WO2017181807A1 - 基于sdn网络的交换机端口信息感知方法、装置和终端设备 - Google Patents

基于sdn网络的交换机端口信息感知方法、装置和终端设备 Download PDF

Info

Publication number
WO2017181807A1
WO2017181807A1 PCT/CN2017/077550 CN2017077550W WO2017181807A1 WO 2017181807 A1 WO2017181807 A1 WO 2017181807A1 CN 2017077550 W CN2017077550 W CN 2017077550W WO 2017181807 A1 WO2017181807 A1 WO 2017181807A1
Authority
WO
WIPO (PCT)
Prior art keywords
port
switch
information
tunnel
aggregation
Prior art date
Application number
PCT/CN2017/077550
Other languages
English (en)
French (fr)
Inventor
武晓林
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017181807A1 publication Critical patent/WO2017181807A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0803Configuration setting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/25Routing or path finding in a switch fabric
    • H04L49/253Routing or path finding in a switch fabric using establishment or release of connections between ports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/30Peripheral units, e.g. input or output ports

Definitions

  • the present disclosure relates to the field of communications technologies, for example, to a switch port information sensing method, apparatus, and terminal device based on an SDN network.
  • SDN Software Defined Network
  • the SDN consists of two parts: the control plane controller (Controller, C) and the forwarding plane switch (Switch, SW).
  • the controller and the switch issue control commands through the OPENFLOW protocol to guide the data flow forwarding on the switch.
  • the switch supporting OPENFLOW protocol can be divided into OPENFLOW-Only and OPENFLOW-Hybrid.
  • the OPENFLOW-Only switch only supports OPENFLOW pipeline operation.
  • the OPENFLOW-Hybrid switch not only supports OPENFLOW pipeline operation, but also supports traditional Ethernet switching operations.
  • some of the above-mentioned OPENFLOW-Hybrid switches may not be added to the SDN domain.
  • the logical port of the non-SDN domain of the OPENFLOW-Hybrid switch may be added. SDN domain, accepting the demand scenario controlled by the controller.
  • the OPENFLOW protocol in order to meet the complex service requirements of the SDN network, the OPENFLOW protocol describes the logical end related information such as a switch supporting tunnel (TUNNEL) port, a link aggregation group (Link Aggregation Group) (LAG) aggregation port, and a loopback (LOOPBACK) port.
  • TUNNEL switch supporting tunnel
  • LAG Link Aggregation Group
  • LOPBACK loopback
  • the OPENFLOW protocol does not describe how these logical port information should be passed between the controller and the switch. That is, the related OPENFLOW protocol does not provide detailed description and support for the application of the logical port, so that many requirements in the SDN network cannot be realized under the relevant protocol.
  • the present disclosure proposes a switch port information sensing method based on an SDN network, which can be implemented
  • the controller has flexible perception and application of the logical port information of the switch, and has simple configuration, convenient transformation and high practicability.
  • the present disclosure proposes a switch port information sensing device based on an SDN network.
  • the present disclosure proposes a terminal device.
  • the switch port information sensing method based on the software-defined network SDN network of an embodiment includes: receiving logical port information sent by the switch through the port synchronization message, where the logical port information includes: extended field information used for accessing the SDN network; And sensing, according to the logical port information, a logical port in the switch, and performing corresponding control on the logical port according to an application requirement.
  • the receiving switch uses the logical port information sent by the port synchronization message, and perceives the logical port in the switch according to the extended field information of the access SDN network in the logical port information, so as to be based on the application requirement.
  • the logical port is controlled accordingly.
  • the method provides a detailed description of the logical port of the switch by using the logical port information to sense the logical port of the switch according to the logical port information, and provides support for the requirement of the switch, so that the controller can flexibly sense and apply the logical port information of the switch.
  • the utility model has the advantages of simple configuration, convenient transformation and high practicability.
  • the extended field information used for accessing the SDN network may include: a logical port number field, a port type description field, and a port additional information field.
  • the port type description field may be an aggregated port type
  • the logical port information sent by the receiving switch through the port synchronization message may include: receiving, by the switch, an aggregate port adding information sent by using a port synchronization message;
  • the method of perceiving the logical port in the switch according to the logical port information, and performing corresponding control on the logical port according to the application requirement may include: perceiving the aggregation port of the switch according to the aggregation port adding information, and establishing The topology relationship of the aggregation port; and determining the forwarding cost and quality performance of the aggregation link according to the topology relationship of the aggregation port, and determining a handover policy of the service path.
  • the aggregation port adding information may include: an aggregation mode, a physical member interface, a current member interface, whether to support fast detection, a link aggregation control protocol LACP detection period, and a load sharing policy.
  • the method may further include: receiving a message that is sent by the switch and carrying an aggregation port switching state; and identifying an aggregation port on the switch that is switched, and re-determining a forwarding policy of the service path.
  • the method may further include: receiving a message that is sent by the switch and carrying a fault status of the aggregation port; and identifying a fault status of the aggregated link between the switches and deleting the aggregated link, and determining The forwarding policy of the service path.
  • the port type description field is a tunnel port type
  • the logical port information sent by the receiving switch by using the port synchronization message may include: receiving, by the switch, tunnel port adding information sent by the port synchronization message; Perceiving the logical port in the switch according to the logical port information, and performing corresponding control on the logical port according to the application requirement, may include: perceiving a tunnel port of the switch according to the tunnel port adding information; The tunnel port adding information identifies the operation and maintenance access node corresponding to the tunnel port, and establishes an operation and maintenance service channel by using the tunnel port; and mirroring the service traffic of the switch to the operation and maintenance through the operation and maintenance service channel Access node.
  • the tunnel port adding information may include: a destination address of the tunnel port, virtual private network VPN routing forwarding information, whether the tunnel port supports an authentication key, and serial number information.
  • the identifying, by the tunnel port, the operation and the access node corresponding to the tunnel port, and establishing the operation and maintenance service channel by using the tunnel port may include: according to whether the tunnel port supports The authentication key and the serial number information check and determine the security of the tunnel port; and if the tunnel port is secure, identify the operation and maintenance access node security corresponding to the tunnel port, and utilize the tunnel port Establish an operation and maintenance service channel.
  • the SDN network-based switch port information sensing device of an embodiment comprising: a receiving module, configured to receive logical port information sent by the switch through a port synchronization message, where the logical port information includes: an extension for accessing the SDN network Field information; and a control module configured to sense a logical port in the switch according to the logical port information, and perform corresponding control on the logical port according to an application requirement.
  • the switch port information sensing device based on the SDN network receives the logical port information sent by the switch through the port synchronization message, and perceives the logical port in the switch according to the extended field information of the access SDN network in the logical port information, so as to be based on the application requirement.
  • the logical port is controlled accordingly.
  • the device describes the logical port of the switch in detail through the logical port information, and senses the logical port of the switch according to the logical port information, and provides support for the requirement of the switch, so that the controller can flexibly sense and apply the logical port information of the switch.
  • the utility model has the advantages of simple configuration, convenient transformation and high practicability.
  • the extended field information used to access the SDN network may include: Port number field, port type description field, and port additional information field.
  • the port type description field is an aggregation port type
  • the receiving module is configured to: receive, by the switch, aggregated port addition information sent by using a port synchronization message; and the control module includes: an establishing unit, configured to Sensing the aggregation port of the switch according to the aggregation port adding information, and establishing a topology relationship of the aggregation port; and determining a unit, configured to calculate a forwarding cost and a quality performance of the aggregation link according to the topology relationship of the aggregation port , determine the switching strategy of the business path.
  • the aggregation port adding information may include: an aggregation mode, a physical member interface, a current member interface, whether to support fast detection, a link aggregation control protocol LACP detection period, and a load sharing policy.
  • the receiving module is further configured to receive a message that is sent by the switch and that carries an aggregated port switching state; the device further includes: a first determining module, configured to identify an aggregation port that is switched on the switch , re-determine the forwarding strategy of the business path.
  • the receiving module is further configured to receive a message that is sent by the switch and that carries an aggregation port fault status; the apparatus includes a determining module configured to identify a fault status of the aggregated link between the switches and The aggregation link is deleted, and the forwarding policy of the service path is re-determined.
  • the port type description field is a tunnel port type
  • the receiving module is configured to receive, by the switch, a tunnel port sending information that is sent by using a port synchronization message
  • the control module includes: a sensing unit, configured to The tunnel port adds information to the tunnel port of the switch; the establishing unit is configured to identify an operation and maintenance access node corresponding to the tunnel port by using the tunnel port adding information, and establish an operation and maintenance service channel by using the tunnel port.
  • the mirroring unit is configured to mirror the service traffic of the switch to the operation and maintenance access node by using the operation and maintenance service channel.
  • the tunnel port adding information may include: a destination address of the tunnel port, virtual private network VPN routing forwarding information, whether the tunnel port supports an authentication key, and serial number information.
  • the establishing unit is configured to check and determine the security of the tunnel port according to whether the tunnel port supports an authentication key and the serial number information; and if the tunnel port is secure, identify The operation and maintenance access node corresponding to the tunnel port is secure, and the operation and maintenance service channel is established by using the tunnel port.
  • a terminal device of an embodiment comprising: a housing, a processor, a memory, a circuit board, and a power supply circuit, wherein the circuit board is disposed inside a space enclosed by the housing, the processor and the memory setting On the circuit board; the power supply circuit is configured to supply power to a circuit or device of the terminal device; the memory is configured to store executable program code; and the processor reads an executable program stored in the memory by reading The code runs a program corresponding to the executable program code to perform the following steps:
  • logical port information sent by the port synchronization message where the logical port information includes: extended field information used for accessing the SDN network;
  • the logical port in the switch is sensed according to the logical port information, and the logical port is controlled according to an application requirement.
  • the present disclosure also provides a non-transitory computer readable storage medium storing computer executable instructions arranged to perform the above method.
  • the terminal device receives the logical port information sent by the switch through the port synchronization message, and perceives the logical port in the switch according to the extended field information of the access SDN network in the logical port information, so as to perform corresponding control on the logical port according to the application requirement.
  • the terminal device performs a detailed description of the logical port of the switch through the logical port information, so as to sense the logical port of the switch according to the logical port information, and provide support for the requirement of the switch, thereby realizing the flexible perception of the logical port information of the switch by the controller.
  • Application simple configuration, convenient transformation and high practicability.
  • FIG. 1 is a flow chart 1 of a method for sensing switch port information based on an SDN network according to an embodiment
  • FIG. 2 is a second flowchart of a method for sensing switch port information based on an SDN network according to an embodiment
  • FIG. 3 is a third flowchart of a method for sensing switch port information based on an SDN network according to an embodiment
  • FIG. 4 is a flow chart 4 of a method for sensing switch port information based on an SDN network according to an embodiment
  • FIG. 5 is a schematic diagram of a method for controlling an aggregation port according to an embodiment
  • FIG. 6 is a flow chart of a method of controlling an aggregation port according to an embodiment
  • FIG. 7 is a flowchart 5 of a method for sensing switch port information based on an SDN network according to an embodiment of the present invention
  • FIG. 8 is a schematic diagram of a method of controlling a tunnel port according to an embodiment
  • FIG. 9 is a flow chart of a method of controlling a tunnel port according to an embodiment
  • FIG. 10 is a schematic structural diagram of a switch port information sensing apparatus based on an SDN network according to an embodiment
  • FIG. 11 is a schematic structural diagram 1 of a switch port information sensing device based on an SDN network according to an embodiment of the present invention
  • FIG. 12 is a second schematic structural diagram of a switch port information sensing device based on an SDN network according to an embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram 3 of a switch port information sensing device based on an SDN network according to an embodiment.
  • FIG. 14 is a schematic diagram showing the hardware structure of a terminal device according to an embodiment.
  • FIG. 1 is a flowchart 1 of a method for sensing switch port information based on an SDN network according to the embodiment.
  • step 110 the logical port information sent by the switch through the port synchronization message is received, where the logical port information includes: extended field information used to access the SDN network.
  • the logical port information sent by the switch through the port synchronization message may be received, for example, the logical port information carried by the switch through the port status (OFPT_PORT_STATUS) message reported by the OPENFLOW protocol.
  • OFPT_PORT_STATUS port status
  • the foregoing logical port information may include extended field information for accessing an SDN network, where
  • the extended field information can ensure that the logical port on the switch can be accessed in the SDN network, and the extended field information can include a logical port number field, a port type description field, and a port additional information field.
  • the port synchronization message may be carried in the port state (OFPT_PORT_STATUS) field
  • the logical port information may be logical port information ( The ofp_port) field is defined.
  • the data structure of the port synchronization message port status may include a definition field struct ofp_port desc for logical port information, which may be used to define logical port information.
  • the ofp_port logical port information includes extended field information of the access SDN network, and the extended field information may include various information of the logical port, for example, may include logical port field information, such as the ofp_port logical port information in Table 2.
  • the reserved port number range (0xfffff00 to 0xffffff8) is used to indicate the logical port number and so on.
  • the above logical port information may include a port type description field.
  • a port type description field In this example, an extended definition of the logical port attribute description field (properties) is described, and an enumeration value describing the logical port type field ofp_port_desc_prop_type is added. Meaning of tunnel port, LAG aggregation port, and loopback port.
  • the extended field information may include a port additional information field in which additional information of the logical port is defined in a TLV (Type, Length, Value) format.
  • TLV Type, Length, Value
  • step 120 the logical port in the switch is sensed according to the logical port information, and the logical port is controlled accordingly according to the application requirement.
  • the logical port in the switch is sensed according to the acquired logical port information to perform corresponding control on the logical port according to the application requirement.
  • the current application requirement is the switching of the service path under the aggregation link, and the corresponding service path switching control may be performed according to the related logical port information in the switch.
  • the logical port of the switch can be obtained through the obtained logical port information to obtain a detailed description of the logical port involved in the application scenario, and provide corresponding support to implement control of the logical port to meet the corresponding scenario requirements.
  • the SDN network-based switch port information sensing method of the embodiment receives the logical port information sent by the switch through the port synchronization message, and perceives the switch according to the extended field information of the access SDN network in the logical port information.
  • Logical ports to control the logical ports accordingly based on application requirements.
  • the method provides a detailed description of the logical port of the switch through the logical port information, so as to sense the logical port of the switch according to the logical port information, and provide support for the requirement of the switch, thereby realizing the flexible perception and application of the controller to the logical port information of the switch.
  • the utility model has the advantages of simple configuration, convenient transformation and high practicability.
  • the logical ports of the switch are diverse.
  • the port of the switch may be a logical port such as a tunnel port, a LAG aggregation port, or a loopback port. Therefore, the method for controlling the logical port is different according to application requirements. And different.
  • the following takes the logical port as the aggregation port type and tunnel port type as an example.
  • FIG. 2 is a second flowchart of a method for sensing switch port information based on an SDN network according to the embodiment.
  • step 210 the receiving switch adds information to the aggregated port sent by the port synchronization message.
  • the aggregation port addition message may include an aggregation mode, a physical member interface, a current member interface, a fast detection, a Link Aggregation Control Protocol (LACP) detection period, and a load sharing policy. Wait.
  • LACP Link Aggregation Control Protocol
  • sizeof() is a function for calculating data storage space
  • uint32_t is a four-byte data type
  • sizeof() is a function for calculating data storage space
  • uint32_t is a four-byte data type
  • "*" is a multiplication operation. symbol.
  • step 220 the aggregation port of the switch is added according to the aggregation port, and the topology relationship of the aggregation port is established.
  • the topology detection packet is sent, and the topology relationship is established for the corresponding aggregation port based on the detection result of the packet.
  • step 230 the forwarding cost and quality performance of the aggregated link are measured according to the topology relationship of the aggregated port, and the switching policy of the service path is determined.
  • the forwarding cost and quality performance of the aggregated link can be measured based on the learned aggregation port information to determine the switching policy of the service path.
  • the forwarding cost and quality performance of the SW1-SW2 aggregated link can be measured according to the added information of the aggregated port of the switch. Assume that the current SW1-SW2 aggregation link is better than the original SW1-SW3 aggregation link, and the service path can be determined to be switched to the SW1-SW2 aggregation link.
  • SW3 is a switch other than switch 1 and switch 2.
  • the receiving switch adds the information of the aggregation port sent by the port synchronization message, adds the information to the aggregation port of the aggregation port according to the aggregation port, and establishes the topology relationship of the aggregation port, and According to the topology relationship of the aggregation port, the forwarding cost and quality performance of the aggregation link are measured, and the handover policy of the service path is determined.
  • the above method can optimize the switching of the service path of the aggregated link, and increases the practicability of the SDN network-based switch port information sensing method.
  • the switch at both ends of the link can report the current outgoing port information in real time, triggering the re-transmission of the path.
  • FIG. 3 is a third flowchart of a method for sensing switch port information based on an SDN network according to the embodiment.
  • step 310 the message sent by the switch carrying the aggregated port handover status is received.
  • the switch can report the status of the aggregation port switch state.
  • step 320 the aggregation port on which the handover occurs is identified, and the forwarding policy of the service path is re-determined.
  • connection port switch between the switches that establish the topology relationship does not change the topology relationship.
  • the aggregation port on which the switch is switched can be identified, and the forwarding policy of the service path is re-determined.
  • the SDN network-based switch port information sensing method of the embodiment receives the message of the aggregation port switching state sent by the switch, and identifies the aggregation port on the switch, and re-determines the forwarding policy of the service path.
  • the forwarding policy is re-determined to determine a new connection port, which improves the practicability of the SDN network-based switch port information sensing method.
  • the switch when all the aggregation ports of the switch that establishes the topology relationship are faulty, the switch can report the fault status message, trigger the deletion of the current aggregation link to rescan the network topology, and re-determine the path forwarding policy.
  • FIG. 4 is a fourth flowchart of a method for sensing switch port information based on an SDN network according to the embodiment.
  • step 410 the message sent by the switch carrying the fault status of the aggregation port is received.
  • step 420 the fault state of the aggregated link between the switches is identified and the aggregated link is deleted, and the forwarding policy of the service path is re-determined.
  • the faulty state between the switches is identified according to the faulty state of the aggregation port.
  • the established aggregation port can be deleted, and the forwarding policy of the service path can be re-determined.
  • the service can be switched back to the original aggregation link and the service path is All switches involved update service information such as flow tables and group tables.
  • the SDN network-based switch port information sensing method of the embodiment receives the message that the switch sends the aggregation port fault status; and identifies the fault status of the aggregated link between the switches and deletes the aggregated link to re Determine the forwarding policy of the service path.
  • the method deletes the current aggregation link and re-determines the forwarding of the service path. The strategy improves the practicability of the SDN network-based switch port information sensing method.
  • the controller controlling the logical port of the switch is a controller
  • the logical port is an aggregated port type
  • the switches establishing the topology relationship are SW1 and SW2
  • the aggregation port on the switch is "LAG Port”.
  • Labeled the physical port on the switch is labeled with "Physical Port”.
  • FIG. 5 is a schematic diagram of a method for controlling an aggregation port according to the embodiment.
  • the SW1 and SW2 switches respectively configure their own aggregation ports LAG port 1 and LAG port 2 to join the SDN domain, and pass the port state (OFPT_PORT_STATUS) message. Report the aggregation port to add information.
  • the controller obtains the new switch logical port, the link layer discovery protocol (LLDP) topology detection packet is sent, and the LAG port 1 and SW2 LAG of SW1 are obtained according to the LLDP topology detection result of the aggregation port.
  • Port 2 establishes a topological relationship.
  • LLDP link layer discovery protocol
  • the controller can calculate the forwarding cost and quality performance of the SW1-SW2 aggregation link according to the added information of the aggregated aggregation port. Assuming that the measurement result of the SW1-SW2 aggregation link is better than the measurement result of the SW1-SW3 aggregation link, the controller selects the service traffic that will run on the original SW1-SW3 aggregation link (assumed to be the destination network 1.1.1.0/24). Traffic), switch to the new SW1-SW2 aggregate link.
  • the controller updates the flow table and the group table for SW1 and SW2.
  • the SW1 is used to forward the port LAG port 1 and guide the SW2 to use the ingress port LAG port 2 for receiving.
  • Port physical port 1 forwards.
  • the switch at both ends can report the changed current outgoing port information in real time through the port status (OFPT_PORT_STATUS) message, triggering the controller to re-determine the path forwarding policy.
  • OFPT_PORT_STATUS port status
  • the switches at both ends report the port fault status through the port status (OFPT_PORT_STATUS) message, triggering the controller to delete the SW1-SW2 aggregation link, rescanning the network topology, and switching service traffic back.
  • SW1-SW3 aggregated link When all the member interfaces of the SW1-SW2 aggregation link are faulty, the switches at both ends report the port fault status through the port status (OFPT_PORT_STATUS) message, triggering the controller to delete the SW1-SW2 aggregation link, rescanning the network topology, and switching service traffic back.
  • SW1-SW3 aggregated link When all the member interfaces of the SW1-SW2 aggregation link are faulty, the switches at both ends report the port fault status through the port status (OFPT_PORT_STATUS) message, triggering the controller to delete the SW1-SW2 aggregation link, rescanning the network topology, and switching service traffic back.
  • FIG. 6 is a flowchart of a method for controlling an aggregation port according to the embodiment.
  • the switches establishing the topology relationship are SW1 and SW2, and the aggregation port of the switch is marked with "LAG", and the aggregation chain is The LACP protocol is used to aggregate the aggregated links.
  • step 6110 the logical aggregation port LAG 1 on the SW1 switch is added to the SDN domain, and the SW1 sends a port status (OFPT_PORT_STATUS) message to notify the aggregation port to add an event.
  • the message includes the aggregation mode, the physical member interface, and the current member interface. Whether to support the aggregation port, such as fast detection, LACP detection period, and load sharing policy.
  • the controller identifies the port status (OFPT_PORT_STATUS) message, and the value of the ofp_port_desc_prop_type field is OFPPDPT_LAGPORT (0x5), indicating that the description type is the LAG aggregation port, parsing the following TLV format field, saving all the information of the logical port, and using the message outgoing (OFPT_PACKET_OUT)
  • the message informs SW1 of the LAG 1 port to perform LLDP topology detection. Therefore, the logical port of SW2 has not been configured to join the SDN domain. The topology of the aggregation interface between SW1 and SW2 has not been established.
  • step 6120 the logical aggregation port LAG 2 on the SW2 switch is added to the SDN domain, and the controller also identifies the port status (OFPT_PORT_STATUS) message, saves the logical port information, and sends the LLDP topology detection. The discovery result of the LLDP topology detection is reported. Controller.
  • step 620 the aggregation port topology relationship between the SW1 and the SW2 is established, and the controller is configured to perform the measurement of the switching policy of the service path, that is, the bandwidth of the physical member port of the aggregation port at both ends and the load sharing policy, and the aggregation port link is measured.
  • the forwarding cost is determined according to the aggregation mode, whether the fast detection and the LACP detection period are supported, and the quality performance of the aggregation port link is determined, and the result is applied to the path selection algorithm of the multi-aggregation link.
  • step 630 it is assumed that the calculation result of the SW1-SW2 aggregation link is better than the calculation result of the SW1-SW3 aggregation link, and the service traffic of the destination network 1.1.1.0/24 needs to be switched from the original SW1-SW3 aggregation link to the new one.
  • SW1-SW2 aggregates links.
  • the controller updates the flow table and group table for all switches whose forwarding paths change, and can guide the traffic forwarding of the destination network 1.1.1.0/24.
  • SW1 receives the packet of the destination network 1.1.1.0/24, and according to the matching rule of the multi-level flow table, selects the aggregation port LAG 1 connected to SW2 to forward the packet to the SW2 switch.
  • SW2 receives the packet of the destination network 1.1.1.0/24, and forwards the packet to SW4 according to the matching rule of the multi-level flow table, and completes the packet forwarding of the SW1-SW2 aggregation port link.
  • step 650 it is assumed that the SW1 and the SW2 aggregated link are dynamically aggregated by the LACP protocol. If the current member interface is faulty, the switch is renegotiated and replaced. A member port can report the port status (OFPT_PORT_STATUS) message at the same time and carry the aggregation port switch status. Message.
  • OFPT_PORT_STATUS port status
  • the controller receives the port status (OFPT_PORT_STATUS) message. Because the port status of the aggregation port is unchanged and the LLDP topology relationship is unchanged, only the forwarding cost of the SW1-SW2 aggregation link is used to re-determine the forwarding policy of the service path. Assuming that the forwarding cost of the SW1-SW2 aggregated link is still less than the SW1-SW3 aggregated link, no switching of the service path occurs.
  • step 660 if the LACP heartbeat detection or the BFD fast detection finds that all the member interfaces are faulty, the two ends of the switch report the port status (OFPT_PORT_STATUS) message at the same time, and the state field of the message describes the port fault status.
  • the port status OFPT_PORT_STATUS
  • step 670 the controller identifies the fault state of the aggregated link, and the topology relationship of the SW1-SW2 is deleted, and the forwarding policy of the service path is re-determined, and the service traffic is switched back to the original SW1-SW3 aggregation link, and the forwarding path changes. All switches update the flow table and group table.
  • step 680 the LACP heartbeat detection or the BFD fast detection on the SW1-SW2 aggregation interface link is normal, and the SW1 and SW2 simultaneously report the port status (OFPT_PORT_STATUS) message to notify the controller of the fault recovery.
  • OFPT_PORT_STATUS port status
  • the SDN network-based switch port information sensing method in this embodiment is described by using the logical port as the tunnel port type.
  • This embodiment describes that a tunnel port outside the SDN network is added to the SDN network, and the tunnel is established by using the associated switch.
  • FIG. 7 is a flowchart 5 of a method for sensing switch port information based on an SDN network according to the embodiment.
  • step 710 the receiving switch adds information through the tunnel port sent by the port synchronization message.
  • the tunnel port addition information can be the destination address of the tunnel port, the virtual private network (VPN) route forwarding information, whether the tunnel port supports the authentication key, and the serial number information.
  • VPN virtual private network
  • step 720 the tunnel port of the information aware switch is added according to the tunnel port.
  • step 730 the tunnel port is added to identify the operation and maintenance access node corresponding to the tunnel port, and the operation and maintenance service channel is established by using the tunnel port.
  • the security of the tunnel port can be checked and determined according to whether the tunnel port supports the authentication key and serial number information.
  • the operation and maintenance access node corresponding to the tunnel port is identified, and the operation and maintenance service channel is established by using the tunnel port.
  • step 740 the service traffic of the switch is mirrored to the operation and maintenance access node through the operation and maintenance service channel.
  • the service traffic of the switch is mirrored to the operation and maintenance access node through the operation and maintenance service channel to match the remote service.
  • the logical port is a tunnel port type, in this example a GRE represents a tunnel port, a control switch logical port is a controller, and the switch is labeled with SW1. described as follows:
  • FIG. 8 is a schematic diagram of a method for controlling a tunnel port according to the embodiment.
  • the SW1 switch adds a GRE1 configuration outside the SDN domain to the SDN domain, and reports the tunnel port to add information through the port state (OFPT_PORT_STATUS) message.
  • the controller identifies the service role of the remote device based on the destination address of the tunnel port and the VPN route forwarding information, and determines the security of the tunnel according to whether the tunnel port supports the authentication key and serial number information.
  • the controller uses the switch tunnel port to establish an operation and maintenance service channel.
  • the controller sends the flow table rule to the switch where the tunnel port resides.
  • the remote service request packet is decapsulated by the switch and sent to the controller.
  • the service response message that the controller is replied to is sent and encapsulated by the tunnel port of the switch.
  • the controller When the service flow mirroring request initiated by the remote end is accepted by the controller (so-called remote traffic mirroring function, the specified service traffic on the designated switch node is mirrored to the remote operation and maintenance node, for example, remote packet capture), the controller The switch specified for the service sends a flow table rule to direct the target traffic to the remote node through the GRE.
  • the switch is represented by SW
  • GRE is a tunnel port
  • the port number of the tunnel port is represented by a Tunnel Port.
  • 9 is a flow chart of a method of controlling a tunnel port of the present embodiment.
  • the SW1 switch adds the GRE tunnel port 1 outside the SDN domain to the SDN domain, and adds the information to the tunnel port through the port state (OFPT_PORT_STATUS) message to notify the port to add an event.
  • the message carries the source address, destination address, and VPN of the tunnel. Information such as route forwarding instances and authentication keys.
  • the controller identifies the GRE tunnel port addition information in the TLV format in the port status (OFPT_PORT_STATUS) message, and identifies the service role of the remote device according to the destination address of the tunnel, the VPN routing forwarding instance, and the like, according to whether the tunnel supports the authentication key.
  • the key, serial number check, checksum check and other information determine the security of the tunnel.
  • the remote address is identified as a secure and usable access node.
  • the controller opens the network protocol and protocol port number to the operation and maintenance service, and sends a flow table to the switch where the tunnel port resides.
  • the subsequent remote service request message is sent to the controller through the message delivery (OFPT_PACKET_IN) message to establish an operation and maintenance service channel.
  • the controller issues an access license for the remote operation and maintenance access node, and sends the certificate packet to the switch through the packet outgoing (OFPT_PACKET_OUT) message.
  • the specified outgoing port is the GRE, and the switch completes the certificate packet. Tunnel encapsulation and outsourcing.
  • step 940 the SW1 switch in which the GRE is located performs the GRE tunnel encapsulation and is sent to the remote operation and maintenance access node according to the tunnel egress port specified in the message outgoing (OFPT_PACKET_OUT) message.
  • the remote operation and maintenance access node receives the packet through the GRE tunnel, decapsulates the tunnel header information, and obtains the access license issued by the SDN controller.
  • step 950 the remote operation and maintenance access node sends a service flow query request of the SDN network, and carries With certificate information, it is sent to the SW1 switch through the GRE tunnel.
  • step 960 the SW1 switch decapsulates the tunnel packet, and sends a service request packet conforming to the operation and maintenance network protocol and the protocol port number to the OFPT_PACKET_IN message according to the flow table rule sent by the controller.
  • the controller processes it.
  • step 970 the controller responds to the service flow query request of the remote operation and access node, and sends the query result to the SW1 switch through the message outgoing (OFPT_PACKET_OUT) message, and the designated port is GRE.
  • OFPT_PACKET_OUT message outgoing
  • step 980 the SW1 switch encapsulates the tunnel information and sends the tunnel information to the remote operation and maintenance access node according to the GRE tunnel outbound port specified in the message outgoing (OFPT_PACKET_OUT) message.
  • step 990 the operation and maintenance access node of the remote end selects the traffic to be mirrored by the user according to the returned traffic query result, for example, mirroring the service traffic of the SW2 switch destination network to 1.1.1.0/24 to the remote node.
  • step 9100 the SW1 switch decapsulates the tunnel message, and sends the far-end flow mirroring request packet to the controller for processing by the message sending (OFPT_PACKET_IN) message.
  • step 9110 the controller delivers flow table rules for the SW1 and SW2 switches according to the request target of the remote flow mirroring, and guides the forwarding of the mirrored traffic.
  • step 9120 the SW2 switch adds mirroring to the service traffic of the destination network of 1.1.1.0/24 according to the flow table rule (modifies the packet header, puts a special identifier, and forwards it to the SW1 switch).
  • step 9130 the SW1 switch identifies the packet with the mirrored special identifier according to the flow table rule, and encapsulates the packet through the GRE tunnel.
  • step 9140 the remote operation and maintenance node decapsulates the tunnel header to obtain the mirrored service traffic.
  • the receiving switch adds information to the tunnel port sent by the port synchronization message, adds the information to the tunnel port of the switch according to the tunnel port, and adds information identification through the tunnel port.
  • the operation and maintenance access node corresponding to the tunnel port uses the tunnel port to establish an operation and maintenance service channel, so that the service traffic of the switch is mirrored to the operation and maintenance access node through the operation and maintenance service channel.
  • the method adds the information of the newly added tunnel port through the port synchronization message, identifies the remote end as the operation and maintenance access node according to the information added by the tunnel port, and establishes the operation and maintenance service channel by using the switch tunnel to implement remote service flow mirroring and realizes control.
  • the flexible perception and application of the switch's logical port information improves the SDN network-based switch port information sensing method. Use sex.
  • FIG. 10 is a schematic structural diagram of a switch port information sensing device based on an SDN network according to the embodiment. As shown in FIG. 10, the switch port based on the SDN network is shown in FIG.
  • the information aware device includes a receiving module 1010 and a control module 1020.
  • the receiving module 1010 is configured to receive logical port information sent by the switch through the port synchronization message, where the logical port information includes: extended field information used to access the SDN network.
  • the receiving module 1010 can receive the logical port information that is sent by the switch through the port synchronization message, for example, the logical port information that can be received by the switch through the port status (OFPT_PORT_STATUS) message reported by the OPENFLOW protocol.
  • the port status OFPT_PORT_STATUS
  • the foregoing logical port information may include extended field information for accessing the SDN network, where the extended field information may ensure that the logical port on the switch can be accessed in the SDN network, and the extended field information may include a logical port number field and a port type description. Fields and port additional information fields, etc.
  • the control module 1020 is configured to sense the logical port in the switch according to the logical port information, and perform corresponding control on the logical port according to the application requirement.
  • control module 1020 senses the logical port in the switch according to the acquired logical port information, so as to perform corresponding control on the logical port according to the application requirement.
  • the current application requirement is the switching of the service path under the aggregation link, and the control module 1020 can perform the control of the corresponding service path switching according to the related logical port information in the switch.
  • the control module 1020 senses the logical port of the switch through the acquired logical port information to obtain a detailed description of the logical port involved in the application scenario, so as to implement detailed control of the logical port to meet the corresponding scenario requirements.
  • the SDN network-based switch port information sensing device of the embodiment receives the logical port information sent by the switch through the port synchronization message, and perceives the switch according to the extended field information of the access SDN network in the logical port information.
  • Logical ports to control the logical ports accordingly based on application requirements.
  • the device performs a detailed description of the logical port of the switch through the logical port information, and senses the logical port of the switch according to the logical port information, and provides support for the requirement of the switch, thereby realizing the flexible perception and application of the controller to the logical port information of the switch.
  • the utility model has the advantages of simple configuration, convenient transformation and high practicability.
  • the physical port of the switch is versatile.
  • the port of the switch can be a logical port such as a tunnel port, a LAG aggregation port, or a loopback port. Therefore, the method for controlling the logical port is based on application requirements. The difference is different.
  • the logical port is an aggregation port type and a tunnel port type as an example.
  • the description is made by taking the logical port as an aggregation port as an example.
  • FIG. 11 is a first schematic structural diagram of the SDN network-based switch port information sensing apparatus according to the embodiment.
  • the control module 1020 includes an establishing unit 1021 and a determining unit 1022.
  • the receiving module 1010 may be configured to receive aggregated port addition information sent by the switch through the port synchronization message.
  • the aggregation port addition message may include an aggregation mode, a physical member interface, a current member interface, a fast detection, an LACP detection period, and a load sharing policy.
  • the establishing unit 1021 is configured to add an aggregation port of the information-aware switch according to the aggregation port, and establish a topology relationship of the aggregation port.
  • the establishing unit 1021 may send a topology detection packet, and establish a topology relationship for the corresponding aggregation port according to the detection result of the packet.
  • the determining unit 1022 is configured to measure a forwarding cost and a quality performance of the aggregated link according to a topology relationship of the aggregated port, and determine a switching policy of the service path.
  • the determining unit 1022 measures the forwarding cost and the quality performance of the aggregation link according to the received aggregation port addition information to determine a handover policy of the service path.
  • the switch port information sensing device of the SDN network receives the aggregation port of the switch through the port synchronization message, adds the information to the aggregation port of the switch, and establishes the topology relationship of the aggregation port. According to the topology relationship of the aggregation port, the forwarding cost and quality performance of the aggregation link are measured, and the handover policy of the service path is determined. The device optimizes the switching of the service path of the aggregated link, and increases the practicability of the switch port information sensing device based on the SDN network.
  • the switch at both ends of the link can report the current outgoing port information in real time, thereby triggering the re-transmission of the path.
  • FIG. 12 is a schematic structural diagram of the SDN network-based switch port information sensing device according to the embodiment. As shown in FIG. 12, the SDN network-based switch port information sensing device further includes: The module 1030 is determined.
  • the receiving module 1010 is configured to receive a message that is sent by the switch and that carries the aggregation port switching status.
  • the receiving module 1010 may receive the reported message carrying the aggregation port switching status.
  • the determining module 1030 is configured to identify the aggregation port on which the handover occurs, and re-determine the forwarding policy of the service path.
  • the SDN network-based switch port information sensing device of the embodiment receives the message that the switch transmits the aggregation port switching state, and identifies the aggregation port on the switch, and re-determines the forwarding policy of the service path.
  • the forwarding policy can be re-determined to determine a new connection port, which improves the utility of the switch port information sensing device based on the SDN network.
  • the switch when all the aggregation ports of the switch that establishes the topology relationship are faulty, the switch can report the fault status message, trigger the deletion of the current aggregation link to rescan the network topology, and re-determine the path forwarding policy.
  • the switch port information sensing device based on the SDN network further includes a determining module 1030.
  • the receiving module 1010 is configured to receive a message that is sent by the switch and that carries the fault status of the aggregation port.
  • the receiving module 1010 receives the reported aggregation port failure status message.
  • the determining module 1030 is configured to identify a fault state of the aggregated link between the switches and delete the aggregated link, and re-determine the forwarding policy of the service path.
  • the determining module 1030 identifies the fault status between the switches according to the faulty state of the aggregation port, deletes the established aggregation port, and re-determines the forwarding policy of the service path, for example, can switch the service back to the original aggregation link. And update service information such as flow tables and group tables for all switches involved in the service path.
  • the SDN network-based switch port information sensing device of the embodiment receives the message of the fault state of the aggregation port sent by the switch; and identifies the fault state of the aggregated link between the switches and deletes the aggregation link to re-establish Determine the forwarding policy of the service path.
  • the method can delete the current aggregation link and re-determine the forwarding policy of the service path, thereby improving the practicability of the switch port information sensing device based on the SDN network.
  • the SDN network-based switch port information sensing device in this embodiment is described by using the logical port as the tunnel port type.
  • This embodiment describes that a tunnel port outside the SDN network is added to the SDN network, and the tunnel is established by using the associated switch.
  • An embodiment of an operation and maintenance service channel that implements control of remote traffic flow mirroring.
  • FIG. 13 is a third schematic structural diagram of a switch port information sensing device based on an SDN network according to the embodiment.
  • the control module 1020 includes: a sensing unit 1023, an establishing unit 1021, and Mirror unit 1024.
  • the receiving unit 1010 is configured to receive the tunnel port adding information sent by the switch through the port synchronization message.
  • the tunnel port adding information may be a destination address of the tunnel port, VPN routing forwarding information, whether the tunnel port supports an authentication key, and serial number information.
  • the sensing unit 1023 is configured to add a tunnel port of the information aware switch according to the tunnel port.
  • the establishing unit 1021 is configured to identify an operation and maintenance access node corresponding to the tunnel port by using the added information of the tunnel port, and establish an operation and maintenance service channel by using the tunnel port.
  • the establishing unit 1021 can check and determine the security of the tunnel port according to whether the tunnel port supports the authentication key and the serial number information.
  • the establishing unit 1021 can identify the security of the operation and maintenance access node corresponding to the tunnel port, and establish a operation and maintenance service channel by using the tunnel port.
  • the mirroring unit 1024 is configured to mirror the service traffic of the switch to the operation and maintenance access node through the operation and maintenance service channel.
  • the mirroring unit 1024 mirrors the service traffic of the switch to the operation and maintenance access node through the operation and maintenance service channel to match the remote service.
  • the technical features of the switch port information sensing device based on the SDN network in this embodiment are in one-to-one correspondence with the technical features in the SDN network-based switch port information sensing method embodiment. Therefore, the SDN network-based switch port information sensing device embodiment For details not disclosed, reference is made to the description of an embodiment of the SDN network-based switch port information sensing method.
  • the SDN network-based switch port information sensing device of the embodiment receives the information of the tunnel port sent by the switch through the port synchronization message, adds the information of the tunnel port of the switch according to the tunnel port, and adds the information through the tunnel port.
  • the operation and maintenance access node corresponding to the tunnel port is identified, and the operation and maintenance service channel is established by using the tunnel port, so that the service traffic of the switch is mirrored to the operation and maintenance access node through the operation and maintenance service channel.
  • the device uses the port synchronization message to perceive the newly added tunnel port to add information, and the remote port is identified as the operation and maintenance access node according to the information added by the tunnel port, and the operation and maintenance service channel is established by using the switch tunnel to implement remote service flow mirroring.
  • the flexible perception and application of the switch logical port information improves the practicability of the switch port information sensing device based on the SDN network.
  • the embodiment further provides a terminal device, including: a housing 140, a processor 141, a memory 142, a circuit board 143, and a power supply circuit 144, wherein the circuit board 143 is disposed.
  • the power supply circuit 144 is configured to supply power to the circuit or device of the terminal device.
  • the power supply circuit 144 may be disposed in the housing 140.
  • the power supply circuit may also be disposed outside the housing 140; the memory 142 is configured to store executable program code; the processor 141 runs the program corresponding to the executable program code by reading executable program code stored in the memory 142, Perform the following steps:
  • logical port information sent by the switch through the port synchronization message, where the logical port information includes: extended field information used for accessing the SDN network;
  • the logical port in the switch is sensed based on the logical port information, and the logical port is controlled according to the application requirement.
  • the above description for the terminal device refers to the functional description of the SDN network-based switch port information sensing method with reference to FIG. 1 to FIG. 9 , and the technical features thereof are in one-to-one correspondence with the technical features of the SDN network-based switch port information sensing method.
  • the terminal device in this embodiment receives the logic that the switch sends through the port synchronization message.
  • the port information is sensed, and the logical port in the switch is sensed according to the extended field information of the access SDN network in the logical port information, so as to perform corresponding control on the logical port according to the application requirement.
  • the terminal device performs a detailed description of the logical port of the switch through the logical port information, so as to sense the logical port of the switch according to the logical port information, and provide support for the requirement of the switch, thereby realizing the flexible perception of the logical port information of the switch by the controller.
  • Application simple configuration, convenient transformation and high practicability.
  • the embodiment further provides a computer readable storage medium storing computer executable instructions arranged to perform the method of any of the above embodiments.
  • the technical solution of the above embodiment may be embodied in the form of a software product stored in a storage medium, including one or more instructions for causing a computer device (which may be a personal computer, a server, or a network device) Etc.) Perform all or part of the steps of the method described in the above embodiments.
  • the foregoing storage medium may be a non-transitory storage medium, including: a USB flash drive, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk.
  • the description of the terms “one embodiment”, “some embodiments”, “example”, or “some examples” and the like means the features, structures, materials or characteristics described in connection with the embodiments or examples. It is included in at least one embodiment or example. In the present specification, the schematic representation of the above terms is not necessarily directed to the same embodiment or example. Furthermore, the described features, structures, materials, or characteristics may be combined in a suitable manner in any one or more embodiments or examples. In addition, various embodiments or examples described in the specification, as well as features of various embodiments or examples, may be combined and combined.
  • the SDN network-based switch port information sensing method, apparatus, and terminal device provided by the foregoing embodiments implement the flexible sensing and application of the switch to the logical port information of the switch, and the configuration is simple, the transformation is convenient, and the utility is high.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

一种基于软件定义网络SDN网络的交换机端口信息感知方法、装置和终端设备,其中,所述方法包括:接收交换机通过端口同步消息发送的逻辑端口信息,其中,逻辑端口信息包括:用于接入SDN网络的扩展字段信息;以及根据逻辑端口信息感知交换机中的逻辑端口,并根据应用需求对逻辑端口进行相应的控制。

Description

基于SDN网络的交换机端口信息感知方法、装置和终端设备 技术领域
本公开涉及通信技术领域,例如涉及一种基于SDN网络的交换机端口信息感知方法、装置和终端设备。
背景技术
软件定义网络(Software Defined Network,SDN)是通信领域研究的热点技术。SDN包括控制面的控制器(Controller,C)和转发面的交换机(Switch,SW)两部分构成。根据SDN技术的定义,控制器和交换机之间通过OPENFLOW协议下发控制指令,可以指导交换机上的数据流转发。
按照是否兼容传统的交换机处理方式进行划分,支持OPENFLOW协议的交换机可以分为OPENFLOW-Only和OPENFLOW-Hybrid两种。OPENFLOW-Only交换机仅支持OPENFLOW流水线操作。OPENFLOW-Hybrid交换机不仅支持OPENFLOW流水线操作,也支持传统的以太网交换操作。然而,上述OPENFLOW-Hybrid交换机可能有部分端口并未加入到SDN域中,而在SDN网络不断升级扩容、组网可能调整的前景下,会有OPENFLOW-Hybrid交换机非SDN域的逻辑端口改配加入SDN域、接受控制器控制的需求场景。
相关技术中,为了满足SDN网络的复杂业务需求,OPENFLOW协议描述了交换机支持隧道(TUNNEL)端口、链路汇聚组(Link Aggregation Group,LAG)聚合端口和环回(LOOPBACK)端口等逻辑端相关信息。然而,OPENFLOW协议并未描述这些逻辑端口信息应该如何在控制器和交换机之间传递。即相关的OPENFLOW协议并没有对逻辑端口的应用提供详细的描述和支撑,从而导致SDN网络中的很多需求在相关协议下是无法实现。
因此,亟需一种使得控制器能够感知更为复杂的信息类型和更为详细的信息内容的方法,使得针对不同的业务需求,控制器感知的逻辑端口信息是可变和可扩展的。
发明内容
本公开提出一种基于SDN网络的交换机端口信息感知方法,该方法可以实 现控制器对交换机逻辑端口信息的灵活感知和应用,且配置简单,改造方便,实用性高。
本公开提出一种基于SDN网络的交换机端口信息感知装置。
本公开提出一种终端设备。
一实施例的基于软件定义网络SDN网络的交换机端口信息感知方法包括:接收交换机通过端口同步消息发送的逻辑端口信息,其中,所述逻辑端口信息包括:用于接入SDN网络的扩展字段信息;以及根据所述逻辑端口信息感知所述交换机中的逻辑端口,并根据应用需求对所述逻辑端口进行相应的控制。
基于SDN网络的交换机端口信息感知方法,接收交换机通过端口同步消息发送的逻辑端口信息,并根据逻辑端口信息中的接入SDN网络的扩展字段信息等感知交换机中的逻辑端口,以根据应用需求对逻辑端口进行相应的控制。该方法通过逻辑端口信息对交换机的逻辑端口进行详细的描述,以根据该逻辑端口信息感知交换机的逻辑端口,并为交换机的需求提供支撑,可以实现控制器对交换机逻辑端口信息的灵活感知和应用,且配置简单,改造方便,实用性高。
在一个实施例中,所述用于接入SDN网络的扩展字段信息,可以包括:逻辑端口号字段、端口类型描述字段以及端口附加信息字段。
在一个实施例中,所述端口类型描述字段可以为聚合端口类型,所述接收交换机通过端口同步消息发送的逻辑端口信息,可以包括:接收交换机通过端口同步消息发送的聚合端口添加信息;以及所述根据所述逻辑端口信息感知所述交换机中的逻辑端口,并根据应用需求对所述逻辑端口进行相应的控制,可以包括:根据所述聚合端口添加信息感知所述交换机的聚合端口,并建立所述聚合端口的拓扑关系;以及根据所述聚合端口的拓扑关系,测算聚合链路的转发代价和质量性能,确定业务路径的切换策略。
在一个实施例中,所述聚合端口添加信息可以包括:聚合模式、物理成员口、当前成员口、是否支持快速检测、链路汇聚控制协议LACP检测周期以及负荷分担策略。
在一个实施例中,所述方法还可以包括:接收所述交换机发送的携带聚合端口切换状态的消息;以及识别所述交换机上发生切换的聚合端口,重新确定业务路径的转发策略。
在一个实施例中,所述方法还可以包括:接收所述交换机发送的携带聚合端口故障状态的消息;以及识别所述交换机之间聚合链路的故障状态并删除所述聚合链路,重新确定业务路径的转发策略。
在一个实施例中,所述端口类型描述字段为隧道端口类型,所述接收交换机通过端口同步消息发送的逻辑端口信息,可以包括:接收交换机通过端口同步消息发送的隧道端口添加信息;以及所述根据所述逻辑端口信息感知所述交换机中的逻辑端口,并根据应用需求对所述逻辑端口进行相应的控制,可以包括:根据所述隧道端口添加信息感知所述交换机的隧道端口;通过所述隧道端口添加信息识别与所述隧道端口对应的运维接入节点,利用所述隧道端口建立运维业务通道;以及将所述交换机的业务流量通过所述运维业务通道镜像到所述运维接入节点。
在一个实施例中,所述隧道端口添加信息可以包括:隧道端口的目的地址、虚拟专用网络VPN路由转发信息、隧道端口是否支持认证密钥以及序列号信息。
在一个实施例中,所述通过所述隧道端口添加信息识别与所述隧道端口对应的运维接入节点,利用所述隧道端口建立运维业务通道,可以包括:根据所述隧道端口是否支持认证密钥和所述序列号信息检查并判断所述隧道端口的安全性;以及如果所述隧道端口安全,则识别与所述隧道端口对应的运维接入节点安全,并利用所述隧道端口建立运维业务通道。
一实施例的基于SDN网络的交换机端口信息感知装置,包括:接收模块,设置为接收交换机通过端口同步消息发送的逻辑端口信息,其中,所述逻辑端口信息包括:用于接入SDN网络的扩展字段信息;以及控制模块,设置为根据所述逻辑端口信息感知所述交换机中的逻辑端口,并根据应用需求对所述逻辑端口进行相应的控制。
基于SDN网络的交换机端口信息感知装置,接收交换机通过端口同步消息发送的逻辑端口信息,并根据逻辑端口信息中的接入SDN网络的扩展字段信息等感知交换机中的逻辑端口,以根据应用需求对逻辑端口进行相应的控制。该装置通过逻辑端口信息对交换机的逻辑端口进行详细的描述,以根据该逻辑端口信息感知交换机的逻辑端口,并为交换机的需求提供支撑,可以实现控制器对交换机逻辑端口信息的灵活感知和应用,且配置简单,改造方便,实用性高。
在一个实施例中,所述用于接入SDN网络的扩展字段信息,可以包括:逻 辑端口号字段、端口类型描述字段以及端口附加信息字段。
在一个实施例中,所述端口类型描述字段为聚合端口类型,所述接收模块,设置为:接收交换机通过端口同步消息发送的聚合端口添加信息;以及所述控制模块包括:建立单元,设置为根据所述聚合端口添加信息感知所述交换机的聚合端口,并建立所述聚合端口的拓扑关系;以及确定单元,设置为根据所述聚合端口的拓扑关系,测算聚合链路的转发代价和质量性能,确定业务路径的切换策略。
在一个实施例中,所述聚合端口添加信息可以包括:聚合模式、物理成员口、当前成员口、是否支持快速检测、链路汇聚控制协议LACP检测周期以及负荷分担策略。
在一个实施例中,所述接收模块还设置为接收所述交换机发送的携带聚合端口切换状态的消息;所述装置还包括:第一确定模块,设置为识别所述交换机上发生切换的聚合端口,重新确定业务路径的转发策略。
在一个实施例中,所述接收模块,还设置为接收所述交换机发送的携带聚合端口故障状态的消息;所述装置包括确定模块,设置为识别所述交换机之间聚合链路的故障状态并删除所述聚合链路,重新确定业务路径的转发策略。
在一个实施例中,所述端口类型描述字段为隧道端口类型,所述接收模块,设置为接收交换机通过端口同步消息发送的隧道端口添加信息;以及所述控制模块包括:感知单元,设置为根据所述隧道端口添加信息感知所述交换机的隧道端口;建立单元,设置为通过所述隧道端口添加信息识别与所述隧道端口对应的运维接入节点,利用所述隧道端口建立运维业务通道;以及镜像单元,设置为将所述交换机的业务流量通过所述运维业务通道镜像到所述运维接入节点。
在一个实施例中,所述隧道端口添加信息可以包括:隧道端口的目的地址、虚拟专用网络VPN路由转发信息、隧道端口是否支持认证密钥以及序列号信息。
在一个实施例中,所述建立单元,设置为根据所述隧道端口是否支持认证密钥和所述序列号信息检查并判断所述隧道端口的安全性;以及如果所述隧道端口安全,则识别与所述隧道端口对应的运维接入节点安全,并利用所述隧道端口建立运维业务通道。
一实施例的终端设备,包括:壳体、处理器、存储器、电路板和电源电路,其中,所述电路板安置在所述壳体围成的空间内部,所述处理器和所述存储器设置在所述电路板上;所述电源电路设置为为终端设备的电路或器件供电;所述存储器设置为存储可执行程序代码;以及所述处理器通过读取所述存储器中存储的可执行程序代码来运行与所述可执行程序代码对应的程序,以执行以下步骤:
接收交换机通过端口同步消息发送的逻辑端口信息,其中,所述逻辑端口信息包括:用于接入SDN网络的扩展字段信息;以及
根据所述逻辑端口信息感知所述交换机中的逻辑端口,并根据应用需求对所述逻辑端口进行相应的控制。
本公开还提供了一种非暂态计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令设置为执行上述方法。
上述终端设备接收交换机通过端口同步消息发送的逻辑端口信息,并根据逻辑端口信息中的接入SDN网络的扩展字段信息等感知交换机中的逻辑端口,以根据应用需求对逻辑端口进行相应的控制。该终端设备通过逻辑端口信息对交换机的逻辑端口进行详细的描述,以根据该逻辑端口信息感知交换机的逻辑端口,并为交换机的需求提供支撑,实现了控制器对交换机逻辑端口信息的灵活感知和应用,且配置简单,改造方便,实用性高。
附图说明
图1是一实施例的基于SDN网络的交换机端口信息感知方法的流程图一;
图2是一实施例的基于SDN网络的交换机端口信息感知方法的流程图二;
图3是一实施例的基于SDN网络的交换机端口信息感知方法的流程图三;
图4是一实施例的基于SDN网络的交换机端口信息感知方法的流程图四;
图5是一实施例的控制聚合端口的方法原理图;
图6是一实施例的控制聚合端口的方法的流程图;
图7是本一实施例基于SDN网络的交换机端口信息感知方法的流程图五;
图8是一实施例的控制隧道端口的方法的原理图;
图9是一实施例的控制隧道端口的方法的流程图;
图10是一实施例的基于SDN网络的交换机端口信息感知装置的结构示意图;
图11是本一实施例的基于SDN网络的交换机端口信息感知装置的结构示意图一;
图12是本一实施例的基于SDN网络的交换机端口信息感知装置的结构示意图二;
图13是一实施例的基于SDN网络的交换机端口信息感知装置的结构示意图三;以及
图14是一实施例的终端设备的硬件结构示意图。
具体实施方式
下面详细描述实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。在不冲突的情况下,以下实施例以及实施例中的技术特征可以相互任意组合。
下面参考附图详细描述本实施例的基于SDN网络的交换机端口信息感知方法、装置和终端设备。
图1是本实施例的基于SDN网络的交换机端口信息感知方法的流程图一。
在步骤110中,接收交换机通过端口同步消息发送的逻辑端口信息,其中,逻辑端口信息包括:用于接入SDN网络的扩展字段信息。
将交换机的逻辑端口加入到SDN网络,以实现在SDN网络环境下对交换机的控制,可以对交换机上的多种逻辑端口进行相应的配置,比如对隧道(TUNNEL)端口、链路汇聚组(Link Aggregation Group,LAG)聚合端口和环回(LOOPBACK)端口等逻辑端口进行配置。由此,实现对交换机上的逻辑端口的配置,可以获取交换机的逻辑端口信息。
可选地,可接收交换机通过端口同步消息发送的逻辑端口信息,比如可接收交换机通过OPENFLOW协议上报的端口状态(OFPT_PORT_STATUS)消息携带的逻辑端口信息。
其中,上述逻辑端口信息可以包括用于接入SDN网络的扩展字段信息,该 扩展字段信息可以保证交换机上的逻辑端口能够被接入SDN网络中,该扩展字段信息可包括逻辑端口号字段、端口类型描述字段以及端口附加信息字段等。
下面以表1-表5为例,对端口同步消息以及逻辑端口信息的数据结构等进行说明,在该示例中,端口同步消息可用端口状态(OFPT_PORT_STATUS)字段携带,逻辑端口信息可以逻辑端口信息(ofp_port)字段进行定义。
如表1所示,该端口同步消息端口状态(OFPT_PORT_STATUS)的数据结构可包括对逻辑端口信息的定义字段struct ofp_port desc,该字段可用以定义逻辑端口信息。
表1
Figure PCTCN2017077550-appb-000001
如表2所示,该ofp_port逻辑端口信息包括接入SDN网络的扩展字段信息,该扩展字段信息可以包括逻辑端口的多种信息,比如可包括逻辑端口字段信息,如表2中ofp_port逻辑端口信息中定义保留的端口号范围(0xffffff00~0xfffffff8)用于表示逻辑端口号等。
表2
Figure PCTCN2017077550-appb-000002
Figure PCTCN2017077550-appb-000003
如表3和表4所示,上述逻辑端口信息可包括端口类型描述字段,在该示例中,对逻辑端口属性描述字段(properties)进行扩展定义,描述逻辑端口类型字段ofp_port_desc_prop_type的枚举值,增加隧道端口、LAG聚合端口以及环回端口等含义。
表3
Figure PCTCN2017077550-appb-000004
表4
Figure PCTCN2017077550-appb-000005
Figure PCTCN2017077550-appb-000006
该扩展字段信息可包括端口附加信息字段,该示例中以TLV(Type,Length,Value)格式定义逻辑端口的附加信息。
表5
Figure PCTCN2017077550-appb-000007
在步骤120中,根据逻辑端口信息感知交换机中的逻辑端口,并根据应用需求对逻辑端口进行相应的控制。
可选地,根据获取的逻辑端口信息感知交换机中的逻辑端口,以根据应用需求对逻辑端口进行相应的控制。比如当前应用需求是聚合链路下的业务路径的切换,可以根据交换机中相关的逻辑端口信息进行相应的业务路径切换的控制等。
可以通过获取的逻辑端口信息感知交换机的逻辑端口,以获取在应用场景中涉及逻辑端口的详细描述,提供相应支撑,以实现对逻辑端口的控制,满足相应的场景需求。
综上所述,本实施例的基于SDN网络的交换机端口信息感知方法,接收交换机通过端口同步消息发送的逻辑端口信息,并根据逻辑端口信息中的接入SDN网络的扩展字段信息等感知交换机中的逻辑端口,以根据应用需求对逻辑端口进行相应的控制。该方法通过逻辑端口信息对交换机的逻辑端口进行详细的描述,以根据该逻辑端口信息感知交换机的逻辑端口,并为交换机的需求提供支撑,实现了控制器对交换机逻辑端口信息的灵活感知和应用,且配置简单,改造方便,实用性高。
由于在应用场景中,交换机的逻辑端口具有多样性,比如,交换机的端口可以是隧道端口、LAG聚合端口或者环回端口等逻辑端口,因此,上述对逻辑端口进行控制的方法根据应用需求的不同而不同。下面以逻辑端口为聚合端口类型和隧道端口类型为例进行说明。
图2是本实施例的基于SDN网络的交换机端口信息感知方法的流程图二。
在步骤210中,接收交换机通过端口同步消息发送的聚合端口添加信息。
其中,如表6所示,该聚合端口添加消息可包括聚合模式、物理成员口、当前成员口、是否支持快速检测、链路汇聚控制协议(Link Aggregation Control Protocol,LACP)检测周期以及负荷分担策略等。
表6
Figure PCTCN2017077550-appb-000008
Figure PCTCN2017077550-appb-000009
表6中,sizeof()为计算数据存储空间的函数,uint32_t为四字节的数据类型,sizeof()为计算数据存储空间的函数,uint32_t为四字节的数据类型,“*”为乘法运算符。
在步骤220中,根据聚合端口添加信息感知交换机的聚合端口,并建立聚合端口的拓扑关系。
当根据聚合端口添加信息感知交换机的聚合端口后,可下发拓扑探测报文,依据该报文的探测结果,为相应的聚合端口建立拓扑关系。
在步骤230中,根据聚合端口的拓扑关系,测算聚合链路的转发代价和质量性能,确定业务路径的切换策略。
当建立聚合端口的拓扑关系后,可以根据感知到的聚合端口添加信息测算聚合链路的转发代价和质量性能,以确定业务路径的切换策略。
举例而言,当建立拓扑关系的交换机是交换机1(SW1)和交换机2(SW2),可根据感知到的上述交换机的聚合端口的添加信息测算SW1-SW2聚合链路的转发代价和质量性能,假设当前SW1-SW2聚合链路的测算结果优于原来的SW1-SW3聚合链路的测算结果,可以确定业务路径切换到SW1-SW2聚合链路上。其中,SW3为除交换机1和交换机2之外的交换机。
综上,本实施例的基于SDN网络的交换机端口信息感知方法,接收交换机通过端口同步消息发送的聚合端口添加信息,根据聚合端口添加信息感知交换机的聚合端口,并建立聚合端口的拓扑关系,并根据聚合端口的拓扑关系,测算聚合链路的转发代价和质量性能,确定业务路径的切换策略。上述方法能够优化聚合链路的业务路径的切换,增加了该基于SDN网络的交换机端口信息感知方法的实用性。
基于上述实施例,当聚合链路的端口因当前逻辑端口故障等发生切换时,链路两端的交换机可以实时上报当前的出接端口信息,触发重新进行路径的转发策略。
图3是本实施例的基于SDN网络的交换机端口信息感知方法的流程图三。
在步骤310中,接收交换机发送的携带聚合端口切换状态的消息。
举例而言,如果交换机检测到当前聚合链路的成员聚合端口发生故障等需要切换的情况,可以上报携带聚合端口切换状态的消息。
在步骤320中,识别交换机上发生切换的聚合端口,重新确定业务路径的转发策略。
此时,建立拓扑关系的交换机之间的连接端口切换,不改变该拓扑关系,可以识别交换机上发生切换的聚合端口,重新确定业务路径的转发策略。
综上所述,本实施例的基于SDN网络的交换机端口信息感知方法,接收交换机发送的携带聚合端口切换状态的消息;以及识别交换机上发生切换的聚合端口,重新确定业务路径的转发策略。当聚合链路的连接端口需要切换时,重新确定转发策略,以确定新的连接端口,提高了基于SDN网络的交换机端口信息感知方法的实用性。
基于上述实施例,当建立拓扑关系的交换机的所有的聚合端口出现故障的时候,交换机可以上报故障状态消息,触发删除当前聚合链路以重新扫描网路拓扑,重新确定路径的转发策略。
图4是本实施例的基于SDN网络的交换机端口信息感知方法的流程图四。
在步骤410中,接收交换机发送的携带聚合端口故障状态的消息。
当聚合链路中的成员交换机的所有聚合端口出现故障的时候,可以表明当前的聚合链路不能实现流量的转发等功能,可以上报聚合端口故障状态的消息。
在步骤420中,识别交换机之间聚合链路的故障状态并删除聚合链路,重新确定业务路径的转发策略。
根据携带聚合端口故障状态的消息识别交换机之间的故障状态,可以将建立的聚合端口进行删除,重新确定业务路径的转发策略,比如可将业务切换回原来的聚合链路,并为该业务路径涉及的所有的交换机更新流表和组表等业务信息。
综上所述,本实施例的基于SDN网络的交换机端口信息感知方法,接收交换机发送的携带聚合端口故障状态的消息;以及识别交换机之间聚合链路的故障状态并删除聚合链路,以重新确定业务路径的转发策略。该方法在聚合链路上的聚合端口发生故障时,删除当前的聚合链路,并重新确定业务路径的转发 策略,提高了该基于SDN网络的交换机端口信息感知方法的实用性。
为了使得对基于SDN网络的交换机端口信息感知方法实施例的描述更加清楚,下面结合图5和图6对基于SDN网络的交换机端口信息感知方法实施例的工作流程进行示例说明。在通过图5进行说明的示例中,控制交换机逻辑端口的是控制器(controller),逻辑端口是聚合端口类型,建立拓扑关系的交换机是SW1和SW2,且交换机上的聚合端口以“LAG Port”进行标注,交换机上的物理端口用“Physical Port”进行标注。
图5是本实施例的控制聚合端口的方法原理图,如图5所示,SW1和SW2交换机分别将自身的聚合端口LAG端口1和LAG端口2配置加入SDN域,通过端口状态(OFPT_PORT_STATUS)消息上报聚合端口添加信息。当控制器获取到新的交换机逻辑端口,下发链路层发现协议(Link Layer Discovery Protocol,LLDP)拓扑探测报文,依据聚合端口的LLDP拓扑探测结果,为SW1的LAG端口1和SW2的LAG端口2建立拓扑关系。
当SW1与SW2之间的聚合口拓扑关系建立,控制器可以根据感知到的聚合端口添加信息测算SW1-SW2聚合链路的转发代价和质量性能。假设SW1-SW2聚合链路的测算结果优于SW1-SW3聚合链路的测算结果,则控制器选择将运行在原SW1-SW3聚合链路上的业务流量(假设为目的网络1.1.1.0/24的流量),切换到新的SW1-SW2聚合链路。
控制器为SW1和SW2更新下发流表和组表,针对目的网络1.1.1.0/24的流量,指导SW1使用出端口LAG端口1进行转发,指导SW2使用入端口LAG端口2进行接收,使用出端口物理端口1进行转发。
当SW1-SW2聚合链路的成员出接口发生切换时,两端交换机可以通过端口状态(OFPT_PORT_STATUS)消息实时上报变化的当前出接端口信息,触发控制器重新确定路径的转发策略。
当SW1-SW2聚合链路的所有成员口出现故障时,两端交换机通过端口状态(OFPT_PORT_STATUS)消息上报端口故障状态,触发控制器删除SW1-SW2聚合链路,重新扫描网络拓扑,业务流量切换回SW1-SW3聚合链路。
图6是本实施例的控制聚合端口的方法的流程图,与图5相对应,在图6中,建立拓扑关系的交换机是SW1和SW2,以“LAG”标注交换机的聚合端口,且聚合链路采用LACP协议进行聚合链路的聚合。
在步骤6110中,SW1交换机上的逻辑聚合端口LAG 1加入到SDN域中,SW1会发送端口状态(OFPT_PORT_STATUS)消息,通告聚合端口添加事件,消息中包含聚合模式、物理成员口、当前成员口、是否支持快速检测、LACP检测周期以及负荷分担策略等聚合端口添加信息。
控制器识别端口状态(OFPT_PORT_STATUS)消息,ofp_port_desc_prop_type字段值为OFPPDPT_LAGPORT(0x5),表示描述类型为LAG聚合端口,解析后面的TLV格式字段,保存逻辑端口的所有信息,并使用报文外发(OFPT_PACKET_OUT)消息,通知SW1上LAG 1端口做LLDP拓扑探测。因此时SW2的逻辑端口尚未配置加入SDN域,SW1与SW2之间的聚合口拓扑关系尚未建立。
在步骤6120中,SW2交换机上的逻辑聚合端口LAG 2加入到SDN域中,控制器也会识别端口状态(OFPT_PORT_STATUS)消息,保存逻辑端口信息并发送LLDP拓扑探测,LLDP拓扑探测的发现结果会上报控制器。
在步骤620中,SW1与SW2之间的聚合端口拓扑关系建立,触发控制器进行业务路径的切换策略的测算,即根据两端聚合端口的物理成员口带宽和负荷分担策略,测算聚合口链路的转发代价,根据聚合模式、是否支持快速检测和LACP检测周期,判断聚合端口链路的质量性能,将结果应用到多聚合链路的路径选择算法中。
在步骤630中,假设SW1-SW2聚合链路的计算结果优于SW1-SW3聚合链路的计算结果,目的网络1.1.1.0/24的业务流量需要由原SW1-SW3聚合链路切换到新的SW1-SW2聚合链路。控制器为所有转发路径发生变化的交换机更新流表和组表,可以指导目的网络1.1.1.0/24的流量转发。
在步骤6410中,SW1接收到目的网络1.1.1.0/24的报文,根据多级流表的匹配规则,选用连接SW2的聚合端口LAG 1,将报文转发到SW2交换机。
在步骤6420中,SW2接收到目的网络1.1.1.0/24的报文,根据多级流表的匹配规则,将报文转发到SW4,完成了SW1-SW2聚合端口链路的报文转发。
在步骤650中,假设SW1与SW2聚合链路采用LACP协议动态聚合,如果LACP心跳检测或双向转发检测(Bidirectional Forwarding Detection,BFD)快速检测发现当前成员口出现故障,则两端交换机重新协商更换当前成员端口,可以同时上报端口状态(OFPT_PORT_STATUS)消息,携带聚合端口切换状态 的消息。
控制器接收端口状态(OFPT_PORT_STATUS)消息,因为聚合端口的端口状态不变,LLDP拓扑关系不变,因此只进行SW1-SW2聚合链路的转发代价来重新确定业务路径的转发策略。假设SW1-SW2聚合链路的转发代价仍然小于SW1-SW3聚合链路,则不发生业务路径的切换。
在步骤660中,如果LACP心跳检测或BFD快速检测发现所有的成员口出现故障,则两端交换机几乎同时上报端口状态(OFPT_PORT_STATUS)消息,消息的状态(state)字段描述端口故障状态。
在步骤670中,控制器识别聚合链路的故障状态,SW1-SW2的拓扑关系删除,重新确定业务路径的转发策略,业务流量切换回原SW1-SW3聚合链路上,为转发路径发生变化的所有交换机更新流表和组表。
在步骤680中,SW1-SW2聚合口链路上的LACP心跳检测或BFD快速检测恢复正常,SW1和SW2同时上报端口状态(OFPT_PORT_STATUS)消息,通知控制器故障恢复。重复以上620、630、6410和6420的步骤。
以该逻辑端口为隧道端口类型为例说明本实施例的基于SDN网络的交换机端口信息感知方法,该实施例描述SDN网路外的隧道端口加入到SDN网络内,并利用相关的交换机的隧道建立运维业务通道,实现远端业务流镜像的控制方法的实施例。
图7是本实施例的基于SDN网络的交换机端口信息感知方法的流程图五。
在步骤710中,接收交换机通过端口同步消息发送的隧道端口添加信息。
如表7所示,该隧道端口添加信息可为隧道端口的目的地址、虚拟专用网络(Virtual Private Network,VPN)路由转发信息、隧道端口是否支持认证密钥以及序列号信息等。
表7
Figure PCTCN2017077550-appb-000010
Figure PCTCN2017077550-appb-000011
在步骤720中,根据隧道端口添加信息感知交换机的隧道端口。
在步骤730中,通过隧道端口添加信息识别与隧道端口对应的运维接入节点,利用隧道端口建立运维业务通道。
可根据隧道端口是否支持认证密钥和序列号信息检查并判断隧道端口的安全性。
如果隧道端口安全,则识别与隧道端口对应的运维接入节点安全,并利用隧道端口建立运维业务通道。
在步骤740中,将交换机的业务流量通过运维业务通道镜像到运维接入节点。
可选地,将交换机的业务流量通过运维业务通道镜像到运维接入节点,以匹配远端服务。
为了使得对基于SDN网络的交换机端口信息感知方法实施例的描述更加清楚,下面结合图8和图9对基于SDN网络的交换机端口信息感知方法实施例的工作流程进行示例说明。在通过图8进行说明的示例中,逻辑端口是隧道端口类型,在该示例中以GRE表示隧道端口,控制交换机逻辑端口的是控制器,交换机以SW1进行标注。说明如下:
图8是本实施例的控制隧道端口的方法的原理图,如图8所示,SW1交换机将SDN域外的GRE1配置加入SDN域,通过端口状态(OFPT_PORT_STATUS)消息上报隧道端口添加信息。控制器根据隧道端口的目的地址、VPN路由转发信息等识别远端设备的业务角色,根据隧道端口是否支持认证密钥、序列号信息等判断隧道的安全性。
如果远端地址被识别为安全可用的运维接入节点,则控制器利用交换机隧道端口建立运维业务通道。
控制器根据运维业务使用的网络协议、协议端口号为隧道端口所在交换机下发流表规则,指引远端的业务请求报文由交换机解封隧道信息后上送控制器 处理,指引控制器回复的业务应答报文由交换机的隧道端口进行封装发送。
当远端发起的业务流镜像请求为控制器所接受(所谓远端流镜像功能,即将指定的交换机节点上的指定业务流量,镜像到远端运维节点,例如远程抓包),则控制器为业务指定的交换机下发流表规则,指引目标流量经GRE转发到远端节点。
结合图9,对控制隧道端口的方法进行详细的说明。与图8对应,在该示例中以SW表示交换机,GRE表示隧道端口,以Tunnel Port表示隧道端口的端口号等。图9是本实施例的控制隧道端口的方法的流程图。
在步骤910中,SW1交换机将SDN域外的GRE隧道端口1配置加入SDN域,通过端口状态(OFPT_PORT_STATUS)消息上报隧道端口添加信息,通告端口添加事件,消息中携带隧道的源地址、目的地址、VPN路由转发实例以及认证密钥等信息。
在步骤920中,控制器识别端口状态(OFPT_PORT_STATUS)消息中TLV格式的GRE隧道端口添加信息,根据隧道的目的地址、VPN路由转发实例等信息识别远端设备的业务角色,根据隧道是否支持认证密钥、序列号检查、校验和检查等信息判断隧道的安全性。
根据上述隧道端口添加信息,远端地址被识别为安全可用的运维接入节点,控制器向运维业务开放网络协议、协议端口号,为隧道端口所在交换机下发流表,指定隧道解封装后的远端业务请求报文通过报文上送(OFPT_PACKET_IN)消息上送控制器进行处理,建立运维业务通道。
在步骤930中,控制器为远端运维接入节点颁发接入许可证书,将证书报文通过报文外发(OFPT_PACKET_OUT)消息下发交换机,指定出端口为GRE,由交换机完成证书报文的隧道封装和外发。
在步骤940中,GRE所在的SW1交换机,根据报文外发(OFPT_PACKET_OUT)消息中指定的隧道出端口,完成GRE隧道封装,外发至远端的运维接入节点。
远端的运维接入节点通过GRE隧道接收报文,解封隧道头信息,获取SDN控制器颁布的接入许可证书。
在步骤950中,远端的运维接入节点发送SDN网络的业务流查询请求,携 带证书信息,通过GRE隧道发送至SW1交换机。
在步骤960中,SW1交换机解封隧道报文,根据控制器下发的流表规则,将符合运维网络协议、协议端口号的业务请求报文,通过报文上送(OFPT_PACKET_IN)消息上送控制器进行处理。
在步骤970中,控制器响应远端运维接入节点的业务流查询请求,将查询结果通过报文外发(OFPT_PACKET_OUT)消息下发SW1交换机,指定出端口为GRE。
在步骤980中,SW1交换机,根据报文外发(OFPT_PACKET_OUT)消息中指定的GRE隧道出端口,完成隧道信息的封装,外发至远端的运维接入节点。
在步骤990中,远端的运维接入节点根据返回的流量查询结果,由用户指定选择需要镜像的流量,比如将SW2交换机目的网络为1.1.1.0/24的业务流量镜像到远端节点。
在步骤9100中,SW1交换机解封隧道报文,通过报文上送(OFPT_PACKET_IN)消息将远端的流镜像请求报文上送控制器进行处理。
在步骤9110中,控制器根据远端流镜像的请求目标为SW1和SW2交换机下发流表规则,指导镜像流量的转发。
在步骤9120中,SW2交换机根据流表规则,为目的网络为1.1.1.0/24的业务流量增加镜像处理(修改报文头,打上特殊标识,转发至SW1交换机)。
在步骤9130中,SW1交换机根据流表规则,识别带有镜像特殊标识的报文,通过GRE隧道封装转发。
在步骤9140中,远端的运维节点解封隧道头部,获取被镜像的业务流量。
综上所述,本实施例的基于SDN网络的交换机端口信息感知方法,接收交换机通过端口同步消息发送的隧道端口添加信息,根据隧道端口添加信息感知交换机的隧道端口,并通过隧道端口添加信息识别与隧道端口对应的运维接入节点,利用隧道端口建立运维业务通道,从而将交换机的业务流量通过运维业务通道镜像到运维接入节点。该方法通过端口同步消息感知新增的隧道端口添加信息,根据隧道端口添加信息将远端识别为运维接入节点,利用交换机隧道建立运维业务通道,实现远端业务流镜像,实现了控制器对交换机逻辑端口信息的灵活感知和应用,提高了该基于SDN网络的交换机端口信息感知方法的实 用性。
本实施例提出了一种基于SDN网络的交换机端口信息感知装置,图10是本实施例的基于SDN网络的交换机端口信息感知装置的结构示意图,如图10所示,该基于SDN网络的交换机端口信息感知装置包括接收模块1010和控制模块1020。
接收模块1010设置为接收交换机通过端口同步消息发送的逻辑端口信息,其中,逻辑端口信息包括:用于接入SDN网络的扩展字段信息。
可选地,接收模块1010可接收交换机通过端口同步消息发送的逻辑端口信息,比如可接收交换机通过OPENFLOW协议上报的端口状态(OFPT_PORT_STATUS)消息携带的逻辑端口信息。
上述逻辑端口信息可以包括用于接入SDN网络的扩展字段信息,该扩展字段信息可以保证交换机上的逻辑端口能够被接入SDN网络中,该扩展字段信息可包括逻辑端口号字段、端口类型描述字段以及端口附加信息字段等。
控制模块1020设置为根据逻辑端口信息感知交换机中的逻辑端口,并根据应用需求对逻辑端口进行相应的控制。
可选地,控制模块1020根据获取的逻辑端口信息感知交换机中的逻辑端口,以根据应用需求对逻辑端口进行相应的控制。比如当前应用需求是聚合链路下的业务路径的切换,控制模块1020可根据交换机中相关的逻辑端口信息进行相应的业务路径切换的控制等。
控制模块1020通过获取的逻辑端口信息感知交换机的逻辑端口,以获取在应用场景中涉及逻辑端口的详细描述提供相应支撑,以实现对逻辑端口详细的控制,满足相应的场景需求。
综上所述,本实施例的基于SDN网络的交换机端口信息感知装置,接收交换机通过端口同步消息发送的逻辑端口信息,并根据逻辑端口信息中的接入SDN网络的扩展字段信息等感知交换机中的逻辑端口,以根据应用需求对逻辑端口进行相应的控制。该装置通过逻辑端口信息对交换机的逻辑端口进行详细的描述,以根据该逻辑端口信息感知交换机的逻辑端口,并为交换机的需求提供支撑,实现了控制器对交换机逻辑端口信息的灵活感知和应用,且配置简单,改造方便,实用性高。
由于在实际的应用场景中,交换机的逻辑端口具有多样性,比如,交换机的端口可以是隧道端口、LAG聚合端口、环回端口等逻辑端口,因此,上述对逻辑端口进行控制的方法根据应用需求的不同而不同。为了清楚的说明本实施例的基于SDN网络的交换机端口信息感知装置,下面以逻辑端口为聚合端口类型和隧道端口类型为例进行举例说明。
以该逻辑端口是聚合端口为例进行说明。
图11是本实施例的基于SDN网络的交换机端口信息感知装置的结构示意图一,如图11所示,在如图10所示的基础上,该控制模块1020包括建立单元1021和确定单元1022。
在本实施例中,接收模块1010可以设置为接收交换机通过端口同步消息发送的聚合端口添加信息。
其中,该聚合端口添加消息可包括聚合模式、物理成员口、当前成员口、是否支持快速检测、LACP检测周期以及负荷分担策略等。
建立单元1021设置为根据聚合端口添加信息感知交换机的聚合端口,并建立聚合端口的拓扑关系。
可选地,当根据聚合端口添加信息感知交换机的聚合端口后,建立单元1021可下发拓扑探测报文,依据该报文的探测结果,为相应的聚合端口建立拓扑关系。
确定单元1022设置为根据聚合端口的拓扑关系,测算聚合链路的转发代价和质量性能,确定业务路径的切换策略。
可选地,当建立聚合端口的拓扑关系后,确定单元1022根据感知到的聚合端口添加信息测算聚合链路的转发代价和质量性能,以确定业务路径的切换策略。
综上,本实施例的基于SDN网络的交换机端口信息感知装置,接收交换机通过端口同步消息发送的聚合端口添加信息,根据聚合端口添加信息感知交换机的聚合端口,并建立聚合端口的拓扑关系,并根据聚合端口的拓扑关系,测算聚合链路的转发代价和质量性能,确定业务路径的切换策略。该装置优化了聚合链路的业务路径的切换,增加了该基于SDN网络的交换机端口信息感知装置的实用性。
基于上述实施例,当聚合链路的端口因当前逻辑端口故障等发生切换的时,链路两端的交换机可以实时上报当前的出接端口信息,从而触发重新进行路径的转发策略。
图12是本实施例的基于SDN网络的交换机端口信息感知装置的结构示意图二,如图12所示,在如图10所示的基础上,该基于SDN网络的交换机端口信息感知装置还包括:确定模块1030。
其中,在本实施例中,接收模块1010设置为接收交换机发送的携带聚合端口切换状态的消息。
举例而言,如果交换机检测到当前聚合链路的成员聚合端口发生故障等需要切换的情况,接收模块1010可以接收上报的携带聚合端口切换状态的消息。
确定模块1030设置为识别交换机上发生切换的聚合端口,重新确定业务路径的转发策略。
综上所述,本实施例的基于SDN网络的交换机端口信息感知装置,接收交换机发送的携带聚合端口切换状态的消息;以及识别交换机上发生切换的聚合端口,重新确定业务路径的转发策略。当聚合链路的连接端口需要切换时,可以重新确定转发策略,以确定新的连接端口,提高了基于SDN网络的交换机端口信息感知装置的实用性。
基于上述实施例,当建立拓扑关系的交换机的所有的聚合端口出现故障的时候,交换机可以上报故障状态消息,触发删除当前聚合链路以重新扫描网路拓扑,重新确定路径的转发策略。
如图12所示,在如图10所示的基础上,基于SDN网络的交换机端口信息感知装置还包括:确定模块1030。
其中,在本实施例中,接收模块1010设置为接收交换机发送的携带聚合端口故障状态的消息。
可选地,当聚合链路中的成员交换机的所有聚合端口出现故障的时候,可以表明当前的聚合链路不能实现流量的转发等功能,因此接收模块1010接收上报的聚合端口故障状态的消息。
确定模块1030设置为识别交换机之间聚合链路的故障状态并删除聚合链路,重新确定业务路径的转发策略。
可选地,确定模块1030根据携带聚合端口故障状态的消息识别交换机之间的故障状态,将建立的聚合端口进行删除,重新确定业务路径的转发策略,比如可将业务切换回原来的聚合链路,并为该业务路径涉及的所有的交换机更新流表和组表等业务信息。
综上所述,本实施例的基于SDN网络的交换机端口信息感知装置,接收交换机发送的携带聚合端口故障状态的消息;以及识别交换机之间聚合链路的故障状态并删除聚合链路,以重新确定业务路径的转发策略。该方法在聚合链路上的聚合端口发生故障时,可以删除当前的聚合链路,并重新确定业务路径的转发策略,提高了该基于SDN网络的交换机端口信息感知装置的实用性。
以该逻辑端口为隧道端口类型为例说明本实施例的基于SDN网络的交换机端口信息感知装置,该实施例描述SDN网路外的隧道端口加入到SDN网络内,并利用相关的交换机的隧道建立运维业务通道,实现远端业务流镜像的控制的实施例。
图13是本实施例的基于SDN网络的交换机端口信息感知装置的结构示意图三,如图13所示,在如图10所示的基础上,控制模块1020包括:感知单元1023、建立单元1021和镜像单元1024。
其中,在本实施例中,接收单元1010设置为接收交换机通过端口同步消息发送的隧道端口添加信息。
可选地,该隧道端口添加信息可为隧道端口的目的地址、VPN路由转发信息、隧道端口是否支持认证密钥以及序列号信息等。
感知单元1023设置为根据隧道端口添加信息感知交换机的隧道端口。
建立单元1021设置为通过隧道端口的添加信息识别与隧道端口对应的运维接入节点,利用隧道端口建立运维业务通道。
可选地,建立单元1021可根据隧道端口是否支持认证密钥和序列号信息检查并判断隧道端口的安全性。
如果隧道端口安全,建立单元1021可以识别与隧道端口对应的运维接入节点安全,并利用隧道端口建立运维业务通道。
镜像单元1024设置为将交换机的业务流量通过运维业务通道镜像到运维接入节点。
可选地,镜像单元1024将交换机的业务流量通过运维业务通道镜像到运维接入节点,以匹配远端服务。
本实施例基于SDN网络的交换机端口信息感知装置实施例的技术特征与基于SDN网络的交换机端口信息感知方法实施例中的技术特征一一对应,因此在基于SDN网络的交换机端口信息感知装置实施例中未披露的细节,参照对基于SDN网络的交换机端口信息感知方法实施例的描述。
综上所述,本实施例的基于SDN网络的交换机端口信息感知装置,接收交换机通过端口同步消息发送的隧道端口添加信息,根据隧道端口添加信息感知交换机的隧道端口,并通过隧道端口的添加信息识别与隧道端口对应的运维接入节点,利用隧道端口建立运维业务通道,从而将交换机的业务流量通过运维业务通道镜像到运维接入节点。该装置通过端口同步消息感知新增的隧道端口添加信息,根据隧道端口添加信息将远端识别为运维接入节点,利用交换机隧道建立运维业务通道,实现远端业务流镜像,实现了控制器对交换机逻辑端口信息的灵活感知和应用,提高了该基于SDN网络的交换机端口信息感知装置的实用性。
为了实现上述实施例,如图14所示,本实施例还提出了一种终端设备,包括:壳体140、处理器141、存储器142、电路板143和电源电路144,其中,电路板143安置在壳体140围成的空间内部,处理器141和存储器142设置在电路板143上;电源电路144设置为为终端设备的电路或器件供电本实施例中电源电路144可以设置于壳体140内,电源电路还可以设置于壳体140之外;存储器142设置为存储可执行程序代码;处理器141通过读取存储器142中存储的可执行程序代码来运行与可执行程序代码对应的程序,以执行以下步骤:
接收交换机通过端口同步消息发送的逻辑端口信息,其中,逻辑端口信息包括:用于接入SDN网络的扩展字段信息;以及
根据逻辑端口信息感知交换机中的逻辑端口,并根据应用需求对逻辑端口进行相应的控制。
上述用于终端设备的描述参照上述参照图1至图9对基于SDN网络的交换机端口信息感知方法的功能描述,其技术特征与基于SDN网络的交换机端口信息感知方法的技术特征一一对应。
综上所述,本实施例的终端设备,接收交换机通过端口同步消息发送的逻 辑端口信息,并根据逻辑端口信息中的接入SDN网络的扩展字段信息等感知交换机中的逻辑端口,以根据应用需求对逻辑端口进行相应的控制。该终端设备通过逻辑端口信息对交换机的逻辑端口进行详细的描述,以根据该逻辑端口信息感知交换机的逻辑端口,并为交换机的需求提供支撑,实现了控制器对交换机逻辑端口信息的灵活感知和应用,且配置简单,改造方便,实用性高。
本实施例还提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令设置为执行上述任一实施例中的方法。
上述实施例的技术方案可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括一个或多个指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行上述实施例中所述方法的全部或部分步骤。而前述的存储介质可以是非暂态存储介质,包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等多种可以存储程序代码的介质,也可以是暂态存储介质。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、或“一些示例”等的描述意指结合该实施例或示例描述的特征、结构、材料或者特点包含于至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
工业实用性
上述实施例提供的基于SDN网络的交换机端口信息感知方法、装置和终端设备,实现了控制器对交换机逻辑端口信息的灵活感知和应用,且配置简单,改造方便,实用性高。

Claims (20)

  1. 一种基于软件定义网络SDN网络的交换机端口信息感知方法,包括:
    接收交换机通过端口同步消息发送的逻辑端口信息,其中,所述逻辑端口信息包括:用于接入SDN网络的扩展字段信息;以及
    根据所述逻辑端口信息感知所述交换机中的逻辑端口,并根据应用需求对所述逻辑端口进行相应的控制。
  2. 如权利要求1所述的方法,其中,所述用于接入SDN网络的扩展字段信息,包括:
    逻辑端口号字段、端口类型描述字段以及端口附加信息字段。
  3. 如权利要求2所述的方法,其中,所述端口类型描述字段为聚合端口类型,所述接收交换机通过端口同步消息发送的逻辑端口信息,包括:
    接收交换机通过端口同步消息发送的聚合端口添加信息;以及
    所述根据所述逻辑端口信息感知所述交换机中的逻辑端口,并根据应用需求对所述逻辑端口进行相应的控制,包括:
    根据所述聚合端口添加信息感知所述交换机的聚合端口,并建立所述聚合端口的拓扑关系;以及
    根据所述聚合端口的拓扑关系,测算聚合链路的转发代价和质量性能,确定业务路径的切换策略。
  4. 如权利要求3所述的方法,其中,所述聚合端口添加信息包括:
    聚合模式、物理成员口、当前成员口、是否支持快速检测、链路汇聚控制协议LACP检测周期以及负荷分担策略。
  5. 如权利要求3所述的方法,还包括:
    接收所述交换机发送的携带聚合端口切换状态的消息;以及
    识别所述交换机上发生切换的聚合端口,重新确定业务路径的转发策略。
  6. 如权利要求3所述的方法,还包括:
    接收所述交换机发送的携带聚合端口故障状态的消息;以及
    识别所述交换机之间聚合链路的故障状态并删除所述聚合链路,重新确定业务路径的转发策略。
  7. 如权利要求2所述的方法,其中,所述端口类型描述字段为隧道端口类型,所述接收交换机通过端口同步消息发送的逻辑端口信息,包括:
    接收交换机通过端口同步消息发送的隧道端口添加信息;以及
    所述根据所述逻辑端口信息感知所述交换机中的逻辑端口,并根据应用需求对所述逻辑端口进行相应的控制,包括:
    根据所述隧道端口添加信息感知所述交换机的隧道端口;
    通过所述隧道端口添加信息识别与所述隧道端口对应的运维接入节点,利用所述隧道端口建立运维业务通道;以及
    将所述交换机的业务流量通过所述运维业务通道镜像到所述运维接入节点。
  8. 如权利要求7所述的方法,其中,所述隧道端口添加信息包括:
    隧道端口的目的地址、虚拟专用网络VPN路由转发信息、隧道端口是否支持认证密钥以及序列号信息。
  9. 如权利要求8所述的方法,其中,所述通过所述隧道端口添加信息识别与所述隧道端口对应的运维接入节点,利用所述隧道端口建立运维业务通道,包括:
    根据所述隧道端口是否支持认证密钥和所述序列号信息检查并判断所述隧道端口的安全性;以及
    如果所述隧道端口安全,则识别与所述隧道端口对应的运维接入节点安全, 并利用所述隧道端口建立运维业务通道。
  10. 一种基于软件定义网络SDN网络的交换机端口信息感知装置,包括:
    接收模块,设置为接收交换机通过端口同步消息发送的逻辑端口信息,其中,所述逻辑端口信息包括:用于接入SDN网络的扩展字段信息;以及
    控制模块,设置为根据所述逻辑端口信息感知所述交换机中的逻辑端口,并根据应用需求对所述逻辑端口进行相应的控制。
  11. 如权利要求10所述的装置,其中,所述用于接入SDN网络的扩展字段信息,包括:
    逻辑端口号字段、端口类型描述字段以及端口附加信息字段。
  12. 如权利要求10所述的装置,其中,所述端口类型描述字段为聚合端口类型,所述接收模块设置为:
    接收交换机通过端口同步消息发送的聚合端口添加信息;以及
    所述控制模块包括:
    建立单元,设置为根据所述聚合端口添加信息感知所述交换机的聚合端口,并建立所述聚合端口的拓扑关系;以及
    确定单元,设置为根据所述聚合端口的拓扑关系,测算聚合链路的转发代价和质量性能,确定业务路径的切换策略。
  13. 如权利要求12所述的装置,其中,所述聚合端口添加信息包括:
    聚合模式、物理成员口、当前成员口、是否支持快速检测、链路汇聚控制协议LACP检测周期以及负荷分担策略。
  14. 如权利要求12所述的装置,其中,
    所述接收模块还设置为接收所述交换机发送的携带聚合端口切换状态的消息;
    所述装置还包括确定模块,设置为识别所述交换机上发生切换的聚合端口,重新确定业务路径的转发策略。
  15. 如权利要求12所述的装置,其中,
    所述接收模块还设置为接收所述交换机发送的携带聚合端口故障状态的消息;以及
    所述装置还包括确定模块,设置为识别所述交换机之间聚合链路的故障状态并删除所述聚合链路,重新确定业务路径的转发策略。
  16. 如权利要求10所述的装置,其中,所述端口类型描述字段为隧道端口类型,所述接收模块设置为接收交换机通过端口同步消息发送的隧道端口添加信息;以及
    所述控制模块包括:
    感知单元,设置为根据所述隧道端口添加信息感知所述交换机的隧道端口;
    建立单元,设置为通过所述隧道端口添加信息识别与所述隧道端口对应的运维接入节点,利用所述隧道端口建立运维业务通道;以及
    镜像单元,设置为将所述交换机的业务流量通过所述运维业务通道镜像到所述运维接入节点。
  17. 如权利要求16所述的装置,其中,所述隧道端口添加信息包括:
    隧道端口的目的地址、虚拟专用网络VPN路由转发信息、隧道端口是否支持认证密钥以及序列号信息。
  18. 如权利要求17所述的装置,其中,所述建立单元,设置为根据所述隧道端口是否支持认证密钥和所述序列号信息检查并判断所述隧道端口的安全性;以及
    如果所述隧道端口安全,则识别与所述隧道端口对应的运维接入节点安全, 并利用所述隧道端口建立运维业务通道。
  19. 一种终端设备,包括:壳体、处理器、存储器、电路板和电源电路,其中,所述电路板安置在所述壳体围成的空间内部,所述处理器和所述存储器设置在所述电路板上;所述电源电路设置为为终端设备的电路或器件供电;所述存储器设置为存储可执行程序代码;以及所述处理器通过读取所述存储器中存储的可执行程序代码来运行与所述可执行程序代码对应的程序,以执行以下步骤:
    接收交换机通过端口同步消息发送的逻辑端口信息,其中,所述逻辑端口信息包括:用于接入SDN网络的扩展字段信息;以及
    根据所述逻辑端口信息感知所述交换机中的逻辑端口,并根据应用需求对所述逻辑端口进行相应的控制。
  20. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令设置为执行权利要求1-9中任一项的方法。
PCT/CN2017/077550 2016-04-18 2017-03-21 基于sdn网络的交换机端口信息感知方法、装置和终端设备 WO2017181807A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610241280.4 2016-04-18
CN201610241280.4A CN107306193B (zh) 2016-04-18 2016-04-18 基于sdn网络的交换机端口信息感知方法、装置和终端设备

Publications (1)

Publication Number Publication Date
WO2017181807A1 true WO2017181807A1 (zh) 2017-10-26

Family

ID=60116585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/077550 WO2017181807A1 (zh) 2016-04-18 2017-03-21 基于sdn网络的交换机端口信息感知方法、装置和终端设备

Country Status (2)

Country Link
CN (1) CN107306193B (zh)
WO (1) WO2017181807A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108809849A (zh) * 2018-08-30 2018-11-13 新华三技术有限公司 一种流量限速方法、装置及控制器
CN111277423A (zh) * 2018-12-04 2020-06-12 中兴通讯股份有限公司 数据中心流量互通方法、装置、设备及存储介质
CN112637079A (zh) * 2020-12-16 2021-04-09 中国电子科技集团公司第三十研究所 一种多线路流量冲击控制方法及设备
CN115225479A (zh) * 2021-03-31 2022-10-21 大唐移动通信设备有限公司 传输路径聚合方法、装置、网络交换设备及存储介质

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109194547B (zh) * 2018-09-29 2020-06-16 新华三技术有限公司 报文传输方法、装置、本端设备及可读存储介质
CN113660136B (zh) * 2021-08-12 2023-11-21 中国工商银行股份有限公司 双路交换机端口可用性检查方法、装置、设备及存储介质
CN114253197B (zh) * 2021-12-23 2024-05-28 浪潮思科网络科技有限公司 基于sdn网络的供电设备管理系统、方法、设备及介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013148303A1 (en) * 2012-03-27 2013-10-03 Alcatel Lucent System and method for virtual fabric link failure recovery
CN104092604A (zh) * 2014-07-02 2014-10-08 杭州华三通信技术有限公司 报文传输控制方法及装置
CN104253770A (zh) * 2013-06-27 2014-12-31 杭州华三通信技术有限公司 实现分布式虚拟交换机系统的方法及设备
CN104935594A (zh) * 2015-06-16 2015-09-23 杭州华三通信技术有限公司 基于虚拟可扩展局域网隧道的报文处理方法及装置
CN105262667A (zh) * 2015-09-17 2016-01-20 杭州数梦工场科技有限公司 Overlay网络中控制组播传输的方法、装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105376197B (zh) * 2014-08-22 2019-02-22 中国电信股份有限公司 实现层次化网络抽象的方法和系统
CN104486119A (zh) * 2014-12-16 2015-04-01 盛科网络(苏州)有限公司 通过改进openflow协议实现批量管理交换机的方法及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013148303A1 (en) * 2012-03-27 2013-10-03 Alcatel Lucent System and method for virtual fabric link failure recovery
CN104253770A (zh) * 2013-06-27 2014-12-31 杭州华三通信技术有限公司 实现分布式虚拟交换机系统的方法及设备
CN104092604A (zh) * 2014-07-02 2014-10-08 杭州华三通信技术有限公司 报文传输控制方法及装置
CN104935594A (zh) * 2015-06-16 2015-09-23 杭州华三通信技术有限公司 基于虚拟可扩展局域网隧道的报文处理方法及装置
CN105262667A (zh) * 2015-09-17 2016-01-20 杭州数梦工场科技有限公司 Overlay网络中控制组播传输的方法、装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108809849A (zh) * 2018-08-30 2018-11-13 新华三技术有限公司 一种流量限速方法、装置及控制器
CN111277423A (zh) * 2018-12-04 2020-06-12 中兴通讯股份有限公司 数据中心流量互通方法、装置、设备及存储介质
CN111277423B (zh) * 2018-12-04 2022-05-20 中兴通讯股份有限公司 数据中心流量互通方法、装置、设备及存储介质
EP3866393A4 (en) * 2018-12-04 2022-07-06 ZTE Corporation METHOD AND APPARATUS FOR EXCHANGE OF DATA CENTER TRAFFIC, DEVICE AND INFORMATION MEDIA
CN112637079A (zh) * 2020-12-16 2021-04-09 中国电子科技集团公司第三十研究所 一种多线路流量冲击控制方法及设备
CN112637079B (zh) * 2020-12-16 2022-08-23 中国电子科技集团公司第三十研究所 一种多线路流量冲击控制方法及设备
CN115225479A (zh) * 2021-03-31 2022-10-21 大唐移动通信设备有限公司 传输路径聚合方法、装置、网络交换设备及存储介质

Also Published As

Publication number Publication date
CN107306193A (zh) 2017-10-31
CN107306193B (zh) 2020-11-27

Similar Documents

Publication Publication Date Title
WO2017181807A1 (zh) 基于sdn网络的交换机端口信息感知方法、装置和终端设备
US10003571B2 (en) Method and apparatus for implementing communication between virtual machines
US9823916B2 (en) Methods and apparatus for improving compatibility between network devices
US9107151B2 (en) Wireless system with split control plane and data plane
EP3185492B1 (en) Method for synchronizing forwarding tables, network device, and system
CN107113241B (zh) 路由确定方法、网络配置方法以及相关装置
WO2015010518A1 (zh) 确定业务传输路径的方法、装置及系统
US20210289436A1 (en) Data Processing Method, Controller, and Forwarding Device
CN105262667A (zh) Overlay网络中控制组播传输的方法、装置
CN105847185B (zh) 分布式设备的报文处理方法、装置及分布式设备
US9432260B2 (en) Automated configuration for network devices
WO2018171529A1 (zh) 一种实现双控制平面的方法、装置、计算机存储介质
WO2017071328A1 (zh) 一种负载分担方法以及相关装置
US11296979B2 (en) Method and system for symmetric integrated routing and bridging
WO2014059787A1 (zh) 通信连接方法、通信装置及通信系统
CN108075969A (zh) 报文转发方法和装置
CN105191339A (zh) 在非同构虚拟机架中的软件冗余
US9749215B2 (en) Method for receiving information, method for sending information, and apparatus for the same
CN107911495A (zh) 一种mac地址同步方法和vtep
US20210112607A1 (en) Communication system and communication method
CN109995678B (zh) 报文传输方法及装置
WO2016112656A1 (zh) 业务处理方法及装置
US9853891B2 (en) System and method for facilitating communication
CN109347734A (zh) 一种报文发送方法、装置、网络设备和计算机可读介质
WO2015062370A1 (zh) 一种路径建立的方法和装置

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17785292

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17785292

Country of ref document: EP

Kind code of ref document: A1