WO2017180079A1 - Procédé de détermination d'emplacement d'un objet - Google Patents

Procédé de détermination d'emplacement d'un objet Download PDF

Info

Publication number
WO2017180079A1
WO2017180079A1 PCT/UA2017/000010 UA2017000010W WO2017180079A1 WO 2017180079 A1 WO2017180079 A1 WO 2017180079A1 UA 2017000010 W UA2017000010 W UA 2017000010W WO 2017180079 A1 WO2017180079 A1 WO 2017180079A1
Authority
WO
WIPO (PCT)
Prior art keywords
microchip
location
tetrahedron
sensor
determining
Prior art date
Application number
PCT/UA2017/000010
Other languages
English (en)
Inventor
Oleksandr Hrygorovych BERENOK
Dmytro Markovych GIVENTAR
Original Assignee
Berenok Oleksandr Hrygorovych
Giventar Dmytro Markovych
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Berenok Oleksandr Hrygorovych, Giventar Dmytro Markovych filed Critical Berenok Oleksandr Hrygorovych
Publication of WO2017180079A1 publication Critical patent/WO2017180079A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/02Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using radio waves
    • G01S1/022Means for monitoring or calibrating
    • G01S1/024Means for monitoring or calibrating of beacon transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/02Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using radio waves
    • G01S1/08Systems for determining direction or position line
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0257Hybrid positioning
    • G01S5/0258Hybrid positioning by combining or switching between measurements derived from different systems
    • G01S5/02585Hybrid positioning by combining or switching between measurements derived from different systems at least one of the measurements being a non-radio measurement
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/14Determining absolute distances from a plurality of spaced points of known location
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/105Controlling the light source in response to determined parameters

Definitions

  • the utility model belongs to the field of Arts, Design, Setting and can be used in technical support for special events such as theatrical production, musical concerts, film productions, TV sets, presentation etc.
  • micro devices build on a chip housing that allow to determine the distance to the objects and between them by calculating the time of a path of radio signal motion (between devices), direction respective to the magnetic poles of the Earth by using a 3 dimensional magnetic compass; positioning direction of object going up and down understanding the gravity field information from the gyroscope and acceleration measurement.
  • the Ukraine Patent for an invention No 59366 describes the method and the device, acting and processing in real time to identify and localize the site, which carries out a relative motion within the observation area, and to determine the speed and oriented direction of the above mentioned relative motion in real time.
  • the method allows to perform a time processing of an incoming digital video signal S (PI), which is to identify changes between each pixel in a picture and an immediately previous picture, binary signal DP, which indicates the presence or absence of a significant change, and digital signal CO that identifies the value of this change, and spatial processing, which is to distribute across the matrix panel of two mentioned signals consistently for a single-picture, that is screened through the matrix panel, as well as to define the necessary relative motion and its characteristics across the indicated matrix distribution;
  • PI incoming digital video signal S
  • DP binary signal
  • digital signal CO digital signal
  • the Ukraine Patent for an invention No 96206 determines the method of location identification of an object, which is based on the fact that the sources of the magnetic field in the form of current loops have an equal square and do not intersect; these sources of the magnetic field are placed in each of the four different points of the object in such a way that these points are located on two mutually orthogonal straight lines, at a fixed distance from the point of intersection of the straight lines and symmetrically respectively the mentioned point of intersection; choose the location of one space point outside the object and place a vectorial magnetometer to the mentioned point; activate one of these sources of the magnetic field and register the value of the magnetic induction vector in the selected point; the procedure is repeated for each of the four indicated sources of the magnetic field, which differs depending that the fixed distance between the location points of the specified sources is several times smaller than the distance to the location point of the vectorial magnetometer; activate in pairs sources of the magnetic field on the gradient system, register values of five separate spatial derivatives of the magnetic induction vector of the first-order in the selected point and on the basis of
  • the publication WO/2010/025559 gives the description of a method of monitoring in real time and a control module (RTM), which are designated to coordinate one or more than one device or an object in a physical environment.
  • the virtual space is created for the correlation with various objects and parameters within the physical environment.
  • RTM can receive data on the characteristics and indicators of physical objects and duly update the parameters of virtual objects in the virtual space.
  • RTM can also provide data, received from the virtual space regarding one or more devices such as robot-based cameras in real time mode. Interface for RTM allows multiple devices to interact with RTM, thus coordinating devices.
  • a radio frequency (RF) motion capture system which includes non-removable receipt sensors, one or more tag marker transmitters for one or multiple objects that must be monitored within the capture area of at least one non removable mounting tag transmitter, and the system for processing of incoming signals.
  • Separate tags transmit a burst of RF signals with a spread spectrum.
  • the transmitted signals contain a general synchronization code, as well as an identification code of the tag, which is a unique for each tag.
  • this utility model does not require installing data transmission lines from base stations to computer. In this utility model also reduced the number of sensors because it does not require the base station of reference object. Except position determining of each sensor by calculation the time of a path of radio signal motion (between devices), this utility model uses magnetic pole of the Earth to get orientation of the objects according to Earth's axises and its motion dynamic.
  • Utility model created for location determining of an object and tracking it by controllable lighting equipment or other controllable devices, and processing controlling signal to controllable equipment to be focused on an object in field of stage or similar space without external computers to calculate the data of object positioning.
  • the main difference of this utility model is absence of the computer-calculation server which calculates all the data of location determining using 3D model of a space, and processing controlling signal to controllable moving lighting equipment or other controllable devices.
  • micro devices-sensors build on a chip housing, by putting on or putting by the controllable lighting fixtures (intelligent lighting devices) and on object, which location has to be determined.
  • controllable lighting fixtures intelligent lighting devices
  • object which location has to be determined.
  • These micro devices are specially programmed due to a special algorithm to solve our task of location determine of an object.
  • Each micro device made as separate assembled device.
  • Each assembled micro elements, microchip view, on printed circuit board of these sensors operate with one of the following functions:
  • gyroscope and accelerometer are made on one microchip. Functions of this microchip are determining gravitational pull of the Earth direction according to the position of a sensor and determining of dynamic motion performance of a sensor;
  • radio transceiver made on a one microchip. Function of this microchip is calculation of a distance to the similar microchip;
  • microcontroller made on one microchip. Its function is calculations based on preprogrammed algorithm
  • AD, CD, BC in exact moment in exact position of object in point D.
  • the algorithm understands that AD, CD, BD forms sides of tetrahedron with a top in point D. And this top point D is an object, which location we're determining.
  • Informational data of object's D dynamic motion performance is calculated in object tracking algorithm by lighting equipment.
  • Informational data about distance between sensors, about their positioning/orientation (Up or Down) according to the Earth, about incline/angle (azimuth) according to the magnetic poles of the Earth allows the sensor to process controlling signal (x,y,z), based on preprogrammed algorithm inside of microcontroller, to focus the beams from lighting equipment on the object.
  • each sensor at the lighting devices has a complete picture of 3D locations of each lighting device and tracking object in the top of the tetrahedron. As a tetrahedron bottom is fixed, there's no need to do extra calculations of their coordinates, and thus, the position of an object is easily calculated by triangles which forms the sides of tetrahedron.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

L'invention concerne un procédé de détermination d'emplacement d'un objet et de suivi de l'objet au moyen de l'équipement d'éclairage pouvant être commandé dans l'espace de l'étage ou d'un autre espace similaire, sans l'utilisation d'ordinateurs externes, qui traitent les données concernant un emplacement d'objet, et un signal de commande de traitement pour les focaliser sur un objet au moyen des éléments suivants : au niveau de dispositifs d'éclairage pouvant être commandé et au niveau de l'objet, dont l'emplacement est déterminé, il y a les micro-capteurs incorporés sur des micro-éléments sur un boîtier de puce, programmés sur un algorithme pour résoudre une tâche affectée, l'algorithme étant basé sur un principe de la construction de tétraèdre, où A, B, C sont les dispositifs d'éclairage à capteurs intégrés et ils forment la base du tétraèdre, et D, le sommet du tétraèdre, est l'objet qui doit être suivi et il a également un capteur installé.
PCT/UA2017/000010 2016-04-12 2017-02-03 Procédé de détermination d'emplacement d'un objet WO2017180079A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
UAU201604000 2016-04-12
UAU201604000U UA109915U (uk) 2016-04-12 2016-04-12 Спосіб визначення місцеположення об'єкта

Publications (1)

Publication Number Publication Date
WO2017180079A1 true WO2017180079A1 (fr) 2017-10-19

Family

ID=56921319

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/UA2017/000010 WO2017180079A1 (fr) 2016-04-12 2017-02-03 Procédé de détermination d'emplacement d'un objet

Country Status (2)

Country Link
UA (1) UA109915U (fr)
WO (1) WO2017180079A1 (fr)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
UA59366C2 (fr) 1996-07-26 2003-09-15 Bev Holding Sa
WO2004081602A2 (fr) 2003-03-11 2004-09-23 Menache, Llc Systeme radiofrequence d'analyse du mouvement et procede a cet effet
EP1666912A1 (fr) 2004-12-01 2006-06-07 Abatec Electronic AG Procédé et système pour determiner la position d'un objet
EP1966624A1 (fr) * 2005-12-23 2008-09-10 Koninklijke Philips Electronics N.V. Interface d'utilisateur presentant une localisation de position
WO2010025559A1 (fr) 2008-09-05 2010-03-11 Cast Group Of Companies Inc. Système et procédé de suivi et de coordination en temps réel d’un environnement
WO2010064159A1 (fr) * 2008-12-05 2010-06-10 Koninklijke Philips Electronics, N.V. Techniques de localisation sans fil dans des systèmes d’éclairage
US20140313520A1 (en) * 2013-04-19 2014-10-23 Lutz NAETHKE Location determination using light sources
UA96206U (uk) 2014-07-01 2015-01-26 Інститут Кібернетики Ім. В.М. Глушкова Нан України Спосіб визначення місцезнаходження об'єкта
EP2902795A1 (fr) * 2014-01-31 2015-08-05 Ricoh Company, Ltd. Système et procédé de transmission d'informations de position et émetteur d'informations de position
US20150330778A1 (en) * 2014-05-19 2015-11-19 Stmicroelectronics International N.V. Tracking dynamic on-stage objects

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
UA59366C2 (fr) 1996-07-26 2003-09-15 Bev Holding Sa
WO2004081602A2 (fr) 2003-03-11 2004-09-23 Menache, Llc Systeme radiofrequence d'analyse du mouvement et procede a cet effet
EP1666912A1 (fr) 2004-12-01 2006-06-07 Abatec Electronic AG Procédé et système pour determiner la position d'un objet
EP1966624A1 (fr) * 2005-12-23 2008-09-10 Koninklijke Philips Electronics N.V. Interface d'utilisateur presentant une localisation de position
WO2010025559A1 (fr) 2008-09-05 2010-03-11 Cast Group Of Companies Inc. Système et procédé de suivi et de coordination en temps réel d’un environnement
WO2010064159A1 (fr) * 2008-12-05 2010-06-10 Koninklijke Philips Electronics, N.V. Techniques de localisation sans fil dans des systèmes d’éclairage
US20140313520A1 (en) * 2013-04-19 2014-10-23 Lutz NAETHKE Location determination using light sources
EP2902795A1 (fr) * 2014-01-31 2015-08-05 Ricoh Company, Ltd. Système et procédé de transmission d'informations de position et émetteur d'informations de position
US20150330778A1 (en) * 2014-05-19 2015-11-19 Stmicroelectronics International N.V. Tracking dynamic on-stage objects
UA96206U (uk) 2014-07-01 2015-01-26 Інститут Кібернетики Ім. В.М. Глушкова Нан України Спосіб визначення місцезнаходження об'єкта

Also Published As

Publication number Publication date
UA109915U (uk) 2016-09-12

Similar Documents

Publication Publication Date Title
US20220229149A1 (en) Apparatus and method for automatically orienting a camera at a target
Langlois et al. Indoor localization with smartphones: Harnessing the sensor suite in your pocket
US11009942B2 (en) Multi-human tracking system and method with single kinect for supporting mobile virtual reality application
US9216347B2 (en) Portable device, virtual reality system and method
US8575929B1 (en) Magnetic anomaly surveillance system using spherical trilateration
CN106872011A (zh) 用于高速视频振动分析的模块化设备
CN105138135A (zh) 头戴式虚拟现实设备及虚拟现实系统
US20190187783A1 (en) Method and system for optical-inertial tracking of a moving object
CN109547769B (zh) 一种公路交通动态三维数字场景采集构建系统及其工作方法
CN108120436A (zh) 一种iBeacon辅助地磁室内实景导航方法
CN108603653B (zh) 用于对准照明装置的方法和系统
CN108496057A (zh) 基于照明源定位
CN204989490U (zh) 一种基于gps与超声波的小型无人机室内外无缝集成定位系统
KR20190032791A (ko) 실시간 위치 측위 시스템 및 이를 이용한 콘텐츠 제공 서비스 시스템
US20160005174A1 (en) System and method for synchronizing fiducial markers
KR20170049953A (ko) 단일 이미지센서를 이용한 실내위치 측정장치 및 그 방법
CN110763238A (zh) 基于uwb、光流和惯性导航的高精度室内三维定位方法
WO2019207300A1 (fr) Suivi sportif
CN110082719A (zh) 无人机定位系统及方法
Nyqvist et al. A high-performance tracking system based on camera and IMU
WO2017180079A1 (fr) Procédé de détermination d'emplacement d'un objet
EP3097435B1 (fr) Procédé d'estimation de la position d'un dispositif portable
Gosda et al. Target tracking in wireless sensor networks by data fusion with video-based object detection
Meng et al. Arpico: Using pictures to build localization service for indoor iot applications
Megalou et al. Lane keeping through RFID

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17718162

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17718162

Country of ref document: EP

Kind code of ref document: A1