WO2017179726A1 - Dengue vaccine antigen inducing neutralizing antibody but inhibiting induction of infection-enhancing antibody - Google Patents

Dengue vaccine antigen inducing neutralizing antibody but inhibiting induction of infection-enhancing antibody Download PDF

Info

Publication number
WO2017179726A1
WO2017179726A1 PCT/JP2017/015384 JP2017015384W WO2017179726A1 WO 2017179726 A1 WO2017179726 A1 WO 2017179726A1 JP 2017015384 W JP2017015384 W JP 2017015384W WO 2017179726 A1 WO2017179726 A1 WO 2017179726A1
Authority
WO
WIPO (PCT)
Prior art keywords
dengue
amino acid
infection
virus
envelope protein
Prior art date
Application number
PCT/JP2017/015384
Other languages
French (fr)
Japanese (ja)
Inventor
英二 小西
敦史 山中
ポングラマ ラマスータ
パナンティップ ピタクサジャクン
Original Assignee
国立大学法人大阪大学
マヒドン ユニバーシティ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学, マヒドン ユニバーシティ filed Critical 国立大学法人大阪大学
Priority to JP2018512108A priority Critical patent/JPWO2017179726A1/en
Publication of WO2017179726A1 publication Critical patent/WO2017179726A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • C07K14/08RNA viruses
    • C07K14/18Togaviridae; Flaviviridae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present invention relates to a dengue vaccine antigen that induces neutralizing antibodies but suppresses induction of infection-enhancing antibodies, a dengue vaccine that contains or expresses the antigen, and a method for obtaining the antigen or dengue virus that expresses the antigen. .
  • Dengue virus is a virus belonging to the family Flaviviridae and Flavivirus. Flaviviruses include Japanese encephalitis virus, yellow fever virus, West Nile virus and the like in addition to dengue virus. Infection with dengue virus is often subclinical, but when it develops, it exhibits a wide range of symptoms ranging from mild transient fever to death. Dengue fever is a disease in which high fever accompanied by pain such as headache, muscle pain, joint pain, orbital pain lasts for about one week. A severe type that exhibits increased vascular permeability and bleeding tendency in addition to this symptom is called dengue hemorrhagic fever.
  • dengue virus There are four types of dengue virus, “species” in biological classification, from type 1 to type 4 (these are called serotypes), all of which cause dengue fever or dengue hemorrhagic fever. Epidemiologically, dengue fever often develops in the first infection. However, if a second infection occurs after a certain period of time from the first infection, it will be protected if it is the same serotype as the first infection, but it may become severe if it is infected with a dengue virus of a different serotype It has been known.
  • Dengue fever and dengue hemorrhagic fever are the most important mosquito-borne infections that the world is trying to control, but there is still no dengue vaccine approved by WHO.
  • various strategies such as attenuated vaccines, inactivated vaccines and subunit vaccines are under development, and six candidate vaccines are in the licensed or clinical trial stage.
  • vaccines have already been marketed against yellow fever, Japanese encephalitis and tick-borne encephalitis, all of which are types of vaccines that induce neutralizing antibodies.
  • Neutralizing antibodies are the main defense factors, and by effectively reducing the amount of virus in the blood, the virus's pathogenicity, internal movement, and transmission efficiency to vector mosquitoes are suppressed, and individuals and society are protected from disease. protect.
  • Non-patent Document 1 The development of neutralizing antibody-inducing vaccines has been promoted in the same way for dengue vaccines. However, unlike other flaviviruses, neutralizing antibodies against dengue virus show infection enhancing activity at low concentrations. The antibody-dependent infection enhancement phenomenon is the most promising hypothesis for explaining dengue severity (Non-patent Document 1). Therefore, many researchers question the safety of dengue vaccines, and as an example, when the level of neutralizing antibodies induced by the vaccine decreases with time, it becomes an infection-enhancing antibody and becomes severe due to vaccination (Non-Patent Document 2).
  • the most developed dengue vaccine is Sanofi Pasteur's recombinant chimeric vaccine.
  • Phase 3 clinical trials have already been completed and licenses have been obtained in three countries. Because dengue does not have an appropriate animal model to represent human pathology, and there is no established immunological index of protection, the exact protective efficacy of a candidate vaccine can only be determined with a large number of human subjects.
  • This phase 3 clinical trial therefore provided the world's first dengue vaccine efficacy data. Moreover, since it was a large-scale test targeting 30,000 people in 10 countries in Asia and the United States, this data is reliable data that surpassed individual differences and environmental differences. Meanwhile, other candidate vaccines are in Phase II clinical trials, which are currently the only efficacy trials in the world.
  • Non-patent Documents 3 and 4 the protective efficacy was about 60% as a whole. It was a surprising result that despite the high induction of neutralizing antibodies in all cases, the actual protective efficacy was low. This result was observed data for 2 years after the 3rd vaccination, but recently data from 3 to 4 years after vaccination was recently released, which shows that the overall efficacy is about 45 in the 9-year-old population. % (Non-patent Document 5). In addition, some groups increased the risk of illness due to vaccination.
  • the strain used as a vaccine antigen is usually a strain isolated from nature.
  • the technology has been passed down since the days of Jenner and Pasteur.
  • the natural strain since the natural strain itself induces an infection-enhancing antibody, it is not appropriate to use it as a vaccine antigen as it is.
  • Two successful cases have been reported so far in which the neutralization antibody induction ability was left behind by artificial alteration of the envelope antigen epitope, leading to a decrease in infection-enhancing antibody induction (Non-patent Documents 7 and 8). Therefore, it is possible to control the induction of infection-enhancing antibodies by epitope modification.
  • Halstead SB Neutralization and antibody-dependent enhancement of dengue viruses. Adv Virus Res. 2003; 60: 421-67.
  • a dengue vaccine antigen that induces neutralizing antibody but suppresses induction of infection-enhancing antibody includes an envelope protein having a mutation in the 107th or 87th amino acid of the amino acid sequence of the dengue virus envelope protein
  • Dengue vaccine antigen characterized by [2] The dengue vaccine antigen according to [1], wherein leucine at position 107 is substituted with one selected from phenylalanine, tryptophan, methionine, proline, alanine, valine and isoleucine.
  • a method for obtaining a dengue vaccine antigen that induces neutralizing antibodies but suppresses induction of infection-enhancing antibodies, or a dengue virus that expresses the antigens comprising the following steps (1) to (5) Features method: (1) A step of obtaining a monoclonal antibody having an infection enhancing activity but not a neutralizing activity, using a dengue virus envelope protein as an antigen, (2) obtaining a monoclonal antibody having neutralizing activity by changing the class or subclass of the monoclonal antibody obtained in (1), (3) obtaining a mutant dengue virus that is not neutralized by the monoclonal antibody by culturing dengue virus-infected cells in the presence of the monoclonal antibody having neutralizing activity obtained in (2); (4) a step of confirming a mutation occurring in the envelope protein of the mutant dengue virus obtained in (3), and (5) that the envelope protein of the mutant dengue dengue dengue dengue virus.
  • Dengue vaccine antigen that induces neutralizing antibody but suppresses induction of infection-enhancing antibody, and includes dengue virus envelope protein having mutations at amino acids 107 and 87 of the amino acid sequence and amino acid 2
  • a dengue vaccine antigen comprising a dengue virus precursor membrane protein having no mutation.
  • a dengue vaccine comprising or expressing the dengue vaccine antigen according to [12].
  • the present invention also includes the following inventions.
  • [14] The dengue vaccine antigen according to any one of [1] to [7] and [12] or the dengue vaccine according to any one of [8] to [10] and [13] A pharmaceutical composition for preventing or treating dengue fever or dengue hemorrhagic fever.
  • [15] The administration of the dengue vaccine antigen according to any one of [1] to [7] and [12] or the dengue vaccine according to any one of [8] to [10] and [13].
  • the dengue vaccine antigen according to any one of the above [1] to [7], [12] or the above [8] to [10] for use in the prevention and / or treatment of dengue fever or dengue hemorrhagic fever [13] The dengue vaccine according to any one of the above.
  • the present invention can provide a dengue vaccine antigen that induces neutralizing antibodies but suppresses induction of infection-enhancing antibodies, and dengue vaccines that contain or express the antigens.
  • FIG. 1 is a diagram showing the results of confirming the infection enhancing activity and neutralizing activity of a monoclonal antibody against dengue type 1 virus Mochizuki strain, and the left shows neutralizing activity at a high concentration and infection enhancing activity at a low concentration.
  • D1-I-15C12 the result of a representative example of a monoclonal antibody (D1-IV-7F4) showing only neutralizing activity in the center
  • D1-IV-7F4 shows only neutralizing activity in the center
  • the right shows a monoclonal antibody showing only infection enhancing activity
  • FIG. 1 is a diagram showing the results of confirming the infection enhancing activity and neutralizing activity of a monoclonal antibody against dengue type 1 virus Mochizuki strain, and the left shows neutralizing activity at a high concentration and infection enhancing activity at a low concentration.
  • D1-IV-7F4 the result of a representative example of a monoclonal antibody showing only neutralizing activity in the center
  • the right shows a monoclonal antibody showing only infection
  • FIG. 2 is a diagram showing the results of confirming the neutralizing activity against dengue type 1 virus Mochizuki strains of antibodies (3H12-IgG2a and 3H12-IgG2b) substituted with a subclass of 3H12 antibody that showed only infection-enhancing activity.
  • FIG. 3 shows enhanced infection of 3H12 antibody against escape mutant virus obtained by subculturing Vero cells infected with Dengue type 1 virus Mochizuki strain in the presence of an antibody (3H12-IgG2b) showing neutralizing activity. It is a figure which shows the result which confirmed activity.
  • FIG. 4 shows enhanced infection of the 3H12 antibody against single infectious particles (SRIP) having mutations at position 87 (E87) and position 107 (E107) of the envelope protein found in escape mutant viruses.
  • SRIP single infectious particles
  • FIG. 5 shows immunization of mice with plasmid DNA containing DNA encoding the envelope protein of Dengue type 1 virus Mochizuki strain having a mutation in E87 and / or E107. It is a figure which shows the result of having confirmed the neutralization activity with respect to a dengue type 1 virus Mochizuki strain, and the infection enhancement activity, A is the result of the neutralization activity, B is the result of the infection enhancement activity.
  • FIG. 6 shows immunization of mice with plasmid DNA containing DNA encoding the envelope protein of Dengue type 1 virus Mochizuki strain having a mutation in E87 and / or E107.
  • FIG. 7 shows a case in which a mutation was introduced into E87 or E107 of the envelope protein (E antigen) of dengue type 2 virus (New Guinea C strain), dengue type 3 virus (H87 strain), and dengue type 4 virus (H241 strain). It is a figure which shows the result of having confirmed the infection enhancement activity of 3H12 antibody with respect to infectious particle
  • FIG. 8 shows an envelope protein (E antigen) in which mutations are introduced into each of E87 or E107 of the envelope proteins of Dengue type 2 virus (New Guinea C strain), Dengue type 3 virus (H87 strain), and Dengue type 4 virus (H241 strain). ) Is used to immunize mice, and the antibody in the obtained serum confirms the infection enhancing activity against the corresponding serotype virus.
  • FIG. 9 shows immunization of mice with plasmid DNA expressing proteins in which E107 or E87 amino acids in the E region of dengue type 1 virus Mochizuki strain were introduced with single point mutations into various amino acids. It is a figure which shows the result of the infection enhancement activity with respect to all the serotype viruses of the antibody of.
  • FIG. 10 is a diagram showing the results of confirming the infection-enhancing activity of the 3H12 antibody against SRIP in which a mutation was introduced into E87 or E107 of the dengue virus envelope protein of different strains.
  • FIG. 11 shows dengue type 1 virus (genotype I, BDV-1), dengue type 2 virus (genotype American, BDV-2), dengue type 3 virus (genotype I, BDV-3), and dengue type 4 virus. All serotype viruses of the antibodies in the sera obtained by immunizing mice using plasmid DNA expressing envelope proteins in which mutations were introduced into E87 or E107 of each envelope protein of (genotype III, BDV-4) It is a figure which shows the result of the neutralization activity with respect to.
  • FIG. 11 shows dengue type 1 virus (genotype I, BDV-1), dengue type 2 virus (genotype American, BDV-2), dengue type 3 virus (genotype I, BDV-3), and dengue type 4 virus. All serotype viruses of the antibodies in the sera obtained by im
  • FIG. 12 shows dengue type 1 virus (genotype I, BDV-1), dengue type 2 virus (genotype American, BDV-2), dengue type 3 virus (genotype I, BDV-3), and dengue type 4 virus. All serotype viruses of the antibodies in the sera obtained by immunizing mice using plasmid DNA expressing envelope proteins in which mutations were introduced into E87 or E107 of each envelope protein of (genotype III, BDV-4) It is a figure which shows the result of the infection enhancement activity with respect to.
  • FIG. 13 shows dengue type 1 virus (genotype I, BDV-1), dengue type 2 virus (genotype American, BDV-2), dengue type 3 virus (genotype I, BDV-3), and dengue type 4 virus.
  • FIG. 14 shows dengue type 1 virus (genotype I, BDV-1), dengue type 2 virus (genotype American, BDV-2), dengue type 3 virus (genotype I, BDV-3), and dengue type 4 virus.
  • FIG. 15 shows a method for expressing a mouse using plasmid DNA expressing a protein in which a mutation is introduced into the second amino acid of the precursor membrane (prM) protein of dengue type 1 virus (Mochizuki strain) and / or envelope proteins E87 and E107. It is a figure which shows the result of the neutralization activity with respect to all the serotype viruses of the antibody in the sera obtained after immunization.
  • FIG. 15 shows a method for expressing a mouse using plasmid DNA expressing a protein in which a mutation is introduced into the second amino acid of the precursor membrane (prM) protein of dengue type 1 virus (Mochizuki strain) and
  • FIG. 16 shows that a mouse is treated with a plasmid DNA expressing a protein in which a mutation is introduced into both the amino acid at position 2 of the precursor membrane (prM) protein of dengue type 1 virus (Mochizuki strain) and / or envelope proteins E87 and E107. It is a figure which shows the result of the infection enhancement activity with respect to all the serotype viruses of the antibody in the obtained sera after immunization.
  • FIG. 17 shows that the 3H12 antibody against single infectious particles (SRIP) having mutations in the amino acid position 2 of the precursor membrane (prM) protein of dengue type 1 virus (Mochizuki strain) and / or envelope proteins E87 and E107. It is a figure which shows the result of having confirmed the infection enhancement activity.
  • SRIP single infectious particles
  • the present invention provides dengue vaccine antigens that induce neutralizing antibodies but suppress induction of infection-enhancing antibodies.
  • neutralizing antibody means an antibody having an activity of inhibiting dengue virus infection of cells
  • infection enhancing antibody means an antibody having an activity of enhancing dengue virus infection of cells.
  • inducing neutralizing antibody but suppressing induction of infection-enhancing antibody means that the dengue vaccine antigen of the present invention has neutralizing activity against dengue virus and has suppressed infection-enhancing activity.
  • vaccine antigen or “dengue virus antigen”.
  • the vaccine antigen of the present invention only needs to contain an envelope protein in which the amino acid at position 107 or 87 of the amino acid sequence of the dengue virus envelope protein is mutated (hereinafter, for convenience, the vaccine antigen is referred to as the aspect A).
  • the vaccine antigen of aspect A of the present invention includes an envelope protein in which the amino acid at position 107 of the dengue virus envelope protein is mutated and an amino acid at position 87 in the amino acid sequence of the dengue virus envelope protein. The thing containing an envelope protein is mentioned.
  • the amino acid sequence of the basic wild-type dengue virus envelope protein may be any amino acid sequence as long as it is the amino acid sequence of the dengue virus envelope protein.
  • the vaccine antigen of the present invention may contain an envelope protein derived from dengue virus of any serotype of type 1, type 2, type 3, and type 4. That is, in the present invention, when the term “dengue virus” is simply used, the serotype is not particularly limited and includes all serotypes.
  • the amino acid sequence of the envelope protein of the dengue type 1 virus Mochizuki strain is shown in SEQ ID NO: 1.
  • Dengue virus is a virus belonging to the genus Flavivirus (flavivirus), and has a + strand RNA of about 11 kb in length as a genome. There is one open reading frame on this genome, and three structural proteins (C, prM, E) and seven nonstructural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, NS5) are in this order. It is coded. The third E protein from the upstream (5 ′ side) is an envelope protein.
  • SEQ ID NO: 2 The base sequence of the genome of the dengue type 1 virus Mochizuki strain is shown in SEQ ID NO: 2, and the amino acid sequence of the full-length protein encoded by the genome is shown in SEQ ID NO: 3, respectively.
  • the envelope protein corresponds to positions 281 to 775, and the base sequence encoding the envelope protein is from position 935 to the base sequence represented by SEQ ID NO: 2. It corresponds to the 2419th place. Therefore, the 107th position of the amino acid sequence represented by SEQ ID NO: 1 corresponds to the 387th position of the amino acid sequence represented by SEQ ID NO: 3.
  • the boundary between the prM protein and the envelope protein (E protein), and the boundary between the envelope protein (E protein) and the NS1 protein are both cleaved by a signalase from the host cell.
  • Table 1 shows typical dengue virus strains of each serotype and their sequence information (accession number).
  • Table 2 also shows the strains shown in Table 1 including information on the country of detection, year of isolation, and genotype.
  • the mutation at position 107 of the envelope protein may be any mutation, but position 107 It is preferable that the amino acid is a mutation in which another amino acid is substituted.
  • the combination of the amino acid before substitution and the amino acid after substitution is not limited as long as it is a vaccine antigen that induces neutralizing antibodies but suppresses induction of infection-enhancing antibodies.
  • the leucine at position 107 of the envelope protein is a vaccine antigen substituted with another amino acid, more preferably a vaccine where the leucine at position 107 of the envelope protein is replaced with another hydrophobic amino acid It is an antigen.
  • the leucine at position 107 is more preferably substituted with one selected from phenylalanine, tryptophan, methionine, proline, alanine, valine and isoleucine. More preferably, it is a vaccine antigen having a mutation in which leucine at position 107 of the envelope protein is substituted with phenylalanine.
  • it may be a vaccine antigen in which the leucine at position 107 of the envelope protein is substituted with a hydrophilic amino acid, such as glutamic acid, tyrosine, cysteine, arginine, histidine, lysine, serine, threonine, glutamine, asparagine, etc. Illustrated are substituted vaccine antigens.
  • the mutation at position 87 of the envelope protein may be any mutation, but position 87 It is preferable that the amino acid is a mutation in which another amino acid is substituted.
  • the combination of the amino acid before substitution and the amino acid after substitution is not limited as long as it is a vaccine antigen that induces neutralizing antibodies but suppresses induction of infection-enhancing antibodies.
  • the aspartic acid at position 87 of the envelope protein is a vaccine antigen substituted with an amino acid containing another polar amino acid
  • the aspartic acid at position 87 of the envelope protein is glutamic acid, tyrosine, cysteine, arginine, More preferably, it is substituted with one selected from histidine, lysine, serine, threonine, glutamine, asparagine and glycine.
  • the aspartic acid at position 87 of the envelope protein is substituted with a hydrophobic amino acid such as phenylalanine, tryptophan, methionine, proline, alanine, valine, isoleucine and the like.
  • the vaccine antigen has a mutation in which aspartic acid at position 87 of the envelope protein is substituted with asparagine.
  • the vaccine antigen of aspect A of the present invention includes an envelope protein having an amino acid mutation at a position other than position 107 or position 87 as long as it induces neutralizing antibodies but can suppress induction of infection-enhancing antibodies. It may be. Positions other than the 107th and 87th positions are not particularly limited, and the type of amino acid to be substituted is not particularly limited. Further, the number of amino acid mutations at positions other than the 107th position or the 87th position is not limited, and may be 1, 2, 3, 4, or 5. The upper limit of the number of mutations is not particularly limited, but is preferably 50 or less including the amino acid mutation at position 107 or 87, more preferably 40 or less, further preferably 30 or less, and further preferably 20 or less. More preferably, 10 or less.
  • the vaccine antigen contains an envelope protein in which the amino acid at position 107 or 87 of the amino acid sequence of the envelope protein of the Dengue 1 virus Mochizuki strain is mutated.
  • a vaccine antigen comprising an envelope protein consisting of an amino acid sequence identical or substantially identical to the amino acid sequence represented by SEQ ID NO: 4 or SEQ ID NO: 5.
  • the amino acid sequence represented by SEQ ID NO: 4 is an amino acid sequence obtained by substituting leucine at position 107 with phenylalanine in the amino acid sequence of the envelope protein of the dengue type 1 virus Mochizuki strain represented by SEQ ID NO: 1, and is represented by SEQ ID NO: 5.
  • the amino acid sequence is an amino acid sequence in which aspartic acid at position 87 is substituted with asparagine in the amino acid sequence of the envelope protein of the dengue type 1 virus Mochizuki strain represented by SEQ ID NO: 1. It has been confirmed that an envelope protein comprising these amino acid sequences is an envelope protein that induces neutralizing antibodies but can suppress induction of infection-enhancing antibodies.
  • amino acid sequence substantially the same as the amino acid sequence represented by SEQ ID NO: 4 examples include an amino acid sequence in which leucine at position 107 is substituted with phenylalanine in the amino acid sequence of dengue type 1 virus other than Mochizuki. Further, for example, in the amino acid sequence represented by SEQ ID NO: 4, an amino acid sequence in which 1 to several amino acids are deleted, substituted or added at positions other than the 87th and 107th positions can be mentioned. Examples of the amino acid sequence substantially identical to the amino acid sequence represented by SEQ ID NO: 5 include an amino acid sequence in which aspartic acid at position 87 is substituted with asparagine in the amino acid sequence of dengue type 1 virus other than Mochizuki.
  • amino acid sequence represented by SEQ ID NO: 5 an amino acid sequence in which 1 to several amino acids are deleted, substituted or added at positions other than the 87th and 107th positions can be mentioned.
  • One to several amino acids are deleted, substituted or added means that the number can be deleted, substituted or added by a known mutant polypeptide production method such as site-directed mutagenesis (preferably, 20 amino acids or less, more preferably 10 amino acids or less, further preferably 7 amino acids or less, further preferably 5 amino acids or less, more preferably 3 amino acids or less, still more preferably 2 amino acids or less, and even more preferably 1 amino acid). , Means substituted or added.
  • Such a mutant protein is not limited to a protein having a mutation artificially introduced by a known mutant polypeptide production method, and may be a protein obtained by isolating and purifying a naturally occurring mutant protein.
  • a substantially identical amino acid sequence is at least 60% identical, preferably at least 70%, 75%, 80%, 85%, 90%, 92%, 95%, to the amino acid sequence shown in SEQ ID NO: 4 or SEQ ID NO: 5 , 96%, 97%, 98%, 99% or 99.5% identical amino acid sequence (provided that amino acid sequence substantially identical to SEQ ID NO: 4 is phenylalanine at position 107 and substantially identical to SEQ ID NO: 5 The identical amino acid sequence is at position 87 asparagine).
  • the sequence identity can be determined according to a known method.
  • An envelope protein consisting of an amino acid sequence substantially the same as the amino acid sequence shown in SEQ ID NO: 4 or 5 is treated with a neutralizing antibody in the same manner as an envelope protein consisting of the amino acid sequence shown in SEQ ID NO: 4 or SEQ ID NO: 5. It must be an envelope protein that induces but can suppress the induction of infection-enhancing antibodies. It is described in, for example, Examples that an envelope protein consisting of an amino acid sequence substantially the same as the amino acid sequence shown in SEQ ID NO: 4 or 5 induces neutralizing antibodies and suppresses induction of infection-enhancing antibodies. This can be confirmed by performing the experiment.
  • the present invention also includes, as another embodiment of the dengue vaccine antigen, a precursor membrane (prM) protein adjacent to the upstream of the envelope protein in addition to the dengue virus envelope protein, which induces neutralizing antibodies but induces infection-enhancing antibodies. Provide something to suppress.
  • the vaccine antigen may be referred to as the vaccine antigen of aspect B.
  • the amino acid sequences of the basic wild-type dengue virus precursor membrane (prM) protein and the envelope protein may be any amino acid sequence as long as they are dengue virus-derived amino acid sequences, type 1, type 2, type 3, and type 4. Any of these serotypes may be derived from dengue virus, and the combination of serotypes is not particularly limited.
  • the prM protein and the envelope protein are the same serotype.
  • the vaccine antigen of embodiment B is characterized in that both the 107th and 87th amino acids of the envelope protein are mutated and the second amino acid of the prM protein is not mutated.
  • the mutation at position 107 and the mutation at position 87 may be any mutation, and the mutation in the vaccine antigen of aspect A can be referred to.
  • leucine at position 107 is substituted with one selected from phenylalanine, tryptophan, methionine, proline, alanine, valine and isoleucine, and asparagine at position 87
  • a dengue vaccine antigen in which leucine at position 107 is substituted with phenylalanine, aspartic acid at position 87 is replaced with asparagine, and the amino acid at position 2 of the prM protein is not mutated is more preferable.
  • the envelope protein in the vaccine antigen of aspect B may have amino acid mutations at other positions.
  • the position is not particularly limited, and the type of amino acid to be substituted is not particularly limited.
  • the number of amino acid mutations is not particularly limited as long as the number is the same as that in the aspect A.
  • the prM protein in the vaccine antigen of aspect B may have an amino acid mutation at other positions except that the amino acid at the second position is not mutated.
  • the position is not particularly limited, and the type of amino acid to be substituted is not particularly limited.
  • the number of amino acid mutations is not particularly limited, and may be 1, 2, 3, 4 or 5, for example, and the upper limit is preferably 50 or less, more preferably 40 or less, and 30 The number is more preferably, 20 or less is more preferable, and 10 or less is more preferable.
  • the amino acids at positions 107 and 87 of the amino acid sequence of the prM protein and envelope protein having no mutation at the second position of the amino acid sequence of the prM protein of the dengue type 1 virus Mochizuki strain examples include those containing a mutated envelope protein.
  • the prM protein corresponds to positions 115 to 280
  • the envelope protein corresponds to positions 281 to 775.
  • the base sequence encoding the prM protein is located at positions 437 to 934 of the base sequence shown in SEQ ID NO: 2
  • the base sequence encoding the envelope protein is located at positions 935 to 934 of the base sequence shown in SEQ ID NO: 2. It corresponds to 2419th place.
  • examples of such a vaccine antigen include a vaccine antigen containing a protein having the same or substantially the same amino acid sequence as that shown in SEQ ID NO: 6.
  • amino acid sequence represented by SEQ ID NO: 6 1 to several amino acids are deleted, substituted or added at positions other than position 2 of the prM protein, positions 107 and 87 of the envelope protein. The amino acid sequence made up is mentioned.
  • “One to several amino acids are deleted, substituted or added” means that the number can be deleted, substituted or added by a known mutant polypeptide production method such as site-directed mutagenesis (preferably, 20 amino acids or less, more preferably 10 amino acids or less, further preferably 7 amino acids or less, further preferably 5 amino acids or less, more preferably 3 amino acids or less, still more preferably 2 amino acids or less, and even more preferably 1 amino acid).
  • a mutant protein is not limited to a protein having a mutation artificially introduced by a known mutant polypeptide production method, and may be a protein obtained by isolating and purifying a naturally occurring mutant protein. .
  • a substantially identical amino acid sequence is at least 60% identical to the amino acid sequence shown in SEQ ID NO: 6, preferably at least 70%, 75%, 80%, 85%, 90%, 92%, 95%, 96%, Amino acid sequence that is 97%, 98%, 99%, or 99.5% identical (provided that the 2nd position of the prM protein is not mutated, the 107th position of the envelope protein is phenylalanine, and the 87th position is asparagine) Can be mentioned.
  • the sequence identity can be determined according to a known method.
  • a protein comprising an amino acid sequence substantially the same as the amino acid sequence represented by SEQ ID NO: 6 induces a neutralizing antibody but induces an infection-enhancing antibody, similar to the protein comprising the amino acid sequence represented by SEQ ID NO: 6. It is required to have an action of suppressing the above. Such an effect can be confirmed, for example, by performing an experiment described in the examples.
  • the present invention provides a dengue vaccine containing or expressing the dengue vaccine antigen of the present invention.
  • the dengue vaccine antigen may be the dengue vaccine antigen of aspect A or the dengue vaccine antigen of aspect B.
  • the dengue vaccine of the present invention induces neutralizing antibodies against dengue virus, but since the induction of infection-enhancing antibodies is suppressed, it can effectively prevent the onset of dengue fever and suppress the seriousness that is concerned. Very useful in that it can.
  • Dengue vaccines that have been developed so far are used as vaccine antigens without basically modifying the envelope protein of strains isolated from the natural world, and thus induce infection-enhancing antibodies together with neutralizing antibodies in the same manner as natural infections.
  • this invention contributes to raising the protective efficacy and safety
  • neutralizing antibody activity antagonizes infection enhancing activity
  • neutralizing antibody activity increases due to suppression of infection enhancing activity. From this, even if it is a low vaccine dose, a high protective efficacy can be expected, and it is highly useful in that the cost can be reduced.
  • an envelope protein having a mutation at the 107th or 87th amino acid in the amino acid sequence of the dengue virus envelope protein (hereinafter referred to as “mutant envelope protein A”). )
  • mutant envelope protein A an envelope protein having a mutation at the 107th or 87th amino acid in the amino acid sequence of the dengue virus envelope protein
  • the mutant envelope protein A the full length of the envelope protein or a fragment thereof may be used.
  • the amino acid sequence of the envelope protein contains a non-mutant amino acid at position 107 and a mutant amino acid at position 87, or a mutant amino acid at position 107 and a non-mutated amino acid at position 87. It is preferable to use a fragment having a length that contains the three-dimensional structure of the envelope protein. For example, a fragment having 300 or more amino acid residues, preferably 350 or more, more preferably 400 or more, and still more preferably 450 or more can be suitably used.
  • Mutant envelope protein A may contain an amino acid sequence other than the envelope protein. Examples of amino acid sequences other than the envelope protein include marker sequences, tag sequences, amino acid sequences of other proteins encoded in the dengue virus genome, and the like.
  • Mutant envelope protein A is constructed by constructing a recombinant expression vector into which a gene encoding mutant envelope protein A is inserted by known genetic engineering techniques so that the gene can be expressed, and introducing the vector into a suitable host cell for expression as a recombinant protein. Can be produced by purification.
  • the mutant envelope protein A of the present invention comprises a gene encoding the mutant envelope protein A of the present invention and a known In vitro transcription / translation system (for example, a cell-free protein synthesis system derived from rabbit reticulocytes, wheat germ or Escherichia coli, etc. ) Can be used.
  • the base sequence of the gene encoding the mutant envelope protein A is obtained from a known database (NCBI, etc.), and the amino acid at position 107 of the envelope protein is mutated based on the obtained base sequence.
  • the amino acid at position 87 of the envelope protein can be designed to have a mutation.
  • the nucleic acid encoding the mutant envelope protein A is obtained by using known genetic engineering techniques such as PCR and site-directed mutagenesis based on the base sequence of the gene encoding the mutant envelope protein A designed as described above. It can be acquired by using.
  • the nucleic acid can be present in the form of RNA (eg, genomic RNA, mRNA) or in the form of DNA (eg, genomic DNA, cDNA).
  • the nucleic acid may be double-stranded or single-stranded. In the case of a double strand, it may be any of double-stranded DNA, double-stranded RNA, or a hybrid of DNA and RNA.
  • a single strand it may be either a coding strand (sense strand) or a non-coding strand (antisense strand).
  • the polynucleotide constituting the nucleic acid of the present invention may be fused to a polynucleotide encoding a tag label (tag sequence or marker sequence) on the 5 'side or 3' side.
  • the dengue vaccine of the present invention can be implemented as a nucleic acid vaccine using as a vaccine component a plasmid into which a nucleic acid encoding a mutant envelope protein A has been inserted.
  • the dengue vaccine of the present invention can be implemented as a vector vaccine (recombinant bacterial vaccine, recombinant virus vaccine) containing a bacterial vector or a viral vector into which a nucleic acid encoding the mutant envelope protein A is inserted as a vaccine component.
  • a vector vaccine recombinant bacterial vaccine, recombinant virus vaccine
  • the amino acid sequence at position 2 in the amino acid sequence of the dengue virus prM protein has no mutation in the amino acid sequence at position 107 and position 87 of the envelope protein.
  • Mutant protein (hereinafter referred to as “mutant protein B”) including an envelope protein having a mutation in an amino acid, a nucleic acid encoding the mutant protein B, a vector including a nucleic acid encoding the mutant protein B, a dengue virus expressing the mutant protein B, etc. Can be suitably contained.
  • the full length of the prM protein and the envelope protein may be used, or a fragment thereof may be used.
  • the amino acid at position 2 in the amino acid sequence of the prM protein is not mutated, and the amino acid at position 107 and the amino acid at position 87 are both mutated amino acids in the amino acid sequence of the envelope protein.
  • a fragment having a length that maintains the three-dimensional structure For example, a fragment having 300 or more amino acid residues, preferably 350 or more, more preferably 400 or more, and still more preferably 450 or more can be suitably used.
  • Mutant protein B may also contain other amino acid sequences other than prM protein and envelope protein. Examples of other amino acid sequences include marker sequences, tag sequences, amino acid sequences of other proteins encoded by the dengue virus genome, and the like.
  • Mutant protein B can be produced in the same manner as mutant envelope protein A, and can be produced, for example, by a known genetic engineering technique.
  • the base sequence of the gene encoding the mutant protein B the base sequence of the dengue virus genome is obtained from a known database (NCBI, etc.). Based on the base sequence obtained, the 107th and 87th amino acids of the envelope protein are obtained. Can be designed to have mutations.
  • Nucleic acid encoding mutant protein B should use known genetic engineering techniques such as PCR and site-directed mutagenesis based on the base sequence of the gene encoding mutant protein B designed as described above. It can be obtained by.
  • the nucleic acid can be present in the form of RNA (eg, genomic RNA, mRNA) or in the form of DNA (eg, genomic DNA, cDNA).
  • the nucleic acid may be double-stranded or single-stranded. In the case of a double strand, it may be any of double-stranded DNA, double-stranded RNA, or a hybrid of DNA and RNA.
  • a single strand it may be either a coding strand (sense strand) or a non-coding strand (antisense strand).
  • the polynucleotide constituting the nucleic acid of the present invention may be fused to a polynucleotide encoding a tag label (tag sequence or marker sequence) on the 5 'side or 3' side.
  • the dengue vaccine of the present invention can be implemented as a nucleic acid vaccine comprising a plasmid into which a nucleic acid encoding a mutant protein B is inserted as a vaccine component.
  • the dengue vaccine of the present invention can be implemented as a vector vaccine (recombinant bacterial vaccine, recombinant virus vaccine) having a bacterial vector or viral vector into which a nucleic acid encoding the mutant protein B is inserted as a vaccine component.
  • a vector vaccine recombinant bacterial vaccine, recombinant virus vaccine
  • the dengue vaccine of the present invention can be implemented as a dengue vaccine comprising a dengue virus that expresses mutant envelope protein A or mutant protein B as a vaccine component.
  • Dengue virus expressing mutant envelope protein A or mutant protein B can be obtained by using the “method for obtaining dengue vaccine antigen that induces neutralizing antibody but suppresses induction of infection-enhancing antibody or dengue virus that expresses the antigen” described later. Can be acquired.
  • the dengue vaccine of the present invention may contain one or more adjuvants.
  • an adjuvant for example, aluminum salt such as aluminum hydroxide, aluminum phosphate, aluminum sulfate or a combination thereof), Freund's adjuvant (complete or incomplete), TLR ligand (for example, CpG, Poly (I : C), Pam3CSK4, etc.), BAY, DC-chol, pcpp, monophosphoryl lipid A, QS-21, cholera toxin, formylmethionyl peptide and the like.
  • aluminum adjuvant for example, aluminum salt such as aluminum hydroxide, aluminum phosphate, aluminum sulfate or a combination thereof
  • Freund's adjuvant complete or incomplete
  • TLR ligand for example, CpG, Poly (I : C), Pam3CSK4, etc.
  • BAY DC-chol, pcpp, monophosphoryl lipid A, QS-21, cholera toxin, formylmethionyl peptide and the
  • the vaccine of the present invention contains an adjuvant
  • the compounding amount of the adjuvant is not particularly limited, and may be appropriately selected depending on the type of the adjuvant.
  • aluminum adjuvant aluminum hydroxide
  • CpG aluminum adjuvant
  • about 1 to 100 times the amount of aluminum adjuvant and about 1 to 50 times the amount of CpG may be blended in the mass ratio with the dengue vaccine of the present invention. preferable.
  • the dengue vaccine of the present invention may further contain a vaccine component against pathogens other than dengue virus.
  • Pathogen vaccine components other than dengue virus are not particularly limited, and examples thereof include vaccine components that have already been used as mixed vaccines. Specifically, for example, diphtheria toxoid, pertussis toxoid, pertussis antigen, tetanus toxoid, inactivated poliovirus, attenuated measles virus, attenuated rubella virus, attenuated mumps virus, Haemophilus influenzae type b polysaccharide antigen, hepatitis B virus HBs Examples include antigens, inactivated hepatitis A virus antigens, and the like.
  • the dengue vaccine of the present invention can be administered orally or parenterally.
  • parenteral administration include intraperitoneal administration, subcutaneous administration, intradermal administration, intramuscular administration, intravenous administration, intranasal administration, transdermal administration, transmucosal administration, sublingual administration, and inhalation administration.
  • parenteral administration and more preferred is intradermal administration, subcutaneous administration or intramuscular administration.
  • the dengue vaccine of the present invention is formulated by appropriately combining a nucleic acid encoding mutant envelope protein A or mutant protein B or mutant envelope protein A or mutant protein B, a pharmaceutically acceptable carrier, and an additive as appropriate.
  • Product medicine
  • preparations for oral administration such as tablets, coated tablets, pills, powders, granules, capsules, solutions, suspensions, emulsions; parenterals such as injections, infusions, suppositories, ointments, patches It can be set as the formulation for administration. What is necessary is just to set suitably about the mixture ratio of a carrier or an additive based on the range normally employ
  • Carriers or additives that can be blended are not particularly limited.
  • various carriers such as water, physiological saline, other aqueous solvents, aqueous or oily bases; excipients, binders, pH adjusters, disintegrants, absorption
  • Various additives such as an accelerator, a lubricant, a colorant, a corrigent, and a fragrance are included.
  • additives used in solid preparations for oral administration include excipients such as lactose, mannitol, glucose, microcrystalline cellulose, and corn starch; binders such as hydroxypropylcellulose, polyvinylpyrrolidone, and magnesium aluminate metasilicate Dispersing agents such as corn starch; disintegrating agents such as calcium calcium glycolate; lubricants such as magnesium stearate; solubilizing agents such as glutamic acid and aspartic acid; stabilizers; hydroxypropylcellulose, hydroxypropylmethylcellulose, methylcellulose, etc.
  • excipients such as lactose, mannitol, glucose, microcrystalline cellulose, and corn starch
  • binders such as hydroxypropylcellulose, polyvinylpyrrolidone, and magnesium aluminate metasilicate Dispersing agents such as corn starch
  • disintegrating agents such as calcium calcium glycolate
  • lubricants such as magnesium stearate
  • solubilizing agents such as
  • Water-soluble polymers such as cellulose, polyethylene glycol, polyvinyl pyrrolidone, polyvinyl alcohol, etc .; sucrose, powdered sugar, sucrose, fructose, glucose, lactose, reduced maltose water candy, powder returned Sweeteners such as maltose syrup, glucose fructose liquid sugar, honey, sorbitol, maltitol, mannitol, xylitol, erythritol, aspartame, saccharin, sodium saccharin; coating agents such as sucrose, gelatin, hydroxypropylcellulose, hydroxypropylmethylcellulose phthalate Can be mentioned.
  • Liquid preparations for oral administration are prepared by dissolving, suspending or emulsifying in commonly used diluents.
  • the diluent include purified water, ethanol, a mixed solution thereof and the like.
  • this liquid agent may contain a wetting agent, a suspending agent, an emulsifier, a sweetening agent, a flavoring agent, a fragrance, a preservative, a buffering agent and the like.
  • additives used for injections for parenteral administration include isotonic agents such as sodium chloride, potassium chloride, glycerin, mannitol, sorbitol, boric acid, borax, glucose, propylene glycol; phosphate buffer Buffers such as acetate buffer, borate buffer, carbonate buffer, citrate buffer, Tris buffer, glutamate buffer, epsilon aminocaproate buffer; methyl paraoxybenzoate, ethyl paraoxybenzoate, paraoxybenzoic acid Preservatives such as propyl, butyl paraoxybenzoate, chlorobutanol, benzyl alcohol, benzalkonium chloride, sodium dehydroacetate, sodium edetate, boric acid, borax; hydroxyethyl cellulose, hydroxypropyl cellulose, polyvinyl alcohol, polyethylene glycol Thickeners such as sodium hydrogen sulfite, sodium thiosulfate, sodium edetate, sodium citrate, ascor
  • solubilizers for injections, suitable solubilizers, for example, alcohols such as ethanol; polyalcohols such as propylene glycol and polyethylene glycol; nonionic surfactants such as polysorbate 80, polyoxyethylene hydrogenated castor oil 50, lysolecithin, and pluronic polyol You may mix
  • Liquid preparations such as injections can be stored after removing moisture by freezing or lyophilization. The freeze-dried preparation is used by adding distilled water for injection at the time of use and re-dissolving it.
  • the dengue vaccine of the present invention can be administered to any animal (human, non-human) having an immune system, but the natural host of dengue virus is known to be human and non-human primates (monkeys). Therefore, it is preferable to administer humans and non-human primates (monkeys). Among these, the dengue vaccine of the present invention is preferably intended for human children (including newborns) and adults.
  • the number of administrations and the administration interval of the dengue vaccine of the present invention are not particularly limited. For example, a single dose may be administered, or multiple doses may be administered at intervals of about 2 days to about 8 weeks.
  • the dengue vaccine of the present invention is a protein vaccine or a nucleic acid vaccine
  • the dose of the vaccine varies depending on the administration subject, administration method, etc., but the single dose is preferably about 0.01 ⁇ g to about 100 mg, about 0 More preferably, it is 1 ⁇ g to about 10 mg, and more preferably about 1 ⁇ g to about 1 mg.
  • the dose of the vaccine varies depending on the administration subject, administration method, etc., but it is preferable that the single dose is about 1 ⁇ 10 2 PFU to about 1 ⁇ 10 9 PFU. About 1 ⁇ 10 3 PFU to about 1 ⁇ 10 8 PFU, more preferably about 1 ⁇ 10 4 PFU to about 1 ⁇ 10 7 PFU.
  • the present invention includes a method for preventing or treating dengue fever or dengue hemorrhagic fever, which comprises administering an effective amount of the dengue vaccine of the present invention to an animal.
  • the present invention provides a method for obtaining a dengue vaccine antigen that induces a neutralizing antibody but suppresses induction of an infection-enhancing antibody or a dengue virus that expresses the antigen.
  • a method for obtaining a dengue vaccine antigen that induces neutralizing antibodies of the present invention but suppresses induction of infection-enhancing antibodies or dengue viruses that express the antigens includes the following steps (1 ) To (5) may be used.
  • Step (4) for obtaining a mutant dengue virus that is not neutralized by the monoclonal antibody Step (5) for confirming a mutation occurring in the envelope protein of the mutant dengue virus obtained in step (3) (obtained in step (3)) Of a modified dengue virus suppresses the induction of infection-enhancing antibodies
  • a monoclonal antibody having an infection-enhancing activity but no neutralizing activity is obtained using the dengue virus envelope protein as an antigen.
  • an envelope protein having no mutation is used as an antigen.
  • Monoclonal antibodies are obtained by immunizing a mammal (eg, a mouse) according to a normal immunization method using a dengue virus envelope protein as an antigen, and then immunizing the resulting immune cells (eg, spleen cells) with a conventional cell fusion method (eg, polyethylene glycol (PEG) method).
  • PEG polyethylene glycol
  • a known parent cell eg, mouse myeloma cell line SP2, NA1, etc.
  • selecting a monoclonal antibody-producing hybridoma by a conventional screening method, and purifying it from the hybridoma culture supernatant by a known method.
  • the antigen used for obtaining the monoclonal antibody may include an envelope protein and a prM protein.
  • a monoclonal antibody having neutralizing activity is obtained by changing the class or subclass of the monoclonal antibody obtained in step (1).
  • the class or subclass of the antibody can be changed by a method using, for example, pFUSE-CHIg series (H chain) and pFUSE-CLIg series (L chain) for mice manufactured by Invivogen.
  • the Fab part gene is extracted from the hybridoma cell producing the monoclonal antibody obtained in step (1) and incorporated into the pFUSE plasmid vector.
  • the pFUSE of the H chain is selected so as to be the target subclass. For example, if the target subclass is IgG2a, the heavy chain uses “pFUSE-CHIg-mG2a”.
  • a light chain plasmid is prepared in the same manner, and two types of plasmids are cotransfected into cultured cells (eg, 293T, CHO, etc.), and the culture supernatant is collected to obtain an antibody with a changed subclass. be able to. It can be confirmed, for example, by the method described in Example 1 (2) of the present specification that the monoclonal antibody having a changed class or subclass has neutralizing activity.
  • a dengue virus-infected cell that is not neutralized by the monoclonal antibody is obtained by culturing dengue virus-infected cells in the presence of the monoclonal antibody having neutralizing activity obtained in step (2).
  • the newly prepared Vero cells are infected with the culture supernatant and similarly cultured in the presence of the monoclonal antibody. Passaging is preferably continued for 5 or more generations.
  • Examples of the method for confirming the appearance of escape mutants include a method for conducting neutralization tests of the monoclonal antibodies using the escape mutant candidate virus strain as an antigen. If the neutralizing activity has disappeared, the candidate virus strain is determined to be the target escape mutant strain.
  • Another method for confirming the appearance of escape mutants is, for example, a method of performing an infection enhancement test of the monoclonal antibody using an escape mutant candidate virus strain as an antigen. If the infection-enhancing activity has disappeared, the candidate virus strain is determined to be the target escape mutant strain.
  • step (4) mutations occurring in the envelope protein of the mutant dengue virus obtained in step (3) are confirmed.
  • the gene in the envelope region of the mutant dengue virus is amplified by RT-PCR, and the base sequence is analyzed using a DNA sequencer (for example, Applied Biosystems 3730xl DNA analyzer). Based on the revealed base sequence, it can be translated into an amino acid sequence, and the mutation site and the type of amino acid at that position can be specified.
  • step (5) it is confirmed that the envelope protein of the mutant dengue virus obtained in step (3) suppresses the induction of infection-enhancing antibodies.
  • the following method is mentioned, for example. That is, a plasmid DNA expressing the E antigen introduced with the amino acid mutation confirmed in step (4) was prepared, co-transfected with Japanese encephalitis virus replicon plasmid DNA into 293T cells, and single-infectious particles (Single- round infectious particle (hereinafter “SRIP”). Using this SRIP as an antigen, the infection enhancing activity of the monoclonal antibody having the infection enhancing activity obtained in step (1) and having no neutralizing activity is confirmed. As a result, if the infection enhancing activity is not detected, it is determined that the dengue virus envelope protein having the amino acid mutation confirmed in step (4) can suppress the infection enhancing activity.
  • SRIP single-infectious particles
  • the mutant dengue virus obtained by the method of the present invention and the mutant dengue virus envelope protein or those containing the envelope protein and the prM protein can be used as the vaccine component of the dengue vaccine of the present invention. Since the mutant dengue virus obtained by the method of the present invention and the mutant dengue virus envelope protein or those containing the envelope protein and the prM protein can induce neutralizing antibodies but suppress the induction of infection-enhancing antibodies, It is very useful as a vaccine component.
  • Example 1 Determination of epitope site of D1-V-3H12 antibody
  • Example 1 Confirmation of infection-enhancing and neutralizing activity of monoclonal antibodies against Dengue type 1 virus Mochizuki strains Yamanaka et al. (Yamanaka et al., J Virol. 2008 Jan; 82 (2) : 927-937), and obtained a plurality of monoclonal antibodies having serotype cross-reactivity with the envelope (E) protein of Dengue virus (Yamanaka et al., J Virol. 2013 Dec; 87 (23) : 12828-37).
  • the infection enhancement activity and neutralization activity of the obtained monoclonal antibody were confirmed by the following method.
  • Monoclonal antibody diluted with 10-fold serial dilution and Dengue type 1 virus Mochizuki strain were mixed and incubated at 37 ° C. for 2 hours, and then K562 cells, which are human-derived Fc ⁇ -containing monocytic cells, were added and further cultured for 2 days.
  • Two systems were provided: a system in which complement with a final concentration of 5% was added to the antibody / virus mixture, and a system in which no complement was added. After fixing the cells, immunostaining was performed using a dengue virus-specific antibody, and positive cells (infected cells) were counted.
  • FIG. 1 shows a representative example of a monoclonal antibody (D1-I-15C12) showing neutralizing activity at a high concentration and showing infection-increasing activity at a low concentration, and the center is a representative of a monoclonal antibody showing only neutralizing activity.
  • D1-IV-7F4 the right is the result of a representative example (D1-V-3H12) of a monoclonal antibody showing only infection-enhancing activity.
  • the antibody diluted with 2-fold serial dilution and Dengue type 1 virus Mochizuki strain were mixed and incubated at 4 ° C. overnight to infect monolayer Vero cells. Counted. The number of plaques obtained in the control to which no antibody was added was defined as 100%, and the neutralization activity was expressed as a percentage reduction (% Plaque reduction).
  • FIG. 3 The results are shown in FIG. In FIG. 3, P # 0 is the parental virus prior to subculture, P # 11 is the escape mutant virus obtained, and P # 11Cont is obtained by subculture for 11 generations in a culture solution to which 3H12-IgG2b is not added. Dengue virus.
  • the vertical axis in FIG. 3 represents the number of infected cells with respect to a control to which no antibody was added (Fold ⁇ enhancement).
  • P # 0 and P # 11Cont were enhanced about 100 times by 3H12 antibody, whereas P # 11 was hardly enhanced by 3H12 antibody.
  • a plasmid DNA expressing the E gene in which both E87 and E107 or any one of the mutations is expressed was prepared, and the Japanese encephalitis virus already established SRIP was prepared by co-transfecting 293T cells with a replicon plasmid (Suzuki et al., J. Gen. Virol, 2014 Jan; 95 (Pt 1): 60-5.).
  • the mutation of E87 was D87N
  • the mutation of E107 was L107F.
  • the infection enhancing activity of 3H12 antibody against SRIP antigen was examined by the same method as in (1) above, and compared with the infection enhancing activity of 3H12 antibody against SRIP antigen without mutation.
  • FIG. The dotted line in the figure shows the mean value ⁇ 3SD determined from 6 wells of a negative control to which no antibody was added.
  • 3H12 antibody showed high infection-enhancing activity against SRIP antigen (Control) without mutation, but 3H12 antibody against SRIP antigen with mutation at both E87 and E107, and SRIP antigen with mutation at E107 It did not show infection enhancing activity.
  • the 3H12 antibody showed the same high infection enhancing activity as Control.
  • E87 and E107 were mutated during the generation of escape mutant virus, but the substantial change in the epitope escaping from the neutralizing antibody is considered to be caused by the E107 mutation, and E87 is related to the epitope. However, it was considered to be a mutation that entered in order to compensate for the decrease in virus growth caused by the E107 mutation.
  • Example 2 Immunogenicity of mutagenized antigen
  • 6-week-old male BALB / c mice using plasmid DNA expressing the E gene of Dengue type 1 virus Mochizuki strain with both E87 and E107, or any one mutation (D87N and / or L107F) ( 3 mice per group) were immunized. Immunization was performed three times at a dose of 100 ⁇ g, and blood was collected 2 weeks after the second immunization and 1 week after the third immunization. As a control, plasmid DNA expressing the E gene without mutation was used.
  • Example 1 Using the pooled sera obtained, the neutralizing activity of antibodies induced against these immunogens against the dengue type 1 virus Mochizuki strain was examined by the method described in Example 1 (2), and the infection enhancing activity was examined. It investigated by the method as described in Example 1 (1).
  • FIG. A is the result of examining the neutralizing activity
  • B is the result of examining the infection enhancing activity.
  • 2doses is a result of serum collected after the second immunization
  • 3doses is a result of serum collected after the third immunization.
  • the dotted line B shows the mean value ⁇ 3SD determined from 6 wells of a negative control to which no antibody was added.
  • both plasmids induced antibodies with comparable levels of neutralizing activity.
  • a large difference was observed in the level of infection enhancing activity.
  • an antibody induced by a plasmid having a mutation in either E87 or E107 did not show infection-increasing activity compared to the control, whereas an antibody induced by a plasmid having a mutation in both E87 and E107 was Although it was lower than the control, it showed infection-enhancing activity.
  • This result indicates that the reaction between the antigen epitope obtained in in vitro and the antibody does not necessarily match the immunogenicity of the antigen in in vivo, but matches for the epitope containing E107.
  • Example 3 Neutralizing activity and infection enhancing activity against other serotypes
  • the neutralizing activity and the infection enhancing activity of the induced antibody against dengue type 1 virus were examined using serum collected from mice immunized twice or three times with a mutant antigen derived from dengue type 1 virus.
  • the induced antibody dengue type 2 virus New Guinea C strain
  • type 3 virus H87
  • type 4 virus H241 strain
  • FIG. A is the result of examining the neutralizing activity
  • B is the result of examining the infection enhancing activity.
  • the dotted line B shows the mean value ⁇ 3SD determined from 6 wells of a negative control to which no antibody was added.
  • the control antigen induced an antibody having infection enhancing activity against all serotypes
  • the E107 mutant antigen did not induce an antibody having infection enhancing activity against all serotypes.
  • Antigens with mutations in both E87 and E107 induced antibodies with infection-enhancing activity against all serotypes, but were lower than those induced by the control antigen.
  • the antigen having a mutation only in E87 was also lower than the control antigen, and in particular, an antibody having an infection enhancing activity against type 2 virus was not induced. From this result, it is clarified that the antibody induced by the dengue type 1 virus antigen introduced with a mutation in E107 does not show the enhancing activity not only against the dengue type 1 virus but also against other serotypes. It was. It was also shown that the E87 mutation has some effect.
  • Example 4 Infection enhancing activity of 3H12 antibody against other serotype E antigens mutated
  • the amino acid sequences near E87 and E107 are relatively conserved across all serotypes.
  • the 3H12 antibody is an antibody prepared using Dengue type 1 virus Mochizuki strain as an antigen, and has cross-reactivity with all other serotypes. Therefore, for the dengue type 2 virus, dengue type 3 virus, and dengue type 4 virus used in Example 3, SRIP was prepared by introducing a mutation (D87N or L107F) into E87 or E107 of each E antigen. Infection enhancing activity of the 3H12 antibody against the above was examined by the method described in Example 1 (1) and compared with the infection enhancing activity of the 3H12 antibody against the SRIP antigen having no mutation.
  • the 3H12 antibody showed an infection enhancing activity against the control antigen without mutation, but did not show an infection enhancing activity against the E107 mutant antigen.
  • the infection enhancing activity of the 3H12 antibody against the E87 mutant antigen was different depending on the serotype, and did not show the infection enhancing activity against the type 2 virus, but showed the infection enhancing activity against the type 3 and type 4 viruses.
  • This result shows that E107 is an epitope site of 3H12 also in the E antigen of dengue type 2 virus, dengue type 3 virus, and dengue type 4 virus.
  • Example 5 Immunogenicity of other serotype E antigens mutated
  • E87 or A 6-week-old female BALB / c mouse (group 1) using plasmid DNA expressing an E antigen of another serotype (type 2, type 3 or type 4) introduced with a mutation (D87N or L107F) in the amino acid of E107 3 animals) were immunized. Immunization was performed three times at a dose of 100 ⁇ g, and blood was collected 1 week after the third immunization. As a control, plasmid DNA having an E gene without mutation was used. Using the pooled sera obtained, the infection enhancing activity of antibodies induced against these immunogens against the corresponding serotype virus was examined by the same method as in Example 1 (1).
  • the results are shown in FIG.
  • the dotted line in the figure shows the mean value ⁇ 3SD determined from 6 wells of a negative control to which no antibody was added.
  • C (+) represents a system to which complement is added
  • C ( ⁇ ) represents a system to which no complement is added.
  • the antibody induced with the control antigen showed an infection-enhancing activity
  • the antibody induced with the E107 mutant antigen did not show the infection-enhancing activity. It was.
  • the control antigen also did not show an enhancing activity under the present conditions, so the experiment was performed without adding complement to the assay system (right column).
  • the antibody induced with the control antigen showed a high infection enhancing activity, whereas the antibody induced with the E107 mutant antigen decreased the infection enhancing activity.
  • the antibody induced with the E107 mutant antigen tended to have a decreased tendency to enhance infection.
  • the E87 mutant antigen was also found to have an effect of suppressing the infection-enhancing activity in the dengue type 3 virus of the system to which complement was added.
  • the dengue type 2 virus and the dengue type 4 virus that do not contain complement were also found to have an effect of suppressing the infection enhancing activity.
  • Example 6 Immunogenicity of mutated amino acids in mutated antigen
  • the amino acid E107 is changed to various amino acids (phenylalanine, isoleucine, proline, lysine, glutamine or tryptophan), or the amino acid E87 is changed to various amino acids (asparagine, arginine, glutamic acid).
  • Glutamine, phenylalanine or valine were used, and 6-week-old male BALB / c mice (3 mice per group) were immunized using the obtained plasmids.
  • Example 1 Immunization was performed 3 times at a dose of 100 ⁇ g, and blood was collected 2 weeks after the third immunization.
  • the method described in Example 1 (1) shows that the obtained pooled serum is used to increase the infection-inducing activity of antibodies induced against these immunogens against Dengue 1, 2, 3, or 4 viruses. I examined it. Serum dilution conditions were 1: 160 dilution. As a control, immunization with a plasmid that does not introduce a mutation into the E protein was also evaluated.
  • Example 7 Infection enhancing activity of 3H12 antibody against mutant antigens of different dengue virus strains.
  • the above was a study using a prototype, but then a study was performed using 4 serotype strains that were relatively newly isolated (see Table 3 below).
  • mutations D87N or L107F
  • the infection enhancing activity of the 3H12 antibody against the SRIP antigen was examined by the method described in Example 1 (1), and compared with the infection enhancing activity of the 3H12 antibody against the SRIP antigen having no mutation.
  • FIG. Fold enhancement indicating how many times the number of infected cells increased from the negative control was evaluated.
  • the 3H12 antibody did not show suppression of infection enhancing activity against the SRIP antigen having a mutation in E87 and the SRIP antigen having no mutation (Control), but against the SRIP antigen having a mutation in E107. It was found that the infection-enhancing activity was significantly suppressed. This suggests that the target site of the 3H12 antibody is at position E107 relative to all serotype viruses regardless of the strain type.
  • Example 8 Immunogenicity of mutant antigens of different dengue virus strains (Part 1)]
  • 6-week-old male BALB / c mice (6 mice per group) were prepared using plasmid DNA in which mutation (D87N or L107F) was introduced into any one of E87 and E107 prepared with reference to Example 7. ) (BDV-1 to BDV-4). Immunization was performed 3 times at a dose of 100 ⁇ g, and blood was collected 2 weeks after the third immunization.
  • plasmid DNA expressing the E gene without mutation was used as a control.
  • the neutralizing activity of antibodies induced against these immunogens against dengue type 1, type 2, type 3 or type 4 virus is the method described in Example 1 (2)
  • the infection enhancing activity was examined by the method described in Example 1 (1).
  • FIG. 11 shows the result of examining the neutralizing activity
  • FIG. 12 shows the result of examining the infection enhancing activity.
  • the dotted line in FIG. 12 shows the mean value ⁇ 3SD determined from 6 wells of a negative control to which no antibody was added.
  • Example 9 Immunogenicity of mutant antigens of different dengue virus strains (2)
  • Four types of plasmids used in Example 8 were mixed, and 6-week-old male BALB / c mice (6 per group) were immunized as a 4-valent vaccine.
  • the following three groups were established for the 4-valent vaccine: E107 mutated BDV-1 to BDV-4, E87 mutated BDV-1 to BDV-4, no mutation BDV-1 to BDV-4, once
  • the immunization was performed 3 times at a total dose of 100 ⁇ g, in which 4 types of 25 ⁇ g of each plasmid were mixed, and blood was collected 2 weeks after the third immunization.
  • the neutralizing activity of antibodies induced against these immunogens against dengue type 1, type 2, type 3 or type 4 virus is the method described in Example 1 (2)
  • the infection enhancing activity was examined by the method described in Example 1 (1).
  • FIG. 13 shows the result of examining the neutralizing activity
  • FIG. 14 shows the result of examining the infection enhancing activity.
  • the dotted line in FIG. 14 shows the mean value ⁇ 3SD determined from 6 wells of a negative control to which no antibody was added.
  • all groups induced antibodies with equivalent neutralizing activity levels.
  • a large difference was observed in the level of infection enhancing activity. That is, an antibody induced by a plasmid having a mutation in either E87 or E107 did not show an infection-enhancing activity, whereas the control plasmid DNA showed an infection-enhancing activity. This suggests that the action of suppressing the induction of infection-enhancing antibodies possessed by each vaccine is maintained even in a quadrivalent combination vaccine.
  • Example 10 Effect of prM2 mutation on immunogenicity
  • Analysis of the base sequence of the prM region of the escape mutant virus obtained in Example 1 (3) revealed that the second histidine (H) in the prM region was replaced with asparagine (N). That is, a total of three mutations (prM2, E87, E107) have been inserted into the prM / E region of the acquired escape mutant. Therefore, a total of 4 types of plasmids combining mutation and non-mutation were newly prepared for each of 3 points of prM2, E87, and E107, and 6-week-old male BALB / c mice (6 mice per group) were immunized. .
  • Example 1 Immunization was performed 3 times at a dose of 100 ⁇ g, and blood was collected 2 weeks after the third immunization. Using the pooled serum obtained, the neutralizing activity of antibodies induced against these immunogens against dengue type 1, type 2, type 3 or type 4 virus is the method described in Example 1 (2) Thus, the infection enhancing activity was examined by the method described in Example 1 (1). Table 4 shows the details of the plasmid.
  • FIG. 15 shows the result of examining the neutralizing activity
  • FIG. 16 shows the result of examining the infection enhancing activity.
  • the dotted line in FIG. 16 shows the mean value ⁇ 3SD determined from 6 wells of a negative control to which no antibody was added.
  • all the plasmids induced antibodies having the same level of neutralizing activity.
  • FIG. 16 a large difference was observed in the infection-enhancing activity level. That is, it was found that a plasmid having a mutation in E87 and E107 and having no mutation in prM2 (E87 + E107) does not show an infection enhancing activity.
  • Example 2 FIG. 5
  • Example 3 FIG.
  • Example 11 Infection enhancing activity of 3H12 antibody against prM2 mutant antigen
  • SRIP single-infectious particles having mutations in the 2nd amino acid of prM protein of Dengue type 1 virus (Mochizuki strain) and / or both E87 and E107 of envelope protein

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Virology (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Public Health (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Physics & Mathematics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Veterinary Medicine (AREA)
  • Immunology (AREA)
  • Mycology (AREA)
  • Plant Pathology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

A dengue vaccine antigen, which induces a neutralizing antibody but inhibits the induction of an infection-enhancing antibody, characterized by containing an envelope protein having a mutation at the 107th or 87th amino acid in the amino acid sequence of dengue virus envelope protein. The dengue vaccine antigen according to the present invention induces a neutralizing antibody but does not inhibit the induction of an infection-enhancing antibody. Thus, the dengue vaccine antigen is expected to exhibit high preventive efficacy even at a low vaccine dose and be appropriately usable for treating or preventing dengue fever or dengue hemorrhagic fever at high safety.

Description

中和抗体を誘導するが感染増強抗体の誘導を抑制するデングワクチン抗原Dengue vaccine antigen that induces neutralizing antibodies but suppresses induction of infection-enhancing antibodies
 本発明は、中和抗体を誘導するが感染増強抗体の誘導を抑制するデングワクチン抗原、該抗原を含有または発現するデングワクチン、および該抗原または該抗原を発現するデングウイルスの取得方法に関するものである。 The present invention relates to a dengue vaccine antigen that induces neutralizing antibodies but suppresses induction of infection-enhancing antibodies, a dengue vaccine that contains or expresses the antigen, and a method for obtaining the antigen or dengue virus that expresses the antigen. .
 デングウイルスはフラビウイルス科、フラビウイルス属に属するウイルスである。フラビウイルス属には、デングウイルスの他に日本脳炎ウイルス、黄熱ウイルス、ウエストナイルウイルスなどが含まれる。デングウイルスに感染した場合、多くは不顕性感染にとどまるが、発症した場合は軽い一過性の熱性疾患から死に至るまで幅広い症状を呈する。デング熱は、頭痛、筋肉痛、関節痛、眼窩痛などの痛みを伴う高熱が1週間ほど続く病気である。この症状にさらに血管透過性亢進、出血傾向を呈する重症型はデング出血熱と称される。 Dengue virus is a virus belonging to the family Flaviviridae and Flavivirus. Flaviviruses include Japanese encephalitis virus, yellow fever virus, West Nile virus and the like in addition to dengue virus. Infection with dengue virus is often subclinical, but when it develops, it exhibits a wide range of symptoms ranging from mild transient fever to death. Dengue fever is a disease in which high fever accompanied by pain such as headache, muscle pain, joint pain, orbital pain lasts for about one week. A severe type that exhibits increased vascular permeability and bleeding tendency in addition to this symptom is called dengue hemorrhagic fever.
 デングウイルスには生物学的分類上の「種(species)」として、1型から4型の4種(これらを血清型と称している)が存在し、いずれもデング熱またはデング出血熱を引き起こす。疫学的には、初感染ではデング熱を発症することが多い。しかし、初回の感染からある程度の期間を経て2回目の感染が起こった場合、それが初感染と同じ血清型であれば防御されるが、異なる血清型のデングウイルスに感染すると重症化する場合があることが知られている。 There are four types of dengue virus, “species” in biological classification, from type 1 to type 4 (these are called serotypes), all of which cause dengue fever or dengue hemorrhagic fever. Epidemiologically, dengue fever often develops in the first infection. However, if a second infection occurs after a certain period of time from the first infection, it will be protected if it is the same serotype as the first infection, but it may become severe if it is infected with a dengue virus of a different serotype It has been known.
 デング熱およびデング出血熱は、その制圧に世界が取り組む最重要の蚊媒介感染症であるが、未だにWHOが認定したデングワクチンは存在しない。現在、弱毒ワクチン、不活化ワクチン、サブユニットワクチンなど、種々の戦略で開発が進行中であり、6種の候補ワクチンがライセンス化あるいは臨床試験段階にある。フラビウイルスが引き起こす病気の中で、黄熱、日本脳炎やダニ媒介性脳炎に対しては既にワクチンが市場化されており、いずれも中和抗体を誘導するタイプのワクチンである。中和抗体が防御の主要因子であり、血中のウイルス量を効果的に低下させることにより、ウイルスの病原性や体内移動、そして媒介蚊への伝播効率を抑制し、個人や社会を病気から守る。 Dengue fever and dengue hemorrhagic fever are the most important mosquito-borne infections that the world is trying to control, but there is still no dengue vaccine approved by WHO. Currently, various strategies such as attenuated vaccines, inactivated vaccines and subunit vaccines are under development, and six candidate vaccines are in the licensed or clinical trial stage. Among the diseases caused by flavivirus, vaccines have already been marketed against yellow fever, Japanese encephalitis and tick-borne encephalitis, all of which are types of vaccines that induce neutralizing antibodies. Neutralizing antibodies are the main defense factors, and by effectively reducing the amount of virus in the blood, the virus's pathogenicity, internal movement, and transmission efficiency to vector mosquitoes are suppressed, and individuals and society are protected from disease. protect.
 デングワクチンについても同様の考え方で、中和抗体誘導型ワクチンの開発が進められてきた。しかし、他のフラビウイルスとは異なり、デングウイルスに対する中和抗体は低濃度で感染増強活性を示す。抗体依存性感染増強現象は、デング重症化を説明する最も有力な仮説である(非特許文献1)。したがって、デングワクチンの安全性に疑問を投ずる研究者も多く、一例としてワクチンにより誘導された中和抗体のレベルが時間の経過とともに低下した時に感染増強抗体となり、ワクチン接種が原因で重症化することが懸念される(非特許文献2)。 The development of neutralizing antibody-inducing vaccines has been promoted in the same way for dengue vaccines. However, unlike other flaviviruses, neutralizing antibodies against dengue virus show infection enhancing activity at low concentrations. The antibody-dependent infection enhancement phenomenon is the most promising hypothesis for explaining dengue severity (Non-patent Document 1). Therefore, many researchers question the safety of dengue vaccines, and as an example, when the level of neutralizing antibodies induced by the vaccine decreases with time, it becomes an infection-enhancing antibody and becomes severe due to vaccination (Non-Patent Document 2).
 デングワクチンとして最も開発が進んでいるのは、サノフィパスツール社の組換えキメラワクチンである。既に第3相臨床試験が終了し、3か国でライセンスを受けた。デング熱にはヒトの病態を表す適切な動物モデルがなく、また防御の免疫学的指標が定まっていないため、候補ワクチンの正確な防御効力は多数のヒトを対象としなければ求めることはできない。したがって、この第3相臨床試験は世界初のデングワクチン効力データを提供することとなった。しかも、アジアやアメリカの10か国で3万人を対象とした大規模試験であったため、このデータは個人差や環境の違いを凌駕した信頼のできるデータである。一方、他社の候補ワクチンは第2相臨床試験中であり、これが現在のところ世界で唯一の効力試験である。このワクチンは前臨床試験が良好な成績であったため、臨床試験への期待が大きかったが、防御効力は全体で約60%と意外な低さであった(非特許文献3、4)。全例で高い中和抗体の誘導が認められたにもかかわらず、実際の防御効力が低いことは驚くべき結果であった。この成績はワクチン3回接種後から2年間の観察データであったが、接種後3~4年目のデータが最近発表され、それによると9歳以下の集団では、防御効力は全体で約45%に低下していた(非特許文献5)。さらに、一部の集団ではワクチン接種により病気になるリスクが高まった。 The most developed dengue vaccine is Sanofi Pasteur's recombinant chimeric vaccine. Phase 3 clinical trials have already been completed and licenses have been obtained in three countries. Because dengue does not have an appropriate animal model to represent human pathology, and there is no established immunological index of protection, the exact protective efficacy of a candidate vaccine can only be determined with a large number of human subjects. This phase 3 clinical trial therefore provided the world's first dengue vaccine efficacy data. Moreover, since it was a large-scale test targeting 30,000 people in 10 countries in Asia and the United States, this data is reliable data that surpassed individual differences and environmental differences. Meanwhile, other candidate vaccines are in Phase II clinical trials, which are currently the only efficacy trials in the world. Although this vaccine had good results in preclinical studies, the expectation for clinical studies was great, but the protective efficacy was about 60% as a whole (Non-patent Documents 3 and 4). It was a surprising result that despite the high induction of neutralizing antibodies in all cases, the actual protective efficacy was low. This result was observed data for 2 years after the 3rd vaccination, but recently data from 3 to 4 years after vaccination was recently released, which shows that the overall efficacy is about 45 in the 9-year-old population. % (Non-patent Document 5). In addition, some groups increased the risk of illness due to vaccination.
 効力の低い理由が論議されてきたが、1つの因子として感染増強抗体の誘導が挙げられる。認可ワクチンが現存する上記のフラビウイルス疾患では感染増強現象が自然界では見られず、そのワクチンの効力は80~90%を超える。一方、デング熱では感染増強現象が認められ、また流行地ではデング抗体陽性者のすべてが感染増強抗体を保有していることから(非特許文献6)、自然感染により感染増強抗体が誘導されることは明らかである。したがって、自然感染後と同様、ワクチン接種後に中和抗体とともに感染増強抗体も誘導されたため、これが高い中和抗体誘導にもかかわらず効力を低下させたと考えられる。 Although the reason for its low efficacy has been discussed, one factor is the induction of infection-enhancing antibodies. In the above flavivirus diseases in which an approved vaccine is present, the infection enhancement phenomenon is not observed in nature, and the efficacy of the vaccine exceeds 80 to 90%. On the other hand, dengue fever has an infection-increasing phenomenon, and in endemic areas all dengue antibody-positive individuals possess infection-enhancing antibodies (Non-patent Document 6), so that infection-enhancing antibodies are induced by natural infection. Is clear. Therefore, as with natural infections, infection-enhancing antibodies were also induced together with neutralizing antibodies after vaccination, and this seems to have reduced efficacy despite the high neutralizing antibody induction.
 ワクチン抗原として使用されるのは、通常は自然界から分離された株である。ジェンナーやパスツールの時代から、その技術は受け継がれてきた。しかし、デングワクチンの場合、自然界の株自体が感染増強抗体を誘導するため、そのままワクチン抗原として使用することは適切ではない。人為的なエンベロープ抗原エピトープの改変により、中和抗体誘導能を残して感染増強抗体誘導の低下を導いた成功例は、これまでに2例報告されている(非特許文献7、8)。したがって、エピトープ改変により感染増強抗体の誘導をコントロールすることは可能である。しかし、いずれも構造生物学や蛋白質計算科学の手法にバイオインフォーマティクスの助けを借りて、変異アミノ酸を推定する戦略であり、推定されたアミノ酸が実際に生きた蛋白質であるか否かの証明はない。ウイルス粒子構造の中で、調和のとれたエンベロープ(E)蛋白質でなければ、免疫原性や収量が低い等のワクチン製造上の問題が生じる。具体的には、例えば不活化ワクチンを製造する際には、感染性のあるウイルス粒子を細胞内で大量に増殖させる必要がある。 The strain used as a vaccine antigen is usually a strain isolated from nature. The technology has been passed down since the days of Jenner and Pasteur. However, in the case of a dengue vaccine, since the natural strain itself induces an infection-enhancing antibody, it is not appropriate to use it as a vaccine antigen as it is. Two successful cases have been reported so far in which the neutralization antibody induction ability was left behind by artificial alteration of the envelope antigen epitope, leading to a decrease in infection-enhancing antibody induction (Non-patent Documents 7 and 8). Therefore, it is possible to control the induction of infection-enhancing antibodies by epitope modification. However, both are strategies for estimating mutant amino acids with the help of bioinformatics in methods of structural biology and protein computational science, and proof that the estimated amino acids are actually living proteins There is no. If it is not a harmonized envelope (E) protein in the virus particle structure, problems in vaccine production such as immunogenicity and low yield arise. Specifically, for example, when producing an inactivated vaccine, it is necessary to proliferate a large amount of infectious virus particles in cells.
 本発明は、中和抗体を誘導するが感染増強抗体の誘導を抑制するデングワクチン抗原、および該抗原を含有または発現するデングワクチンを提供することを課題とする。また、本発明は、中和抗体を誘導するが感染増強抗体の誘導を抑制するデングワクチン抗原または該抗原を発現するデングウイルスを取得する方法を提供することを課題とする。 An object of the present invention is to provide a dengue vaccine antigen that induces neutralizing antibodies but suppresses induction of infection-enhancing antibodies, and dengue vaccines that contain or express the antigens. Another object of the present invention is to provide a method for obtaining a dengue vaccine antigen that induces neutralizing antibodies but suppresses induction of infection-enhancing antibodies, or a dengue virus that expresses the antigens.
 本発明は、上記課題を解決するために、以下の各発明を包含する。
[1]中和抗体を誘導するが感染増強抗体の誘導を抑制するデングワクチン抗原であって、デングウイルスエンベロープ蛋白質のアミノ酸配列の第107位または第87位のアミノ酸に変異を有するエンベロープ蛋白質を含むことを特徴とするデングワクチン抗原。
[2]第107位のロイシンが、フェニルアラニン、トリプトファン、メチオニン、プロリン、アラニン、バリンおよびイソロイシンから選択される1種に置換されていることを特徴とする前記[1]に記載のデングワクチン抗原。
[3]第107位のロイシンが、フェニルアラニンに置換されていることを特徴とする前記[2]に記載のデングワクチン抗原。
[4]第107位のアミノ酸に変異を有するエンベロープ蛋白質が、配列番号4で示されるアミノ酸配列と同一または実質的に同一のアミノ酸配列からなることを特徴とする前記[1]~[3]のいずれかに記載のデングワクチン抗原。
[5]第87位のアスパラギン酸が、グルタミン酸、チロシン、システイン、アルギニン、ヒスチジン、リジン、セリン、トレオニン、グルタミン、アスパラギンおよびグリシンから選択される1種に置換されていることを特徴とする前記[1]に記載のデングワクチン抗原。
[6]第87位のアスパラギン酸が、アスパラギンに置換されていることを特徴とする前記[5]に記載のデングワクチン抗原。
[7]第87位のアミノ酸に変異を有するエンベロープ蛋白質が、配列番号5で示されるアミノ酸配列と同一または実質的に同一のアミノ酸配列からなることを特徴とする前記[1]、[5]または[6]に記載のデングワクチン抗原。
[8]前記[1]~[7]のいずれかに記載のデングワクチン抗原を含有または発現することを特徴とするデングワクチン。
[9]デングウイルスエンベロープ蛋白質のアミノ酸配列の第107位または第87位のアミノ酸に変異を有するエンベロープ蛋白質、該エンベロープ蛋白質をコードする核酸、該エンベロープ蛋白質をコードする核酸を含むベクター、または該エンベロープ蛋白質を発現するデングウイルスを含有することを特徴とする前記[8]に記載のデングワクチン。
[10]デングウイルス以外の病原体に対するワクチン成分を含むことを特徴とする前記[8]または[9]に記載のデングワクチン。
[11]中和抗体を誘導するが感染増強抗体の誘導を抑制するデングワクチン抗原または該抗原を発現するデングウイルスを取得する方法であって、以下の工程(1)~(5)を含むことを特徴とする方法:
(1)デングウイルスのエンベロープ蛋白質を抗原として、感染増強活性を有するが中和活性を有しないモノクローナル抗体を取得する工程、
(2)(1)で得られたモノクローナル抗体のクラスまたはサブクラスを変更することにより、中和活性を有するモノクローナル抗体を取得する工程、
(3)(2)で得られた中和活性を有するモノクローナル抗体の存在下でデングウイルス感染細胞を培養することにより、該モノクローナル抗体により中和されない変異デングウイルスを取得する工程、
(4)(3)で得られた変異デングウイルスのエンベロープ蛋白質に生じた変異を確認する工程、および
(5)(3)で得られた変異デングウイルスのエンベロープ蛋白質が感染増強抗体の誘導を抑制することを確認する工程。
[12]中和抗体を誘導するが感染増強抗体の誘導を抑制するデングワクチン抗原であって、アミノ酸配列の第107位および第87位のアミノ酸に変異を有するデングウイルスエンベロープ蛋白質と2位のアミノ酸に変異を有さないデングウイルス前駆膜蛋白質を含むことを特徴とするデングワクチン抗原。
[13]前記[12]に記載のデングワクチン抗原を含有または発現することを特徴とするデングワクチン。
The present invention includes the following inventions in order to solve the above problems.
[1] A dengue vaccine antigen that induces neutralizing antibody but suppresses induction of infection-enhancing antibody, and includes an envelope protein having a mutation in the 107th or 87th amino acid of the amino acid sequence of the dengue virus envelope protein Dengue vaccine antigen characterized by
[2] The dengue vaccine antigen according to [1], wherein leucine at position 107 is substituted with one selected from phenylalanine, tryptophan, methionine, proline, alanine, valine and isoleucine.
[3] The dengue vaccine antigen according to [2], wherein leucine at position 107 is substituted with phenylalanine.
[4] The above-mentioned [1] to [3], wherein the envelope protein having a mutation at the 107th amino acid comprises the same or substantially the same amino acid sequence as the amino acid sequence represented by SEQ ID NO: 4 The dengue vaccine antigen according to any one of the above.
[5] The aspartic acid at position 87 is substituted with one selected from glutamic acid, tyrosine, cysteine, arginine, histidine, lysine, serine, threonine, glutamine, asparagine and glycine. Dengue vaccine antigen according to 1].
[6] The dengue vaccine antigen according to [5], wherein aspartic acid at position 87 is substituted with asparagine.
[7] The above-mentioned [1], [5] or [5], wherein the envelope protein having a mutation at the 87th amino acid sequence comprises the same or substantially the same amino acid sequence as the amino acid sequence represented by SEQ ID NO: 5 Dengue vaccine antigen according to [6].
[8] A dengue vaccine comprising or expressing the dengue vaccine antigen according to any one of [1] to [7].
[9] An envelope protein having a mutation in the 107th or 87th amino acid of the amino acid sequence of a dengue virus envelope protein, a nucleic acid encoding the envelope protein, a vector containing the nucleic acid encoding the envelope protein, or the envelope protein The dengue vaccine according to [8] above, which contains a dengue virus that expresses.
[10] The dengue vaccine according to [8] or [9] above, comprising a vaccine component against pathogens other than dengue virus.
[11] A method for obtaining a dengue vaccine antigen that induces neutralizing antibodies but suppresses induction of infection-enhancing antibodies, or a dengue virus that expresses the antigens, comprising the following steps (1) to (5) Features method:
(1) A step of obtaining a monoclonal antibody having an infection enhancing activity but not a neutralizing activity, using a dengue virus envelope protein as an antigen,
(2) obtaining a monoclonal antibody having neutralizing activity by changing the class or subclass of the monoclonal antibody obtained in (1),
(3) obtaining a mutant dengue virus that is not neutralized by the monoclonal antibody by culturing dengue virus-infected cells in the presence of the monoclonal antibody having neutralizing activity obtained in (2);
(4) a step of confirming a mutation occurring in the envelope protein of the mutant dengue virus obtained in (3), and (5) that the envelope protein of the mutant dengue virus obtained in (3) suppresses the induction of the infection-enhancing antibody. The process of confirming.
[12] Dengue vaccine antigen that induces neutralizing antibody but suppresses induction of infection-enhancing antibody, and includes dengue virus envelope protein having mutations at amino acids 107 and 87 of the amino acid sequence and amino acid 2 A dengue vaccine antigen comprising a dengue virus precursor membrane protein having no mutation.
[13] A dengue vaccine comprising or expressing the dengue vaccine antigen according to [12].
 本発明はまた、以下の各発明も包含する。
[14]前記[1]~[7]、[12]のいずれかに記載のデングワクチン抗原または前記[8]~[10]、[13]のいずれかに記載のデングワクチンを含有してなる、デング熱またはデング出血熱の予防または治療用医薬組成物。
[15]前記[1]~[7]、[12]のいずれかに記載のデングワクチン抗原または前記[8]~[10]、[13]のいずれかに記載のデングワクチンを投与することを特徴とする、デング熱またはデング出血熱の予防または治療方法。
[16]デング熱またはデング出血熱を予防および/または治療するための、前記[1]~[7]、[12]のいずれかに記載のデングワクチン抗原または前記[8]~[10]、[13]のいずれかに記載のデングワクチンの使用。
[17]デング熱またはデング出血熱の予防および/または治療に用いるための、前記[1]~[7]、[12]のいずれかに記載のデングワクチン抗原または前記[8]~[10]、[13]のいずれかに記載のデングワクチン。
[18]デング熱またはデング出血熱の予防および/または治療用医薬を製造するための、前記[1]~[7]、[12]のいずれかに記載のデングワクチン抗原または前記[8]~[10]、[13]のいずれかに記載のデングワクチンの使用。
The present invention also includes the following inventions.
[14] The dengue vaccine antigen according to any one of [1] to [7] and [12] or the dengue vaccine according to any one of [8] to [10] and [13] A pharmaceutical composition for preventing or treating dengue fever or dengue hemorrhagic fever.
[15] The administration of the dengue vaccine antigen according to any one of [1] to [7] and [12] or the dengue vaccine according to any one of [8] to [10] and [13]. A method for preventing or treating dengue fever or dengue hemorrhagic fever.
[16] The dengue vaccine antigen according to any one of the above [1] to [7], [12] or the above [8] to [10], for preventing and / or treating dengue fever or dengue hemorrhagic fever 13] Use of the dengue vaccine according to any one of the above.
[17] The dengue vaccine antigen according to any one of the above [1] to [7], [12] or the above [8] to [10] for use in the prevention and / or treatment of dengue fever or dengue hemorrhagic fever [13] The dengue vaccine according to any one of the above.
[18] The dengue vaccine antigen according to any one of [1] to [7] and [12] or the above [8] to [8] for producing a medicament for preventing and / or treating dengue fever or dengue hemorrhagic fever Use of the dengue vaccine in any one of 10] and [13].
 本発明により、中和抗体を誘導するが感染増強抗体の誘導を抑制するデングワクチン抗原、および該抗原を含有または発現するデングワクチンを提供することができる。また、中和抗体を誘導するが感染増強抗体の誘導を抑制するデングワクチン抗原または該抗原を発現するデングウイルスを取得する方法を提供することができる。本発明のデングワクチンは、感染増強抗体の誘導を抑制することができるので、感染増強抗体存在下において阻害される中和抗体活性の効果を高めて防御効力を発揮できる点で、また懸念される重症化を防止できる点で非常に有用である。 The present invention can provide a dengue vaccine antigen that induces neutralizing antibodies but suppresses induction of infection-enhancing antibodies, and dengue vaccines that contain or express the antigens. In addition, it is possible to provide a method for obtaining a dengue vaccine antigen that induces neutralizing antibodies but suppresses induction of infection-enhancing antibodies or dengue viruses that express the antigens. Since the dengue vaccine of the present invention can suppress the induction of infection-enhancing antibodies, there is another concern in that it can exert protective efficacy by enhancing the effect of neutralizing antibody activity that is inhibited in the presence of infection-enhancing antibodies. It is very useful in that it can be prevented from becoming serious.
図1は、デング1型ウイルス望月株に対するモノクローナル抗体の感染増強活性および中和活性を確認した結果を示す図であり、左は高濃度で中和活性を示し低濃度で感染増強活性を示したモノクローナル抗体の代表例(D1-I-15C12)の結果、中央は中和活性のみを示したモノクローナル抗体の代表例(D1-IV-7F4)の結果、右は感染増強活性のみを示したモノクローナル抗体の代表例(D1-V-3H12)の結果である。FIG. 1 is a diagram showing the results of confirming the infection enhancing activity and neutralizing activity of a monoclonal antibody against dengue type 1 virus Mochizuki strain, and the left shows neutralizing activity at a high concentration and infection enhancing activity at a low concentration. As a result of a representative example of a monoclonal antibody (D1-I-15C12), the result of a representative example of a monoclonal antibody (D1-IV-7F4) showing only neutralizing activity in the center, the right shows a monoclonal antibody showing only infection enhancing activity This is a result of a representative example (D1-V-3H12). 図2は、感染増強活性のみを示した3H12抗体のサブクラスを置換した抗体(3H12-IgG2aおよび3H12-IgG2b)のデング1型ウイルス望月株に対する中和活性を確認した結果を示す図である。FIG. 2 is a diagram showing the results of confirming the neutralizing activity against dengue type 1 virus Mochizuki strains of antibodies (3H12-IgG2a and 3H12-IgG2b) substituted with a subclass of 3H12 antibody that showed only infection-enhancing activity. 図3は、中和活性を示した抗体(3H12-IgG2b)の存在下で、デング1型ウイルス望月株に感染したVero細胞を継代培養して得られたエスケープミュータントウイルスに対する3H12抗体の感染増強活性を確認した結果を示す図である。FIG. 3 shows enhanced infection of 3H12 antibody against escape mutant virus obtained by subculturing Vero cells infected with Dengue type 1 virus Mochizuki strain in the presence of an antibody (3H12-IgG2b) showing neutralizing activity. It is a figure which shows the result which confirmed activity. 図4は、エスケープミュータントウイルスに見出されたエンベロープ蛋白質の87位(E87)および107位(E107)の両方またはいずれか一方に変異を持つ1回感染型粒子(SRIP)に対する3H12抗体の感染増強活性を確認した結果を示す図である。FIG. 4 shows enhanced infection of the 3H12 antibody against single infectious particles (SRIP) having mutations at position 87 (E87) and position 107 (E107) of the envelope protein found in escape mutant viruses. It is a figure which shows the result which confirmed activity. 図5は、E87およびE107の両方またはいずれか一方に変異を持つデング1型ウイルス望月株のエンベロープ蛋白質をコードするDNAを含むプラスミドDNAを用いてマウスを免疫し、得られた血清中の抗体のデング1型ウイルス望月株に対する中和活性および感染増強活性を確認した結果を示す図であり、Aは中和活性の結果、Bは感染増強活性の結果である。FIG. 5 shows immunization of mice with plasmid DNA containing DNA encoding the envelope protein of Dengue type 1 virus Mochizuki strain having a mutation in E87 and / or E107. It is a figure which shows the result of having confirmed the neutralization activity with respect to a dengue type 1 virus Mochizuki strain, and the infection enhancement activity, A is the result of the neutralization activity, B is the result of the infection enhancement activity. 図6は、E87およびE107の両方またはいずれか一方に変異を持つデング1型ウイルス望月株のエンベロープ蛋白質をコードするDNAを含むプラスミドDNAを用いてマウスを免疫し、得られた血清中の抗体のデング2型ウイルス(New Guinea C株)、デング3型ウイルス(H87株)またはデング4型ウイルス(H241株)に対する中和活性および感染増強活性を確認した結果を示す図であり、Aは中和活性の結果、Bは感染増強活性の結果である。FIG. 6 shows immunization of mice with plasmid DNA containing DNA encoding the envelope protein of Dengue type 1 virus Mochizuki strain having a mutation in E87 and / or E107. It is a figure which shows the result of having confirmed the neutralization activity with respect to dengue type 2 virus (New Guinea strain C), dengue type 3 virus (H87 strain) or dengue type 4 virus (H241 strain), and the infection enhancing activity, A is neutralization As a result of activity, B is the result of infection-enhancing activity. 図7は、デング2型ウイルス(New Guinea C株)、デング3型ウイルス(H87株)、デング4型ウイルス(H241株)のエンベロープ蛋白質(E抗原)のE87またはE107に変異を導入した1回感染型粒子(SRIP)に対する3H12抗体の感染増強活性を確認した結果を示す図である。FIG. 7 shows a case in which a mutation was introduced into E87 or E107 of the envelope protein (E antigen) of dengue type 2 virus (New Guinea C strain), dengue type 3 virus (H87 strain), and dengue type 4 virus (H241 strain). It is a figure which shows the result of having confirmed the infection enhancement activity of 3H12 antibody with respect to infectious particle | grains (SRIP). 図8は、デング2型ウイルス(New Guinea C株)、デング3型ウイルス(H87株)、デング4型ウイルス(H241株)のエンベロープ蛋白質の各E87またはE107に変異を導入したエンベロープ蛋白質(E抗原)を発現するプラスミドDNAを用いてマウスを免疫し、得られた血清中の抗体の対応する血清型ウイルスに対する感染増強活性を確認した結果を示す図である。FIG. 8 shows an envelope protein (E antigen) in which mutations are introduced into each of E87 or E107 of the envelope proteins of Dengue type 2 virus (New Guinea C strain), Dengue type 3 virus (H87 strain), and Dengue type 4 virus (H241 strain). ) Is used to immunize mice, and the antibody in the obtained serum confirms the infection enhancing activity against the corresponding serotype virus. 図9は、デング1型ウイルス望月株のE領域のE107またはE87のアミノ酸に種々のアミノ酸への1点変異を導入した蛋白質を発現するプラスミドDNAを用いてマウスを免疫し、得られた血清中の抗体の全ての血清型ウイルスに対する感染増強活性の結果を示す図である。FIG. 9 shows immunization of mice with plasmid DNA expressing proteins in which E107 or E87 amino acids in the E region of dengue type 1 virus Mochizuki strain were introduced with single point mutations into various amino acids. It is a figure which shows the result of the infection enhancement activity with respect to all the serotype viruses of the antibody of. 図10は、3H12抗体の感染増強活性を、株が異なるデングウイルスのエンベロープ蛋白質のE87またはE107に変異を導入したSRIPに対して確認した結果を示す図である。FIG. 10 is a diagram showing the results of confirming the infection-enhancing activity of the 3H12 antibody against SRIP in which a mutation was introduced into E87 or E107 of the dengue virus envelope protein of different strains. 図11は、デング1型ウイルス(遺伝子型I、BDV-1)、デング2型ウイルス(遺伝子型American、BDV-2)、デング3型ウイルス(遺伝子型I、BDV-3)、デング4型ウイルス(遺伝子型III、BDV-4)の各エンベロープ蛋白質のE87またはE107に変異を導入したエンベロープ蛋白質を発現するプラスミドDNAを用いてマウスを免疫し、得られた血清中の抗体の全ての血清型ウイルスに対する中和活性の結果を示す図である。FIG. 11 shows dengue type 1 virus (genotype I, BDV-1), dengue type 2 virus (genotype American, BDV-2), dengue type 3 virus (genotype I, BDV-3), and dengue type 4 virus. All serotype viruses of the antibodies in the sera obtained by immunizing mice using plasmid DNA expressing envelope proteins in which mutations were introduced into E87 or E107 of each envelope protein of (genotype III, BDV-4) It is a figure which shows the result of the neutralization activity with respect to. 図12は、デング1型ウイルス(遺伝子型I、BDV-1)、デング2型ウイルス(遺伝子型American、BDV-2)、デング3型ウイルス(遺伝子型I、BDV-3)、デング4型ウイルス(遺伝子型III、BDV-4)の各エンベロープ蛋白質のE87またはE107に変異を導入したエンベロープ蛋白質を発現するプラスミドDNAを用いてマウスを免疫し、得られた血清中の抗体の全ての血清型ウイルスに対する感染増強活性の結果を示す図である。FIG. 12 shows dengue type 1 virus (genotype I, BDV-1), dengue type 2 virus (genotype American, BDV-2), dengue type 3 virus (genotype I, BDV-3), and dengue type 4 virus. All serotype viruses of the antibodies in the sera obtained by immunizing mice using plasmid DNA expressing envelope proteins in which mutations were introduced into E87 or E107 of each envelope protein of (genotype III, BDV-4) It is a figure which shows the result of the infection enhancement activity with respect to. 図13は、デング1型ウイルス(遺伝子型I、BDV-1)、デング2型ウイルス(遺伝子型American、BDV-2)、デング3型ウイルス(遺伝子型I、BDV-3)、デング4型ウイルス(遺伝子型III、BDV-4)の各エンベロープ蛋白質のE87またはE107に変異を持つエンベロープ蛋白質を発現するプラスミドDNAを混合したデング4価ワクチンを用いてマウスを免疫し、得られた血清中の抗体の全ての血清型ウイルスに対する中和活性の結果を示す図である。FIG. 13 shows dengue type 1 virus (genotype I, BDV-1), dengue type 2 virus (genotype American, BDV-2), dengue type 3 virus (genotype I, BDV-3), and dengue type 4 virus. Serum antibodies obtained by immunizing mice using a dengue tetravalent vaccine mixed with plasmid DNA expressing envelope proteins having mutations in E87 or E107 of each envelope protein of (genotype III, BDV-4) It is a figure which shows the result of the neutralization activity with respect to all the serotype viruses. 図14は、デング1型ウイルス(遺伝子型I、BDV-1)、デング2型ウイルス(遺伝子型American、BDV-2)、デング3型ウイルス(遺伝子型I、BDV-3)、デング4型ウイルス(遺伝子型III、BDV-4)の各エンベロープ蛋白質のE87またはE107に変異を持つエンベロープ蛋白質を発現するプラスミドDNAを混合したデング4価ワクチンを用いてマウスを免疫し、得られた血清中の抗体の全ての全ての血清型ウイルスに対する感染増強活性の結果を示す図である。FIG. 14 shows dengue type 1 virus (genotype I, BDV-1), dengue type 2 virus (genotype American, BDV-2), dengue type 3 virus (genotype I, BDV-3), and dengue type 4 virus. Serum antibodies obtained by immunizing mice using a dengue tetravalent vaccine mixed with plasmid DNA expressing envelope proteins having mutations in E87 or E107 of each envelope protein of (genotype III, BDV-4) It is a figure which shows the result of the infection enhancement activity with respect to all the serotype viruses of all. 図15は、デング1型ウイルス(望月株)の前駆膜(prM)蛋白質の2位アミノ酸および/またはエンベロープ蛋白質のE87とE107の両方に変異を導入した蛋白質を発現するプラスミドDNAを用いてマウスを免疫し、得られた血清中の抗体の全ての血清型ウイルスに対する中和活性の結果を示す図である。FIG. 15 shows a method for expressing a mouse using plasmid DNA expressing a protein in which a mutation is introduced into the second amino acid of the precursor membrane (prM) protein of dengue type 1 virus (Mochizuki strain) and / or envelope proteins E87 and E107. It is a figure which shows the result of the neutralization activity with respect to all the serotype viruses of the antibody in the sera obtained after immunization. 図16は、デング1型ウイルス(望月株)の前駆膜(prM)蛋白質の2位アミノ酸および/またはエンベロープ蛋白質のE87とE107の両方に変異を導入した蛋白質を発現するプラスミドDNAを用いてマウスを免疫し、得られた血清中の抗体の全ての血清型ウイルスに対する感染増強活性の結果を示す図である。FIG. 16 shows that a mouse is treated with a plasmid DNA expressing a protein in which a mutation is introduced into both the amino acid at position 2 of the precursor membrane (prM) protein of dengue type 1 virus (Mochizuki strain) and / or envelope proteins E87 and E107. It is a figure which shows the result of the infection enhancement activity with respect to all the serotype viruses of the antibody in the obtained sera after immunization. 図17は、デング1型ウイルス(望月株)の前駆膜(prM)蛋白質の2位アミノ酸および/またはエンベロープ蛋白質のE87とE107の両方に変異を持つ1回感染型粒子(SRIP)に対する3H12抗体の感染増強活性を確認した結果を示す図である。FIG. 17 shows that the 3H12 antibody against single infectious particles (SRIP) having mutations in the amino acid position 2 of the precursor membrane (prM) protein of dengue type 1 virus (Mochizuki strain) and / or envelope proteins E87 and E107. It is a figure which shows the result of having confirmed the infection enhancement activity.
〔デングワクチン抗原〕
 本発明は、中和抗体を誘導するが感染増強抗体の誘導を抑制するデングワクチン抗原を提供する。本明細書において、「中和抗体」はデングウイルスの細胞への感染を阻害する活性を有する抗体を意味し、「感染増強抗体」はデングウイルスの細胞への感染を増強する活性を有する抗体を意味する。ここで、「中和抗体を誘導するが感染増強抗体の誘導を抑制する」とは、本発明のデングワクチン抗原が、デングウイルスに対する中和活性を有し、かつ、感染増強活性が抑制された抗体を誘導するものであって、以降、単に「ワクチン抗原」あるいは「デングウイルス抗原」と記載することもある。
[Dengue vaccine antigen]
The present invention provides dengue vaccine antigens that induce neutralizing antibodies but suppress induction of infection-enhancing antibodies. In the present specification, “neutralizing antibody” means an antibody having an activity of inhibiting dengue virus infection of cells, and “infection enhancing antibody” means an antibody having an activity of enhancing dengue virus infection of cells. . Here, “inducing neutralizing antibody but suppressing induction of infection-enhancing antibody” means that the dengue vaccine antigen of the present invention has neutralizing activity against dengue virus and has suppressed infection-enhancing activity. Hereinafter, it may be simply referred to as “vaccine antigen” or “dengue virus antigen”.
 本発明のワクチン抗原は、デングウイルスエンベロープ蛋白質のアミノ酸配列の第107位または第87位のアミノ酸が変異したエンベロープ蛋白質を含むものであればよい(以降、便宜上、前記ワクチン抗原のことを、態様Aのワクチン抗原と記載することもある)。即ち、本発明の態様Aのワクチン抗原としては、デングウイルスエンベロープ蛋白質のアミノ酸配列の第107位のアミノ酸が変異したエンベロープ蛋白質を含むものと、デングウイルスエンベロープ蛋白質のアミノ酸配列の第87位のアミノ酸が変異したエンベロープ蛋白質を含むものが挙げられる。基礎となる野生型デングウイルスエンベロープ蛋白質(第107位および第87位のアミノ酸に変異がないデングウイルスエンベロープ蛋白質)のアミノ酸配列は、デングウイルスエンベロープ蛋白質のアミノ酸配列である限りどのようなアミノ酸配列でもよい。また、本発明のワクチン抗原は、1型、2型、3型および4型のいずれの血清型のデングウイルス由来のエンベロープ蛋白質を含むものであってもよい。即ち、本発明において、単に「デングウイルス」と総称する場合は、血清型は特に限定されず全ての血清型を含むものである。一例として、デング1型ウイルス望月株のエンベロープ蛋白質のアミノ酸配列を配列番号1に示す。 The vaccine antigen of the present invention only needs to contain an envelope protein in which the amino acid at position 107 or 87 of the amino acid sequence of the dengue virus envelope protein is mutated (hereinafter, for convenience, the vaccine antigen is referred to as the aspect A). Sometimes referred to as vaccine antigen). That is, the vaccine antigen of aspect A of the present invention includes an envelope protein in which the amino acid at position 107 of the dengue virus envelope protein is mutated and an amino acid at position 87 in the amino acid sequence of the dengue virus envelope protein. The thing containing an envelope protein is mentioned. The amino acid sequence of the basic wild-type dengue virus envelope protein (dengue virus envelope protein having no mutation at the 107th and 87th amino acids) may be any amino acid sequence as long as it is the amino acid sequence of the dengue virus envelope protein. Moreover, the vaccine antigen of the present invention may contain an envelope protein derived from dengue virus of any serotype of type 1, type 2, type 3, and type 4. That is, in the present invention, when the term “dengue virus” is simply used, the serotype is not particularly limited and includes all serotypes. As an example, the amino acid sequence of the envelope protein of the dengue type 1 virus Mochizuki strain is shown in SEQ ID NO: 1.
 デングウイルスはフラビウイルス属に属するウイルス(フラビウイルス)であり、全長約11kbの+鎖RNAをゲノムとして有している。このゲノム上には一つの読み取り枠があり、3種の構造タンパク(C, prM, E)と7種の非構造タンパク(NS1, NS2A, NS2B, NS3, NS4A, NS4B, NS5)が、この順にコードされている。上流(5’側)から3番目のE蛋白質がエンベロープ蛋白質である。デング1型ウイルス望月株のゲノムの塩基配列を配列番号2に、当該ゲノムにコードされる全長蛋白質のアミノ酸配列を配列番号3にそれぞれ示す。望月株の全長蛋白質のアミノ酸配列(配列番号3)において、エンベロープ蛋白質は第281位~第775位に該当し、エンベロープ蛋白質をコードする塩基配列は配列番号2で示される塩基配列の第935位~第2419位に該当する。したがって、配列番号1で示されるアミノ酸配列の第107位は、配列番号3で示されるアミノ酸配列の第387位に該当する。prM蛋白質とエンベロープ蛋白質(E蛋白質)の境界、およびエンベロープ蛋白質(E蛋白質)とNS1蛋白質の境界はいずれも宿主細胞のシグナラーゼ(signalase)で切断される。
 以下の表1に、各血清型の代表的なデングウイルス株とその配列情報(アクセッション番号)を示す。また、表2に、表1に示す株について、検出国、分離年、遺伝子型の情報を含めたものも示す。
Dengue virus is a virus belonging to the genus Flavivirus (flavivirus), and has a + strand RNA of about 11 kb in length as a genome. There is one open reading frame on this genome, and three structural proteins (C, prM, E) and seven nonstructural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, NS5) are in this order. It is coded. The third E protein from the upstream (5 ′ side) is an envelope protein. The base sequence of the genome of the dengue type 1 virus Mochizuki strain is shown in SEQ ID NO: 2, and the amino acid sequence of the full-length protein encoded by the genome is shown in SEQ ID NO: 3, respectively. In the amino acid sequence of the full-length protein of Mochizuki strain (SEQ ID NO: 3), the envelope protein corresponds to positions 281 to 775, and the base sequence encoding the envelope protein is from position 935 to the base sequence represented by SEQ ID NO: 2. It corresponds to the 2419th place. Therefore, the 107th position of the amino acid sequence represented by SEQ ID NO: 1 corresponds to the 387th position of the amino acid sequence represented by SEQ ID NO: 3. The boundary between the prM protein and the envelope protein (E protein), and the boundary between the envelope protein (E protein) and the NS1 protein are both cleaved by a signalase from the host cell.
Table 1 below shows typical dengue virus strains of each serotype and their sequence information (accession number). Table 2 also shows the strains shown in Table 1 including information on the country of detection, year of isolation, and genotype.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本発明の態様Aのワクチン抗原は、中和抗体を誘導するが感染増強抗体の誘導を抑制するものである限り、エンベロープ蛋白質の第107位の変異はどのような変異でもよいが、第107位のアミノ酸が他のアミノ酸に置換された変異であることが好ましい。中和抗体を誘導するが感染増強抗体の誘導を抑制するワクチン抗原である限り、置換前のアミノ酸と置換後のアミノ酸の組み合わせは限定されない。好ましくは、エンベロープ蛋白質の第107位のロイシンが、他のアミノ酸に置換されているワクチン抗原であり、より好ましくはエンベロープ蛋白質の第107位のロイシンが、他の疎水性アミノ酸に置換されているワクチン抗原である。他の疎水性アミノ酸としては、フェニルアラニン、トリプトファン、メチオニン、プロリン、アラニン、バリンおよびイソロイシンが挙げられる。したがって、本発明の態様Aのワクチン抗原は、第107位のロイシンが、フェニルアラニン、トリプトファン、メチオニン、プロリン、アラニン、バリンおよびイソロイシンから選択される1種に置換されていることがより好ましい。さらに好ましくは、エンベロープ蛋白質の第107位のロイシンがフェニルアラニンに置換された変異を有するワクチン抗原である。また、エンベロープ蛋白質の第107位のロイシンが親水性アミノ酸に置換されているワクチン抗原であってもよく、例えば、グルタミン酸、チロシン、システイン、アルギニン、ヒスチジン、リジン、セリン、トレオニン、グルタミン、アスパラギン等に置換されたワクチン抗原が例示される。 As long as the vaccine antigen of aspect A of the present invention induces neutralizing antibodies but suppresses induction of infection-enhancing antibodies, the mutation at position 107 of the envelope protein may be any mutation, but position 107 It is preferable that the amino acid is a mutation in which another amino acid is substituted. The combination of the amino acid before substitution and the amino acid after substitution is not limited as long as it is a vaccine antigen that induces neutralizing antibodies but suppresses induction of infection-enhancing antibodies. Preferably, the leucine at position 107 of the envelope protein is a vaccine antigen substituted with another amino acid, more preferably a vaccine where the leucine at position 107 of the envelope protein is replaced with another hydrophobic amino acid It is an antigen. Other hydrophobic amino acids include phenylalanine, tryptophan, methionine, proline, alanine, valine and isoleucine. Therefore, in the vaccine antigen of aspect A of the present invention, the leucine at position 107 is more preferably substituted with one selected from phenylalanine, tryptophan, methionine, proline, alanine, valine and isoleucine. More preferably, it is a vaccine antigen having a mutation in which leucine at position 107 of the envelope protein is substituted with phenylalanine. Further, it may be a vaccine antigen in which the leucine at position 107 of the envelope protein is substituted with a hydrophilic amino acid, such as glutamic acid, tyrosine, cysteine, arginine, histidine, lysine, serine, threonine, glutamine, asparagine, etc. Illustrated are substituted vaccine antigens.
 本発明の態様Aのワクチン抗原は、中和抗体を誘導するが感染増強抗体の誘導を抑制するものである限り、エンベロープ蛋白質の第87位の変異はどのような変異でもよいが、第87位のアミノ酸が他のアミノ酸に置換された変異であることが好ましい。中和抗体を誘導するが感染増強抗体の誘導を抑制するワクチン抗原である限り、置換前のアミノ酸と置換後のアミノ酸の組み合わせは限定されない。好ましくは、エンベロープ蛋白質の第87位のアスパラギン酸が、他の極性アミノ酸を含むアミノ酸に置換されているワクチン抗原であり、エンベロープ蛋白質の第87位のアスパラギン酸が、グルタミン酸、チロシン、システイン、アルギニン、ヒスチジン、リジン、セリン、トレオニン、グルタミン、アスパラギンおよびグリシンから選択される1種に置換されていることがより好ましい。また、エンベロープ蛋白質の第87位のアスパラギン酸が、疎水性アミノ酸、例えば、フェニルアラニン、トリプトファン、メチオニン、プロリン、アラニン、バリン、イソロイシン等に置換されているものもより好ましい。さらに好ましくは、エンベロープ蛋白質の第87位のアスパラギン酸がアスパラギンに置換された変異を有するワクチン抗原である。 As long as the vaccine antigen of aspect A of the present invention induces neutralizing antibodies but suppresses induction of infection-enhancing antibodies, the mutation at position 87 of the envelope protein may be any mutation, but position 87 It is preferable that the amino acid is a mutation in which another amino acid is substituted. The combination of the amino acid before substitution and the amino acid after substitution is not limited as long as it is a vaccine antigen that induces neutralizing antibodies but suppresses induction of infection-enhancing antibodies. Preferably, the aspartic acid at position 87 of the envelope protein is a vaccine antigen substituted with an amino acid containing another polar amino acid, and the aspartic acid at position 87 of the envelope protein is glutamic acid, tyrosine, cysteine, arginine, More preferably, it is substituted with one selected from histidine, lysine, serine, threonine, glutamine, asparagine and glycine. In addition, it is more preferable that the aspartic acid at position 87 of the envelope protein is substituted with a hydrophobic amino acid such as phenylalanine, tryptophan, methionine, proline, alanine, valine, isoleucine and the like. More preferably, the vaccine antigen has a mutation in which aspartic acid at position 87 of the envelope protein is substituted with asparagine.
 本発明の態様Aのワクチン抗原は、中和抗体を誘導するが感染増強抗体の誘導を抑制することができる限り、第107位または第87位以外の位置のアミノ酸変異を有するエンベロープ蛋白質を含むものであってもよい。第107位または第87位以外の位置は特に限定されず、置換されるアミノ酸の種類も特に限定されない。また、第107位または第87位以外の位置のアミノ酸変異の数も限定されず、1個、2個、3個、4個または5個であってもよい。変異の数の上限は特に限定されないが、第107位または第87位のアミノ酸変異を含めて50個以下が好ましく、40個以下がより好ましく、30個以下がさらに好ましく、20個以下がさらに好ましく、10個以下がさらに好ましい。 The vaccine antigen of aspect A of the present invention includes an envelope protein having an amino acid mutation at a position other than position 107 or position 87 as long as it induces neutralizing antibodies but can suppress induction of infection-enhancing antibodies. It may be. Positions other than the 107th and 87th positions are not particularly limited, and the type of amino acid to be substituted is not particularly limited. Further, the number of amino acid mutations at positions other than the 107th position or the 87th position is not limited, and may be 1, 2, 3, 4, or 5. The upper limit of the number of mutations is not particularly limited, but is preferably 50 or less including the amino acid mutation at position 107 or 87, more preferably 40 or less, further preferably 30 or less, and further preferably 20 or less. More preferably, 10 or less.
 本発明の態様Aのワクチン抗原の一態様としては、デング1型ウイルス望月株のエンベロープ蛋白質のアミノ酸配列の第107位または第87位のアミノ酸が変異したエンベロープ蛋白質を含むものであることが好ましい。このようなワクチン抗原としては、配列番号4または配列番号5で示されるアミノ酸配列と同一または実質的に同一のアミノ酸配列からなるエンベロープ蛋白質を含むワクチン抗原が挙げられる。配列番号4で示されるアミノ酸配列は、配列番号1で示されるデング1型ウイルス望月株のエンベロープ蛋白質のアミノ酸配列において、第107位のロイシンがフェニルアラニンに置換したアミノ酸配列であり、配列番号5で示されるアミノ酸配列は、配列番号1で示されるデング1型ウイルス望月株のエンベロープ蛋白質のアミノ酸配列において、第87位のアスパラギン酸がアスパラギンに置換したアミノ酸配列である。これらのアミノ酸配列からなるエンベロープ蛋白質は、中和抗体を誘導するが感染増強抗体の誘導を抑制することができるエンベロープ蛋白質であることが確認されている。 As an aspect of the vaccine antigen of aspect A of the present invention, it is preferable that the vaccine antigen contains an envelope protein in which the amino acid at position 107 or 87 of the amino acid sequence of the envelope protein of the Dengue 1 virus Mochizuki strain is mutated. Examples of such a vaccine antigen include a vaccine antigen comprising an envelope protein consisting of an amino acid sequence identical or substantially identical to the amino acid sequence represented by SEQ ID NO: 4 or SEQ ID NO: 5. The amino acid sequence represented by SEQ ID NO: 4 is an amino acid sequence obtained by substituting leucine at position 107 with phenylalanine in the amino acid sequence of the envelope protein of the dengue type 1 virus Mochizuki strain represented by SEQ ID NO: 1, and is represented by SEQ ID NO: 5. The amino acid sequence is an amino acid sequence in which aspartic acid at position 87 is substituted with asparagine in the amino acid sequence of the envelope protein of the dengue type 1 virus Mochizuki strain represented by SEQ ID NO: 1. It has been confirmed that an envelope protein comprising these amino acid sequences is an envelope protein that induces neutralizing antibodies but can suppress induction of infection-enhancing antibodies.
 配列番号4で示されるアミノ酸配列と実質的に同一のアミノ酸配列としては、例えば、望月株以外のデング1型ウイルスのアミノ酸配列において第107位のロイシンがフェニルアラニンに置換したアミノ酸配列が挙げられる。また、例えば、配列番号4で示されるアミノ酸配列において、第87位と第107位以外の部位に1~数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列が挙げられる。配列番号5で示されるアミノ酸配列と実質的に同一のアミノ酸配列としては、例えば、望月株以外のデング1型ウイルスのアミノ酸配列において第87位のアスパラギン酸がアスパラギンに置換したアミノ酸配列が挙げられる。また、例えば、配列番号5で示されるアミノ酸配列において、第87位と第107位以外の部位に1~数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列が挙げられる。「1~数個のアミノ酸が欠失、置換もしくは付加された」とは、部位特異的突然変異誘発法等の公知の変異ポリペプチド作製法により欠失、置換もしくは付加できる程度の数(好ましくは20個以下、より好ましくは10個以下、さらに好ましくは7個以下、さらに好ましくは5個以下、さらに好ましくは3個以下、さらに好ましくは2個以下、さらに好ましくは1個)のアミノ酸が欠失、置換もしくは付加されることを意味する。このような変異蛋白質は、公知の変異ポリペプチド作製法により人為的に導入された変異を有する蛋白質に限定されるものではなく、天然に存在する変異蛋白質を単離精製したものであってもよい。実質的に同一のアミノ酸配列は、配列番号4または配列番号5で示されるアミノ酸配列と少なくとも60%同一、好ましくは少なくとも70%、75%、80%、85%、90%、92%、95%、96%、97%、98%、99%または99.5%同一であるアミノ酸配列(ただし、配列番号4と実質的に同一のアミノ酸配列は第107位がフェニルアラニンであり、配列番号5と実質的に同一のアミノ酸配列は第87位がアスパラギンである)が挙げられる。なお、配列の同一性は、公知の方法に従って決定することができる。 Examples of the amino acid sequence substantially the same as the amino acid sequence represented by SEQ ID NO: 4 include an amino acid sequence in which leucine at position 107 is substituted with phenylalanine in the amino acid sequence of dengue type 1 virus other than Mochizuki. Further, for example, in the amino acid sequence represented by SEQ ID NO: 4, an amino acid sequence in which 1 to several amino acids are deleted, substituted or added at positions other than the 87th and 107th positions can be mentioned. Examples of the amino acid sequence substantially identical to the amino acid sequence represented by SEQ ID NO: 5 include an amino acid sequence in which aspartic acid at position 87 is substituted with asparagine in the amino acid sequence of dengue type 1 virus other than Mochizuki. In addition, for example, in the amino acid sequence represented by SEQ ID NO: 5, an amino acid sequence in which 1 to several amino acids are deleted, substituted or added at positions other than the 87th and 107th positions can be mentioned. “One to several amino acids are deleted, substituted or added” means that the number can be deleted, substituted or added by a known mutant polypeptide production method such as site-directed mutagenesis (preferably, 20 amino acids or less, more preferably 10 amino acids or less, further preferably 7 amino acids or less, further preferably 5 amino acids or less, more preferably 3 amino acids or less, still more preferably 2 amino acids or less, and even more preferably 1 amino acid). , Means substituted or added. Such a mutant protein is not limited to a protein having a mutation artificially introduced by a known mutant polypeptide production method, and may be a protein obtained by isolating and purifying a naturally occurring mutant protein. . A substantially identical amino acid sequence is at least 60% identical, preferably at least 70%, 75%, 80%, 85%, 90%, 92%, 95%, to the amino acid sequence shown in SEQ ID NO: 4 or SEQ ID NO: 5 , 96%, 97%, 98%, 99% or 99.5% identical amino acid sequence (provided that amino acid sequence substantially identical to SEQ ID NO: 4 is phenylalanine at position 107 and substantially identical to SEQ ID NO: 5 The identical amino acid sequence is at position 87 asparagine). The sequence identity can be determined according to a known method.
 配列番号4または配列番号5で示されるアミノ酸配列と実質的に同一のアミノ酸配列からなるエンベロープ蛋白質は、配列番号4または配列番号5で示されるアミノ酸配列からなるエンベロープ蛋白質と同様に、中和抗体を誘導するが感染増強抗体の誘導を抑制することができるエンベロープ蛋白質であることを要する。配列番号4または配列番号5で示されるアミノ酸配列と実質的に同一のアミノ酸配列からなるエンベロープ蛋白質が中和抗体を誘導すること、および感染増強抗体の誘導を抑制することは、例えば実施例に記載の実験を行うことにより、確認することができる。 An envelope protein consisting of an amino acid sequence substantially the same as the amino acid sequence shown in SEQ ID NO: 4 or 5 is treated with a neutralizing antibody in the same manner as an envelope protein consisting of the amino acid sequence shown in SEQ ID NO: 4 or SEQ ID NO: 5. It must be an envelope protein that induces but can suppress the induction of infection-enhancing antibodies. It is described in, for example, Examples that an envelope protein consisting of an amino acid sequence substantially the same as the amino acid sequence shown in SEQ ID NO: 4 or 5 induces neutralizing antibodies and suppresses induction of infection-enhancing antibodies. This can be confirmed by performing the experiment.
 本発明はまた、デングワクチン抗原の別の態様として、デングウイルスエンベロープ蛋白質以外に、該エンベロープ蛋白質の上流に隣接する前駆膜(prM)蛋白質を含み、中和抗体を誘導するが感染増強抗体の誘導を抑制するものを提供する。以降、便宜上、前記ワクチン抗原のことを、態様Bのワクチン抗原と記載することもある。なお、基礎となる野生型デングウイルスの前駆膜(prM)蛋白質とエンベロープ蛋白質のアミノ酸配列は、デングウイルス由来のアミノ酸配列である限りどのようなアミノ酸配列でもよく、1型、2型、3型および4型のいずれの血清型のデングウイルス由来のものであってもよく、血清型の組み合わせも特に限定されない。好ましくは、prM蛋白質とエンベロープ蛋白質は同じ血清型である。 The present invention also includes, as another embodiment of the dengue vaccine antigen, a precursor membrane (prM) protein adjacent to the upstream of the envelope protein in addition to the dengue virus envelope protein, which induces neutralizing antibodies but induces infection-enhancing antibodies. Provide something to suppress. Hereinafter, for convenience, the vaccine antigen may be referred to as the vaccine antigen of aspect B. The amino acid sequences of the basic wild-type dengue virus precursor membrane (prM) protein and the envelope protein may be any amino acid sequence as long as they are dengue virus-derived amino acid sequences, type 1, type 2, type 3, and type 4. Any of these serotypes may be derived from dengue virus, and the combination of serotypes is not particularly limited. Preferably, the prM protein and the envelope protein are the same serotype.
 態様Bのワクチン抗原においては、エンベロープ蛋白質の第107位および第87位のアミノ酸が共に変異し、かつ、prM蛋白質の第2位のアミノ酸が変異しないことを特徴とする。ここで、第107位の変異および第87位の変異は、いずれもどのような変異でもよく、前記態様Aのワクチン抗原における変異をそれぞれ参照することができる。態様Bのワクチン抗原としては、具体的には、例えば、第107位のロイシンが、フェニルアラニン、トリプトファン、メチオニン、プロリン、アラニン、バリンおよびイソロイシンから選択される1種に置換され、第87位のアスパラギン酸が、グルタミン酸、チロシン、システイン、アルギニン、ヒスチジン、リジン、セリン、トレオニン、グルタミン、アスパラギンおよびグリシンから選択される1種に置換され、かつ、prM蛋白質の第2位のアミノ酸が変異しないデングワクチン抗原が好ましく、第107位のロイシンがフェニルアラニンに置換され、第87位のアスパラギン酸がアスパラギンに置換され、かつ、prM蛋白質の第2位のアミノ酸が変異しないデングワクチン抗原がより好ましい。 The vaccine antigen of embodiment B is characterized in that both the 107th and 87th amino acids of the envelope protein are mutated and the second amino acid of the prM protein is not mutated. Here, the mutation at position 107 and the mutation at position 87 may be any mutation, and the mutation in the vaccine antigen of aspect A can be referred to. As the vaccine antigen of aspect B, specifically, for example, leucine at position 107 is substituted with one selected from phenylalanine, tryptophan, methionine, proline, alanine, valine and isoleucine, and asparagine at position 87 Dengue vaccine antigen in which the acid is substituted with one selected from glutamic acid, tyrosine, cysteine, arginine, histidine, lysine, serine, threonine, glutamine, asparagine and glycine, and the amino acid at position 2 of the prM protein is not mutated A dengue vaccine antigen in which leucine at position 107 is substituted with phenylalanine, aspartic acid at position 87 is replaced with asparagine, and the amino acid at position 2 of the prM protein is not mutated is more preferable.
 態様Bのワクチン抗原におけるエンベロープ蛋白質は、第107位および第87位のアミノ酸変異以外に、その他の位置においてアミノ酸変異を有するものであってもよい。位置は特に限定されず、置換されるアミノ酸の種類も特に限定されない。また、アミノ酸変異の数も態様Aと同程度であれば特に限定されない。 In addition to the 107th and 87th amino acid mutations, the envelope protein in the vaccine antigen of aspect B may have amino acid mutations at other positions. The position is not particularly limited, and the type of amino acid to be substituted is not particularly limited. Further, the number of amino acid mutations is not particularly limited as long as the number is the same as that in the aspect A.
 態様Bのワクチン抗原におけるprM蛋白質は、第2位のアミノ酸が変異しない以外は、その他の位置においてアミノ酸変異を有するものであってもよい。位置は特に限定されず、置換されるアミノ酸の種類も特に限定されない。また、アミノ酸変異の数も特に限定されず、例えば、1個、2個、3個、4個または5個であってもよく、上限は50個以下が好ましく、40個以下がより好ましく、30個以下がさらに好ましく、20個以下がさらに好ましく、10個以下がさらに好ましい。 The prM protein in the vaccine antigen of aspect B may have an amino acid mutation at other positions except that the amino acid at the second position is not mutated. The position is not particularly limited, and the type of amino acid to be substituted is not particularly limited. Further, the number of amino acid mutations is not particularly limited, and may be 1, 2, 3, 4 or 5, for example, and the upper limit is preferably 50 or less, more preferably 40 or less, and 30 The number is more preferably, 20 or less is more preferable, and 10 or less is more preferable.
 態様Bのワクチン抗原の一態様としては、デング1型ウイルス望月株のprM蛋白質のアミノ酸配列の第2位に変異がないprM蛋白質とエンベロープ蛋白質のアミノ酸配列の第107位および第87位のアミノ酸が変異したエンベロープ蛋白質を含むものが挙げられる。望月株の全長蛋白質のアミノ酸配列(配列番号3)において、prM蛋白質は第115位~第280位に該当し、エンベロープ蛋白質は第281位~第775位に該当する。また、prM蛋白質をコードする塩基配列は配列番号2で示される塩基配列の第437位~第934位に、エンベロープ蛋白質をコードする塩基配列は配列番号2で示される塩基配列の第935位~第2419位に該当する。このようなワクチン抗原としては、配列番号6で示されるアミノ酸配列と同一または実質的に同一のアミノ酸配列からなる蛋白質を含むワクチン抗原が挙げられる。 In one aspect of the vaccine antigen of aspect B, the amino acids at positions 107 and 87 of the amino acid sequence of the prM protein and envelope protein having no mutation at the second position of the amino acid sequence of the prM protein of the dengue type 1 virus Mochizuki strain Examples include those containing a mutated envelope protein. In the amino acid sequence of the full-length protein of Mochizuki strain (SEQ ID NO: 3), the prM protein corresponds to positions 115 to 280, and the envelope protein corresponds to positions 281 to 775. The base sequence encoding the prM protein is located at positions 437 to 934 of the base sequence shown in SEQ ID NO: 2, and the base sequence encoding the envelope protein is located at positions 935 to 934 of the base sequence shown in SEQ ID NO: 2. It corresponds to 2419th place. Examples of such a vaccine antigen include a vaccine antigen containing a protein having the same or substantially the same amino acid sequence as that shown in SEQ ID NO: 6.
 配列番号6で示されるアミノ酸配列と実質的に同一のアミノ酸配列としては、例えば、望月株以外のデング1型ウイルスのアミノ酸配列において、prM蛋白質のアミノ酸配列の第2位に変異がなく、かつ、エンベロープ蛋白質のアミノ酸配列の第107位のロイシンがフェニルアラニンに、第87位のアスパラギン酸がアスパラギンにそれぞれ置換したアミノ酸配列が挙げられる。また、例えば、配列番号6で示されるアミノ酸配列において、prM蛋白質の第2位、エンベロープ蛋白質の第107位および第87位以外のその他の位置に1~数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列が挙げられる。「1~数個のアミノ酸が欠失、置換もしくは付加された」とは、部位特異的突然変異誘発法等の公知の変異ポリペプチド作製法により欠失、置換もしくは付加できる程度の数(好ましくは20個以下、より好ましくは10個以下、さらに好ましくは7個以下、さらに好ましくは5個以下、さらに好ましくは3個以下、さらに好ましくは2個以下、さらに好ましくは1個)のアミノ酸が欠失、置換もしくは付加されることを意味する。このような変異蛋白質は、公知の変異ポリペプチド作製法により人為的に導入された変異を有する蛋白質に限定されるものではなく、天然に存在する変異蛋白質を単離精製したものであってもよい。実質的に同一のアミノ酸配列は、配列番号6で示されるアミノ酸配列と少なくとも60%同一、好ましくは少なくとも70%、75%、80%、85%、90%、92%、95%、96%、97%、98%、99%または99.5%同一であるアミノ酸配列(ただし、prM蛋白質の第2位が変異なく、エンベロープ蛋白質の第107位がフェニルアラニン、第87位がアスパラギンである配列)が挙げられる。なお、配列の同一性は、公知の方法に従って決定することができる。また、配列番号6で示されるアミノ酸配列と実質的に同一のアミノ酸配列からなる蛋白質は、配列番号6で示されるアミノ酸配列からなる蛋白質と同様に、中和抗体を誘導するが感染増強抗体の誘導を抑制する作用を有することが要求される。かかる作用は、例えば実施例に記載の実験を行うことにより、確認することができる。 As the amino acid sequence substantially the same as the amino acid sequence represented by SEQ ID NO: 6, for example, in the amino acid sequence of dengue type 1 virus other than Mochizuki, there is no mutation at the second position of the amino acid sequence of prM protein, and Examples include amino acid sequences in which leucine at position 107 of the amino acid sequence of the envelope protein is substituted with phenylalanine and aspartic acid at position 87 with asparagine. In addition, for example, in the amino acid sequence represented by SEQ ID NO: 6, 1 to several amino acids are deleted, substituted or added at positions other than position 2 of the prM protein, positions 107 and 87 of the envelope protein. The amino acid sequence made up is mentioned. “One to several amino acids are deleted, substituted or added” means that the number can be deleted, substituted or added by a known mutant polypeptide production method such as site-directed mutagenesis (preferably, 20 amino acids or less, more preferably 10 amino acids or less, further preferably 7 amino acids or less, further preferably 5 amino acids or less, more preferably 3 amino acids or less, still more preferably 2 amino acids or less, and even more preferably 1 amino acid). , Means substituted or added. Such a mutant protein is not limited to a protein having a mutation artificially introduced by a known mutant polypeptide production method, and may be a protein obtained by isolating and purifying a naturally occurring mutant protein. . A substantially identical amino acid sequence is at least 60% identical to the amino acid sequence shown in SEQ ID NO: 6, preferably at least 70%, 75%, 80%, 85%, 90%, 92%, 95%, 96%, Amino acid sequence that is 97%, 98%, 99%, or 99.5% identical (provided that the 2nd position of the prM protein is not mutated, the 107th position of the envelope protein is phenylalanine, and the 87th position is asparagine) Can be mentioned. The sequence identity can be determined according to a known method. In addition, a protein comprising an amino acid sequence substantially the same as the amino acid sequence represented by SEQ ID NO: 6 induces a neutralizing antibody but induces an infection-enhancing antibody, similar to the protein comprising the amino acid sequence represented by SEQ ID NO: 6. It is required to have an action of suppressing the above. Such an effect can be confirmed, for example, by performing an experiment described in the examples.
〔デングワクチン〕
 本発明は、上記本発明のデングワクチン抗原を含有または発現するデングワクチンを提供する。ここで、デングワクチン抗原としては、態様Aのデングワクチン抗原であっても、態様Bのデングワクチン抗原であってもよい。本発明のデングワクチンは、デングウイルスに対する中和抗体を誘導するが、感染増強抗体の誘導は抑制されているので、デング熱の発症を効果的に予防できると共に、懸念されている重症化を抑えることができる点で非常に有用性が高い。これまでに開発されてきたデングワクチンは、自然界から分離された株のエンベロープ蛋白質を基本的に改変することなくワクチン抗原としているため、自然感染と同様に中和抗体とともに感染増強抗体を誘導する。これがワクチン効力の低い原因と考えられ、またワクチン接種に由来する重症化が懸念されている所以である。したがって、本発明は、デングワクチンの防御効力や安全性を格段に高めることに貢献する。また、中和抗体活性は感染増強活性と拮抗するため、感染増強活性の抑制により中和抗体活性は上昇する。このことから、低いワクチンドーズであっても高い防御効力が期待でき、コストを下げ得る点でも有用性が高い。
[Dengue vaccine]
The present invention provides a dengue vaccine containing or expressing the dengue vaccine antigen of the present invention. Here, the dengue vaccine antigen may be the dengue vaccine antigen of aspect A or the dengue vaccine antigen of aspect B. The dengue vaccine of the present invention induces neutralizing antibodies against dengue virus, but since the induction of infection-enhancing antibodies is suppressed, it can effectively prevent the onset of dengue fever and suppress the seriousness that is concerned. Very useful in that it can. Dengue vaccines that have been developed so far are used as vaccine antigens without basically modifying the envelope protein of strains isolated from the natural world, and thus induce infection-enhancing antibodies together with neutralizing antibodies in the same manner as natural infections. This is considered to be a cause of low vaccine efficacy, and is a reason why there are concerns about the seriousness resulting from vaccination. Therefore, this invention contributes to raising the protective efficacy and safety | security of a dengue vaccine markedly. In addition, since neutralizing antibody activity antagonizes infection enhancing activity, neutralizing antibody activity increases due to suppression of infection enhancing activity. From this, even if it is a low vaccine dose, a high protective efficacy can be expected, and it is highly useful in that the cost can be reduced.
 本発明のデングワクチンの一つの態様としては、ワクチン成分として、例えばデングウイルスエンベロープ蛋白質のアミノ酸配列の第107位または第87位のアミノ酸に変異を有するエンベロープ蛋白質(以下「変異エンベロープ蛋白質A」と記す。)、変異エンベロープ蛋白質Aをコードする核酸、変異エンベロープ蛋白質Aをコードする核酸を含むベクター、変異エンベロープ蛋白質Aを発現するデングウイルスなどを好適に含有することができる。 In one embodiment of the dengue vaccine of the present invention, as a vaccine component, for example, an envelope protein having a mutation at the 107th or 87th amino acid in the amino acid sequence of the dengue virus envelope protein (hereinafter referred to as “mutant envelope protein A”). ), A nucleic acid encoding the mutant envelope protein A, a vector containing a nucleic acid encoding the mutant envelope protein A, a dengue virus expressing the mutant envelope protein A, and the like.
 変異エンベロープ蛋白質Aとしては、エンベロープ蛋白質の全長を用いてもよく、そのフラグメントを用いてもよい。変異エンベロープ蛋白質Aのフラグメントを用いる場合は、エンベロープ蛋白質のアミノ酸配列において第107位の非変異アミノ酸と第87位の変異アミノ酸を含み、あるいは、第107位の変異アミノ酸と第87位の非変異アミノ酸を含み、かつ、エンベロープ蛋白質の立体構造が維持される長さを有するフラグメントを用いることが好ましい。例えばアミノ酸残基数が300以上、好ましくは350以上、より好ましくは400以上、さらに好ましくは450以上のフラグメントを好適に用いることができる。また、変異エンベロープ蛋白質Aは、エンベロープ蛋白質以外のアミノ酸配列を含んでいてもよい。エンベロープ蛋白質以外のアミノ酸配列としては、例えば、マーカー配列、タグ配列、デングウイルスゲノムにコードされている他の蛋白質のアミノ酸配列などが挙げられる。 As the mutant envelope protein A, the full length of the envelope protein or a fragment thereof may be used. When using a fragment of the mutant envelope protein A, the amino acid sequence of the envelope protein contains a non-mutant amino acid at position 107 and a mutant amino acid at position 87, or a mutant amino acid at position 107 and a non-mutated amino acid at position 87. It is preferable to use a fragment having a length that contains the three-dimensional structure of the envelope protein. For example, a fragment having 300 or more amino acid residues, preferably 350 or more, more preferably 400 or more, and still more preferably 450 or more can be suitably used. Mutant envelope protein A may contain an amino acid sequence other than the envelope protein. Examples of amino acid sequences other than the envelope protein include marker sequences, tag sequences, amino acid sequences of other proteins encoded in the dengue virus genome, and the like.
 変異エンベロープ蛋白質Aは、公知の遺伝子工学的手法により、変異エンベロープ蛋白質Aをコードする遺伝子を発現可能に挿入した組み換え発現ベクターを構築し、これを適当な宿主細胞に導入して組み換え蛋白質として発現させ、精製することにより製造することができる。また、本発明の変異エンベロープ蛋白質Aは、本発明の変異エンベロープ蛋白質Aをコードする遺伝子と公知のIn vitro転写・翻訳系(例えば、ウサギ網状赤血球、コムギ胚芽または大腸菌由来の無細胞蛋白質合成系等)を用いて、製造することができる。変異エンベロープ蛋白質Aをコードする遺伝子の塩基配列は、公知のデータベース(NCBI等)からデングウイルスゲノムの塩基配列を取得し、得られた塩基配列に基づいて、エンベロープ蛋白質の第107位のアミノ酸が変異を有するように、あるいは、エンベロープ蛋白質の第87位のアミノ酸が変異を有するように設計することができる。 Mutant envelope protein A is constructed by constructing a recombinant expression vector into which a gene encoding mutant envelope protein A is inserted by known genetic engineering techniques so that the gene can be expressed, and introducing the vector into a suitable host cell for expression as a recombinant protein. Can be produced by purification. In addition, the mutant envelope protein A of the present invention comprises a gene encoding the mutant envelope protein A of the present invention and a known In vitro transcription / translation system (for example, a cell-free protein synthesis system derived from rabbit reticulocytes, wheat germ or Escherichia coli, etc. ) Can be used. As for the base sequence of the gene encoding the mutant envelope protein A, the base sequence of the dengue virus genome is obtained from a known database (NCBI, etc.), and the amino acid at position 107 of the envelope protein is mutated based on the obtained base sequence. Alternatively, the amino acid at position 87 of the envelope protein can be designed to have a mutation.
 変異エンベロープ蛋白質Aをコードする核酸は、上記のように設計した変異エンベロープ蛋白質Aをコードする遺伝子の塩基配列に基づいて、PCR法、部位特異的突然変異誘発法等の公知の遺伝子工学的手法を用いることにより取得することができる。核酸は、RNA(例えば、ゲノムRNA、mRNA)の形態、またはDNAの形態(例えば、ゲノムDNA、cDNA)で存在することができる。核酸は、二本鎖でもよく一本鎖でもよい。二本鎖の場合は、二本鎖DNA、二本鎖RNAまたはDNAとRNAとのハイブリッドのいずれであってもよい。一本鎖の場合は、コード鎖(センス鎖)または非コード鎖(アンチセンス鎖)のいずれであってもよい。また、本発明の核酸を構成するポリヌクレオチドは、その5’側または3’側でタグ標識(タグ配列またはマーカー配列)をコードするポリヌクレオチドに融合されていてもよい。本発明のデングワクチンは、変異エンベロープ蛋白質Aをコードする核酸が挿入されたプラスミドをワクチン成分とする核酸ワクチンとして実施することができる。また、本発明のデングワクチンは、変異エンベロープ蛋白質Aをコードする核酸を挿入した細菌ベクターやウイルスベクターをワクチン成分とするベクターワクチン(組換え細菌ワクチン、組換えウイルスワクチン)として実施することができる。 The nucleic acid encoding the mutant envelope protein A is obtained by using known genetic engineering techniques such as PCR and site-directed mutagenesis based on the base sequence of the gene encoding the mutant envelope protein A designed as described above. It can be acquired by using. The nucleic acid can be present in the form of RNA (eg, genomic RNA, mRNA) or in the form of DNA (eg, genomic DNA, cDNA). The nucleic acid may be double-stranded or single-stranded. In the case of a double strand, it may be any of double-stranded DNA, double-stranded RNA, or a hybrid of DNA and RNA. In the case of a single strand, it may be either a coding strand (sense strand) or a non-coding strand (antisense strand). The polynucleotide constituting the nucleic acid of the present invention may be fused to a polynucleotide encoding a tag label (tag sequence or marker sequence) on the 5 'side or 3' side. The dengue vaccine of the present invention can be implemented as a nucleic acid vaccine using as a vaccine component a plasmid into which a nucleic acid encoding a mutant envelope protein A has been inserted. In addition, the dengue vaccine of the present invention can be implemented as a vector vaccine (recombinant bacterial vaccine, recombinant virus vaccine) containing a bacterial vector or a viral vector into which a nucleic acid encoding the mutant envelope protein A is inserted as a vaccine component.
 本発明のデングワクチンの別の態様としては、ワクチン成分として、例えばデングウイルスprM蛋白質のアミノ酸配列の第2位のアミノ酸に変異がないprM蛋白質とエンベロープ蛋白質のアミノ酸配列の第107位および第87位のアミノ酸に変異を有するエンベロープ蛋白質を含む変異蛋白質(以下「変異蛋白質B」と記す。)、変異蛋白質Bをコードする核酸、変異蛋白質Bをコードする核酸を含むベクター、変異蛋白質Bを発現するデングウイルスなどを好適に含有することができる。 As another aspect of the dengue vaccine of the present invention, as a vaccine component, for example, the amino acid sequence at position 2 in the amino acid sequence of the dengue virus prM protein has no mutation in the amino acid sequence at position 107 and position 87 of the envelope protein. Mutant protein (hereinafter referred to as “mutant protein B”) including an envelope protein having a mutation in an amino acid, a nucleic acid encoding the mutant protein B, a vector including a nucleic acid encoding the mutant protein B, a dengue virus expressing the mutant protein B, etc. Can be suitably contained.
 変異蛋白質Bとしては、prM蛋白質とエンベロープ蛋白質の全長を用いてもよく、そのフラグメントを用いてもよい。フラグメントを用いる場合は、prM蛋白質のアミノ酸配列において第2位のアミノ酸が変異せず、かつ、エンベロープ蛋白質のアミノ酸配列において第107位のアミノ酸と第87位の両アミノ酸が変異アミノ酸である、蛋白質の立体構造が維持される長さを有するフラグメントを用いることが好ましい。例えばアミノ酸残基数が300以上、好ましくは350以上、より好ましくは400以上、さらに好ましくは450以上のフラグメントを好適に用いることができる。また、変異蛋白質Bは、prM蛋白質とエンベロープ蛋白質以外のその他のアミノ酸配列を含んでいてもよい。その他のアミノ酸配列としては、例えば、マーカー配列、タグ配列、デングウイルスゲノムにコードされている他の蛋白質のアミノ酸配列などが挙げられる。 As the mutant protein B, the full length of the prM protein and the envelope protein may be used, or a fragment thereof may be used. When the fragment is used, the amino acid at position 2 in the amino acid sequence of the prM protein is not mutated, and the amino acid at position 107 and the amino acid at position 87 are both mutated amino acids in the amino acid sequence of the envelope protein. It is preferable to use a fragment having a length that maintains the three-dimensional structure. For example, a fragment having 300 or more amino acid residues, preferably 350 or more, more preferably 400 or more, and still more preferably 450 or more can be suitably used. Mutant protein B may also contain other amino acid sequences other than prM protein and envelope protein. Examples of other amino acid sequences include marker sequences, tag sequences, amino acid sequences of other proteins encoded by the dengue virus genome, and the like.
 変異蛋白質Bは、変異エンベロープ蛋白質Aと同様にして製造することができ、例えば、公知の遺伝子工学的手法により製造することができる。変異蛋白質Bをコードする遺伝子の塩基配列は、公知のデータベース(NCBI等)からデングウイルスゲノムの塩基配列を取得し、得られた塩基配列に基づいて、エンベロープ蛋白質の第107位と第87位のアミノ酸がいずれも変異を有するように設計することができる。 Mutant protein B can be produced in the same manner as mutant envelope protein A, and can be produced, for example, by a known genetic engineering technique. As for the base sequence of the gene encoding the mutant protein B, the base sequence of the dengue virus genome is obtained from a known database (NCBI, etc.). Based on the base sequence obtained, the 107th and 87th amino acids of the envelope protein are obtained. Can be designed to have mutations.
 変異蛋白質Bをコードする核酸は、上記のように設計した変異蛋白質Bをコードする遺伝子の塩基配列に基づいて、PCR法、部位特異的突然変異誘発法等の公知の遺伝子工学的手法を用いることにより取得することができる。核酸は、RNA(例えば、ゲノムRNA、mRNA)の形態、またはDNAの形態(例えば、ゲノムDNA、cDNA)で存在することができる。核酸は、二本鎖でもよく一本鎖でもよい。二本鎖の場合は、二本鎖DNA、二本鎖RNAまたはDNAとRNAとのハイブリッドのいずれであってもよい。一本鎖の場合は、コード鎖(センス鎖)または非コード鎖(アンチセンス鎖)のいずれであってもよい。また、本発明の核酸を構成するポリヌクレオチドは、その5’側または3’側でタグ標識(タグ配列またはマーカー配列)をコードするポリヌクレオチドに融合されていてもよい。本発明のデングワクチンは、変異蛋白質Bをコードする核酸が挿入されたプラスミドをワクチン成分とする核酸ワクチンとして実施することができる。また、本発明のデングワクチンは、変異蛋白質Bをコードする核酸を挿入した細菌ベクターやウイルスベクターをワクチン成分とするベクターワクチン(組換え細菌ワクチン、組換えウイルスワクチン)として実施することができる。 Nucleic acid encoding mutant protein B should use known genetic engineering techniques such as PCR and site-directed mutagenesis based on the base sequence of the gene encoding mutant protein B designed as described above. It can be obtained by. The nucleic acid can be present in the form of RNA (eg, genomic RNA, mRNA) or in the form of DNA (eg, genomic DNA, cDNA). The nucleic acid may be double-stranded or single-stranded. In the case of a double strand, it may be any of double-stranded DNA, double-stranded RNA, or a hybrid of DNA and RNA. In the case of a single strand, it may be either a coding strand (sense strand) or a non-coding strand (antisense strand). The polynucleotide constituting the nucleic acid of the present invention may be fused to a polynucleotide encoding a tag label (tag sequence or marker sequence) on the 5 'side or 3' side. The dengue vaccine of the present invention can be implemented as a nucleic acid vaccine comprising a plasmid into which a nucleic acid encoding a mutant protein B is inserted as a vaccine component. In addition, the dengue vaccine of the present invention can be implemented as a vector vaccine (recombinant bacterial vaccine, recombinant virus vaccine) having a bacterial vector or viral vector into which a nucleic acid encoding the mutant protein B is inserted as a vaccine component.
 本発明のデングワクチンは、変異エンベロープ蛋白質Aまたは変異蛋白質Bを発現するデングウイルスをワクチン成分とするデングワクチンとして実施することができる。変異エンベロープ蛋白質Aまたは変異蛋白質Bを発現するデングウイルスは、後述する「中和抗体を誘導するが感染増強抗体の誘導を抑制するデングワクチン抗原または該抗原を発現するデングウイルスを取得する方法」を用いて取得することができる。 The dengue vaccine of the present invention can be implemented as a dengue vaccine comprising a dengue virus that expresses mutant envelope protein A or mutant protein B as a vaccine component. Dengue virus expressing mutant envelope protein A or mutant protein B can be obtained by using the “method for obtaining dengue vaccine antigen that induces neutralizing antibody but suppresses induction of infection-enhancing antibody or dengue virus that expresses the antigen” described later. Can be acquired.
 本発明のデングワクチンは、1種以上のアジュバントを含んでいてもよい。本発明のデングワクチンがアジュバントを含む場合、公知のアジュバントの中から適宜選択して用いることができる。具体的には、例えば、アルミニウムアジュバント(例えば、水酸化アルミニウム、リン酸アルミニウム、硫酸アルミニウム等のアルミニウム塩またはその組み合わせ)、フロイントアジュバント(完全または不完全)、TLRリガンド(例えば、CpG、Poly(I:C)、Pam3CSK4など)、BAY、DC-chol、pcpp、モノホスホリル脂質A、QS-21、コレラ毒素、ホルミルメチオニルペプチドなどが挙げられる。好ましくは、アルミニウムアジュバント、TLRリガンドまたはこれらの組み合わせである。本発明のワクチンがアジュバントを含む場合、アジュバントの配合量は特に限定されず、アジュバントの種類等により適宜選択すればよい。例えば、アルミニウムアジュバント(水酸化アルミニウム)およびCpGを併用する場合、本発明のデングワクチンに対して質量比でアルミニウムアジュバントが約1~100倍量、CpGが約1~50倍量を配合することが好ましい。 The dengue vaccine of the present invention may contain one or more adjuvants. When the dengue vaccine of the present invention contains an adjuvant, it can be appropriately selected from known adjuvants. Specifically, for example, aluminum adjuvant (for example, aluminum salt such as aluminum hydroxide, aluminum phosphate, aluminum sulfate or a combination thereof), Freund's adjuvant (complete or incomplete), TLR ligand (for example, CpG, Poly (I : C), Pam3CSK4, etc.), BAY, DC-chol, pcpp, monophosphoryl lipid A, QS-21, cholera toxin, formylmethionyl peptide and the like. Preferably, it is an aluminum adjuvant, a TLR ligand, or a combination thereof. When the vaccine of the present invention contains an adjuvant, the compounding amount of the adjuvant is not particularly limited, and may be appropriately selected depending on the type of the adjuvant. For example, when aluminum adjuvant (aluminum hydroxide) and CpG are used in combination, about 1 to 100 times the amount of aluminum adjuvant and about 1 to 50 times the amount of CpG may be blended in the mass ratio with the dengue vaccine of the present invention. preferable.
 本発明のデングワクチンは、さらにデングウイルス以外の病原体に対するワクチン成分を含んでいてもよい。デングウイルス以外の病原体ワクチン成分は特に限定されず、例えば既に混合ワクチンとして使用実績のあるワクチン成分が挙げられる。具体的には、例えば、ジフテリアトキソイド、百日咳トキソイド、百日咳菌抗原、破傷風トキソイド、不活化ポリオウイルス、弱毒麻疹ウイルス、弱毒風疹ウイルス、弱毒ムンプスウイルス、インフルエンザ菌b型ポリサッカライド抗原、B型肝炎ウイルスHBs抗原、不活化A型肝炎ウイルス抗原などが挙げられる。 The dengue vaccine of the present invention may further contain a vaccine component against pathogens other than dengue virus. Pathogen vaccine components other than dengue virus are not particularly limited, and examples thereof include vaccine components that have already been used as mixed vaccines. Specifically, for example, diphtheria toxoid, pertussis toxoid, pertussis antigen, tetanus toxoid, inactivated poliovirus, attenuated measles virus, attenuated rubella virus, attenuated mumps virus, Haemophilus influenzae type b polysaccharide antigen, hepatitis B virus HBs Examples include antigens, inactivated hepatitis A virus antigens, and the like.
 本発明のデングワクチンは、経口投与または非経口投与により投与することができる。非経口投与としては、例えば腹腔内投与、皮下投与、皮内投与、筋肉内投与、静脈内投与、鼻腔内投与、経皮投与、経粘膜投与、舌下投与、吸入投与などが挙げられる。好ましくは、非経口投与であり、より好ましくは、皮内投与、皮下投与または筋肉内投与である。 The dengue vaccine of the present invention can be administered orally or parenterally. Examples of parenteral administration include intraperitoneal administration, subcutaneous administration, intradermal administration, intramuscular administration, intravenous administration, intranasal administration, transdermal administration, transmucosal administration, sublingual administration, and inhalation administration. Preferred is parenteral administration, and more preferred is intradermal administration, subcutaneous administration or intramuscular administration.
 本発明のデングワクチンは、変異エンベロープ蛋白質Aまたは変異蛋白質Bあるいは変異エンベロープ蛋白質Aまたは変異蛋白質Bをコードする核酸と薬学的に許容される担体、さらに添加剤を適宜配合して製剤化し、医薬組成物(医薬)とすることができる。具体的には錠剤、被覆錠剤、丸剤、散剤、顆粒剤、カプセル剤、液剤、懸濁剤、乳剤等の経口投与用製剤;注射剤、輸液、坐剤、軟膏、パッチ剤等の非経口投与用製剤とすることができる。担体または添加剤の配合割合については、医薬品分野において通常採用されている範囲に基づいて適宜設定すればよい。配合できる担体または添加剤は特に制限されないが、例えば、水、生理食塩水、その他の水性溶媒、水性または油性基剤等の各種担体;賦形剤、結合剤、pH調整剤、崩壊剤、吸収促進剤、滑沢剤、着色剤、矯味剤、香料等の各種添加剤が挙げられる。 The dengue vaccine of the present invention is formulated by appropriately combining a nucleic acid encoding mutant envelope protein A or mutant protein B or mutant envelope protein A or mutant protein B, a pharmaceutically acceptable carrier, and an additive as appropriate. Product (medicine). Specifically, preparations for oral administration such as tablets, coated tablets, pills, powders, granules, capsules, solutions, suspensions, emulsions; parenterals such as injections, infusions, suppositories, ointments, patches It can be set as the formulation for administration. What is necessary is just to set suitably about the mixture ratio of a carrier or an additive based on the range normally employ | adopted in the pharmaceutical field | area. Carriers or additives that can be blended are not particularly limited. For example, various carriers such as water, physiological saline, other aqueous solvents, aqueous or oily bases; excipients, binders, pH adjusters, disintegrants, absorption Various additives such as an accelerator, a lubricant, a colorant, a corrigent, and a fragrance are included.
 経口投与用の固形製剤に用いられる添加剤としては、例えば、ラクトース、マンニトール、グルコース、微結晶セルロース、トウモロコシデンプン等の賦形剤;ヒドロキシプロピルセルロース、ポリビニルピロリドン、メタケイ酸アルミン酸マグネシウム等の結合剤;トウモロコシデンプン等の分散剤;繊維素グリコール酸カルシウム等の崩壊剤;ステアリン酸マグネシウム等の滑沢剤;グルタミン酸、アスパラギン酸等の溶解補助剤;安定剤;ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、メチルセルロース等のセルロース類、ポリエチレングリコール、ポリビニルピロリドン、ポリビニルアルコール等の合成高分子類等の水溶性高分子;白糖、粉糖、ショ糖、果糖、ブドウ糖、乳糖、還元麦芽糖水アメ、粉末還元麦芽糖水アメ、ブドウ糖果糖液糖、ハチミツ、ソルビトール、マルチトール、マンニトール、キシリトール、エリスリトール、アスパルテーム、サッカリン、サッカリンナトリウム等の甘味剤;白糖、ゼラチン、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロースフタレート等のコーティング剤等が挙げられる。
 経口投与用の液体製剤は、一般的に用いられる希釈剤に溶解、懸濁または乳化されて製剤化される。希釈剤としては、例えば、精製水、エタノール、それらの混液等が挙げられる。さらにこの液剤は、湿潤剤、懸濁化剤、乳化剤、甘味剤、風味剤、芳香剤、保存剤、緩衝剤等を含有していてもよい。
Examples of additives used in solid preparations for oral administration include excipients such as lactose, mannitol, glucose, microcrystalline cellulose, and corn starch; binders such as hydroxypropylcellulose, polyvinylpyrrolidone, and magnesium aluminate metasilicate Dispersing agents such as corn starch; disintegrating agents such as calcium calcium glycolate; lubricants such as magnesium stearate; solubilizing agents such as glutamic acid and aspartic acid; stabilizers; hydroxypropylcellulose, hydroxypropylmethylcellulose, methylcellulose, etc. Water-soluble polymers such as cellulose, polyethylene glycol, polyvinyl pyrrolidone, polyvinyl alcohol, etc .; sucrose, powdered sugar, sucrose, fructose, glucose, lactose, reduced maltose water candy, powder returned Sweeteners such as maltose syrup, glucose fructose liquid sugar, honey, sorbitol, maltitol, mannitol, xylitol, erythritol, aspartame, saccharin, sodium saccharin; coating agents such as sucrose, gelatin, hydroxypropylcellulose, hydroxypropylmethylcellulose phthalate Can be mentioned.
Liquid preparations for oral administration are prepared by dissolving, suspending or emulsifying in commonly used diluents. Examples of the diluent include purified water, ethanol, a mixed solution thereof and the like. Furthermore, this liquid agent may contain a wetting agent, a suspending agent, an emulsifier, a sweetening agent, a flavoring agent, a fragrance, a preservative, a buffering agent and the like.
 非経口投与用の注射剤に用いられる添加剤としては、例えば、塩化ナトリウム、塩化カリウム、グリセリン、マンニトール、ソルビトール、ホウ酸、ホウ砂、ブドウ糖、プロピレングリコール等の等張化剤;リン酸緩衝液、酢酸緩衝液、ホウ酸緩衝液、炭酸緩衝液、クエン酸緩衝液、トリス緩衝液、グルタミン酸緩衝液、イプシロンアミノカプロン酸緩衝液等の緩衝剤;パラオキシ安息香酸メチル、パラオキシ安息香酸エチル、パラオキシ安息香酸プロピル、パラオキシ安息香酸ブチル、クロロブタノール、ベンジルアルコール、塩化ベンザルコニウム、デヒドロ酢酸ナトリウム、エデト酸ナトリウム、ホウ酸、ホウ砂等の保存剤;ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ポリビニルアルコール、ポリエチレングリコール等の増粘剤;亜硫酸水素ナトリウム、チオ硫酸ナトリウム、エデト酸ナトリウム、クエン酸ナトリウム、アスコルビン酸、ジブチルヒドロキシトルエン等の安定化剤;塩酸、水酸化ナトリウム、リン酸、酢酸等のpH調整剤等が挙げられる。また注射剤には、適当な溶解補助剤、例えば、エタノール等のアルコール;プロピレングリコール、ポリエチレングリコール等のポリアルコール;ポリソルベート80、ポリオキシエチレン硬化ヒマシ油50、リゾレシチン、プルロニックポリオール等の非イオン界面活性剤等をさらに配合してもよい。注射剤等の液状製剤は、凍結保存または凍結乾燥等により水分を除去して保存することもできる。凍結乾燥製剤は、用時に注射用蒸留水等を加え、再溶解して使用される。 Examples of additives used for injections for parenteral administration include isotonic agents such as sodium chloride, potassium chloride, glycerin, mannitol, sorbitol, boric acid, borax, glucose, propylene glycol; phosphate buffer Buffers such as acetate buffer, borate buffer, carbonate buffer, citrate buffer, Tris buffer, glutamate buffer, epsilon aminocaproate buffer; methyl paraoxybenzoate, ethyl paraoxybenzoate, paraoxybenzoic acid Preservatives such as propyl, butyl paraoxybenzoate, chlorobutanol, benzyl alcohol, benzalkonium chloride, sodium dehydroacetate, sodium edetate, boric acid, borax; hydroxyethyl cellulose, hydroxypropyl cellulose, polyvinyl alcohol, polyethylene glycol Thickeners such as sodium hydrogen sulfite, sodium thiosulfate, sodium edetate, sodium citrate, ascorbic acid, dibutylhydroxytoluene, etc .; pH adjustment of hydrochloric acid, sodium hydroxide, phosphoric acid, acetic acid, etc. Agents and the like. For injections, suitable solubilizers, for example, alcohols such as ethanol; polyalcohols such as propylene glycol and polyethylene glycol; nonionic surfactants such as polysorbate 80, polyoxyethylene hydrogenated castor oil 50, lysolecithin, and pluronic polyol You may mix | blend an agent etc. further. Liquid preparations such as injections can be stored after removing moisture by freezing or lyophilization. The freeze-dried preparation is used by adding distilled water for injection at the time of use and re-dissolving it.
 本発明のデングワクチンは、免疫系を有するあらゆる動物(ヒト、非ヒト)を投与対象とすることができるが、デングウイルスの自然宿主は、ヒトおよび非ヒト霊長類(サル)であることが知られていることから、ヒトおよび非ヒト霊長類(サル)を投与対象とすることが好ましい。なかでも、本発明のデングワクチンはヒトの小児(新生児を含む)および成人を対象とすることが好ましい。 The dengue vaccine of the present invention can be administered to any animal (human, non-human) having an immune system, but the natural host of dengue virus is known to be human and non-human primates (monkeys). Therefore, it is preferable to administer humans and non-human primates (monkeys). Among these, the dengue vaccine of the present invention is preferably intended for human children (including newborns) and adults.
 本発明のデングワクチンの投与回数および投与間隔は特に限定されない。例えば、単回投与でもよく、約2日~約8週間の間隔で複数回投与してもよい。本発明のデングワクチンが蛋白質ワクチンまたは核酸ワクチンである場合、ワクチン投与量は、投与対象、投与方法などにより異なるが、1回投与量を約0.01μg~約100mgとすることが好ましく、約0.1μg~約10mgとすることがより好ましく、約1μg~約1mgとすることがさらに好ましい。本発明のデングワクチンがウイルスワクチンである場合、ワクチン投与量は、投与対象、投与方法などにより異なるが、1回投与量を約1×10PFU~約1×10PFUとすることが好ましく、約1×10PFU~約1×10PFUとすることがより好ましく、約1×10PFU~約1×10PFUとすることがさらに好ましい。 The number of administrations and the administration interval of the dengue vaccine of the present invention are not particularly limited. For example, a single dose may be administered, or multiple doses may be administered at intervals of about 2 days to about 8 weeks. When the dengue vaccine of the present invention is a protein vaccine or a nucleic acid vaccine, the dose of the vaccine varies depending on the administration subject, administration method, etc., but the single dose is preferably about 0.01 μg to about 100 mg, about 0 More preferably, it is 1 μg to about 10 mg, and more preferably about 1 μg to about 1 mg. When the dengue vaccine of the present invention is a virus vaccine, the dose of the vaccine varies depending on the administration subject, administration method, etc., but it is preferable that the single dose is about 1 × 10 2 PFU to about 1 × 10 9 PFU. About 1 × 10 3 PFU to about 1 × 10 8 PFU, more preferably about 1 × 10 4 PFU to about 1 × 10 7 PFU.
 本発明には、本発明のデングワクチンの有効量を動物に投与することを含む、デング熱またはデング出血熱の予防または治療方法が含まれる。 The present invention includes a method for preventing or treating dengue fever or dengue hemorrhagic fever, which comprises administering an effective amount of the dengue vaccine of the present invention to an animal.
〔中和抗体を誘導するが感染増強抗体の誘導を抑制するデングワクチン抗原または該抗原を発現するデングウイルスの取得方法〕
 本発明は、中和抗体を誘導するが感染増強抗体の誘導を抑制するデングワクチン抗原または該抗原を発現するデングウイルスの取得方法を提供する。本発明の中和抗体を誘導するが感染増強抗体の誘導を抑制するデングワクチン抗原または該抗原を発現するデングウイルスの取得方法(以下「本発明の方法」と記す。)は、以下の工程(1)~(5)を含むものであればよい。
工程(1):デングウイルスのエンベロープ蛋白質を抗原として、感染増強活性を有するが中和活性を有しないモノクローナル抗体を取得する工程
工程(2):工程(1)で得られたモノクローナル抗体のクラスまたはサブクラスを変更することにより、中和活性を有するモノクローナル抗体を取得する工程
工程(3):工程(2)で得られた中和活性を有するモノクローナル抗体の存在下でデングウイルス感染細胞を培養することにより、該モノクローナル抗体により中和されない変異デングウイルスを取得する工程
工程(4):工程(3)で得られた変異デングウイルスのエンベロープ蛋白質に生じた変異を確認する工程
工程(5):工程(3)で得られた変異デングウイルスのエンベロープ蛋白質が感染増強抗体の誘導を抑制することを確認する工程
[Method of obtaining dengue vaccine antigen that induces neutralizing antibody but suppresses induction of infection-enhancing antibody or dengue virus that expresses the antigen]
The present invention provides a method for obtaining a dengue vaccine antigen that induces a neutralizing antibody but suppresses induction of an infection-enhancing antibody or a dengue virus that expresses the antigen. A method for obtaining a dengue vaccine antigen that induces neutralizing antibodies of the present invention but suppresses induction of infection-enhancing antibodies or dengue viruses that express the antigens (hereinafter referred to as “methods of the present invention”) includes the following steps (1 ) To (5) may be used.
Step (1): Obtaining a monoclonal antibody having infection-enhancing activity but not neutralizing activity using dengue virus envelope protein as an antigen Step (2): Class or subclass of monoclonal antibody obtained in step (1) Step (3) of obtaining a monoclonal antibody having neutralizing activity by changing the above, culturing dengue virus-infected cells in the presence of the monoclonal antibody having neutralizing activity obtained in step (2), Step (4) for obtaining a mutant dengue virus that is not neutralized by the monoclonal antibody: Step (5) for confirming a mutation occurring in the envelope protein of the mutant dengue virus obtained in step (3) (obtained in step (3)) Of a modified dengue virus suppresses the induction of infection-enhancing antibodies Step of confirming
 工程(1)ではデングウイルスのエンベロープ蛋白質を抗原として、感染増強活性を有するが中和活性を有しないモノクローナル抗体を取得する。本工程においては、変異を有していないエンベロープ蛋白質を抗原として使用する。モノクローナル抗体は、デングウイルスのエンベロープ蛋白質を抗原として、通常の免疫方法に従って哺乳動物(例えばマウス)を免疫し、得られる免疫細胞(例えば脾細胞)を通常の細胞融合法(例えばポリエチレングリコール(PEG)法)によって公知の親細胞(例えばマウスミエローマ細胞株のSP2、NA1など)と融合させ、通常のスクリーニング法によりモノクローナル抗体産生ハイブリドーマを選択し、当該ハイブリドーマの培養上清から公知の方法で精製することにより取得することができる。モノクローナル抗体が、感染増強活性を有し、かつ中和活性を有しないことは、例えば本明細書の実施例1(1)に記載の方法で確認することができる。なお、モノクローナル抗体の取得に用いる抗原としては、エンベロープ蛋白質とprM蛋白質を含むものであってもよい。 In step (1), a monoclonal antibody having an infection-enhancing activity but no neutralizing activity is obtained using the dengue virus envelope protein as an antigen. In this step, an envelope protein having no mutation is used as an antigen. Monoclonal antibodies are obtained by immunizing a mammal (eg, a mouse) according to a normal immunization method using a dengue virus envelope protein as an antigen, and then immunizing the resulting immune cells (eg, spleen cells) with a conventional cell fusion method (eg, polyethylene glycol (PEG) method). ) With a known parent cell (eg, mouse myeloma cell line SP2, NA1, etc.), selecting a monoclonal antibody-producing hybridoma by a conventional screening method, and purifying it from the hybridoma culture supernatant by a known method. Can be acquired. It can be confirmed, for example, by the method described in Example 1 (1) of this specification that the monoclonal antibody has an infection-enhancing activity and no neutralizing activity. The antigen used for obtaining the monoclonal antibody may include an envelope protein and a prM protein.
 工程(2)では、工程(1)で得られたモノクローナル抗体のクラスまたはサブクラスを変更することにより、中和活性を有するモノクローナル抗体を取得する。抗体のクラスまたはサブクラスの変更は、例えばInvivogen社のマウス用pFUSE-CHIgシリーズ(H鎖)およびpFUSE-CLIgシリーズ(L鎖)を使用する方法で行うことができる。具体的には、工程(1)で得られたモノクローナル抗体を産生するハイブリドーマ細胞からFab部分の遺伝子を抽出し、上記pFUSEプラスミドベクターに組み込む。この時、目的のサブクラスになるようにH鎖のpFUSEを選択する。例えば、目的のサブクラスがIgG2aであれば、H鎖は「pFUSE-CHIg-mG2a」を使用する。L鎖用のプラスミドも同様にして作製し、2種類のプラスミドを培養細胞(例えば293T、CHO等)にコトランスフェクトして、培養液上清を回収することによりサブクラスを変更した抗体を取得することができる。クラスまたはサブクラスを変更したモノクローナル抗体が中和活性を有することは、例えば本明細書の実施例1(2)に記載の方法で確認することができる。 In step (2), a monoclonal antibody having neutralizing activity is obtained by changing the class or subclass of the monoclonal antibody obtained in step (1). The class or subclass of the antibody can be changed by a method using, for example, pFUSE-CHIg series (H chain) and pFUSE-CLIg series (L chain) for mice manufactured by Invivogen. Specifically, the Fab part gene is extracted from the hybridoma cell producing the monoclonal antibody obtained in step (1) and incorporated into the pFUSE plasmid vector. At this time, the pFUSE of the H chain is selected so as to be the target subclass. For example, if the target subclass is IgG2a, the heavy chain uses “pFUSE-CHIg-mG2a”. A light chain plasmid is prepared in the same manner, and two types of plasmids are cotransfected into cultured cells (eg, 293T, CHO, etc.), and the culture supernatant is collected to obtain an antibody with a changed subclass. be able to. It can be confirmed, for example, by the method described in Example 1 (2) of the present specification that the monoclonal antibody having a changed class or subclass has neutralizing activity.
 工程(3)では、工程(2)で得られた中和活性を有するモノクローナル抗体の存在下でデングウイルス感染細胞を培養することにより、該モノクローナル抗体により中和されない変異デングウイルスを取得する。具体的には、例えば、6穴の細胞培養マイクロプレートにVero細胞を播種し(約0.3×10個/ウェル)、1~2日後にMOI=0.1の条件でデングウイルスを細胞に感染させる。1時間の吸着作業の後、工程(2)で得られた中和活性を有するモノクローナル抗体の最終濃度が1μg/mLになるように調整した培養液で培養する。1週間後に培養液上清を、新たに準備したVero細胞に感染させ、同様に該モノクローナル抗体存在下で培養を続ける。継代は5代以上続けることが好ましい。エスケープミュータント出現の確認方法としては、エスケープミュータント候補ウイルス株を抗原として、該モノクローナル抗体の中和試験を行う方法を挙げることができる。中和活性が消失している場合に、候補ウイルス株は目的のエスケープミュータント株であると判断する。別のエスケープミュータント出現の確認方法としては、例えば、エスケープミュータント候補ウイルス株を抗原として、該モノクローナル抗体の感染増強試験を行う方法を挙げることができる。感染増強活性が消失している場合に、候補ウイルス株は目的のエスケープミュータント株であると判断する。 In step (3), a dengue virus-infected cell that is not neutralized by the monoclonal antibody is obtained by culturing dengue virus-infected cells in the presence of the monoclonal antibody having neutralizing activity obtained in step (2). Specifically, for example, Vero cells are seeded in a 6- well cell culture microplate (approximately 0.3 × 10 6 cells / well), and after 1 to 2 days, dengue virus is applied to the cells under the condition of MOI = 0.1. Infect. After the adsorption operation for 1 hour, the cells are cultured in a culture solution adjusted so that the final concentration of the monoclonal antibody having neutralizing activity obtained in step (2) is 1 μg / mL. One week later, the newly prepared Vero cells are infected with the culture supernatant and similarly cultured in the presence of the monoclonal antibody. Passaging is preferably continued for 5 or more generations. Examples of the method for confirming the appearance of escape mutants include a method for conducting neutralization tests of the monoclonal antibodies using the escape mutant candidate virus strain as an antigen. If the neutralizing activity has disappeared, the candidate virus strain is determined to be the target escape mutant strain. Another method for confirming the appearance of escape mutants is, for example, a method of performing an infection enhancement test of the monoclonal antibody using an escape mutant candidate virus strain as an antigen. If the infection-enhancing activity has disappeared, the candidate virus strain is determined to be the target escape mutant strain.
 工程(4)では、工程(3)で得られた変異デングウイルスのエンベロープ蛋白質に生じた変異を確認する。具体的には、例えば、変異デングウイルスのエンベロープ領域の遺伝子をRT-PCRで増幅し、DNAシーケンサー(例えばApplied Biosystems 3730xl DNA analyzer等)を用いて、塩基配列を解析する。判明した塩基配列に基づいてアミノ酸配列に翻訳し、変異部位およびその位置のアミノ酸の種類を特定することができる。 In step (4), mutations occurring in the envelope protein of the mutant dengue virus obtained in step (3) are confirmed. Specifically, for example, the gene in the envelope region of the mutant dengue virus is amplified by RT-PCR, and the base sequence is analyzed using a DNA sequencer (for example, Applied Biosystems 3730xl DNA analyzer). Based on the revealed base sequence, it can be translated into an amino acid sequence, and the mutation site and the type of amino acid at that position can be specified.
 工程(5)では、工程(3)で得られた変異デングウイルスのエンベロープ蛋白質が感染増強抗体の誘導を抑制することを確認する。具体的には、例えば、以下の方法が挙げられる。すなわち、工程(4)で確認されたアミノ酸変異を導入したE抗原を発現するプラスミドDNAを作製し、日本脳炎ウイルスレプリコンプラスミドDNAと共に293T細胞にコトランスフェクションして、1回感染型粒子(Single-round infectious particle、以下「SRIP」)を作製する。このSRIPを抗原として、工程(1)で得られた感染増強活性を有し、かつ中和活性を有しないモノクローナル抗体の感染増強活性を確認する。その結果、感染増強活性が検知されなければ、工程(4)で確認されたアミノ酸変異を有するデングウイルスエンベロープ蛋白質は感染増強活性を抑制することができると判断する。 In step (5), it is confirmed that the envelope protein of the mutant dengue virus obtained in step (3) suppresses the induction of infection-enhancing antibodies. Specifically, the following method is mentioned, for example. That is, a plasmid DNA expressing the E antigen introduced with the amino acid mutation confirmed in step (4) was prepared, co-transfected with Japanese encephalitis virus replicon plasmid DNA into 293T cells, and single-infectious particles (Single- round infectious particle (hereinafter “SRIP”). Using this SRIP as an antigen, the infection enhancing activity of the monoclonal antibody having the infection enhancing activity obtained in step (1) and having no neutralizing activity is confirmed. As a result, if the infection enhancing activity is not detected, it is determined that the dengue virus envelope protein having the amino acid mutation confirmed in step (4) can suppress the infection enhancing activity.
 本発明の方法により取得される変異デングウイルスおよび変異デングウイルスのエンベロープ蛋白質またはエンベロープ蛋白質とprM蛋白質を含むものは、上記本発明のデングワクチンのワクチン成分として使用することができる。本発明の方法により取得される変異デングウイルスおよび変異デングウイルスのエンベロープ蛋白質またはエンベロープ蛋白質とprM蛋白質を含むものは、中和抗体を誘導するが感染増強抗体の誘導を抑制することができるので、デングワクチンのワクチン成分として非常に有用である。 The mutant dengue virus obtained by the method of the present invention and the mutant dengue virus envelope protein or those containing the envelope protein and the prM protein can be used as the vaccine component of the dengue vaccine of the present invention. Since the mutant dengue virus obtained by the method of the present invention and the mutant dengue virus envelope protein or those containing the envelope protein and the prM protein can induce neutralizing antibodies but suppress the induction of infection-enhancing antibodies, It is very useful as a vaccine component.
 以下、実施例により本発明を詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in detail by way of examples, but the present invention is not limited thereto.
〔実施例1:D1-V-3H12抗体のエピトープ部位決定〕
(1)デング1型ウイルス望月株に対するモノクローナル抗体の感染増強活性および中和活性の確認
 デング1型ウイルス望月株に対するモノクローナル抗体をYamanakaら(Yamanaka et al., J Virol. 2008 Jan;82(2):927-937)に記載の方法に従って作製し、デングウイルスのエンベロープ(E)蛋白質に対する血清型交差性を有する複数のモノクローナル抗体を取得した(Yamanaka et al., J Virol. 2013 Dec;87(23):12828-37)。得られたモノクローナル抗体の感染増強活性および中和活性について、以下の方法で確認した。
[Example 1: Determination of epitope site of D1-V-3H12 antibody]
(1) Confirmation of infection-enhancing and neutralizing activity of monoclonal antibodies against Dengue type 1 virus Mochizuki strains Yamanaka et al. (Yamanaka et al., J Virol. 2008 Jan; 82 (2) : 927-937), and obtained a plurality of monoclonal antibodies having serotype cross-reactivity with the envelope (E) protein of Dengue virus (Yamanaka et al., J Virol. 2013 Dec; 87 (23) : 12828-37). The infection enhancement activity and neutralization activity of the obtained monoclonal antibody were confirmed by the following method.
 10倍階段希釈したモノクローナル抗体とデング1型ウイルス望月株を混合し2時間37℃で保温した後、ヒト由来Fcγ保有単球系細胞であるK562細胞を加えて、さらに2日培養した。抗体とウイルスの混合液に最終濃度5%の補体を添加する系と、補体を添加しない系の2つの系を設けた。細胞を固定後にデングウイルス特異抗体を用いた免疫染色を施し、陽性細胞(感染細胞)を計数した。モノクローナル抗体を添加していない陰性対照を6点設置し、その陽性細胞(感染細胞)数の平均-3SDより少ない場合、当該モノクローナル抗体は中和活性を持つと判断し、陰性対照の陽性細胞(感染細胞)数の平均+3SDより多い場合、当該モノクローナル抗体は感染増強活性を持つと判定した。 Monoclonal antibody diluted with 10-fold serial dilution and Dengue type 1 virus Mochizuki strain were mixed and incubated at 37 ° C. for 2 hours, and then K562 cells, which are human-derived Fcγ-containing monocytic cells, were added and further cultured for 2 days. Two systems were provided: a system in which complement with a final concentration of 5% was added to the antibody / virus mixture, and a system in which no complement was added. After fixing the cells, immunostaining was performed using a dengue virus-specific antibody, and positive cells (infected cells) were counted. Six negative controls to which no monoclonal antibody was added were placed, and when the average number of positive cells (infected cells) was less than -3SD, it was determined that the monoclonal antibody had neutralizing activity, and positive control positive cells ( When the average number of infected cells) was greater than + 3SD, the monoclonal antibody was determined to have infection-enhancing activity.
 結果を図1に示した。図中C(-)は補体を添加しない系、C(+)は補体を添加した系を表す。図1の左は高濃度で中和活性を示し低濃度で感染増強活性を示したモノクローナル抗体の代表例(D1-I-15C12)の結果、中央は中和活性のみを示したモノクローナル抗体の代表例(D1-IV-7F4)の結果、右は感染増強活性のみを示したモノクローナル抗体の代表例(D1-V-3H12)の結果である。
 得られたモノクローナル抗体の多数は、高濃度で中和活性を示し低濃度で感染増強活性を示すものであった(図1左と同様)が、中和活性のみを示す抗体(図1中央と同様)、感染増強活性のみを示す抗体(図1右と同様)も少数存在した。以後の実験には、感染増強活性のみを示したD1-V-3H12抗体(以下、「3H12抗体」という。)を使用し、補体を添加する系で実験を行った。
The results are shown in FIG. In the figure, C (-) represents a system without addition of complement, and C (+) represents a system with addition of complement. The left of FIG. 1 shows a representative example of a monoclonal antibody (D1-I-15C12) showing neutralizing activity at a high concentration and showing infection-increasing activity at a low concentration, and the center is a representative of a monoclonal antibody showing only neutralizing activity. As a result of the example (D1-IV-7F4), the right is the result of a representative example (D1-V-3H12) of a monoclonal antibody showing only infection-enhancing activity.
Many of the obtained monoclonal antibodies showed neutralizing activity at a high concentration and infection-increasing activity at a low concentration (similar to the left in FIG. 1), but antibodies showing only neutralizing activity (as shown in the center of FIG. 1) Similarly, a small number of antibodies (similar to the right in FIG. 1) exhibiting only infection-enhancing activity were also present. In the subsequent experiments, the D1-V-3H12 antibody (hereinafter referred to as “3H12 antibody”) that showed only the infection-enhancing activity was used, and the experiment was performed in a system in which complement was added.
(2)3H12抗体のサブクラス置換
 市販のアイソタイピングキットを用いて調べたところ、3H12抗体のサブクラスはIgG1であった。3H12抗体のFab部分の遺伝子を市販のpFUSEベクターに挿入することにより、抗体結合部位を変化させることなく、サブクラスをIgG2aまたはIgG2bに置換した抗体を得た(それぞれ3H12-IgG2a、3H12-IgG2bと記す。)。これらの抗体の中和活性を、Konishiら(Konishi et al., Vaccine 2006 24:2200-2207)に記載の方法に従って、Vero細胞(アフリカミドリザル腎臓由来株化細胞)を用いて測定した。具体的には、2倍階段希釈した抗体とデング1型ウイルス望月株を混合し、4℃で一夜保温したものを単層Vero細胞に感染させ、3~4日培養後に形成されたプラーク数を計数した。抗体を添加しない対照で得られたプラーク数を100%として、それに対する減少率(% Plaque reduction)で中和活性を表した。
(2) Subclass substitution of 3H12 antibody When examined using a commercially available isotyping kit, the subclass of 3H12 antibody was IgG1. By inserting the gene of the Fab part of the 3H12 antibody into a commercially available pFUSE vector, antibodies whose subclass was replaced with IgG2a or IgG2b without changing the antibody binding site were obtained (referred to as 3H12-IgG2a and 3H12-IgG2b, respectively). .) The neutralizing activity of these antibodies was measured using Vero cells (African green monkey kidney-derived cell line) according to the method described in Konishi et al. (Konishi et al., Vaccine 2006 24: 2200-2207). Specifically, the antibody diluted with 2-fold serial dilution and Dengue type 1 virus Mochizuki strain were mixed and incubated at 4 ° C. overnight to infect monolayer Vero cells. Counted. The number of plaques obtained in the control to which no antibody was added was defined as 100%, and the neutralization activity was expressed as a percentage reduction (% Plaque reduction).
 結果を図2に示した。サブクラスを置換した3H12-IgG2aおよび3H12-IgG2bは、どちらも中和活性を有していた。そこで、エスケープミュータントウイルスを取得するための抗体として、3H12-IgG2bを選択した。 The results are shown in FIG. Both subclass-substituted 3H12-IgG2a and 3H12-IgG2b had neutralizing activity. Therefore, 3H12-IgG2b was selected as an antibody for obtaining escape mutant virus.
(3)エスケープミュータントウイルスの取得
 3H12-IgG2bを3μg/mLの濃度で添加した培養液中でデング1型ウイルス望月株に感染したVero細胞を継代培養した結果、11代目の培養液に親株と同等の増殖力を有し、3H12-IgG2bで中和されないウイルスが含まれた。得られたエスケープミュータントウイルスに対する3H12抗体の10μg/mLの濃度における感染増強活性を、上記(1)と同じ方法で調べた。
(3) Acquisition of escape mutant virus As a result of subculture of Vero cells infected with Dengue type 1 virus Mochizuki strain in a culture solution to which 3H12-IgG2b was added at a concentration of 3 μg / mL, Viruses with comparable proliferative potential and not neutralized with 3H12-IgG2b were included. The infection-enhancing activity of the 3H12 antibody against the obtained escape mutant virus at a concentration of 10 μg / mL was examined by the same method as in (1) above.
 結果を図3に示した。図3中、P#0は継代培養前の親株ウイルス、P#11は得られたエスケープミュータントウイルス、P#11Contは3H12-IgG2bを添加しない培養液中で11代にわたり継代して得られたデングウイルスである。図3の縦軸は、抗体を添加しない対照に対する感染細胞数を倍数(Fold enhancement)で表している。図3から明らかなように、P#0およびP#11Contは3H12抗体によって感染が約100倍に増強されたが、P#11は3H12抗体によって感染がほとんど増強されなかった。 The results are shown in FIG. In FIG. 3, P # 0 is the parental virus prior to subculture, P # 11 is the escape mutant virus obtained, and P # 11Cont is obtained by subculture for 11 generations in a culture solution to which 3H12-IgG2b is not added. Dengue virus. The vertical axis in FIG. 3 represents the number of infected cells with respect to a control to which no antibody was added (Fold 数 enhancement). As apparent from FIG. 3, P # 0 and P # 11Cont were enhanced about 100 times by 3H12 antibody, whereas P # 11 was hardly enhanced by 3H12 antibody.
(4)エスケープミュータントウイルスの変異の確認
 得られたエスケープミュータントウイルスのエンベロープ領域のアミノ酸配列を定法に従って確認したところ、エンベロープ領域の87位(E87)および107位(E107)に変異が認められた(それぞれD87NおよびL107F)。すなわち、3H12抗体はE87とE107を含むエピトープを標的にすることが示唆された。
(4) Confirmation of mutation of escape mutant virus When the amino acid sequence of the envelope region of the obtained escape mutant virus was confirmed according to a standard method, mutations were found at positions 87 (E87) and 107 (E107) of the envelope region ( D87N and L107F respectively). That is, it was suggested that the 3H12 antibody targets an epitope including E87 and E107.
 次に、このエピトープ部位を逆遺伝学的に確認するために、E87とE107の両方に、またはいずれか1つの変異を入れたE遺伝子を発現するプラスミドDNAを作製し、既に確立した日本脳炎ウイルスレプリコンプラスミド(Suzuki et al., J. Gen. Virol, 2014 Jan;95(Pt 1):60-5.)とともに293T細胞にコトランスフェクションして、SRIPを作製した。E87の変異はD87N、E107の変異はL107Fとした。SRIP抗原に対する3H12抗体の感染増強活性を上記(1)と同じ方法で調べ、変異を持たないSRIP抗原に対する3H12抗体の感染増強活性と比較した。 Next, in order to confirm this epitope site by reverse genetics, a plasmid DNA expressing the E gene in which both E87 and E107 or any one of the mutations is expressed was prepared, and the Japanese encephalitis virus already established SRIP was prepared by co-transfecting 293T cells with a replicon plasmid (Suzuki et al., J. Gen. Virol, 2014 Jan; 95 (Pt 1): 60-5.). The mutation of E87 was D87N, and the mutation of E107 was L107F. The infection enhancing activity of 3H12 antibody against SRIP antigen was examined by the same method as in (1) above, and compared with the infection enhancing activity of 3H12 antibody against SRIP antigen without mutation.
 結果を図4に示した。図中点線は、抗体を加えない陰性対照の6ウェルから求めた平均値±3SDを示す。変異を持たないSRIP抗原(Control)に対して3H12抗体は高い感染増強活性を示したが、E87とE107の両方に変異を持つSRIP抗原、およびE107に変異を持つSRIP抗原に対して3H12抗体は感染増強活性を示さなかった。一方、E87に変異を持つSRIP抗原に対しては、3H12抗体はControlと同様の高い感染増強活性を示した。この結果は、エスケープミュータントウイルスが生成される過程でE87とE107に変異が入ったが、中和抗体から逃れる実質的なエピトープの変化はE107変異によってなされていると考えられ、E87はエピトープと関係しないが、E107変異によって生じたウイルス増殖力の低下を補うために入った変異と考えられた。 The results are shown in FIG. The dotted line in the figure shows the mean value ± 3SD determined from 6 wells of a negative control to which no antibody was added. 3H12 antibody showed high infection-enhancing activity against SRIP antigen (Control) without mutation, but 3H12 antibody against SRIP antigen with mutation at both E87 and E107, and SRIP antigen with mutation at E107 It did not show infection enhancing activity. On the other hand, for the SRIP antigen having a mutation in E87, the 3H12 antibody showed the same high infection enhancing activity as Control. This result suggests that E87 and E107 were mutated during the generation of escape mutant virus, but the substantial change in the epitope escaping from the neutralizing antibody is considered to be caused by the E107 mutation, and E87 is related to the epitope. However, it was considered to be a mutation that entered in order to compensate for the decrease in virus growth caused by the E107 mutation.
〔実施例2:変異導入抗原の免疫原性〕
 E87とE107の両方、またはいずれか1つの変異(D87Nおよび/またはL107F)を入れたデング1型ウイルス望月株のE遺伝子を発現するプラスミドDNAを用いて、6週齢の雄BALB/cマウス(1群3匹)を免疫した。免疫は100μgの用量で3回行い、2回目の免疫後2週目と、3回目の免疫後1週目に採血した。対照として変異のないE遺伝子を発現するプラスミドDNAを用いた。得られたプール血清を用いて、これらの免疫原に対して誘導される抗体の、デング1型ウイルス望月株に対する中和活性を実施例1(2)に記載の方法で調べ、感染増強活性を実施例1(1)に記載の方法で調べた。
[Example 2: Immunogenicity of mutagenized antigen]
6-week-old male BALB / c mice (using plasmid DNA expressing the E gene of Dengue type 1 virus Mochizuki strain with both E87 and E107, or any one mutation (D87N and / or L107F) ( 3 mice per group) were immunized. Immunization was performed three times at a dose of 100 μg, and blood was collected 2 weeks after the second immunization and 1 week after the third immunization. As a control, plasmid DNA expressing the E gene without mutation was used. Using the pooled sera obtained, the neutralizing activity of antibodies induced against these immunogens against the dengue type 1 virus Mochizuki strain was examined by the method described in Example 1 (2), and the infection enhancing activity was examined. It investigated by the method as described in Example 1 (1).
 結果を図5に示した。Aは中和活性を調べた結果、Bは感染増強活性を調べた結果である。また、2dosesは2回目の免疫後に採血した血清の結果、3dosesは3回目の免疫後に採血した血清の結果である。Bの点線は、抗体を加えない陰性対照の6ウェルから求めた平均値±3SDを示す。Aから明らかなように、いずれのプラスミドも同等の中和活性レベルを有する抗体を誘導した。一方、感染増強活性レベルには大きな差が認められた。すなわち、E87とE107のいずれか一方に変異を持つプラスミドで誘導された抗体は対照と比べて感染増強活性を示さなかったが、E87とE107の両方に変異を持つプラスミドで誘導された抗体は、対照より低いものの、感染増強活性を示した。この結果は、in vitroで得られる抗原エピトープと抗体との反応は、必ずしもin vivoにおける抗原の免疫原性と一致するわけではないが、E107を含むエピトープに関しては一致することを示すものである。 The results are shown in FIG. A is the result of examining the neutralizing activity, and B is the result of examining the infection enhancing activity. In addition, 2doses is a result of serum collected after the second immunization, and 3doses is a result of serum collected after the third immunization. The dotted line B shows the mean value ± 3SD determined from 6 wells of a negative control to which no antibody was added. As is clear from A, both plasmids induced antibodies with comparable levels of neutralizing activity. On the other hand, a large difference was observed in the level of infection enhancing activity. That is, an antibody induced by a plasmid having a mutation in either E87 or E107 did not show infection-increasing activity compared to the control, whereas an antibody induced by a plasmid having a mutation in both E87 and E107 was Although it was lower than the control, it showed infection-enhancing activity. This result indicates that the reaction between the antigen epitope obtained in in vitro and the antibody does not necessarily match the immunogenicity of the antigen in in vivo, but matches for the epitope containing E107.
〔実施例3:他の血清型に対する中和活性および感染増強活性〕
 実施例2では、デング1型ウイルス由来の変異抗原で2回または3回免疫したマウスから採血した血清を用いて、誘導された抗体のデング1型ウイルスに対する中和活性および感染増強活性を調べたが、実施例3では、デング1型ウイルス由来の変異抗原で3回免疫したマウスから採血した血清を用いて、誘導された抗体のデング2型ウイルス(New Guinea C株)、3型ウイルス(H87株)または4型ウイルス(H241株)に対する中和活性を実施例1(2)に記載の方法で調べ、感染増強活性を実施例1(1)に記載の方法で調べた。
[Example 3: Neutralizing activity and infection enhancing activity against other serotypes]
In Example 2, the neutralizing activity and the infection enhancing activity of the induced antibody against dengue type 1 virus were examined using serum collected from mice immunized twice or three times with a mutant antigen derived from dengue type 1 virus. However, in Example 3, using antibodies collected from a mouse immunized three times with a mutant antigen derived from dengue type 1 virus, the induced antibody dengue type 2 virus (New Guinea C strain), type 3 virus (H87) Strain) or type 4 virus (H241 strain) was examined by the method described in Example 1 (2), and the infection enhancing activity was examined by the method described in Example 1 (1).
 結果を図6に示した。Aは中和活性を調べた結果、Bは感染増強活性を調べた結果である。Bの点線は、抗体を加えない陰性対照の6ウェルから求めた平均値±3SDを示す。Aから明らかなように、デング4型ウイルスに対する交差性中和抗体の誘導は、2型ウイルスまたは3型ウイルスに比べて低いものであったが、いずれの血清型に対しても、3種の変異導入抗原は対照抗原と同等の交差性中和抗体を誘導した。一方、感染増強活性レベルには大きな差が認められた。すなわち、対照抗原はすべての血清型に対して感染増強活性を有する抗体を誘導したが、E107変異抗原はすべての血清型に対して感染増強活性を有する抗体を誘導しなかった。E87とE107の両方に変異を持つ抗原はすべての血清型に対して感染増強活性を有する抗体を誘導したが、対照抗原が誘導したものよりは低かった。E87のみに変異を持つ抗原も対照抗原より低く、特に2型ウイルスに対して感染増強活性を有する抗体を誘導しなかった。この結果から、E107に変異を導入したデング1型ウイルス抗原が誘導する抗体は、デング1型ウイルスに対してのみならず、他の血清型に対しても増強活性を示さないことが明らかになった。また、E87の変異でも若干の効果があることが示された。 The results are shown in FIG. A is the result of examining the neutralizing activity, and B is the result of examining the infection enhancing activity. The dotted line B shows the mean value ± 3SD determined from 6 wells of a negative control to which no antibody was added. As is clear from A, the induction of cross-neutralizing antibodies against dengue type 4 virus was lower compared to type 2 or type 3 virus, but for either serotype, The mutagenized antigen induced a cross neutralizing antibody equivalent to the control antigen. On the other hand, a large difference was observed in the level of infection enhancing activity. That is, the control antigen induced an antibody having infection enhancing activity against all serotypes, whereas the E107 mutant antigen did not induce an antibody having infection enhancing activity against all serotypes. Antigens with mutations in both E87 and E107 induced antibodies with infection-enhancing activity against all serotypes, but were lower than those induced by the control antigen. The antigen having a mutation only in E87 was also lower than the control antigen, and in particular, an antibody having an infection enhancing activity against type 2 virus was not induced. From this result, it is clarified that the antibody induced by the dengue type 1 virus antigen introduced with a mutation in E107 does not show the enhancing activity not only against the dengue type 1 virus but also against other serotypes. It was. It was also shown that the E87 mutation has some effect.
〔実施例4:変異導入した他の血清型E抗原に対する3H12抗体の感染増強活性〕
 E87およびE107付近のアミノ酸配列は、すべての血清型で比較的保存されている。また、3H12抗体は、デング1型ウイルス望月株を抗原として作製された抗体であるが、他のすべての血清型に対して交差反応性を有している。そこで、実施例3で用いたデング2型ウイルス、デング3型ウイルス、デング4型ウイルスについて、各E抗原のE87またはE107に変異(D87NまたはL107F)を導入したSRIPを作製し、変異導入SRIP抗原に対する3H12抗体の感染増強活性を実施例1(1)に記載の方法で調べ、変異を持たないSRIP抗原に対する3H12抗体の感染増強活性と比較した。
[Example 4: Infection enhancing activity of 3H12 antibody against other serotype E antigens mutated]
The amino acid sequences near E87 and E107 are relatively conserved across all serotypes. The 3H12 antibody is an antibody prepared using Dengue type 1 virus Mochizuki strain as an antigen, and has cross-reactivity with all other serotypes. Therefore, for the dengue type 2 virus, dengue type 3 virus, and dengue type 4 virus used in Example 3, SRIP was prepared by introducing a mutation (D87N or L107F) into E87 or E107 of each E antigen. Infection enhancing activity of the 3H12 antibody against the above was examined by the method described in Example 1 (1) and compared with the infection enhancing activity of the 3H12 antibody against the SRIP antigen having no mutation.
 結果を図7に示した。いずれの血清型においても、3H12抗体は変異を持たない対照抗原に対して感染増強活性を示したが、E107変異抗原に対しては感染増強活性を示さなかった。E87変異抗原に対する3H12抗体の感染増強活性は血清型により異なり、2型ウイルスに対しては感染増強活性を示さなかったが、3型および4型ウイルスに対しては感染増強活性を示した。この結果は、デング2型ウイルス、デング3型ウイルス、デング4型ウイルスのE抗原においても、E107が3H12のエピトープ部位であることを示すものである。 The results are shown in FIG. In all serotypes, the 3H12 antibody showed an infection enhancing activity against the control antigen without mutation, but did not show an infection enhancing activity against the E107 mutant antigen. The infection enhancing activity of the 3H12 antibody against the E87 mutant antigen was different depending on the serotype, and did not show the infection enhancing activity against the type 2 virus, but showed the infection enhancing activity against the type 3 and type 4 viruses. This result shows that E107 is an epitope site of 3H12 also in the E antigen of dengue type 2 virus, dengue type 3 virus, and dengue type 4 virus.
〔実施例5:変異導入した他の血清型E抗原の免疫原性〕
 デング1型ウイルス以外の血清型でも、in vitroで得られるE107に変異を誘導した抗原エピトープと抗体との反応が、in vivoにおける抗原の免疫原性と一致するかどうかを調べるために、E87またはE107のアミノ酸に変異(D87NまたはL107F)を導入した他の血清型(2型、3型または4型)のE抗原を発現するプラスミドDNAを用いて6週齢の雌BALB/cマウス(1群3匹)を免疫した。免疫は100μgの用量で3回行い、3回目の免疫後1週目に採血した。対照として変異のないE遺伝子を持つプラスミドDNAを用いた。得られたプール血清を用いて、これらの免疫原に対して誘導される抗体の、対応する血清型ウイルスに対する感染増強活性を、実施例1(1)と同じ方法で調べた。
[Example 5: Immunogenicity of other serotype E antigens mutated]
In order to examine whether the reaction between the antigen epitope induced by mutation in E107 obtained in vitro and the antibody is consistent with the immunogenicity of the antigen in vivo, even in serotypes other than dengue type 1 virus, E87 or A 6-week-old female BALB / c mouse (group 1) using plasmid DNA expressing an E antigen of another serotype (type 2, type 3 or type 4) introduced with a mutation (D87N or L107F) in the amino acid of E107 3 animals) were immunized. Immunization was performed three times at a dose of 100 μg, and blood was collected 1 week after the third immunization. As a control, plasmid DNA having an E gene without mutation was used. Using the pooled sera obtained, the infection enhancing activity of antibodies induced against these immunogens against the corresponding serotype virus was examined by the same method as in Example 1 (1).
 結果を図8に示した。図中の点線は、抗体を加えない陰性対照の6ウェルから求めた平均値±3SDを示す。また、C(+)は補体を添加した系、C(-)は補体を添加しない系を表す。補体を添加した系(左列)において、デング3型ウイルスでは、対照抗原で誘導された抗体は感染増強活性を示したが、E107変異抗原で誘導された抗体は、感染増強活性を示さなかった。デング2型ウイルスおよびデング4型ウイルスでは、今回の条件では対照抗原も増強活性を示さなかったため、アッセイ系に補体を添加せずに実験を行った(右列)。その結果、デング2型ウイルスおよびデング4型ウイルスとも、対照抗原で誘導された抗体は高い感染増強活性を示したが、E107変異抗原で誘導された抗体は感染増強活性が低下した。デング3型ウイルスも、補体を添加しない系では、E107変異抗原で誘導された抗体は感染増強活性の低下傾向が認められた。一方、E87変異抗原についても、補体を添加した系のデング3型ウイルスにおいて感染増強活性を抑える効果が認められた。また、補体を添加しない系のデング2型ウイルスおよびデング4型ウイルスでも、感染増強活性を抑える効果が認められた。この結果は、デング2型ウイルス、デング3型ウイルス、デング4型ウイルスにおいても、E107への変異導入は、感染増強活性を有する抗体の誘導を抑制することを示すものである。またE107への変異導入よりは弱い効果であるがE87への変異導入にも同様の効果があることを示すものである。 The results are shown in FIG. The dotted line in the figure shows the mean value ± 3SD determined from 6 wells of a negative control to which no antibody was added. C (+) represents a system to which complement is added, and C (−) represents a system to which no complement is added. In the system in which complement was added (left column), in the dengue type 3 virus, the antibody induced with the control antigen showed an infection-enhancing activity, whereas the antibody induced with the E107 mutant antigen did not show the infection-enhancing activity. It was. In the dengue type 2 virus and the dengue type 4 virus, the control antigen also did not show an enhancing activity under the present conditions, so the experiment was performed without adding complement to the assay system (right column). As a result, in both the dengue type 2 virus and the dengue type 4 virus, the antibody induced with the control antigen showed a high infection enhancing activity, whereas the antibody induced with the E107 mutant antigen decreased the infection enhancing activity. In the dengue type 3 virus as well, in the system in which no complement was added, the antibody induced with the E107 mutant antigen tended to have a decreased tendency to enhance infection. On the other hand, the E87 mutant antigen was also found to have an effect of suppressing the infection-enhancing activity in the dengue type 3 virus of the system to which complement was added. In addition, the dengue type 2 virus and the dengue type 4 virus that do not contain complement were also found to have an effect of suppressing the infection enhancing activity. This result shows that mutation introduction into E107 also suppresses induction of an antibody having infection-enhancing activity in dengue type 2 virus, dengue type 3 virus, and dengue type 4 virus. Moreover, although it is an effect weaker than the mutation introduction into E107, it shows that the mutation introduction into E87 has the same effect.
〔実施例6:変異導入抗原における変異アミノ酸による免疫原性〕
 デング1型ウイルス由来のE蛋白質をコードするプラスミドにおいて、E107のアミノ酸を種々のアミノ酸(フェニルアラニン、イソロイシン、プロリン、リジン、グルタミンまたはトリプトファン)に、あるいはE87のアミノ酸を種々のアミノ酸(アスパラギン、アルギニン、グルタミン酸、グルタミン、フェニルアラニンまたはバリン)に、それぞれ1点変異させたプラスミドを作製し、得られたプラスミドを用いて6週齢の雄BALB/cマウス(1群3匹)を免疫した。免疫は100μgの用量で3回行い、3回目の免疫後2週目に採血した。得られたプール血清を用いて、これらの免疫原に対して誘導される抗体の、デング1型、2型、3型または4型ウイルスに対する感染増強活性を実施例1(1)に記載の方法で調べた。血清の希釈条件は、1:160希釈が用いられた。なお、コントロールとして、E蛋白質に変異を導入しないプラスミドを用いて免疫したものについても評価した。
[Example 6: Immunogenicity of mutated amino acids in mutated antigen]
In the plasmid encoding the E protein derived from dengue type 1 virus, the amino acid E107 is changed to various amino acids (phenylalanine, isoleucine, proline, lysine, glutamine or tryptophan), or the amino acid E87 is changed to various amino acids (asparagine, arginine, glutamic acid). , Glutamine, phenylalanine or valine), and plasmids obtained by mutating one point each were used, and 6-week-old male BALB / c mice (3 mice per group) were immunized using the obtained plasmids. Immunization was performed 3 times at a dose of 100 μg, and blood was collected 2 weeks after the third immunization. The method described in Example 1 (1) shows that the obtained pooled serum is used to increase the infection-inducing activity of antibodies induced against these immunogens against Dengue 1, 2, 3, or 4 viruses. I examined it. Serum dilution conditions were 1: 160 dilution. As a control, immunization with a plasmid that does not introduce a mutation into the E protein was also evaluated.
 結果を図9に示した。陰性対照に対する感染増強の程度からFold Enhancementを算出してグラフに表した。この結果によると、E107のロイシンがいずれのアミノ酸に置換しても、血清型の種類によって程度の差は認められるが、感染増強活性の誘導を抑制できることが分かる。同様に、E87のアスパラギン酸がいずれのアミノ酸に置換しても、血清型の種類によって程度の差は認められるが、感染増強活性の誘導を抑制できることが分かる。 The results are shown in FIG. Fold Enhancement was calculated from the degree of infection enhancement relative to the negative control and expressed in a graph. According to this result, it can be seen that even if leucine of E107 is substituted with any amino acid, although the degree of difference is recognized depending on the type of serotype, induction of infection enhancing activity can be suppressed. Similarly, it can be seen that even if aspartic acid of E87 is substituted with any amino acid, although the degree of difference is recognized depending on the type of serotype, induction of infection enhancing activity can be suppressed.
〔実施例7:異なるデングウイルス株の変異抗原に対する3H12抗体の感染増強活性〕
 以上はプロトタイプを用いた検討であったが、次に比較的新しく分離された4血清型の株を用いて検討を行った(下記表3参照)。まず、各血清型から1株ずつ選択し、そのE領域をコードしたプラスミドを作製した。次に、変異のない各血清型のControlプラスミドをテンプレートにして、E87またはE107に変異(D87NまたはL107F)を導入し、それぞれのSRIPを作製した。SRIP抗原に対する3H12抗体の感染増強活性を実施例1(1)に記載の方法で調べ、変異を持たないSRIP抗原に対する3H12抗体の感染増強活性と比較した。
[Example 7: Infection enhancing activity of 3H12 antibody against mutant antigens of different dengue virus strains]
The above was a study using a prototype, but then a study was performed using 4 serotype strains that were relatively newly isolated (see Table 3 below). First, one strain was selected from each serotype, and a plasmid encoding the E region was prepared. Next, mutations (D87N or L107F) were introduced into E87 or E107 using the control plasmid of each serotype without mutation as a template to prepare each SRIP. The infection enhancing activity of the 3H12 antibody against the SRIP antigen was examined by the method described in Example 1 (1), and compared with the infection enhancing activity of the 3H12 antibody against the SRIP antigen having no mutation.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 結果を図10に示した。陰性対照よりも何倍感染細胞数が増加したかを示すFold enhancementを用いて評価した。図10より、3H12抗体は、E87に変異を持つSRIP抗原や変異を持たないSRIP抗原(Control)に対して感染増強活性の抑制を示さなかったが、E107に変異を持つSRIP抗原に対しては感染増強活性を顕著に抑制することが分かった。このことから、3H12抗体の標的部位は株の種類に関係なく、全血清型ウイルスに対してE107位であることが示唆される。 The results are shown in FIG. Fold enhancement indicating how many times the number of infected cells increased from the negative control was evaluated. From FIG. 10, the 3H12 antibody did not show suppression of infection enhancing activity against the SRIP antigen having a mutation in E87 and the SRIP antigen having no mutation (Control), but against the SRIP antigen having a mutation in E107. It was found that the infection-enhancing activity was significantly suppressed. This suggests that the target site of the 3H12 antibody is at position E107 relative to all serotype viruses regardless of the strain type.
〔実施例8:異なるデングウイルス株の変異抗原の免疫原性(その1)〕
 次に、実施例7を参考にして作製したE87またはE107のいずれか1つに変異(D87NまたはL107F)を入れたプラスミドDNAを用いて、6週齢の雄BALB/cマウス(1群6匹)を免疫した(BDV-1~BDV-4)。免疫は100μgの用量で3回行い、3回目の免疫後2週目に採血した。対照として変異のないE遺伝子を発現するプラスミドDNAを用いた。得られたプール血清を用いて、これらの免疫原に対して誘導される抗体の、デング1型、2型、3型または4型ウイルスに対する中和活性を実施例1(2)に記載の方法で調べ、感染増強活性を実施例1(1)に記載の方法で調べた。
[Example 8: Immunogenicity of mutant antigens of different dengue virus strains (Part 1)]
Next, 6-week-old male BALB / c mice (6 mice per group) were prepared using plasmid DNA in which mutation (D87N or L107F) was introduced into any one of E87 and E107 prepared with reference to Example 7. ) (BDV-1 to BDV-4). Immunization was performed 3 times at a dose of 100 μg, and blood was collected 2 weeks after the third immunization. As a control, plasmid DNA expressing the E gene without mutation was used. Using the pooled serum obtained, the neutralizing activity of antibodies induced against these immunogens against dengue type 1, type 2, type 3 or type 4 virus is the method described in Example 1 (2) The infection enhancing activity was examined by the method described in Example 1 (1).
 結果を図11および図12に示した。図11は中和活性を調べた結果、図12は感染増強活性を調べた結果である。図12中の点線は、抗体を加えない陰性対照の6ウェルから求めた平均値±3SDを示す。図11から明らかなように、デング2型ウイルス(遺伝子型American、BDV-2)を用いて作製したプラスミド以外は、いずれのプラスミドも同等の中和活性レベルを有する抗体を誘導した。一方、感染増強活性レベルには大きな差が認められた。すなわち、いずれの株を用いても、E87またはE107のいずれか一方に変異を持つプラスミドで誘導された抗体は全血清型ウイルスに感染増強活性を示さなかったが、対照のプラスミドDNAは感染増強活性を示した。このことから、株が異なるものであっても、E87またはE107における変異が感染増強抗体の誘導に関与することが示唆される。 The results are shown in FIG. 11 and FIG. FIG. 11 shows the result of examining the neutralizing activity, and FIG. 12 shows the result of examining the infection enhancing activity. The dotted line in FIG. 12 shows the mean value ± 3SD determined from 6 wells of a negative control to which no antibody was added. As is clear from FIG. 11, all plasmids induced antibodies having the same level of neutralizing activity except for plasmids prepared using dengue type 2 virus (genotype American, BDV-2). On the other hand, a large difference was observed in the level of infection enhancing activity. That is, in any strain, the antibody induced by a plasmid having a mutation in either E87 or E107 did not show any infection-stimulating activity against all serotype viruses, whereas the control plasmid DNA had an infection-enhancing activity. showed that. This suggests that mutations in E87 or E107 are involved in the induction of infection-enhancing antibodies even if the strains are different.
〔実施例9:異なるデングウイルス株の変異抗原の免疫原性(その2)〕
 実施例8で用いた4種のプラスミドを混合し、4価ワクチンとして6週齢の雄BALB/cマウス(1群6匹)に免疫した。4価ワクチンは、以下の3グループを設定した;E107変異導入したBDV-1~BDV-4、E87変異導入したBDV-1~BDV-4、変異のないBDV-1~BDV-4。1回あたり、各プラスミド25μgずつを4種類混合した合計100μgの用量で、3回免疫を行い、3回目の免疫後2週目に採血した。得られたプール血清を用いて、これらの免疫原に対して誘導される抗体の、デング1型、2型、3型または4型ウイルスに対する中和活性を実施例1(2)に記載の方法で調べ、感染増強活性を実施例1(1)に記載の方法で調べた。
[Example 9: Immunogenicity of mutant antigens of different dengue virus strains (2)]
Four types of plasmids used in Example 8 were mixed, and 6-week-old male BALB / c mice (6 per group) were immunized as a 4-valent vaccine. The following three groups were established for the 4-valent vaccine: E107 mutated BDV-1 to BDV-4, E87 mutated BDV-1 to BDV-4, no mutation BDV-1 to BDV-4, once The immunization was performed 3 times at a total dose of 100 μg, in which 4 types of 25 μg of each plasmid were mixed, and blood was collected 2 weeks after the third immunization. Using the pooled serum obtained, the neutralizing activity of antibodies induced against these immunogens against dengue type 1, type 2, type 3 or type 4 virus is the method described in Example 1 (2) The infection enhancing activity was examined by the method described in Example 1 (1).
 結果を図13および図14に示した。図13は中和活性を調べた結果、図14は感染増強活性を調べた結果である。図14中の点線は、抗体を加えない陰性対照の6ウェルから求めた平均値±3SDを示す。図13から明らかなように、いずれのグループも同等の中和活性レベルを有する抗体を誘導した。一方、感染増強活性レベルには大きな差が認められた。すなわち、E87またはE107のいずれか一方に変異を持つプラスミドで誘導された抗体は感染増強活性を示さなかったが、対照のプラスミドDNAは感染増強活性を示した。このことから、4価の混合ワクチンにおいても各々のワクチンが有する感染増強抗体の誘導を抑制する作用が維持されることが示唆される。 The results are shown in FIG. 13 and FIG. FIG. 13 shows the result of examining the neutralizing activity, and FIG. 14 shows the result of examining the infection enhancing activity. The dotted line in FIG. 14 shows the mean value ± 3SD determined from 6 wells of a negative control to which no antibody was added. As is clear from FIG. 13, all groups induced antibodies with equivalent neutralizing activity levels. On the other hand, a large difference was observed in the level of infection enhancing activity. That is, an antibody induced by a plasmid having a mutation in either E87 or E107 did not show an infection-enhancing activity, whereas the control plasmid DNA showed an infection-enhancing activity. This suggests that the action of suppressing the induction of infection-enhancing antibodies possessed by each vaccine is maintained even in a quadrivalent combination vaccine.
〔実施例10:prM2変異が免疫原性に及ぼす影響〕
 実施例1(3)で得られたエスケープミュータントウイルスのprM領域の塩基配列を解析したところ、prM領域の2番目のヒスチジン(H)がアスパラギン(N)へと置換されていることが分かった。つまり、獲得されたエスケープミュータントのprM/E領域には合計3点(prM2、E87、E107)の変異が挿入されていたことになる。そこで、今回新たにprM2、E87、E107の各3点について、変異ありと変異なしを組み合わせたプラスミドを合計4種類作製し、6週齢の雄BALB/cマウス(1群6匹)を免疫した。免疫は100μgの用量で3回行い、3回目の免疫後2週目に採血した。得られたプール血清を用いて、これらの免疫原に対して誘導される抗体の、デング1型、2型、3型または4型ウイルスに対する中和活性を実施例1(2)に記載の方法で、感染増強活性を実施例1(1)に記載の方法で調べた。表4に、プラスミドの詳細を示す。
[Example 10: Effect of prM2 mutation on immunogenicity]
Analysis of the base sequence of the prM region of the escape mutant virus obtained in Example 1 (3) revealed that the second histidine (H) in the prM region was replaced with asparagine (N). That is, a total of three mutations (prM2, E87, E107) have been inserted into the prM / E region of the acquired escape mutant. Therefore, a total of 4 types of plasmids combining mutation and non-mutation were newly prepared for each of 3 points of prM2, E87, and E107, and 6-week-old male BALB / c mice (6 mice per group) were immunized. . Immunization was performed 3 times at a dose of 100 μg, and blood was collected 2 weeks after the third immunization. Using the pooled serum obtained, the neutralizing activity of antibodies induced against these immunogens against dengue type 1, type 2, type 3 or type 4 virus is the method described in Example 1 (2) Thus, the infection enhancing activity was examined by the method described in Example 1 (1). Table 4 shows the details of the plasmid.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 結果を図15および図16に示した。図15は中和活性を調べた結果、図16は感染増強活性を調べた結果である。図16中の点線は、抗体を加えない陰性対照の6ウェルから求めた平均値±3SDを示す。図15から明らかなように、いずれのプラスミドも同等の中和活性レベルを有する抗体を誘導した。一方、図16からは感染増強活性レベルには大きな差が認められた。すなわち、E87とE107に変異を持つプラスミドでprM2に変異がないもの(E87+E107)は感染増強活性を示さないことが分かった。実施例2(図5)および実施例3(図6)では、E87とE107の両方変異を導入したプラスミドを用いた場合に感染増強活性が幾分か認められていたが、当該実施例で用いたプラスミドは、実施例1で得られたエスケープミュータントウイルス株のprM/E領域を直接クローニングして作製されたものであり、その時点で、E87とE107の両方変異に加えてprM2にも変異が導入されていたものが含まれていたと考えられる。
 また、図16の右列からは、prM2に変異が挿入されると、E87とE107の両方変異を導入しても感染増強活性が誘導されており(prM2+E87+E107)、また、3点全てに変異のないコントロールDNAプラスミドも全ての血清型に対しても感染増強活性を示している(Control)ことから、prM2に変異がなくE87とE107の双方に変異が導入される場合には感染増強活性が誘導されないことが示唆される。prM2は感染増強抗体の誘導に関与する部位であることが推測される。
The results are shown in FIG. 15 and FIG. FIG. 15 shows the result of examining the neutralizing activity, and FIG. 16 shows the result of examining the infection enhancing activity. The dotted line in FIG. 16 shows the mean value ± 3SD determined from 6 wells of a negative control to which no antibody was added. As is clear from FIG. 15, all the plasmids induced antibodies having the same level of neutralizing activity. On the other hand, from FIG. 16, a large difference was observed in the infection-enhancing activity level. That is, it was found that a plasmid having a mutation in E87 and E107 and having no mutation in prM2 (E87 + E107) does not show an infection enhancing activity. In Example 2 (FIG. 5) and Example 3 (FIG. 6), some infection-enhancing activity was observed when plasmids into which both E87 and E107 mutations were introduced were used. The plasmid was prepared by directly cloning the prM / E region of the escape mutant virus strain obtained in Example 1. At that time, in addition to both E87 and E107 mutations, prM2 was also mutated. It is thought that what was introduced was included.
Also, from the right column of FIG. 16, when a mutation is inserted into prM2, infection enhancing activity is induced even if both E87 and E107 mutations are introduced (prM2 + E87 + E107). Since no control DNA plasmid exhibits infection-increasing activity against all serotypes (Control), infection-inducing activity is induced when there is no mutation in prM2 and a mutation is introduced into both E87 and E107 It is suggested that not. It is speculated that prM2 is a site involved in the induction of infection-enhancing antibodies.
〔実施例11:prM2変異抗原に対する3H12抗体の感染増強活性〕
 デング1型ウイルス(望月株)のprM蛋白質の2位アミノ酸および/またはエンベロープ蛋白質のE87とE107の両方に変異を持つ1回感染型粒子(SRIP)に対する3H12抗体の結合性を感染増強活性を指標にして再度確認し、実施例1(図4)を検証した。なお、図中の記号は、実施例10と同じである。
[Example 11: Infection enhancing activity of 3H12 antibody against prM2 mutant antigen]
The binding activity of 3H12 antibody to single-infectious particles (SRIP) having mutations in the 2nd amino acid of prM protein of Dengue type 1 virus (Mochizuki strain) and / or both E87 and E107 of envelope protein is used as an indicator of infection enhancing activity This was confirmed again, and Example 1 (FIG. 4) was verified. The symbols in the figure are the same as those in the tenth embodiment.
 結果を図17に示した。図17から、prM2変異の有無に拘わらず、E87とE107に変異を持つSRIPに対して、3H12抗体は感染増強活性を示さず(prM2+E87+E107、E87+E107)、一方、E87とE107に変異を持たないSRIPに対して、3H12抗体は感染増強活性を示すことが判明した(Control、prM2)。このことから、図4の結果がサポートされ、3H12抗体の認識エピトープはprM2の変異とは全く関係ないものであることが示唆された。 The results are shown in FIG. From FIG. 17, the 3H12 antibody does not exhibit infection-enhancing activity (prM2 + E87 + E107, E87 + E107) against SRIP having mutations in E87 and E107 regardless of the presence or absence of prM2 mutation, whereas SR87 having no mutation in E87 and E107. In contrast, the 3H12 antibody was found to exhibit infection-enhancing activity (Control, prM2). This supported the results of FIG. 4 and suggested that the recognition epitope of the 3H12 antibody has nothing to do with the mutation of prM2.
 なお本発明は上述した各実施形態および実施例に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、本明細書中に記載された学術文献および特許文献の全てが、本明細書中において参考として援用される。 The present invention is not limited to the above-described embodiments and examples, and various modifications are possible within the scope shown in the claims, and technical means disclosed in different embodiments are appropriately combined. The obtained embodiment is also included in the technical scope of the present invention. Moreover, all the academic literatures and patent literatures described in this specification are incorporated herein by reference.

Claims (12)

  1.  中和抗体を誘導するが感染増強抗体の誘導を抑制するデングワクチン抗原であって、デングウイルスエンベロープ蛋白質のアミノ酸配列の第107位または第87位のアミノ酸に変異を有するエンベロープ蛋白質を含むことを特徴とするデングワクチン抗原。 A dengue vaccine antigen that induces a neutralizing antibody but suppresses induction of an infection-enhancing antibody, comprising an envelope protein having a mutation at the 107th or 87th amino acid of the amino acid sequence of a dengue virus envelope protein, Dengue vaccine antigen.
  2.  第107位のロイシンが、フェニルアラニン、トリプトファン、メチオニン、プロリン、アラニン、バリンおよびイソロイシンから選択される1種に置換されていることを特徴とする請求項1に記載のデングワクチン抗原。 The dengue vaccine antigen according to claim 1, wherein the leucine at position 107 is substituted with one selected from phenylalanine, tryptophan, methionine, proline, alanine, valine and isoleucine.
  3.  第107位のロイシンが、フェニルアラニンに置換されていることを特徴とする請求項2に記載のデングワクチン抗原。 The dengue vaccine antigen according to claim 2, wherein the leucine at position 107 is substituted with phenylalanine.
  4.  第107位のアミノ酸に変異を有するエンベロープ蛋白質が、配列番号4で示されるアミノ酸配列と同一または実質的に同一のアミノ酸配列からなることを特徴とする請求項1~3のいずれかに記載のデングワクチン抗原。 The dengue according to any one of claims 1 to 3, wherein the envelope protein having a mutation at the 107th amino acid consists of an amino acid sequence identical or substantially identical to the amino acid sequence represented by SEQ ID NO: 4. Vaccine antigen.
  5.  第87位のアスパラギン酸が、グルタミン酸、チロシン、システイン、アルギニン、ヒスチジン、リジン、セリン、トレオニン、グルタミン、アスパラギンおよびグリシンから選択される1種に置換されていることを特徴とする請求項1に記載のデングワクチン抗原。 The aspartic acid at position 87 is substituted with one selected from glutamic acid, tyrosine, cysteine, arginine, histidine, lysine, serine, threonine, glutamine, asparagine and glycine. Dengue vaccine antigen.
  6.  第87位のアスパラギン酸が、アスパラギンに置換されていることを特徴とする請求項5に記載のデングワクチン抗原。 The dengue vaccine antigen according to claim 5, wherein the aspartic acid at position 87 is substituted with asparagine.
  7.  第87位のアミノ酸に変異を有するエンベロープ蛋白質が、配列番号5で示されるアミノ酸配列と同一または実質的に同一のアミノ酸配列からなることを特徴とする請求項1、5または6に記載のデングワクチン抗原。 The dengue vaccine according to claim 1, 5 or 6, wherein the envelope protein having a mutation at the 87th amino acid consists of an amino acid sequence identical or substantially identical to the amino acid sequence represented by SEQ ID NO: 5. antigen.
  8.  請求項1~7のいずれかに記載のデングワクチン抗原を含有または発現することを特徴とするデングワクチン。 A dengue vaccine comprising or expressing the dengue vaccine antigen according to any one of claims 1 to 7.
  9.  デングウイルスエンベロープ蛋白質のアミノ酸配列の第107位または第87位のアミノ酸に変異を有するエンベロープ蛋白質、該エンベロープ蛋白質をコードする核酸、該エンベロープ蛋白質をコードする核酸を含むベクター、または該エンベロープ蛋白質を発現するデングウイルスを含有することを特徴とする請求項8に記載のデングワクチン。 An envelope protein having a mutation at the 107th or 87th amino acid in the amino acid sequence of a dengue virus envelope protein, a nucleic acid encoding the envelope protein, a vector containing a nucleic acid encoding the envelope protein, or a dengue virus expressing the envelope protein The dengue vaccine according to claim 8, comprising:
  10.  デングウイルス以外の病原体に対するワクチン成分を含むことを特徴とする請求項8または9に記載のデングワクチン。 The dengue vaccine according to claim 8 or 9, comprising a vaccine component against pathogens other than dengue virus.
  11.  中和抗体を誘導するが感染増強抗体の誘導を抑制するデングワクチン抗原または該抗原を発現するデングウイルスを取得する方法であって、以下の工程(1)~(5)を含むことを特徴とする方法:
    (1)デングウイルスのエンベロープ蛋白質を抗原として、感染増強活性を有するが中和活性を有しないモノクローナル抗体を取得する工程、
    (2)(1)で得られたモノクローナル抗体のクラスまたはサブクラスを変更することにより、中和活性を有するモノクローナル抗体を取得する工程、
    (3)(2)で得られた中和活性を有するモノクローナル抗体の存在下でデングウイルス感染細胞を培養することにより、該モノクローナル抗体により中和されない変異デングウイルスを取得する工程、
    (4)(3)で得られた変異デングウイルスのエンベロープ蛋白質に生じた変異を確認する工程、および
    (5)(3)で得られた変異デングウイルスのエンベロープ蛋白質が感染増強抗体の誘導を抑制することを確認する工程。
    A method for obtaining a dengue vaccine antigen or a dengue virus that expresses the antigen that induces neutralizing antibodies but suppresses induction of infection-enhancing antibodies, comprising the following steps (1) to (5) Method:
    (1) A step of obtaining a monoclonal antibody having an infection enhancing activity but not a neutralizing activity, using a dengue virus envelope protein as an antigen,
    (2) obtaining a monoclonal antibody having neutralizing activity by changing the class or subclass of the monoclonal antibody obtained in (1),
    (3) obtaining a mutant dengue virus that is not neutralized by the monoclonal antibody by culturing dengue virus-infected cells in the presence of the monoclonal antibody having neutralizing activity obtained in (2);
    (4) a step of confirming a mutation occurring in the envelope protein of the mutant dengue virus obtained in (3), and (5) that the envelope protein of the mutant dengue virus obtained in (3) suppresses the induction of the infection-enhancing antibody. The process of confirming.
  12.  中和抗体を誘導するが感染増強抗体の誘導を抑制するデングワクチン抗原であって、アミノ酸配列の第107位および第87位のアミノ酸に変異を有するデングウイルスエンベロープ蛋白質と2位のアミノ酸に変異を有さないデングウイルス前駆膜蛋白質を含むことを特徴とするデングワクチン抗原。 A dengue vaccine antigen that induces neutralizing antibodies but suppresses induction of infection-enhancing antibodies, and has a dengue virus envelope protein with mutations at amino acids 107 and 87 of the amino acid sequence and a mutation at the amino acid at position 2. Dengue vaccine antigen characterized in that it contains a dengue virus precursor membrane protein.
PCT/JP2017/015384 2016-04-15 2017-04-14 Dengue vaccine antigen inducing neutralizing antibody but inhibiting induction of infection-enhancing antibody WO2017179726A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018512108A JPWO2017179726A1 (en) 2016-04-15 2017-04-14 Dengue vaccine antigen that induces neutralizing antibodies but suppresses the induction of infection enhancing antibodies

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-082391 2016-04-15
JP2016082391 2016-04-15

Publications (1)

Publication Number Publication Date
WO2017179726A1 true WO2017179726A1 (en) 2017-10-19

Family

ID=60041844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/015384 WO2017179726A1 (en) 2016-04-15 2017-04-14 Dengue vaccine antigen inducing neutralizing antibody but inhibiting induction of infection-enhancing antibody

Country Status (2)

Country Link
JP (1) JPWO2017179726A1 (en)
WO (1) WO2017179726A1 (en)

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
CRILL,W.D. ET AL.: "Sculpting humoral immunity through dengue vaccination to enhance protective immunity", FRONTIERS IN IMMUNOLOGY, vol. 3, 2012, pages 1 - 19, XP055199219, DOI: doi:10.3389/fimmu.2012.00334 *
DATABASE Nucleotide [online] 28 November 2001 (2001-11-28), "Dengue virus type 1 genomic RNA, complete genome, strain:Mochizuki", XP055601560, retrieved from NCBI Database accession no. AB074760 *
HUGHES,H.R. ET AL.: "Manipulation of immunodominant dengue virus E protein epitopes reduces potential antibody-dependent enhancement", VIROLOGY JOURNAL, vol. 9, no. 1, 2012, pages 115, XP021133341, DOI: doi:10.1186/1743-422X-9-115 *
TANG,C.T. ET AL.: "An Epitope-Substituted DNA Vaccine Improves Safety and Immunogenicity against Dengue Virus Type 2", PLOS NEGLECTED TROPICAL DISEASES, vol. 9, no. 7, 2015, pages e0003903, XP055601575 *
YAMANAKA,A. ET AL.: "A Mouse Monoclonal Antibody against Dengue Virus Type 1 Mochizuki Strain Targeting Envelope Protein Domain II and Displaying Strongly Neutralizing but Not Enhancing Activity", JOURNAL OF VIROLOGY, vol. 87, no. 23, 2013, pages 12828 - 12837, XP055601589 *
ZULKARNAIN,E. ET AL.: "Molecular Comparison of Dengue Type 1 Mochizuki Strain Virus and Other Selected Viruses Concerning Nucleotide and Amino Acid Sequences of Genomic RNA: A Consideration of Viral Epidemiology and Variation", MICROBIOLOGY AND IMMUNOLOGY, vol. 38, no. 7, 1994, pages 581 - 585, XP055601570 *

Also Published As

Publication number Publication date
JPWO2017179726A1 (en) 2019-05-23

Similar Documents

Publication Publication Date Title
US8088391B2 (en) West nile virus vaccine
JP5538729B2 (en) Mock infectious flaviviruses and their use
US20190201517A1 (en) Vaccine Compositions
ES2908304T3 (en) Unit dose of dengue vaccine and its administration
US10946087B2 (en) Vaccine compositions against dengue virus diseases
KR20180137514A (en) Vaccination compositions and methods against dengue virus in children and young adults
JP2010132686A (en) Attenuated live vaccine
US11566050B2 (en) Methods and compositions for norovirus vaccines and diagnostics
KR20150036593A (en) Vaccine compositions for prevention against dengue virus infection
US20190194260A1 (en) Live attenuated zika virus vaccine
BR112020008652A2 (en) Zika vaccines and immunogenic compositions and methods of using them
WO2017005654A1 (en) Concomitant dengue, diphtheria, tetanus, whooping cough (pertussis), polio, and haemophilus influenzae type b vaccination.
EP3316905A1 (en) Concomitant dengue and yellow fever vaccination
Pittman et al. Biodefense and special pathogen vaccines
US20150231226A1 (en) Novel attenuated dengue virus strains for vaccine application
KR20160027019A (en) Methods and compositions for dengue virus vaccines
Oh et al. A purified inactivated vaccine derived from vero cell-adapted zika virus elicits protection in mice
WO2017179726A1 (en) Dengue vaccine antigen inducing neutralizing antibody but inhibiting induction of infection-enhancing antibody
WO2014083194A1 (en) Methods for inducing antibodies
US20220175908A1 (en) Methods for Inducing a Safe Immune Response Against Polio Virus
JP2021168672A (en) Live virus having bank of dengue virus attenuated strains, and dengue vaccine containing same as antigens
Raut et al. PERSISTENCE OF ANTIBODIES INDUCED BY MMR VACCINE IN INDIAN CHILDREN
Shahana et al. Japanese Encephalitis: An overview of vaccine development

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17782539

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018512108

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17782539

Country of ref document: EP

Kind code of ref document: A1