WO2017181916A1 - Pon网络设备双向收发光功率自动校准方法 - Google Patents

Pon网络设备双向收发光功率自动校准方法 Download PDF

Info

Publication number
WO2017181916A1
WO2017181916A1 PCT/CN2017/080700 CN2017080700W WO2017181916A1 WO 2017181916 A1 WO2017181916 A1 WO 2017181916A1 CN 2017080700 W CN2017080700 W CN 2017080700W WO 2017181916 A1 WO2017181916 A1 WO 2017181916A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
calibration
bidirectional
pon network
optical power
Prior art date
Application number
PCT/CN2017/080700
Other languages
English (en)
French (fr)
Inventor
张海峰
蔡富东
李全用
刘在平
张晓宇
王景
吕昌峰
崔利
Original Assignee
山东信通电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201610250407.9A external-priority patent/CN105790831B/zh
Priority claimed from CN201620338992.3U external-priority patent/CN205596118U/zh
Priority claimed from CN201610250363.XA external-priority patent/CN105933058B/zh
Application filed by 山东信通电子股份有限公司 filed Critical 山东信通电子股份有限公司
Publication of WO2017181916A1 publication Critical patent/WO2017181916A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/10Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems

Definitions

  • the invention belongs to the field of bidirectional receiving and illuminating power calibration of a single-fiber bidirectional optical network device, and particularly relates to a method for automatically calibrating bidirectional illuminating power of a PON network device.
  • PON passive optical network access network technology
  • ODN optical distribution network
  • the uplink signal uses a wavelength of 1310 nm, and the downlink signal uses a wavelength of 1490 nm and 1550 nm, which are respectively transmitted along the same optical fiber in opposite directions.
  • the 1310nm uplink signal remains silent until it is rotated by the 1490nm downlink signal and a transmission window is allocated.
  • the uplink signal uses Time Division Multiple Access (TDMA) to organize the uplink information of multiple Optical Network Units (ONUs) into a time division multiplexing ( The TDM) information stream is transmitted to the Optical Line Terminal (OLT).
  • TDMA Time Division Multiple Access
  • the TDM information stream is transmitted to the Optical Line Terminal (OLT).
  • OAM--Operation Administration and Maintenance According to the actual needs of the network operation of the operator, the management of the network is generally divided into three categories: Operation, Administration, and Maintenance, or OAM.
  • the operation mainly completes the analysis, prediction, planning and configuration of daily network and business; the maintenance is mainly the daily operation activities of testing and fault management of the network and its services.
  • Optical network operation equipment optical transmission and receiving optical power is an important monitoring indicator of OAM; PON network equipment (OLT, ONU) is huge, and accurate calibration is costly and costly for these devices.
  • the network equipment can only be roughly calibrated with an error of about ⁇ 3 dB.
  • the PON network device in the prior art has a two-way illuminating power calibration operation, and is calibrated by comparison with a standard optical power meter.
  • the standard light source is first connected to the standard optical power meter A through an optical attenuator; at the test wavelength, the optical attenuator is adjusted so that the output power of the fiber reaches the calibration power value, and the test value of the standard optical power meter is recorded at this time.
  • the standard light source is connected to the optical network device B to be calibrated through the optical attenuator; the computer is connected to the optical network device to be calibrated, and the reading value of the standard optical power meter just recorded is sent to the optical network device B to be calibrated to receive the optical power. calibration.
  • the optical network device B to be calibrated is connected to the standard optical power meter A; at the test wavelength, the PON network device is adjusted to emit light power state, the recorded standard optical power meter reading value is recorded, and the standard optical power meter reading value is sent. To the optical network device B to be calibrated, the emitted optical power calibration is performed.
  • the above calibration method is based on the premise that the optical power output from the light source is unchanged.
  • the standard optical power meter read out at the previous calibration is used as a reference for calibration; therefore, the reference light source in the prior art is not actually the same meaning. light source.
  • the object of the present invention is to provide an automatic calibration method for bidirectional receiving and illuminating power of a PON network device, which realizes point-to-point bidirectional real-time calibration of the same source in a true sense, greatly improving calibration accuracy and reducing labor. Intervention, effectively improve productivity, reduce costs, and greatly improve equipment performance and product competitiveness.
  • the PON network device bidirectional receiving luminous power automatic calibration method comprises the following steps:
  • the PON network device bidirectional receiving luminous power automatic calibration device performs self-calibration
  • the external PON network device to be calibrated is connected to the PON network device for bidirectional receiving and illuminating power automatic calibration device, and the illuminating power of the PON network device to be calibrated is calibrated;
  • the PON network device bidirectional receiving and radiant power automatic calibration device comprises at least one set of bidirectional automatic calibration unit and a central control unit, wherein the bidirectional automatic calibration unit is connected to the central control unit, and the bidirectional automatic calibration unit comprises a light adjustment module connected in sequence,
  • the real-time online output optical sampling module and the real-time online input optical sampling module can be connected to the optical calibration interface in real time.
  • the optical calibration interface is used to connect the external PON network device to be calibrated, and the bidirectional automatic calibration unit realizes synchronous real-time monitoring of the output and input optical power of the same light source through the real-time online output optical sampling module and the real-time online input optical sampling module.
  • the same PON network equipment to be calibrated can be bidirectionally calibrated at the same time without mutual interference, which greatly improves the calibration efficiency.
  • the second step simultaneously performs synchronous calibration on the bidirectional received light power of the calibrated PON network device, and mainly includes the following two aspects:
  • A. PON network equipment receiving optical power calibration external PON network equipment to be connected to the optical calibration interface, and communicate with the central control unit, real-time online output optical sampling module to monitor the received optical power of the PON network equipment to be calibrated in real time, in real time
  • the online output optical sampling module collects the measurement result as a measurement reference, and calibrates the received optical power of the external PON network device to be calibrated;
  • PON network equipment emission optical power calibration external PON network equipment to be connected to the optical calibration interface, and communicate with the central control unit, real-time online input optical sampling module to monitor the transmitted optical power of the PON network equipment to be calibrated in real time, in real time
  • the online input optical sampling module collects the measurement result as a measurement reference, and calibrates the transmitted optical power of the external PON network device to be calibrated.
  • the external PON network equipment to be calibrated only needs to be connected to the optical calibration interface to complete the PON network device receiving illumination power calibration; the real-time online output optical sampling module and the real-time online input optical sampling module are introduced in the scheme to realize the same source point-to-point Two-way real-time calibration reduces external influence factors.
  • the optical calibration interface fiber output and optical fiber power measurement are accurate and stable, which greatly improves the accuracy of bidirectional receiving power calibration of PON network equipment.
  • the input and output optical power of the PON network device to be calibrated can be simultaneously calibrated without mutual interference, which greatly improves the calibration efficiency;
  • the calibration interface is connected to the external optical service interface of the PON network device to be calibrated once, and the multi-wavelength, multi-power point of the PON network device to be calibrated, and the automatic calibration of the bidirectional received illuminating power can be completed.
  • each module and the PON network equipment Under the control of the central control unit program, adjust each module and the PON network equipment to be calibrated, realize multi-wavelength, multi-power point, automatic calibration and automatic inspection of the PON network equipment, and automatically determine the inspection result and manage the log archive. , automatic information statistical analysis, improve quality management and quality control capabilities.
  • the optical network device can accurately calibrate the bidirectional receiving power, so that the transmitting power of the optical network optical node to the optical node can be accurately adjusted to better meet the operation of the optical network.
  • the transmitting and receiving power of the optical network operating equipment is an important monitoring indicator of OAM.
  • these optical network equipments can only be roughly calibrated and have large errors, which makes the transmitting and receiving optical power of the optical equipment monitored by OAM only A reference for judging the quality of fiber-optic network links.
  • the invention realizes the accurate calibration of the bidirectional receiving and illuminating power of the PON network device, and the running PON network device also becomes the optical metering device, so that the transmitting and receiving optical power of the optical device monitored by the OAM can become a criterion for judging the quality of the optical network link.
  • Standards and evidences have a positive and far-reaching significance for online quality assessment and monitoring of fiber-optic networks.
  • the real-time online output optical sampling module comprises an optical splitter I, a built-in optical power meter I, an optical splitter I input end connected to the light adjusting module, and an optical splitter I output end connected to the real-time online input optical sampling module
  • the other end of the optical splitter I output is connected to the built-in optical power meter I, and the built-in optical power meter I is connected to the central control unit to monitor the output optical power of the optical calibration interface in real time; the real-time online input optical sampling module including the optical splitter II.
  • Built-in optical power meter II, the output of the optical splitter II can be connected to the optical sampling module in real time.
  • the other end of the optical splitter II output is connected to the built-in optical power meter II, and the optical splitter II input is connected to the light.
  • the position of the real-time online output optical sampling module and the real-time online input optical sampling module can be interchanged in the bidirectional automatic calibration unit, that is, the optical adjustment module, the real-time online input optical sampling module and the real-time online transmission
  • the light sampling modules are connected in sequence.
  • the first step self-calibration includes input optical channel self-calibration and output optical channel self-calibration, wherein the output optical channel self-calibration process is: an external standard optical power meter is connected to the optical calibration interface, and communicates with the central control unit, the central control unit Adjusting the light source mode, wavelength, and optical output power of the light adjustment module under program control, so that the output optical power reaches a predetermined parameter, the external standard optical power meter and the built-in optical power meter I simultaneously measure the output optical power, and the central control unit reads the external standard.
  • the value of the optical power meter, and the value is transmitted to the built-in optical power meter I, and the built-in optical power I meter is calibrated based on the external standard optical power;
  • the input optical channel self-calibration process is: connecting two sets of bidirectional automatic calibration unit optical calibration interfaces, two sets of bidirectional automatic calibration units are all communicating with the central control unit, and two sets of bidirectional automatic calibration units are respectively measured by the other party's built-in optical power I. Benchmark, calibrating your own built-in optical power meter II;
  • the input optical channel is self-calibrated after the self-calibration is completed.
  • the central control unit adjusts the light source mode, wavelength, and optical output power of the light adjustment module under program control, so that the output optical power reaches a predetermined parameter, and the external standard optical power meter and the built-in optical power meter I At the same time, the output optical power of the light adjustment module is measured.
  • bidirectional automatic calibration unit A The two sets of bidirectional automatic calibration units used for self-calibration of the input optical channel are called bidirectional automatic calibration unit A and bidirectional automatic calibration unit B, respectively.
  • the specific process of input optical channel self-calibration is:
  • the central control unit adjusts the light source mode, wavelength, and optical output power of the bidirectional automatic calibration unit A under the program control so that the output optical power reaches a predetermined parameter; the central control unit reads the built-in optical power meter I value of the bidirectional automatic calibration unit A, and The value is transmitted to the built-in optical power meter II of the bidirectional automatic calibration unit B, and the optical power meter II built in the bidirectional automatic calibration unit A is used as a measurement standard, and the optical power meter II built in the bidirectional automatic calibration unit B is calibrated; similarly, the central control unit Under the program control, adjust the light source mode, wavelength, and optical output power of the bidirectional automatic calibration unit B so that the output optical power reaches a predetermined parameter, and the central control unit reads the built-in optical power meter I value of the bidirectional automatic calibration unit B, and the value is It is transmitted to the two-way automatic calibration unit A built-in optical power meter II, and the bidirectional automatic calibration unit B built-in optical power meter I is used as a measurement
  • the device self-calibration makes the built-in optical power meter I and the built-in optical power meter II a calibration standard source.
  • the built-in optical power meter I can accurately measure or reflect the optical power value emitted by the optical calibration interface; the built-in optical power meter II can accurately measure or reflect the optical power value received by the optical calibration interface, and on this basis, batch-transfer PON network equipment Optical power calibration, as follows:
  • A. PON network equipment receiving optical power calibration the external PON network equipment to be calibrated is connected to the optical calibration interface and communicates with the central control unit.
  • the central control unit adjusts the light source mode, wavelength, and optical output power of the optical adjustment module under program control.
  • the output optical power reaches a predetermined parameter, and the central control unit reads the value of the built-in optical power meter I, and transmits the value to the external PON network device to be calibrated, and calibrates the received optical power of the external PON network device to be calibrated;
  • the external PON network equipment to be calibrated is connected to the optical calibration interface, and communicates with the central control unit.
  • the central control unit adjusts the PON network equipment to be calibrated to the state of the emitted optical power under program control, and adjusts the Calibrating the transmission power of each service wavelength of the PON network device and its service power control interval, the built-in optical power meter II monitors the transmitted optical power of the PON network device to be calibrated in real time, and the central control unit reads the value of the built-in optical power meter II, and Passing the value to the external PON network device to be calibrated, and calibrating the transmitted optical power of the external PON network device to be calibrated;
  • the above method will realize the combination of various functional modules of the calibration and integrate the connection; and real-time sampling and calibration of the same light source by real-time online output optical sampling module and real-time online input optical sampling module in the calibration process; under the control of the central control unit Multi-source, multi-wavelength, multi-power point bi-directional light-emitting power is automatically calibrated; batch calibration is possible in one connection without any change.
  • the central control unit has a communication function that enables operation of the calibration device under the control of an external or remote computer program or under the control of interactive commands.
  • the real-time online output optical sampling module and the real-time online input optical sampling module may also share a bidirectional optical splitter, and the bidirectional optical splitter output ends are respectively connected to the built-in optical power meter I and the built-in optical power meter II, bidirectional light
  • One input of the splitter is connected to the optical calibration interface, the other input is connected to the optical adjustment module, and the built-in optical power meter I and the built-in optical power meter II are respectively connected to the central control unit.
  • the difference between the scheme and the foregoing scheme is that the real-time online output is possible.
  • the optical sampling module and the real-time online input optical sampling module share a bidirectional optical splitter.
  • the light adjustment module comprises a multi-wavelength stabilized light source, a wavelength switching control module and an optical attenuator connected in sequence, a multi-wavelength stable light source, a wavelength switching control module and an optical attenuator respectively connected to the control unit, and the multi-wavelength stable light source provides a wavelength required for calibration
  • the light, wavelength switching control module switches the light of the corresponding wavelength to the corresponding port under the control of the central control unit
  • the optical attenuator performs the light intensity attenuation adjustment under the control of the central control unit
  • the optical attenuator is an optical attenuator capable of automatically adjusting the gain. Under the control command of the central control unit, the gain conversion is automatically performed, and then the power intensity of the output optical signal is adjusted, thereby realizing automatic adjustment under different light sources, different wavelengths, and different power points.
  • the multi-wavelength stabilized light source comprises a single mode light source output or a multi-mode light source output, or both, corresponding to the two-way automatic calibration unit, which is a two-way automatic calibration unit suitable for single mode; or suitable for multi-mode Two-way multimode auto-calibration unit; or both.
  • the structure of the two-way automatic calibration unit is suitable for the bidirectional single-mode automatic calibration unit and the bidirectional multi-mode automatic calibration unit; that is, the basic structure is consistent, and the adaptive adjustment is made according to different single-mode light sources, multi-mode light sources, and related interfaces. .
  • the wavelength switching control module further adds an external light source inlet.
  • the light adjustment module, the real-time online output optical sampling module and the real-time online input optical sampling module as an integrated component or separate components, or a multi-wavelength stable light source, a wavelength switching control module, an optical attenuator, Real
  • the online output optical sampling module and the real-time online input optical sampling module are integrated components or are independent components.
  • the central control unit adopts a microcontroller component or a separate computer, and can be integrated with a multi-wavelength stable light source, a wavelength switching control module, an optical attenuator, a real-time online input optical sampling module, and a real-time online output optical sampling module. Or for independent components, if the components and components of the device are integrated into one integrated component, the reliability is improved due to the simple structure, and the space and cost are also greatly reduced. If the components and units of the device are respectively composed of independent devices, use When connected in the manner described in the text, the flexibility of the system is enhanced.
  • the central control unit has a built-in communication component or an external communication component to communicate with the PON network device to be calibrated and an external intelligent computer, and the central control unit is connected to the external intelligent computer through the communication component, and performs data exchange and communication; the communication form is Wired or wireless, serial port or network port, to achieve remote and wireless control; for operation convenience, input and output device interfaces can be added to the device, input device interface is connected to input device, such as keyboard; output device interface is connected to output device, such as display Typically, an LCD touch screen with integrated input and output functions.
  • optical devices described in this paper are applicable to both single-mode and multi-mode methods.
  • the device used in the text can also be referred to as a meter, platform, and system according to the habit.
  • the built-in optical power meter described in the text is for an external standard optical power meter, and its position is not particularly limited, as long as its function is realized.
  • the present invention has the following beneficial effects:
  • the invention introduces a real-time online input optical sampling module and a real-time online output optical sampling module, realizing point-to-point bidirectional real-time calibration of the same source in a true sense, reducing external influence factors, improving calibration reliability and consistency, and greatly improving
  • the input and output optical power of the PON network device to be calibrated can be simultaneously calibrated without mutual interference, which greatly improves the calibration efficiency;
  • the calibration interface is connected to the external optical service interface of the PON network device to be calibrated once, and the multi-wavelength, multi-power point and bidirectional receiving luminous power of the PON network device to be calibrated can be automatically calibrated; the calibrated product has high precision and good quality consistency, and satisfies Quality requirements for high precision calibration.
  • each module and the PON network equipment Under the control of the central control unit program, adjust each module and the PON network equipment to be calibrated, realize multi-wavelength, multi-power point, automatic calibration and automatic inspection of the PON network equipment, and automatically determine the inspection result and manage the log archive. , automatic information statistical analysis, improve product quality analysis, quality control and traceability management tools and capabilities.
  • the calibrated PON network equipment can adaptively and appropriately allocate the respective operating parameters according to the actual optical network conditions in the network topology in operation, and can automatically, differentially, accurately, and fixedly adjust the power of the optical signal of the PON network service, and optimize the guarantee network. It is in the optimal working state, which guarantees the transmission quality of network data services and improves the service quality of operators' data services. Greatly improve the scientific management methods and management level of the operation of optical networks.
  • the optical network device can accurately calibrate the bidirectional receiving power, so that the transmitting power of the optical network optical node to the optical node can be accurately adjusted to better meet the operation of the optical network.
  • the transmitting and receiving power of the optical network operating equipment is an important monitoring indicator of OAM.
  • these optical network equipments can only be roughly calibrated and have large errors, which makes the transmitting and receiving optical power of the optical equipment monitored by OAM only A reference for judging the quality of fiber-optic network links.
  • the invention realizes the accurate calibration of the bidirectional receiving and illuminating power of the PON network device, and the running PON network device also becomes the optical metering device, so that the transmitting and receiving optical power of the optical device monitored by the OAM can become a criterion for judging the quality of the optical network link.
  • Standards and evidences have a positive and far-reaching significance for online quality assessment and monitoring of fiber-optic networks.
  • the optical calibration interface of the invention directly enters the optical service interface of the PON network device, and realizes the point-to-point two-way synchronous real-time calibration in the true sense of the optical service interface of the PON network device, which will affect the technical progress of the entire optical network equipment, industry standard progress and industry development trend, so that The optical network operation equipment has become a reality from a single "service operation equipment” to "service operation equipment + optical metering equipment", which is a new development trend of optical network equipment and network operation technology.
  • FIG. 1 is a schematic diagram of calibration of received optical power of a PON network device in the prior art.
  • FIG. 2 is a schematic diagram of calibration of transmitted optical power of a PON network device in the prior art
  • FIG. 3 is a schematic block diagram of an implementation of Embodiment 1 of the present invention.
  • FIG. 4 is a schematic diagram of a self-calibration flow of an output optical channel of the present invention.
  • FIG. 5 is a schematic diagram of the self-calibration flow of the input optical channel of the present invention.
  • FIG. 6 is a schematic flow chart of self-calibration of an output optical channel with a wavelength of 1310 nm according to the present invention.
  • Figure 7 is a flow diagram showing the self-calibration of an input optical channel having a wavelength of 1310 nm according to the present invention.
  • FIG. 8 is a schematic flow chart of the present invention for automatically calibrating the PON network device to be calibrated to emit light at 1490 nm and receive light at 1310 nm.
  • FIG. 9 is a flow chart showing the automatic inspection of the PON network device to be tested at 1490 nm and the received light at 1310 nm according to the present invention.
  • FIG. 10 is a schematic flow chart of the two-way synchronous automatic calibration of the PON network device to be calibrated to emit light at 1490 nm and the received light to be 1310 nm.
  • FIG. 11 is a flow chart showing the two-way synchronous automatic inspection of the PON network device to be tested at 1490 nm and the received light at 1310 nm according to the present invention.
  • FIG. 12 is a schematic block diagram of an implementation of Embodiment 2 of the present invention.
  • FIG. 13 is a schematic block diagram of an implementation of Embodiment 3 of the present invention.
  • FIG. 14 is a schematic block diagram of implementation of Embodiment 4 of the present invention.
  • the method for automatically adjusting the bidirectional receiving and illuminating power of the PON network device of the present invention comprises the following steps:
  • the PON network device bidirectional receiving luminous power automatic calibration device performs self-calibration
  • the external PON network device to be calibrated is connected to the PON network device for bidirectional receiving and illuminating power automatic calibration device, and the illuminating power of the PON network device to be calibrated is calibrated;
  • the PON network device bidirectional receiving and radiant power automatic calibration device comprises at least one set of bidirectional automatic calibration unit and a central control unit, wherein the bidirectional automatic calibration unit is connected to the central control unit, and the bidirectional automatic calibration unit comprises a light adjustment module connected in sequence,
  • the real-time online output optical sampling module and the real-time online input optical sampling module can be connected to the optical calibration interface in real time.
  • the optical calibration interface is used to connect the external PON network device to be calibrated, and the bidirectional automatic calibration unit realizes synchronous real-time monitoring of the output and input optical power of the same light source through the real-time online output optical sampling module and the real-time online input optical sampling module. .
  • the program introduces a real-time online input optical sampling module and a real-time online output optical sampling module to realize point-to-point bidirectional real-time calibration of the same light source, reducing external influence factors, and the optical calibration interface fiber output and the optical fiber power measurement are accurate and stable, and greatly improved.
  • the PON network equipment bidirectional receiving luminous power calibration accuracy.
  • the input and output optical power of the PON network device to be calibrated can be simultaneously calibrated without mutual interference, which greatly improves the calibration efficiency;
  • the calibration interface is connected to the external optical service interface of the PON network device to be calibrated once, and the multi-wavelength, multi-power point of the PON network device to be calibrated, and the automatic calibration of the bidirectional received illuminating power can be completed.
  • the optical network device can accurately calibrate the bidirectional receiving power, so that the transmitting power of the optical network optical node to the optical node can be accurately adjusted to better meet the operation of the optical network.
  • the transmitting and receiving power of the optical network operating equipment is an important monitoring indicator of OAM.
  • these optical network equipments can only be roughly calibrated and have large errors, which makes the transmitting and receiving optical power of the optical equipment monitored by OAM only A reference for judging the quality of fiber-optic network links.
  • the invention realizes the accurate calibration of the bidirectional receiving and illuminating power of the PON network device, and the running PON network device also becomes the optical metering device, so that the transmitting and receiving optical power of the optical device monitored by the OAM can become a criterion for judging the quality of the optical network link.
  • Standards and evidences have a positive and far-reaching significance for online quality assessment and monitoring of fiber-optic networks.
  • the real-time online output optical sampling module comprises an optical splitter I, a built-in optical power meter I, an optical splitter I input end connected to the light adjusting module, and an optical splitter I output end connected to the real-time online input optical sampling module
  • the other end of the optical splitter I output is connected to the built-in optical power meter I, and the built-in optical power meter I is connected to the central control unit to monitor the output optical power of the optical calibration interface in real time; the real-time online input optical sampling module including the optical splitter II.
  • Built-in optical power meter II, the output of the optical splitter II can be connected to the optical sampling module in real time.
  • the other end of the optical splitter II output is connected to the built-in optical power meter II, and the optical splitter II input is connected to the light.
  • Calibration interface, built-in optical power meter II connection center control unit, real-time monitoring of optical calibration interface input optical power; real-time online output optical sampling module and real-time online input optical sampling module position in the bidirectional automatic calibration unit can be mutually
  • the switch that is, the light adjustment module, the real-time online input optical sampling module, and the real-time online output optical sampling module are sequentially connected.
  • the first step self-calibration includes input optical channel self-calibration and output optical channel self-calibration, wherein the output optical channel self-calibration process is: an external standard optical power meter is connected to the optical calibration interface, and communicates with the central control unit, the central control unit Adjusting the light source mode, wavelength, and optical output power of the light adjustment module under program control, so that the output optical power reaches a predetermined parameter, the external standard optical power meter and the built-in optical power meter I simultaneously measure the output optical power, and the central control unit reads the external standard.
  • the value of the optical power meter, and the value is transmitted to the built-in optical power meter I, and the built-in optical power I meter is calibrated based on the external standard optical power; FIG.
  • Wavelengths such as 1310nm, 1490nm, 1550nm
  • Figure 6 shows a 1310nm wavelength as an example of a process for self-calibration of the output optical channel.
  • the central control unit adjusts the light source mode, wavelength, and optical output power of the light adjustment module under program control, so that the output optical power reaches a predetermined parameter, and the external standard optical power meter and the built-in optical power meter I At the same time, the output optical power of the light adjustment module is measured.
  • the input optical channel self-calibration process is: after the self-calibration of the output optical channel is completed, the optical calibration interfaces of the two sets of bidirectional automatic calibration units are connected, and the two sets of bidirectional automatic calibration units are all communicated with the central control unit, and the two sets of bidirectional automatic calibration units respectively
  • the built-in optical power meter II is calibrated based on the other's built-in optical power I.
  • Figure 5 shows the input light of the system in the automatic mode with single mode three wavelengths (such as 1310nm, 1490nm, 1550nm) as an example.
  • the channel self-calibration process Figure 7 shows the process of self-calibration of the input optical channel, taking the 1310 nm wavelength as an example.
  • the self-calibration of the device makes the built-in optical power meter I and the built-in optical power meter II a calibration standard source.
  • the built-in optical power meter I can accurately measure or reflect the optical power value emitted by the optical calibration interface;
  • the built-in optical power meter II can accurately measure or reflect the optical power value received by the optical calibration interface.
  • Figure 8-11 shows the calibration of the received optical power of the PON network equipment. The principle is as follows:
  • A. PON network equipment receiving optical power calibration the PON network equipment to be calibrated is connected to the optical calibration interface, and communicates with the central control unit.
  • the central control unit adjusts the light source mode, wavelength, and optical output power of the optical adjustment module under program control to make the output
  • the optical power reaches a predetermined parameter, and the central control unit reads the value of the built-in optical power meter I, and transmits the value to the external PON network device to be calibrated, and calibrates the received optical power of the external PON network device to be calibrated; thereby implementing different services.
  • the external PON network equipment to be calibrated is connected to the optical calibration interface, and communicates with the central control unit.
  • the central control unit adjusts the PON network equipment to be calibrated to the state of the emitted optical power under program control, and adjusts the Calibrating the transmission power of each service wavelength of the PON network device and its service power control interval, the built-in optical power meter II monitors the transmitted optical power of the PON network device to be calibrated in real time, and the central control unit reads the value of the built-in optical power meter II, and The value is transmitted to the external PON network device to be calibrated, and the optical power of the external PON network device to be calibrated is calibrated; thereby realizing automatic adjustment of different power points under different service wavelengths, and automatically calibrating the PON network device to emit optical power.
  • the above method will realize the combination of various functional modules of the calibration and integrate the connection; and real-time sampling and calibration of the same light source by real-time online output optical sampling module and real-time online input optical sampling module in the calibration process; under the control of the central control unit Multi-source, multi-wavelength, multi-power point bi-directional light-emitting power is automatically calibrated; batch calibration is possible in one connection without any change.
  • the central control unit has a communication function that enables operation of the calibration device under the control of an external or remote computer program or under the control of interactive commands.
  • the light adjustment module comprises a multi-wavelength stabilized light source, a wavelength switching control module and an optical attenuator connected in sequence, a multi-wavelength stable light source, a wavelength switching control module and an optical attenuator respectively connected to the control unit, and the multi-wavelength stable light source provides a wavelength required for calibration
  • the light, wavelength switching control module switches the light of the corresponding wavelength to the corresponding port under the control of the central control unit
  • the optical attenuator performs the light intensity attenuation adjustment under the control of the central control unit
  • the optical attenuator is an optical attenuator capable of automatically adjusting the gain. Under the control command of the central control unit, the gain conversion is automatically performed to adjust the power intensity of the output optical signal.
  • the multi-wavelength stabilized light source comprises a single mode light source output or a multi-mode light source output, or both, corresponding to the two-way automatic calibration unit, which is a two-way automatic calibration unit suitable for single mode; or suitable for multi-mode Two-way multi-mode automatic Calibration unit; or both.
  • the structure of the two-way automatic calibration unit is suitable for the bidirectional single-mode automatic calibration unit and the bidirectional multi-mode automatic calibration unit; that is, the basic structure is consistent, and the adaptive adjustment is made according to different single-mode light sources, multi-mode light sources, and related interfaces. .
  • the wavelength switching control module further adds an external light source inlet.
  • the light adjustment module, the real-time online output optical sampling module and the real-time online input optical sampling module as an integrated component or separate components, or a multi-wavelength stable light source, a wavelength switching control module, an optical attenuator,
  • the real-time online output optical sampling module and the real-time online input optical sampling module are integrated components or are independent components.
  • the central control unit adopts a microcontroller component or a separate computer, and can be integrated with a multi-wavelength stable light source, a wavelength switching control module, an optical attenuator, a real-time online input optical sampling module, and a real-time online output optical sampling module. Or for independent components, if the components and components of the device are integrated into one integrated component, the reliability is improved due to the simple structure, and the space and cost are also greatly reduced. If the components and units of the device are respectively composed of independent devices, use When connected in the manner described in the text, the flexibility of the system is enhanced.
  • the central control unit has a built-in communication component or an external communication component to communicate with the PON network device to be calibrated and an external intelligent computer, and the central control unit is connected to the external intelligent computer through the communication component, and performs data exchange and communication; the communication form is Wired or wireless, serial port or network port, to achieve remote and wireless control; for operation convenience, input and output device interfaces can be added to the device, input device interface is connected to input device, such as keyboard; output device interface is connected to output device, such as display Typically, an LCD touch screen with integrated input and output functions.
  • optical devices described in this paper are applicable to both single-mode and multi-mode methods.
  • the device used in the text can also be referred to as a meter, platform, and system according to the habit.
  • the built-in optical power meter described in the text is for an external standard optical power meter, and its position is not particularly limited, as long as its function is realized.
  • the real-time online output optical sampling module and the real-time online output optical sampling module share a bidirectional optical splitter, and the bidirectional optical splitter output ends are respectively connected to the built-in optical power meter I and built-in.
  • the optical power meter II, the input end of the bidirectional optical splitter is connected to the optical calibration interface, the other input end is connected to the optical adjustment module, and the built-in optical power meter I and the built-in optical power meter II are respectively connected to the central control unit, and other embodiments of this embodiment
  • the structure is the same as that of the first embodiment.
  • this embodiment replaces the optical splitter II with an optical path switching device, such as an optical switch, on the basis of Embodiment 1, and the optical switch is time-divisionally connected to the optical link, and when the optical calibration interface inputs light. Switch to the built-in optical power meter II.
  • the built-in optical power meter is connected to the bidirectional optical splitter by time-sharing device, time-division calibration or measurement.
  • the input and output light of the optical calibration interface is connected to the bidirectional optical splitter by time-sharing device, time-division calibration or measurement.
  • the PON network device bidirectional receiving luminous power automatic calibration device performs self-calibration first
  • the self-calibration of the PON network device bidirectional receiving luminous power automatic calibration device includes output optical channel self-calibration and input optical channel self-calibration;
  • a multi-wavelength stabilized light source provides light for calibrating the desired wavelength
  • An optical attenuator that automatically adjusts the gain to adjust the output power to achieve the desired calibration point
  • the wavelength switching control module is configured to switch the light of the corresponding wavelength to the corresponding port
  • the central control unit is the control center of the entire device, which implements functions such as process control and communication control.
  • the central control unit combines with the two-way automatic calibration unit to realize multi-wavelength automatic calibration and inspection through automatic control, which comprehensively guarantees the accuracy and reliability of calibration.
  • the automatic calibration device is self-calibrated and is an automatic preparation before using automatic calibration
  • the present invention is not limited to the two-way receiving and illuminating power for calibrating the PON network device. Under the guidance of the inventive concept, it can also be used for measurement and related applications of the wavelength division multiplexing network, the communication optical module and other parameters.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

本发明属于单纤双向光网设备双向收发光功率校准领域,具体涉及一种PON网络设备双向收发光功率自动校准方法,包括以下步骤:第一步,PON网络设备双向收发光功率自动校准装置进行自校准;第二步,外部待校准PON网络设备连接PON网络设备双向收发光功率自动校准装置,对待校准PON网络设备的收发光功率进行校准;上述PON网络设备双向收发光功率自动校准装置,包括双向自动校准单元和中心控制单元,所述双向自动校准单元和中心控制单元相连。本发明实现真正意义上的同一光源点对点双向实时校准,极大的提高了精确度,减少了人工干预,有效提高生产率,降低成本,提高设备使用性能。

Description

PON网络设备双向收发光功率自动校准方法 技术领域
本发明属于单纤双向光网设备双向收发光功率校准领域,具体涉及一种PON网络设备双向收发光功率自动校准方法。
背景技术
PON(无源光网络)接入网技术是业内公认的FTTx的最佳解决方案,也是光纤入户的主要接入手段,光网络规模和终端数量巨大,这种技术可以使多个用户共享单根光纤,从而使得光分配网(ODN)中不需要使用任何有源器件,即不需要通过“光/电/光”转换,这种点到多点的构架大大降低了网络安装、管理和维护成本。
PON系统(GPON、EPON等)中上行信号采用1310nm波长,下行信号采用1490nm和1550nm波长,分别以相反方向沿同一光纤传输。1310nm上行信号保持沉默,直到被1490nm下行信号轮循并分配一个传输窗口,上行信号使用时分多址接入(TDMA)方式将多个光网络单元(ONU)的上行信息组织成一个时分复用(TDM)信息流传送到光线路终端(OLT)。
OAM--Operation Administration and Maintenance。根据运营商网络运营的实际需要,通常将网络的管理工作划分为3大类:操作(Operation)、管理(Administration)、维护(Maintenance),简称OAM。操作主要完成日常网络和业务进行的分析、预测、规划和配置工作;维护主要是对网络及其业务的测试和故障管理等进行的日常操作活动。
光网络运行设备光的发射、接收光功率是OAM的一个重要监控指标;PON网络设备(OLT、ONU)数量巨大,精确校准对这些设备来讲单台耗时大、成本太高,目前这些光网设备只能是粗略校准,误差在±3dB左右。
现有技术下的PON网络设备双向收发光功率校准操作,通过与标准光功率计比对来实现校准。如图1,标准光源首先通过光衰减器连接到标准光功率计A;在测试波长上,调整光衰减器,使出纤光功率达到校准功率值,并记录此时标准光功率计的测试数值;然后再将标准光源通过光衰减器连接到待校准光网络设备B;计算机连接待校准光网络设备,将刚才记录的标准光功率计读数值发到待校准光网络设备B,进行接收光功率校准。
如图2,待校准光网络设备B连接到标准光功率计A;在测试波长上,调整PON网设备为发射光功率状态,记录的标准光功率计读数值,将标准光功率计读数值发到待校准光网络设备B,进行发射光功率校准。
在不同波长,上述步骤需要重复进行。
如要精确校准,在不同波长、不同功率点上重复进行上述步骤。
从以上介绍中可以看到存在如下缺点:
1、操作步骤繁琐、效率低;
2、不可控节点多,影响因素多。
上述校准方式是以光源输出的光功率不变为前提的,校准时以上一刻读出的标准光功率计读数为基准进行校准;因此现有技术下的参照光源,实际上并不是真正意义的同一光源。
以上因素影响出纤光功率变化,不利于校准精确,精确校准对光网络设备,单台耗时、人工成本太高。
发明内容
为解决上述技术问题,本发明的目的在于:提供一种PON网络设备双向收发光功率自动校准方法,实现真正意义上的同一光源点对点双向实时校准,极大的提高了校准精确度,减少了人工干预,有效提高生产率,降低成本,极大的提高设备使用性能和产品竞争力。
本发明为解决其技术问题所采用的技术方案为:
所述PON网络设备双向收发光功率自动校准方法,包括以下步骤:
第一步,PON网络设备双向收发光功率自动校准装置进行自校准;
第二步,外部待校准PON网络设备连接PON网络设备双向收发光功率自动校准装置,对待校准PON网络设备的收发光功率进行校准;
上述PON网络设备双向收发光功率自动校准装置,包括至少一套双向自动校准单元和中心控制单元,所述双向自动校准单元和中心控制单元相连,双向自动校准单元包括依次连接的光调节模块、可实时在线输出光取样模块和可实时在线输入光取样模块,可实时在线输入光取样模块与光校准接口相连。
本发明中光校准接口用来连接外部待校准PON网络设备,双向自动校准单元通过可实时在线输出光取样模块和可实时在线输入光取样模块实现对同一光源的输出、输入光功率进行同步实时监测,可在同一时刻对同一待校准PON网络设备进行双向校准,互不干涉,极大的提高了校准效率。
其中,优选方案为:
所述第二步同时对待校准PON网络设备双向收发光功率进行同步校准,主要包括以下两个方面:
A.PON网络设备接收光功率校准:外部待校准PON网络设备连接光校准接口,并与中心控制单元通讯,可实时在线输出光取样模块实时监测待校准PON网络设备的接收光功率,以可实时在线输出光取样模块采集结果为计量基准,对外部待校准PON网络设备接收光功率进行校准;
B.PON网络设备发射光功率校准:外部待校准PON网络设备连接光校准接口,并与中心控制单元通讯,可实时在线输入光取样模块实时监测待校准PON网络设备的发射光功率,以可实时在线输入光取样模块采集结果为计量基准,对外部待校准PON网络设备发射光功率进行校准。
上述过程,外部待校准PON网络设备只需连接光校准接口一次即可完成PON网络设备收发光功率校准;方案中引入可实时在线输出光取样模块和可实时在线输入光取样模块,实现同一光源点对点双向实时校准,减少外部影响因素,光校准接口出纤、入纤光功率测量精确、稳定,极大提高了PON网设备双向收发光功率校准精确度。可实现在同一时刻,同时对待校准PON网络设备双向收发光功率的同步校准,待校准PON网络设备输入、输出光功率可同时校准,互不干涉,极大的提高了校准效率;只需将光校准接口连接外部待校准PON网络设备光业务接口一次,即可完成待校准PON网络设备多波长、多功率点,双向收发光功率的自动校准。
在中心控制单元程序控制下,调整各模块和待校准PON网络设备,实现PON网络设备多波长、多功率点,双向收发光功率的自动校准和自动检验,并自动判别检验结果,并管理日志存档,自动信息统计分析,提升质量管理和品质控制能力。
光网络设备双向收发光功率精确校准,使光网络光节点到光节点的发射功率可以精确的调整,更好满足光网络运行。
光网络运行设备光的发射、接收功率是OAM的一个重要监控指标,目前这些光网设备只能是粗略校准,误差大,这使得OAM的监控到的光设备的发射、接收光功率只能作为评判光纤网络链路质量的一个参考。本发明实现了PON网络设备双向收发光功率精确校准,运行的PON网络设备同时也成为光计量设备,使得OAM的监控到的光设备的发射、接收光功率能成为评判光纤网络链路质量的一个标准和依据,从而对光纤网络在线质量评估和监控产生积极深远的意义。
所述可实时在线输出光取样模块包括光分路器I、内置光功率计I,光分路器I输入端连接光调节模块,光分路器I输出端一路连接可实时在线输入光取样模块,光分路器I输出的另一端连接内置光功率计I,内置光功率计I连接中心控制单元,可实时监测光校准接口的输出光功率;可实时在线输入光取样模块包括光分路器Ⅱ、内置光功率计Ⅱ,光分路器Ⅱ输出端一路连接可实时在线输出光取样模块,光分路器Ⅱ输出的另一端连接内置光功率计Ⅱ,光分路器Ⅱ输入端连接光校准接口,内置光功率计Ⅱ连接中心控制单元,可实时监测光校准接口输入光功率。可实时在线输出光取样模块与可实时在线输入光取样模块的位置在双向自动校准单元中的位置可以互换,即光调节模块、可实时在线输入光取样模块和可实时在线输 出光取样模块依次连接。
所述第一步自校准包括输入光通道自校准和输出光通道自校准,其中,输出光通道自校准过程为:外部标准光功率计连接光校准接口,并与中心控制单元通讯,中心控制单元在程序控制下调整光调节模块的光源模式、波长、光输出功率,使输出光功率达到预定参数,外部标准光功率计和内置光功率计I同时测量输出光功率,中心控制单元读取外部标准光功率计的数值,并将该数值传递给内置光功率计I,以外部标准光功率为计量基准,对内置光功率I计进行校准;
输入光通道自校准过程为:将两套双向自动校准单元的光校准接口连接,两套双向自动校准单元均与中心控制单元通讯,两套双向自动校准单元分别以对方的内置光功率I为计量基准,对自己内置光功率计Ⅱ进行校准;
输入光通道自校准结束后装置自校准结束。
在输出光通道自校准过程中,中心控制单元在程序控制下调整光调节模块的光源模式、波长、光输出功率,使输出光功率达到预定参数,由外部标准光功率计和内置光功率计I同时测量光调节模块的输出光功率。
输入光通道自校准使用的两套双向自动校准单元分别称为双向自动校准单元A和双向自动校准单元B,输入光通道自校准具体流程为:
中心控制单元在程序控制下,调整双向自动校准单元A的光源模式、波长、光输出功率,使输出光功率达到预定参数;中心控制单元读取双向自动校准单元A内置光功率计I数值,并将该数值传递给双向自动校准单元B内置光功率计Ⅱ,以双向自动校准单元A内置光功率I为计量基准,对双向自动校准单元B内置光功率计Ⅱ进行校准;同理,中心控制单元在程序控制下,调整双向自动校准单元B的光源模式、波长、光输出功率,使输出光功率达到预定参数,中心控制单元读取双向自动校准单元B内置光功率计I数值,并将该数值传递给双向自动校准单元A内置光功率计Ⅱ,以双向自动校准单元B内置光功率I为计量基准,对双向自动校准单元A内置光功率计Ⅱ进行校准。
装置自校准使得内置光功率计I和内置光功率计Ⅱ成为校准标准源。内置光功率计I能精准的测量或反映光校准接口发出的光功率值;内置光功率计Ⅱ能精准的测量或反映光校准接口接收的光功率值,在此基础上批量进行PON网络设备收发光功率校准,具体如下:
A.PON网络设备接收光功率校准:外部待校准PON网络设备连接光校准接口,并与中心控制单元通讯,中心控制单元在程序控制下调整光调节模块的光源模式、波长、光输出功率,使输出光功率达到预定参数,中心控制单元读取内置光功率计I的数值,并将该数值传递给外部待校准PON网络设备,对外部待校准PON网络设备接收光功率进行校准;
B.PON网络设备发射光功率校准:外部待校准PON网络设备连接光校准接口,并与中心控制单元通讯,中心控制单元在程序控制下调整待校准PON网络设备为发射光功率状态,并调整待校准PON网络设备各业务波长和其业务调功率控区间内发射功率大小,内置光功率计Ⅱ实时监测待校准PON网络设备的发射光功率,中心控制单元读取内置光功率计Ⅱ的数值,并将该数值传递给外部待校准PON网络设备,对外部待校准PON网络设备发射光功率进行校准;
上述方法将实现校准的各个功能模块组合,并集成连接;并在校准过程中应用可实时在线输出光取样模块和可实时在线输入光取样模块实现对同一光源实时采样校准;在中心控制单元控制下,多光源、多波长、多功率点双向收发光功率自动校准;一次连接就可批量校准,无须变动。
中心控制单元具有通讯功能,可实现在外部或者远程计算机程序控制下或交互指令控制下对校准装置进行操作。
所述可实时在线输出光取样模块和可实时在线输入光取样模块还可共用双向光分路器,双向光分路器输出端分别连接至内置光功率计I和内置光功率计Ⅱ,双向光分路器一路输入端连接至光校准接口,另一路输入端连接至光调节模块,内置光功率计I和内置光功率计Ⅱ分别连接中心控制单元,此方案与前述方案区别在于可实时在线输出光取样模块和可实时在线输入光取样模块共用了双向光分路器。
所述光调节模块包括顺次连接的多波长稳定光源、波长切换控制模块和光衰减器,多波长稳定光源、波长切换控制模块和光衰减器分别与控制单元相连,多波长稳定光源提供校准所需波长的光,波长切换控制模块在中心控制单元控制下切换相应波长的光到相应端口,光衰减器在中心控制单元的控制下进行光强度衰减调节,光衰减器为可自动调节增益的光衰减器,在中心控制单元的控制指令下,自动进行增益变换,进而调节其输出光信号的功率强度,从而实现在不同光源下、不同波长下、不同功率点自动调节。
所述多波长稳定光源包括单模光源输出或多模光源输出或者两者兼有,与其分别对应,所述双向自动校准单元为适宜于单模的双向自动校准单元;或为适宜于多模的双向多模自动校准单元;或者两者兼有。
双向自动校准单元的结构组成适用于双向单模自动校准单元、双向多模自动校准单元;即,其基本结构是一致的,根据单模光源、多模光源的不同,相关接口等做适应性调整。
为了进一步提高装置的性能灵活性,所述波长切换控制模块还增设外置光源接入口。
所述光调节模块、可实时在线输出光取样模块和可实时在线输入光取样模块为一体的集成组件或为各自独立的部件,或者说多波长稳定光源,波长切换控制模块、光衰减器、可实 时在线输出光取样模块和可实时在线输入光取样模块为一体的集成组件或为各自独立的部件。
所述中心控制单元采用微控制器组件或独立计算机,可与多波长稳定光源,波长切换控制模块、光衰减器、可实时在线输入光取样模块和可实时在线输出光取样模块为一体的集成组件或为各自独立的部件,若装置各组件、单元封装为一体的集成组件,因结构的简单而使得可靠性提高,空间和成本也大幅减少,若装置各组件、单元分别由独立设备组成,使用时按照文中所述的方式进行连接,系统的灵活性增强。
所述中心控制单元内置通讯组件或连接外部通讯组件,以与待校准PON网络设备、外部智能计算机通信,中心控制单元通过通讯组件,与外部智能计算机连接,并进行数据交换和通信;通讯形式为有线或无线,串口或网口,进而实现远程、无线控制;为操作方便,可为设备增设输入、输出设备接口,输入设备接口连接输入设备,比如键盘;输出设备接口连接输出设备,例如显示屏,典型的为集成输入、输出功能的LCD触摸屏。
如无特殊说明,文中描述的光器件都适用于单模、多模两种方式。文中所用的装置也可按照习惯,称为仪表、平台、系统,文中所述内置光功率计,是针对外部标准光功率计而言,并不对其位置作特殊限定,只要实现其功能即可。
与现有技术相比,本发明具有以下有益效果:
本发明引入可实时在线输入光取样模块和可实时在线输出光取样模块,实现真正意义上的同一光源点对点双向实时校准,减少外部影响因素,提高了校准的可靠性、一致性,极大提升了产品的生产效率和品质控制能力,光校准接口出纤、入纤光功率测量精确、稳定,极大提高了PON网络设备双向收发光功率校准精确度,极大的提高了产品使用性能和竞争力,有效提高生产率,降低成本。
可实现在同一时刻,同时对待校准PON网络设备双向收发光功率的同步校准,待校准PON网络设备输入、输出光功率可同时校准,互不干涉,极大的提高了校准效率;只需将光校准接口连接外部待校准PON网络设备光业务接口一次,即可完成待校准PON网络设备多波长、多功率点,双向收发光功率的自动校准;校准过的产品精度高,品质一致性好,满足高精度校准的质量要求。
在中心控制单元程序控制下,调整各模块和待校准PON网络设备,实现PON网络设备多波长、多功率点,双向收发光功率的自动校准和自动检验,并自动判别检验结果,并管理日志存档,自动信息统计分析,提升产品质量分析、品质控制和追溯的管理手段和能力。
校准过的PON网络设备可根据所运行的网络拓扑中的实际光网络状况,自适应合理调配各自运行参数,可自动、差别、精准、定点调控PON网络业务光信号功率,优化保障网络一 直处于最优工作状态,保障了网络数据业务传输质量,提升运营商的数据业务服务质量。极大提升了光网络的运行的科学管理手段和管理水平。
光网络设备双向收发光功率精确校准,使光网络光节点到光节点的发射功率可以精确的调整,更好满足光网络运行。
光网络运行设备光的发射、接收功率是OAM的一个重要监控指标,目前这些光网设备只能是粗略校准,误差大,这使得OAM的监控到的光设备的发射、接收光功率只能作为评判光纤网络链路质量的一个参考。本发明实现了PON网络设备双向收发光功率精确校准,运行的PON网络设备同时也成为光计量设备,使得OAM的监控到的光设备的发射、接收光功率能成为评判光纤网络链路质量的一个标准和依据,从而对光纤网络在线质量评估和监控产生积极深远的意义。
本发明光校准接口直接入PON网络设备光业务接口,实现了PON网络设备光业务接口真正意义上的点对点双向同步实时校准,将影响整个光网络设备技术进步、行业标准进步和行业发展趋势,使光网络运行设备由单一的“业务运行设备”变成“业务运行设备+光计量设备”成为现实,是光网络设备和网络运行技术的新发展趋势。
附图说明
图1为现有技术下的PON网络设备接收光功率校准示意图。
图2为现有技术下的PON网络设备发射光功率校准示意图
图3为本发明实施例1实现原理框图。
图4为本发明输出光通道自校准流程示意。
图5为本发明输入光通道自校准流程示意。
图6为本发明波长在1310nm的输出光通道自校准的一种流程示意。
图7为本发明波长在1310nm的输入光通道自校准的一种流程示意。
图8为本发明在待校准PON网络设备发射光为1490nm,接收光为1310nm自动校准的一种流程示意。
图9为本发明在待检验PON网络设备发射光为1490nm,接收光为1310nm自动检验的一种流程示意。
图10为本发明在待校准PON网络设备发射光为1490nm,接收光为1310nm双向同步自动校准的一种流程示意。
图11为本发明在待检验PON网络设备发射光为1490nm,接收光为1310nm双向同步自动检验的一种流程示意。
图12为本发明实施例2实现原理框图。
图13为本发明实施例3实现原理框图。
图14为本发明实施例4实现原理框图。
具体实施方式
以下通过特定的具体实施例,说明本发明的实现方式,本领域的技术人员可由本说明书揭示的内容轻易的理解本发明的其它优点和有益效果。本发明也可通过其他不同的具体实施例加以实现和应用。本发明的各项细节亦可基于不同的观点和应用,在不违背本发明的前提下进行各种修饰和变化。
以下为本发明的较佳实施例,并非本专利限定的保护范围。凡在本专利的精神和原则之内,所作的修改、等同替换、改进,均包含在本发明的保护范围之内。
下面结合附图对本发明实施例做进一步描述:
实施例1:
如图3所示,本发明所述PON网络设备双向收发光功率自动校准方法,包括以下步骤:
第一步,PON网络设备双向收发光功率自动校准装置进行自校准;
第二步,外部待校准PON网络设备连接PON网络设备双向收发光功率自动校准装置,对待校准PON网络设备的收发光功率进行校准;
上述PON网络设备双向收发光功率自动校准装置,包括至少一套双向自动校准单元和中心控制单元,所述双向自动校准单元和中心控制单元相连,双向自动校准单元包括依次连接的光调节模块、可实时在线输出光取样模块和可实时在线输入光取样模块,可实时在线输入光取样模块与光校准接口相连。
本发明中光校准接口用来连接外部待校准PON网络设备,双向自动校准单元通过可实时在线输出光取样模块和可实时在线输入光取样模块实现对同一光源的输出、输入光功率进行同步实时监测。
本方案引入可实时在线输入光取样模块和可实时在线输出光取样模块,实现同一光源点对点双向实时校准,减少外部影响因素,光校准接口出纤、入纤光功率测量精确、稳定,极大提高了PON网络设备双向收发光功率校准精确度。
可实现在同一时刻,同时对待校准PON网络设备双向收发光功率的同步校准,待校准PON网络设备输入、输出光功率可同时校准,互不干涉,极大的提高了校准效率;只需将光校准接口连接外部待校准PON网络设备光业务接口一次,即可完成待校准PON网络设备多波长、多功率点,双向收发光功率的自动校准。
在中心控制单元程序控制下,调整各模块和待校准PON网络设备,实现PON网络设备多波长、多功率点,双向收发光功率的自动校准和自动检验,并自动判别检验结果,并管理日 志存档,自动信息统计分析,提升质量管理和品质控制能力。
光网络设备双向收发光功率精确校准,使光网络光节点到光节点的发射功率可以精确的调整,更好满足光网络运行。
光网络运行设备光的发射、接收功率是OAM的一个重要监控指标,目前这些光网设备只能是粗略校准,误差大,这使得OAM的监控到的光设备的发射、接收光功率只能作为评判光纤网络链路质量的一个参考。本发明实现了PON网络设备双向收发光功率精确校准,运行的PON网络设备同时也成为光计量设备,使得OAM的监控到的光设备的发射、接收光功率能成为评判光纤网络链路质量的一个标准和依据,从而对光纤网络在线质量评估和监控产生积极深远的意义。
所述可实时在线输出光取样模块包括光分路器I、内置光功率计I,光分路器I输入端连接光调节模块,光分路器I输出端一路连接可实时在线输入光取样模块,光分路器I输出的另一端连接内置光功率计I,内置光功率计I连接中心控制单元,可实时监测光校准接口的输出光功率;可实时在线输入光取样模块包括光分路器Ⅱ、内置光功率计Ⅱ,光分路器Ⅱ输出端一路连接可实时在线输出光取样模块,光分路器Ⅱ输出的另一端连接内置光功率计Ⅱ,光分路器Ⅱ输入端连接光校准接口,内置光功率计Ⅱ连接中心控制单元,可实时监测光校准接口输入光功率;可实时在线输出光取样模块与可实时在线输入光取样模块的位置在双向自动校准单元中的位置可以互换,即光调节模块、可实时在线输入光取样模块和可实时在线输出光取样模块依次连接。
所述第一步自校准包括输入光通道自校准和输出光通道自校准,其中,输出光通道自校准过程为:外部标准光功率计连接光校准接口,并与中心控制单元通讯,中心控制单元在程序控制下调整光调节模块的光源模式、波长、光输出功率,使输出光功率达到预定参数,外部标准光功率计和内置光功率计I同时测量输出光功率,中心控制单元读取外部标准光功率计的数值,并将该数值传递给内置光功率计I,以外部标准光功率为计量基准,对内置光功率I计进行校准;图4表示了系统在自动模式下,以单模三波长(如1310nm、1490nm、1550nm)为例的输出光通道自校准流程,图6以1310nm波长为例,示出了输出光通道自校准的一种流程。
在输出光通道自校准过程中,中心控制单元在程序控制下调整光调节模块的光源模式、波长、光输出功率,使输出光功率达到预定参数,由外部标准光功率计和内置光功率计I同时测量光调节模块的输出光功率。
输入光通道自校准过程为:在输出光通道自校准完成后,将两套双向自动校准单元的光校准接口连接,两套双向自动校准单元均与中心控制单元通讯,两套双向自动校准单元分别 以对方的内置光功率I为计量基准,对自己内置光功率计Ⅱ进行校准,图5给出了系统在自动模式下,以单模三波长(如1310nm、1490nm、1550nm)为例的输入光通道自校准流程,图7以1310nm波长为例,示出了输入光通道自校准的一种流程。
装置自校准使得内置光功率计I和内置光功率计Ⅱ成为校准标准源,作为整个校准装置的校准依据和评判,内置光功率计I能精准的测量或反映光校准接口发出的光功率值;内置光功率计Ⅱ能精准的测量或反映光校准接口接收的光功率值,图8-11给出了PON网络设备接收光发功率校准示意,原理如下:
A.PON网络设备接收光功率校准:待校准PON网络设备连接光校准接口,并与中心控制单元通讯,中心控制单元在程序控制下调整光调节模块的光源模式、波长、光输出功率,使输出光功率达到预定参数,中心控制单元读取内置光功率计I的数值,并将该数值传递给外部待校准PON网络设备,对外部待校准PON网络设备接收光功率进行校准;从而实现在不同业务波长下、不同功率点自动调节,自动校准PON网络设备接收光功率。
B.PON网络设备发射光功率校准:外部待校准PON网络设备连接光校准接口,并与中心控制单元通讯,中心控制单元在程序控制下调整待校准PON网络设备为发射光功率状态,并调整待校准PON网络设备各业务波长和其业务调功率控区间内发射功率大小,内置光功率计Ⅱ实时监测待校准PON网络设备的发射光功率,中心控制单元读取内置光功率计Ⅱ的数值,并将该数值传递给外部待校准PON网络设备,对外部待校准PON网络设备发射光功率进行校准;从而实现在不同业务波长下、不同功率点自动调节,自动校准PON网络设备发射光功率。
上述方法将实现校准的各个功能模块组合,并集成连接;并在校准过程中应用可实时在线输出光取样模块和可实时在线输入光取样模块实现对同一光源实时采样校准;在中心控制单元控制下,多光源、多波长、多功率点双向收发光功率自动校准;一次连接就可批量校准,无须变动。
中心控制单元具有通讯功能,可实现在外部或者远程计算机程序控制下或交互指令控制下对校准装置进行操作。
所述光调节模块包括顺次连接的多波长稳定光源、波长切换控制模块和光衰减器,多波长稳定光源、波长切换控制模块和光衰减器分别与控制单元相连,多波长稳定光源提供校准所需波长的光,波长切换控制模块在中心控制单元控制下切换相应波长的光到相应端口,光衰减器在中心控制单元的控制下进行光强度衰减调节,光衰减器为可自动调节增益的光衰减器,在中心控制单元的控制指令下,自动进行增益变换,进而调节其输出光信号的功率强度。
所述多波长稳定光源包括单模光源输出或多模光源输出或者两者兼有,与其分别对应,所述双向自动校准单元为适宜于单模的双向自动校准单元;或为适宜于多模的双向多模自动 校准单元;或者两者兼有。
双向自动校准单元的结构组成适用于双向单模自动校准单元、双向多模自动校准单元;即,其基本结构是一致的,根据单模光源、多模光源的不同,相关接口等做适应性调整。
为了进一步提高装置的性能灵活性,所述波长切换控制模块还增设外置光源接入口。
所述光调节模块、可实时在线输出光取样模块和可实时在线输入光取样模块为一体的集成组件或为各自独立的部件,或者说多波长稳定光源,波长切换控制模块、光衰减器、可实时在线输出光取样模块和可实时在线输入光取样模块为一体的集成组件或为各自独立的部件。
所述中心控制单元采用微控制器组件或独立计算机,可与多波长稳定光源,波长切换控制模块、光衰减器、可实时在线输入光取样模块和可实时在线输出光取样模块为一体的集成组件或为各自独立的部件,若装置各组件、单元封装为一体的集成组件,因结构的简单而使得可靠性提高,空间和成本也大幅减少,若装置各组件、单元分别由独立设备组成,使用时按照文中所述的方式进行连接,系统的灵活性增强。
所述中心控制单元内置通讯组件或连接外部通讯组件,以与待校准PON网络设备、外部智能计算机通信,中心控制单元通过通讯组件,与外部智能计算机连接,并进行数据交换和通信;通讯形式为有线或无线,串口或网口,进而实现远程、无线控制;为操作方便,可为设备增设输入、输出设备接口,输入设备接口连接输入设备,比如键盘;输出设备接口连接输出设备,例如显示屏,典型的为集成输入、输出功能的LCD触摸屏。
如无特殊说明,文中描述的光器件都适用于单模、多模两种方式。文中所用的装置也可按照习惯,称为仪表、平台、系统,文中所述内置光功率计,是针对外部标准光功率计而言,并不对其位置作特殊限定,只要实现其功能即可。
实施例2:
如图12所示,本实施例中可实时在线输出光取样模块和可实时在线输出光取样模块共用一个双向光分路器,双向光分路器输出端分别连接至内置光功率计I和内置光功率计Ⅱ,双向光分路器一路输入端连接至光校准接口,另一路输入端连接至光调节模块,内置光功率计I和内置光功率计Ⅱ分别连接中心控制单元,本实施例其他结构与实施例1相同。
实施例3:
如图13所示,本实施例在实施例1的基础上将光分路器Ⅱ替换为光路切换装置,例如光开关,光开关分时连接到光链路中,在光校准接口输入光时才切换到内置光功率计Ⅱ。
实施例4:
如图14所示,内置光功率计通过光路切换装置分时连接到双向光分路器,分时校准或测 量光校准接口的输入、输出光。
使用说明:
PON网络设备双向收发光功率自动校准装置先进行自校准;
PON网络设备双向收发光功率自动校准装置自校准包括输出光通道自校准和输入光通道自校准;
然后作为整个PON网络设备双向收发光功率自动校准装置的校准依据和评判;
多波长稳定光源提供校准所需波长的光;
可自动调节增益的光衰减器调整输出功率,达到所需的校准点;
波长切换控制模块用来切换相应波长的光到相应端口;
中心控制单元为整个装置的控制中心,实现过程控制、通讯控制等功能。
中心控制单元结合双向自动校准单元,通过自动控制,实现了多波长自动校准和检验,综合保障了校准的精度和可靠性。
自动校准装置先自校准,是使用自动校准前的自动准备工作;
然后,只需将光校准接口连接外部待校准PON网络设备一次,并和中心控制单元建立通信连接,即可完成待校准PON网络设备多波长、多功率点,双向收发光功率的自动校准。
显而易见,本发明并不限制用于校准PON网络设备双向收发光功率,在本发明思想的指导下,还可以用于波分复用网络、通讯光模块及其他参数的测量和相关应用。
虽然本发明已经参照较佳实施例以及附图进行说明,然而上述的说明应视为举例性而非限制性,熟悉此项技术者根据本发明的精神所做的变化以及修改应属于本专利的保护范围。

Claims (5)

  1. 一种PON网络设备双向收发光功率自动校准方法,其特征在于,包括以下步骤:
    第一步,PON网络设备双向收发光功率自动校准装置进行自校准;
    第二步,外部待校准PON网络设备连接PON网络设备双向收发光功率自动校准装置,对待校准PON网络设备的收发光功率进行校准;
    上述PON网络设备双向收发光功率自动校准装置,PON网络设备双向收发光功率自动校准装置,包括至少一套双向自动校准单元和中心控制单元,所述双向自动校准单元和中心控制单元相连,双向自动校准单元包括依次连接的光调节模块、可实时在线输出光取样模块和可实时在线输入光取样模块,可实时在线输入光取样模块与光校准接口相连。
  2. 根据权利要求1所述的PON网络设备双向收发光功率自动校准方法,其特征在于,所述第二步同时对待校准PON网络设备双向收发光功率进行同步校准,主要包括以下两个方面:
    A.PON网络设备接收光功率校准:外部待校准PON网络设备连接光校准接口,并与中心控制单元通讯,可实时在线输出光取样模块实时监测待校准PON网络设备的接收光功率,以可实时在线输出光取样模块采集结果为计量基准,对外部待校准PON网络设备接收光功率进行校准;
    B.PON网络设备发射光功率校准:外部待校准PON网络设备连接光校准接口,并与中心控制单元通讯,可实时在线输入光取样模块实时监测待校准PON网络设备的发射光功率,以可实时在线输入光取样模块采集结果为计量基准,对外部待校准PON网络设备发射光功率进行校准。
  3. 根据权利要求1所述的PON网络设备双向收发光功率自动校准方法,其特征在于,所述可实时在线输出光取样模块包括光分路器I、内置光功率计I,光分路器I输入端连接光调节模块,光分路器I输出端一路连接可实时在线输入光取样模块,光分路器I输出的另一端连接内置光功率计I,内置光功率计I连接中心控制单元,可实时监测光校准接口的输出光功率;可实时在线输入光取样模块包括光分路器Ⅱ、内置光功率计Ⅱ,光分路器Ⅱ输出端一路连接可实时在线输出光取样模块,光分路器Ⅱ输出的另一端连接内置光功率计Ⅱ,光分路器Ⅱ输入端连接光校准接口,内置光功率计Ⅱ连接中心控制单元,可实时监测光校准接口输入光功率。
  4. 根据权利要求3所述的PON网络设备双向收发光功率自动校准方法,其特征在于,所述第一步自校准包括输入光通道自校准和输出光通道自校准,其中,
    输出光通道自校准过程为:外部标准光功率计连接光校准接口,并与中心控制单元通讯,中心控制单元在程序控制下调整光调节模块的光源模式、波长、光输出功率,使输出光功率达到预定参数,外部标准光功率计和内置光功率计I同时测量输出光功率,中心控制单元读 取外部标准光功率计的数值,并将该数值传递给内置光功率计I,以外部标准光功率为计量基准,对内置光功率I计进行校准;
    输入光通道自校准过程为:在输出光通道自校准完成后,将两套双向自动校准单元的光校准接口连接,两套双向自动校准单元均与中心控制单元通讯,两套双向自动校准单元分别以对方的内置光功率I为计量基准,对自己内置光功率计Ⅱ进行校准;
    输入光通道自校准结束后装置自校准结束。
  5. 根据权利要求4所述的PON网络设备双向收发光功率自动校准方法,其特征在于,所述输入光通道自校准过程为:
    输入光通道自校准使用的两套双向自动校准单元分别称为双向自动校准单元A和双向自动校准单元B,中心控制单元在程序控制下,调整双向自动校准单元A的光源模式、波长、光输出功率,使输出光功率达到预定参数;中心控制单元读取双向自动校准单元A内置光功率计I数值,并将该数值传递给双向自动校准单元B内置光功率计Ⅱ,以双向自动校准单元A内置光功率I为计量基准,对双向自动校准单元B内置光功率计Ⅱ进行校准;同理,中心控制单元在程序控制下,调整双向自动校准单元B的光源模式、波长、光输出功率,使输出光功率达到预定参数,中心控制单元读取双向自动校准单元B内置光功率计I数值,并将该数值传递给双向自动校准单元A内置光功率计Ⅱ,以双向自动校准单元B内置光功率I为计量基准,对双向自动校准单元A内置光功率计Ⅱ进行校准。
PCT/CN2017/080700 2016-04-20 2017-04-17 Pon网络设备双向收发光功率自动校准方法 WO2017181916A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201610250407.9A CN105790831B (zh) 2016-04-20 2016-04-20 Pon网络设备双向收发光功率自动校准装置
CN201620338992.3 2016-04-20
CN201620338992.3U CN205596118U (zh) 2016-04-20 2016-04-20 Pon网络设备双向收发光功率自动校准装置
CN201610250363.XA CN105933058B (zh) 2016-04-20 2016-04-20 Pon网络设备双向收发光功率自动校准方法
CN201610250363.X 2016-04-20
CN201610250407.9 2016-04-20

Publications (1)

Publication Number Publication Date
WO2017181916A1 true WO2017181916A1 (zh) 2017-10-26

Family

ID=60115573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/080700 WO2017181916A1 (zh) 2016-04-20 2017-04-17 Pon网络设备双向收发光功率自动校准方法

Country Status (1)

Country Link
WO (1) WO2017181916A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190140739A1 (en) * 2017-11-08 2019-05-09 Afl Telecommunications Llc Methods for calibrating olts and determining optical loss
CN112987197A (zh) * 2021-02-22 2021-06-18 李建该 一种基于fpga的光器件自动耦合系统及其数据采集方法
CN113595627A (zh) * 2021-07-02 2021-11-02 中国电子技术标准化研究院 一种基于空间线性叠加原理的光功率校准方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103207012A (zh) * 2013-02-24 2013-07-17 山东信通电器有限公司 光功率计自动校准装置
CN103217215A (zh) * 2013-02-24 2013-07-24 山东信通电器有限公司 光功率计自动校准方法
CN203216605U (zh) * 2013-02-24 2013-09-25 山东信通电器有限公司 光功率计自动校准装置
CN204758121U (zh) * 2015-05-14 2015-11-11 深圳市标迪赛思科技有限公司 一种新型光功率计
US20150381305A1 (en) * 2014-06-27 2015-12-31 Calix, Inc. Self-calibrating tunable laser for optical network
CN105790831A (zh) * 2016-04-20 2016-07-20 山东信通电子股份有限公司 Pon网络设备双向收发光功率自动校准装置
CN105933058A (zh) * 2016-04-20 2016-09-07 山东信通电子股份有限公司 Pon网络设备双向收发光功率自动校准方法
CN205596118U (zh) * 2016-04-20 2016-09-21 山东信通电子股份有限公司 Pon网络设备双向收发光功率自动校准装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103207012A (zh) * 2013-02-24 2013-07-17 山东信通电器有限公司 光功率计自动校准装置
CN103217215A (zh) * 2013-02-24 2013-07-24 山东信通电器有限公司 光功率计自动校准方法
CN203216605U (zh) * 2013-02-24 2013-09-25 山东信通电器有限公司 光功率计自动校准装置
US20150381305A1 (en) * 2014-06-27 2015-12-31 Calix, Inc. Self-calibrating tunable laser for optical network
CN204758121U (zh) * 2015-05-14 2015-11-11 深圳市标迪赛思科技有限公司 一种新型光功率计
CN105790831A (zh) * 2016-04-20 2016-07-20 山东信通电子股份有限公司 Pon网络设备双向收发光功率自动校准装置
CN105933058A (zh) * 2016-04-20 2016-09-07 山东信通电子股份有限公司 Pon网络设备双向收发光功率自动校准方法
CN205596118U (zh) * 2016-04-20 2016-09-21 山东信通电子股份有限公司 Pon网络设备双向收发光功率自动校准装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190140739A1 (en) * 2017-11-08 2019-05-09 Afl Telecommunications Llc Methods for calibrating olts and determining optical loss
US10567076B2 (en) * 2017-11-08 2020-02-18 Afl Telecommunications Llc Methods for calibrating OLTS and determining optical loss
CN112987197A (zh) * 2021-02-22 2021-06-18 李建该 一种基于fpga的光器件自动耦合系统及其数据采集方法
CN113595627A (zh) * 2021-07-02 2021-11-02 中国电子技术标准化研究院 一种基于空间线性叠加原理的光功率校准方法

Similar Documents

Publication Publication Date Title
CN102201864B (zh) 一种多通道光器件的损耗测试装置
CN105049113A (zh) 一种有源光模块多通道自动化测试系统及方法
CN103647600B (zh) 一种多通道智能光学测试装置
CN105790827B (zh) 光网络终端bob校准测试系统及其方法
CN105790831B (zh) Pon网络设备双向收发光功率自动校准装置
CN204089820U (zh) 光模块性能参数测试装置
CN112422182B (zh) 一种wdm波分复用光模块多功能调测装置及方法
CN110492928B (zh) 一种bob校准测试系统及控制方法
CN101430242B (zh) 用于对掺铒光纤放大器性能进行自动测试的装置及方法
WO2017181916A1 (zh) Pon网络设备双向收发光功率自动校准方法
CN105352598A (zh) 一种多通道光功率计自动校准系统及方法
CN206402231U (zh) 一种onu多路综合校准及测试设备
CN113050239B (zh) 一种利用散光调试光模块波长的方法
CN103067074B (zh) 无源光网络光功率计校准装置及校准方法
BR112012004398B1 (pt) Filtro de multiplexação por divisão de comprimento de onda
CN114614891A (zh) 一种雪崩光电探测器光响应度测量系统及测量方法
CN202978941U (zh) 多通道光分路器回波损耗测试分析仪
CN102829952A (zh) 一种半导体激光器的校准测试方法及其应用
CN105933058B (zh) Pon网络设备双向收发光功率自动校准方法
CN102916740A (zh) 多波长无源光网络中的双向光功率测量装置及方法
CN205596118U (zh) Pon网络设备双向收发光功率自动校准装置
CN105792033B (zh) Pon网络业务光信号功率的精确调控方法
CN105959059B (zh) Pon网络光链路损耗在线精确测量方法
CN202231724U (zh) 无源光网络光功率计校准装置
CN102893539B (zh) 一种光网络监测模块、光通信系统及光网络监测方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17785401

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17785401

Country of ref document: EP

Kind code of ref document: A1