感光体に供給され、供給されたトナーが感光体の静電潜像に付着することで、感光体上にトナー像が形成される。消費されたトナーは、補給用トナーを収容するトナーコンテナから現像装置へ補給される。 First, an image forming unit (for example, a charging device and an exposure device) of an electrophotographic apparatus forms an electrostatic latent image on a photosensitive member (for example, a surface layer portion of a photosensitive drum) based on image data. Subsequently, a developing device of the electrophotographic apparatus (specifically, a developing device in which a developer containing toner is set) supplies the toner to the photoconductor to develop the electrostatic latent image formed on the photoconductor. The toner is charged by friction with the carrier, the developing sleeve, or the blade in the developing device before being supplied to the photoreceptor. For example, a positively chargeable toner is positively charged. In the developing process, toner (specifically, charged toner) on a developing sleeve (for example, a surface layer portion of a developing roller in the developing device) disposed in the vicinity of the photosensitive member is supplied to the photosensitive member, and the supplied toner is By attaching to the electrostatic latent image on the photoconductor, a toner image is formed on the photoconductor. The consumed toner is replenished to the developing device from a toner container containing replenishment toner.
 続く転写工程では、電子写真装置の転写装置が、感光体上のトナー像を中間転写体(例えば、転写ベルト)に転写した後、さらに中間転写体上のトナー像を記録媒体(例えば、紙)に転写する。その後、電子写真装置の定着装置(定着方式:加熱ローラー及び加圧ローラーによるニップ)がトナーを加熱及び加圧して、記録媒体にトナーを定着させる。その結果、記録媒体に画像が形成される。例えば、ブラック、イエロー、マゼンタ、及びシアンの4色のトナー像を重ね合わせることで、フルカラー画像を形成することができる。なお、転写方式は、感光体上のトナー像を、中間転写体を介さず、記録媒体に直接転写する直接転写方式であってもよい。また、定着方式は、ベルト定着方式であってもよい。 In the subsequent transfer process, after the transfer device of the electrophotographic apparatus transfers the toner image on the photosensitive member to an intermediate transfer member (for example, a transfer belt), the toner image on the intermediate transfer member is further transferred to a recording medium (for example, paper). Transcript to. Thereafter, a fixing device (fixing method: nip formed by a heating roller and a pressure roller) of the electrophotographic apparatus heats and pressurizes the toner to fix the toner on the recording medium. As a result, an image is formed on the recording medium. For example, a full color image can be formed by superposing four color toner images of black, yellow, magenta, and cyan. The transfer method may be a direct transfer method in which the toner image on the photosensitive member is directly transferred to the recording medium without using the intermediate transfer member. The fixing method may be a belt fixing method.
 本実施形態に係るトナーは、次に示す構成(以下、基本構成と記載する)を有する静電潜像現像用トナーである。 The toner according to the present embodiment is an electrostatic latent image developing toner having the following configuration (hereinafter referred to as a basic configuration).
 (トナーの基本構成)
 静電潜像現像用トナーが、トナーコア及びシェル層を備えるトナー粒子を、複数含む。トナーコアは、ポリエステル樹脂を含有する。シェル層は、水酸基を有しない1種以上の繰返し単位のみで構成される樹脂を含有する。トナーコアの表面領域のうちシェル層が覆う領域の面積割合(以下、シェル被覆率と記載する)は60%以上80%以下である。トナー粒子の表面に存在する水素イオン量は、トナー1gあたり5.0×10-11モル以上5.0×10-10モル以下である。なお、水素イオン量の測定方法は、後述する実施例と同じ方法又はその代替方法である。
(Basic toner configuration)
The electrostatic latent image developing toner includes a plurality of toner particles including a toner core and a shell layer. The toner core contains a polyester resin. A shell layer contains resin comprised only by 1 or more types of repeating units which do not have a hydroxyl group. Of the surface area of the toner core, the area ratio of the area covered by the shell layer (hereinafter referred to as shell coverage) is 60% or more and 80% or less. The amount of hydrogen ions present on the surface of the toner particles is 5.0 × 10 −11 mol or more and 5.0 × 10 −10 mol or less per 1 g of toner. In addition, the measuring method of the amount of hydrogen ions is the same method as the Example mentioned later, or its alternative method.
 上記基本構成において、「水酸基を有しない」とは、カルボキシル基(-COOH)のような形でも、水酸基(-OH)を有しないことを意味する。すなわち、(メタ)アクリル酸に由来する繰返し単位は、水酸基を有することになる。他方、(メタ)アクリル酸アルキルエステルに由来する繰返し単位は、水酸基を有しない。 In the above basic structure, “having no hydroxyl group” means having no hydroxyl group (—OH) even in the form of a carboxyl group (—COOH). That is, the repeating unit derived from (meth) acrylic acid has a hydroxyl group. On the other hand, the repeating unit derived from the (meth) acrylic acid alkyl ester does not have a hydroxyl group.
 上記基本構成において、シェル被覆率(単位:%)は、式「シェル被覆率=100×コア被覆領域の面積/トナーコアの表面領域の面積」で表される。式中、「トナーコアの表面領域の面積」は、コア被覆領域の面積とコア露出領域の面積との合計に相当する。「コア被覆領域」は、トナーコアの表面領域のうちシェル層が覆う領域に、「コア露出領域」は、トナーコアの表面領域のうちシェル層で覆われていない領域に、それぞれ相当する。シェル被覆率が100%であることは、トナーコアの表面全域がシェル層で覆われていることを意味する。シェル被覆率の測定方法は、後述する実施例と同じ方法又はその代替方法である。シェル被覆率は、外添処理後に測定してもよい。外添剤を避けて測定を行ってもよいし、トナー母粒子に付着した外添剤を除去してから測定を行ってもよい。溶剤(例えば、アルカリ溶液)を用いて外添剤を溶解させて除去してもよいし、超音波洗浄機を用いてトナー粒子から外添剤を取り除いてもよい。 In the above basic configuration, the shell coverage (unit:%) is represented by the formula “shell coverage = 100 × area of core coating area / area of surface area of toner core”. In the formula, “the area of the surface area of the toner core” corresponds to the sum of the area of the core covering area and the area of the core exposed area. The “core covered region” corresponds to a region covered with the shell layer in the surface region of the toner core, and the “core exposed region” corresponds to a region not covered with the shell layer in the surface region of the toner core. A shell coverage of 100% means that the entire surface of the toner core is covered with the shell layer. The method for measuring the shell coverage is the same method as in the examples described later or an alternative method thereof. The shell coverage may be measured after the external addition treatment. The measurement may be performed while avoiding the external additive, or the measurement may be performed after removing the external additive attached to the toner base particles. The external additive may be dissolved and removed using a solvent (for example, an alkaline solution), or the external additive may be removed from the toner particles using an ultrasonic cleaner.
 上記基本構成を有するトナーでは、トナーコアがポリエステル樹脂を含有する。また、シェル被覆率が60%以上80%以下である。トナーコアにポリエステル樹脂を含有させることで、低温定着性に優れるトナーが得られ易くなる。そして、ポリエステル樹脂を含有するトナーコアの表面領域をシェル層で適度に覆うことで、十分なトナーの耐熱保存性及び低温定着性を確保し易くなる。シェル被覆率が大き過ぎる場合、トナーの耐熱保存性が高くなる一方で、トナーの低温定着性が不十分になる傾向がある。 In the toner having the above basic configuration, the toner core contains a polyester resin. The shell coverage is 60% or more and 80% or less. By including a polyester resin in the toner core, a toner having excellent low-temperature fixability can be easily obtained. Then, by adequately covering the surface region of the toner core containing the polyester resin with a shell layer, it becomes easy to ensure sufficient heat-resistant storage stability and low-temperature fixability of the toner. When the shell coverage is too large, the heat-resistant storage stability of the toner increases, while the low-temperature fixability of the toner tends to be insufficient.
 しかし、シェル被覆率が60%以上80%以下である場合、トナーコアの表面領域のうち面積割合で20%超40%未満の領域が、シェル層で覆われていない(シェル層から露出している)。本願発明者の実験により、コア露出領域(トナーコアの表面領域のうちシェル層で覆われていない領域)にポリエステル樹脂が露出すると、トナーを帯電させた後(例えば、トナーとキャリアとの攪拌後)に電荷減衰が生じ易くなることが確認されている。この理由は、ポリエステル樹脂のカルボン酸成分が高い吸湿性を有するためであると考えられる。本願発明者は、トナー粒子の表面の吸湿性(特に、ポリエステル樹脂の吸湿性)を容易かつ適切に低下させる方法を見出した。詳しくは、トナーコアの表面にシェル層を形成した後、得られたコア-シェル粒子を、アルカリ性物質を含む液中に入れて、その液を、室温よりも少し高い温度(例えば、35℃以上45℃以下から選ばれる温度)、かつ、中性~弱アルカリ性のpH(例えば、7.0以上11.0以下から選ばれるpH)の状態に十分な時間保つことで、表面吸湿性の低いトナー母粒子が得られる。この理由は、ポリエステル樹脂のカルボキシル基(-COOH)の末端水素が、アルカリ性物質のカウンターイオン(例えば、アルカリ金属イオン)で置換されたからであると考えられる。この置換が進むにつれて液のpHが低くなる傾向がある。そのため、長時間にわたって液のpHを一定に保つためには、液にアルカリ性物質(例えば、水酸化ナトリウム)を添加することが必要になると考えられる。トナー粒子の表面の吸湿性が低下することで、トナー粒子の表面に水分子が吸着しにくくなり、電荷減衰(特に、高温高湿環境下でのトナーの電荷減衰)を抑制することが可能になる。 However, when the shell coverage is 60% or more and 80% or less, the area of the surface area of the toner core that is more than 20% and less than 40% is not covered with the shell layer (exposed from the shell layer). ). According to the experiment of the present inventor, when the polyester resin is exposed in the core exposed region (the region not covered by the shell layer in the surface region of the toner core), after the toner is charged (for example, after stirring the toner and the carrier) It has been confirmed that charge attenuation tends to occur. This reason is considered to be because the carboxylic acid component of the polyester resin has high hygroscopicity. The inventor of the present application has found a method for easily and appropriately reducing the hygroscopicity of the toner particle surface (particularly, the hygroscopicity of the polyester resin). Specifically, after forming a shell layer on the surface of the toner core, the obtained core-shell particles are placed in a liquid containing an alkaline substance, and the liquid is heated to a temperature slightly higher than room temperature (for example, 35 ° C. or higher 45 Toner temperature having a low surface hygroscopicity by maintaining a neutral to weak alkaline pH (for example, a pH selected from 7.0 to 11.0) for a sufficient period of time. Particles are obtained. The reason for this is considered that the terminal hydrogen of the carboxyl group (—COOH) of the polyester resin is replaced with a counter ion (for example, alkali metal ion) of an alkaline substance. As this replacement proceeds, the pH of the liquid tends to decrease. Therefore, in order to keep the pH of the liquid constant for a long time, it is considered necessary to add an alkaline substance (for example, sodium hydroxide) to the liquid. Lowering the hygroscopicity of the toner particle surface makes it difficult for water molecules to be adsorbed on the surface of the toner particle, making it possible to suppress charge attenuation (particularly, charge attenuation of the toner in a high-temperature, high-humidity environment). Become.
 トナー(特に、シェル層)の生産性の観点からは、上記基本構成において、シェル層を構成する樹脂中の、水酸基を有しない1種以上の繰返し単位が全て、ビニル化合物に由来する繰返し単位であることが好ましい。1種以上のビニル化合物を含む単量体の重合物は、ビニル化合物に由来する繰返し単位を有する。なお、ビニル化合物は、ビニル基(CH2=CH-)、又はビニル基中の水素が置換された基を有する化合物(より具体的には、エチレン、プロピレン、ブタジエン、塩化ビニル、アクリル酸、アクリル酸メチル、メタクリル酸、メタクリル酸メチル、アクリロニトリル、又はスチレン等)である。ビニル化合物は、上記ビニル基等に含まれる炭素二重結合「C=C」により付加重合して、高分子(樹脂)になり得る。 From the viewpoint of the productivity of the toner (particularly the shell layer), in the above basic structure, one or more repeating units having no hydroxyl group in the resin constituting the shell layer are all repeating units derived from the vinyl compound. Preferably there is. A monomer polymer containing one or more vinyl compounds has a repeating unit derived from the vinyl compound. The vinyl compound is a compound having a vinyl group (CH 2 ═CH—) or a group in which hydrogen in the vinyl group is substituted (more specifically, ethylene, propylene, butadiene, vinyl chloride, acrylic acid, acrylic Acid methyl, methacrylic acid, methyl methacrylate, acrylonitrile, or styrene). The vinyl compound can be polymerized by addition polymerization with a carbon double bond “C═C” contained in the vinyl group or the like to become a polymer (resin).
 トナーの電荷減衰を抑制するためには、シェル層を構成する樹脂が、アクリロニトリル系モノマーに由来する繰返し単位(以下、アクリロニトリル系単位と記載する)を含むことが好ましく、下記式(1)で表される繰返し単位を含むことが特に好ましい。 In order to suppress charge attenuation of the toner, the resin constituting the shell layer preferably contains a repeating unit derived from an acrylonitrile monomer (hereinafter referred to as an acrylonitrile unit), and is represented by the following formula (1). It is particularly preferred that the repeating unit is included.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式(1)中、R11及びR12は、各々独立して、水素原子、ハロゲン原子、置換基を有してもよいアルキル基、又は置換基を有してもよいアルコキシ基を表す。ただし、置換基はいずれも、水酸基を有しない。R11が水素原子を表し、かつ、R12が水素原子又はメチル基を表す組合せが特に好ましい。なお、アクリロニトリルに由来する繰返し単位では、R11及びR12が、各々独立して、水素原子を表す。 In formula (1), R 11 and R 12 each independently represent a hydrogen atom, a halogen atom, an alkyl group that may have a substituent, or an alkoxy group that may have a substituent. However, none of the substituents has a hydroxyl group. A combination in which R 11 represents a hydrogen atom and R 12 represents a hydrogen atom or a methyl group is particularly preferred. In the repeating unit derived from acrylonitrile, R 11 and R 12 each independently represent a hydrogen atom.
 トナーの電荷減衰を抑制するためには、シェル層を構成する樹脂に含まれる繰返し単位のうち最も高いモル分率を有する繰返し単位が、アクリロニトリル系単位(より好ましくは、式(1)で表される繰返し単位)であることが好ましい。 In order to suppress charge attenuation of the toner, the repeating unit having the highest molar fraction among the repeating units contained in the resin constituting the shell layer is represented by an acrylonitrile-based unit (more preferably, the formula (1)). (Repeating unit).
 トナーの電荷減衰を抑制しつつ十分なトナーの耐熱保存性及び低温定着性を確保するためには、シェル層を構成する樹脂が、上記アクリロニトリル系単位に加えて、スチレン系モノマーに由来する繰返し単位(以下、スチレン系単位と記載する)を含むことが好ましい。スチレン系単位としては、下記式(2)で表される繰返し単位が特に好ましい。 In order to ensure sufficient heat-resistant storage stability and low-temperature fixability of the toner while suppressing toner charge attenuation, the resin constituting the shell layer is a repeating unit derived from a styrene monomer in addition to the acrylonitrile unit. (Hereinafter referred to as a styrene-based unit) is preferable. As the styrenic unit, a repeating unit represented by the following formula (2) is particularly preferable.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 式(2)中、R21~R25は、各々独立して、水素原子、ハロゲン原子、置換基を有してもよいアルキル基、置換基を有してもよいアルコキシ基、又は置換基を有してもよいアリール基を表す。また、R26及びR27は、各々独立して、水素原子、ハロゲン原子、又は置換基を有してもよいアルキル基を表す。ただし、置換基はいずれも、水酸基を有しない。R21~R25としては、各々独立して、水素原子、ハロゲン原子、炭素数1以上4以下のアルキル基、炭素数1以上4以下のアルコキシ基、又は炭素数(詳しくは、アルコキシとアルキルとの合計炭素数)2以上6以下のアルコキシアルキル基が好ましい。R26及びR27としては、各々独立して、水素原子又はメチル基が好ましく、R27が水素原子を表し、かつ、R26が水素原子又はメチル基を表す組合せが特に好ましい。なお、スチレンに由来する繰返し単位では、R21~R27の各々が水素原子を表す。 In formula (2), R 21 to R 25 each independently represent a hydrogen atom, a halogen atom, an alkyl group which may have a substituent, an alkoxy group which may have a substituent, or a substituent. The aryl group which may have is represented. R 26 and R 27 each independently represent a hydrogen atom, a halogen atom, or an alkyl group that may have a substituent. However, none of the substituents has a hydroxyl group. R 21 to R 25 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or a carbon number (specifically, alkoxy and alkyl The total number of carbon atoms) is preferably an alkoxyalkyl group having 2 to 6 carbon atoms. R 26 and R 27 are each independently preferably a hydrogen atom or a methyl group, particularly preferably a combination in which R 27 represents a hydrogen atom and R 26 represents a hydrogen atom or a methyl group. In the repeating unit derived from styrene, each of R 21 to R 27 represents a hydrogen atom.
 トナーの電荷減衰を抑制しつつ十分なトナーの耐熱保存性及び低温定着性を確保するためには、シェル層を構成する樹脂が、架橋スチレン-アクリロニトリル系樹脂であることが特に好ましい。 In order to ensure sufficient heat-resistant storage stability and low-temperature fixability of the toner while suppressing toner charge attenuation, the resin constituting the shell layer is particularly preferably a crosslinked styrene-acrylonitrile resin.
 トナーの耐熱保存性及び低温定着性の両立を図るためには、シェル層の厚さが、1nm以上20nm以下であることが好ましい。シェル層の厚さは、市販の画像解析ソフトウェア(例えば、三谷商事株式会社製「WinROOF」)を用いてトナー粒子の断面のTEM(透過型電子顕微鏡)撮影像を解析することによって計測できる。なお、1つのトナー粒子においてシェル層の厚さが均一でない場合には、均等に離間した4箇所(詳しくは、トナー粒子の断面の略中心で直交する2本の直線を引き、それら2本の直線がシェル層と交差する4箇所)の各々でシェル層の厚さを測定し、得られた4つの測定値の算術平均を、そのトナー粒子の評価値(シェル層の厚さ)とする。トナーコアとシェル層との境界は、例えば、トナーコア及びシェル層のうち、シェル層のみを選択的に染色することで、確認できる。TEM撮影像においてトナーコアとシェル層との境界が不明瞭である場合には、TEMと電子エネルギー損失分光法(EELS)とを組み合わせて、TEM撮影像中で、シェル層に含まれる特徴的な元素のマッピングを行うことで、トナーコアとシェル層との境界を明確にすることができる。 In order to achieve both heat-resistant storage stability and low-temperature fixability of the toner, the thickness of the shell layer is preferably 1 nm or more and 20 nm or less. The thickness of the shell layer can be measured by analyzing a TEM (transmission electron microscope) image of the cross section of the toner particles using commercially available image analysis software (for example, “WinROOF” manufactured by Mitani Corporation). If the thickness of the shell layer is not uniform in one toner particle, four equally spaced locations (specifically, two straight lines that are perpendicular to each other at the approximate center of the cross section of the toner particle are drawn. The thickness of the shell layer is measured at each of the four points where the straight line intersects the shell layer, and the arithmetic average of the four measured values obtained is taken as the evaluation value of the toner particles (shell layer thickness). The boundary between the toner core and the shell layer can be confirmed, for example, by selectively dyeing only the shell layer of the toner core and the shell layer. When the boundary between the toner core and the shell layer is unclear in the TEM photographed image, a characteristic element contained in the shell layer in the TEM photographed image is formed by combining TEM and electron energy loss spectroscopy (EELS). By performing the mapping, the boundary between the toner core and the shell layer can be clarified.
 一般に、トナーコアは、粉砕コア(粉砕トナーとも呼ばれる)と重合コア(ケミカルトナーとも呼ばれる)とに大別される。粉砕法で得られたトナーコアは粉砕コアに属し、凝集法で得られたトナーコアは重合コアに属する。前述の基本構成を有するトナーにおいて、トナーコアは、ポリエステル樹脂を含有する粉砕コアであることが好ましい。トナーの耐熱保存性と低温定着性との両立を図るためには、トナーコアが、溶融混練された1種以上の結晶性ポリエステル樹脂と1種以上の非結晶性ポリエステル樹脂とを含有することが特に好ましい。 Generally, the toner core is roughly classified into a pulverized core (also referred to as a pulverized toner) and a polymerized core (also referred to as a chemical toner). The toner core obtained by the pulverization method belongs to the pulverization core, and the toner core obtained by the aggregation method belongs to the polymerization core. In the toner having the basic structure described above, the toner core is preferably a pulverized core containing a polyester resin. In order to achieve both the heat-resistant storage stability and the low-temperature fixability of the toner, it is particularly preferable that the toner core contains one or more types of melt-kneaded crystalline polyester resins and one or more types of amorphous polyester resins. preferable.
 画像形成に適したトナーを得るためには、トナーの体積中位径(D50)が3μm以上10μm未満であることが好ましい。 In order to obtain a toner suitable for image formation, the volume median diameter (D 50 ) of the toner is preferably 3 μm or more and less than 10 μm.
 次に、トナーコア(結着樹脂及び内添剤)、シェル層、及び外添剤について、順に説明する。トナーの用途に応じて必要のない成分を割愛してもよい。 Next, the toner core (binder resin and internal additive), shell layer, and external additive will be described in order. Depending on the use of the toner, unnecessary components may be omitted.
 [トナーコア]
 (結着樹脂)
 トナーコアでは、一般的に、成分の大部分(例えば、85質量%以上)を結着樹脂が占める。このため、結着樹脂の性質がトナーコア全体の性質に大きな影響を与えると考えられる。結着樹脂として複数種の樹脂を組み合わせて使用することで、結着樹脂の性質(より具体的には、水酸基価、酸価、Tg、又はTm等)を調整することができる。結着樹脂がエステル基、水酸基、エーテル基、酸基、又はメチル基を有する場合には、トナーコアはアニオン性になる傾向が強くなり、結着樹脂がアミノ基又はアミド基を有する場合には、トナーコアはカチオン性になる傾向が強くなる。トナーコアとシェル層との結合性を高めるためには、結着樹脂の水酸基価及び酸価の少なくとも一方が10mgKOH/g以上であることが好ましい。
[Toner core]
(Binder resin)
In the toner core, the binder resin generally occupies most of the components (for example, 85% by mass or more). For this reason, it is considered that the properties of the binder resin greatly affect the properties of the entire toner core. By using a combination of a plurality of types of resins as the binder resin, the properties of the binder resin (more specifically, the hydroxyl value, acid value, Tg, Tm, etc.) can be adjusted. When the binder resin has an ester group, a hydroxyl group, an ether group, an acid group, or a methyl group, the toner core has a strong tendency to become anionic, and when the binder resin has an amino group or an amide group, The toner core is more prone to become cationic. In order to enhance the binding between the toner core and the shell layer, it is preferable that at least one of the hydroxyl value and the acid value of the binder resin is 10 mgKOH / g or more.
 前述の基本構成を有するトナーでは、トナーコアが、ポリエステル樹脂を含有する。トナーの耐熱保存性及び低温定着性の両立を図るためには、トナーコアが、ポリエステル樹脂として、結晶性ポリエステル樹脂及び非結晶性ポリエステル樹脂を含有することが好ましい。トナーコアに結晶性ポリエステル樹脂を含有させることで、トナーコアにシャープメルト性を付与できる。 In the toner having the basic configuration described above, the toner core contains a polyester resin. In order to achieve both heat-resistant storage stability and low-temperature fixability of the toner, the toner core preferably contains a crystalline polyester resin and an amorphous polyester resin as the polyester resin. By containing a crystalline polyester resin in the toner core, sharp melt properties can be imparted to the toner core.
 トナーの耐熱保存性及び低温定着性の両立を図るためには、トナーコアに含まれる結晶性ポリエステル樹脂の量は、トナーコア中のポリエステル樹脂の総量(結晶性ポリエステル樹脂と非結晶性ポリエステル樹脂との合計量)に対して、1質量%以上50質量%以下であることが好ましく、5質量%以上25質量%以下であることがより好ましい。例えば、トナーコア中のポリエステル樹脂の総量が100gである場合には、トナーコアに含まれる結晶性ポリエステル樹脂の量が1g以上50g以下(より好ましくは、5g以上25g以下)であることが好ましい。 In order to achieve both heat-resistant storage stability and low-temperature fixability of the toner, the amount of the crystalline polyester resin contained in the toner core is the total amount of the polyester resin in the toner core (the sum of the crystalline polyester resin and the amorphous polyester resin). The amount is preferably 1% by mass or more and 50% by mass or less, and more preferably 5% by mass or more and 25% by mass or less. For example, when the total amount of the polyester resin in the toner core is 100 g, the amount of the crystalline polyester resin contained in the toner core is preferably 1 g or more and 50 g or less (more preferably 5 g or more and 25 g or less).
 トナーコアが適度なシャープメルト性を有するためには、トナーコア中に、結晶性指数0.90以上1.15未満の結晶性ポリエステル樹脂を含有させることが好ましい。樹脂の結晶性指数は、樹脂の融点(Mp)に対する樹脂の軟化点(Tm)の比率(=Tm/Mp)に相当する。非結晶性樹脂については、明確なMpを測定できないことが多い。樹脂のMp及びTmの各々の測定方法は、後述する実施例と同じ方法又はその代替方法である。結晶性ポリエステル樹脂の結晶性指数は、結晶性ポリエステル樹脂を合成するための材料(例えば、アルコール及び/又はカルボン酸)の種類又は使用量を変更することで、調整できる。トナーコアは、結晶性ポリエステル樹脂を1種類だけ含有してもよいし、2種以上の結晶性ポリエステル樹脂を含有してもよい。 In order for the toner core to have an appropriate sharp melt property, it is preferable to contain a crystalline polyester resin having a crystallinity index of 0.90 or more and less than 1.15 in the toner core. The crystallinity index of the resin corresponds to the ratio (= Tm / Mp) of the softening point (Tm) of the resin to the melting point (Mp) of the resin. For amorphous resins, it is often impossible to measure a clear Mp. The measuring method of each of Mp and Tm of the resin is the same method as the examples described later or its alternative method. The crystallinity index of the crystalline polyester resin can be adjusted by changing the type or amount of a material (for example, alcohol and / or carboxylic acid) for synthesizing the crystalline polyester resin. The toner core may contain only one type of crystalline polyester resin, or may contain two or more types of crystalline polyester resins.
 ポリエステル樹脂は、1種以上の多価アルコール(より具体的には、以下に示すような、ジオール、ビスフェノール、又は3価以上のアルコール等)と1種以上の多価カルボン酸(より具体的には、以下に示すような2価カルボン酸又は3価以上のカルボン酸等)とを縮重合させることで得られる。 The polyester resin is composed of one or more polyhydric alcohols (more specifically, diol, bisphenol, trihydric or higher alcohol as shown below) and one or more polyhydric carboxylic acids (more specifically, Can be obtained by polycondensation with a divalent carboxylic acid or a trivalent or higher carboxylic acid as shown below.
 脂肪族ジオールの好適な例としては、ジエチレングリコール、トリエチレングリコール、ネオペンチルグリコール、1,2-プロパンジオール、α,ω-アルカンジオール(より具体的には、エチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオール、1,8-オクタンジオール、1,9-ノナンジオール、又は1,12-ドデカンジオール等)、2-ブテン-1,4-ジオール、1,4-シクロヘキサンジメタノール、ジプロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール、又はポリテトラメチレングリコールが挙げられる。 Suitable examples of the aliphatic diol include diethylene glycol, triethylene glycol, neopentyl glycol, 1,2-propanediol, α, ω-alkanediol (more specifically, ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, 1,12-dodecanediol, etc. ), 2-butene-1,4-diol, 1,4-cyclohexanedimethanol, dipropylene glycol, polyethylene glycol, polypropylene glycol, or polytetramethylene glycol.
 ビスフェノールの好適な例としては、ビスフェノールA、水素添加ビスフェノールA、ビスフェノールAエチレンオキサイド付加物、又はビスフェノールAプロピレンオキサイド付加物が挙げられる。 Examples of suitable bisphenol include bisphenol A, hydrogenated bisphenol A, bisphenol A ethylene oxide adduct, or bisphenol A propylene oxide adduct.
 3価以上のアルコールの好適な例としては、ソルビトール、1,2,3,6-ヘキサンテトロール、1,4-ソルビタン、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、1,2,4-ブタントリオール、1,2,5-ペンタントリオール、グリセロール、ジグリセロール、2-メチルプロパントリオール、2-メチル-1,2,4-ブタントリオール、トリメチロールエタン、トリメチロールプロパン、又は1,3,5-トリヒドロキシメチルベンゼンが挙げられる。 Preferable examples of trihydric or higher alcohols include sorbitol, 1,2,3,6-hexanetetrol, 1,4-sorbitan, pentaerythritol, dipentaerythritol, tripentaerythritol, 1,2,4-butane. Triol, 1,2,5-pentanetriol, glycerol, diglycerol, 2-methylpropanetriol, 2-methyl-1,2,4-butanetriol, trimethylolethane, trimethylolpropane, or 1,3,5- Trihydroxymethylbenzene is mentioned.
 2価カルボン酸の好適な例としては、芳香族ジカルボン酸(より具体的には、フタル酸、テレフタル酸、又はイソフタル酸等)、α,ω-アルカンジカルボン酸(より具体的には、マロン酸、コハク酸、アジピン酸、スベリン酸、アゼライン酸、セバシン酸、又は1,10-デカンジカルボン酸等)、アルキルコハク酸(より具体的には、n-ブチルコハク酸、イソブチルコハク酸、n-オクチルコハク酸、n-ドデシルコハク酸、又はイソドデシルコハク酸等)、アルケニルコハク酸(より具体的には、n-ブテニルコハク酸、イソブテニルコハク酸、n-オクテニルコハク酸、n-ドデセニルコハク酸、又はイソドデセニルコハク酸等)、不飽和ジカルボン酸(より具体的には、マレイン酸、フマル酸、シトラコン酸、イタコン酸、又はグルタコン酸等)、又はシクロアルカンジカルボン酸(より具体的には、シクロヘキサンジカルボン酸等)が挙げられる。 Preferable examples of divalent carboxylic acids include aromatic dicarboxylic acids (more specifically, phthalic acid, terephthalic acid, or isophthalic acid), α, ω-alkanedicarboxylic acids (more specifically, malonic acid). Succinic acid, adipic acid, suberic acid, azelaic acid, sebacic acid, or 1,10-decanedicarboxylic acid), alkyl succinic acid (more specifically, n-butyl succinic acid, isobutyl succinic acid, n-octyl succinic acid) Acid, n-dodecyl succinic acid, or isododecyl succinic acid), alkenyl succinic acid (more specifically, n-butenyl succinic acid, isobutenyl succinic acid, n-octenyl succinic acid, n-dodecenyl succinic acid, or isodode Senyl succinic acid, etc.), unsaturated dicarboxylic acids (more specifically maleic acid, fumaric acid, citraconic acid, itaconic acid, or Glutaconic acid and the like), or cycloalkane dicarboxylic acid (more specifically, cyclohexane dicarboxylic acid and the like).
 3価以上のカルボン酸の好適な例としては、1,2,4-ベンゼントリカルボン酸(トリメリット酸)、2,5,7-ナフタレントリカルボン酸、1,2,4-ナフタレントリカルボン酸、1,2,4-ブタントリカルボン酸、1,2,5-ヘキサントリカルボン酸、1,3-ジカルボキシル-2-メチル-2-メチレンカルボキシプロパン、1,2,4-シクロヘキサントリカルボン酸、テトラ(メチレンカルボキシル)メタン、1,2,7,8-オクタンテトラカルボン酸、ピロメリット酸、又はエンポール三量体酸が挙げられる。 Preferred examples of the trivalent or higher carboxylic acid include 1,2,4-benzenetricarboxylic acid (trimellitic acid), 2,5,7-naphthalenetricarboxylic acid, 1,2,4-naphthalenetricarboxylic acid, 2,4-butanetricarboxylic acid, 1,2,5-hexanetricarboxylic acid, 1,3-dicarboxyl-2-methyl-2-methylenecarboxypropane, 1,2,4-cyclohexanetricarboxylic acid, tetra (methylenecarboxyl) Examples include methane, 1,2,7,8-octanetetracarboxylic acid, pyromellitic acid, or empole trimer acid.
 トナーの耐熱保存性及び低温定着性の両立を図るためには、トナーコアが、融点(Mp)50℃以上100℃以下の結晶性ポリエステル樹脂を含有することが特に好ましい。 In order to achieve both heat-resistant storage stability and low-temperature fixability of the toner, it is particularly preferable that the toner core contains a crystalline polyester resin having a melting point (Mp) of 50 ° C. or higher and 100 ° C. or lower.
 好適なトナーの例では、非結晶性ポリエステル樹脂が、1種以上のビスフェノール(より具体的には、ビスフェノールAエチレンオキサイド付加物、又はビスフェノールAプロピレンオキサイド付加物等)と1種以上のジカルボン酸(より具体的には、テレフタル酸、フマル酸、又はアルキルコハク酸等)とを含む単量体(樹脂原料)の重合物であり、結晶性ポリエステル樹脂が、1種以上の炭素数6以上12以下のα,ω-アルカンジカルボン酸(より具体的には、炭素数6のアジピン酸、又は炭素数8のスベリン酸等)と1種以上の炭素数2以上6以下のα,ω-アルカンジオール(より具体的には、炭素数2のエチレングリコール、炭素数3のプロパンジオール、又は炭素数4のブタンジオール等)とを含む単量体(樹脂原料)の重合物である。 In an example of a suitable toner, the amorphous polyester resin comprises one or more bisphenols (more specifically, bisphenol A ethylene oxide adduct or bisphenol A propylene oxide adduct) and one or more dicarboxylic acids ( More specifically, it is a polymer of a monomer (resin raw material) containing terephthalic acid, fumaric acid, alkyl succinic acid, or the like, and the crystalline polyester resin has one or more carbon atoms of 6 or more and 12 or less. Α, ω-alkanedicarboxylic acid (more specifically, adipic acid having 6 carbon atoms or suberic acid having 8 carbon atoms) and one or more α, ω-alkanediols having 2 to 6 carbon atoms ( More specifically, polymerization of a monomer (resin raw material) containing ethylene glycol having 2 carbon atoms, propanediol having 3 carbon atoms, or butanediol having 4 carbon atoms) It is.
 トナーの耐熱保存性及び低温定着性の両立を図るためには、トナーコアが、結着樹脂として、異なる軟化点(Tm)を有する複数種の非結晶性ポリエステル樹脂を含有することが好ましく、軟化点90℃以下の非結晶性ポリエステル樹脂と、軟化点100℃以上120℃以下の非結晶性ポリエステル樹脂と、軟化点125℃以上の非結晶性ポリエステル樹脂とを含有することが特に好ましい。 In order to achieve both heat-resistant storage stability and low-temperature fixability of the toner, the toner core preferably contains a plurality of types of non-crystalline polyester resins having different softening points (Tm) as the binder resin. It is particularly preferable to contain an amorphous polyester resin having a softening point of not lower than 90 ° C., an amorphous polyester resin having a softening point of not lower than 100 ° C. and not higher than 120 ° C., and an amorphous polyester resin having a softening point of not lower than 125 ° C.
 軟化点90℃以下の非結晶性ポリエステル樹脂の好適な例としては、アルコール成分として、ビスフェノール(例えば、ビスフェノールAエチレンオキサイド付加物及び/又はビスフェノールAプロピレンオキサイド付加物)を含み、酸成分として、芳香族ジカルボン酸(例えば、テレフタル酸)及び不飽和ジカルボン酸(例えば、フマル酸)を含む非結晶性ポリエステル樹脂が挙げられる。 As a suitable example of an amorphous polyester resin having a softening point of 90 ° C. or lower, bisphenol (for example, bisphenol A ethylene oxide adduct and / or bisphenol A propylene oxide adduct) is included as an alcohol component, and an aromatic component is used as an acid component. Non-crystalline polyester resin containing a group dicarboxylic acid (eg, terephthalic acid) and an unsaturated dicarboxylic acid (eg, fumaric acid).
 軟化点100℃以上120℃以下の非結晶性ポリエステル樹脂の好適な例としては、アルコール成分として、ビスフェノール(例えば、ビスフェノールAエチレンオキサイド付加物及び/又はビスフェノールAプロピレンオキサイド付加物)を含み、酸成分として、芳香族ジカルボン酸(例えば、テレフタル酸)を含み、不飽和ジカルボン酸を含まない非結晶性ポリエステル樹脂が挙げられる。 Suitable examples of the non-crystalline polyester resin having a softening point of 100 ° C. or higher and 120 ° C. or lower include bisphenol (for example, bisphenol A ethylene oxide adduct and / or bisphenol A propylene oxide adduct) as an alcohol component, and an acid component. Non-crystalline polyester resin containing aromatic dicarboxylic acid (for example, terephthalic acid) and not containing unsaturated dicarboxylic acid.
 軟化点125℃以上の非結晶性ポリエステル樹脂の好適な例としては、アルコール成分として、ビスフェノール(例えば、ビスフェノールAエチレンオキサイド付加物及び/又はビスフェノールAプロピレンオキサイド付加物)を含み、酸成分として、炭素数10以上20以下のアルキル基を有するジカルボン酸(例えば、炭素数12のアルキル基を有するドデシルコハク酸)、不飽和ジカルボン酸(例えば、フマル酸)、及び3価カルボン酸(例えば、トリメリット酸)を含む非結晶性ポリエステル樹脂が挙げられる。 As a suitable example of an amorphous polyester resin having a softening point of 125 ° C. or higher, an alcohol component contains bisphenol (for example, bisphenol A ethylene oxide adduct and / or bisphenol A propylene oxide adduct) and carbon as an acid component. Dicarboxylic acid having an alkyl group of several tens or more and 20 or less (for example, dodecyl succinic acid having an alkyl group having 12 carbon atoms), unsaturated dicarboxylic acid (for example, fumaric acid), and trivalent carboxylic acid (for example, trimellitic acid) ) Including non-crystalline polyester resin.
 トナーコアの結着樹脂として非結晶性ポリエステル樹脂を使用する場合、トナーコアの強度及びトナーの定着性を向上させるためには、非結晶性ポリエステル樹脂の数平均分子量(Mn)が1000以上2000以下であることが好ましい。非結晶性ポリエステル樹脂の分子量分布(数平均分子量(Mn)に対する質量平均分子量(Mw)の比率Mw/Mn)は9以上21以下であることが好ましい。 When an amorphous polyester resin is used as the binder resin of the toner core, the number average molecular weight (Mn) of the amorphous polyester resin is 1000 or more and 2000 or less in order to improve the strength of the toner core and the toner fixing property. It is preferable. The molecular weight distribution of amorphous polyester resin (ratio Mw / Mn of mass average molecular weight (Mw) to number average molecular weight (Mn)) is preferably 9 or more and 21 or less.
 また、トナーコアは、結着樹脂として、ポリエステル樹脂以外の樹脂を含有してもよい。ポリエステル樹脂以外の結着樹脂としては、例えば、スチレン系樹脂、アクリル酸系樹脂(より具体的には、アクリル酸エステル重合体又はメタクリル酸エステル重合体等)、オレフィン系樹脂(より具体的には、ポリエチレン樹脂又はポリプロピレン樹脂等)、塩化ビニル樹脂、ポリビニルアルコール、ビニルエーテル樹脂、N-ビニル樹脂、ポリアミド樹脂、又はウレタン樹脂のような熱可塑性樹脂が好ましい。また、これら各樹脂の共重合体、すなわち上記樹脂中に任意の繰返し単位が導入された共重合体(より具体的には、スチレン-アクリル酸系樹脂又はスチレン-ブタジエン系樹脂等)も、結着樹脂として好適に使用できる。 Further, the toner core may contain a resin other than the polyester resin as the binder resin. Examples of the binder resin other than the polyester resin include, for example, a styrene resin, an acrylic resin (more specifically, an acrylic ester polymer or a methacrylic ester polymer), and an olefin resin (more specifically, A thermoplastic resin such as a vinyl chloride resin, a polyvinyl alcohol, a vinyl ether resin, an N-vinyl resin, a polyamide resin, or a urethane resin. Copolymers of these resins, that is, copolymers in which arbitrary repeating units are introduced into the resin (more specifically, styrene-acrylic acid resin or styrene-butadiene resin) are also bonded. It can be suitably used as a resin.
 (着色剤)
 トナーコアは、着色剤を含有してもよい。着色剤としては、トナーの色に合わせて公知の顔料又は染料を用いることができる。トナーを用いて高画質の画像を形成するためには、着色剤の量が、結着樹脂100質量部に対して、1質量部以上20質量部以下であることが好ましい。
(Coloring agent)
The toner core may contain a colorant. As the colorant, a known pigment or dye can be used according to the color of the toner. In order to form a high-quality image using toner, the amount of the colorant is preferably 1 part by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the binder resin.
 トナーコアは、黒色着色剤を含有していてもよい。黒色着色剤の例としては、カーボンブラックが挙げられる。また、黒色着色剤は、イエロー着色剤、マゼンタ着色剤、及びシアン着色剤を用いて黒色に調色された着色剤であってもよい。 The toner core may contain a black colorant. An example of a black colorant is carbon black. The black colorant may be a colorant that is toned to black using a yellow colorant, a magenta colorant, and a cyan colorant.
 トナーコアは、イエロー着色剤、マゼンタ着色剤、又はシアン着色剤のようなカラー着色剤を含有していてもよい。 The toner core may contain a color colorant such as a yellow colorant, a magenta colorant, or a cyan colorant.
 イエロー着色剤としては、例えば、縮合アゾ化合物、イソインドリノン化合物、アントラキノン化合物、アゾ金属錯体、メチン化合物、及びアリールアミド化合物からなる群より選択される1種以上の化合物を使用できる。イエロー着色剤としては、例えば、C.I.ピグメントイエロー(3、12、13、14、15、17、62、74、83、93、94、95、97、109、110、111、120、127、128、129、147、151、154、155、168、174、175、176、180、181、191、又は194)、ナフトールイエローS、ハンザイエローG、又はC.I.バットイエローを好適に使用できる。 As the yellow colorant, for example, one or more compounds selected from the group consisting of condensed azo compounds, isoindolinone compounds, anthraquinone compounds, azo metal complexes, methine compounds, and arylamide compounds can be used. Examples of the yellow colorant include C.I. I. Pigment Yellow (3, 12, 13, 14, 15, 17, 62, 74, 83, 93, 94, 95, 97, 109, 110, 111, 120, 127, 128, 129, 147, 151, 154, 155 168, 174, 175, 176, 180, 181, 191, or 194), naphthol yellow S, Hansa yellow G, or C.I. I. Vat yellow can be preferably used.
 マゼンタ着色剤としては、例えば、縮合アゾ化合物、ジケトピロロピロール化合物、アントラキノン化合物、キナクリドン化合物、塩基染料レーキ化合物、ナフトール化合物、ベンズイミダゾロン化合物、チオインジゴ化合物、及びペリレン化合物からなる群より選択される1種以上の化合物を使用できる。マゼンタ着色剤としては、例えば、C.I.ピグメントレッド(2、3、5、6、7、19、23、48:2、48:3、48:4、57:1、81:1、122、144、146、150、166、169、177、184、185、202、206、220、221、又は254)を好適に使用できる。 The magenta colorant is, for example, selected from the group consisting of condensed azo compounds, diketopyrrolopyrrole compounds, anthraquinone compounds, quinacridone compounds, basic dye lake compounds, naphthol compounds, benzimidazolone compounds, thioindigo compounds, and perylene compounds. One or more compounds can be used. Examples of the magenta colorant include C.I. I. Pigment Red (2, 3, 5, 6, 7, 19, 23, 48: 2, 48: 3, 48: 4, 57: 1, 81: 1, 122, 144, 146, 150, 166, 169, 177 184, 185, 202, 206, 220, 221 or 254) can be preferably used.
 シアン着色剤としては、例えば、銅フタロシアニン化合物、アントラキノン化合物、及び塩基染料レーキ化合物からなる群より選択される1種以上の化合物を使用できる。シアン着色剤としては、例えば、C.I.ピグメントブルー(1、7、15、15:1、15:2、15:3、15:4、60、62、又は66)、フタロシアニンブルー、C.I.バットブルー、又はC.I.アシッドブルーを好適に使用できる。 As the cyan colorant, for example, one or more compounds selected from the group consisting of a copper phthalocyanine compound, an anthraquinone compound, and a basic dye lake compound can be used. Examples of cyan colorants include C.I. I. Pigment blue (1, 7, 15, 15: 1, 15: 2, 15: 3, 15: 4, 60, 62, or 66), phthalocyanine blue, C.I. I. Bat Blue, or C.I. I. Acid blue can be preferably used.
 (離型剤)
 トナーコアは、離型剤を含有していてもよい。離型剤は、例えば、トナーの定着性又は耐オフセット性を向上させる目的で使用される。トナーコアのアニオン性を強めるためには、アニオン性を有するワックスを用いてトナーコアを作製することが好ましい。トナーの定着性又は耐オフセット性を向上させるためには、離型剤の量は、結着樹脂100質量部に対して、1質量部以上30質量部以下であることが好ましい。
(Release agent)
The toner core may contain a release agent. The release agent is used, for example, for the purpose of improving the fixing property or offset resistance of the toner. In order to increase the anionicity of the toner core, it is preferable to produce the toner core using an anionic wax. In order to improve the fixing property or offset resistance of the toner, the amount of the release agent is preferably 1 part by mass or more and 30 parts by mass or less with respect to 100 parts by mass of the binder resin.
 離型剤としては、例えば、低分子量ポリエチレン、低分子量ポリプロピレン、ポリオレフィン共重合物、ポリオレフィンワックス、マイクロクリスタリンワックス、パラフィンワックス、又はフィッシャートロプシュワックスのような脂肪族炭化水素ワックス;酸化ポリエチレンワックス又はそのブロック共重合体のような脂肪族炭化水素ワックスの酸化物;キャンデリラワックス、カルナバワックス、木ろう、ホホバろう、又はライスワックスのような植物性ワックス;みつろう、ラノリン、又は鯨ろうのような動物性ワックス;オゾケライト、セレシン、又はペトロラタムのような鉱物ワックス;モンタン酸エステルワックス又はカスターワックスのような脂肪酸エステルを主成分とするワックス類;脱酸カルナバワックスのような、脂肪酸エステルの一部又は全部が脱酸化したワックスを好適に使用できる。 Examples of the release agent include low molecular weight polyethylene, low molecular weight polypropylene, polyolefin copolymer, polyolefin wax, microcrystalline wax, paraffin wax, or aliphatic hydrocarbon wax such as Fischer-Tropsch wax; oxidized polyethylene wax or a block thereof Oxides of aliphatic hydrocarbon waxes such as copolymers; plant waxes such as candelilla wax, carnauba wax, wood wax, jojoba wax, or rice wax; animal properties such as beeswax, lanolin, or whale wax Waxes; mineral waxes such as ozokerite, ceresin, or petrolatum; waxes based on fatty acid esters such as montanic ester waxes or castor waxes; such as deoxidized carnauba wax; Some or all of the fatty acid ester can be preferably used de oxidized wax.
 トナーの電荷減衰を抑制しつつ十分なトナーの耐熱保存性及び低温定着性を確保するためには、トナーコアが、2種以上の離型剤を含有することが好ましく、合成エステルワックス及び天然エステルワックス(より具体的には、カルナバワックス等)を含有することが特に好ましい。離型剤として合成エステルワックスを使用することで、離型剤の融点を所望の範囲に調整し易くなる。合成エステルワックスは、例えば、酸触媒の存在下でアルコールとカルボン酸(又は、カルボン酸ハライド)とを反応させることで、合成できる。合成エステルワックスの原料は、例えば、天然油脂から調製される長鎖脂肪酸のような、天然物に由来する物質であってもよいし、市販されている合成品であってもよい。 In order to ensure sufficient heat-resistant storage stability and low-temperature fixability of the toner while suppressing charge attenuation of the toner, it is preferable that the toner core contains two or more release agents. Synthetic ester wax and natural ester wax It is particularly preferable to contain (more specifically, carnauba wax or the like). By using a synthetic ester wax as a mold release agent, the melting point of the mold release agent can be easily adjusted to a desired range. A synthetic ester wax can be synthesized, for example, by reacting an alcohol and a carboxylic acid (or carboxylic acid halide) in the presence of an acid catalyst. The raw material of the synthetic ester wax may be, for example, a substance derived from a natural product such as a long-chain fatty acid prepared from natural fats and oils or a commercially available synthetic product.
 (電荷制御剤)
 トナーコアは、電荷制御剤を含有していてもよい。電荷制御剤は、例えば、トナーの帯電安定性又は帯電立ち上がり特性を向上させる目的で使用される。トナーの帯電立ち上がり特性は、短時間で所定の帯電レベルにトナーを帯電可能か否かの指標になる。
(Charge control agent)
The toner core may contain a charge control agent. The charge control agent is used, for example, for the purpose of improving the charge stability or charge rising property of the toner. The charge rising characteristic of the toner is an index as to whether or not the toner can be charged to a predetermined charge level in a short time.
 トナーコアに負帯電性の電荷制御剤(より具体的には、有機金属錯体又はキレート化合物等)を含有させることで、トナーコアのアニオン性を強めることができる。また、トナーコアに正帯電性の電荷制御剤(より具体的には、ピリジン、ニグロシン、又は4級アンモニウム塩等)を含有させることで、トナーコアのカチオン性を強めることができる。ただし、トナーにおいて十分な帯電性が確保される場合には、トナーコアに電荷制御剤を含有させる必要はない。 By adding a negatively chargeable charge control agent (more specifically, an organometallic complex or a chelate compound) to the toner core, the anionicity of the toner core can be increased. Further, by adding a positively chargeable charge control agent (more specifically, pyridine, nigrosine, quaternary ammonium salt, or the like) to the toner core, the toner core can be made more cationic. However, if sufficient chargeability is ensured in the toner, it is not necessary to include a charge control agent in the toner core.
 (磁性粉)
 トナーコアは、磁性粉を含有していてもよい。磁性粉の材料としては、例えば、強磁性金属(より具体的には、鉄、コバルト、ニッケル、又はこれら金属の1種以上を含む合金等)、強磁性金属酸化物(より具体的には、フェライト、マグネタイト、又は二酸化クロム等)、又は強磁性化処理が施された材料(より具体的には、熱処理により強磁性が付与された炭素材料等)を好適に使用できる。1種類の磁性粉を単独で使用してもよいし、複数種の磁性粉を併用してもよい。
(Magnetic powder)
The toner core may contain magnetic powder. Examples of magnetic powder materials include ferromagnetic metals (more specifically, iron, cobalt, nickel, or alloys containing one or more of these metals), ferromagnetic metal oxides (more specifically, Ferrite, magnetite, chromium dioxide, or the like) or a material subjected to ferromagnetization treatment (more specifically, a carbon material or the like imparted with ferromagnetism by heat treatment) can be suitably used. One type of magnetic powder may be used alone, or a plurality of types of magnetic powder may be used in combination.
 磁性粉からの金属イオン(例えば、鉄イオン)の溶出を抑制するためには、磁性粉を表面処理することが好ましい。酸性条件下でトナーコアの表面にシェル層を形成する場合に、トナーコアの表面に金属イオンが溶出すると、トナーコア同士が固着し易くなる。磁性粉からの金属イオンの溶出を抑制することで、トナーコア同士の固着を抑制することができると考えられる。 In order to suppress elution of metal ions (for example, iron ions) from the magnetic powder, it is preferable to surface-treat the magnetic powder. When a shell layer is formed on the surface of the toner core under acidic conditions, if the metal ions are eluted on the surface of the toner core, the toner cores are easily fixed to each other. It is considered that fixing of the toner cores can be suppressed by suppressing elution of metal ions from the magnetic powder.
 [シェル層]
 シェル層は、粒状感のない膜であってもよいし、粒状感のある膜であってもよい。シェル材料として樹脂粒子を使用した場合、材料(樹脂粒子)が完全に溶けずに膜状の形態で硬化すれば、シェル層として、樹脂粒子が2次元的に連なった形態を有する膜(粒状感のある膜)が形成されると考えられる。例えば液中でトナーコアの表面に樹脂粒子を付着させて、液を加熱することで、樹脂粒子を膜化することができる。ただし、乾燥工程で加熱されて、又は外添工程で物理的な衝撃力を受けて、樹脂粒子の膜化が進行してもよい。シェル層全体が一体的に形成されるとは限らない。シェル層は、単一の膜であってもよいし、互いに離間して存在する複数の膜(島)の集合体であってもよい。
[Shell layer]
The shell layer may be a film without graininess or a film with graininess. When resin particles are used as the shell material, if the material (resin particles) is not completely melted and cured in a film-like form, a film having a form in which the resin particles are two-dimensionally linked (graininess) It is thought that a film with For example, the resin particles can be formed into a film by attaching the resin particles to the surface of the toner core in the liquid and heating the liquid. However, the resin particles may be formed into a film by being heated in the drying step or receiving a physical impact force in the external addition step. The entire shell layer is not necessarily formed integrally. The shell layer may be a single film or an assembly of a plurality of films (islands) that are separated from each other.
 シェル層を構成する樹脂(詳しくは、水酸基を有しない1種以上の繰返し単位のみで構成される樹脂)の好適な例としては、架橋スチレン-アクリロニトリル系樹脂、架橋スチレン-(メタ)アクリル酸アルキルエステル樹脂、又は架橋スチレン系樹脂が挙げられる。架橋スチレン-アクリロニトリル系樹脂は、1種以上のスチレン系モノマーと、1種以上のアクリロニトリル系モノマーと、1種以上の架橋剤との重合体である。架橋スチレン-(メタ)アクリル酸アルキルエステル樹脂は、1種以上のスチレン系モノマーと、1種以上の(メタ)アクリル酸アルキルエステルと、1種以上の架橋剤との重合体である。架橋スチレン系樹脂は、1種以上のスチレン系モノマーと、1種以上の架橋剤との重合体である。樹脂中に均一な架橋構造を形成するためには、架橋剤として、2以上の「C=C」(炭素二重結合部)を有する芳香族化合物(より具体的には、ジビニルベンゼン等)を使用することが好ましい。 Preferred examples of the resin constituting the shell layer (specifically, a resin comprising only one or more repeating units having no hydroxyl group) include a crosslinked styrene-acrylonitrile resin and a crosslinked styrene-alkyl (meth) acrylate. Examples include ester resins and cross-linked styrene resins. The crosslinked styrene-acrylonitrile resin is a polymer of one or more styrene monomers, one or more acrylonitrile monomers, and one or more crosslinking agents. The crosslinked styrene- (meth) acrylic acid alkyl ester resin is a polymer of at least one styrene monomer, at least one (meth) acrylic acid alkyl ester, and at least one crosslinking agent. The crosslinked styrene resin is a polymer of one or more styrene monomers and one or more crosslinking agents. In order to form a uniform crosslinked structure in the resin, an aromatic compound having two or more “C═C” (carbon double bond portion) (more specifically, divinylbenzene or the like) is used as a crosslinking agent. It is preferable to use it.
 トナーの電荷減衰を抑制しつつ十分なトナーの耐熱保存性及び低温定着性を確保するためには、シェル層が、実質的に架橋スチレン-アクリロニトリル系樹脂から構成されることが特に好ましい。樹脂中にアクリロニトリル系単位を導入するためのアクリロニトリル系モノマーとしては、例えば、アクリロニトリル又はメタクリロニトリルが好ましい。樹脂中にスチレン系単位を導入するためのスチレン系モノマーとしては、例えば、スチレン、α-メチルスチレン、4-メチルスチレン、4-tert-ブチルスチレン、4-メトキシスチレン、4-ブロモスチレン、又は3-クロロスチレンが好ましい。樹脂中に架橋構造を導入するための架橋剤としては、例えばジビニルベンゼンが好ましい。 In order to ensure sufficient heat-resistant storage stability and low-temperature fixability of the toner while suppressing toner charge attenuation, it is particularly preferable that the shell layer is substantially composed of a crosslinked styrene-acrylonitrile resin. As the acrylonitrile monomer for introducing the acrylonitrile unit into the resin, for example, acrylonitrile or methacrylonitrile is preferable. Examples of the styrenic monomer for introducing a styrenic unit into the resin include styrene, α-methylstyrene, 4-methylstyrene, 4-tert-butylstyrene, 4-methoxystyrene, 4-bromostyrene, or 3 -Chlorostyrene is preferred. As a crosslinking agent for introducing a crosslinked structure into the resin, for example, divinylbenzene is preferable.
 十分なトナーの耐熱保存性及び低温定着性を確保するためには、シェル層を構成する樹脂のガラス転移点(Tg)が50℃以上100℃以下であることが好ましい。 In order to ensure sufficient heat-resistant storage stability and low-temperature fixability of the toner, the glass transition point (Tg) of the resin constituting the shell layer is preferably 50 ° C. or higher and 100 ° C. or lower.
 [外添剤]
 トナー母粒子の表面に外添剤(詳しくは、複数の外添剤粒子を含む粉体)を付着させてもよい。外添剤は、内添剤とは異なり、トナー母粒子の内部には存在せず、トナー母粒子の表面(トナー粒子の表層部)のみに選択的に存在する。例えば、トナー母粒子(粉体)と外添剤(粉体)とを一緒に攪拌することで、トナー母粒子の表面に外添剤が付着する。トナー母粒子と外添剤粒子とは、互いに化学反応せず、化学的ではなく物理的に結合する。トナー母粒子と外添剤粒子との結合の強さは、攪拌条件(より具体的には、攪拌時間、及び攪拌の回転速度等)、外添剤粒子の粒子径、外添剤粒子の形状、及び外添剤粒子の表面状態などによって調整できる。
[External additive]
An external additive (specifically, a powder containing a plurality of external additive particles) may be adhered to the surface of the toner base particles. Unlike the internal additive, the external additive does not exist inside the toner base particles, but selectively exists only on the surface of the toner base particles (surface layer portion of the toner particles). For example, the toner base particles (powder) and the external additive (powder) are stirred together, so that the external additive adheres to the surface of the toner base particles. The toner base particles and the external additive particles do not chemically react with each other and are physically bonded instead of chemically. The strength of the bond between the toner base particles and the external additive particles depends on the stirring conditions (more specifically, the stirring time, the rotation speed of the stirring, etc.), the particle diameter of the external additive particles, and the shape of the external additive particles. And the surface condition of the external additive particles.
 トナー粒子からの外添剤粒子の脱離を抑制しながら外添剤の機能を十分に発揮させるためには、外添剤の量(複数種の外添剤を使用する場合には、それら外添剤の合計量)が、トナー母粒子100質量部に対して、0.5質量部以上10質量部以下であることが好ましい。 In order to fully perform the functions of the external additive while suppressing the detachment of the external additive particles from the toner particles, the amount of the external additive (if multiple types of external additives are used, The total amount of the additives is preferably 0.5 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the toner base particles.
 外添剤粒子としては、無機粒子が好ましく、シリカ粒子、又は金属酸化物(より具体的には、アルミナ、酸化チタン、酸化マグネシウム、酸化亜鉛、チタン酸ストロンチウム、又はチタン酸バリウム等)の粒子が特に好ましい。ただし、外添剤粒子として、脂肪酸金属塩(より具体的には、ステアリン酸亜鉛等)のような有機酸化合物の粒子、又は樹脂粒子を使用してもよい。また、外添剤粒子として、複数種の材料の複合体である複合粒子を使用してもよい。外添剤粒子は、表面処理されていてもよい。1種類の外添剤を単独で使用してもよいし、複数種の外添剤を併用してもよい。 The external additive particles are preferably inorganic particles such as silica particles or metal oxide particles (more specifically, alumina, titanium oxide, magnesium oxide, zinc oxide, strontium titanate, or barium titanate). Particularly preferred. However, particles of an organic acid compound such as a fatty acid metal salt (more specifically, zinc stearate) or resin particles may be used as the external additive particles. Moreover, you may use the composite particle which is a composite of a multiple types of material as external additive particle | grains. The external additive particles may be surface-treated. One type of external additive may be used alone, or a plurality of types of external additives may be used in combination.
 トナーの流動性を向上させるためには、外添剤粒子として、個数平均1次粒子径5nm以上30nm以下の無機粒子(粉体)を使用することが好ましい。外添剤をトナー粒子間でスペーサーとして機能させてトナーの耐熱保存性を向上させるためには、外添剤粒子として、個数平均1次粒子径50nm以上200nm以下の樹脂粒子(粉体)を使用することが好ましい。 In order to improve the fluidity of the toner, it is preferable to use inorganic particles (powder) having a number average primary particle diameter of 5 nm to 30 nm as external additive particles. In order to make the external additive function as a spacer between the toner particles to improve the heat-resistant storage stability of the toner, resin particles (powder) having a number average primary particle diameter of 50 nm to 200 nm are used as the external additive particles. It is preferable to do.
 [トナーの製造方法]
 以下、上記基本構成を有するトナーを製造する方法の一例について説明する。まず、トナーコアを準備する。続けて、液中にトナーコアとシェル材料とを入れる。均質なシェル層を形成するためには、シェル材料を含む液を攪拌するなどして、シェル材料を液に溶解又は分散させることが好ましい。続けて、液中でシェル材料をトナーコアの表面に付着させて、トナーコアの表面でシェル材料の膜化を進行させることで、トナーコアの表面にシェル層(硬化した樹脂層)が形成される。シェル層形成時におけるトナーコア成分(特に、結着樹脂及び離型剤)の溶解又は溶出を抑制するためには、水性媒体中でシェル層を形成することが好ましい。水性媒体は、水を主成分とする媒体(より具体的には、純水、又は水と極性媒体との混合液等)である。水性媒体は溶媒として機能してもよい。水性媒体中に溶質が溶けていてもよい。水性媒体は分散媒として機能してもよい。水性媒体中に分散質が分散していてもよい。水性媒体中の極性媒体としては、例えば、アルコール(より具体的には、メタノール又はエタノール等)を使用できる。水性媒体の沸点は約100℃である。
[Toner Production Method]
Hereinafter, an example of a method for producing the toner having the above basic configuration will be described. First, a toner core is prepared. Subsequently, the toner core and the shell material are put in the liquid. In order to form a homogeneous shell layer, it is preferable to dissolve or disperse the shell material in the liquid by, for example, stirring the liquid containing the shell material. Subsequently, the shell material is adhered to the surface of the toner core in the liquid, and the shell material is formed on the surface of the toner core, whereby a shell layer (cured resin layer) is formed on the surface of the toner core. In order to suppress dissolution or elution of the toner core components (particularly the binder resin and the release agent) during the formation of the shell layer, it is preferable to form the shell layer in an aqueous medium. The aqueous medium is a medium containing water as a main component (more specifically, pure water or a mixed liquid of water and a polar medium). The aqueous medium may function as a solvent. A solute may be dissolved in the aqueous medium. The aqueous medium may function as a dispersion medium. The dispersoid may be dispersed in the aqueous medium. As a polar medium in the aqueous medium, for example, alcohol (more specifically, methanol or ethanol) can be used. The boiling point of the aqueous medium is about 100 ° C.
 以下、より具体的な例に基づいて、本実施形態に係るトナーの製造方法についてさらに説明する。 Hereinafter, the toner manufacturing method according to the present embodiment will be further described based on a more specific example.
 (トナーコアの準備)
 良質なトナーコアを容易に得るためには、凝集法又は粉砕法によりトナーコアを製造することが好ましく、粉砕法によりトナーコアを製造することがより好ましい。
(Preparation of toner core)
In order to easily obtain a good quality toner core, the toner core is preferably produced by an agglomeration method or a pulverization method, and more preferably produced by a pulverization method.
 以下、粉砕法の一例について説明する。まず、結着樹脂(例えば、ポリエステル樹脂)と、内添剤(例えば、着色剤、離型剤、電荷制御剤、及び磁性粉の少なくとも1つ)とを混合する。続けて、得られた混合物を溶融混練する。続けて、得られた溶融混練物を粉砕し、得られた粉砕物を分級する。その結果、所望の粒子径を有するトナーコアが得られる。 Hereinafter, an example of the pulverization method will be described. First, a binder resin (for example, a polyester resin) and an internal additive (for example, at least one of a colorant, a release agent, a charge control agent, and a magnetic powder) are mixed. Subsequently, the obtained mixture is melt-kneaded. Subsequently, the obtained melt-kneaded product is pulverized, and the obtained pulverized product is classified. As a result, a toner core having a desired particle size can be obtained.
 以下、凝集法の一例について説明する。まず、結着樹脂(例えば、ポリエステル樹脂)、離型剤、及び着色剤の各々の微粒子を含む水性媒体中で、これらの粒子を所望の粒子径になるまで凝集させる。これにより、結着樹脂、離型剤、及び着色剤を含む凝集粒子が形成される。続けて、得られた凝集粒子を加熱して、凝集粒子に含まれる成分を合一化させる。その結果、トナーコアの分散液が得られる。その後、トナーコアの分散液から、不要な物質(界面活性剤等)を除去することで、トナーコアが得られる。 Hereinafter, an example of the aggregation method will be described. First, these particles are aggregated in an aqueous medium containing fine particles of a binder resin (for example, a polyester resin), a release agent, and a colorant until a desired particle diameter is obtained. Thereby, aggregated particles containing the binder resin, the release agent, and the colorant are formed. Subsequently, the obtained aggregated particles are heated to unite the components contained in the aggregated particles. As a result, a toner core dispersion is obtained. Thereafter, an unnecessary substance (such as a surfactant) is removed from the dispersion liquid of the toner core to obtain the toner core.
 (シェル層の形成)
 イオン交換水に酸性物質(例えば、塩酸)を加えて、弱酸性(例えば、3以上5以下から選ばれるpH)の水性媒体を調製する。続けて、pHが調整された水性媒体に、トナーコアと、樹脂粒子のサスペンションとを添加する。樹脂粒子のサスペンションは、シェル材料に相当する。サスペンションに含まれる樹脂粒子は、例えば、水酸基を有しない繰返し単位のみで構成される架橋スチレン-アクリロニトリル系樹脂(例えば、架橋構造を有するスチレンとアクリロニトリルとを含む単量体(樹脂原料)の共重合体)から実質的に構成される。サスペンションに含まれる樹脂粒子のガラス転移点は、例えば50℃以上100℃以下である。
(Formation of shell layer)
An acidic substance (for example, hydrochloric acid) is added to ion-exchanged water to prepare a weakly acidic (for example, pH selected from 3 to 5) aqueous medium. Subsequently, a toner core and a suspension of resin particles are added to an aqueous medium whose pH is adjusted. The suspension of resin particles corresponds to the shell material. The resin particles contained in the suspension are, for example, a crosslinked styrene-acrylonitrile resin composed only of repeating units having no hydroxyl group (for example, a co-polymer of a monomer (resin raw material) containing styrene having a crosslinked structure and acrylonitrile). It is substantially composed of a combination. The glass transition point of the resin particles contained in the suspension is, for example, 50 ° C. or higher and 100 ° C. or lower.
 シェル材料としてモノマー又はプレポリマーを水性媒体に添加して、トナーコアの表面でシェル材料を重合させた場合、トナーコアの表面にシェル被覆率100%(完全被覆)のシェル層が形成され易い。これに対し、予め樹脂化した粒子(樹脂粒子)をシェル材料として使用した場合には、トナーコアの表面にシェル被覆率60%以上80%以下のシェル層を形成し易くなる。 When a monomer or a prepolymer is added to an aqueous medium as a shell material and the shell material is polymerized on the surface of the toner core, a shell layer having a shell coverage of 100% (complete coating) is easily formed on the surface of the toner core. On the other hand, when pre-resinized particles (resin particles) are used as the shell material, it becomes easy to form a shell layer having a shell coverage of 60% or more and 80% or less on the surface of the toner core.
 樹脂粒子(シェル材料)は、液中でトナーコアの表面に付着する。トナーコアの表面に均一に樹脂粒子を付着させるためには、樹脂粒子を含む液中にトナーコアを高度に分散させることが好ましい。液中にトナーコアを高度に分散させるために、液中に界面活性剤を含ませてもよいし、強力な攪拌装置(例えば、プライミクス株式会社製「ハイビスディスパーミックス」)を用いて液を攪拌してもよい。界面活性剤としては、例えば、硫酸エステル塩、スルホン酸塩、リン酸エステル塩、又は石鹸を使用できる。 Resin particles (shell material) adhere to the surface of the toner core in the liquid. In order to uniformly adhere the resin particles to the surface of the toner core, it is preferable to highly disperse the toner core in a liquid containing the resin particles. In order to highly disperse the toner core in the liquid, a surfactant may be included in the liquid, or the liquid is stirred using a powerful stirring device (for example, “Hibis Disper Mix” manufactured by Primics Co., Ltd.). May be. As the surfactant, for example, sulfate ester salt, sulfonate salt, phosphate ester salt, or soap can be used.
 続けて、上記トナーコア及び樹脂粒子を含む液にアルカリ性物質(例えば、水酸化ナトリウム)を加えて、液のpHを約7(例えば、7.0以上8.0以下から選ばれるpH)に調整する。 Subsequently, an alkaline substance (for example, sodium hydroxide) is added to the liquid containing the toner core and the resin particles to adjust the pH of the liquid to about 7 (for example, a pH selected from 7.0 to 8.0). .
 続けて、上記トナーコア及び樹脂粒子を含む液を攪拌しながら液の温度を所定の速度(例えば、0.1℃/分以上3℃/分以下から選ばれる速度)で所定の温度(例えば、55℃以上85℃以下から選ばれる温度)まで上昇させる。さらに、液を攪拌しながら液の温度をその温度に所定の時間(例えば、30分間以上4時間以下から選ばれる時間)保つ。その結果、トナーコアの表面にシェル層が形成され、アルカリ処理前のコア-シェル粒子(以下、処理前粒子と記載する)の分散液が得られる。 Subsequently, while stirring the liquid containing the toner core and the resin particles, the temperature of the liquid is changed to a predetermined temperature (for example, 55 at a speed selected from 0.1 ° C./min to 3 ° C./min). To a temperature selected from 85 ° C. to 85 ° C. Further, the temperature of the liquid is maintained at the temperature for a predetermined time (for example, a time selected from 30 minutes to 4 hours) while stirring the liquid. As a result, a shell layer is formed on the surface of the toner core, and a dispersion of core-shell particles before alkali treatment (hereinafter referred to as pre-treatment particles) is obtained.
 上記のような方法により、ポリエステル樹脂を含むトナーコアと、60%以上80%以下の面積割合でトナーコアの表面を覆い、水酸基を有しない1種以上の繰返し単位のみで構成される樹脂を含有するシェル層とを備えるコア-シェル粒子(処理前粒子)を準備することができる。 By the above-described method, a toner core containing a polyester resin and a shell containing a resin composed of only one or more repeating units having a surface area ratio of 60% to 80% and covering the surface of the toner core and having no hydroxyl group Core-shell particles (pre-treatment particles) comprising a layer can be prepared.
 上記のように、液中でトナーコアの表面に樹脂粒子を付着させて、液を加熱することで、樹脂粒子を溶かして(又は、変形させて)膜化することができる。ただし、乾燥工程で加熱されて、又は外添工程で物理的な衝撃力を受けて、樹脂粒子の膜化が進行してもよい。 As described above, the resin particles are adhered to the surface of the toner core in the liquid, and the liquid is heated, whereby the resin particles can be dissolved (or deformed) to form a film. However, the resin particles may be formed into a film by being heated in the drying step or receiving a physical impact force in the external addition step.
 続けて、得られた処理前粒子の分散液の温度を、室温よりも少し高い温度(例えば、35℃以上50℃以下から選ばれる温度)に調整する。その後、処理前粒子の分散液に、アルカリ金属イオンを含むアルカリ性物質(例えば、水酸化ナトリウム)を加えて、液のpHを中性~弱アルカリ性の範囲(例えば、7.0以上11.0以下から選ばれるpH)に調整する。さらに、このような温度及びpHに、処理前粒子の分散液を所定の時間(例えば、30分間以上4時間以下から選ばれる時間)保つ。その結果、トナー母粒子(アルカリ性物質で表面処理された粒子)の分散液が得られる。得られたトナー母粒子のコア露出領域の一部領域においては、露出したポリエステル樹脂のカルボキシラートイオン(-COO-)がアルカリ金属イオン(例えば、ナトリウムイオン)と結合していると考えられる。なお、アルカリ処理中の温度が高過ぎると、トナー母粒子が凝集し易くなる。 Subsequently, the temperature of the obtained dispersion of pre-treated particles is adjusted to a temperature slightly higher than room temperature (for example, a temperature selected from 35 ° C. to 50 ° C.). Thereafter, an alkaline substance containing alkali metal ions (for example, sodium hydroxide) is added to the dispersion of the pre-treatment particles, and the pH of the liquid is in a neutral to weakly alkaline range (for example, 7.0 to 11.0). To a pH selected from Furthermore, the dispersion liquid of the particles before the treatment is maintained at such a temperature and pH for a predetermined time (for example, a time selected from 30 minutes to 4 hours). As a result, a dispersion of toner base particles (particles surface-treated with an alkaline substance) is obtained. In a part of the core exposed region of the obtained toner base particles, it is considered that the exposed carboxylate ion (—COO ) of the polyester resin is bonded to an alkali metal ion (for example, sodium ion). If the temperature during the alkali treatment is too high, the toner base particles tend to aggregate.
 続けて、例えばブフナー漏斗を用いて、トナー母粒子の分散液をろ過する。これにより、トナー母粒子が液から分離(固液分離)され、ウェットケーキ状のトナー母粒子が得られる。続けて、得られたウェットケーキ状のトナー母粒子を洗浄する。続けて、洗浄されたトナー母粒子を乾燥する。 Subsequently, the dispersion of the toner base particles is filtered using, for example, a Buchner funnel. Thereby, the toner base particles are separated from the liquid (solid-liquid separation), and wet cake-like toner base particles are obtained. Subsequently, the obtained wet cake-like toner base particles are washed. Subsequently, the washed toner base particles are dried.
 その後、必要に応じて、混合機(例えば、日本コークス工業株式会社製のFMミキサー)を用いてトナー母粒子と外添剤とを混合して、トナー母粒子の表面に外添剤を付着させてもよい。 Thereafter, if necessary, the toner base particles and the external additive are mixed using a mixer (for example, FM mixer manufactured by Nippon Coke Kogyo Co., Ltd.), and the external additive is adhered to the surface of the toner base particles. May be.
 なお、上記トナーの製造方法の内容及び順序はそれぞれ、要求されるトナーの構成又は特性等に応じて任意に変更することができる。例えば、液中で材料(例えば、シェル材料)を反応させる場合、液に材料を添加した後、所定の時間、液中で材料を反応させてもよいし、長時間かけて液に材料を添加して、液に材料を添加しながら液中で材料を反応させてもよい。また、シェル材料を、一度に液に添加してもよいし、複数回に分けて液に添加してもよい。外添工程の後で、トナーを篩別してもよい。また、必要のない工程は割愛してもよい。例えば、市販品をそのまま材料として用いることができる場合には、市販品を用いることで、その材料を調製する工程を割愛できる。また、外添剤が不要であれば、外添工程を割愛してもよい。トナー母粒子の表面に外添剤を付着させない(外添工程を割愛する)場合には、トナー母粒子がトナー粒子に相当する。樹脂を合成するための材料としては、必要に応じて、モノマーに代えてプレポリマーを使用してもよい。また、所定の化合物を得るために、原料として、その化合物の塩、エステル、水和物、又は無水物を使用してもよい。効率的にトナーを製造するためには、多数のトナー粒子を同時に形成することが好ましい。同時に製造されたトナー粒子は、互いに略同一の構成を有すると考えられる。 It should be noted that the content and order of the toner manufacturing method can be arbitrarily changed according to the required configuration or characteristics of the toner. For example, when reacting a material (for example, a shell material) in a liquid, the material may be reacted in the liquid for a predetermined time after the material is added to the liquid, or the material is added to the liquid over a long period of time. Then, the material may be reacted in the liquid while adding the material to the liquid. Further, the shell material may be added to the liquid at once, or may be added to the liquid in a plurality of times. The toner may be sieved after the external addition step. Further, unnecessary steps may be omitted. For example, when a commercially available product can be used as a material as it is, the step of preparing the material can be omitted by using a commercially available product. If an external additive is unnecessary, the external addition process may be omitted. When the external additive is not attached to the surface of the toner base particles (the step of external addition is omitted), the toner base particles correspond to the toner particles. As a material for synthesizing the resin, a prepolymer may be used instead of the monomer, if necessary. In order to obtain a predetermined compound, a salt, ester, hydrate, or anhydride of the compound may be used as a raw material. In order to produce the toner efficiently, it is preferable to form a large number of toner particles simultaneously. The toner particles produced at the same time are considered to have substantially the same configuration.
 本発明の実施例について説明する。表1に、実施例又は比較例に係るトナーTA-1~TA-5、TB-1~TB-3、及びTC-1~TC-4(それぞれ静電潜像現像用トナー)を示す。表1中、「架橋ST-AN樹脂」は、架橋スチレン-アクリロニトリル樹脂を示す。 Examples of the present invention will be described. Table 1 shows toners TA-1 to TA-5, TB-1 to TB-3, and TC-1 to TC-4 (each toner for developing an electrostatic latent image) according to Examples or Comparative Examples. In Table 1, “crosslinked ST-AN resin” indicates a crosslinked styrene-acrylonitrile resin.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 以下、トナーTA-1~TA-5、TB-1~TB-3、及びTC-1~TC-4の製造方法、評価方法、及び評価結果について、順に説明する。なお、誤差が生じる評価においては、誤差が十分小さくなる相当数の測定値を得て、得られた測定値の算術平均を評価値とした。また、粉体の個数平均1次粒子径の測定には、走査型電子顕微鏡(日本電子株式会社製「JSM-7600F」)を用いた。また、Tg(ガラス転移点)、Mp(融点)、及びTm(軟化点)の測定方法はそれぞれ、何ら規定していなければ、次に示すとおりである。 Hereinafter, manufacturing methods, evaluation methods, and evaluation results of toners TA-1 to TA-5, TB-1 to TB-3, and TC-1 to TC-4 will be described in order. In the evaluation in which an error occurs, a considerable number of measurement values with sufficiently small errors are obtained, and the arithmetic average of the obtained measurement values is used as the evaluation value. A scanning electron microscope (“JSM-7600F” manufactured by JEOL Ltd.) was used for measurement of the number average primary particle size of the powder. In addition, methods for measuring Tg (glass transition point), Mp (melting point), and Tm (softening point) are as follows unless otherwise specified.
 <Tgの測定方法>
 測定装置として、示差走査熱量計(セイコーインスツル株式会社製「DSC-6220」)を用いた。測定装置を用いて試料の吸熱曲線を測定することにより、試料のTg(ガラス転移点)を求めた。具体的には、試料(例えば、樹脂)約10mgをアルミ皿(アルミニウム製の容器)に入れて、そのアルミ皿を測定装置の測定部にセットした。また、リファレンスとして空のアルミ皿を使用した。吸熱曲線の測定では、測定部の温度を、測定開始温度25℃から200℃まで10℃/分の速度で昇温させた(RUN1)。その後、測定部の温度を200℃から25℃まで10℃/分の速度で降温させた。続けて、測定部の温度を再び25℃から200℃まで10℃/分の速度で昇温させた(RUN2)。RUN2により、試料の吸熱曲線(縦軸:熱流(DSC信号)、横軸:温度)を得た。得られた吸熱曲線から、試料のTgを読み取った。吸熱曲線中、比熱の変化点(ベースラインの外挿線と立ち下がりラインの外挿線との交点)の温度(オンセット温度)が試料のTg(ガラス転移点)に相当する。
<Measurement method of Tg>
As a measuring device, a differential scanning calorimeter (“DSC-6220” manufactured by Seiko Instruments Inc.) was used. The Tg (glass transition point) of the sample was determined by measuring the endothermic curve of the sample using a measuring device. Specifically, about 10 mg of a sample (for example, resin) was placed in an aluminum dish (aluminum container), and the aluminum dish was set in the measurement unit of the measuring device. In addition, an empty aluminum dish was used as a reference. In the measurement of the endothermic curve, the temperature of the measurement part was increased from the measurement start temperature of 25 ° C. to 200 ° C. at a rate of 10 ° C./min (RUN1). Thereafter, the temperature of the measurement part was lowered from 200 ° C. to 25 ° C. at a rate of 10 ° C./min. Subsequently, the temperature of the measurement part was again raised from 25 ° C. to 200 ° C. at a rate of 10 ° C./min (RUN 2). An endothermic curve (vertical axis: heat flow (DSC signal), horizontal axis: temperature) of the sample was obtained by RUN2. The Tg of the sample was read from the obtained endothermic curve. In the endothermic curve, the temperature (onset temperature) of the specific heat change point (intersection of the extrapolation line of the base line and the extrapolation line of the falling line) corresponds to the Tg (glass transition point) of the sample.
 <Tmの測定方法>
 高化式フローテスター(株式会社島津製作所製「CFT-500D」)に試料(例えば、樹脂)をセットし、ダイス細孔径1mm、プランジャー荷重20kg/cm2、昇温速度6℃/分の条件で、1cm3の試料を溶融流出させて、試料のS字カーブ(横軸:温度、縦軸:ストローク)を求めた。続けて、得られたS字カーブから試料のTmを読み取った。S字カーブにおいて、ストロークの最大値をS1とし、低温側のベースラインのストローク値をS2とすると、S字カーブ中のストロークの値が「(S1+S2)/2」となる温度が、試料のTm(軟化点)に相当する。
<Tm measurement method>
A sample (for example, resin) is set on a Koka-type flow tester (“CFT-500D” manufactured by Shimadzu Corporation), a die pore diameter of 1 mm, a plunger load of 20 kg / cm 2 , and a temperature rising rate of 6 ° C./min. Then, a 1 cm 3 sample was melted and discharged, and an S-shaped curve (horizontal axis: temperature, vertical axis: stroke) of the sample was obtained. Subsequently, the Tm of the sample was read from the obtained S-shaped curve. In the S-curve, if the maximum stroke value is S 1 and the low-temperature baseline stroke value is S 2 , the temperature at which the stroke value in the S-curve is “(S 1 + S 2 ) / 2” Corresponds to the Tm (softening point) of the sample.
 <Mpの測定方法>
 測定装置として、示差走査熱量計(セイコーインスツル株式会社製「DSC-6220」)を用いた。測定装置を用いて試料の吸熱曲線を測定することにより、試料のMp(融点)を求めた。具体的には、試料(例えば、樹脂)約15mgをアルミ皿(アルミニウム製の容器)に入れて、そのアルミ皿を測定装置の測定部にセットした。また、リファレンスとして空のアルミ皿を使用した。吸熱曲線の測定では、測定部の温度を、測定開始温度30℃から170℃まで10℃/分の速度で昇温させた。昇温中、試料の吸熱曲線(縦軸:熱流(DSC信号)、横軸:温度)を測定した。得られた吸熱曲線から、試料のMpを読み取った。吸熱曲線中、融解熱による最大ピーク温度が試料のMp(融点)に相当する。
<Measurement method of Mp>
As a measuring device, a differential scanning calorimeter (“DSC-6220” manufactured by Seiko Instruments Inc.) was used. The Mp (melting point) of the sample was determined by measuring the endothermic curve of the sample using a measuring device. Specifically, about 15 mg of a sample (for example, resin) was put in an aluminum dish (aluminum container), and the aluminum dish was set in the measurement unit of the measuring device. In addition, an empty aluminum dish was used as a reference. In the measurement of the endothermic curve, the temperature of the measurement part was increased from a measurement start temperature of 30 ° C. to 170 ° C. at a rate of 10 ° C./min. During the temperature increase, the endothermic curve (vertical axis: heat flow (DSC signal), horizontal axis: temperature) of the sample was measured. The Mp of the sample was read from the obtained endothermic curve. In the endothermic curve, the maximum peak temperature due to the heat of fusion corresponds to the Mp (melting point) of the sample.
 [トナーコア材料の準備]
 (結晶性ポリエステル樹脂の合成)
 温度計(熱電対)、脱水管、窒素導入管、及び攪拌装置を備えた容量10Lの4つ口フラスコ内に、エチレングリコール2231gと、スベリン酸5869gと、2-エチルヘキサン酸錫(II)40gと、没食子酸3gとを入れた。続けて、窒素雰囲気かつ温度180℃の条件で、フラスコ内容物を4時間反応させた。続けて、フラスコ内容物を昇温させて、温度210℃で10時間反応させた。続けて、減圧雰囲気(圧力8.3kPa)かつ温度210℃の条件で、フラスコ内容物を1時間反応させた。その結果、Tm78℃、Mp74℃の結晶性ポリエステル樹脂が得られた。
[Preparation of toner core material]
(Synthesis of crystalline polyester resin)
In a 10 L four-necked flask equipped with a thermometer (thermocouple), dehydration tube, nitrogen inlet tube, and stirring device, 2231 g of ethylene glycol, 5869 g of suberic acid, and 40 g of tin (II) 2-ethylhexanoate And 3 g of gallic acid. Subsequently, the contents of the flask were reacted for 4 hours under conditions of a nitrogen atmosphere and a temperature of 180 ° C. Subsequently, the contents of the flask were heated and reacted at a temperature of 210 ° C. for 10 hours. Subsequently, the contents of the flask were reacted for 1 hour in a reduced pressure atmosphere (pressure 8.3 kPa) and a temperature of 210 ° C. As a result, a crystalline polyester resin having Tm of 78 ° C. and Mp of 74 ° C. was obtained.
 (非結晶性ポリエステル樹脂Aの合成)
 温度計(熱電対)、脱水管、窒素導入管、及び攪拌装置を備えた容量10Lの4つ口フラスコ内に、ビスフェノールAプロピレンオキサイド付加物370gと、ビスフェノールAエチレンオキサイド付加物3059gと、テレフタル酸1194gと、フマル酸286gと、2-エチルヘキサン酸錫(II)10gと、没食子酸2gとを入れた。続けて、窒素雰囲気かつ温度230℃の条件で、反応率が90質量%以上になるまで、フラスコ内容物を反応させた。反応率は、式「反応率=100×実際の反応生成水量/理論生成水量」に従って計算した。続けて、減圧雰囲気(圧力8.3kPa)かつ温度230℃の条件で、反応生成物(樹脂)のTmが所定の温度(89℃)になるまで、フラスコ内容物を反応させた。その結果、Tm89℃、Tg50℃の非結晶性ポリエステル樹脂Aが得られた。
(Synthesis of non-crystalline polyester resin A)
In a 10 L four-necked flask equipped with a thermometer (thermocouple), dehydration tube, nitrogen introduction tube, and stirrer, 370 g of bisphenol A propylene oxide adduct, 3059 g of bisphenol A ethylene oxide adduct, terephthalic acid 1194 g, fumaric acid 286 g, tin (II) 2-ethylhexanoate 10 g and gallic acid 2 g were added. Subsequently, the contents of the flask were reacted in a nitrogen atmosphere and at a temperature of 230 ° C. until the reaction rate reached 90% by mass or more. The reaction rate was calculated according to the formula “reaction rate = 100 × actual amount of reaction product water / theoretical product water amount”. Subsequently, the flask contents were reacted under a reduced pressure atmosphere (pressure 8.3 kPa) and a temperature of 230 ° C. until the Tm of the reaction product (resin) reached a predetermined temperature (89 ° C.). As a result, an amorphous polyester resin A having a Tm of 89 ° C. and a Tg of 50 ° C. was obtained.
 (非結晶性ポリエステル樹脂Bの合成)
 非結晶性ポリエステル樹脂Bの合成方法は、ビスフェノールAプロピレンオキサイド付加物370g、ビスフェノールAエチレンオキサイド付加物3059g、テレフタル酸1194g、及びフマル酸286gに代えて、ビスフェノールAプロピレンオキサイド付加物1286g、ビスフェノールAエチレンオキサイド付加物2218g、及びテレフタル酸1603gを使用した以外は、非結晶性ポリエステル樹脂Aの合成方法と同じであった。得られた非結晶性ポリエステル樹脂Bに関しては、Tmが111℃、Tgが69℃であった。
(Synthesis of non-crystalline polyester resin B)
The method for synthesizing the non-crystalline polyester resin B is as follows. The method was the same as the synthesis method of the amorphous polyester resin A except that 2218 g of the oxide adduct and 1603 g of terephthalic acid were used. Regarding the obtained non-crystalline polyester resin B, Tm was 111 ° C. and Tg was 69 ° C.
 (非結晶性ポリエステル樹脂Cの合成)
 温度計(熱電対)、脱水管、窒素導入管、及び攪拌装置を備えた容量10Lの4つ口フラスコ内に、ビスフェノールAプロピレンオキサイド付加物4907gと、ビスフェノールAエチレンオキサイド付加物1942gと、フマル酸757gと、ドデシルコハク酸無水物2078gと、2-エチルヘキサン酸錫(II)30gと、没食子酸2gとを入れた。続けて、窒素雰囲気かつ温度230℃の条件で、前述の式で表される反応率が90質量%以上になるまで、フラスコ内容物を反応させた。続けて、減圧雰囲気(圧力8.3kPa)かつ温度230℃の条件で、フラスコ内容物を1時間反応させた。続けて、無水トリメリット酸548gをフラスコ内に加えて、減圧雰囲気(圧力8.3kPa)かつ温度220℃の条件で、反応生成物(樹脂)のTmが所定の温度(127℃)になるまで、フラスコ内容物を反応させた。その結果、Tm127℃、Tg51℃の非結晶性ポリエステル樹脂Cが得られた。
(Synthesis of non-crystalline polyester resin C)
In a 10 L four-necked flask equipped with a thermometer (thermocouple), dehydration tube, nitrogen introduction tube, and stirring device, 4907 g of bisphenol A propylene oxide adduct, 1942 g of bisphenol A ethylene oxide adduct, and fumaric acid 757 g, 2078 g of dodecyl succinic anhydride, 30 g of tin (II) 2-ethylhexanoate, and 2 g of gallic acid were added. Subsequently, the contents of the flask were reacted in a nitrogen atmosphere and at a temperature of 230 ° C. until the reaction rate represented by the above formula reached 90% by mass or more. Subsequently, the contents of the flask were reacted for 1 hour in a reduced pressure atmosphere (pressure 8.3 kPa) and a temperature of 230 ° C. Subsequently, 548 g of trimellitic anhydride is added to the flask, and Tm of the reaction product (resin) reaches a predetermined temperature (127 ° C.) under a reduced pressure atmosphere (pressure 8.3 kPa) and a temperature of 220 ° C. The flask contents were reacted. As a result, an amorphous polyester resin C having a Tm of 127 ° C. and a Tg of 51 ° C. was obtained.
 [シェル材料の調製]
 アンカー型攪拌翼を備えた丸底フラスコを温度30℃のウォーターバスにセットし、そのフラスコ内に、スチレン20質量部と、アクリロニトリル80質量部と、ジビニルベンゼン10質量部と、過硫酸カリウム(水溶性重合開始剤)4.5質量部と、イオン交換水100質量部とを入れた。そして、アンカー型攪拌翼を用いてフラスコ内容物を回転速度100rpmで攪拌しながら、ウォーターバスを用いてフラスコ内の温度を70℃まで昇温させた。その後、回転速度100rpmの攪拌を続けながら、温度70℃で8時間の乳化重合(ソープフリー)を行って、フラスコ内に樹脂粒子(詳しくは、架橋スチレン-アクリロニトリル樹脂の粒子)の分散液を得た。得られた分散液をろ過(固液分離)して、得られた樹脂粒子を洗浄した後、濃度10質量%アルキルエーテル硫酸エステルナトリウム水溶液に再分散させた。その結果、固形分濃度8質量%の樹脂粒子のサスペンションが得られた。得られたサスペンションに含まれる樹脂粒子に関して、個数平均1次粒子径は20nm、Tgは73℃であった。サスペンションに含まれる樹脂粒子は、実質的に架橋スチレン-アクリロニトリル樹脂から構成されていた。
[Preparation of shell material]
A round bottom flask equipped with an anchor type stirring blade was set in a water bath at a temperature of 30 ° C., and 20 parts by mass of styrene, 80 parts by mass of acrylonitrile, 10 parts by mass of divinylbenzene, potassium persulfate (water solution) 4.5 parts by mass of a polymerization polymerization initiator) and 100 parts by mass of ion-exchanged water. And the temperature in a flask was heated up to 70 degreeC using the water bath, stirring the flask contents at a rotational speed of 100 rpm using the anchor type stirring blade. Thereafter, emulsion polymerization (soap-free) is carried out at a temperature of 70 ° C. for 8 hours while stirring at a rotation speed of 100 rpm, and a dispersion of resin particles (specifically, crosslinked styrene-acrylonitrile resin particles) is obtained in the flask. It was. The obtained dispersion was filtered (solid-liquid separation), and the resulting resin particles were washed, and then redispersed in an aqueous solution of sodium alkyl ether sulfate having a concentration of 10% by mass. As a result, a suspension of resin particles having a solid content concentration of 8% by mass was obtained. Regarding the resin particles contained in the obtained suspension, the number average primary particle diameter was 20 nm, and Tg was 73 ° C. The resin particles contained in the suspension were substantially composed of a crosslinked styrene-acrylonitrile resin.
 [トナーTA-1~TA-5、TB-1、TC-1~TC-4の製造方法]
 (トナーコアの作製)
 第1結着樹脂(前述の手順で合成した非結晶性ポリエステル樹脂A)300gと、第2結着樹脂(前述の手順で合成した非結晶性ポリエステル樹脂B)100gと、第3結着樹脂(前述の手順で合成した非結晶性ポリエステル樹脂C)600gと、第4結着樹脂(前述の手順で合成した結晶性ポリエステル樹脂)100gと、第1離型剤(カルナバワックス:株式会社加藤洋行製「カルナウバワックス1号」)12gと、第2離型剤(合成エステルワックス:日油株式会社製「ニッサンエレクトール(登録商標)WEP-3」)48gと、着色剤(山陽色素株式会社製「カラーテックス(登録商標)ブルーB1021」、成分:フタロシアニンブルー)144gとを、FMミキサー(日本コークス工業株式会社製)を用いて回転速度2400rpmで混合した。
[Method for Producing Toners TA-1 to TA-5, TB-1, TC-1 to TC-4]
(Production of toner core)
300 g of a first binder resin (amorphous polyester resin A synthesized by the above procedure), 100 g of a second binder resin (amorphous polyester resin B synthesized by the above procedure), and a third binder resin ( 600 g of the non-crystalline polyester resin C synthesized by the above procedure, 100 g of the fourth binder resin (crystalline polyester resin synthesized by the above procedure), and the first release agent (carnauba wax: manufactured by Hiroyuki Kato Co., Ltd.) 12 g of “Carnauba Wax No. 1”, 48 g of a second release agent (synthetic ester wax: “Nissan Electol (registered trademark) WEP-3” manufactured by NOF Corporation), and a colorant (manufactured by Sanyo Dye Co., Ltd.) 144 g of “Colortex (registered trademark) Blue B1021”, component: phthalocyanine blue), using an FM mixer (manufactured by Nippon Coke Kogyo Co., Ltd.) and a rotational speed of 2400 They were mixed in a pm.
 続けて、得られた混合物を、2軸押出機(株式会社池貝製「PCM-30」)を用いて、材料供給速度5kg/時、軸回転速度160rpm、設定温度(シリンダー温度)100℃の条件で溶融混練した。その後、得られた混練物を冷却した。続けて、冷却された混練物を、粉砕機(旧東亜機械製作所製「ロートプレックス16/8型」)を用いて粗粉砕した。続けて、得られた粗粉砕物を、ジェットミル(日本ニューマチック工業株式会社製「超音波ジェットミルI型」)を用いて微粉砕した。続けて、得られた微粉砕物を、分級機(日鉄鉱業株式会社製「エルボージェットEJ-LABO型」)を用いて分級した。その結果、体積中位径(D50)6.8μmのトナーコアが得られた。 Subsequently, the obtained mixture was subjected to conditions using a twin-screw extruder (“PCM-30” manufactured by Ikegai Co., Ltd.) at a material supply speed of 5 kg / hour, a shaft rotation speed of 160 rpm, and a set temperature (cylinder temperature) of 100 ° C. Was melt kneaded. Thereafter, the obtained kneaded material was cooled. Subsequently, the cooled kneaded material was coarsely pulverized using a pulverizer (“Rotoplex 16/8” manufactured by Toa Machinery Co., Ltd.). Subsequently, the obtained coarsely pulverized product was finely pulverized using a jet mill (“Ultrasonic Jet Mill Type I” manufactured by Nippon Pneumatic Industry Co., Ltd.). Subsequently, the obtained finely pulverized product was classified using a classifier (“Elbow Jet EJ-LABO type” manufactured by Nippon Steel Mining Co., Ltd.). As a result, a toner core having a volume median diameter (D 50 ) of 6.8 μm was obtained.
 (シェル層形成工程)
 温度計及び攪拌羽根を備えた容量1Lの3つ口フラスコをウォーターバスにセットし、フラスコ内にイオン交換水300mLを入れた。その後、ウォーターバスを用いてフラスコ内の温度を30℃に保った。続けて、フラスコ内に希塩酸を加えて、フラスコ内容物のpHを4に調整した。続けて、フラスコ内に、シェル材料(前述の手順で調製した架橋スチレン-アクリロニトリル樹脂のサスペンション)を、表1に示される量だけ加えた。例えば、トナーTA-1の製造では、フラスコ内に、シェル材料としてサスペンション(固形分濃度:8質量%)を20g添加した。また、トナーTB-1の製造では、シェル材料(サスペンション)を添加しなかった。
(Shell layer forming process)
A 1 L three-necked flask equipped with a thermometer and a stirring blade was set in a water bath, and 300 mL of ion-exchanged water was placed in the flask. Thereafter, the temperature in the flask was kept at 30 ° C. using a water bath. Subsequently, dilute hydrochloric acid was added to the flask to adjust the pH of the flask contents to 4. Subsequently, the shell material (a suspension of the cross-linked styrene-acrylonitrile resin prepared by the above procedure) was added into the flask in the amount shown in Table 1. For example, in the production of toner TA-1, 20 g of suspension (solid content concentration: 8% by mass) was added as a shell material to the flask. Further, in the production of the toner TB-1, no shell material (suspension) was added.
 続けて、フラスコ内にトナーコア(前述の手順で作製したトナーコア)300gとアニオン界面活性剤(花王株式会社製「エマール(登録商標)0」、成分:ラウリル硫酸ナトリウム)1gとを添加した。そして、フラスコ内容物を回転速度(攪拌羽根)200rpmで1時間攪拌した。 Subsequently, 300 g of a toner core (toner core produced by the above procedure) and 1 g of an anionic surfactant (“Emar (registered trademark) 0” manufactured by Kao Corporation, component: sodium lauryl sulfate) were added to the flask. The flask contents were stirred for 1 hour at a rotation speed (stirring blade) of 200 rpm.
 続けて、フラスコ内にイオン交換水300mLを追加した。続けて、フラスコ内に水酸化ナトリウムを加えて、フラスコ内容物のpHを7.5に調整した。この時点でのフラスコ内容物の温度は30℃であった。続けて、フラスコ内容物を回転速度(攪拌羽根)100rpmで攪拌しながら、1℃/分の速度でフラスコ内容物を昇温させた。そして、フラスコ内容物の温度が62℃に達した時点で、その昇温を止めるとともに、フラスコ内に冷水を入れて、フラスコ内容物を40℃まで急冷した。続けて、フラスコ内に水酸化ナトリウムを加えて、フラスコ内容物のpHを、表1に示される値に調整した。例えば、トナーTA-1の製造では、フラスコ内容物のpHを10に調整した。その後、回転速度(攪拌羽根)100rpmでフラスコ内容物を攪拌しながら、温度40℃かつ上記調整後のpH(トナーTA-1では、10)の状態にフラスコ内容物を1時間保った。フラスコ内容物のpHは、時間の経過とともに小さくなる傾向があった。このため、フラスコ内に水酸化ナトリウムを加えながら、フラスコ内容物のpHを、表1に示される値に維持した。こうして、フラスコ内にトナー母粒子の分散液が得られた。 Subsequently, 300 mL of ion exchange water was added to the flask. Subsequently, sodium hydroxide was added to the flask to adjust the pH of the flask contents to 7.5. The temperature of the flask contents at this point was 30 ° C. Subsequently, the flask contents were heated at a rate of 1 ° C./min while stirring the flask contents at a rotation speed (stirring blade) of 100 rpm. Then, when the temperature of the flask contents reached 62 ° C., the temperature increase was stopped and cold water was put into the flask to rapidly cool the flask contents to 40 ° C. Subsequently, sodium hydroxide was added to the flask to adjust the pH of the flask contents to the values shown in Table 1. For example, in the production of toner TA-1, the pH of the flask contents was adjusted to 10. Thereafter, while stirring the flask contents at a rotation speed (stirring blade) of 100 rpm, the flask contents were kept at a temperature of 40 ° C. and the adjusted pH (10 for toner TA-1) for 1 hour. The pH of the flask contents tended to decrease with time. For this reason, the pH of the flask contents was maintained at the values shown in Table 1 while adding sodium hydroxide into the flask. Thus, a dispersion of toner base particles was obtained in the flask.
 (洗浄工程)
 上記のようにして得られたトナー母粒子の分散液を、ブフナー漏斗を用いてろ過(固液分離)した。その結果、ウェットケーキ状のトナー母粒子が得られた。その後、得られたウェットケーキ状のトナー母粒子をイオン交換水1.5Lに再分散させた。洗浄後のろ液(洗浄水)の導電率が3μS/cmになるまで分散とろ過とを繰り返して、トナー母粒子を洗浄した。導電率の測定には、株式会社堀場製作所製の電気伝導率計「HORIBA ES-51」を用いた。
(Washing process)
The dispersion of toner base particles obtained as described above was filtered (solid-liquid separation) using a Buchner funnel. As a result, toner base particles in the form of wet cake were obtained. Thereafter, the obtained wet cake-like toner base particles were redispersed in 1.5 L of ion-exchanged water. The toner base particles were washed by repeating dispersion and filtration until the electric conductivity of the filtrate after washing (washing water) reached 3 μS / cm. For the measurement of conductivity, an electric conductivity meter “HORIBA ES-51” manufactured by Horiba, Ltd. was used.
 (乾燥工程)
 続けて、洗浄されたウェットケーキ状のトナー母粒子を真空棚段乾燥機に入れて、真空度1kPaかつ温度40℃の条件で、24時間乾燥した。その結果、乾燥したトナー母粒子(粉体)が得られた。
(Drying process)
Subsequently, the washed wet cake-like toner mother particles were put in a vacuum shelf dryer and dried for 24 hours under the conditions of a vacuum degree of 1 kPa and a temperature of 40 ° C. As a result, dried toner base particles (powder) were obtained.
 (外添工程)
 続けて、トナー母粒子100質量部と、正帯電性シリカ粒子(表面処理により正帯電性が付与されたシリカ粒子:日本アエロジル株式会社製「AEROSIL(登録商標)REA90」)1.0質量部と、導電性酸化チタン粒子(チタン工業株式会社製「EC-100」、基材:TiO2、被覆層:SbドープSnO2膜)0.5質量部とを、容量10LのFMミキサー(日本コークス工業株式会社製)を用いて5分間混合した。これにより、トナー母粒子の表面に外添剤(シリカ粒子及び酸化チタン粒子)が付着した。その後、200メッシュ(目開き75μm)の篩を用いて篩別を行った。その結果、多数のトナー粒子を含むトナー(表1に示されるトナーTA-1~TA-5、TB-1、及びTC-1~TC-4)が得られた。
(External addition process)
Subsequently, 100 parts by mass of toner base particles and 1.0 part by mass of positively chargeable silica particles (silica particles imparted with positive charge by surface treatment: “AEROSIL (registered trademark) REA90” manufactured by Nippon Aerosil Co., Ltd.) , Conductive titanium oxide particles (“EC-100” manufactured by Titanium Industry Co., Ltd., base material: TiO 2 , coating layer: Sb-doped SnO 2 film) and 0.5 part by mass of FM mixer (Nippon Coke Industries, Ltd.) with a capacity of 10 L For 5 minutes. As a result, external additives (silica particles and titanium oxide particles) adhered to the surface of the toner base particles. Thereafter, sieving was performed using a 200 mesh sieve (aperture 75 μm). As a result, toners containing a large number of toner particles (toners TA-1 to TA-5, TB-1, and TC-1 to TC-4 shown in Table 1) were obtained.
 [トナーTB-2の製造方法]
 トナーTB-2の製造方法は、シェル層形成工程において、架橋スチレン-アクリロニトリル樹脂のサスペンションの代わりに、下記方法で調製したポリエステル樹脂のサスペンションを使用した以外は、トナーTA-1の製造方法と同じであった。
[Production Method of Toner TB-2]
The production method of the toner TB-2 is the same as the production method of the toner TA-1, except that the suspension of the polyester resin prepared by the following method is used in the shell layer forming step instead of the suspension of the crosslinked styrene-acrylonitrile resin. Met.
 <ポリエステル樹脂のサスペンションの調製方法>
 攪拌装置、加熱冷却装置、温度計、及び脱水装置を備えた反応容器に、ビスフェノールA・EO(エチレンオキサイド)2モル付加物681質量部と、ビスフェノールA・PO(プロピレンオキサイド)2モル付加物81質量部と、テレフタル酸282質量部と、無水トリメリット酸22質量部と、酸化ジブチル錫2質量部とを入れた。続けて、容器内において、常圧かつ温度230℃の条件で5時間脱水反応を行った後、さらに減圧雰囲気(圧力0.0004MPa)かつ温度230℃の条件で5時間脱水反応を行った。その結果、数平均分子量(Mn)2200、質量平均分子量(Mw)9500、Tg(ガラス転移点)60℃のポリエステル樹脂が得られた。
<Method for preparing suspension of polyester resin>
In a reaction vessel equipped with a stirrer, a heating / cooling device, a thermometer, and a dehydrator, 681 parts by mass of bisphenol A · EO (ethylene oxide) 2 mol adduct and bisphenol A · PO (propylene oxide) 2 mol adduct 81 Part by mass, 282 parts by mass of terephthalic acid, 22 parts by mass of trimellitic anhydride, and 2 parts by mass of dibutyltin oxide were added. Subsequently, after dehydration reaction was performed in the container under conditions of normal pressure and temperature of 230 ° C. for 5 hours, dehydration reaction was further performed under conditions of reduced pressure atmosphere (pressure 0.0004 MPa) and temperature of 230 ° C. for 5 hours. As a result, a polyester resin having a number average molecular weight (Mn) of 2200, a mass average molecular weight (Mw) of 9500, and a Tg (glass transition point) of 60 ° C. was obtained.
 続けて、攪拌装置、加熱冷却装置、温度計、及び脱溶剤装置を備えた反応容器に、上記のようにして得たポリエステル樹脂50質量部と、メチルエチルケトン250質量部とを入れた。続けて、容器内の温度を80℃に昇温させて、ポリエステル樹脂を溶解させた。その後、容器内の温度を40℃に下げて、トリエチルアミン5質量部を容器内に加えた。続けて、得られた容器内容物を、別の容器内で攪拌されているイオン交換水1000質量部に注いで、乳化させた。その後、メチルエチルケトンを除去して、ポリエステル樹脂のサスペンションを得た。得られたサスペンションに含まれる樹脂粒子(ポリエステル樹脂の粒子)に関して、体積中位径(D50)は20nmであった。体積中位径(D50)の測定には、レーザー回折/散乱式粒度分布測定装置(株式会社堀場製作所製「LA-920」)を用いた。 Subsequently, 50 parts by mass of the polyester resin obtained as described above and 250 parts by mass of methyl ethyl ketone were placed in a reaction vessel equipped with a stirrer, a heating / cooling device, a thermometer, and a solvent removal apparatus. Subsequently, the temperature in the container was raised to 80 ° C. to dissolve the polyester resin. Thereafter, the temperature in the container was lowered to 40 ° C., and 5 parts by mass of triethylamine was added to the container. Subsequently, the obtained container contents were poured into 1000 parts by mass of ion-exchanged water stirred in another container and emulsified. Thereafter, methyl ethyl ketone was removed to obtain a polyester resin suspension. With respect to the resin particles (polyester resin particles) contained in the obtained suspension, the volume median diameter (D 50 ) was 20 nm. For measurement of the volume median diameter (D 50 ), a laser diffraction / scattering particle size distribution measuring device (“LA-920” manufactured by Horiba, Ltd.) was used.
 [トナーTB-3の製造方法]
 トナーTB-3の製造方法は、シェル層形成工程において、架橋スチレン-アクリロニトリル樹脂のサスペンションの代わりに、下記方法で調製した架橋スチレン樹脂のサスペンションを使用した以外は、トナーTA-1の製造方法と同じであった。
[Production Method of Toner TB-3]
The manufacturing method of toner TB-3 is the same as the manufacturing method of toner TA-1, except that, in the shell layer forming step, a crosslinked styrene resin suspension prepared by the following method was used instead of the crosslinked styrene-acrylonitrile resin suspension. It was the same.
 <架橋スチレン樹脂のサスペンションの調製方法>
 アンカー型攪拌翼を備えた丸底フラスコを温度30℃のウォーターバスにセットし、そのフラスコ内に、スチレン100質量部と、ジビニルベンゼン10質量部と、過硫酸カリウム(水溶性重合開始剤)4.5質量部と、イオン交換水100質量部とを入れた。そして、アンカー型攪拌翼を用いてフラスコ内容物を回転速度100rpmで攪拌しながら、ウォーターバスを用いてフラスコ内の温度を70℃まで昇温させた。その後、回転速度100rpmの攪拌を続けながら、温度70℃で6時間の乳化重合(ソープフリー)を行って、フラスコ内に樹脂粒子(詳しくは、架橋スチレン樹脂の粒子)の分散液を得た。得られた分散液をろ過(固液分離)して、得られた樹脂粒子を洗浄した後、濃度10質量%アルキルエーテル硫酸エステルナトリウム水溶液に再分散させた。その結果、固形分濃度8質量%の樹脂粒子のサスペンション(架橋スチレン樹脂のサスペンション)が得られた。得られたサスペンションに含まれる樹脂粒子に関して、個数平均1次粒子径は20nm、Tgは75℃であった。サスペンションに含まれる樹脂粒子は、実質的に架橋スチレン樹脂から構成されていた。
<Method for preparing suspension of crosslinked styrene resin>
A round bottom flask equipped with an anchor type stirring blade was set in a water bath at a temperature of 30 ° C., and 100 parts by mass of styrene, 10 parts by mass of divinylbenzene, and potassium persulfate (water-soluble polymerization initiator) 4 were placed in the flask. 0.5 parts by mass and 100 parts by mass of ion-exchanged water were added. And the temperature in a flask was heated up to 70 degreeC using the water bath, stirring the flask contents at a rotational speed of 100 rpm using the anchor type stirring blade. Thereafter, emulsion polymerization (soap-free) was performed at a temperature of 70 ° C. for 6 hours while continuing stirring at a rotation speed of 100 rpm to obtain a dispersion of resin particles (specifically, crosslinked styrene resin particles) in the flask. The obtained dispersion was filtered (solid-liquid separation), and the resulting resin particles were washed, and then redispersed in an aqueous solution of sodium alkyl ether sulfate having a concentration of 10% by mass. As a result, a suspension of resin particles having a solid content concentration of 8% by mass (a suspension of a crosslinked styrene resin) was obtained. Regarding the resin particles contained in the obtained suspension, the number average primary particle diameter was 20 nm, and Tg was 75 ° C. The resin particles contained in the suspension were substantially composed of a crosslinked styrene resin.
 上記のようにして得たトナーTA-1~TA-5、TB-1~TB-3、及びTC-1~TC-4に関して、シェル被覆率と、トナー粒子の表面に存在する水素イオン量(トナー1gあたり)とを測定した結果は、表1に示すとおりであった。例えば、トナーTA-1に関して、シェル被覆率は72%であり、水素イオン量は3.0×10-10mol/gであった。シェル被覆率及び水素イオン量の各々の測定方法は、下記のとおりであった。 Regarding the toners TA-1 to TA-5, TB-1 to TB-3, and TC-1 to TC-4 obtained as described above, the shell coverage and the amount of hydrogen ions existing on the surface of the toner particles ( Table 1 shows the result of measuring (per 1 g of toner). For example, for toner TA-1, the shell coverage was 72% and the hydrogen ion content was 3.0 × 10 −10 mol / g. Each measuring method of the shell coverage and the amount of hydrogen ions was as follows.
 <シェル被覆率の測定方法>
 各試料(トナーTA-1~TA-5、TB-1~TB-3、及びTC-1~TC-4のいずれか)のトナー母粒子(外添前のトナー)を測定対象とした。詳しくは、測定対象であるトナー母粒子(粉体)を、常温(25℃)の大気雰囲気下で、濃度0.5質量%RuO4水溶液2mLの蒸気中に5分間暴露することで、トナー母粒子をRu染色した。そして、染色されたトナー母粒子を、電界放射型走査型電子顕微鏡(FE-SEM)(日本電子株式会社製「JSM-7600F」)を用いて倍率50000倍で観察し、トナー母粒子の反射電子像を得た。トナーコアの表面領域のうち、シェル層で被覆されている領域は、ルテニウムに染色され易かった。
<Measurement method of shell coverage>
The toner base particles (toner before external addition) of each sample (any one of toners TA-1 to TA-5, TB-1 to TB-3, and TC-1 to TC-4) were measured. Specifically, the toner base particles (powder) to be measured are exposed to the vapor of 2 mL of a 0.5% by weight aqueous RuO 4 solution for 5 minutes in an air atmosphere at room temperature (25 ° C.), whereby the toner base is obtained. The particles were Ru stained. The dyed toner base particles are observed with a field emission scanning electron microscope (FE-SEM) (“JSM-7600F” manufactured by JEOL Ltd.) at a magnification of 50000 times. I got a statue. Of the surface area of the toner core, the area covered with the shell layer was easily dyed with ruthenium.
 得られた反射電子像のうち、最も明るい部分の値を255、最も暗い部分の値を0として、輝度値を256分割した。そして、画像解析ソフトウェア(三谷商事株式会社製「WinROOF」)を用いて、輝度値144を基準とする2値化処理を反射電子像に対して行った。2値化処理後、トナー母粒子の反射電子像全体の面積SA1(反射電子像中の全画素数に相当)と、反射電子像において輝度値が144以上である領域の面積SB1(反射電子像中の輝度値144以上の画素数に相当)とを求め、下記式に従ってシェル被覆率(単位:%)を算出した。
  シェル被覆率=100×面積SB1/面積SA1
In the obtained reflected electron image, the brightness value was divided into 256, with the brightest value being 255 and the darkest value being 0. Then, using the image analysis software (“WinROOF” manufactured by Mitani Shoji Co., Ltd.), the binarization process based on the luminance value 144 was performed on the reflected electron image. After binarization, the area SA1 of the entire reflected electron image of the toner base particles (corresponding to the total number of pixels in the reflected electron image) and the area SB1 of the region having a luminance value of 144 or more in the reflected electron image (reflected electron image) And corresponding to the number of pixels having a luminance value of 144 or more), and the shell coverage (unit:%) was calculated according to the following formula.
Shell coverage = 100 × area SB1 / area SA1
 <トナー粒子の表面に存在する水素イオン量の測定方法>
 試料(トナー)1質量部(トナー50g)をイオン交換水2質量部(イオン交換水100g)中に入れて、トナー分散液を得た。トナー分散液の温度を25℃に保ったままトナー分散液を緩やかに攪拌し、トナー分散液のpHを測定した。なお、トナー分散液のpHが安定するまで温度25℃のトナー分散液を緩やかに攪拌し続けて、トナー分散液のpHが安定した時点でのpH測定値を、その試料(トナー)についての測定値(pH値)とした。pHの測定には、pHメーター(株式会社堀場製作所製「D-51」)を用いた。得られた測定値(pH値)から、下記式に従ってトナー粒子の表面に存在する水素イオン量(単位:mol/g)を算出した。
  水素イオン量=10-pH値×1000/(イオン交換水の量×トナーの量)
<Method for measuring the amount of hydrogen ions present on the surface of toner particles>
1 part by mass of the sample (toner) (50 g of toner) was placed in 2 parts by mass of ion-exchanged water (100 g of ion-exchanged water) to obtain a toner dispersion. The toner dispersion was gently stirred while the temperature of the toner dispersion was kept at 25 ° C., and the pH of the toner dispersion was measured. The toner dispersion liquid at a temperature of 25 ° C. is continuously stirred until the pH of the toner dispersion liquid is stabilized, and the measured pH value at the time when the pH of the toner dispersion liquid is stabilized is measured for the sample (toner). Value (pH value). A pH meter (“D-51” manufactured by Horiba, Ltd.) was used for pH measurement. From the measured value (pH value) obtained, the amount of hydrogen ions (unit: mol / g) present on the surface of the toner particles was calculated according to the following formula.
Amount of hydrogen ions = 10 −pH value × 1000 / (amount of ion exchange water × amount of toner)
 例えば、トナーTA-1では、測定されたpH値が10.22であった。このため、トナー粒子の表面に存在する水素イオン量は、「10-10.22×1000/(20×10)=3.0×10-10」(単位:mol/g)であった(表1参照)。 For example, with toner TA-1, the measured pH value was 10.22. For this reason, the amount of hydrogen ions present on the surface of the toner particles was “10 −10.22 × 1000 / (20 × 10) = 3.0 × 10 −10 ” (unit: mol / g) (see Table 1). ).
 [評価方法]
 各試料(トナーTA-1~TA-5、TB-1~TB-3、及びTC-1~TC-4)の評価方法は、以下のとおりである。
[Evaluation methods]
The evaluation method of each sample (toners TA-1 to TA-5, TB-1 to TB-3, and TC-1 to TC-4) is as follows.
 (最低定着温度)
 現像剤用キャリア(京セラドキュメントソリューションズ株式会社製の「TASKalfa5550ci」用キャリア)100質量部と、試料(トナー)10質量部とを、ボールミルを用いて30分間混合して、2成分現像剤を調製した。
(Minimum fixing temperature)
100 parts by weight of developer carrier (carrier for “TASKalfa 5550ci” manufactured by Kyocera Document Solutions Co., Ltd.) and 10 parts by weight of sample (toner) were mixed for 30 minutes using a ball mill to prepare a two-component developer. .
 上述のようにして調製した2成分現像剤を用いて画像を形成して、最低定着温度を評価した。評価機としては、Roller-Roller方式の加熱加圧型の定着装置を備えるカラープリンター(京セラドキュメントソリューションズ株式会社製「FS-C5250DN」を改造して定着温度を変更可能にした評価機)を用いた。上述のようにして調製した2成分現像剤を評価機の現像装置に投入し、試料(補給用トナー)を評価機のトナーコンテナに投入した。 An image was formed using the two-component developer prepared as described above, and the minimum fixing temperature was evaluated. As an evaluation machine, a color printer having a Roller-Roller type heat and pressure fixing device (an evaluation machine in which “FS-C5250DN” manufactured by Kyocera Document Solutions Co., Ltd. was modified to change the fixing temperature) was used. The two-component developer prepared as described above was charged into the developing device of the evaluation machine, and the sample (replenishment toner) was charged into the toner container of the evaluation machine.
 上記評価機を用いて、温度25℃かつ湿度50%RHの環境下、坪量90g/m2の紙(A4サイズの印刷用紙)に、線速200mm/秒、トナー載り量1.0mg/cm2の条件で、大きさ25mm×25mmのソリッド画像(詳しくは、未定着のトナー像)を形成した。続けて、画像が形成された紙を評価機の定着装置に通した。 Using the above-mentioned evaluation machine, a linear speed of 200 mm / second and a toner applied amount of 1.0 mg / cm on a paper having a basis weight of 90 g / m 2 (A4 size printing paper) in an environment of a temperature of 25 ° C. and a humidity of 50% RH. Under the condition 2 , a solid image having a size of 25 mm × 25 mm (specifically, an unfixed toner image) was formed. Subsequently, the paper on which the image was formed was passed through the fixing device of the evaluation machine.
 最低定着温度の評価では、定着温度の測定範囲が100℃以上200℃以下であった。詳しくは、定着装置の定着温度を100℃から5℃ずつ(ただし、最低定着温度付近では2℃ずつ)上昇させて、ソリッド画像(トナー像)を紙に定着できる最低温度(最低定着温度)を測定した。トナーを定着させることができたか否かは、以下に示すような折擦り試験で確認した。詳しくは、定着装置に通した評価用紙を、画像を形成した面が内側となるように折り曲げ、布帛で被覆した1kgの分銅を用いて、折り目上の画像を5往復摩擦した。続けて、紙を広げ、紙の折り曲げ部(ソリッド画像が形成された部分)を観察した。そして、折り曲げ部のトナーの剥がれの長さ(剥がれ長)を測定した。剥がれ長が1mm以下となる定着温度のうちの最低温度を、最低定着温度とした。最低定着温度が150℃以下であれば○(良い)と評価し、最低定着温度が150℃を超えれば×(良くない)と評価した。 In the evaluation of the minimum fixing temperature, the measuring range of the fixing temperature was 100 ° C. or higher and 200 ° C. or lower. Specifically, the fixing temperature of the fixing device is increased from 100 ° C. by 5 ° C. (in the vicinity of the minimum fixing temperature by 2 ° C.), and the minimum temperature (minimum fixing temperature) at which a solid image (toner image) can be fixed on paper is set. It was measured. Whether or not the toner could be fixed was confirmed by a rubbing test as shown below. Specifically, the evaluation paper passed through the fixing device was bent so that the surface on which the image was formed was on the inside, and the image on the fold was rubbed 5 times with a 1 kg weight coated with a cloth. Subsequently, the paper was spread and the bent portion of the paper (the portion where the solid image was formed) was observed. Then, the length (peeling length) of toner peeling at the bent portion was measured. The lowest temperature among the fixing temperatures at which the peeling length was 1 mm or less was defined as the lowest fixing temperature. When the minimum fixing temperature was 150 ° C. or lower, it was evaluated as “good”, and when the minimum fixing temperature exceeded 150 ° C., it was evaluated as “poor” (not good).
 (耐熱保存性)
 試料(トナー)3gを容量20mLのポリエチレン製容器に入れて、その容器を、温度58℃に設定された恒温器内に3時間静置した。その後、恒温器から取り出したトナーを室温まで冷却して、評価用トナーを得た。
(Heat resistant storage stability)
3 g of the sample (toner) was put in a 20 mL polyethylene container, and the container was left in a thermostat set at 58 ° C. for 3 hours. Thereafter, the toner taken out from the thermostat was cooled to room temperature to obtain an evaluation toner.
 続けて、得られた評価用トナーを、質量既知の200メッシュ(目開き75μm)の篩に載せた。そして、トナーを含む篩の質量を測定し、篩別前のトナーの質量を求めた。続けて、粉体特性評価装置(ホソカワミクロン株式会社製「パウダテスタ(登録商標)」)に篩をセットし、パウダテスタのマニュアルに従い、レオスタッド目盛り5の条件で30秒間、篩を振動させ、評価用トナーを篩別した。そして、篩別後に、トナーを含む篩の質量を測定することで、篩上に残留したトナーの質量を求めた。篩別前のトナーの質量と、篩別後のトナーの質量(篩別後に篩上に残留したトナーの質量)とから、次の式に基づいて凝集度(単位:質量%)を求めた。
  凝集度=100×篩別後のトナーの質量/篩別前のトナーの質量
Subsequently, the obtained toner for evaluation was placed on a sieve having a known mass of 200 mesh (aperture 75 μm). Then, the mass of the sieve containing the toner was measured, and the mass of the toner before sieving was determined. Subsequently, a sieve is set in a powder property evaluation apparatus (“Powder Tester (registered trademark)” manufactured by Hosokawa Micron Co., Ltd.), and according to the manual of the powder tester, the sieve is vibrated for 30 seconds under the condition of the rheostat scale 5 to evaluate toner. Was sieved. Then, after sieving, the mass of the toner remaining on the sieve was determined by measuring the mass of the sieve containing the toner. From the mass of the toner before sieving and the mass of the toner after sieving (the mass of toner remaining on the sieving after sieving), the degree of aggregation (unit: mass%) was determined based on the following formula.
Aggregation degree = 100 × mass of toner after sieving / mass of toner before sieving
 凝集度が20質量%以下であれば○(良い)と評価し、凝集度が20質量%を超えれば×(良くない)と評価した。 When the degree of aggregation was 20% by mass or less, it was evaluated as “good”, and when the degree of aggregation exceeded 20% by mass, it was evaluated as “poor” (not good).
 (電荷減衰特性)
 評価機としては、静電気拡散率測定装置(株式会社ナノシーズ製「NS-D100」)を用いた。この評価機は、試料を帯電させるとともに、帯電した試料の電荷減衰の様子を表面電位計でモニタリングできる。評価方法は、JIS(日本工業規格)C 61340-2-1-2006に準拠した方法であった。以下、電荷減衰定数の評価方法について詳述する。
(Charge decay characteristics)
As an evaluation machine, an electrostatic diffusivity measuring device (“NS-D100” manufactured by Nano Seeds Co., Ltd.) was used. The evaluator can charge the sample and monitor the charge decay state of the charged sample with a surface potentiometer. The evaluation method was a method based on JIS (Japanese Industrial Standards) C 61340-2-1-2006. Hereinafter, a method for evaluating the charge decay constant will be described in detail.
 測定セルに試料(トナー)を入れた。測定セルは、内径10mm、深さ1mmの凹部が形成された金属製のセルであった。スライドガラスを用いて試料を上から押し込み、セルの凹部に試料を充填した。セルの表面においてスライドガラスを往復移動させることによって、セルから溢れた試料を除去した。試料(トナー)の充填量は0.05gであった。 The sample (toner) was put in the measurement cell. The measurement cell was a metal cell in which a recess having an inner diameter of 10 mm and a depth of 1 mm was formed. The sample was pushed in from above using a slide glass, and the concave portion of the cell was filled with the sample. The sample overflowed from the cell was removed by reciprocating the slide glass on the surface of the cell. The filling amount of the sample (toner) was 0.05 g.
 続けて、試料が充填された測定セルを、温度32.5℃、湿度80%RHの環境下で12時間静置した。続けて、電圧10kV、帯電時間0.5秒間の条件で、コロナ放電によって測定対象を帯電させた。そして、コロナ放電終了後0.7秒経過した後から、サンプリング周波数10Hz、最大測定時間300秒間の条件で、測定対象の表面電位を連続的に記録した。記録された表面電位のデータと、式「V=V0exp(-α√t)」とに基づいて、減衰時間2秒間(測定開始から2秒後までの期間)における電荷減衰定数αを算出した。式中、Vは表面電位[V]、V0は初期表面電位[V]、tは減衰時間[秒]をそれぞれ示す。 Subsequently, the measurement cell filled with the sample was allowed to stand for 12 hours in an environment of a temperature of 32.5 ° C. and a humidity of 80% RH. Subsequently, the measurement object was charged by corona discharge under the conditions of a voltage of 10 kV and a charging time of 0.5 seconds. Then, after 0.7 seconds had elapsed from the end of corona discharge, the surface potential of the measurement object was continuously recorded under the conditions of a sampling frequency of 10 Hz and a maximum measurement time of 300 seconds. Based on the recorded surface potential data and the equation “V = V 0 exp (−α√t)”, the charge decay constant α is calculated for the decay time of 2 seconds (the period from the start of measurement to 2 seconds later). did. In the formula, V represents the surface potential [V], V 0 represents the initial surface potential [V], and t represents the decay time [second].
 電荷減衰定数が0.020以下であれば○(良い)と評価し、電荷減衰定数が0.020を超えれば×(良くない)と評価した。 When the charge decay constant was 0.020 or less, it was evaluated as ◯ (good), and when the charge decay constant exceeded 0.020, it was evaluated as x (not good).
 [評価結果]
 トナーTA-1~TA-5、TB-1~TB-3、及びTC-1~TC-4の各々について、耐熱保存性(凝集度)、低温定着性(最低定着温度)、及び電荷減衰特性(電荷減衰定数)を評価した結果を、表2に示す。
[Evaluation results]
For each of toners TA-1 to TA-5, TB-1 to TB-3, and TC-1 to TC-4, heat-resistant storage stability (aggregation), low-temperature fixability (minimum fixing temperature), and charge decay characteristics The results of evaluating (charge decay constant) are shown in Table 2.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 トナーTA-1~TA-3、TB-3、及びTC-1~TC-2(実施例1~6に係るトナー)はそれぞれ、前述の基本構成を有していた。詳しくは、トナーTA-1~TA-3、TB-3、及びTC-1~TC-2ではそれぞれ、トナーコア及びシェル層を備えるトナー粒子を、複数含んでいた。トナーコアは、ポリエステル樹脂(詳しくは、非結晶性ポリエステル樹脂A~C及び結晶性ポリエステル樹脂)を含有していた。シェル層は、水酸基を有しない1種以上の繰返し単位のみで構成される樹脂(詳しくは、架橋スチレン-アクリロニトリル樹脂、又は架橋スチレン樹脂)を含有していた(表1参照)。シェル被覆率(トナーコアの表面領域のうちシェル層が覆う領域の面積割合)は60%以上80%以下であった(表1参照)。トナー粒子の表面に存在する水素イオン量は、トナー1gあたり5.0×10-11モル以上5.0×10-10モル以下であった(表1参照)。なお、トナーTA-1~TA-3、TB-3、及びTC-1~TC-2ではそれぞれ、シェル層の厚さが10nm以上20nm以下であった。 The toners TA-1 to TA-3, TB-3, and TC-1 to TC-2 (toners according to Examples 1 to 6) each had the above-described basic configuration. Specifically, the toners TA-1 to TA-3, TB-3, and TC-1 to TC-2 each include a plurality of toner particles including a toner core and a shell layer. The toner core contained a polyester resin (specifically, non-crystalline polyester resins A to C and a crystalline polyester resin). The shell layer contained a resin composed of only one or more repeating units having no hydroxyl group (specifically, a crosslinked styrene-acrylonitrile resin or a crosslinked styrene resin) (see Table 1). The shell coverage (the area ratio of the area covered by the shell layer in the surface area of the toner core) was 60% or more and 80% or less (see Table 1). The amount of hydrogen ions present on the surface of the toner particles was 5.0 × 10 −11 mol or more and 5.0 × 10 −10 mol or less per 1 g of toner (see Table 1). In each of toners TA-1 to TA-3, TB-3, and TC-1 to TC-2, the thickness of the shell layer was 10 nm or more and 20 nm or less.
 表2に示されるように、トナーTA-1~TA-3、TB-3、及びTC-1~TC-2はそれぞれ、耐熱保存性、低温定着性、及び電荷減衰特性の全てに優れていた。 As shown in Table 2, the toners TA-1 to TA-3, TB-3, and TC-1 to TC-2 were excellent in all of heat-resistant storage stability, low-temperature fixability, and charge decay characteristics, respectively. .
 トナーTC-3(比較例5に係るトナー)では、トナーTA-1~TA-3及びTC-1~TC-2に比べて、耐熱保存性及び電荷減衰特性の評価結果が悪かった。この理由は、トナーコアの表面にシェル層を形成した後(冷却後)のpH調整でpHを大きくし過ぎて(表1参照)、トナーコア中のポリエステル樹脂(結着樹脂)が加水分解したためであると考えられる。また、ポリエステル樹脂の加水分解により、トナーコアの表面からシェル層が剥がれたと考えられる。 In the toner TC-3 (the toner according to Comparative Example 5), the evaluation results of the heat resistant storage stability and the charge decay characteristic were worse than those of the toners TA-1 to TA-3 and TC-1 to TC-2. This is because the polyester resin (binder resin) in the toner core is hydrolyzed because the pH is excessively increased by adjusting the pH after the shell layer is formed on the surface of the toner core (after cooling) (see Table 1). it is conceivable that. In addition, it is considered that the shell layer was peeled off from the surface of the toner core due to hydrolysis of the polyester resin.
 本発明に係る静電潜像現像用トナーは、例えば複写機、プリンター、又は複合機において画像を形成するために用いることができる。 The electrostatic latent image developing toner according to the present invention can be used for forming an image in, for example, a copying machine, a printer, or a multifunction machine.

Claims (13)

  1.  コアと、前記コアの表面を覆うシェル層とを備えるトナー粒子を、複数含む静電潜像現像用トナーであって、
     前記コアは、ポリエステル樹脂を含有し、
     前記シェル層は、水酸基を有しない1種以上の繰返し単位のみで構成される樹脂を含有し、
     前記コアの表面領域のうち前記シェル層が覆う領域の面積割合は、60%以上80%以下であり、
     前記トナー粒子の表面に存在する水素イオン量は、前記トナー1gあたり5.0×10-11モル以上5.0×10-10モル以下である、静電潜像現像用トナー。
    An electrostatic latent image developing toner comprising a plurality of toner particles each having a core and a shell layer covering the surface of the core,
    The core contains a polyester resin,
    The shell layer contains a resin composed only of one or more repeating units having no hydroxyl group,
    The area ratio of the region covered by the shell layer in the surface region of the core is 60% or more and 80% or less,
    The electrostatic latent image developing toner, wherein the amount of hydrogen ions present on the surface of the toner particles is 5.0 × 10 −11 mol or more and 5.0 × 10 −10 mol or less per 1 g of the toner.
  2.  前記シェル層を構成する前記樹脂において、前記水酸基を有しない1種以上の繰返し単位は全て、ビニル化合物に由来する繰返し単位である、請求項1に記載の静電潜像現像用トナー。 The electrostatic latent image developing toner according to claim 1, wherein in the resin constituting the shell layer, all of the one or more repeating units having no hydroxyl group are repeating units derived from a vinyl compound.
  3.  前記シェル層を構成する前記樹脂は、下記式(1)で表される繰返し単位と、下記式(2)で表される繰返し単位とを含む、請求項2に記載の静電潜像現像用トナー。
    Figure JPOXMLDOC01-appb-C000001
    [式(1)中、R11及びR12は、各々独立して、水素原子、ハロゲン原子、水酸基を含まない置換基を有してもよいアルキル基、又は水酸基を含まない置換基を有してもよいアルコキシ基を表す。]
    Figure JPOXMLDOC01-appb-C000002
    [式(2)中、R21~R25は、各々独立して、水素原子、ハロゲン原子、水酸基を含まない置換基を有してもよいアルキル基、水酸基を含まない置換基を有してもよいアルコキシ基、又は水酸基を含まない置換基を有してもよいアリール基を表し、R26及びR27は、各々独立して、水素原子、ハロゲン原子、又は水酸基を含まない置換基を有してもよいアルキル基を表す。]
    The electrostatic resin for developing an electrostatic latent image according to claim 2, wherein the resin constituting the shell layer includes a repeating unit represented by the following formula (1) and a repeating unit represented by the following formula (2). toner.
    Figure JPOXMLDOC01-appb-C000001
    [In Formula (1), R 11 and R 12 each independently have a hydrogen atom, a halogen atom, an alkyl group that may have a substituent that does not contain a hydroxyl group, or a substituent that does not contain a hydroxyl group. Represents an optionally substituted alkoxy group. ]
    Figure JPOXMLDOC01-appb-C000002
    [In the formula (2), R 21 to R 25 each independently have a hydrogen atom, a halogen atom, an alkyl group that may have a substituent that does not contain a hydroxyl group, or a substituent that does not contain a hydroxyl group. Represents an alkoxy group that may be substituted or an aryl group that may have a substituent that does not contain a hydroxyl group, and R 26 and R 27 each independently have a hydrogen atom, a halogen atom, or a substituent that does not contain a hydroxyl group. Represents an optionally substituted alkyl group. ]
  4.  前記シェル層を構成する前記樹脂は、前記水酸基を有しない繰返し単位として、アクリロニトリル系モノマーに由来する繰返し単位を含む、請求項1に記載の静電潜像現像用トナー。 The electrostatic latent image developing toner according to claim 1, wherein the resin constituting the shell layer includes a repeating unit derived from an acrylonitrile monomer as a repeating unit having no hydroxyl group.
  5.  前記シェル層を構成する前記樹脂は、前記水酸基を有しない繰返し単位として、スチレン系モノマーに由来する繰返し単位をさらに含む、請求項4に記載の静電潜像現像用トナー。 The electrostatic latent image developing toner according to claim 4, wherein the resin constituting the shell layer further includes a repeating unit derived from a styrene monomer as the repeating unit having no hydroxyl group.
  6.  前記シェル層を構成する前記樹脂は、架橋スチレン系樹脂である、請求項1に記載の静電潜像現像用トナー。 The electrostatic latent image developing toner according to claim 1, wherein the resin constituting the shell layer is a crosslinked styrene resin.
  7.  前記シェル層を構成する前記樹脂は、架橋スチレン-アクリロニトリル系樹脂である、請求項1に記載の静電潜像現像用トナー。 The electrostatic latent image developing toner according to claim 1, wherein the resin constituting the shell layer is a crosslinked styrene-acrylonitrile resin.
  8.  前記コア中の前記ポリエステル樹脂のカルボキシラートイオンがアルカリ金属イオンと結合している、請求項1に記載の静電潜像現像用トナー。 2. The electrostatic latent image developing toner according to claim 1, wherein carboxylate ions of the polyester resin in the core are bonded to alkali metal ions.
  9.  前記シェル層の厚さは1nm以上20nm以下である、請求項1に記載の静電潜像現像用トナー。 The electrostatic latent image developing toner according to claim 1, wherein the shell layer has a thickness of 1 nm to 20 nm.
  10.  前記コアは、粉砕コアであり、
     前記コアは、前記ポリエステル樹脂として、結晶性ポリエステル樹脂及び非結晶性ポリエステル樹脂を含有する、請求項9に記載の静電潜像現像用トナー。
    The core is a ground core;
    The electrostatic latent image developing toner according to claim 9, wherein the core contains a crystalline polyester resin and an amorphous polyester resin as the polyester resin.
  11.  前記非結晶性ポリエステル樹脂が、1種以上のビスフェノールと1種以上のジカルボン酸とを含む単量体の重合物であり、
     前記結晶性ポリエステル樹脂が、1種以上の炭素数6以上12以下のα,ω-アルカンジカルボン酸と、1種以上の炭素数2以上6以下のα,ω-アルカンジオールとを含む単量体の重合物である、請求項10に記載の静電潜像現像用トナー。
    The non-crystalline polyester resin is a polymer of monomers containing one or more bisphenols and one or more dicarboxylic acids;
    The crystalline polyester resin includes one or more α, ω-alkanedicarboxylic acids having 6 to 12 carbon atoms and one or more α, ω-alkanediols having 2 to 6 carbon atoms. The toner for developing an electrostatic latent image according to claim 10, which is a polymer of
  12.  前記コアは、前記非結晶性ポリエステル樹脂として、異なる軟化点を有する複数種の非結晶性ポリエステル樹脂を含有する、請求項10に記載の静電潜像現像用トナー。 The electrostatic latent image developing toner according to claim 10, wherein the core contains a plurality of amorphous polyester resins having different softening points as the amorphous polyester resin.
  13.  請求項1に記載の静電潜像現像用トナーを製造する方法であって、
     ポリエステル樹脂を含むトナーコアと、60%以上80%以下の面積割合で前記トナーコアの表面を覆い、水酸基を有しない1種以上の繰返し単位のみで構成される樹脂を含有するシェル層とを備えるコア-シェル粒子を準備する準備工程と、
     前記コア-シェル粒子を、アルカリ金属イオンを含む液に入れて、前記液を、温度35℃以上45℃以下かつpH7.0以上11.0以下の状態に、30分間以上4時間以下の時間だけ保つ表面処理工程と、
     を含む、静電潜像現像用トナーの製造方法。
    A method for producing the electrostatic latent image developing toner according to claim 1,
    A core comprising a toner core containing a polyester resin and a shell layer covering the surface of the toner core at an area ratio of 60% or more and 80% or less and containing a resin composed only of one or more repeating units having no hydroxyl group; A preparation step of preparing shell particles;
    The core-shell particles are placed in a liquid containing alkali metal ions, and the liquid is kept at a temperature of 35 ° C. or higher and 45 ° C. or lower and a pH of 7.0 or higher and 11.0 or lower for a period of 30 minutes or longer and 4 hours or shorter. Surface treatment process to keep,
    A method for producing a toner for developing an electrostatic latent image, comprising:
PCT/JP2017/010383 2016-04-20 2017-03-15 Toner for electrostatic latent image development and method for producing same WO2017183364A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016084405 2016-04-20
JP2016-084405 2016-04-20

Publications (1)

Publication Number Publication Date
WO2017183364A1 true WO2017183364A1 (en) 2017-10-26

Family

ID=60116791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/010383 WO2017183364A1 (en) 2016-04-20 2017-03-15 Toner for electrostatic latent image development and method for producing same

Country Status (1)

Country Link
WO (1) WO2017183364A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI696903B (en) * 2018-05-17 2020-06-21 日商阪田油墨股份有限公司 Electrostatic charge image developing toner and method for manufacturing the electrostatic charge image developing toner

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004279598A (en) * 2003-03-13 2004-10-07 Fuji Xerox Co Ltd Manufacturing method and manufacturing apparatus for electrostatic charge image developing toner
JP2011164473A (en) * 2010-02-12 2011-08-25 Ricoh Co Ltd Electrophotographic toner, developer, process cartridge, image forming method and image forming apparatus
JP2012177898A (en) * 2011-01-31 2012-09-13 Kyocera Document Solutions Inc Toner for electrostatic latent image development
JP2012194327A (en) * 2011-03-16 2012-10-11 Ricoh Co Ltd Toner for electrostatic charge image development and production method of the toner
JP2013114230A (en) * 2011-11-30 2013-06-10 Kyocera Document Solutions Inc Capsule toner for electrostatic charge image development, and manufacturing method of the same
JP2015125206A (en) * 2013-12-26 2015-07-06 京セラドキュメントソリューションズ株式会社 Electrophotographic toner

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004279598A (en) * 2003-03-13 2004-10-07 Fuji Xerox Co Ltd Manufacturing method and manufacturing apparatus for electrostatic charge image developing toner
JP2011164473A (en) * 2010-02-12 2011-08-25 Ricoh Co Ltd Electrophotographic toner, developer, process cartridge, image forming method and image forming apparatus
JP2012177898A (en) * 2011-01-31 2012-09-13 Kyocera Document Solutions Inc Toner for electrostatic latent image development
JP2012194327A (en) * 2011-03-16 2012-10-11 Ricoh Co Ltd Toner for electrostatic charge image development and production method of the toner
JP2013114230A (en) * 2011-11-30 2013-06-10 Kyocera Document Solutions Inc Capsule toner for electrostatic charge image development, and manufacturing method of the same
JP2015125206A (en) * 2013-12-26 2015-07-06 京セラドキュメントソリューションズ株式会社 Electrophotographic toner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI696903B (en) * 2018-05-17 2020-06-21 日商阪田油墨股份有限公司 Electrostatic charge image developing toner and method for manufacturing the electrostatic charge image developing toner

Similar Documents

Publication Publication Date Title
JP6569645B2 (en) Toner for electrostatic latent image development
JP2018084678A (en) Toner for electrostatic latent image development
JP6447488B2 (en) Toner for developing electrostatic latent image and method for producing the same
JP6424981B2 (en) Toner for developing electrostatic latent image
JP6369647B2 (en) Toner for electrostatic latent image development
JP6380330B2 (en) Toner for electrostatic latent image development
JP6432707B2 (en) Toner for developing electrostatic latent image and method for producing the same
JP2017215376A (en) Toner for electrostatic latent image development
JP6369639B2 (en) Toner for electrostatic latent image development
JP6531584B2 (en) Toner for developing electrostatic latent image
JP6497485B2 (en) Toner for developing electrostatic latent image
JP6460017B2 (en) Toner for electrostatic latent image development
JP6489077B2 (en) Toner for developing electrostatic latent image and method for producing the same
JP6519537B2 (en) Toner for developing electrostatic latent image
JP6337839B2 (en) Toner for developing electrostatic latent image and method for producing the same
JP2018072453A (en) Toner for electrostatic latent image development and method for manufacturing the same
WO2017183364A1 (en) Toner for electrostatic latent image development and method for producing same
JP2018138960A (en) Magnetic toner and method for manufacturing the same
JP2018116183A (en) Toner for electrostatic latent image
JP6686941B2 (en) Toner for developing electrostatic latent image and manufacturing method thereof
JP2017125957A (en) Toner for electrostatic latent image development and method for manufacturing the same
JP6558335B2 (en) Toner for electrostatic latent image development
JP2017181872A (en) Toner for electrostatic latent image development
JP6493321B2 (en) Toner for electrostatic latent image development
JP6394582B2 (en) Toner for developing electrostatic latent image and method for producing the same

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17785706

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17785706

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP