WO2017183209A1 - Power conversion device - Google Patents

Power conversion device Download PDF

Info

Publication number
WO2017183209A1
WO2017183209A1 PCT/JP2016/062852 JP2016062852W WO2017183209A1 WO 2017183209 A1 WO2017183209 A1 WO 2017183209A1 JP 2016062852 W JP2016062852 W JP 2016062852W WO 2017183209 A1 WO2017183209 A1 WO 2017183209A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching element
capacitor
drive circuit
circuit
power source
Prior art date
Application number
PCT/JP2016/062852
Other languages
French (fr)
Japanese (ja)
Inventor
覚 寺島
清 江口
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2016/062852 priority Critical patent/WO2017183209A1/en
Publication of WO2017183209A1 publication Critical patent/WO2017183209A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present invention relates to a power conversion device capable of detecting the state of a capacitor provided.
  • the upper arm switching element and the lower arm switching element are connected in series on both sides of the first DC power supply, and the capacitor used as the drive power supply for the upper arm switching element is connected to the second through the diode.
  • the capacitor is charged when the lower arm switching element is turned on, and the capacitor charge is consumed when the upper arm switching element is turned on.
  • Such a circuit is called a bootstrap circuit.
  • Patent Document 1 which is an example of the prior art, a technique is disclosed in which the voltage of the capacitor of the bootstrap circuit is monitored by a voltage monitoring circuit and switching is stopped when the voltage drops.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain a power conversion device that can detect the state of a capacitor in a bootstrap circuit during charging without providing a voltage monitoring circuit.
  • the present invention has one end connected to the positive electrode of the first DC power supply and the other end connected to the negative electrode of the first DC power supply.
  • a series circuit in which an element, a second switching element, and a shunt resistor are connected in series in this order; an output unit connected between the first switching element and the second switching element;
  • a second DC power source that is a power source of the first drive circuit, a capacitor that is a power source of the first drive circuit that is charged by the second DC power source when the second switching element is turned on, and the shunt resistor
  • a power converter and a control unit for detecting a state of the capacitor using a current flowing through the.
  • the power converter according to the present invention has an effect that the state of the capacitor in the bootstrap circuit can be detected during charging without providing a voltage monitoring circuit.
  • FIG. 1 is a circuit diagram showing a configuration of a power conversion device according to a first embodiment; The figure which shows the on-off pattern of the upper arm switching element and the lower arm switching element at the time of charge of the power converter device shown in FIG. The figure which shows the current pathway at the time of charge of the power converter device shown in FIG. The circuit diagram which shows the structure of the power converter device concerning Embodiment 2. FIG. The figure which shows the on-off pattern of the upper arm switching element and the lower arm switching element at the time of charge of the power converter device shown in FIG. The circuit diagram which shows the structure of the power converter device concerning Embodiment 3. FIG.
  • FIG. 1 is a circuit diagram showing a configuration of the power conversion apparatus according to the first embodiment of the present invention.
  • 1 includes a DC power source 1 that is a first DC power source, an upper arm switching element 2 that is a first switching element, a lower arm switching element 3 that is a second switching element, An upper arm side driving circuit 4 that is a first driving circuit, a lower arm side driving circuit 5 that is a second driving circuit, a DC power source 6 that is a second DC power source, a capacitor 7, and a diode 8, A shunt resistor 9. Further, the upper arm switching element 2, the lower arm switching element 3, and the shunt resistor 9 are connected in series in this order to form a series circuit 10.
  • the power converter 12 includes a control unit (not shown) that controls the first drive circuit and the second drive circuit.
  • This control unit is realized by, for example, a CPU (Central Processing Unit).
  • the upper arm side drive circuit 4 outputs a control signal to the gate of the upper arm switching element 2 to drive the upper arm switching element 2 on and off.
  • the lower arm side drive circuit 5 outputs a control signal to the gate of the lower arm switching element 3 to drive the lower arm switching element 3 on and off in a complementary manner to the upper arm switching element 2.
  • the DC power supply 6 is a power supply for the lower arm drive circuit 5, and the positive electrode of the DC power supply 6 is connected to the anode of the diode 8 and the lower arm drive circuit 5.
  • the capacitor 7 is a power source for the upper arm side drive circuit 4, one end is connected to the upper arm side drive circuit 4 and the cathode of the diode 8, and the other end is connected to the upper arm side drive circuit 4, the upper arm switching element 2, and the lower arm. It is connected between the switching element 3.
  • the diode 8 is connected in series with the DC power supply 6 and the capacitor 7.
  • the shunt resistor 9 is connected in series to the upper arm switching element 2 and the lower arm switching element 3 to detect an output current.
  • the series circuit 10 has one end connected to the positive electrode of the DC power supply 1 and the other end connected to the negative electrode of the DC power supply 1.
  • the output unit 11 is connected between the upper arm switching element 2 and the lower arm switching element 3.
  • the upper arm side drive circuit 4 turns on and off the upper arm switching element 2 by a PWM (Pulse Width Modulation) signal comparing the carrier wave and the phase voltage command.
  • the lower arm side drive circuit 5 turns on and off the lower arm switching element 3 by a PWM signal that compares the carrier wave and the phase voltage command.
  • the upper arm switching element 2 When the upper arm switching element 2 is turned on, the electric charge of the capacitor 7 is consumed as a gate power source, and the voltage of the capacitor 7 drops. Further, when the lower arm switching element 3 is turned on, the capacitor 7 is charged and the voltage of the capacitor 7 rises.
  • the upper arm switching element 2 and the lower arm switching element 3 are repeatedly turned on and off in a complementary manner, that is, alternately, and the same voltage fluctuation is repeated every one output frequency cycle. When the output is restarted after the output is stopped, that is, when the power conversion device 12 is started, the capacitor 7 is charged.
  • FIG. 2 is a diagram showing an on / off pattern of the upper arm switching element 2 and the lower arm switching element 3 when the power conversion device 12 shown in FIG. 1 is charged.
  • all of the upper arm switching element 2 and the lower arm switching element 3 are turned on all at once.
  • the present invention is not limited to this, and the upper arm switching element 2 and the lower arm switching element are switched on.
  • the timing for turning on the element 3 may be shifted for each phase.
  • it is possible to shorten the start-up time by matching the timing of turning on the upper arm switching element 2 of each phase and matching the timing of turning on the lower arm switching element 3 of each phase. Is preferable.
  • FIG. 3 is a diagram showing a current path when the capacitor 7 is charged in the power conversion device 12 shown in FIG.
  • the upper arm switching element 2 is turned on for a time T1 that is a discharge completion time, and the capacitor 7 is discharged so that the voltage of the capacitor 7 approaches 0V.
  • the lower arm switching element 3 is turned on for a time T2 that is a charging completion time to charge the capacitor 7.
  • T1 time that is a discharge completion time
  • the current i is the current value of the current flowing through the shunt resistor 9
  • the voltage Vr is the voltage value applied across the shunt resistor 9
  • the resistor R is the resistance value of the shunt resistor 9.
  • the charge Q at the time of product shipment is stored as the charge Q1 at the time of shipment.
  • the current and time at the time of charging decrease and the charge Q of the capacitor 7 decreases, so that the charge Q2 accumulated at the time of charging after the deterioration becomes smaller than the shipping charge Q1.
  • K the life coefficient
  • the voltage Vc applied across the capacitor 7 during charging is measured.
  • the voltage Vc is expressed by the following equations (4) and (5).
  • the voltage Vc is the voltage of the capacitor 7
  • the voltage Vm is the voltage of the DC power supply 6
  • the capacitance C is the capacitance of the capacitor 7
  • the resistor R is a shunt.
  • the resistance value of the resistor 9 is the total voltage value of the forward voltage of the diode 8 and the ON voltage of the lower arm switching element 3, and the current i is the current in the current path indicated by the dotted line in FIG. Value.
  • the current at the time of product shipment is stored as the current i1 (t) at the time of shipment.
  • the current and time during charging decrease, and the current i2 (t) that flows during charging after deterioration becomes smaller than the current i1 (t) at the time of shipment.
  • the controller detects the state of the capacitor represented by the estimation of the lifetime of the capacitor from the current flowing through the shunt resistor 9.
  • the life of a capacitor in a bootstrap circuit is detected using a voltage monitoring circuit that requires an operational amplifier and an isolated power supply, and such a voltage monitoring circuit must be newly provided in each phase.
  • the manufacturing cost of the power conversion device has increased.
  • the current value of the current flowing through the shunt resistor 9, the voltage value applied across the shunt resistor 9, and the resistance value of the shunt resistor 9 are measured, or the current flowing through the capacitor 7 and the supply source.
  • the lifetime of the capacitor 7 in the bootstrap circuit can be detected. Therefore, a conventional voltage monitoring circuit that requires an operational amplifier and an insulated power supply is not required, so that the power conversion device can be reduced in size and manufacturing cost can be reduced.
  • the state of the capacitor in the bootstrap circuit for example, the lifetime can be detected during charging without providing a voltage monitoring circuit.
  • the capacity of the capacitor 7 is less than the allowable value, for example, when the configuration is such that an alarm is output when the capacity is 80% or less of the capacity value at the time of shipment, the upper arm is not operated when the capacity is not detected. It is possible to prevent the loss of the switching element 2 from increasing and generating heat and failure.
  • FIG. FIG. 4 is a circuit diagram showing a configuration of the power conversion apparatus according to the second embodiment of the present invention.
  • the power converter 12a shown in FIG. 4 differs from the power converter 12 shown in FIG. 1 in that a shunt resistor 20 is provided instead of the shunt resistor 9.
  • the shunt resistor 20 is connected between the lower connection point of the series circuits 21, 21 a, 21 b that are inverter circuits and the DC power supply 1, and the output current during normal operation is derived from the bus current flowing through the shunt resistor 20. It is possible to ask.
  • the series circuit 21 includes a U-phase upper arm switching element 2 and a U-phase lower arm switching element 3, and the upper arm switching element 2 and the lower arm switching element 3 are connected to the output unit 11.
  • the series circuit 21a includes a V-phase upper arm switching element 2a and a V-phase lower arm switching element 3a, and the upper arm switching element 2a and the lower arm switching element 3a are connected to the output unit 11a.
  • the series circuit 21b includes a W-phase upper arm switching element 2b and a W-phase lower arm switching element 3b, and the upper arm switching element 2b and the lower arm switching element 3b are connected to the output unit 11b. Note that the voltage applied to the shunt resistor 20 is the voltage Vr.
  • FIG. 5 is a diagram showing an on / off pattern of the upper arm switching elements 2, 2a, 2b and the lower arm switching elements 3, 3a, 3b when the power conversion device 12a shown in FIG. 4 is charged.
  • the charging current flows at the same time, so that it is difficult to detect the life. Therefore, as shown in FIG. 5, by providing a U-phase charging period, a V-phase charging period, and a W-phase charging period, and by shifting the timing at which the lower arm switching elements 3, 3a, 3b of each phase are turned on, The charging current can be passed through the shunt resistor 20 in order.
  • the upper arm switching elements 2, 2a, 2b are turned on all at once.
  • the present invention is not limited to this, and the timing at which the upper arm switching elements 2, 2a, 2b are turned on is also included. It may be shifted. However, as shown in FIG. 5, it is preferable to match the timings at which the upper arm switching elements 2, 2a, 2b are turned on because the startup time can be shortened.
  • the lifetime is detected by using the equations (3) and (7) in the first embodiment based on the current flowing for each phase.
  • the state of the capacitor in the bootstrap circuit for example, the lifetime can be detected during charging without providing a voltage monitoring circuit.
  • the capacity of the capacitor 7 is less than the allowable value, for example, when the configuration is such that an alarm is output when the capacity is 80% or less of the capacity value at the time of shipment, the upper arm is not operated when the capacity is not detected. It is possible to prevent the loss of the switching element 2 from increasing and generating heat and failure.
  • FIG. 6 is a circuit diagram showing a configuration of the power conversion device according to the third embodiment of the present invention.
  • the power converter 12b shown in FIG. 6 includes a current limiting resistor 30 between the branch point to the lower arm side drive circuit 5 of the DC power source 6 and the diode 8, and the shunt resistor 9 is not provided in FIG. Different from the power converter 12 shown.
  • the output current during normal operation is detected by using a current detector insulated from the inverter output to the motor output.
  • the voltage Vs is a voltage value from the negative electrode of the DC power supply 6 to the anode side of the diode 8 of the current limiting resistor 30, and the voltage Vm is a power supply voltage value of the DC power supply 6. Since the voltages Vs and Vm have a common common, they can be simultaneously measured by an AD (Analog to Digital) converter.
  • AD Analog to Digital
  • the life of the capacitor which is an example of the state of the capacitor, using the equations (3) and (7) in the first embodiment by the current flowing in each phase. Perform detection.
  • the state of the capacitor in the bootstrap circuit for example, the lifetime can be detected during charging without providing a voltage monitoring circuit and a shunt resistor.
  • the capacity of the capacitor 7 is less than the allowable value, for example, when the configuration is such that an alarm is output when the capacity is 80% or less of the capacity value at the time of shipment, the upper arm is not operated when the capacity is not detected. It is possible to prevent the loss of the switching element 2 from increasing and generating heat and failure.
  • the capacity of the capacitor 7 when the capacity of the capacitor 7 is equal to or less than the allowable value, as an example, a configuration that outputs an alarm when the capacity is 80% or less of the capacity value at the time of shipment is exemplified.
  • Other configurations may alert the user.
  • it may be configured to output a warning signal to the controller and stop the activation, or a power converter may be provided with a display unit and a warning message displayed on the display unit.
  • the user can recognize that the capacitor 7 should be replaced, and can prevent a failure of the power conversion apparatus due to the deterioration of the capacitor 7.
  • the capacitor state is detected by a CPU (Central Processing Unit) (not shown) that realizes a control unit of the power conversion device.
  • a CPU Central Processing Unit
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
  • 1,6 DC power supply 2, 2a, 2b upper arm switching element, 3, 3a, 3b lower arm switching element, 4 upper arm side drive circuit, 5 lower arm side drive circuit, 7 capacitor, 8 diode, 9, 20 shunt Resistance, 10, 21, 21a, 21b series circuit, 11, 11a, 11b output unit, 12, 12a, 12b power converter, 30 current limiting resistor.

Abstract

The purpose of the present invention is to obtain a power conversion device capable of detecting the state of a capacitor without providing a voltage monitoring circuit. This power conversion device is provided with: a series circuit 10, wherein one end is connected to a positive electrode of a first direct current power supply 1, the other end is connected to a negative electrode of the first direct current power supply 1, and a first switching element, a second switching element, and a shunt resistor 9 are connected in series in this order; an output unit 11 connected between the first switching element and the second switching element; a first drive circuit that on/off drives the first switching element; a second drive circuit which, complementarily with respect to the first switching element, on/off drives the second switching element; a second direct current power supply 6, i.e., a power supply for the second drive circuit; and a capacitor 7 to be charged by means of the second direct current power supply 6 when the second switching element is turned on. The state of the capacitor 7 is detected using a current of the shunt resistor 9.

Description

電力変換装置Power converter
 本発明は、具備するコンデンサの状態の検出が可能な電力変換装置に関する。 The present invention relates to a power conversion device capable of detecting the state of a capacitor provided.
 従来の電力変換装置の駆動回路では、第1の直流電源の両側に、上アームスイッチング素子と下アームスイッチング素子とが直列接続され、上アームスイッチング素子の駆動電源として使用するコンデンサはダイオードを通して第2の直流電源の+側に接続され、下アームスイッチング素子がオンする時にコンデンサを充電し、上アームスイッチング素子がオンする時にはコンデンサの電荷が消費される。なお、このような回路はブートストラップ回路と呼ばれる。 In the drive circuit of the conventional power converter, the upper arm switching element and the lower arm switching element are connected in series on both sides of the first DC power supply, and the capacitor used as the drive power supply for the upper arm switching element is connected to the second through the diode. The capacitor is charged when the lower arm switching element is turned on, and the capacitor charge is consumed when the upper arm switching element is turned on. Such a circuit is called a bootstrap circuit.
 従来技術の一例である特許文献1によれば、このブートストラップ回路のコンデンサの電圧を電圧監視回路によって監視し、電圧が低下した場合にはスイッチングを停止する技術が開示されている。 According to Patent Document 1, which is an example of the prior art, a technique is disclosed in which the voltage of the capacitor of the bootstrap circuit is monitored by a voltage monitoring circuit and switching is stopped when the voltage drops.
特開平3-150075号公報Japanese Patent Laid-Open No. 3-150075
 しかしながら、上記の従来技術によれば、ブートストラップ回路内のコンデンサの状態を検出するためには新たな電圧監視回路を要する、という問題があった。 However, according to the above prior art, there is a problem that a new voltage monitoring circuit is required to detect the state of the capacitor in the bootstrap circuit.
 本発明は、上記に鑑みてなされたものであって、電圧監視回路を設けることなく充電時にブートストラップ回路内のコンデンサの状態を検出することができる電力変換装置を得ることを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to obtain a power conversion device that can detect the state of a capacitor in a bootstrap circuit during charging without providing a voltage monitoring circuit.
 上述した課題を解決し、目的を達成するために、本発明は、一端が第1の直流電源の正極に接続され、他端が前記第1の直流電源の負極に接続され、第1のスイッチング素子と、第2のスイッチング素子と、シャント抵抗とがこの順に直列接続された直列回路と、前記第1のスイッチング素子と前記第2のスイッチング素子との間に接続された出力部と、前記第1のスイッチング素子をオンオフ駆動する第1の駆動回路と、前記第1のスイッチング素子とは相補的に、前記第2のスイッチング素子をオンオフ駆動する第2の駆動回路と、前記第2の駆動回路の電源である第2の直流電源と、前記第2のスイッチング素子がオンすると前記第2の直流電源によって充電される、前記第1の駆動回路の電源であるコンデンサと、前記シャント抵抗に流れる電流を用いて前記コンデンサの状態の検出を行う制御部とを備えた電力変換装置である。 In order to solve the above-described problems and achieve the object, the present invention has one end connected to the positive electrode of the first DC power supply and the other end connected to the negative electrode of the first DC power supply. A series circuit in which an element, a second switching element, and a shunt resistor are connected in series in this order; an output unit connected between the first switching element and the second switching element; A first driving circuit for driving on / off of one switching element; a second driving circuit for driving on / off of the second switching element; and the second driving circuit complementary to the first switching element. A second DC power source that is a power source of the first drive circuit, a capacitor that is a power source of the first drive circuit that is charged by the second DC power source when the second switching element is turned on, and the shunt resistor A power converter and a control unit for detecting a state of the capacitor using a current flowing through the.
 本発明にかかる電力変換装置は、電圧監視回路を設けることなく充電時にブートストラップ回路内のコンデンサの状態を検出することができるという効果を奏する。 The power converter according to the present invention has an effect that the state of the capacitor in the bootstrap circuit can be detected during charging without providing a voltage monitoring circuit.
実施の形態1にかかる電力変換装置の構成を示す回路図1 is a circuit diagram showing a configuration of a power conversion device according to a first embodiment; 図1に示す電力変換装置の充電時における上アームスイッチング素子及び下アームスイッチング素子のオンオフパターンを示す図The figure which shows the on-off pattern of the upper arm switching element and the lower arm switching element at the time of charge of the power converter device shown in FIG. 図1に示す電力変換装置の充電時の電流経路を示す図The figure which shows the current pathway at the time of charge of the power converter device shown in FIG. 実施の形態2にかかる電力変換装置の構成を示す回路図The circuit diagram which shows the structure of the power converter device concerning Embodiment 2. FIG. 図4に示す電力変換装置の充電時における上アームスイッチング素子及び下アームスイッチング素子のオンオフパターンを示す図The figure which shows the on-off pattern of the upper arm switching element and the lower arm switching element at the time of charge of the power converter device shown in FIG. 実施の形態3にかかる電力変換装置の構成を示す回路図The circuit diagram which shows the structure of the power converter device concerning Embodiment 3. FIG.
 以下に、本発明の実施の形態にかかる電力変換装置を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, a power converter according to an embodiment of the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
実施の形態1.
 図1は、本発明の実施の形態1にかかる電力変換装置の構成を示す回路図である。図1に示す電力変換装置12は、第1の直流電源である直流電源1と、第1のスイッチング素子である上アームスイッチング素子2と、第2のスイッチング素子である下アームスイッチング素子3と、第1の駆動回路である上アーム側駆動回路4と、第2の駆動回路である下アーム側駆動回路5と、第2の直流電源である直流電源6と、コンデンサ7と、ダイオード8と、シャント抵抗9とを備える。また、上アームスイッチング素子2と、下アームスイッチング素子3と、シャント抵抗9とがこの順に直列接続されて直列回路10を形成している。
Embodiment 1 FIG.
FIG. 1 is a circuit diagram showing a configuration of the power conversion apparatus according to the first embodiment of the present invention. 1 includes a DC power source 1 that is a first DC power source, an upper arm switching element 2 that is a first switching element, a lower arm switching element 3 that is a second switching element, An upper arm side driving circuit 4 that is a first driving circuit, a lower arm side driving circuit 5 that is a second driving circuit, a DC power source 6 that is a second DC power source, a capacitor 7, and a diode 8, A shunt resistor 9. Further, the upper arm switching element 2, the lower arm switching element 3, and the shunt resistor 9 are connected in series in this order to form a series circuit 10.
 電力変換装置12は、第1の駆動回路と第2の駆動回路を制御する制御部(図示せず)を備える。この制御部は、例えばCPU(Central Processing Unit)で実現される。 The power converter 12 includes a control unit (not shown) that controls the first drive circuit and the second drive circuit. This control unit is realized by, for example, a CPU (Central Processing Unit).
 なお、図1においては直列回路10を1つのみ示しているが、直列回路は実際には複数設けられている。すなわち、単相交流を出力する場合には直列回路は2つ設けられ、三相交流を出力する場合には直列回路は3つ設けられている。上アーム側駆動回路4は、上アームスイッチング素子2のゲートに制御信号を出力して上アームスイッチング素子2をオンオフ駆動する。下アーム側駆動回路5は、下アームスイッチング素子3のゲートに制御信号を出力して上アームスイッチング素子2とは相補的に、下アームスイッチング素子3をオンオフ駆動する。直流電源6は、下アーム側駆動回路5の電源であり、直流電源6の正極はダイオード8のアノード及び下アーム側駆動回路5に接続されている。コンデンサ7は、上アーム側駆動回路4の電源であり、一端が上アーム側駆動回路4及びダイオード8のカソードに接続され、他端が上アーム側駆動回路4及び上アームスイッチング素子2と下アームスイッチング素子3との間に接続されている。下アームスイッチング素子3がオンすると直流電源6によって充電される。ダイオード8は、直流電源6及びコンデンサ7に直列接続されている。シャント抵抗9は、上アームスイッチング素子2及び下アームスイッチング素子3に直列接続されて出力電流を検出する。直列回路10は、一端が直流電源1の正極に接続され、他端が直流電源1の負極に接続されている。出力部11は、上アームスイッチング素子2と下アームスイッチング素子3との間に接続されている。 Although only one series circuit 10 is shown in FIG. 1, a plurality of series circuits are actually provided. That is, two series circuits are provided when outputting single-phase alternating current, and three series circuits are provided when outputting three-phase alternating current. The upper arm side drive circuit 4 outputs a control signal to the gate of the upper arm switching element 2 to drive the upper arm switching element 2 on and off. The lower arm side drive circuit 5 outputs a control signal to the gate of the lower arm switching element 3 to drive the lower arm switching element 3 on and off in a complementary manner to the upper arm switching element 2. The DC power supply 6 is a power supply for the lower arm drive circuit 5, and the positive electrode of the DC power supply 6 is connected to the anode of the diode 8 and the lower arm drive circuit 5. The capacitor 7 is a power source for the upper arm side drive circuit 4, one end is connected to the upper arm side drive circuit 4 and the cathode of the diode 8, and the other end is connected to the upper arm side drive circuit 4, the upper arm switching element 2, and the lower arm. It is connected between the switching element 3. When the lower arm switching element 3 is turned on, it is charged by the DC power source 6. The diode 8 is connected in series with the DC power supply 6 and the capacitor 7. The shunt resistor 9 is connected in series to the upper arm switching element 2 and the lower arm switching element 3 to detect an output current. The series circuit 10 has one end connected to the positive electrode of the DC power supply 1 and the other end connected to the negative electrode of the DC power supply 1. The output unit 11 is connected between the upper arm switching element 2 and the lower arm switching element 3.
 図1に示す電力変換装置12は、上アームスイッチング素子2及び下アームスイッチング素子3を交互にオンオフさせることで、直流電源1からの直流電圧を交流に変換して出力電流を発生させる。上アーム側駆動回路4は、搬送波と相電圧指令を比較したPWM(Pulse Width Modulation)信号によって上アームスイッチング素子2をオンオフさせる。下アーム側駆動回路5は、搬送波と相電圧指令を比較したPWM信号によって下アームスイッチング素子3をオンオフさせる。 1 converts the DC voltage from the DC power source 1 into AC and generates an output current by alternately turning on and off the upper arm switching element 2 and the lower arm switching element 3. The upper arm side drive circuit 4 turns on and off the upper arm switching element 2 by a PWM (Pulse Width Modulation) signal comparing the carrier wave and the phase voltage command. The lower arm side drive circuit 5 turns on and off the lower arm switching element 3 by a PWM signal that compares the carrier wave and the phase voltage command.
 上アームスイッチング素子2のオン時にはコンデンサ7の電荷はゲート電源として消費されて、コンデンサ7の電圧が降下する。また、下アームスイッチング素子3のオン時にはコンデンサ7は充電されてコンデンサ7の電圧が上昇する。上アームスイッチング素子2及び下アームスイッチング素子3は相補的に、すなわち交互にオンオフを繰り返し、出力周波数1周期毎に同じ電圧変動を繰り返す。なお、出力停止後に出力再開する場合、すなわち電力変換装置12の起動時には、コンデンサ7の充電を行う。 When the upper arm switching element 2 is turned on, the electric charge of the capacitor 7 is consumed as a gate power source, and the voltage of the capacitor 7 drops. Further, when the lower arm switching element 3 is turned on, the capacitor 7 is charged and the voltage of the capacitor 7 rises. The upper arm switching element 2 and the lower arm switching element 3 are repeatedly turned on and off in a complementary manner, that is, alternately, and the same voltage fluctuation is repeated every one output frequency cycle. When the output is restarted after the output is stopped, that is, when the power conversion device 12 is started, the capacitor 7 is charged.
 図2は、図1に示す電力変換装置12の充電時における上アームスイッチング素子2及び下アームスイッチング素子3のオンオフパターンを示す図である。 FIG. 2 is a diagram showing an on / off pattern of the upper arm switching element 2 and the lower arm switching element 3 when the power conversion device 12 shown in FIG. 1 is charged.
 なお、図2においては、上アームスイッチング素子2及び下アームスイッチング素子3のすべてが一斉にオンしているが、本発明はこれに限定されるものではなく、上アームスイッチング素子2及び下アームスイッチング素子3のオンするタイミングを相毎にずらしてもよい。ただし、図2に示すように、各相の上アームスイッチング素子2のオンするタイミングを一致させ、各相の下アームスイッチング素子3のオンするタイミングを一致させた方が、起動時間を短くすることができるため好ましい。 In FIG. 2, all of the upper arm switching element 2 and the lower arm switching element 3 are turned on all at once. However, the present invention is not limited to this, and the upper arm switching element 2 and the lower arm switching element are switched on. The timing for turning on the element 3 may be shifted for each phase. However, as shown in FIG. 2, it is possible to shorten the start-up time by matching the timing of turning on the upper arm switching element 2 of each phase and matching the timing of turning on the lower arm switching element 3 of each phase. Is preferable.
 図3は、図1に示す電力変換装置12におけるコンデンサ7の充電時の電流経路を示す図である。充電時には、図2に示すように、まず、上アームスイッチング素子2が放電完了時間であるT1時間だけオンしてコンデンサ7の電圧を0Vに近づけるようにコンデンサ7を放電させる。その後、下アームスイッチング素子3が充電完了時間であるT2時間だけオンしてコンデンサ7を充電する。ただし、コンデンサ7の電圧が放電されている場合には、上アームスイッチング素子2をT1時間だけオンする必要はない。 FIG. 3 is a diagram showing a current path when the capacitor 7 is charged in the power conversion device 12 shown in FIG. At the time of charging, as shown in FIG. 2, first, the upper arm switching element 2 is turned on for a time T1 that is a discharge completion time, and the capacitor 7 is discharged so that the voltage of the capacitor 7 approaches 0V. Thereafter, the lower arm switching element 3 is turned on for a time T2 that is a charging completion time to charge the capacitor 7. However, when the voltage of the capacitor 7 is discharged, it is not necessary to turn on the upper arm switching element 2 for T1 time.
 ここで、コンデンサ7の状態の一例である寿命の2つの推定方法について説明する。コンデンサ7の寿命の第1の推定方法においては、まず、充電時のコンデンサ7に流れる電流が下記の式(1)により取得される。 Here, two methods for estimating the lifetime, which is an example of the state of the capacitor 7, will be described. In the first estimation method of the lifetime of the capacitor 7, first, the current flowing through the capacitor 7 during charging is obtained by the following equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 上記の式(1)において、電流iはシャント抵抗9に流れる電流の電流値であり、電圧Vrはシャント抵抗9の両端に印加される電圧値であり、抵抗Rはシャント抵抗9の抵抗値である。上記の式(1)によって得られた電流を積分することでコンデンサ7の電荷Qを取得する。 In the above equation (1), the current i is the current value of the current flowing through the shunt resistor 9, the voltage Vr is the voltage value applied across the shunt resistor 9, and the resistor R is the resistance value of the shunt resistor 9. is there. The electric charge Q of the capacitor 7 is obtained by integrating the current obtained by the above equation (1).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 上記の式(2)において、製品出荷時の電荷Qは出荷時電荷Q1として記憶される。コンデンサ7が劣化すると、充電時の電流と時間が減少してコンデンサ7の電荷Qが減少するため、劣化後の充電時に蓄積される電荷Q2は出荷時電荷Q1よりも小さくなる。これを寿命係数Kを用いて表すと、下記の式(3)の通りである。ただし、K<1である。 In the above equation (2), the charge Q at the time of product shipment is stored as the charge Q1 at the time of shipment. When the capacitor 7 deteriorates, the current and time at the time of charging decrease and the charge Q of the capacitor 7 decreases, so that the charge Q2 accumulated at the time of charging after the deterioration becomes smaller than the shipping charge Q1. When this is expressed using the life coefficient K, it is as the following formula (3). However, K <1.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 このように、寿命係数Kによって寿命を推定することが可能である。 Thus, it is possible to estimate the life by the life coefficient K.
 次に、コンデンサ7の寿命の第2の推定方法においては、まず、充電時のコンデンサ7の両端にかかる電圧Vcが測定される。電圧Vcは下記の式(4),(5)により表される。 Next, in the second method for estimating the lifetime of the capacitor 7, first, the voltage Vc applied across the capacitor 7 during charging is measured. The voltage Vc is expressed by the following equations (4) and (5).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 ここで、上記の式(4),(5)において、電圧Vcはコンデンサ7の電圧であり、電圧Vmは直流電源6の電圧であり、容量Cはコンデンサ7の容量であり、抵抗Rはシャント抵抗9の抵抗値であり、電圧ΔVは、ダイオード8の順方向電圧と下アームスイッチング素子3のオン電圧との合計電圧値であり、電流iは、図3の点線で示される電流経路の電流値である。上記の式(4)を式(5)に代入し、下アームスイッチング素子3をオンするT2時間の開始からt秒後の理論電流値である電流i(t)は下記の式(6)により表される。 Here, in the above formulas (4) and (5), the voltage Vc is the voltage of the capacitor 7, the voltage Vm is the voltage of the DC power supply 6, the capacitance C is the capacitance of the capacitor 7, and the resistor R is a shunt. The resistance value of the resistor 9, the voltage ΔV is the total voltage value of the forward voltage of the diode 8 and the ON voltage of the lower arm switching element 3, and the current i is the current in the current path indicated by the dotted line in FIG. Value. Substituting the above equation (4) into equation (5), the current i (t), which is the theoretical current value t seconds after the start of the time T2 when the lower arm switching element 3 is turned on, is given by the following equation (6): expressed.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 この理論電流値である電流i(t)に対して、製品出荷時の電流を出荷時電流i1(t)として記憶する。コンデンサ7が劣化すると、充電時の電流と時間が減少して、劣化後の充電時に流れる電流i2(t)は出荷時電流i1(t)よりも小さくなる。これを寿命係数K<1を用いて表すと、下記の式(7)の通りである。 For the current i (t) that is the theoretical current value, the current at the time of product shipment is stored as the current i1 (t) at the time of shipment. When the capacitor 7 deteriorates, the current and time during charging decrease, and the current i2 (t) that flows during charging after deterioration becomes smaller than the current i1 (t) at the time of shipment. When this is expressed using a life coefficient K <1, the following equation (7) is obtained.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 このように、寿命係数Kによって寿命を推定することが可能である。本実施の形態において、シャント抵抗9に流れる電流からコンデンサの寿命の推定に代表されるコンデンサの状態の検出は、制御部が行う。 Thus, it is possible to estimate the life by the life coefficient K. In the present embodiment, the controller detects the state of the capacitor represented by the estimation of the lifetime of the capacitor from the current flowing through the shunt resistor 9.
 従来は、オペアンプ及び絶縁電源を要する電圧監視回路を用いてブートストラップ回路内のコンデンサの寿命を検出しており、このような電圧監視回路を新たに各相に設ける必要があるため、電力変換装置が大型化し、電力変換装置の作製コストが増大していた。本実施の形態においては、シャント抵抗9に流れる電流の電流値、シャント抵抗9の両端に印加される電圧値及びシャント抵抗9の抵抗値を測定し、又はコンデンサ7に流れる電流と供給元である直流電源6の電圧とを測定することによってブートストラップ回路内のコンデンサ7の寿命を検出することができる。そのため、従来のような、オペアンプ及び絶縁電源を要する電圧監視回路が不要であるため、電力変換装置を小型化させ、作製コストを抑制することができる。 Conventionally, the life of a capacitor in a bootstrap circuit is detected using a voltage monitoring circuit that requires an operational amplifier and an isolated power supply, and such a voltage monitoring circuit must be newly provided in each phase. As a result, the manufacturing cost of the power conversion device has increased. In the present embodiment, the current value of the current flowing through the shunt resistor 9, the voltage value applied across the shunt resistor 9, and the resistance value of the shunt resistor 9 are measured, or the current flowing through the capacitor 7 and the supply source. By measuring the voltage of the DC power supply 6, the lifetime of the capacitor 7 in the bootstrap circuit can be detected. Therefore, a conventional voltage monitoring circuit that requires an operational amplifier and an insulated power supply is not required, so that the power conversion device can be reduced in size and manufacturing cost can be reduced.
 本実施の形態によれば、電圧監視回路を設けることなく充電時にブートストラップ回路内のコンデンサの状態、一例として寿命を検出することができる。なお、コンデンサ7の容量が許容値以下の場合、一例として出荷時の容量値の80%以下である場合に警報を出力する構成とすると、容量の劣化を検出できずに運転した場合に上アームスイッチング素子2の損失が増大して発熱し、故障してしまうことを防止することができる。 According to the present embodiment, the state of the capacitor in the bootstrap circuit, for example, the lifetime can be detected during charging without providing a voltage monitoring circuit. In addition, when the capacity of the capacitor 7 is less than the allowable value, for example, when the configuration is such that an alarm is output when the capacity is 80% or less of the capacity value at the time of shipment, the upper arm is not operated when the capacity is not detected. It is possible to prevent the loss of the switching element 2 from increasing and generating heat and failure.
実施の形態2.
 図4は、本発明の実施の形態2にかかる電力変換装置の構成を示す回路図である。図4に示す電力変換装置12aは、シャント抵抗9に代えて、シャント抵抗20を備える点が図1に示す電力変換装置12と異なる。シャント抵抗20は、インバータ回路である直列回路21,21a,21bの下側の接続点と直流電源1との間に接続されており、通常運転中の出力電流をシャント抵抗20に流れる母線電流から求めることが可能である。直列回路21は、U相の上アームスイッチング素子2及びU相の下アームスイッチング素子3を含み、上アームスイッチング素子2と下アームスイッチング素子3との間が出力部11に接続されている。直列回路21aは、V相の上アームスイッチング素子2a及びV相の下アームスイッチング素子3aを含み、上アームスイッチング素子2aと下アームスイッチング素子3aとの間が出力部11aに接続されている。直列回路21bは、W相の上アームスイッチング素子2b及びW相の下アームスイッチング素子3bを含み、上アームスイッチング素子2bと下アームスイッチング素子3bとの間が出力部11bに接続されている。なお、シャント抵抗20に印加される電圧は電圧Vrである。
Embodiment 2. FIG.
FIG. 4 is a circuit diagram showing a configuration of the power conversion apparatus according to the second embodiment of the present invention. The power converter 12a shown in FIG. 4 differs from the power converter 12 shown in FIG. 1 in that a shunt resistor 20 is provided instead of the shunt resistor 9. The shunt resistor 20 is connected between the lower connection point of the series circuits 21, 21 a, 21 b that are inverter circuits and the DC power supply 1, and the output current during normal operation is derived from the bus current flowing through the shunt resistor 20. It is possible to ask. The series circuit 21 includes a U-phase upper arm switching element 2 and a U-phase lower arm switching element 3, and the upper arm switching element 2 and the lower arm switching element 3 are connected to the output unit 11. The series circuit 21a includes a V-phase upper arm switching element 2a and a V-phase lower arm switching element 3a, and the upper arm switching element 2a and the lower arm switching element 3a are connected to the output unit 11a. The series circuit 21b includes a W-phase upper arm switching element 2b and a W-phase lower arm switching element 3b, and the upper arm switching element 2b and the lower arm switching element 3b are connected to the output unit 11b. Note that the voltage applied to the shunt resistor 20 is the voltage Vr.
 図5は、図4に示す電力変換装置12aの充電時における上アームスイッチング素子2,2a,2b及び下アームスイッチング素子3,3a,3bのオンオフパターンを示す図である。図4に示す電力変換装置12aでは、充電時に下アームスイッチング素子3,3a,3bが同時にオンすると、充電電流が同時に流れるため、寿命の検出が困難である。そのため、図5に示すようにU相充電期間、V相充電期間及びW相充電期間を各々設けて、各相の下アームスイッチング素子3,3a,3bがオンするタイミングをずらすことで、各相の充電電流を順にシャント抵抗20に流すことができる。 FIG. 5 is a diagram showing an on / off pattern of the upper arm switching elements 2, 2a, 2b and the lower arm switching elements 3, 3a, 3b when the power conversion device 12a shown in FIG. 4 is charged. In the power conversion device 12a shown in FIG. 4, when the lower arm switching elements 3, 3a, 3b are simultaneously turned on during charging, the charging current flows at the same time, so that it is difficult to detect the life. Therefore, as shown in FIG. 5, by providing a U-phase charging period, a V-phase charging period, and a W-phase charging period, and by shifting the timing at which the lower arm switching elements 3, 3a, 3b of each phase are turned on, The charging current can be passed through the shunt resistor 20 in order.
 なお、図5において、上アームスイッチング素子2,2a,2bが一斉にオンしているが、本発明はこれに限定されるものではなく、上アームスイッチング素子2,2a,2bのオンするタイミングもずらしてもよい。ただし、図5に示すように、上アームスイッチング素子2,2a,2bのオンするタイミングを一致させた方が、起動時間を短くすることができるため好ましい。 In FIG. 5, the upper arm switching elements 2, 2a, 2b are turned on all at once. However, the present invention is not limited to this, and the timing at which the upper arm switching elements 2, 2a, 2b are turned on is also included. It may be shifted. However, as shown in FIG. 5, it is preferable to match the timings at which the upper arm switching elements 2, 2a, 2b are turned on because the startup time can be shortened.
 なお、本実施の形態においては、実施の形態1と同様に、各相毎に流れた電流により実施の形態1の式(3),(7)を用いて寿命の検出を行う。 In the present embodiment, as in the first embodiment, the lifetime is detected by using the equations (3) and (7) in the first embodiment based on the current flowing for each phase.
 本実施の形態によれば、電圧監視回路を設けることなく充電時にブートストラップ回路内のコンデンサの状態、一例として寿命を検出することができる。なお、コンデンサ7の容量が許容値以下の場合、一例として出荷時の容量値の80%以下である場合に警報を出力する構成とすると、容量の劣化を検出できずに運転した場合に上アームスイッチング素子2の損失が増大して発熱し、故障してしまうことを防止することができる。 According to the present embodiment, the state of the capacitor in the bootstrap circuit, for example, the lifetime can be detected during charging without providing a voltage monitoring circuit. In addition, when the capacity of the capacitor 7 is less than the allowable value, for example, when the configuration is such that an alarm is output when the capacity is 80% or less of the capacity value at the time of shipment, the upper arm is not operated when the capacity is not detected. It is possible to prevent the loss of the switching element 2 from increasing and generating heat and failure.
実施の形態3.
 図6は、本発明の実施の形態3にかかる電力変換装置の構成を示す回路図である。図6に示す電力変換装置12bは、直流電源6の下アーム側駆動回路5への分岐点とダイオード8との間に電流制限抵抗30を備え、シャント抵抗9を備えていない点が図1に示す電力変換装置12と異なる。
Embodiment 3 FIG.
FIG. 6 is a circuit diagram showing a configuration of the power conversion device according to the third embodiment of the present invention. The power converter 12b shown in FIG. 6 includes a current limiting resistor 30 between the branch point to the lower arm side drive circuit 5 of the DC power source 6 and the diode 8, and the shunt resistor 9 is not provided in FIG. Different from the power converter 12 shown.
 図6に示す電力変換装置12bにおいては、通常運転中の出力電流はインバータ出力からモータへの出力に絶縁した電流検出器を用いることで検出される。このとき、ブートストラップ回路の充電電流は電流検出器には流れないため、電流制限抵抗30の両端の電圧Vr=Vs-Vmを測定することによって求められる。ここで、電圧Vsは、直流電源6の負極から電流制限抵抗30のダイオード8のアノード側までの電圧値であり、電圧Vmは、直流電源6の電源電圧値である。電圧Vs,Vmは、コモンが共通であるため、AD(Analog to Digital)変換器で同時に測定することが可能である。 In the power converter 12b shown in FIG. 6, the output current during normal operation is detected by using a current detector insulated from the inverter output to the motor output. At this time, since the charging current of the bootstrap circuit does not flow to the current detector, it is obtained by measuring the voltage Vr = Vs−Vm across the current limiting resistor 30. Here, the voltage Vs is a voltage value from the negative electrode of the DC power supply 6 to the anode side of the diode 8 of the current limiting resistor 30, and the voltage Vm is a power supply voltage value of the DC power supply 6. Since the voltages Vs and Vm have a common common, they can be simultaneously measured by an AD (Analog to Digital) converter.
 なお、本実施の形態においては、実施の形態1と同様に、各相毎に流れた電流により実施の形態1の式(3),(7)を用いてコンデンサの状態の一例である寿命の検出を行う。 In the present embodiment, as in the first embodiment, the life of the capacitor, which is an example of the state of the capacitor, using the equations (3) and (7) in the first embodiment by the current flowing in each phase. Perform detection.
 本実施の形態によれば、電圧監視回路及びシャント抵抗を設けることなく充電時にブートストラップ回路内のコンデンサの状態、一例として寿命を検出することができる。なお、コンデンサ7の容量が許容値以下の場合、一例として出荷時の容量値の80%以下である場合に警報を出力する構成とすると、容量の劣化を検出できずに運転した場合に上アームスイッチング素子2の損失が増大して発熱し、故障してしまうことを防止することができる。 According to the present embodiment, the state of the capacitor in the bootstrap circuit, for example, the lifetime can be detected during charging without providing a voltage monitoring circuit and a shunt resistor. In addition, when the capacity of the capacitor 7 is less than the allowable value, for example, when the configuration is such that an alarm is output when the capacity is 80% or less of the capacity value at the time of shipment, the upper arm is not operated when the capacity is not detected. It is possible to prevent the loss of the switching element 2 from increasing and generating heat and failure.
 なお、実施の形態1から実施の形態3においては、コンデンサ7の容量が許容値以下の場合、一例として出荷時の容量値の80%以下である場合に警報を出力する構成を例示したが、その他の構成によってユーザに警告を発してもよい。一例として、警告を発する信号をコントローラに出力して起動を停止する構成としてもよいし、電力変換装置に表示部を設けてこの表示部に警告メッセージを表示してもよい。いずれの構成であっても、ユーザはコンデンサ7を交換すべきであることを認識することができ、コンデンサ7の劣化に起因する電力変換装置の故障の発生を防止することができる。 In the first to third embodiments, when the capacity of the capacitor 7 is equal to or less than the allowable value, as an example, a configuration that outputs an alarm when the capacity is 80% or less of the capacity value at the time of shipment is exemplified. Other configurations may alert the user. As an example, it may be configured to output a warning signal to the controller and stop the activation, or a power converter may be provided with a display unit and a warning message displayed on the display unit. In any configuration, the user can recognize that the capacitor 7 should be replaced, and can prevent a failure of the power conversion apparatus due to the deterioration of the capacitor 7.
 なお、実施の形態1から実施の形態3において、コンデンサの状態の検出は、電力変換装置の制御部を実現する図示しないCPU(Central Processing Unit)が行う。 In the first to third embodiments, the capacitor state is detected by a CPU (Central Processing Unit) (not shown) that realizes a control unit of the power conversion device.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
 1,6 直流電源、2,2a,2b 上アームスイッチング素子、3,3a,3b 下アームスイッチング素子、4 上アーム側駆動回路、5 下アーム側駆動回路、7 コンデンサ、8 ダイオード、9,20 シャント抵抗、10,21,21a,21b 直列回路、11,11a,11b 出力部、12,12a,12b 電力変換装置、30 電流制限抵抗。 1,6 DC power supply, 2, 2a, 2b upper arm switching element, 3, 3a, 3b lower arm switching element, 4 upper arm side drive circuit, 5 lower arm side drive circuit, 7 capacitor, 8 diode, 9, 20 shunt Resistance, 10, 21, 21a, 21b series circuit, 11, 11a, 11b output unit, 12, 12a, 12b power converter, 30 current limiting resistor.

Claims (4)

  1.  一端が第1の直流電源の正極に接続され、他端が前記第1の直流電源の負極に接続され、第1のスイッチング素子と、第2のスイッチング素子と、シャント抵抗とがこの順に直列接続された直列回路と、
     前記第1のスイッチング素子と前記第2のスイッチング素子との間に接続された出力部と、
     前記第1のスイッチング素子をオンオフ駆動する第1の駆動回路と、
     前記第1のスイッチング素子とは相補的に、前記第2のスイッチング素子をオンオフ駆動する第2の駆動回路と、
     前記第2の駆動回路の電源である第2の直流電源と、
     前記第2のスイッチング素子がオンすると前記第2の直流電源によって充電される、前記第1の駆動回路の電源であるコンデンサと、
     前記シャント抵抗に流れる電流を用いて前記コンデンサの状態の検出を行う制御部とを備えた電力変換装置。
    One end is connected to the positive electrode of the first DC power supply, the other end is connected to the negative electrode of the first DC power supply, and the first switching element, the second switching element, and the shunt resistor are connected in series in this order. A series circuit,
    An output connected between the first switching element and the second switching element;
    A first driving circuit for driving on and off the first switching element;
    Complementary to the first switching element, a second drive circuit for driving the second switching element on and off; and
    A second DC power source that is a power source of the second drive circuit;
    A capacitor that is a power source of the first drive circuit and is charged by the second DC power source when the second switching element is turned on;
    And a control unit that detects a state of the capacitor using a current flowing through the shunt resistor.
  2.  各々の一端が第1の直流電源の正極に接続され、第1のスイッチング素子と、第2のスイッチング素子とがこの順に直列接続された複数の直列回路と、
     一端が前記複数の直列回路の各々の他端に接続され、他端が前記第1の直流電源の負極に接続されたシャント抵抗と、
     前記第1のスイッチング素子と前記第2のスイッチング素子との間に接続された出力部と、
     前記第1のスイッチング素子をオンオフ駆動する第1の駆動回路と、
     前記第1のスイッチング素子とは相補的に、前記第2のスイッチング素子をオンオフ駆動する第2の駆動回路と、
     前記第2の駆動回路の電源である第2の直流電源と、
     前記第2のスイッチング素子がオンすると前記第2の直流電源によって充電される、前記第1の駆動回路の電源であるコンデンサと、
     前記シャント抵抗に流れる電流を用いて前記コンデンサの状態の検出を行う制御部とを備えた電力変換装置。
    A plurality of series circuits each having one end connected to the positive electrode of the first DC power supply, and a first switching element and a second switching element connected in series in this order;
    A shunt resistor having one end connected to the other end of each of the plurality of series circuits and the other end connected to the negative electrode of the first DC power supply;
    An output connected between the first switching element and the second switching element;
    A first driving circuit for driving on and off the first switching element;
    Complementary to the first switching element, a second drive circuit for driving the second switching element on and off; and
    A second DC power source that is a power source of the second drive circuit;
    A capacitor that is a power source of the first drive circuit and is charged by the second DC power source when the second switching element is turned on;
    And a control unit that detects a state of the capacitor using a current flowing through the shunt resistor.
  3.  一端が第1の直流電源の正極に接続され、他端が前記第1の直流電源の負極に接続され、第1のスイッチング素子と、第2のスイッチング素子と、シャント抵抗とがこの順に直列接続された直列回路と、
     前記第1のスイッチング素子と前記第2のスイッチング素子との間に接続された出力部と、
     前記第1のスイッチング素子をオンオフ駆動する第1の駆動回路と、
     前記第1のスイッチング素子とは相補的に、前記第2のスイッチング素子をオンオフ駆動する第2の駆動回路と、
     前記第2の駆動回路の電源である第2の直流電源と、
     前記第2のスイッチング素子がオンすると前記第2の直流電源によって充電される、前記第1の駆動回路の電源であるコンデンサと、
     前記第2のスイッチング素子のオン時の充電電流を制限する電流制限抵抗と、
     前記電流制限抵抗に流れる電流を用いて前記コンデンサの状態の検出を行う制御部とを備えた電力変換装置。
    One end is connected to the positive electrode of the first DC power supply, the other end is connected to the negative electrode of the first DC power supply, and the first switching element, the second switching element, and the shunt resistor are connected in series in this order. A series circuit,
    An output connected between the first switching element and the second switching element;
    A first driving circuit for driving on and off the first switching element;
    Complementary to the first switching element, a second drive circuit for driving the second switching element on and off; and
    A second DC power source that is a power source of the second drive circuit;
    A capacitor that is a power source of the first drive circuit and is charged by the second DC power source when the second switching element is turned on;
    A current limiting resistor for limiting a charging current when the second switching element is on;
    And a control unit that detects a state of the capacitor using a current flowing through the current limiting resistor.
  4.  前記コンデンサの状態の検出は、起動時に、前記第1のスイッチング素子を放電完了時間だけオンして前記コンデンサを放電させ、前記第2のスイッチング素子を充電完了時間だけオンして前記コンデンサを充電させて行われることを特徴とする請求項1から請求項3のいずれか一項に記載の電力変換装置。 In the detection of the state of the capacitor, at startup, the first switching element is turned on for a discharge completion time to discharge the capacitor, and the second switching element is turned on for a charge completion time to charge the capacitor. The power conversion device according to any one of claims 1 to 3, wherein the power conversion device is performed.
PCT/JP2016/062852 2016-04-22 2016-04-22 Power conversion device WO2017183209A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/062852 WO2017183209A1 (en) 2016-04-22 2016-04-22 Power conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/062852 WO2017183209A1 (en) 2016-04-22 2016-04-22 Power conversion device

Publications (1)

Publication Number Publication Date
WO2017183209A1 true WO2017183209A1 (en) 2017-10-26

Family

ID=60116738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/062852 WO2017183209A1 (en) 2016-04-22 2016-04-22 Power conversion device

Country Status (1)

Country Link
WO (1) WO2017183209A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03150075A (en) * 1989-11-07 1991-06-26 Mitsubishi Electric Corp Driving circuit for inverter
WO2015129043A1 (en) * 2014-02-28 2015-09-03 三菱電機株式会社 Wire electric discharge machining device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03150075A (en) * 1989-11-07 1991-06-26 Mitsubishi Electric Corp Driving circuit for inverter
WO2015129043A1 (en) * 2014-02-28 2015-09-03 三菱電機株式会社 Wire electric discharge machining device

Similar Documents

Publication Publication Date Title
JP4151651B2 (en) Inverter device
JP6141546B1 (en) Power converter
EP2682769B1 (en) Apparatus for diagnosing DC link capacitor of inverter
JP5728914B2 (en) Inverter device
JP6201296B2 (en) Control device for power converter
US20090072839A1 (en) Apparatus and method to detect failure of smoothing electrolytic capacitor
TWI467203B (en) Method for diagnosing life of power storage device
US9698712B2 (en) Inverter apparatus
US9608534B2 (en) Power conversion system, and voltage detection device thereof
JP2010252536A (en) Inverter device and fault diagnosis method for the same
JP2014147189A (en) Drive circuit of power converter
JP2010015831A (en) Abnormality judgment method and abnormality judgment device of charge and discharge system
JP5223367B2 (en) Drive device
CN105785136B (en) Direct current link capacitance measurement for electric vehicle drive train
JP6869343B2 (en) DC / DC converter controller
JP5673114B2 (en) Inverter device and electric motor drive system
JP6544141B2 (en) Motor drive
WO2017183209A1 (en) Power conversion device
JP2009115634A (en) Power supply system and current measurement method of power supply system
JP5282064B2 (en) Motor drive circuit and motor control device with failure detection function for inrush current suppression circuit
JP2018098836A (en) Electric circuit and control device therefor
JP6858834B1 (en) Power converter control device
JP5873287B2 (en) Inverter device
JP6083391B2 (en) Electric vehicle power conversion device
JP5712773B2 (en) Electric motor drive

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16899481

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16899481

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP