WO2017181726A1 - 不同光环境下对目标物的视觉功效的测算方法 - Google Patents

不同光环境下对目标物的视觉功效的测算方法 Download PDF

Info

Publication number
WO2017181726A1
WO2017181726A1 PCT/CN2016/113400 CN2016113400W WO2017181726A1 WO 2017181726 A1 WO2017181726 A1 WO 2017181726A1 CN 2016113400 W CN2016113400 W CN 2016113400W WO 2017181726 A1 WO2017181726 A1 WO 2017181726A1
Authority
WO
WIPO (PCT)
Prior art keywords
color temperature
target
visual
color
environment
Prior art date
Application number
PCT/CN2016/113400
Other languages
English (en)
French (fr)
Inventor
胡江碧
李晓宇
高小娟
张晓芹
管桂平
王建民
刘峰
高林熹
张元峰
刘佳美
徐鹏飞
陈建龙
陈杰超
王荣华
Original Assignee
北京工业大学
贵州高速公路集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京工业大学, 贵州高速公路集团有限公司 filed Critical 北京工业大学
Priority to US15/580,363 priority Critical patent/US10746605B2/en
Priority to EP16899305.3A priority patent/EP3282239A4/en
Publication of WO2017181726A1 publication Critical patent/WO2017181726A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/60Radiation pyrometry, e.g. infrared or optical thermometry using determination of colour temperature
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16ZINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
    • G16Z99/00Subject matter not provided for in other main groups of this subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/60Radiation pyrometry, e.g. infrared or optical thermometry using determination of colour temperature
    • G01J2005/608Colour temperature of light sources

Definitions

  • the invention relates to the technical field of highway tunnel illumination, in particular to a method for measuring visual effects of a target object under different light environments and a method for calculating a color temperature standard of a middle section of a daytime tunnel.
  • the light environment generated by the artificial light source can meet the driver's safety, stability and comfort requirements when driving the vehicle at night and in the middle of the tunnel. How to measure these light environment?
  • the parameters include the color temperature of the artificial light source, the color rendering, the brightness parameter value and other influencing factors. It provides a guiding standard for setting the light environment to achieve safe and comfortable driving visual recognition level of the road, and has been a problem that has not been solved well.
  • the evaluation of the light environment parameter standard of the night road and the middle section of the tunnel lacks the visual effect research of the driver under different light source characteristics. Because the driver's visual experience is different under different light color environments and different time periods, There is a difference in the target recognition requirements. Therefore, it is necessary to find a comprehensive, objective and simple measurement method and system to analyze the visual effects of the driver under different light source characteristics, and to obtain the driver's visual recognition under different light environments. Light environmental parameter indicators for demand.
  • the object of the present invention is to solve the above-mentioned technical defects existing in the prior art, and to provide a method for calculating a light environment parameter standard of a night road and a middle section of a tunnel according to reliability, simple operation and satisfying driving visual recognition requirements, and also provides a method.
  • the test is complicated and the results do not take into account the technical defects of the driver's psychological factors.
  • the parameter indexes such as color temperature, color rendering and brightness level of the light environment, the light environment parameter indicators satisfying the driver's visual recognition requirements under different light environments are obtained.
  • a method for estimating visual power of a target in different light environments including the following steps:
  • the target environment is a tunnel intermediate segment, and determining, according to the color temperature value of the time period in the color temperature time relationship, determining, in the night interval segment, performing a visual recognition test step according to the human body circadian rhythm, the visual recognition test step
  • the method includes: c1) randomly placing a target object at a target position of the middle section of the tunnel, the target surface surface reflection coefficient is R, the side length is C; c2) designating the measured driver in the middle section from the target object position
  • the driver's position of D is set to the visual height of the tested driver as H, for the tested driver to wear the eye movement device and to calibrate, and to block the visual direction of the tested driver with the obstruction; c3)
  • the calibrated eye movement device records an eye movement video, removes the occlusion object, instructs the tested driver to perform a target search and visualizes the target object; c4) operates the eye movement device to stop eye movement video recording, Recording the visual result of the tested driver and the eye movement video; c5) replacing the tested driver,
  • a method for calculating a color temperature standard of a middle section of a daytime tunnel including
  • the parameters of the light environment include a color temperature parameter, a color rendering index, a brightness light environment parameter, and selecting a set of light environment parameters including a color temperature, a color rendering index, and a brightness;
  • the method of the present invention is based on the circadian rhythm of the human body, by merging and screening information such as the driving visual recognition reaction in the middle section of the tunnel and the visual recognition effect on the small target object in the different light environments created by the driver.
  • the driver's color temperature adaptability analysis of the light environment comprehensively proposes the middle section of the tunnel or the night road safety visual light environment guidance index based on the human physiological rhythm to meet the driver's safety visual recognition, and the driver from the human physiological rhythm from different time periods. From the perspective of the driver's visual demand characteristics, the accuracy of the safety evaluation of the tunnel middle section or night road light environment is improved, and the operation method is simple, which provides a reference for the study of road traffic safety light environment.
  • Figure 1 is a flow chart of a method for measuring the visual effect of a target in different light environments in the middle section of the tunnel;
  • Figure 2 is a schematic diagram of the middle section of the simulated tunnel
  • Figure 3 is a schematic diagram showing the test method for measuring the visual effect of the target in different light environments
  • Figure 12 is a schematic diagram of the test method for calculating the color temperature standard of the middle section of the daytime tunnel
  • Figure 13 Natural light color temperature distribution map during sunny day
  • Figure 14 shows the distribution of natural light color temperature during cloudy days.
  • the tested driver 105 obscures.
  • the test of the present invention is carried out in the middle section of the tunnel, but the result can also be applied to the lighting setting of the night road.
  • FIG. 1 is a flow chart of a method for measuring visual power of a target object in a different light environment of a tunnel in the middle of the tunnel
  • FIG. 3 shows a method for calculating a visual power of a target object in different light environments provided by the present invention.
  • the present invention provides a method for measuring visual effects of a target in different light environments, to calculate factors affecting visual effects of the target in different light environments, and to ensure that the light environment set according to the test results can satisfy the driver. The security of sight.
  • a method for calculating visual effects on a target in different light environments includes the following steps:
  • Brightness set a set of light environment parameters including color temperature, color rendering index, and brightness to set the light environment. Since the parameters of the light source in the target environment can represent the light environment parameters of the target environment to a certain extent, the above setting A set of light environment parameters including color temperature, color rendering index, and brightness can be realized by setting parameters of the light source.
  • the target environment In order to directly obtain the light environment parameters of the target environment, the target environment can be measured by the measuring device after setting. Actual color temperature, color rendering index, brightness and other parameters; for brightness, in order to truly reflect the target environment, the brightness value of multiple points in the target environment can be measured, and then the average value is obtained as the brightness value of the target environment.
  • the color temperature is fully considered to affect the color temperature change in different time periods, and more accurately reflect the light environment of the target environment.
  • the color temperature values in the different time periods are color temperature values for a continuous period of time, and the specific time length should be considered for each setting.
  • the experimental time after the light environment, the acquisition can be fixed at the same time interval for acquisition or discrete acquisition, record the acquisition time as the time value in the color temperature time relationship, and can also continuously collect in real time, calculate the average value by using the statistical function, The intermediate value of the acquisition period is used as the time value.
  • the target surface surface reflection coefficient is R, the side length is C; c2) specifies the driver position of the tested driver in the middle section from the target object position D, and sets the view of the tested driver's view High H, for the tested driver to wear the eye movement device and calibrate, obstructing the visual direction of the tested driver with the obstructing object; c3) recording the eye movement video using the calibrated eye movement device to remove the obstruction, Commanding the tested driver to perform a target search and visually recognizing the target object; c4) operating the eye movement device to stop eye movement video recording, recording the measured object The driver's visual recognition result and the eye movement video; c5) replacing the tested driver, and repeating steps c1 to c4 to obtain the visual results of the plurality of tested drivers and the eye movement video.
  • the surrounding light environment affects the human body's circadian rhythm, including circadian rhythm, hormone secretion and alertness.
  • the photoreceptor cells of the human eye transmit light signals to the hypothalamic pathway, and then enter In the hypothalamic nucleus, such as the optic nerve crossing the upper nucleus and the hypothalamic nucleus, the optic nerve crosses the upper nucleus to transmit light signals to various control centers of the nervous system, thereby regulating almost all hormones including cortisol, melatonin, insulin, and production hormone. Produced, in which the secretion of melatonin will reduce the body's attention.
  • the test method is: placing the target object in the middle section of the tunnel, and selecting the target object as a cube with a side length C, and selecting a plurality of tested drivers to be tested at the test position, where the target object is placed at a distance from the middle segment.
  • the distance D of the measured position of the pilot of the tunnel, the visual height of the tested driver is H.
  • the tested driver wears the dynamic eye movement device and starts the eye movement video recording after the calibration, and blocks the front of the tested driver with the obstruction. Scene, randomly placed to visualize the target, remove the obstruction, and at the same time instruct the tested driver to start the target search and visualize the target, stop the video recording after ending the visual recognition, and record the relevant test information of the tested driver. And visually recognized results.
  • the distance D at which the visual target is placed from the starting point of the middle section of the tunnel is usually not less than the safe parking distance D 0 at the highest speed limit of the tunnel.
  • Step (d) resetting a set of different color temperature, color rendering index, and brightness light environment parameters in the middle section of the tunnel, and repeating steps (b) and (c) to obtain multiple sets of different light environment parameters to be tested.
  • Driver's visual recognition results and eye movement video are repeated.
  • Step (e) analyzing the visual recognition result and the eye movement video of the plurality of tested drivers collected by the eye movement device, and determining the number of fixation point frames of the plurality of tested drivers to visualize the target object and Determining the validity of the result, determining the viewing time of the plurality of tested drivers in different light environments according to the number of the gaze points, and viewing the information
  • the data is correlated, and the relationship between the visual time and the measured color temperature, color rendering index, and average brightness of the light environment is established, and the data relationship curve of the visual recognition time corresponding to the color rendering index of different measured color temperatures under the same brightness is obtained.
  • Step (f) analyzes the relationship between the human body circadian rhythm, the visual recognition time and the measured color temperature of the light environment, the color rendering index, and the brightness, and obtains a color temperature, a color rendering index, and a light source brightness parameter combination to improve the target.
  • the color temperature is when the color emitted by the light source is the same as the color of the "black body” radiated at a certain temperature, the temperature of the "black body” is called the color temperature of the light source, and the unit is Kelvin (K), which is emitted by light sources of different color temperatures.
  • K Kelvin
  • the light color is different, and the visual perception is different.
  • the energy of light is inversely proportional to the wavelength. When the energy of light increases, the proportion of short-wave light in the spectral component increases, and the proportion of long-wave light decreases, so the color of light gradually becomes partial. Blue, the color temperature of the light source is greater than 5300K is called cool color light; the color temperature is less than 3300K is called warm color light.
  • the function of the central nervous system and the autonomic nervous system can be balanced, and the nervous nerve can be relaxed; otherwise, the central nervous system can be dysfunctional and even disturb the natural balance of the body.
  • Lights of different color temperatures have different penetration ability in the air due to different spectral distribution powers, which will affect the driver's visual recognition. As shown in the table below, different color temperature and light color environments have different psychological and physiological effects on the driver.
  • the driver's reaction and effect on the object recognition are different, so the color temperature value in the light environment of the night road and the middle section of the tunnel plays an important role in safe driving, by the same brightness
  • the data relationship curve of the visual recognition time corresponding to the color rendering index of different measured color temperatures is analyzed, and the relationship between the color temperature and the visual recognition time representing the safe driving performance can be obtained, and the guiding standard for improving the visual effect light environment parameter of the target is obtained. Ensure the driver's driving safety.
  • the environment outside the tunnel at night is dark, the natural light source is extremely weak, and the brightness is almost zero.
  • the pupil will shrink rapidly, and the difference in brightness and light color between the inside and outside of the tunnel will be larger, and the pupil area will be reduced faster.
  • the light environment inside the tunnel is obviously better than that outside the tunnel.
  • the driver enters the bright light environment created by the tunnel artificial lighting in a dark environment in a short period of time, and then enters the dark natural environment and will experience When the hole is in the process of adapting to the light, it is necessary to experience the dark adaptation process of the dark environment outside the hole.
  • the color temperature of the light environment in the middle section of the tunnel is too high, the light color is white, the light color difference between the inside and outside of the hole is too large, the driver will have a glare feeling, forming a bad glare phenomenon, the color temperature of the light source is too low, the light color is yellowish, the driver When driving in the middle of a long tunnel, it will cause visual fatigue and a sense of drowsiness. If the choice of light color environment in the tunnel is unreasonable, the driver will have psychological discomfort and should choose a comfortable and awakening tunnel.
  • the middle section of the light color environment is too high, the light color is white, the light color difference between the inside and outside of the hole is too large, the driver will have a glare feeling, forming a bad glare phenomenon, the color temperature of the light source is too low, the light color is yellowish, the driver When driving in the middle of a long tunnel, it will cause visual fatigue and a sense of drowsiness. If the choice of light color environment in the tunnel is unreasonable,
  • the color of the target object is selected to be achromatic, and the non-color refers to a color without color such as white, gray, black, etc., and non-colored objects such as white, gray, and black are white.
  • the light absorption of each wavelength of the spectrum is equal, the reflectance is above 80-90%, the object is white, and the black is below 4%, based on the difference between gray and gray between black and white.
  • the color temperature distribution close to natural light is in the range of 5000K-6000K. Therefore, in order to improve the universality of measurement data, in the test of this embodiment, the selection of color temperature can be extended in the above numerical range. If you can set the color temperature range from 3000K to 6500K, Considering the suitability and reducing the operating cost, the value range of the color rendering index can be set between 50 and 100.
  • the brightness level of the lighting environment is one of the important parameters for evaluating the lighting quality of the tunnel.
  • the range of the luminance of the present embodiment is set to be between 1.0 cd/m 2 and 5 cd/m 2 .
  • the target object 103 is a gray cube having a volume of 20 cm ⁇ 20 cm ⁇ 20 cm and a reflectance of 20%; in order to eliminate the influence of the position of the memory target of the driver on the experimental result in the experiment, the view is in the test.
  • Target The position setting in the tunnel intermediate section 100 is arbitrary, and during the setting process of the visual target object, an occlusion is set between the tested driver and the visual target object, such as blocking with a black curtain. .
  • the setting of the light environment is controlled by a illuminating device, and the non-color target, the spectroradiometer, the brightness measuring device, the dynamic eye measuring device, and the distance measuring device are used for testing, thereby conveniently implementing the present invention.
  • a plurality of drivers are selected, and the distribution is randomly selected. Persons of different ages, normal vision levels and different driving ages.
  • the relationship between the visual time of the driver and the color temperature, the color rendering index, and the brightness parameter of the light environment is established, and the actual nighttime road illumination is performed through experiments and analysis and processing of the experimental data.
  • the illumination of the middle section of the tunnel provides a guiding standard for light environment parameters that effectively and reasonably meets the objective visual effects of the driver.
  • the test is actually performed in the middle section of the tunnel that has been used, it is difficult to complete the actual measurement experiment due to the influence of the passing vehicle. Therefore, in the present embodiment, it is more realistic to perform the measurement of the present invention by using the intermediate section of the simulated tunnel.
  • the inventor built an experimental environment with a length, a width, and a height of 60 ⁇ 3.8 ⁇ 3.8 m in a long corridor of a warehouse.
  • the light source of the experimental environment it is not subject to the top surface and The influence of the reflected light from the side material is covered with black cloth on the top and left and right sides of the experimental environment, and the diffuse reflection series material which is close to the asphalt concrete pavement is laid on the ground—modified asphalt waterproofing membrane.
  • this experiment selects a variety of light sources for experiments, such as the LED light source which is commonly used in tunnels as the experimental light source.
  • the color temperature parameters of the experimental light source are 3000K, 4000K, 5000K, 5700K, 6500K, etc.
  • the five types of color temperature levels are used as representative light sources. .
  • the color rendering index of this experiment selected four color rendering indexes of 60, 70, 80, and 90. Five color temperature levels and four color rendering indexes were designed for the experimental design, and 14 different light sources were designed. As shown in Table 3 below
  • the brightness level of the lighting environment is one of the important parameters for evaluating the quality of tunnel lighting.
  • the design speed selected in this experiment is 80km/h, and the safety visual distance is 110m.
  • the middle section of the tunnel The brightness value is mostly 1.5 cd/m 2 -3.5 cd/m 2 , so in order to improve the validity of the measurement data, the generality is 1.5 cd/m 2 , 2.0 cd/m 2 , 2.5 cd/m 2 in this embodiment. , 3.0cd / m 2, 3.5cd / m 2, 4.0cd / m 2, 4.5cd / m 2, 5cd / m 2 8 kinds of luminance levels estimated.
  • This embodiment relates to human cognition.
  • 10 males are selected in this experiment, which are evenly distributed in 26-50 years old; 2 females in 26- 50-year-old average distribution.
  • Table 3 shows that according to the purpose of the experiment, this experiment randomly selected 12 tested drivers with good health, no cardiovascular history, heart disease and other major diseases, requiring the tested driver's naked eyesight to reach 4.9 or more, no color blindness and other eye diseases.
  • the experiment required good rest and normal reaction. There were no adverse reactions such as drinking/medication during the experiment period.
  • the height of the driver's visual height refers to the height of the driver's eyes from the ground.
  • the standard for the height of the car is based on the lower passenger car, and the standard height H 0 is 1.2 m.
  • the contrast of the target is a substantial factor in the human eye recognition obstacle.
  • the brightness and background brightness of the target constitute the contrast of the target. If the brightness of the target is close to the background brightness, the visibility is low regardless of how high the road surface brightness is maintained, which poses a risk to driving safety, which is an unfavorable situation. If the contrast of the target is large, the human eye can easily find the target. Due to the low contrast between the gray objects and the asphalt concrete pavement commonly used in the tunnel, the gray cube is used as the visual target according to the most unfavorable principle.
  • the visual target selected in the present embodiment is a gray cube having a volume of 20 cm ⁇ 20 cm ⁇ 20 cm and a surface reflection coefficient of 0.2 as recommended by the International Lighting Association CIE, as a reference for evaluating the driver's safety visual assessment measurement, although Actual traffic obstacles may vary in color or shape, but studies have shown that targets based on this will be suitable for a variety of different lighting environment measurements.
  • the above-mentioned 20 cm ⁇ 20 cm ⁇ 20 cm gray cube is finally used, that is, the standard side length C 0 of the visual target is 20 cm, which is a standard visual target for evaluating the tunnel illumination visibility factor.
  • the maximum speed limit of the tunnel design selected in this embodiment is 80km/h, and the safety parking distance D 0 is 110m. Since the actual effective distance D of the experimental site is 45m, it cannot provide sufficient observation distance.
  • the target size Calculate the scale of the driver's visual height and the size of the target in the specific experiment, as shown in Table 5.
  • the optical environment of the middle section of the simulated tunnel is very similar to the optical environment of the middle section of the actual tunnel by the above-mentioned setting of the optical environment and the test environment for the middle section of the simulated tunnel.
  • a lighting device capable of using a plurality of light source characteristics is installed in the middle section of the simulated tunnel, for example, a dozen different illumination sources may be selected according to experimental needs.
  • a color temperature, color rendering index, brightness test device measures the color temperature, color rendering index, and average brightness parameter values of the set light environment, such as the color rendering index of the illumination using a spectroradiometer and a color luminance meter. , Illumination, chromaticity, correlated color temperature and other parameters are measured, and the lighting environment is adjusted to achieve a uniform light color environment to achieve the optical environment parameter values required by the experiment.
  • the video recording is stopped, and the driver is asked to answer the following questions: (1) Whether there is a target; (2) the shape of the target object; (3) the color of the target object, obtaining the visual recognition result, and comparing the shape and color of the target object according to the visual recognition result, if the visual recognition result and the shape of the target object If the colors do not match, it is determined that the visual recognition result is an invalid visual recognition result. Then repeat the above experimental process until all drivers have visually recognized, then install the next set of light sources, reset the light environment parameter values, and repeat the above experimental process until all 14 sets of designed light sources have been tested.
  • the data acquisition frequency of the selected dynamic eye tracker is 30 Hz, that is, the eye movement data is collected every 20 ms; the eye movement capture range is ⁇ 35° in the horizontal direction and ⁇ 27.5° in the vertical direction; eye tracking analysis Degree 0.1°; line of sight focus accuracy 0.5°-1.0° (at all distances). It can dynamically record information such as gaze points during driver's visual recognition.
  • the information of the driver's visual recognition target acquired by the eye tracker can be analyzed and determined to determine the number of frames in which the driver captures the target's fixation point, thereby converting the visual recognition time.
  • the experiment also uses digital cameras, digital video cameras and other equipment to capture the necessary scenes during the experiment and provide the necessary information support for the later data analysis.
  • the number of frames of the gaze point of the target visual recognition object (the viewing time) is determined by the driver, and the driver is measured under the condition of different light environment conditions by using the number of frames of the target object.
  • the time of sight of the target is recognized.
  • the white light source with a lower color temperature of 3000K and 4000K yellow light source and higher color temperature increases the light color contrast of the visual target and the background environment, and increases the visual acuity of the driver's visual recognition target.
  • Improve the visual effect of driving visual recognition which is conducive to the driver's visual recognition of the target.
  • Selecting a low color temperature light source in the middle section of the night tunnel will make the driver feel comfortable and improve the visual recognition efficiency.
  • the blue spectrum in the radiation spectrum of the illumination source will stimulate the pupil contraction of the human eye, which has better visual effects.
  • a little blue light is added to the spectrum of the middle section of the night tunnel.
  • the invention also provides a method for calculating the color temperature standard of the middle section of the daytime tunnel. Referring to FIG. 12, the steps are as follows:
  • the process can manually adjust the parameters of the light source to simulate the target light environment.
  • the light environment parameters can be randomly set, and of course, the measuring instrument can be directly placed in a random target environment.
  • a color temperature measuring instrument such as a spectroradiometer
  • the color temperature values at different times can be continuously measured during the measurement, and the light of the target environment is randomly set during the experiment.
  • Environmental parameters, a representative random target environment can be a daytime natural light environment of a random day, which can be cloudy or sunny, continuous measurement or different date measurement, record the corresponding time, and finally form a statistical table. Characterizes the relationship between the color temperature of daytime natural light and time. As shown in Table 6 and Table 7, the natural light color temperature values of the daytime sunny days and cloudy days measured in the present example.
  • (d) According to the relationship between the above light source and the melatonin inhibition of the human circadian rhythm, determine the color temperature in the daytime environment as the main factor affecting driving safety, and obtain the stable color temperature according to the adaptation of the human eye to the light color temperature.
  • the segment is the color temperature standard of the middle section of the daytime tunnel; wherein the target environment is a daytime natural light environment.
  • ipRGCs retinal ganglion photoreceptors
  • RHT hypothalamic pathway
  • SCN optic nerve crossover nucleus
  • PVN hypothalamic paraventricular nucleus
  • the optic nerve crosses the nucleus to transmit light and non-optical information to various control centers of the nervous system, thereby regulating the production of almost all hormones including cortisol, melatonin, insulin, and growth hormone. Inhibition of melatonin secretion during the day keeps people awake, and excessive secretion of melatonin easily causes people to fall asleep, thus affecting driving safety.
  • ipRGCs photoreceptor cells
  • Different photoreceptor cells have different sensitivity to different wavelengths of light, which promotes secretion.
  • Different amounts of melatonin The color temperature value of the light environment can reflect the composition of light with different wavelengths in the daytime environment, so determining the color temperature of the daytime environment is the main factor affecting driving safety.
  • the adaptation of the human eye to the color temperature is as follows: the light environment in the middle section of the tunnel is a relatively stable light environment compared to the tunnel entrance and exit section.
  • the color temperature of the middle part of the tunnel is too high, the light color is white, and the light color difference between the inside and outside of the tunnel is too large.
  • the driver will have a glare, forming a bad glare phenomenon.
  • the color temperature of the light source is too low, and the light color is yellow.
  • the human eye has higher visual sensitivity under natural light source than under artificial light source. The vision evolves and evolves under natural light for a long time.
  • the middle part of the tunnel selects the light color environment close to the external natural light source, which can alleviate the visual impact of the light source color difference when the driver enters and exits the tunnel, thereby improving the driver's visual recognition efficiency and increasing the same brightness.
  • Driving safety and comfort reducing the brightness of the safe environment under the same visual recognition efficiency, saving resource consumption, including the step of using the distributed stable color temperature segment as the color temperature standard of the middle section of the daytime tunnel, but not limited to being directly stable
  • the color temperature section is used as a standard, and practical factors should also be considered, such as factors that consider energy conservation.
  • the light color of the middle section of the tunnel is close to the natural light color, which will make the driver feel comfortable. It can improve the visual recognition efficiency, increase the driving safety and comfort, and save resources. Because the high color temperature light source has high energy consumption and easy It causes glare. Therefore, it is better to determine the color temperature of the light in the middle section of the tunnel from 4500 to 5000K.
  • the invention also provides a system for calculating a visual effect on a target in different light environments and a method for calculating a color temperature standard of a middle section of a daytime tunnel, the system comprising: a simulated tunnel intermediate segment subsystem, the simulated tunnel intermediate segment
  • the system comprises a steerable lighting device installed in the middle section of the tunnel, the top surface and the left and right sides of the simulated tunnel are provided with a light absorbing material, and a visual obstruction is arranged in the simulated tunnel, the ground of the simulated tunnel Setting a diffuse reflection material close to the actual road surface for creating a light environment and a test environment in the middle section of the tunnel; a test subsystem including achromatic target, a spectroradiometer, a brightness measuring device, and a dynamic eye movement measurement A device, a distance measuring device for performing testing, collecting test data and results, and a data processing subsystem including a computer system for fitting and processing the test data.
  • the tunable lighting device of the simulated tunnel intermediate segment subsystem is a power adjustable illumination light source disposed on the top of the simulated tunnel, and the top surface and the left and right sides of the simulated tunnel are provided with a light absorbing material as a black decorative material,
  • the obstruction is a black curtain
  • the diffuse reflective material disposed on the ground close to the actual road surface is a modified asphalt waterproofing membrane;
  • the achromatic target is a gray cube with a reflectivity of 20%
  • the radiation measuring device is a spectroradiometer
  • the brightness measuring device is a color brightness meter
  • the dynamic eye movement measuring device is a dynamic eye tracker.
  • the dynamic eye tracker data acquisition frequency is 30 Hz, that is, eye movement data is collected every 20 ms; the eye movement capture range is ⁇ 35° in the horizontal direction, ⁇ 27.5° in the vertical direction; the eye tracking resolution is 0.1°; the line of sight focus is accurate.
  • the degree of 0.5°-1.0° can dynamically record the information of the driver's visual target for analyzing the time for the driver to capture the gaze point of the target, and the side length of the cube object is less than or equal to 20 cm.
  • the lighting device in the system in this embodiment is a lighting device with color temperature, color rendering index and brightness controllable, which is flexible and convenient in setting the light environment.
  • the color temperature measuring device and the color rendering index measuring device are all the same, and are a spectroradiometer.
  • the brightness measuring device in the system can be a color brightness meter or an illuminance meter.
  • the brightness value can be obtained by the relationship between illuminance and brightness. For example, the road surface average brightness value and the average illuminance value are measured first, and then the road surface average illuminance conversion coefficient is calculated. This coefficient can be used in the conversion relationship between illuminance and brightness, and the brightness can be obtained by measuring the illuminance.
  • the visual effect of the lighting environment setting of the illumination of the night road and the middle section of the tunnel is given to the driver. It provides a good guiding standard for the reasonable and efficient setting of the color temperature, color rendering index and brightness of the lighting device.

Abstract

一种不同光环境下对目标物的视觉功效的测算方法,包括:a)设定光环境;b)测量色温时间关系;c)驾驶员目标物视认;d)重新设置光环境,重复步骤c);e)对于实验所取得的视认信息数据进行处理,建立视认时间与光环境参数色温、显色指数、亮度参数的相关关系;f)根据视认信息数据处理结果进行视觉功效分析。本方法还提供白天隧道中间段色温标准测算方法,包括,a)设定光环境;b)测量色温时间关系;c)求取稳定色温段;d)确定色温标准。本方法针对夜间道路和隧道中间段照明的光环境设置对于驾驶员的视觉影响进行视觉功效分析,对于照明装置的色温、显色指数、平均亮度的合理、高效设置提供了很好的指导标准。

Description

不同光环境下对目标物的视觉功效的测算方法 技术领域
本发明涉及公路隧道照明技术领域,特别涉及一种不同光环境下对目标物的视觉功效测算方法及白天隧道中间段色温标准测算方法。
背景技术
为改善夜间道路和隧道中间段的视觉环境,使人造光源产生的光环境能够满足驾驶员在夜间道路和者隧道中间段驾驶车辆时行车安全、稳定和舒适需求,目前如何测算这些影响光环境的参数包括人造光源的色温、显色性、亮度参数值等影响因素,为达到道路的安全舒适驾驶视认水平提供光环境设置的指导标准,是一直未能够很好解决的问题。
国内外关于夜间道路和隧道中间段光环境参数标准的评价,缺乏对于驾驶员在不同光源特性下的视觉功效研究,由于在不同光色环境和不同的时间段下,驾驶员视觉感受不同,对目标物视认需求存在差异,因此需要寻求能全面、客观、简便的测算方法和系统,对于驾驶员在不同光源特性下的视觉功效进行分析,得出不同光环境下以满足驾驶员的视认需求的光环境参数指标。
发明内容
本发明的目的在于解决现有技术存在的上述技术缺陷,提供了一种依据可靠,操作简便和满足驾驶视认需求的夜间道路和隧道中间段光环境参数标准的测算方法,同时还提供了一种简单可靠、利用率高的实现基于视认安全的夜间道路和隧道中间段不同光环境视觉功效的测算方法的系统,以克服现有的夜间道路和隧道中间段光环境参数标准的依据不可靠、试验复杂、结果没有考虑驾驶员生心理因素的技术缺陷。通过光环境的色温、显色性、亮度水平等参数指标综合分析,得出不同光环境下以满足驾驶员的视认需求的光环境参数指标。
为了解决现有技术的上述问题,本发明的第一方面,提出一种不同光环境下对目标物的视觉功效测算方法,包括以下步骤:
(a)配置目标环境的光环境参数,所述光环境的参数包括色温,显色指数,亮度,设定一组包括色温、显色指数、亮度的光环境参数;
(b)测量所述目标环境的不同时段内的色温值,形成色温时间关系,根据不同时段内的色温值求取出平均色温值作为实测色温;
(c)所述目标环境为隧道中间段,根据所述色温时间关系中的时段内色温值,判定在夜晚区间段内时,根据人体生理节律确定实施视认测试步骤,所述视认测试步骤包括:c1)在隧道中间段的目标物位置随机放置目标物,所述目标物表面反射系数为R、边长为C;c2)指定被测驾驶员于中间段内距所述目标物位置为D的驾驶员位置,设定所述被测驾驶员的视认高度为H,为被测驾驶员佩戴眼动装置并标定,用遮挡物遮挡被测驾驶员的视认方向;c3)运用所述标定后的眼动装置录制眼动视频,去除所述遮挡物,指令所述被测驾驶员进行目标搜索并视认所述目标物;c4)操作所述眼动装置停止眼动视频录制,记录所述被测驾驶员的视认结果和所述眼动视频;c5)更换被测驾驶员,重复步骤c1至步骤c4获取多名被测驾驶员的视认结果和眼动视频;
(d)重新设定隧道中间段的一组不同的色温、显色指数、亮度光环境参数,并重复步骤(b)、(c),从而获取多组不同光环境参数下多名被测驾驶员的视认结果和眼动视频;
(e)对所述眼动装置采集的所述多名被测驾驶员的视认结果和眼动视频进行分析,确定所述多名被测驾驶员视认目标物的注视点帧数和视认结果的有效性,根据所述注视点帧数求出所述多名被测驾驶员在不同光环境下视认目标物的视认时间,对视认信息数据进行相关性处理,建立视认时间与光环境的实测色温、显色指数、平均亮度之间的关系,得出同一亮度下不同实测色温的显色指数对应的视认时间的数据关系曲线;
(f)通过对人体生理节律、视认时间与光环境的实测色温、显色指数、亮度之间的关系分析进行视觉功效分析,得出色温、显色指数、亮度组合下提高目标物视觉功效的光环境参数标准。
本发明的第二方面,提供了一种白天隧道中间段色温标准的测算方法,包括,
(a)配置目标环境的光环境参数,所述光环境的参数包括色温参数,显色指数,亮度光环境参数,选择设定一组包括色温、显色指数、亮度的光环境参数;
(b)测量目标环境不同时刻的色温值,形成色温时间关系;
(c)根据所述色温时间关系求取出分布稳定的色温段;
(d)根据光源与人体生理节律的褪黑激素抑制的关系,确定白天环境下色温为影响驾驶安全的主要因素,并根据人眼对光色温的适应分析得出将所述分布稳定的色温段作为白天隧道中间段的色温标准;其中,所述目标环境为白天自然光环境。
本发明的方法,是根据人体生理节律,通过对所营造的不同光环境下驾驶员视认隧道中间段内的驾驶视认反应和对小目标物的视认效果等信息的融合以及筛选,对驾驶员对光环境的色温适应性分析,综合提出基于人体生理节律而满足驾驶员安全视认的隧道中间段或夜间道路安全视认光环境指导指标,从不同时间段人体生理节律下驾驶员的角度出发,考虑了驾驶员的视觉需求特性,提高了对隧道中间段或夜间道路光环境安全性评价的准确性,同时操作方法简便,为道路交通安全的光环境研究提供了参考依据。
附图说明
参考随附的附图,本发明更多的目的、功能和优点将通过本发明实施方式的如下描述得以阐明,其中:
图1隧道中间段不同光环境下对目标物的视觉功效的测算方法流程图;
图2模拟隧道中间段示意图;
图3不同光环境下对目标物的视觉功效测算方法的测试示意图;
图4 1.5cd/m2亮度下不同色温的显色指数----视认时间的数据关系曲线;
图5 2.0cd/m2亮度下不同色温的显色指数----视认时间的数据关系曲线;
图6 2.5cd/m2亮度下不同色温的显色指数----视认时间的数据关系曲线;
图7 3.0cd/m2亮度下不同色温的显色指数----视认时间的数据关系曲线;
图8 3.5cd/m2亮度下不同色温的显色指数----视认时间的数据关系曲线;
图9 4.0cd/m2亮度下不同色温的显色指数----视认时间的数据关系曲线;
图10 4.5cd/m2亮度下不同色温的显色指数----视认时间的数据关系曲线;
图11 5.0cd/m2亮度下不同色温的显色指数----视认时间的数据关系曲线;
图12白天隧道中间段色温标准测算方法的测试示意图;
图13白天晴天自然光色温分布图;
图14白天阴天自然光色温分布图。
附图标记
100隧道中间段  101模拟隧道中间段  102照明装置  103目标物
104被测驾驶员  105遮挡物。
具体实施方式
由于夜间道路的环境与隧道中间段的环境相近似,本发明的测试是在隧道中间段进行的,但其结果同样可以适用于夜间道路的照明设置。
实施例一
图1示出了本发明测量隧道中间段不同光环境下对目标物的视觉功效测算方法的流程,图3示出了实现本发明提供的不同光环境下对目标物的视觉功效测算方法的测试示意图,通过本发明提供一种不同光环境下对目标物的视觉功效测算方法,以测算出不同光环境下对目标物的视觉功效的影响因素,确保根据测试结果设置的光环境能够满足驾驶者的视认安全。
参照图1和图3,根据本发明的不同光环境下对目标物的视觉功效的测算方法,包括以下步骤:
步骤(a):配置目标环境的光环境参数,所述光环境参数包括:色温参数,显色指数,亮度;在测算试验中,可以设置不同色温参数,不同的显色指数,设置不同的平均亮度,设定一组包括色温、显色指数、亮度的光环境参数,用以设定光环境,由于目标环境中光源的参数可以在一定程度上代表目标环境的光环境参数,所以上述设定一组包括色温、显色指数、亮度的光环境参数可以通过设定光源的参数来实现,为了直接求出目标环境的光环境参数,还可在设定之后,通过测量装置测出目标环境的实际色温、显色指数、亮度等参数;对于亮度,为了真实反映目标环境的情况,可以测量目标环境中多个点的亮度值,然后求取平均值来作为目标环境的亮度值。
步骤(b):测量所述目标环境的不同时刻的色温值,形成色温时间关系,用于分析色温随时间变化的关系,根据不同时段内的色温值求取出平均色温值作为实测色温,这样测量出的色温充分考虑不同时间段对色温变化的影响,更加真实地反映目标环境的光环境情况,所述不同时段内的色温值为连续一段时间的色温值,具体时间长度应考虑每次设定光环境之后的实验时间,采集时可固定等长度的时间间隔进行采集也可离散采集,记录采集时间作为色温时间关系中的时刻值,还可实时连续采集,利用统计函数计算出平均值,将采集时间段中间值作为时刻值。
步骤(c):根据所述色温时间关系中的时刻值,判定在夜晚区间段内时,根据人体生理节律确定所述目标环境选择隧道中间段并在所述隧道中间段实施视认测试步骤,根据所述目标环境所在时区的当地时间来描述所述时刻值,例如采用24小时制时,采用0至24来描述上述时刻值,所述时刻值在0至6或在20至24时,判定为在夜晚区间段内,又例如采用12小时制时,采用上午0至12和下午0至12来描述所述时刻值,所述时刻值在上午0时至上午6时或者在下午8时至下午12时时,判定为在夜晚区间段内,当然采用别的计时方法,可以参照国际间转换标准进行转化,所述视认测试步骤包括:c1)在隧道中间段的目标物位置随机放置目标物,所述目标物表面反射系数为R、边长为C;c2)指定被测驾驶员于中间段内距所述目标物位置为D的驾驶员位置,设定所述被测驾驶员的视认高度为H,为被测驾驶员佩戴眼动装置并标定,用遮挡物遮挡被测驾驶员的视认方向;c3)运用所述标定后的眼动装置录制眼动视频,去除所述遮挡物,指令所述被测驾驶员进行目标搜索并视认所述目标物;c4)操作所述眼动装置停止眼动视频录制,记录所述被测 驾驶员的视认结果和所述眼动视频;c5)更换被测驾驶员,重复步骤c1至步骤c4获取多名被测驾驶员的视认结果和眼动视频。
通过研究发现,在人的长期进化过程中,周围的光环境会影响人体的生理节律,包括昼夜节律、激素分泌和警觉程度,人眼的感光细胞将光信号传递到下丘脑通路,再进入到视神经交叉上核和下丘脑旁核等下丘脑核中,视神经交叉上核将光信号传递到神经系统的各个控制中心,从而调节包括皮质醇、褪黑激素、胰岛素、生产激素等几乎所有激素的产生,其中褪黑激素的分泌会降低人体的注意力,在驾驶环境中,人体分泌过多的褪黑激素就会影响驾驶安全,所以在考量隧道中间段的光环境是否为安全驾驶环境,还需引入人体生理节律的因素,即在光环境影响下分泌褪黑激素等的作用效果,即应考虑人体生理节律对于安全识认的影响。通过对人体生理节律分析可知,从早上6点到晚上8点之间,褪黑激素分泌趋近于停止,晚上八点到第二天早上6点褪黑激素开始分泌,人体反映开始迟钝,这时在夜间的隧道中,为了保证驾驶安全,应采用视认测试,直观测试驾驶员在夜间隧道中间段的光环境下对视认目标物的视认结果,直接反映出人体的反应。测试方法是,在所述隧道中间段放置目标物,可以选择目标物为边长为C的立方体,选择多名被测驾驶员位于测试位置分别进行测试,所述目标物放置的位置距中间段隧道被测驾驶员所在位置的距离D,被测驾驶员的视认高度为H,被测驾驶员佩戴好动态眼动装置并标定后开始眼动视频录制,用遮挡物遮挡被测驾驶员前方场景,随机摆放好视认目标物后,去除遮挡物,同时指令被测驾驶员开始进行目标物搜索并视认目标物,结束视认后停止视频录制,记录被测驾驶员的相关测试信息和视认结果。
在实际的隧道测试中,所述视认目标物放置的位置距隧道中间段起点的距离D通常不小于所述隧道最高限速下的安全停车视距D0
步骤(d)重新设定隧道中间段的一组不同的色温、显色指数、亮度光环境参数,并重复步骤(b)、(c),从而获取多组不同光环境参数下多名被测驾驶员的视认结果和眼动视频。
步骤(e)对所述眼动装置采集的所述多名被测驾驶员的视认结果和眼动视频进行分析,确定所述多名被测驾驶员视认目标物的注视点帧数和视认结果的有效性,根据所述注视点帧数求出所述多名被测驾驶员在不同光环境下视认目标物的视认时间,对视认信息 数据进行相关性处理,建立视认时间与光环境的实测色温、显色指数、平均亮度之间的关系,得出同一亮度下不同实测色温的显色指数对应的视认时间的数据关系曲线。
步骤(f)通过对人体生理节律、视认时间与光环境的实测色温、显色指数、亮度之间的关系分析进行视觉功效分析,得出色温、显色指数、光源亮度参数组合下提高目标物视觉功效的光环境参数标准。
色温是当光源所发出的颜色与“黑体”在某一温度下辐射的颜色相同时,“黑体”的温度就称为该光源的色温,单位是开尔文(K),不同色温的光源所散发出的光线颜色不同,对视觉感受不同,光的能量与波长成反比,当光的能量增加时,光谱成分中短波光线所占的比例增加,长波光线所占比例减少,所以光的颜色就逐渐偏蓝,光源色温大于5300K称为冷色光;色温小于3300K称之为暖色光。若光源色温选择适当,可使人的中枢神经和自主神经系统功能得到平衡,使紧张的神经得以松弛;反之,则可能导致中枢神经系统功能失调,甚至扰乱身体的自然平衡。而不同色温的光线由于光谱分布功率不同使其在空气中的穿透能力不同,都会影响驾驶员视认。如下表所示,不同色温光色环境给驾驶员心理和生理上的影响不同。在不同光源色温的照明环境下,驾驶员对于目标物视认做出的反应和效果不同,因此夜间道路和隧道中间段的光环境中的色温值对于安全驾驶具有重要的作用,通过对同一亮度下不同实测色温的显色指数对应的视认时间的数据关系曲线进行分析,可得出色温与代表了安全驾驶性能的视认时间关系,从中得出提高目标物视觉功效光环境参数指导标准,保证驾驶员的行车安全。
表1色温与照度对应人的舒适感
Figure PCTCN2016113400-appb-000001
在夜间环境下,夜间隧道外环境黑暗,自然光源极其微弱,亮度几乎为零。驾驶员在夜间驶入隧道时,瞳孔会迅速收缩,且隧道内外亮度、光色差异越大,瞳孔面积的缩小速度越快。这种情况下隧道内光环境明显优于隧道外,驾驶员在很短的时间内由漆黑的自然环境进入到隧道人工照明营造的明亮的光环境中,再进入黑暗的自然环境,会经历入洞时一个明适应过程,出洞时又要经历洞外黑暗环境的暗适应过程。隧道中间段光环境色温选择过高,光色偏白,洞内外光色差异过大,驾驶员会有刺眼的感觉,形成不良的眩光现象,光源色温选择过低,光色偏黄,驾驶员行驶在长隧道中间段时会产生视觉疲劳,有昏昏欲睡的感觉,如果隧道内光色环境选择的不合理,驾驶员就会产生心理上的不适,应选择舒适且有觉醒效果的隧道中间段光色环境。
为了提高所述光环境参数指导标准的可靠性,所述目标物的颜色选择非彩色,非彩色是指白、灰、黑等不带颜色的色彩,白色、灰色和黑色等非彩色物体对白光光谱各波长的光吸收程度均等,反射比在80-90%以上该物体为白色,4%之下为黑色,基于之间的为不同程度的灰色,灰色介于黑色和白色之间。
通过对自然光光谱成份调研发现,接近自然光的色温分布在5000K-6000K的范围,因此为了提高测量数据的有效度普遍性,在本实施例的测试中,对于色温的选择可以在上述数值范围进行外延,如可以将色温的取值范围设在3000K—6500K之间,从视认安全舒 适性及减小运营成本的角度考虑,可以将显色指数的取值范围设置在50—100之间,照明环境亮度水平是评价隧道照明质量的重要参数之一。
国外一些国际学术团体和国家对中间段照明采用亮度指标值的规定不同,下表是我国现行《公路隧道通风照明设计细则》(JTG/T D70/2-01--2014)隧道中间段的基本照明亮度表:
表2中间段基本照明亮度表Lin(cd/m2)
Figure PCTCN2016113400-appb-000002
为了提高测量数据的有效度和普遍性,本实施例的亮度的取值范围设置在1.0cd/m2—5cd/m2之间。
为了使本发明的不同光环境下对目标物的视觉功效的测算方法更加可靠,且符合国际标准,本发明中的基于安全视认的隧道中间段100的照明标准的测算方法的本实施例中,采用的目标物103为体积为20cm×20cm×20cm左右、反射率为20%的的灰色立方体;为了消除实验中驾驶员的记忆目标物位置对实验结果产生的影响,在测试中所述视认目标物 在所述隧道中间段100中的位置设置是任意的,并在所述视认目标物的设置过程中,对于被测驾驶员进与视认目标物之间设置遮挡,如采用黑色幕布进行遮挡。
在本实施例中,光环境的设置采用可调控照明装置,并采用非彩色目标物、分光辐射测量装置、亮度测量装置、动态眼动测量装置、距离测量装置进行测试,从而很方便地实施本实施例,为了使测算结果更符合客观现实,本发明的不同光环境下对非彩色目标物的视觉功效的测算方法的本实施例中,还选取了多名驾驶员,为随机选取的分布在不同年龄段、正常视力水平和不同驾龄段的人员。
通过本实施例的方法,建立起驾驶员视认时间与光环境的色温、显色指数、亮度参数之间的关系分析,通过实验和对于实验数据的分析和处理,为实际的夜间道路照明和隧道中间段的照明提供了有效、合理地符合驾驶员客观视觉功效的光环境参数指导标准。
实施例二
由于在实际已经使用通行的隧道中间段进行测试,由于受通行车辆的影响,难于完成实际的测算实验,因此,在本实施例中,采用模拟隧道中间段进行本发明的测算更为现实。
在本实施例中,发明人在一个库房的长条形走廊内搭建了一个长、宽、高为60×3.8×3.8m的实验环境,为了使实验环境的光源可控,不受顶面和侧面材料反射光的影响,在实验环境的顶面和左右侧面采用黑布覆盖,地面铺设与沥青混凝土路面接近的漫反射系列材料——改性沥青防水卷材。
为了使照明光源可调控,方便操作,本实验选择多种光源进行实验,如目前隧道中应用较普遍的LED光源作为实验光源。通过对自然光光谱成份调研发现,接近自然光的色温分布在5000K-6000K的范围,因此为了提高测量数据的有效度普遍性,本次实验光源的色温参数选取了3000K,4000K,5000K,5700K,6500K等5类色温水平作为代表光源。。从视认安全舒适性及减小运营成本的角度考虑,本次实验显色指数选取了60,70,80,90等4种显色指数。将5种色温水平和4种显色指数进行实验方案设计,共设计了14组不同光源。如下表3所示
表3LED光源色温显色指数表
Figure PCTCN2016113400-appb-000003
照明环境亮度水平是评价隧道照明质量的重要参数之一,本次实验选取的设计速度为80km/h,安全视认距离为110m,根据隧道照明设计要求(见表1所示),隧道中间段亮度取值多为1.5cd/m2-3.5cd/m2,因此为了提高测量数据的有效度普遍性本实施例中选取了1.5cd/m2,2.0cd/m2,2.5cd/m2,3.0cd/m2,3.5cd/m2,4.0cd/m2,4.5cd/m2,5cd/m2等8种亮度水平进行测算。
本实施例涉及人的认知,为了避免不同性别、年龄和性格等驾驶员对实验结果的差异性影响,本实验选取男性10人,在26-50岁平均分布;女性2人,在26-50岁平均分布。具体如下面表3所示。根据实验目的,本实验随机选择了12名身体健康、无心血管病史、心脏病等重大疾病的被测驾驶员,要求被测驾驶员两眼裸视力达到4.9以上,无色盲色弱等眼部疾病。实验时要求休息良好、反应正常。实验期内无饮酒/用药等不良情况。
表4被测驾驶员概况
Figure PCTCN2016113400-appb-000004
在实验中,被测驾驶员视认高度即“目高”H,是指驾驶员眼睛距地面的高度。中国的相应标准中,对目高的规定是以车体较低的小客车为标准,采用的标准目高H0是1.2m。
在隧道照明中,目标物的对比度是人眼识别障碍物实质性因素。目标物的亮度和背景亮度构成目标物对比度,如果目标物亮度接近背景亮度,则无论保持多高的路面亮度,其可见度低,给行车安全带来风险,是不利的情况。如果目标物对比度较大,则人眼很容易发现目标物。由于灰色物体与隧道内常采用的沥青混凝土路面对比度较低,按视认最不利原则,采用灰色立方体作为视认目标物。
鉴于道路上的障碍物大多由不规则的多面体组成,汽车底盘离地最小高度变化在0.10~0.20m之间。道路上引起车辆倾覆的最大障碍物高度为18cm,当高度大于18cm时驾驶员必须采取躲闪措施。在本实施例中选择的视认目标物是按照国际照明协会CIE推荐的尺寸为体积20cm×20cm×20cm,表面反射系数为0.2的灰色立方体作为评价驾驶人安全视认评估测量的参照物,尽管实际的交通障碍物也许颜色或形体大小不一,但研究表明,以此为标准的目标物将适用于各种不同的照明环境测量评估。因此,在本实施例中,最终采用的是上述20cm×20cm×20cm的灰色立方体,即视认目标物的标准边长C0为20cm,作为评价隧道照明可见度因素的标准视认目标物。
本实施例选取的隧道设计最高限速是80km/h,其安全停车视距D0为110m,鉴于实验场地实际有效距离D为45m,不能提供足够的观测距离,根据视网膜成像原理,目标物尺寸与被试驾驶员视认目高进行等比例缩减计算,得到具体实验中驾驶员的实际目高与目标物的尺寸,如表5所示。
表5实验目标物尺寸与视认目高换算
Figure PCTCN2016113400-appb-000005
Figure PCTCN2016113400-appb-000006
如表5所示,当在模拟隧道中间段的视认距离D为45m时,驾驶员的视认高度为0.49m,视认目标物的大小为8.2cm×8.2cm×8.2cm在测试过程中,采用驾驶员半坐躺在地面的方式进行测试。
在如图2所示的模拟隧道中间段中,通过上述的对于模拟隧道中间段的光环境和测试环境的设置,使得模拟隧道中间段的光环境与实际的隧道中间段的光环境十分相似。
为了对于模拟隧道中间段满足在不同光环境参数下进行测试,在所述模拟隧道中间段安装有可使用多种光源特性的照明装置,如可以根据实验需要选择安装十几种不同的照明光源中的一种,通过色温、显色指数、亮度的测试装置测量所设置的光环境的色温、显色指数、平均亮度的参数值,如采用分光辐射照度计、色彩亮度计对于照明的显色指数、 照度、色度、相关色温等参数进行测量,通过对于照明装置调试,使之产生均匀的光色环境,达到实验所要求的光环境参数值。确定驾驶员及目标物所在位置,调整驾驶员目高为0.49m,并用照度计测量目标物放置处的色温、显色性指数(根据实际实验条件而定),用亮度计测试目标物放置处的亮度,为被测驾驶员佩戴ETG眼动仪,并进行ETG眼动仪校准(五点校准法)眼动仪校准后,开始录制视频,工作人员用黑色幕布遮挡被试驾驶员前方场景,摆放视认目标物,工作人员放下黑色幕布,同时被测驾驶员开始进行视认目标物,结束视认后停止视频录制,让被试驾驶员回答以下问题:(1)是否存在目标物;(2)目标物的形状;(3)目标物的颜色,获得视认结果,根据所述视认结果与所述目标物的形状、颜色比对,如果视认结果与所述目标物的形状、颜色不匹配,则判定所述视认结果为无效的视认结果。然后重复上述实验过程,直至全部驾驶员视认完毕,然后,安装下一组光源,重新设置光环境参数值,重复上述实验过程,直至所设计的14组光源全部测试完毕。
为扩大样本量以提高测量数据精确度、有效度,实验过程中对不同驾驶员在同一实验环境下重复进行,以剔除驾驶员个体差异。实验样本量总计1308个。
在本实施例中,选用的动态眼动仪的数据采集频率为30Hz,即每隔20ms采集一次眼动数据;眼动捕捉范围为水平方向±35°,垂直方向±27.5°;眼动追踪解析度0.1°;视线焦点精确度0.5°-1.0°(在所有距离上)。可动态记录驾驶员视认过程中注视点等信息。通过眼动仪采集到的驾驶员视认目标物的信息,可以分析确定驾驶员捕捉目标物注视点的帧数从而换算得出视认时间。
实验还采用数码照相机、数码摄像机等设备,拍摄实验过程中的必要场景,为后期数据分析提供必要的信息支持。
通过对眼动仪采集的视频信息进行分析,确定驾驶员捕捉目标视认物注视点的帧数(视认时间),用视认目标物帧数测量驾驶员在不同光环境特性条件下下观测视认目标物的视认时间。通过对实验数据统计、整理,用MATLAB软件进行处理,得到同一亮度下不同实测色温的显色指数----视认时间的数据关系曲线,如图4至图7所示的,分别是在亮度为1.5cd/m2,2.0cd/m2,2.5cd/m2,3.0cd/m2,3.5cd/m2,4.0cd/m2,4.5cd/m2,5cd/m2数值下,视认时间、显色指数和平均亮度之间的关系曲线。
从图4至图11所示的关系曲线可见,对于本实施例数据关系曲线变化趋势可知,光源的色温分别是3000K、4000K、5000K、5700K、6500K时,随着色温的增大,即光色由黄光向白光的变化过程中,驾驶员视认目标物的时间随之增加。驾驶员在低色温3000K、4000K两组光源下对目标物的视认时间相对较短,视觉功效较好。因此,在一定的亮度水平情况下,低色温3000K、4000K黄色光源较高色温的白色光源增加了视认目标物与背景环境的光色对比度,增加了驾驶员视认目标物的视觉敏锐度,提高了驾驶视认的视觉功效,有利于驾驶员对目标物的视认。夜间隧道中间段光色选择低色温光源会使驾驶员感觉舒适,提高视认效率。根据不同光源特性条件下对目标物视认视觉功效研究结论,照明光源的辐射光谱中蓝色光谱会刺激人眼的瞳孔收缩,具有较好的视觉功效,夜间隧道中间段光源光谱中添加少许蓝光增加驾驶员觉醒水平,提高视敏度,所以色温取值范围为3500~3700K,满足驾驶员视觉舒适性且有觉醒效果。
实施例三
本发明还提供了一种白天隧道中间段色温标准测算方法,参照图12,包括步骤如下:
(a))配置目标环境的光环境参数,所述光环境的参数包括色温,显色指数,亮度光环境参数,选择设定一组色温、显色指数、亮度的光环境参数值,上述配置过程可人工调节光源的参数来模拟目标光环境,为了使所述测算方法更加可靠,可随机设定光环境参数,当然也可直接将测量仪器放置在随机的目标环境中。
(b)运用色温测量仪器,如分光辐射照度计,测量目标环境不同时刻的色温值,形成色温时间关系,测量时可采用连续测量不同时刻的色温值,实验时,随机设定目标环境的光环境参数,具有代表性的随机目标环境可为随机一天的白天自然光环境,这时可为阴天也可为晴天,测量时连续测量或者不同日期测量,记录下对应的时刻,最终形成统计表格,表征白天自然光的色温与时刻的关系。如表6和表7所示,为本实施例测量到的白天晴天和阴天的自然光色温值。
表6白天晴天自然光色温值
Figure PCTCN2016113400-appb-000007
Figure PCTCN2016113400-appb-000008
Figure PCTCN2016113400-appb-000009
Figure PCTCN2016113400-appb-000010
Figure PCTCN2016113400-appb-000011
Figure PCTCN2016113400-appb-000012
Figure PCTCN2016113400-appb-000013
Figure PCTCN2016113400-appb-000014
Figure PCTCN2016113400-appb-000015
表7白天阴天自然光色温值
Figure PCTCN2016113400-appb-000016
Figure PCTCN2016113400-appb-000017
Figure PCTCN2016113400-appb-000018
Figure PCTCN2016113400-appb-000019
Figure PCTCN2016113400-appb-000020
Figure PCTCN2016113400-appb-000021
Figure PCTCN2016113400-appb-000022
Figure PCTCN2016113400-appb-000023
(c)根据上述色温和时间的关系建立分布图,求出分布稳定的色温段,如图13所示为白天晴天色温的分布图,从图中可得出,晴天8:00之前天空色温较高,且随时间由高变低,8:00-17:00色温基本不变,维持在4500-5000K之间,分布稳定,如图14所示为白天阴天色温的分布图,从图中可得出,阴天全天色温稳定在6000-7000K之间。
(d)根据上述光源与人体生理节律的褪黑激素抑制的关系,确定白天环境下色温为影响驾驶安全的主要因素,并根据人眼对光色温的适应分析得出将所述分布稳定的色温段作为白天隧道中间段的色温标准;其中,所述目标环境为白天自然光环境。
研究发现,哺乳动物视网膜上存在有视网膜神经节感光细胞(ipRGCs),其将光信号传递到下丘脑通路(RHT),再进入到视神经交叉上核(SCN)和下丘脑室旁核(PVN)等下丘脑胞核中,视神经交叉上核将光和非光信息传递到神经系统的各个控制中心,从而调节包括皮质醇、褪黑激素、胰岛素、生长激素等几乎所有激素的产生。白天抑制分泌褪黑激素使人保持清醒,分泌过多的褪黑激素容易造成人入睡,从而影响驾驶安全,而不同的感光细胞(ipRGCs)对不同波长的光的敏感度不同,就会促使分泌不同数量的褪黑激素, 而采用光环境的色温值可以体现出白天环境中有不同波长的光的成分,所以确定白天环境的色温为影响驾驶安全的主要因素。
人眼对色温的适应分析如下:隧道中间段光环境相比隧道出入口段是一个较稳定的光环境,隧道中间段光环境色温选择过高,光色偏白,洞内外光色差异过大,驾驶员会有刺眼的感觉,形成不良的眩光现象,光源色温选择过低,光色偏黄,驾驶员行驶在长隧道中间段时会产生视觉疲劳,有昏昏欲睡的感觉。人眼在自然光源下比在人工光源下有更高的视觉灵敏度,视觉是长期在自然光照射下演变进化的,人类经过长年的进化也适应了自然光源的光色,所以人眼对于自然光的光色更敏感,越能抑制褪黑激素的分泌。隧道中间段选择与外界自然光光源接近的光色环境,可以缓解驾驶员驶入、驶出隧道时因光源光色差异对视觉产生的影响,从而达到相同亮度情况下提高驾驶员视认效率,增加驾驶安全舒适性;相同视认效率情况下降低安全环境亮度,节约资源消耗,上述将所述分布稳定的色温段作为所述白天隧道中间段的色温标准的步骤的包含但不限于直接将稳定的色温段作为标准,还应考虑实际因素,如考虑节约能耗的因素。
白天隧道中间段光源光色选择接近自然光光色会使驾驶员感觉舒适,能够达到提高视认效率、增加驾驶安全舒适性、节约资源消耗的目的,由于高色温的光源能耗较高,且易造成眩光,因此,由上述测算方法确定隧道中间段光环境色温选取4500~5000K相对较好。
实施例四
本发明还提供了一种实现不同光环境下对目标物的视觉功效的测算方法和白天隧道中间段色温标准测算方法的系统,所述系统包括:模拟隧道中间段子系统,所述模拟隧道中间段子系统包括安装在隧道中间段中的可调控照明装置,所述模拟隧道的顶面和左右侧面设置有吸光材料,在所述模拟隧道的中设置有遮挡视觉的遮挡物,所述模拟隧道的地面设置与实际路面接近的漫反射材料,用于营造隧道中间段光环境和测试环境;测试子系统,所述测试子系统包括非彩色目标物、分光辐射测量装置、亮度测量装置、动态眼动测量装置、距离测量装置,用于进行测试、采集测试数据和结果;数据处理子系统,所述数据计算子系统包括计算机系统,用于对测试数据进行拟合与处理。
所述模拟隧道中间段子系统的所述可调控照明装置为功率可调照明光源,设置在所述模拟隧道的顶部,所述模拟隧道的顶面和左右侧面设置吸光材料为黑色装饰材料,所述遮挡物为黑色幕布,所述地面设置与实际路面接近的漫反射材料为改性沥青防水卷材;所述测试子系统中,所述非彩色目标物为反射率为20%的灰色立方体,分光辐射测量装置为分光辐射照度计,所述亮度测量装置为色彩亮度计,动态眼动测量装置为动态眼动仪。所述动态眼动仪数据采集频率为30Hz,即每隔20ms采集一次眼动数据;眼动捕捉范围为水平方向±35°,垂直方向±27.5°;眼动追踪解析度0.1°;视线焦点精确度0.5°-1.0°,可动态记录驾驶员视认目标物的信息,用于分析确定驾驶员捕捉目标物注视点的时间,所述立方体目标物的边长小于或等于20cm。
本实施例中的所述系统中的照明装置为色温、显色指数、亮度可控的照明装置,在光环境设置上灵活方便。在对于光环境参数值的测量中,为了测量方便,所述色温测量装置和显色指数测量装置都为同一个,为分光辐射照度计。系统中的亮度测量装置可为彩色亮度计,也可为照度仪,可通过照度与亮度的关系求出亮度值,如先测量路面平均亮度值和平均照度值,再计算出路面平均照度换算系数,此系数就可用于照度与亮度的换算关系中,通过测量照度就可求出亮度。
通过本发明的一种不同光环境下对目标物的视觉功效测算方法和白天隧道中间段色温标准测算方法,对于夜间道路和隧道中间段的照明的光环境设置对于驾驶员的视觉影响给出了对于其照明装置的色温、显色指数、亮度的合理、高效设置提供了很好的指导标准。

Claims (10)

  1. 一种不同光环境下对目标物的视觉功效的测算方法,包括以下步骤,
    (a)配置目标环境的光环境参数,所述光环境的参数包括色温、显色指数、亮度,设定一组包括色温、显色指数、亮度的光环境参数;
    (b)测量所述目标环境的不同时段内的色温值,形成色温时间关系,根据不同时段内的色温值求取出平均色温值作为实测色温;
    (c)根据所述色温时间关系中的时刻值,判定在夜晚区间段内时,根据人体生理节律确定所述目标环境选择隧道中间段,并在所述隧道中间段实施视认测试步骤,所述视认测试步骤包括:c1)在隧道中间段的目标物位置随机放置目标物,所述目标物表面反射系数为R、边长为C;c2)指定被测驾驶员于中间段内距所述目标物位置为D的驾驶员位置,设定所述被测驾驶员的视认高度为H,为被测驾驶员佩戴眼动装置并标定,用遮挡物遮挡被测驾驶员的视认方向;c3)运用所述标定后的眼动装置录制眼动视频,去除所述遮挡物,指令所述被测驾驶员进行目标搜索并视认所述目标物;c4)操作所述眼动装置停止眼动视频录制,记录所述被测驾驶员的视认结果和所述眼动视频;c5)更换被测驾驶员,重复步骤c1至步骤c4获取多名被测驾驶员的视认结果和眼动视频;
    (d)重新设定隧道中间段的一组不同的色温、显色指数、亮度光环境参数,并重复步骤(b)、(c),从而获取多组不同光环境参数下多名被测驾驶员的视认结果和眼动视频;
    (e)对所述眼动装置采集的所述多名被测驾驶员的视认结果和眼动视频进行分析,确定所述多名被测驾驶员视认目标物的注视点帧数和视认结果的有效性,根据所述注视点帧数求出所述多名被测驾驶员在不同光环境下视认目标物的视认时间,对视认信息数据进行相关性处理,建立视认时间与光环境的实测色温、显色指数、平均亮度之间的关系,得出同一亮度下不同实测色温的显色指数对应的视认时间的数据关系曲线;
    (f)通过对人体生理节律、视认时间与光环境的实测色温、显色指数、亮度之间的关系分析进行视觉功效分析,得出色温、显色指数、亮度组合下提高目标物视觉功效的光环境参数标准。
  2. 根据权利要求1所述的不同光环境下对目标物的视觉功效的测算方法,其特征在于:
    步骤(a)中所述隧道为模拟隧道;
    步骤(c)中所述人体生理节律包括,夜晚时人体抑制褪黑激素分泌的机能变弱,采用视认测试步骤能够直观体现出驾驶安全性;
    步骤(c)中所述视认目标物为灰色立方体,在隧道最高限速下的安全停车视距为D0情况下,取视认目标物的边长为标准边长C0,取被测驾驶员的视认高度为小轿车驾驶员标准坐视高为H0,则所述视认目标物与所述被测驾驶员的距离D、所述视认目标物的边长C、被测驾驶员的视认高度H与安全停车视距D0、目标物标准边长C0、标准视高H0应满足D:C:H=D0:C0:H0的换算比例关系。
  3. 根据权利要求1或2所述的不同光环境下对目标物的视觉功效的测算方法,其特征在于:所述光环境参数值取值范围为:色温的取值范围为3000K—6500K,显色指数的取值范围为50—100,亮度的取值范围为1.0cd/m2—10cd/m2;所述视认目标物与所述被测驾驶员之间的距离D为安全视认距离,所述目标物的边长C=20cm,所述视认高度H为1.2m,所述目标物的表面反射系数为0.2。
  4. 根据权利要求1或2所述的不同光环境下对目标物的视觉功效的测算方法,其特征在于:所述色温的值为3000K、4000K、5000K、5700K、6500K,所述显色指数的值为60、70、80、90,所述亮度的值为1.5cd/m2、2.0cd/m2、2.5cd/m2、3.0cd/m2、3.5cd/m2、4.0cd/m2、4.5cd/m2、5cd/m2
  5. 根据权利要求1或2所述的不同光环境下对目标物的视觉功效的测算方法,其特征在于,所述视认目标物在所述隧道中间段中的位置为任意的,用黑色幕布遮挡被测驾驶员前方场景,摆放视认目标物后放下黑色幕布,同时指令被测驾驶员开始进行视认目标物,结束视认后停止眼动视频录制,让被测驾驶员对于(1)是否存在目标物;(2)目标物的形状;(3)目标物的颜色,给出视认结果,并根据所述视认结果与所述目标物的形状、颜色比对,如果视认结果与所述目标物的形状、颜色不匹配,则判定所述视认结果为无效的视认结果。
  6. 根据权利要求1或2所述的不同光环境下对目标物的视觉功效的测算方法,其特征在于:所述多名被测驾驶员为随机选取的分布在不同年龄段、不同正常视力段和不同驾龄段的多名人员,在测试过程中对不同驾驶员在同一实验环境下重复进行,以剔除驾驶员个体差异。
  7. 根据权利要求6所述的不同光环境下对目标物的视觉功效的测算方法,其特征在于;根据所述同一亮度下不同实测色温的显色指数对应的视认时间的数据关系曲线得出在光环境的亮度水平不变,显色指数不变,降低色温,能够提高目标物的视觉功效的结论。
  8. 根据权利要求6所述的不同光环境下对目标物的视觉功效的测算方法,其特征在于,根据所述同一亮度下不同实测色温的显色指数对应的视认时间的数据关系曲线得出夜间隧道中间段色温设定范围为3500~3700K时,能够提高目标物的视觉功效的结论。
  9. 一种白天隧道中间段色温标准测算方法,包括,
    (a)配置目标环境的光环境参数,所述光环境的参数包括色温参数,显色指数,亮度光环境参数,选择设定一组包括色温、显色指数、亮度的光环境参数;
    (b)测量目标环境不同时段内的色温值,形成色温时间关系;
    (c)根据所述色温时间关系求取出分布稳定的色温段;
    (d)根据光源与人体生理节律的褪黑激素抑制的关系,确定白天环境下色温为影响驾驶 安全的主要因素,并根据人眼对光色温的适应分析得出将所述分布稳定的色温段作为白天隧道中间段的色温标准;其中,所述目标环境为白天自然光环境。
  10. 根据权利要求9所述的一种白天隧道中间段色温标准测算方法,其特征在于,所述色温标准为4500~5000K。
PCT/CN2016/113400 2016-04-20 2016-12-30 不同光环境下对目标物的视觉功效的测算方法 WO2017181726A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/580,363 US10746605B2 (en) 2016-04-20 2016-12-30 Visual efficacy measuring method for objects in different light environments
EP16899305.3A EP3282239A4 (en) 2016-04-20 2016-12-30 Method for estimating visual performance with respect to target object in different lighting environments

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610249223.0 2016-04-20
CN201610249223.0A CN105868570A (zh) 2016-04-20 2016-04-20 不同光环境下对目标物的视觉功效的测算方法

Publications (1)

Publication Number Publication Date
WO2017181726A1 true WO2017181726A1 (zh) 2017-10-26

Family

ID=56633646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/113400 WO2017181726A1 (zh) 2016-04-20 2016-12-30 不同光环境下对目标物的视觉功效的测算方法

Country Status (4)

Country Link
US (1) US10746605B2 (zh)
EP (1) EP3282239A4 (zh)
CN (1) CN105868570A (zh)
WO (1) WO2017181726A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115499968B (zh) * 2022-11-21 2023-03-24 四川世纪和光科技发展有限公司 一种可调眼轴的led灯具及其使用方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105868570A (zh) * 2016-04-20 2016-08-17 北京工业大学 不同光环境下对目标物的视觉功效的测算方法
CN107377418B (zh) * 2017-08-15 2023-07-07 昆山易分蓝电子科技有限公司 一种用于色选机的外凸多面体六视角立体相机
CN110221735B (zh) * 2018-03-02 2021-03-12 Oppo广东移动通信有限公司 图标处理方法、装置以及移动终端
CN109214080A (zh) * 2018-08-31 2019-01-15 重庆交通大学 公路隧道照明动态暗适应仿真实验方法及装置
CN109969070B (zh) * 2019-03-06 2020-12-11 北京工业大学 一种车辆前照灯交通安全眩光阈值的测算方法
US20210196119A1 (en) 2019-12-27 2021-07-01 Ohio State Innovation Foundation Methods and apparatus for detecting a presence and severity of a cataract in ambient lighting
WO2021133400A1 (en) * 2019-12-27 2021-07-01 Ohio State Innovation Foundation Methods and apparatus for making a determination about an eye using color temperature adjusted ambient lighting
US11622682B2 (en) 2019-12-27 2023-04-11 Ohio State Innovation Foundation Methods and apparatus for making a determination about an eye using color temperature adjusted ambient lighting
CN111067552B (zh) * 2019-12-30 2022-07-01 中国船舶工业综合技术经济研究院 一种光照因素对特殊倒班人员作业绩效影响测量系统
CN113670455B (zh) * 2020-05-13 2022-09-20 周卓煇 视网膜可容许曝照时间简易测定装置及方法
CN113158398A (zh) * 2020-12-12 2021-07-23 北京工业大学 一种基于驾驶安全舒适性的特长隧道中间段照明光环境色温设置方法
CN114427957B (zh) * 2022-04-02 2022-06-14 武汉大学 兼顾视觉偏好与颜色分辨的光源显色性评估方法及系统
CN114732410B (zh) * 2022-04-22 2023-11-21 北京工业大学 隧道疲劳唤醒段设置方法、装置和道路隧道
CN114967125B (zh) * 2022-06-15 2024-01-05 东南大学 一种基于空间光场和色彩的显示亮暗感受的表征方法
CN116956416B (zh) * 2023-07-24 2024-03-15 重庆交通大学 一种基于人眼适应曲线的遮阳棚透光率渐变过渡及长度设计方法
CN117156625B (zh) * 2023-10-31 2024-01-26 深圳市金鼎胜照明有限公司 一种基于电数据的led灯带调节控制系统及方法
CN117376634B (zh) * 2023-12-08 2024-03-08 湖南快乐阳光互动娱乐传媒有限公司 一种短视频配乐方法、装置、电子设备和存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8100552B2 (en) * 2002-07-12 2012-01-24 Yechezkal Evan Spero Multiple light-source illuminating system
CN102764107A (zh) * 2012-07-20 2012-11-07 长安大学 一种模拟公路隧道环境驾驶人视觉反应的实验方法
CN104296967A (zh) * 2014-11-18 2015-01-21 北京工业大学 不同光环境下对非彩色目标物的视觉功效的测算方法及其系统
CN104316171A (zh) * 2014-10-26 2015-01-28 北京工业大学 基于安全视认的隧道中间段照明标准测算方法及其系统
CN105868570A (zh) * 2016-04-20 2016-08-17 北京工业大学 不同光环境下对目标物的视觉功效的测算方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104533441B (zh) * 2014-10-26 2017-01-11 北京工业大学 基于安全视认的夜间隧道入口段照明标准测算方法及其系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8100552B2 (en) * 2002-07-12 2012-01-24 Yechezkal Evan Spero Multiple light-source illuminating system
CN102764107A (zh) * 2012-07-20 2012-11-07 长安大学 一种模拟公路隧道环境驾驶人视觉反应的实验方法
CN104316171A (zh) * 2014-10-26 2015-01-28 北京工业大学 基于安全视认的隧道中间段照明标准测算方法及其系统
CN104296967A (zh) * 2014-11-18 2015-01-21 北京工业大学 不同光环境下对非彩色目标物的视觉功效的测算方法及其系统
CN105868570A (zh) * 2016-04-20 2016-08-17 北京工业大学 不同光环境下对目标物的视觉功效的测算方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIU, YINGYING ET AL.: "Effects of LED Light Source Color Temperature on Tunnel Lighting in the Transition Zone", LIGHT & LIGHTING, vol. 37, no. 2, 30 June 2013 (2013-06-30), pages 34 - 37, XP009503444, ISSN: 1008-5521 *
See also references of EP3282239A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115499968B (zh) * 2022-11-21 2023-03-24 四川世纪和光科技发展有限公司 一种可调眼轴的led灯具及其使用方法

Also Published As

Publication number Publication date
US10746605B2 (en) 2020-08-18
CN105868570A (zh) 2016-08-17
EP3282239A4 (en) 2018-07-18
US20190033140A1 (en) 2019-01-31
EP3282239A1 (en) 2018-02-14

Similar Documents

Publication Publication Date Title
WO2017181726A1 (zh) 不同光环境下对目标物的视觉功效的测算方法
WO2016078490A1 (zh) 不同光环境下对非彩色目标物的视觉功效的测算方法及其系统
US20170313237A1 (en) An Illumination Standard Calculation Method And System for A Tunnel Middle Section Based On Safe Visual Recognition
Pierson et al. Review of factors influencing discomfort glare perception from daylight
Mainster et al. Glare's causes, consequences, and clinical challenges after a century of ophthalmic study
He et al. A system of mesopic photometry
CN109073918B (zh) 用于根据代表配戴者眼睛对光通量变化的动态敏感度的量来确定眼科镜片的滤光片的方法
Kranda et al. Detection of coloured stimuli by independent linear systems
CN109949193B (zh) 可变光环境下学习注意力检测与预判装置
CN104379052A (zh) 根据脑部视皮层的诱发活动评估眼镜镜片的评估方法、及利用所述评估方法设计眼镜镜片的设计方法
US20200072669A1 (en) Advanced lighting effects investigation system and computerized method
WO2023202696A1 (zh) 隧道疲劳唤醒段设置方法、装置和道路隧道
KR102456574B1 (ko) 사용자의 감광도 임계치를 측정하기 위한 착용식 양안용 광전자 장치
CN110285947B (zh) 一种隧道照明的交通安全眩光的测算方法
CN111028479A (zh) 一种高速公路特长隧道疲劳唤醒段设置方法
Goodspeed IV et al. The significance of surround conditions for roadway signs
CN112351543B (zh) 一种考虑警觉性的用于中间视觉范畴内的非视觉光生物效应评价方法
Haferkemper et al. A mesopic experiment series at automotive visual conditions
Viikari et al. Comparative study of two visual performance based mesopic models based on reaction time and contrast threshold data
US11770888B2 (en) Ambient lighting for improving sleeping disorders, cognition and/or neurological disorders
DAVOUDIAN Street lighting and older people
Navvab et al. Defining pedestrian's visual adaptation field under night lighting in Venice
CN117795398A (zh) 包括滤波器的眼科镜片以及用于确定提高配戴者的运动敏感度的滤波器的方法
CN117320233A (zh) 一种商业园区智慧照明用亮度调节方法
CN113158398A (zh) 一种基于驾驶安全舒适性的特长隧道中间段照明光环境色温设置方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE