WO2017181396A1 - 一种管道弯曲应变的计算方法 - Google Patents
一种管道弯曲应变的计算方法 Download PDFInfo
- Publication number
- WO2017181396A1 WO2017181396A1 PCT/CN2016/079905 CN2016079905W WO2017181396A1 WO 2017181396 A1 WO2017181396 A1 WO 2017181396A1 CN 2016079905 W CN2016079905 W CN 2016079905W WO 2017181396 A1 WO2017181396 A1 WO 2017181396A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pipe
- curvature
- bending
- bending strain
- obtaining
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B21/00—Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B21/00—Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
- G01B21/32—Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring the deformation in a solid
Definitions
- the invention relates to the field of crude oil pipelines, and in particular relates to a calculation method of bending strain of pipelines.
- the in-pipe inspection technology is to load various non-destructive testing equipment on the pipeline pig, and to change the non-intelligent pig used for cleaning into an intelligent pipeline defect detector with information collection, processing, storage and other functions.
- the pressure difference between the front and the back of the medium runs inside the pipeline to achieve the purpose of detecting pipeline defects.
- the internal detector can be divided into a diameter measuring technology, a magnetic flux leakage detecting technology and an ultrasonic detecting technology according to functions.
- the inertial navigation system uses the inertial sensing element to measure the linear motion and angular motion parameters of the carrier relative to the inertial space. According to Newton's law of motion, the instantaneous velocity and instantaneous position of the carrier are estimated, and the attitude angle of the carrier (the heading angle, the pitch angle, and the rolling angle) is measured. It has the advantages of no external information source, no external interference and no radiation to the outside world. It is an autonomous navigation system, which is suitable for detecting the pipeline centerline and generating the comparison pipeline through a number of times. The amount of displacement and deformation.
- the object of the present invention is to invent a method for detecting bending strain of a pipeline based on inertial measurement unit with high repeatability, small error, high sensitivity and wide detection range.
- the method of detecting the bending strain of the pipeline based on inertial measurement is to measure the bending curvature of the pipeline by the inertial measurement unit and the mileage wheel, and calculate the bending strain of the pipeline by the curvature, and evaluate the bending deformation of the pipeline.
- Inertial measurement unit and mileage measurement The in-pipe detector carries the detection system of the inertial measurement unit, and the system is constructed as shown in FIG. It consists of three parts: one is the in-pipe detector, which consists of various sensors and three mileage wheels distributed in a circle of 120°.
- the mileage wheel is in close contact with the inner wall of the pipe by a spring to generate a pulse signal at 300/m;
- the second is the strapdown inertial measurement unit, which consists of three sets of orthogonal gyroscopes and three sets of orthogonal accelerometers. It measures the angular change and velocity change when the detector travels.
- the angular velocity drift rate of the gyroscope is not more than 0.01°/ h;
- three is a ground tracking device, including a differential GPS mapping system, a signal detection unit, etc., for measuring the GPS position of the ground device and detecting the passage time of the detector inside.
- the pipe bending strain detecting process of the present invention is shown in FIG. 2. Synchronize the clocks of the detector and the ground tracking device before the start of the test to ensure that the data recorded by both are aligned in time.
- the synchronized ground tracking device is placed directly above the pipe at intervals of 1 km along the pipeline for measuring the GPS position of the device and recording the detector transit time. Then, the internal detector carrying the strapdown inertial measurement unit is operated, and the pressure of the flowing medium in the pipe is pushed to drive the detector to operate in the pipe.
- the attitude and distance of the detector running in the pipeline are collected in real time by the data recording unit in the detector, and the data recording frequency of the inertial measurement unit and the mileage wheel is 50 Hz.
- the GPS position and detector pass time data and are collected in real time by the data recording unit of the tracking device. After the end of the operation, the detection data, the inertial measurement unit data, the mileage wheel data, and the GPS data are downloaded to perform post-processing of the data.
- the inertial measurement unit gyroscope and the detector mileage data are first integrated by time, and the three-dimensional path of the detector through the pipeline is estimated to obtain the attitude of the detector operation, that is, the heading angle Azimuth (A) and the pitch angle Pitch ( P) and the rolling angle Yew(Y), after the Kalman filter processing, the gyroscope drift error is eliminated, and the accurate attitude information of the internal detection can be solved by combining the mileage wheel speed information.
- the trajectory of the inner detection ie, the pipe center line
- v(s) in the space coordinate system (Cartesian coordinate system)
- s is the distance from the center line.
- the vector t is a tangent vector tangent to a point trajectory v(s), and its angle with the xy plane of the space coordinate system is Pitch(P), which is the pitch angle of the detector; similarly, The angle between the vector t and the yz plane is Azimuth (A), which is the heading angle of the detector. So you can get the relationship between the vector t and the three axes of the space coordinate system:
- k (S) of the pipe centerline curvature k is the curvature k can be expressed as the vertical direction V and the horizontal direction H k, k and the total curvature along vertical and horizontal curvature of the curvature in the navigation coordinate system is:
- the curvature symbol is defined as shown in Fig. 4.
- Fig. 4 For horizontal bending, along the direction of the medium flow, it is defined that the rightward bend is positive and the leftward bend is negative.
- Fig. 5 and Fig. 6 respectively, the elevation angle and the heading angle of the detector. Since the heading angle and the pitch angle are both discrete data, the curvature of each point is calculated after polynomial fitting.
- the total bending strain ⁇ of the pipeline and the bending strain of the horizontal ⁇ h and the vertical direction ⁇ v can be obtained by the following formula:
- the total bending strain ⁇ of the pipe is the maximum strain generated when the axial direction of the pipe section is bent and deformed by the pipe, so the bending strain ⁇ ( ⁇ ) at any point on the pipe surface should be:
- ⁇ is the clockwise angle of the pipe section.
- the pipe bending strain is obtained by the curvature change before and after the continuous operation of the detector.
- the pipe baseline can be first defined by the in-run test for comparison with the next run result.
- a preliminary strain analysis can be performed for the first run of the inner test to evaluate the large geological instability affecting the pipe.
- the invention adopts a pipeline detector carrying a detection system composed of an inertial measurement unit, and measures the bending curvature of the pipeline by the inertial measurement unit and the mileage wheel, and calculates the bending strain of the pipeline by the curvature to evaluate the bending deformation of the pipeline without affecting the normal operation of the pipeline, It has the advantages of high repeatability, small error, high sensitivity and wide detection range. It is suitable for periodic and comprehensive long-distance pipeline bending strain detection. Moreover, combined with the high-precision GPS differential system, it can accurately provide the geographical position of the bending deformation feature, and provide an effective means for finding and repairing the bending deformation. Comparing the bending strain data with other test data and operation data, it can analyze the cause of curvature change of the whole pipeline, evaluate the integrity of the pipeline, and provide a scientific basis for the prevention and reasonable maintenance of pipeline accidents.
- Figure 1 is a schematic diagram of a detection system
- Figure 2 is a flow chart of pipeline bending strain detection
- Figure 3 is a flow chart of pipeline bending strain detection
- Figure 4 is a curvature symbol definition map
- Figure 5 is a graph showing a change in pitch angle
- Figure 6 is a diagram showing a change in heading angle
- Figure 7 is a three-dimensional path diagram
- Figure 8 is a horizontal bending strain diagram
- Figure 9 is a vertical bending strain diagram.
- the three-dimensional path of the pipe segment obtained from the detector measurement data is shown in Fig. 7.
- the strain detection threshold is 0.125% strain, which is 1/400D curvature.
- the length of the minimum strain characteristic is not less than 12m, which is the length of the standard pipe joint.
- the bending deformation characteristic exceeding the detection threshold is 18.55m in length, the horizontal strain component is -0.07%, and the vertical strain component is 0.16%, which is consistent with the actual pipe bending deformation, which proves the effectiveness of the detection method.
- This example has the advantages of high repeatability, small error, high sensitivity and wide detection range. It is suitable for periodic and comprehensive long-distance pipeline bending strain detection. Moreover, combined with the high-precision GPS differential system, it can accurately provide the geographical position of the bending deformation feature, and provide an effective means for finding and repairing the bending deformation.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Pipeline Systems (AREA)
Abstract
一种管道弯曲应变的计算方法,获取管道测绘装置通过一管道的三维路径;根据所述三维路径,获取时间向量与三维坐标系中的每一个坐标轴的对应关系,其中,所述三维路径为所述三维坐标系中的曲线;根据曲面计算模型和所述对应关系,获取所述管道的弯曲曲率;基于所述管道的弯曲曲率,获取所述管道的弯曲应变。
Description
本发明涉及原油管道领域,具体涉及一种管道弯曲应变的计算方法。
长输管道具有输送能力大、成本低等优点,是油气输送的主要方式。但由于地震、滑坡、洪水、永久冻土融沉、冻胀和第三方损毁等地质灾害原因,管道会产生位移,导致管道区域性或局部性弯曲应变,严重时,环境载荷会引起管道褶皱,影响管道完整性,如果不能及时发现和维修,会缩短管道使用寿命,甚至发生油气泄漏的危险,对环境和人类的生命财产安全造成威胁,严重管道位移带来的环境和经济灾难性后果是无法容忍的。监测管道位移,是管道运营和维护中重要的环境和经济考虑。定期检测管道曲率变化,对于管道通过的环境敏感区域和地面沉降区域非常重要。
目前存在几种测量管道位移的方法,包括视距技术、声发射和光纤方法等,但这些技术需要安装专用传感器、建设信号传输设施和人为手动操作等,受区域限制影响大,监测范围小,对长输管道的整体位移监测具有局限性。
管道内检测技术是将各种无损检测设备加载在管道清管器上,将用作清扫的非智能清管器改为有信息采集、处理、存储等功能的智能型管道缺陷检测器,通过输送介质的前后压差在管道内运行,达到检测管道缺陷的目的。内检测器按功能可分为测径检测技术、漏磁检测技术和超声波检测技术等。
惯性导航系统是利用惯性敏感元件测量载体相对于惯性空间的线运动和角运动参数,依据牛顿运动定律,推算载体的瞬时速度和瞬时位置,测量载体的姿态角(航向角、俯仰角、滚动角),具有不需外部信息源、不受外界干扰和不向外界辐射能量的优点,是一种自主式导航系统,适合用于检测管道中心线并通过多次检测对比管道在一定周期内所产生的位移量及形变。
发明内容
本发明的目的是发明一种基于惯性测量单元的重复性强、误差小、灵敏度高、检测范围广的管道弯曲应变的检测方法。
基于惯性测量的管道弯曲应变检测方法是通过惯性测量单元和里程轮测量管道弯曲曲率,以及由曲率计算管道弯曲应变,评价管道的弯曲变形。惯性测量单元和里程轮测量采用
管道内检测器携带惯性测量单元的检测系统,该系统的构成如图1所示。它由三部分组成:一是管道内检测器,由各种传感器和三个按120°圆周分布的里程轮组成,里程轮通过弹簧紧密接触在管道内壁上,以300个/m产生脉冲信号;二是捷联式惯性测量单元,由三组正交的陀螺仪和三组正交的加速度计组成,测量检测器行进时的角度变化和速度变化,陀螺仪的角速度漂移率不大于0.01°/h;三是地面跟踪装置,包括差分GPS测绘系统、信号探测单元等,用于测量地面装置的GPS位置和探测内检测器通过的时间。
本发明的管道弯曲应变检测流程如图2所示。在检测开始前,对检测器和地面跟踪装置的时钟进行同步,确保两者记录的数据能够按时间对齐。将同步后的地面跟踪装置,在管道沿线,按1km的间隔摆放在管道正上方,用于测量装置的GPS位置和记录检测器通过时间。然后,运行携带捷联式惯性测量单元的内检测器,依靠管道内流动介质的压强推动检测器在管道内运行。检测器在管道内运行的姿态和距离,通过检测器内的数据记录单元实时采集,惯性测量单元和里程轮的数据记录频率为50Hz。GPS位置和检测器通过时间数据,通过跟踪装置的数据记录单元实时采集。运行结束后,下载检测数据、惯性测量单元数据、里程轮数据和GPS数据等,进行数据的后处理。
在数据后处理阶段,首先按时间整合惯性测量单元陀螺仪和检测器里程轮数据,估算检测器通过管道的三维路径,得到检测器运行的姿态,即航向角Azimuth(A)、俯仰角Pitch(P)和滚动角Yew(Y),采用卡尔曼滤波处理后,消除陀螺仪漂移误差,再结合里程轮数速度信息可解算出内检测的准确的姿态信息。内检测所经过的轨迹(即管道中心线)将在空间坐标系(笛卡尔坐标系)中形成一条曲线v(s),s为选取中心线的距离,则
v(s)=[x(s),y(s),z(s)] 公式(1)
如图3所示,向量t是与某点轨迹v(s)相切的切向量,它与空间坐标系xy平面所成角度为Pitch(P),即为检测器的俯仰角;同理,向量t与yz平面所成角度为Azimuth(A),即为检测器的航向角。所以可以得到向量t与空间坐标系三轴之间的关系:
tx=cos P sin A
ty=cos P cos A 公式(2)
tz=sin P
假设k(s)为管道中心线的曲率,则曲率k为可表示为垂直方向的kv和水平方向的kh,则总曲率k和垂直曲率及水平曲率在导航坐标系的关系为:
在笛卡尔坐标系中总曲率k(s)=dt/ds;根据式可以得出曲率k在笛卡尔坐标系中三个平面的关系:
kx=dtx/ds;ky=dty/ds;kz=dtz/ds 公式(3)
将公式(2)代入公式(3)后得出:
kx=-sin P(dP/ds)sin A+cos P cos A(dA/ds)
ky=-sin P(dP/ds)cos A-cos P sin A(dA/ds) 公式(5)
kz=cos P(dP/ds)
将公式(5)代入公式(4)得出:
则垂直方向的kv和水平方向的kh分别为:
kv=-dP/ds
kh=-(dA/ds)cos P
曲率符号定义如图4所示,对于水平弯曲,沿介质流向,定义向右弯为正,向左弯为负,对于垂直弯曲,沿介质流向,定义向下弯为正,向上弯为负。如图5、图6所示分别为检测器的俯仰角及航向角。由于航向角及俯仰角同为离散数据,需进行多项式拟合后计算每一点的曲率。
根据管道水平曲率和垂直曲率结果,通过以下公式,即可得到管道的总弯曲应变ε及水平εh、垂直方向εv的弯曲应变:
ε=kD/2
εv=kvD/2
εh=khD/2
管道的弯曲总应变ε是管道截面上轴向方向受管道弯曲变形时所产生的最大应变,所以管道表面任意一点所受的弯曲应变ε(α)应为:
ε(α)=εv cosα+εh sinα
其中α为管道截面的顺时针角度。
管道弯曲应变通过检测器连续运行前后的曲率变化获得,对于新建管道,可通过运行内检测首先定义管道基线,用于与下次运行结果比较。不过,由于曲率能够从单次的运行数据中获取,如果假定管道在制造时是直的,对于首次运行内检测的管道,可以做初步应变分析,评价影响管道的大的地质不稳定性。
将曲率和弯曲应变数据与几何检测数据、内检测历史数据、竣工资料、运行资料等信息进行比较分析,可以获取应变特征与其他报告中异常(几何特征、腐蚀、裂纹、环焊缝异常等)的关联,解释管道曲率变化的原因,给出应对措施和建议,对管道企业提高管道完整性管理水平具有重要意义。
本发明采用管道检测器携带惯性测量单元构成的检测系统,在不影响管道正常工作情况下,通过惯性测量单元和里程轮测量管道弯曲曲率,以及由曲率计算管道弯曲应变,评价管道的弯曲变形,具有可重复性强、误差小、灵敏度高、检测范围广的优点,适合定期、全面的长输管道弯曲应变检测。并且,结合高精度的GPS差分系统,能够准确提供弯曲变形特征的地理位置,为查找、修复弯曲变形提供有效的手段。将弯曲应变数据与其他检测数据、运行资料等信息进行比较,可以分析整个管道的曲率变化原因,评价管道完整性,为管道事故的预防和合理维护提供科学依据。
图1为检测系统示意图;
图2为管道弯曲应变检测流程图;
图3为管道弯曲应变检测流程图;
图4为曲率符号定义图;
图5为俯仰角变化图;
图6为航向角变化图;
图7为三维路径图;
图8为水平弯曲应变图;
图9为垂直弯曲应变图。
下面将结合附图对本发明做进一步说明。
实施例使用本检测方法对某管道进行了弯曲应变测量。采用变形检测器携带捷联式惯性
测量单元的组合检测系统,被检测管道的直径是28英寸。在正式检测时,采用差分GPS系统,对摆放地面跟踪装置的点位进行了准确测量,检测器运行速度设定在1~3m/s范围内。检测结束后,对检测数据进行下载和后处理,检测器测量的管段长度为119m,与实际长度一致。
从检测器测量数据获得的管段三维路径如图7所示,根据陀螺仪和里程轮数据,经滤波处理后,获得管道水平应变如图8所示,垂直应变如图9所示,设定弯曲应变检测阈值为应变0.125%,即1/400D曲率,最小应变特征的长度不小于12m,即标准管节的长度,从图中可以看出,在距离42.5~61.1m处,存在一个应变0.17%超过检测阈值的弯曲变形特征,长度18.55m,其水平应变分量为-0.07%,垂直应变分量为0.16%,这与实际管道弯曲变形量是一致的,证明了本检测方法的有效性。
本例经试验,具有可重复性强、误差小、灵敏度高、检测范围广的优点,适合定期、全面的长输管道弯曲应变检测。并且,结合高精度的GPS差分系统,能够准确提供弯曲变形特征的地理位置,为查找、修复弯曲变形提供有效的手段。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。
Claims (7)
- 一种管道弯曲应变的计算方法,其特征在于,包括:获取管道测绘装置通过一管道的三维路径;根据所述三维路径,获取时间向量与三维坐标系中的每一个坐标轴的对应关系,其中,所述三维路径为所述三维坐标系中的曲线;根据曲面计算模型和所述对应关系,获取所述管道的弯曲曲率;基于所述管道的弯曲曲率,获取所述管道的弯曲应变。
- 如权利要求1所述的计算方法,其特征在于,所述三维路径具体为:v(s)=[x(s),y(s),z(s)] 公式(1)其中,v(s)用于表征所述三维路径,s为选取中心线的距离。
- 如权利要求2所述的计算方法,其特征在于,所述根据所述三维路径,获取时间向量与三维坐标系中的每一个坐标轴的对应关系,具体为:若时间向量用t表示,且t与三维坐标系中的xy平面之间的角度为P,t与三维坐标系中的yz平面之间的角度为A,则t与每一个坐标轴的对应关系为:tx=cos P sin Aty=cos P cos A 公式(2)tz=sin P。
- 如权利要求3所述的计算方法,其特征在于,所述根据曲面计算模型和所述对应关系,获取所述管道的弯曲曲率,具体为:根据曲面计算模型和所述对应关系,获取所述管道的总曲率,所述管道的垂直曲率和所述管道的水平曲率。
- 如权利要求5所述的计算方法,其特征在于,所述基于所述管道的弯曲曲率,获取所述管道的弯曲应变,具体包括:根据所述管道的弯曲曲率与弯曲应变的关系模型,确定所述管道的总弯曲应变为ε=kD/2、所述管道的水平弯曲应变为εh=khD/2和所述管道的垂直弯曲应变为εv=kvD/2。
- 如权利要求5所述的方法,其特征在于,在所述获取所述管道的弯曲应变之后,所述方法还包括:根据所述管道的弯曲应变,获取所述管道表面上任意一点所受的弯曲应变应ε(α)为:ε(α)=εv cosα+εh sinα其中,α为管道截面的顺时针角度。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2016/079905 WO2017181396A1 (zh) | 2016-04-21 | 2016-04-21 | 一种管道弯曲应变的计算方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2016/079905 WO2017181396A1 (zh) | 2016-04-21 | 2016-04-21 | 一种管道弯曲应变的计算方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017181396A1 true WO2017181396A1 (zh) | 2017-10-26 |
Family
ID=60116564
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/079905 WO2017181396A1 (zh) | 2016-04-21 | 2016-04-21 | 一种管道弯曲应变的计算方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2017181396A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110398221A (zh) * | 2019-08-20 | 2019-11-01 | 交科院科技集团有限公司 | 一种用于测量冻融侵蚀冻胀和冻融位移量的装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100038068A1 (en) * | 2004-12-14 | 2010-02-18 | Benjamin Dolgin | Centralizer-based survey and navigation device and method |
US20100305875A1 (en) * | 2009-06-01 | 2010-12-02 | EnviroCal, Inc. | Pipeline in-line inspection system |
CN103697886A (zh) * | 2012-09-28 | 2014-04-02 | 中国石油天然气股份有限公司 | 管道中心线的惯性导航测量方法 |
CN104266664A (zh) * | 2014-09-28 | 2015-01-07 | 中国石油天然气股份有限公司 | 一种管道中心线测量的螺旋误差补偿方法及测量设备 |
CN104296717A (zh) * | 2014-09-29 | 2015-01-21 | 中国石油天然气股份有限公司 | 一种管道弯曲应变的获取方法及测量设备 |
CN105066917A (zh) * | 2015-07-09 | 2015-11-18 | 哈尔滨工程大学 | 一种小型管道地理信息系统测量装置及其测量方法 |
-
2016
- 2016-04-21 WO PCT/CN2016/079905 patent/WO2017181396A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100038068A1 (en) * | 2004-12-14 | 2010-02-18 | Benjamin Dolgin | Centralizer-based survey and navigation device and method |
US20100305875A1 (en) * | 2009-06-01 | 2010-12-02 | EnviroCal, Inc. | Pipeline in-line inspection system |
CN103697886A (zh) * | 2012-09-28 | 2014-04-02 | 中国石油天然气股份有限公司 | 管道中心线的惯性导航测量方法 |
CN104266664A (zh) * | 2014-09-28 | 2015-01-07 | 中国石油天然气股份有限公司 | 一种管道中心线测量的螺旋误差补偿方法及测量设备 |
CN104296717A (zh) * | 2014-09-29 | 2015-01-21 | 中国石油天然气股份有限公司 | 一种管道弯曲应变的获取方法及测量设备 |
CN105066917A (zh) * | 2015-07-09 | 2015-11-18 | 哈尔滨工程大学 | 一种小型管道地理信息系统测量装置及其测量方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110398221A (zh) * | 2019-08-20 | 2019-11-01 | 交科院科技集团有限公司 | 一种用于测量冻融侵蚀冻胀和冻融位移量的装置 |
CN110398221B (zh) * | 2019-08-20 | 2024-03-26 | 交通运输部科学研究院 | 一种测量冻融侵蚀冻胀和冻融位移量的装置和方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107228662B (zh) | 一种基于管道连接器的小径管道定位装置及定位方法 | |
CN107654852B (zh) | 一种基于管道段长度及管道连接器检测的管道内定位装置及定位方法 | |
CN107218942B (zh) | 小径管道缺陷定位装置及基于快速正交搜索算法的定位方法 | |
CN111637367B (zh) | 山地输气管道内腐蚀缺陷检测与评价方法 | |
CN104296717B (zh) | 一种管道弯曲应变的获取方法及测量设备 | |
CN104235618B (zh) | 一种基于mems惯性测量单元的管道测绘及缺陷定位装置及其管道测绘及缺陷定位方法 | |
CN105066917A (zh) | 一种小型管道地理信息系统测量装置及其测量方法 | |
CN103697886A (zh) | 管道中心线的惯性导航测量方法 | |
CN113032380B (zh) | 管道内外检测数据对齐方法、系统及设备 | |
WO2011079375A1 (en) | System and method for calibration of mounted acoustic monitoring system with mapping unit | |
Wang et al. | An enhanced positioning technique for underground pipeline robot based on inertial sensor/wheel odometer | |
Shi et al. | High-precision diameter detector and three-dimensional reconstruction method for oil and gas pipelines | |
CN103196991B (zh) | 连续诊断管体金属腐蚀与缺陷的全覆盖瞬变电磁检测方法 | |
CN107120532B (zh) | 基于快速正交搜索算法的管道连接器检测方法 | |
Wang et al. | A dead reckoning localization method for in-pipe detector of water supply pipeline: an application to leak localization | |
CN107219335B (zh) | 基于复连续小波变换的管道连接器检测方法 | |
US11988318B2 (en) | Methods and systems to enhance pipeline trajectory reconstruction using pipeline junctions | |
WO2017181396A1 (zh) | 一种管道弯曲应变的计算方法 | |
RU2439550C1 (ru) | Устройство для оперативной диагностики магистрального трубопровода | |
CN107420745B (zh) | 一种城市燃气管网检测范围及检测覆盖率的确定方法 | |
Han et al. | Development of inspection gauge system for gas pipeline | |
CN112985369A (zh) | 基于新型人工鱼群算法的管道连接器检测方法 | |
CN106855911A (zh) | 一种测量地下管道空间位置的方法 | |
CN113358746A (zh) | 一种基于人工鱼群算法的小径管道缺陷定位方法 | |
Zhang et al. | A smart robotic system for non-contact condition monitoring and fault detection in buried pipelines |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16898983 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16898983 Country of ref document: EP Kind code of ref document: A1 |