WO2017179492A1 - Metal sheet for battery container, and method of manufacturing metal sheet for battery container - Google Patents

Metal sheet for battery container, and method of manufacturing metal sheet for battery container Download PDF

Info

Publication number
WO2017179492A1
WO2017179492A1 PCT/JP2017/014429 JP2017014429W WO2017179492A1 WO 2017179492 A1 WO2017179492 A1 WO 2017179492A1 JP 2017014429 W JP2017014429 W JP 2017014429W WO 2017179492 A1 WO2017179492 A1 WO 2017179492A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal plate
battery container
battery
resin
metal sheet
Prior art date
Application number
PCT/JP2017/014429
Other languages
French (fr)
Japanese (ja)
Inventor
慎一郎 堀江
吉村 国浩
興 吉岡
秀彦 小林
Original Assignee
東洋鋼鈑株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋鋼鈑株式会社 filed Critical 東洋鋼鈑株式会社
Priority to CN201780014719.2A priority Critical patent/CN108701782B/en
Priority to KR1020187022621A priority patent/KR102323071B1/en
Publication of WO2017179492A1 publication Critical patent/WO2017179492A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/124Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure
    • H01M50/126Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure comprising three or more layers
    • H01M50/128Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure comprising three or more layers with two or more layers of only inorganic material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D123/00Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers
    • C09D123/02Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D123/10Homopolymers or copolymers of propene
    • C09D123/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D167/00Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D167/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/124Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/124Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure
    • H01M50/126Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure comprising three or more layers
    • H01M50/129Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure comprising three or more layers with two or more layers of only organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/131Primary casings, jackets or wrappings of a single cell or a single battery characterised by physical properties, e.g. gas-permeability or size
    • H01M50/133Thickness
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a metal plate suitable as a battery container such as a lithium ion secondary battery and a method for producing the metal plate for the battery container.
  • a lithium ion secondary battery (hereinafter also referred to as “LiB”) has attracted attention as a high-performance battery with high output and long life.
  • LiB lithium ion secondary battery
  • battery containers that contain a non-aqueous electrolyte, a positive electrode active material, a negative electrode active material, and the like take various forms such as a cylindrical shape and a rectangular shape.
  • Patent Document 1 discloses a technique for accommodating an electrode or the like in a pouch using a laminated metal plate in which a thin plate-like metal plate is coated with a resin. Further, according to this Patent Document 1, it is mentioned that iron or an iron alloy is used as a metal foil core material.
  • Patent Document 2 and Patent Document 3 a rolled metal plate having a thickness of 200 ⁇ m or less is used, and Ni plating is applied to the rolled metal plate, and then rolling and heat treatment are performed on the surface of the rolled metal plate.
  • a technique for forming a diffusion alloy layer containing Ni and Fe is disclosed.
  • a polyolefin-based resin may be formed on a rolled metal plate in order to improve the corrosion resistance against an electrolytic solution, etc. According to this Patent Document 2, by using the diffusion alloy layer, the rolled metal plate and the polyolefin-based resin are formed. It is mentioned that the adhesion is improved.
  • Secondary batteries that can be mounted on the vehicles and electronic devices described above are required to have high capacity in addition to high output.
  • it may be sufficient to accommodate a corresponding electrode active material in a relatively large container.
  • an increase in the weight of the battery itself immediately leads to a deterioration in fuel consumption. Therefore, an increase in weight must be suppressed as much as possible even in order to realize a high capacity.
  • An object of the present invention is to solve the above-mentioned problem as an example.
  • a battery capable of suppressing cracking of a base material and peeling of a resin even when deep drawing with a small corner R is performed using a rolled metal plate. It aims at providing the metal plate for containers, and the manufacturing method of this metal plate for battery containers.
  • a metal plate for a battery container is (1) a metal plate made of iron or an iron alloy used as a battery container, and the metal plate has a thickness of 10 to 100 ⁇ m.
  • the tensile strength of the metal plate is 300 to 700 MPa, the elongation of the metal plate is 5 to 35%, and the ratio of the crystal grain size in the plane direction and the thickness direction of the metal plate is 0.8 to 8 It is characterized by being.
  • (2) it is preferable to have a surface treatment layer containing Cr or Ni on the metal plate.
  • the metal plate for battery containers described in (1) or (2) it is preferable that (3) the metal plate is coated with a thermoplastic resin.
  • the thermoplastic resin preferably contains a polyolefin resin or a polyester resin.
  • the polyolefin resin or polyester resin covers both surfaces of the metal plate.
  • the polyolefin resin that covers one surface of the metal plate is a polypropylene resin, and the other surface of the metal plate is covered.
  • the polyester-based resin is preferably a polyethylene terephthalate resin.
  • the polyester resin is preferably non-oriented.
  • the thickness of the thermoplastic resin is preferably 10 to 50 ⁇ m.
  • a method for producing a metal plate for a battery container is a method for producing a metal plate for a battery container comprising a metal plate of iron or an iron alloy, and the metal plate is A first step of rolling to a thickness of 10 to 100 ⁇ m, and a second step of annealing the metal plate after the first step, wherein the metal plate has a tensile strength of 300 to 700 MPa, and the metal plate The metal plate is softened so that its elongation is 5 to 35% and the ratio of the crystal grain size in the plane direction to the thickness direction of the metal plate is 0.8 to 8.
  • cracking of the substrate and peeling of the resin can be suppressed even when deep drawing with a small corner R is performed using a rolled metal plate.
  • the battery container metal plate 1 according to the present embodiment is made of iron or an iron alloy. Examples of iron alloys include various steel plates that can be used as a base material for battery containers.
  • the thickness of the battery container metal plate 1 according to the present embodiment is 10 to 100 ⁇ m, more preferably 15 to 60 ⁇ m. If the thickness is less than 10 ⁇ m, the quality tends to be unstable, such as pinholes occurring in the cold rolling process or unstable thickness difference. Moreover, a crack generate
  • C 0.0001 to 0.1% by weight
  • C is an element that increases the strength of the metal plate 1 for battery containers. If the C content is excessive, the strength increases excessively and the rollability decreases, so the upper limit of the C content is set to 0.1% by weight.
  • the lower limit value of the C content is not particularly limited, but considering the cost, the lower limit value of the C content is set to 0.0001% by weight.
  • the C content is more preferably 0.001 to 0.01% by weight.
  • Si is an element that increases the strength of the metal plate 1 for battery containers. If the Si content is excessive, the strength increases excessively and the rollability decreases, so the upper limit of the Si content is set to 0.5% by weight.
  • the lower limit value of the Si content is not particularly limited, but considering the cost, the lower limit value of the Si content is set to 0.001% by weight.
  • the Si content is more preferably 0.001 to 0.02% by weight.
  • Mn is an element that increases the strength of the metal plate 1 for battery containers. If the Mn content is excessive, the strength increases excessively and the rollability decreases, so the upper limit of the Mn content is 1.0% by weight.
  • the lower limit of the Mn content is not particularly limited, but considering the cost, the lower limit of the Mn content is set to 0.01% by weight.
  • the Mn content is more preferably 0.01 to 0.5% by weight.
  • P is an element that increases the strength of the metal plate 1 for battery containers. If the P content is excessive, the strength increases excessively and the rollability decreases, so the upper limit of the P content is 0.05% by weight.
  • the lower limit value of the P content is not particularly limited, but considering the cost, the lower limit value of the P content is 0.001% by weight.
  • the P content is more preferably 0.001 to 0.02% by weight.
  • S is an element that reduces the corrosion resistance of the metal plate 1 for battery containers. Therefore, the smaller the S content, the better. In particular, when the S content exceeds 0.02% by weight, the corrosion resistance decreases significantly, so the upper limit of the S content is 0.02% by weight.
  • the lower limit of the S content is not particularly limited, but considering the cost, the lower limit of the S content is set to 0.0001% by weight.
  • the S content is more preferably 0.001 to 0.01% by weight.
  • Al 0.0005 to 0.20% by weight
  • Al is added as a deoxidizing element of the metal plate 1 for battery containers.
  • the Al content is preferably 0.0005% by weight or more.
  • the upper limit of the Al content is 0.20% by weight.
  • the lower limit value of the Al content is not particularly limited, but considering the cost, the lower limit value of the Al content is set to 0.0005% by weight.
  • the Al content is more preferably 0.001 to 0.10%.
  • N is an element that reduces the workability of the metal plate 1 for battery containers. Therefore, the smaller the N content, the better. In particular, when the N content exceeds 0.0040% by weight, the workability deteriorates significantly, so the upper limit of the N content is set to 0.0040% by weight.
  • the lower limit value of the N content is not particularly limited, but the lower limit value of the N content is set to 0.0001% by weight in consideration of cost.
  • the N content is more preferably 0.001 to 0.0040% by weight.
  • the main element of the balance of the metal plate 1 for battery containers is Fe, and the other is an impurity that is inevitably mixed during manufacture.
  • Ti, Nb, B, Cu, Ni, Sn, Cr, and the like may be contained as additional components.
  • Ti and Nb have the effect of fixing C and N in the battery case metal plate 1 as carbides and nitrides and improving the workability of the battery case metal plate 1, so that Ti: 0.01 to One or two of 0.8 wt% and Nb: 0.005 to 0.05 wt% may be contained.
  • the metal plate 1 for battery containers which concerns on this embodiment has a more preferable steel plate whose Cr is 10.5% or less.
  • the metal plate 1 for battery containers which concerns on this embodiment is equipped with the following characteristics by annealing after cold-rolling.
  • the temperature and time required for annealing in this embodiment are 2 to 9 hours, more preferably 2 to 6 hours when the annealing is performed at 450 ° C. to 650 ° C. (more preferably 500 to 600 ° C.).
  • the required time is 20 to 120 seconds.
  • the tensile strength of the metal plate 1 for battery containers according to the present embodiment is 300 to 700 MPa.
  • the tensile strength of the battery container metal plate 1 is more preferably 350 to 650 MPa. When more workability is required, it is more preferably 350 to 450 MPa.
  • the tensile strength of the metal plate 1 for battery containers was performed according to the “metal material tensile test method” described in JIS standard Z2241.
  • the elongation of the battery container metal plate 1 according to this embodiment is 5 to 35%. This is because if the elongation of the metal plate for battery container 1 is less than 5%, the workability is poor at the corners (corners), and cracks may occur during processing. Further, if the elongation is 36% or more, a high temperature and a long time are required as annealing conditions for obtaining such characteristics, and thus productivity is deteriorated.
  • the elongation of the battery container metal plate is more preferably 5 to 20%. In particular, when the thickness of the metal plate 1 for battery containers is small, it is preferably 5 to 15%, more preferably 7 to 12%.
  • the elongation of the metal plate 1 for battery containers was performed according to “20: Elongation at break (%) A measurement formula (7)” in “Metal material tensile test method” described in JIS standard Z2241.
  • the ratio of crystal grain size in the planar direction (rolling direction) to the thickness direction (planar direction / thickness direction) of the metal plate for battery container 1 according to the present embodiment is 0.8 to 8.
  • the “crystal grain size” in the present embodiment is an average value of crystal grain sizes present per unit area (for example, 1 ⁇ m ⁇ 1 ⁇ m).
  • the method for measuring the average crystal grain size is not particularly limited. For example, after taking a cross-sectional photograph of a metal plate with a scanning electron microscope (SEM), it conforms to JIS G0551 (Appendix B or C). Can be measured.
  • the crystal grain size is obtained based on each of the test line along the plane direction and the test line along the thickness direction, and the ratio is calculated.
  • the ratio of the crystal grain sizes described above may be calculated by comparing the longest length value in the rolling direction with the longest length value in the thickness direction. It is difficult in a general manufacturing method that the above-mentioned crystal grain size ratio of the metal plate 1 for battery containers is less than 0.8. Further, if the above-mentioned crystal grain size ratio exceeds 8, cracks are likely to occur during processing.
  • the ratio of the crystal grain sizes of the metal plate 1 for battery containers is more preferably 0.8 to 5. When more workability is required, the above-mentioned crystal grain size ratio of the battery container metal plate 1 is more preferably 0.8-4.
  • a surface treatment layer 2 may be formed on the battery plate metal plate 1 according to the present embodiment.
  • this surface treatment layer 2 for example, Cr plating or Ni plating may be mentioned for improving the adhesion with the resin formed thereon, and a single layer or multiple layers thereof may be used.
  • a treatment layer for improving corrosion resistance for example, Ni—Co plating treatment layer, Zn plating treatment layer such as Zn plating, Zn—Ni, Zn—Co plating, Sn plating treatment layer, and the like
  • a dispersion plating treatment layer between the base metal, a chemical conversion treatment layer for forming an oxide film, a silane coupling agent treatment layer, and the like may be provided.
  • the surface treatment layer of this embodiment may be formed, for example, after the battery container metal plate 1 is annealed after cold rolling or after the battery container metal plate 1 is cold rolled. It is also possible to form it before it is done. Moreover, in FIG. 1, although the surface treatment layer 2 is formed in both surfaces of the metal plate 1 for battery containers, the aspect in which the surface treatment layer 2 is formed in at least one surface may be sufficient.
  • the Ni plating bath shown below is used as an example. it can.
  • a nickel sulfate bath called a watt bath is mainly used, but a sulfamic acid bath, a borofluoride bath, a chloride bath, or the like may be used.
  • Nickel sulfate 200-350 g / l Nickel chloride: 20-60g / l Boric acid: 10-50 g / l pH: 1.5-5.0 Bath temperature: 40-70 ° C Current density: 1 to 40 A / dm 2
  • the surface treatment layer 2 formed on the battery container metal plate 1 may be provided on at least the surface of the battery container metal plate 1 that will be the inner surface of the container, but may be formed on both the outer and inner surfaces of the container. May be.
  • the nickel plating as the surface treatment layer 2 formed on the metal plate 1 for battery containers uses not only pure Ni but also an alloy containing Ni such as Ni—Co alloy or Fe—Ni alloy. It may be formed.
  • the thickness of the nickel plating of this embodiment is preferably 0.1 to 5 ⁇ m. Of these, the lower limit value is more preferably 0.3 ⁇ m, and even more preferably 0.5 ⁇ m. On the other hand, the upper limit value is more preferably 3 ⁇ m, and even more preferably 1 ⁇ m.
  • the Fe—Ni diffusion layer is preferably 0.2 ⁇ m or more, and more preferably 0.5 ⁇ m or more.
  • the cold-rolled metal plate is electrolytically degreased and pickled by a normal method, and then, for example, the following Cr plating bath is used as an example. it can.
  • the thickness of the Cr plating as the surface treatment layer 2 is preferably 0.05 to 1.0 ⁇ m.
  • the metal plate 1 for a battery container according to the present embodiment may be coated with a thermoplastic resin 3 on at least one surface.
  • the thickness of the thermoplastic resin 3 is 10 to 50 ⁇ m, more preferably 10 to 30 ⁇ m.
  • polyolefin resin, polyester resin, or polyamide resin is illustrated. And it is preferable that this polyolefin resin, polyester-type resin, or polyamide resin has coat
  • the other surface (the outer surface side of the battery can) of the metal plate for battery container 1 is preferably covered with a polyester resin, particularly polyethylene terephthalate.
  • a polyester resin for example, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate and the like can be used in addition to polyethylene terephthalate.
  • modified resins such as urethane-modified polyester resin, acrylic-modified polyester resin, and epoxy-modified polyester resin may be used.
  • the thickness of the resin that covers one surface (for example, the inner surface side of the battery can) of the metal plate for battery container 1 and the thickness of the resin that covers the other surface (for example, the outer surface side of the battery can) are required.
  • the thickness may be adjusted appropriately between the above thickness ranges depending on the corrosion resistance and workability, and the thicknesses on both sides may be the same or different.
  • this polyester resin it is preferable that this polyester resin is non-oriented.
  • the other surface (the outer surface side of the battery can) of the battery container metal plate 1 is not limited to the above-described polyester resin (polyethylene terephthalate), and both surfaces of the battery container metal plate 1 may be covered with a polypropylene resin. Good. Or you may coat
  • covered the metal plate 1 for battery containers through the well-known adhesive agent may be sufficient as the thermoplastic resin 3.
  • FIG. 1 As the known adhesive, for example, an acid-modified polyolefin resin, an epoxy resin, an acrylic resin, a urethane resin, a silicon resin, a polyisobutylene resin, a fluororesin, or an inorganic adhesive such as water glass can be used.
  • the thermoplastic resin 3 may be laminated on the metal plate 1 for a battery container after forming a film, or the thermoplastic resin heated and melted may be formed into a film by a slit of an extrusion width of an extrusion molding machine.
  • the film is not particularly limited.
  • the film may be an unstretched film, a uniaxially stretched film, or a biaxially stretched film.
  • a method for manufacturing the metal plate for a battery container according to this embodiment will be described with reference to FIG.
  • a metal plate made of iron or an iron alloy is prepared, and cold rolling is performed by putting the metal plate into a rolling machine that performs press working (step 1).
  • the cold rolled metal plate 1 for battery containers having a thickness of 10 to 100 ⁇ m is formed. This cold rolling may be performed in multiple stages as necessary, and heat treatment may be performed in between.
  • the battery container metal plate 1 is annealed (step 2).
  • the temperature of the metal plate for battery container 1 in the annealing treatment is 450 to 650 ° C., more preferably 500 to 600 ° C.
  • the time required for this annealing treatment is 2 to 9 hours, more preferably 2 to 6 hours.
  • the annealing treatment is performed at 700 to 800 ° C., it can be performed for 20 to 120 seconds, but it is preferably performed in the former temperature range from the viewpoint of improving workability.
  • the battery container metal plate 1 is preferably subjected to surface treatment (plating treatment) to form a surface treatment layer 2 on the battery container metal plate 1 (step 3).
  • a Ni plating layer is formed as the surface treatment layer 2 on the metal plate 1 for battery containers.
  • the thickness of the surface treatment layer 2 formed in step 3 is preferably, for example, 0.1 to 5 ⁇ m for the Ni plating layer and 0.05 to 1.0 ⁇ m for the Cr plating layer.
  • the annealing in step 2 may be performed after the surface treatment layer 2 is formed. Further, after the surface treatment layer 2 is formed after the annealing in Step 2, for example, heat treatment may be further performed for the purpose of improving the workability of the Ni plating layer.
  • the heat treatment conditions after the Ni plating can be performed under the same conditions as the annealing conditions described in Step 2.
  • a crack may arise on the surface of a Ni plating film, and adhesiveness and corrosion resistance may fall, and it is not preferable.
  • the metal plate for battery container 1 after passing through steps 2 and 3 has a tensile strength of 300 to 700 MPa, an elongation of 5 to 35%, and the planar direction (rolling direction) and thickness direction of the metal plate 1 for battery container.
  • the crystal grain size ratio is 0.8 to 8.
  • the battery container metal plate 1 on which the surface treatment layer 2 is formed is subjected to a treatment (resin coating treatment) for coating the thermoplastic resin 3 described above with a thickness of about 10 to 50 ⁇ m.
  • a treatment for coating the thermoplastic resin 3 described above with a thickness of about 10 to 50 ⁇ m.
  • a polypropylene resin is formed on one surface on the inner surface side of the metal plate 1 for battery containers, and a polyethylene terephthalate resin or a polypropylene resin is formed on one surface on the outer surface side of the container.
  • the resin may be formed by film lamination or extrusion lamination.
  • the temperature of the battery container metal plate 1 when the thermoplastic resin 3 is coated is adjusted to 200 to 280 ° C.
  • step 5 deep drawing is performed to form the battery container metal plate 1 into a container shape as shown in FIG. More specifically, the container shape of the present embodiment has a rectangular recess having a depth D in which corners with a radius of curvature R are formed at four corners so that a rectangular electrode plate can be accommodated.
  • the Rs at the four corners are equal, but the Rs at the four corners may be different from each other.
  • the battery container is sealed after housing battery elements such as an electrode plate and an electrolytic solution, but the battery container metal plate 1 of the present embodiment can also be applied as a lid member of a battery container used for sealing.
  • the lid member which is a constituent member of such a battery container may be formed with a storage space similar to that of the battery container main body shown in FIG. 4, or may be used as a flat plate.
  • the coating resin on the facing surfaces of the battery container body and the lid member is configured such that the same kind of resin faces each other like polypropylene resins or polyester resins.
  • the above-described sealing method is an example, and is not limited thereto. For example, a known adhesive may be used.
  • the battery container obtained in this embodiment is formed using the battery container metal plate 1 of this embodiment described above, the adhesion between the nickel-plated metal plate or the chrome-plated metal plate and the resin. Therefore, it can be suitably used as a battery container for various primary batteries or secondary batteries such as alkaline batteries, nickel-metal hydride batteries, nickel-cadmium batteries, and lithium ion batteries.
  • Ni plating a surface treatment layer 2 having a thickness of 1.0 ⁇ m.
  • the conditions for Ni plating were as follows. (Nickel plating conditions) Bath composition: Nickel sulfate, nickel chloride, boric acid, pit inhibitor pH: 4.0 to 4.6 Bath temperature: 60 ° C Current density: 25-30 A / dm 2
  • the battery plate metal plate 1 having the following characteristics was obtained by annealing the substrate on which the Ni plating layer was formed at 600 ° C. for 3 hours. ⁇ Tensile strength: 390 MPa ⁇ Elongation: 10% -Ratio of crystal grain size in the plane (rolling) direction and thickness direction: 1.2 As shown in FIGS. 3 and 5, the crystal grain size conforms to JIS G0551 (Appendix C) after taking a cross-sectional photograph of the metal plate 1 for a battery container with a scanning electron microscope (SEM). And it measured about each of the plane direction and the thickness direction.
  • JIS G0551 Appendix C
  • Material No. Regarding B to E the material no. Using the same base material as A, changing the plating conditions and heat treatment conditions as follows, the material No. B to E were prepared.
  • the material no. A to material No. For the battery container metal plate 1 using F, a polypropylene resin is formed on one surface of the battery container metal plate 1 on the container inner surface side, and polyethylene terephthalate is formed on the one surface on the container outer surface side. Each resin was formed. In addition, the lamination temperature (temperature of the metal plate 1 for battery containers) at this time was 260 ° C.
  • the battery container was formed by drawing the depth D in the range of 4 to 17 mm. It has been found that the value of D / R is important when the depth of the drawing process is D and the radius of curvature R when processing the battery container. More specifically, the larger the D / R value, the more severe the processing, but it becomes possible to form a battery container with a larger capacity. Based on such knowledge, the D / R value is preferably 0.4 or more, more preferably 0.9 or more. Thereby, the capacity
  • Example 1 Material No. 1 shown in Table 1 as the metal plate 1 for battery containers. A was used. In addition, a polypropylene resin is formed with a thickness of 30 ⁇ m on one surface of the metal plate for battery container 1 on the inner surface side of the container, and a polyethylene terephthalate resin is formed with a thickness of 12 ⁇ m on one surface on the outer surface side of the container. Formed. In addition, the lamination temperature (temperature of the metal plate 1 for battery containers) at this time was 260 ° C. And the depth at the time of a drawing process was 11 mm, and it processed into the battery container. Table 2 shows the material specifications, drawing conditions, and evaluation of the processing results in Example 1.
  • Example 2 The same operation as in Example 1 was performed except that the depth during drawing was set to 15 mm.
  • Table 2 shows the evaluation of material specifications, drawing conditions, and processing results in Example 2.
  • Example 3 The same operation as in Example 1 was performed except that the depth during drawing was 17 mm.
  • Table 2 shows the material specifications, drawing conditions, and evaluation of the processing results in Example 3.
  • Example 4 The same procedure as in Example 1 was performed except that the thickness of the polyethylene terephthalate resin formed on the outer surface side of the battery container was 30 ⁇ m and the depth during drawing was 17 mm.
  • Table 2 shows the material specifications, drawing conditions, and evaluation of the processing results in Example 4.
  • Example 5 Example 1 except that the thickness of the polypropylene resin formed on the inner surface side of the battery container is 20 ⁇ m, the thickness of the polyethylene terephthalate resin formed on the outer surface side of the battery container is 30 ⁇ m, and the depth during drawing is 17 mm. As well as. Table 2 shows the material specifications, drawing conditions, and evaluation of the processing results in Example 5.
  • Example 6 Material Nos. Shown in Table 1 as metal plates for battery containers. The same procedure as in Example 1 was performed except that B was used and the depth during drawing was 17 mm. Table 2 shows the material specifications, drawing conditions, and evaluation of the processing results in Example 6.
  • Example 7 Material Nos. Shown in Table 1 as metal plates for battery containers. The same procedure as in Example 1 was performed except that C was used. Table 2 shows the material specifications, drawing conditions, and evaluation of the processing results in Example 7.
  • Example 8 Material Nos. Shown in Table 1 as metal plates for battery containers. The same operation as in Example 1 was performed except that D was used and the depth at the time of drawing was changed to 5 mm. Table 2 shows the material specifications, drawing conditions, and evaluation of the processing results in Example 8.
  • Example 9 The same operation as in Example 8 was performed except that the depth during drawing was 6 mm.
  • Table 2 shows the evaluation of material specifications, drawing conditions and processing results in Example 9.
  • Example 10 The same operation as in Example 8 was performed except that the depth at the time of drawing was set to 7 mm.
  • Table 2 shows the material specifications, drawing conditions, and evaluation of the processing results in Example 10.
  • Example 11> The same operation as in Example 8 was performed except that the depth at the time of drawing was 11 mm.
  • Table 2 shows the evaluation of material specifications, drawing conditions, and processing results in Example 11.
  • Comparative Example 2 The same operation as in Comparative Example 1 was performed except that the depth during drawing was set to 5 mm. Table 2 shows the material specifications, drawing conditions, and evaluation of the processing results in Comparative Example 2.
  • Comparative Example 4 The same procedure as in Comparative Example 1 was performed except that the resin formed on the outer surface side of the battery container was a stretched polyethylene terephthalate resin having a thickness of 19 ⁇ m and the depth during drawing was 5 mm. Table 2 shows the material specifications, drawing conditions, and evaluation of the processing results in Comparative Example 4.
  • D / R can represent the degree of processing, and the greater the depth D, the smaller the R, that is, the greater the D / R, the more severe the processing.
  • the total thickness ( ⁇ m) of the battery case metal plates used in Examples 1 to 11 and Comparative Examples 1 to 7, and the ratio (D / R) of the ratio of the drawing depth to the radius of curvature R (D / R) Table 3 also summarizes the ratio of sheet thickness / drawing depth D and radius of curvature R).
  • the present invention has the following features.
  • the metal plate for battery containers and the manufacturing method thereof according to the present invention can exhibit good characteristics even when deep drawing with a small radius of curvature R is performed using a rolled metal plate. It can be applied to a wide range of industries that use batteries.

Abstract

[Problem] To provide a metal sheet for a battery container which employs a rolled metal sheet and with which it is possible to suppress cracking of a base material and peeling of resin even if a deep drawing process employing a small corner portion radius is used, and to provide a method of manufacturing said metal sheet for a battery container. [Solution] This metal sheet for a battery container is a metal sheet that is used for a battery container and that comprises iron or an alloy of iron, characterized in that the thickness of the metal sheet is 10 to 100 µm, the tensile strength of the metal sheet is 300 to 700 MPa, the elongation of the metal sheet is 5 to 35%, and the ratio between the grain size of the metal sheet in the planar direction and the thickness direction is 0.8 to 8.

Description

電池容器用金属板およびこの電池容器用金属板の製造方法Metal plate for battery container and method for producing the metal plate for battery container
 本発明は、リチウムイオン二次電池などの電池容器として好適な金属板およびこの電池容器用金属板の製造方法に関する。 The present invention relates to a metal plate suitable as a battery container such as a lithium ion secondary battery and a method for producing the metal plate for the battery container.
 近年における電子機器の小型化は目覚ましく、携帯電話や携帯情報端末などの携帯型電子機器が広く普及している。かような携帯型電子機器においては、その電力源として充電が可能な二次電池が搭載されている。
 また、二次電池は、上記した携帯型電子機器に搭載されるに留まらず、ガソリンの枯渇問題や環境問題などが相俟ってハイブリッド自動車や電気自動車などの車両へも徐々に搭載されてきている。
In recent years, downsizing of electronic devices has been remarkable, and portable electronic devices such as mobile phones and portable information terminals have been widely used. Such a portable electronic device is equipped with a rechargeable secondary battery as its power source.
Secondary batteries are not only installed in the above-mentioned portable electronic devices, but are also gradually installed in vehicles such as hybrid cars and electric cars due to gasoline exhaustion and environmental problems. Yes.
 上記した携帯型電子機器あるいは車両に搭載される二次電池においては、高出力で長寿命な高性能電池としてリチウムイオン二次電池(以下、「LiB」とも称する)が着目されている。
 リチウムイオン二次電池は用途によって様々な種類があり、非水系電解液と正極活物質や負極活物質などを収容する電池容器も円筒形や角型など様々な形態をとる。このうち特許文献1では、薄板状金属板に樹脂を被覆したラミネート金属板を用いたパウチ内に電極などを収容する技術が開示されている。また、この特許文献1によれば、鉄又は鉄の合金を金属箔芯材として用いる旨が言及されている。
In the above-described secondary battery mounted on a portable electronic device or a vehicle, a lithium ion secondary battery (hereinafter also referred to as “LiB”) has attracted attention as a high-performance battery with high output and long life.
There are various types of lithium ion secondary batteries depending on the application, and battery containers that contain a non-aqueous electrolyte, a positive electrode active material, a negative electrode active material, and the like take various forms such as a cylindrical shape and a rectangular shape. Among these, Patent Document 1 discloses a technique for accommodating an electrode or the like in a pouch using a laminated metal plate in which a thin plate-like metal plate is coated with a resin. Further, according to this Patent Document 1, it is mentioned that iron or an iron alloy is used as a metal foil core material.
 また、特許文献2や特許文献3では、厚さ200μm以下の圧延金属板を用い、この圧延金属板上にNiめっきを施した後で圧延および熱処理を施すことで、この圧延金属板の表面にNiおよびFeを含む拡散合金層を形成する技術が開示されている。電解液などに対する耐食性向上を図るため圧延金属板上にポリオレフィン系樹脂が形成されることがあるが、この特許文献2によれば上記拡散合金層を用いることで圧延金属板とポリオレフィン系樹脂との密着性を向上させる旨が言及されている。 In Patent Document 2 and Patent Document 3, a rolled metal plate having a thickness of 200 μm or less is used, and Ni plating is applied to the rolled metal plate, and then rolling and heat treatment are performed on the surface of the rolled metal plate. A technique for forming a diffusion alloy layer containing Ni and Fe is disclosed. A polyolefin-based resin may be formed on a rolled metal plate in order to improve the corrosion resistance against an electrolytic solution, etc. According to this Patent Document 2, by using the diffusion alloy layer, the rolled metal plate and the polyolefin-based resin are formed. It is mentioned that the adhesion is improved.
特開2001-202932号公報JP 2001-202932 A 国際公開第2016/013572号International Publication No. 2016/013572 国際公開第2016/013575号International Publication No. 2016/013575
 上記した車両や電子機器に搭載可能な二次電池は、高出力であることに加えて高容量であることも要求されている。ここで、単純に容量を増加させるだけでよい場合には、比較的大きな容器に相応の電極活物質を収容すれば事足りるかもしれない。しかしながら特に車両に搭載される二次電池においては、電池自体の重量増は燃費の悪化に即刻でつながるため、高容量を実現するためであっても重量の増加は極力抑制せねばならない。 Secondary batteries that can be mounted on the vehicles and electronic devices described above are required to have high capacity in addition to high output. Here, if it is sufficient to simply increase the capacity, it may be sufficient to accommodate a corresponding electrode active material in a relatively large container. However, particularly in a secondary battery mounted on a vehicle, an increase in the weight of the battery itself immediately leads to a deterioration in fuel consumption. Therefore, an increase in weight must be suppressed as much as possible even in order to realize a high capacity.
 可能な限り重量増を避けつつ高容量を実現する手法として、より厳しい条件下における深絞り加工を行って、電池容器の内容量を増加させることが想定される。特に、電池容器における角部(隅)のRを小さくし、内部に複数枚重ねて収容する板状電極と電池容器の大きさを合わせることにより、電池容量を増加させることが可能となる。しかしながら、上記した特許文献1乃至3を含む従来の技術では、かような深絞り加工に適しているとは言えず改善の余地は大きい。特に電池容器における角部(隅)では、厳しい条件で深絞り加工を行うと基材の割れや樹脂の剥離が顕著となることが判明した。
 本発明は上記した課題を一例として解決することを目的としており、例えば圧延金属板を用いて角部のRが小さい深絞り加工を行う場合でも基材の割れや樹脂の剥離を抑制可能な電池容器用金属板およびこの電池容器用金属板の製造方法を提供することを目的とする。
As a technique for realizing a high capacity while avoiding an increase in weight as much as possible, it is assumed that deep drawing under more severe conditions is performed to increase the internal capacity of the battery container. In particular, it is possible to increase the battery capacity by reducing the corner portion (corner) R of the battery container and matching the size of the battery container with a plurality of plate-like electrodes accommodated inside each other. However, the conventional techniques including the above-described Patent Documents 1 to 3 are not suitable for such deep drawing, and there is much room for improvement. In particular, at the corner (corner) of the battery container, it has been found that when deep drawing is performed under severe conditions, cracking of the substrate and peeling of the resin become significant.
An object of the present invention is to solve the above-mentioned problem as an example. For example, a battery capable of suppressing cracking of a base material and peeling of a resin even when deep drawing with a small corner R is performed using a rolled metal plate. It aims at providing the metal plate for containers, and the manufacturing method of this metal plate for battery containers.
 上記した課題を解決するため、本発明の電池容器用金属板は、(1)電池容器として用いられる鉄又は鉄の合金からなる金属板であって、前記金属板の厚みが10~100μmであり、前記金属板の引張強度が300~700MPaであり、前記金属板の伸びが5~35%であり、且つ、前記金属板の平面方向と厚み方向における結晶粒径の比が0.8~8であることを特徴とする。
 なお、上記した(1)の電池容器用金属板においては、(2)前記金属板上にCr又はNiを含む表面処理層を有することが好ましい。
 また、上記した(1)又は(2)の電池容器用金属板においては、(3)前記金属板は熱可塑性樹脂で被覆されていることが好ましい。
In order to solve the above problems, a metal plate for a battery container according to the present invention is (1) a metal plate made of iron or an iron alloy used as a battery container, and the metal plate has a thickness of 10 to 100 μm. The tensile strength of the metal plate is 300 to 700 MPa, the elongation of the metal plate is 5 to 35%, and the ratio of the crystal grain size in the plane direction and the thickness direction of the metal plate is 0.8 to 8 It is characterized by being.
In the above (1) battery container metal plate, (2) it is preferable to have a surface treatment layer containing Cr or Ni on the metal plate.
In the metal plate for battery containers described in (1) or (2), it is preferable that (3) the metal plate is coated with a thermoplastic resin.
 また、上記した(3)の電池容器用金属板においては、(4)前記熱可塑性樹脂はポリオレフィン系樹脂又はポリエステル系樹脂を含むことが好ましい。
 また、上記した(4)の電池容器用金属板においては、(5)前記ポリオレフィン系樹脂又はポリエステル系樹脂は、前記金属板の両面を被覆することが好ましい。
 また、上記した(5)の電池容器用金属板においては、(6)前記金属板のうち一方の面を被覆する前記ポリオレフィン系樹脂はポリプロピレン樹脂であり、前記金属板のうち他方の面を被覆する前記ポリエステル系樹脂はポリエチレンテレフタレート樹脂であることが好ましい。
In the battery container metal plate described in (3) above, (4) the thermoplastic resin preferably contains a polyolefin resin or a polyester resin.
In the metal plate for battery containers described in (4) above, it is preferable that (5) the polyolefin resin or polyester resin covers both surfaces of the metal plate.
Moreover, in the metal plate for battery containers of (5) described above, (6) the polyolefin resin that covers one surface of the metal plate is a polypropylene resin, and the other surface of the metal plate is covered. The polyester-based resin is preferably a polyethylene terephthalate resin.
 また、上記した(6)の電池容器用金属板においては、(7)前記ポリエステル樹脂は無配向であることが好ましい。
 また、上記した(3)~(7)のいずれかに電池容器用金属板においては、(8)前記熱可塑性樹脂の厚みは、10~50μmであることが好ましい。
In the metal plate for battery containers described in (6) above, (7) the polyester resin is preferably non-oriented.
In the metal plate for battery containers according to any one of (3) to (7), (8) the thickness of the thermoplastic resin is preferably 10 to 50 μm.
 さらに上記した課題を解決するため、本発明の電池容器用金属板の製造方法は、鉄又は鉄の合金の金属板からなる電池容器用金属板の製造方法であって、前記金属板を冷間圧延してその厚みを10~100μmとする第1工程と、前記第1工程の後に、前記金属板を焼鈍する第2工程を有し、前記金属板の引張強度が300~700MPa、前記金属板の伸びが5~35%、且つ前記金属板の平面方向と厚み方向における結晶粒径の比が0.8~8となるように軟化させることを特徴とする。
 なお上記した電池容器用金属板の製造方法においては、前記第1工程の後で、前記第2工程の前または後に、前記金属板に表面処理層を形成する第3工程を有することが好ましい。
Furthermore, in order to solve the above-described problems, a method for producing a metal plate for a battery container according to the present invention is a method for producing a metal plate for a battery container comprising a metal plate of iron or an iron alloy, and the metal plate is A first step of rolling to a thickness of 10 to 100 μm, and a second step of annealing the metal plate after the first step, wherein the metal plate has a tensile strength of 300 to 700 MPa, and the metal plate The metal plate is softened so that its elongation is 5 to 35% and the ratio of the crystal grain size in the plane direction to the thickness direction of the metal plate is 0.8 to 8.
In addition, in the manufacturing method of the above-mentioned metal plate for battery containers, it is preferable to have the 3rd process of forming a surface treatment layer in the said metal plate after the said 1st process and before or after the said 2nd process.
 本発明によれば、圧延金属板を用いて角部のRが小さい深絞り加工を行う場合でも基材の割れや樹脂の剥離を抑制することができる。 According to the present invention, cracking of the substrate and peeling of the resin can be suppressed even when deep drawing with a small corner R is performed using a rolled metal plate.
実施形態にかかる電池容器用金属板を示す模式図である。It is a schematic diagram which shows the metal plate for battery containers concerning embodiment. 実施形態にかかる電池容器用金属板の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the metal plate for battery containers concerning embodiment. 顕微鏡で撮影した材料No.Aにおける断面写真である。Material No. photographed with a microscope It is a cross-sectional photograph in A. 実施形態にかかる電池容器用金属板を用いて成形される電池容器の概要を示す図である。It is a figure which shows the outline | summary of the battery container shape | molded using the metal plate for battery containers concerning embodiment. 顕微鏡で撮影した材料No.Eにおける断面写真である。Material No. photographed with a microscope It is a cross-sectional photograph in E.
 以下、図1を用いて本実施形態の電池容器用金属板1について説明する。なお図1においては、便宜上、電池容器用金属板1の厚み方向をZ方向とし、さらに電池容器用金属板1の圧延方向をX方向として説明する。しかしながらこれら方向の定義付けは本発明の権利範囲を減縮するものではない。
<電池容器用金属板>
 本実施形態に係る電池容器用金属板1は、鉄又は鉄の合金からなる。鉄の合金としては、電池容器の基材として適用可能な種々の鋼板などが例示でき、例えば低炭素アルミキルド鋼(炭素量0.01~0.15重量%)、炭素量が0.003重量%以下の極低炭素鋼、または、極低炭素鋼にさらにTiやNbを添加してなる非時効性極低炭素鋼なども含むものとする。
 また、本実施形態に係る電池容器用金属板1の厚さは、10~100μmであり、より好ましくは15~60μmである。厚みが10μmより小さいと、冷間圧延工程においてピンホールが発生する、あるいは板厚勾差が不安定になるなど品質が不安定となりやすい。また、成型工程において割れが発生し、本願の目的とする効果が得られないおそれがある。一方で厚みが100μmを超えると、軽量化の効果が得られないからである。
Hereinafter, the metal plate 1 for battery containers of this embodiment is demonstrated using FIG. In FIG. 1, for convenience, the thickness direction of the battery container metal plate 1 is described as the Z direction, and the rolling direction of the battery container metal plate 1 is described as the X direction. However, the definition of these directions does not reduce the scope of rights of the present invention.
<Metal plate for battery container>
The battery container metal plate 1 according to the present embodiment is made of iron or an iron alloy. Examples of iron alloys include various steel plates that can be used as a base material for battery containers. For example, low-carbon aluminum killed steel (carbon content 0.01 to 0.15% by weight), carbon content 0.003% by weight The following ultra-low carbon steel or non-aging ultra-low carbon steel obtained by adding Ti or Nb to ultra-low carbon steel is also included.
In addition, the thickness of the battery container metal plate 1 according to the present embodiment is 10 to 100 μm, more preferably 15 to 60 μm. If the thickness is less than 10 μm, the quality tends to be unstable, such as pinholes occurring in the cold rolling process or unstable thickness difference. Moreover, a crack generate | occur | produces in a shaping | molding process and there exists a possibility that the effect made into the objective of this application may not be acquired. On the other hand, if the thickness exceeds 100 μm, the effect of weight reduction cannot be obtained.
 ここで、電池容器用金属板1が鉄の合金である場合における成分組成の一例を次に示す。 
(C:0.0001~0.1重量%)
 Cは、電池容器用金属板1の強度を高める元素である。Cの含有量が過剰であると強度が上昇し過ぎて圧延性が低下することから、Cの含有量の上限値を0.1重量%とする。一方でCの含有量の下限値は特に制限はないが、コストを考慮してCの含有量の下限値は0.0001重量%とする。なお、Cの含有量は、より好ましくは0.001~0.01重量%である。 
Here, an example of a component composition in the case where the metal plate 1 for battery containers is an iron alloy is shown below.
(C: 0.0001 to 0.1% by weight)
C is an element that increases the strength of the metal plate 1 for battery containers. If the C content is excessive, the strength increases excessively and the rollability decreases, so the upper limit of the C content is set to 0.1% by weight. On the other hand, the lower limit value of the C content is not particularly limited, but considering the cost, the lower limit value of the C content is set to 0.0001% by weight. The C content is more preferably 0.001 to 0.01% by weight.
(Si:0.001~0.5重量%)
 Siは、電池容器用金属板1の強度を高める元素である。Siの含有量が過剰であると強度が上昇し過ぎて圧延性が低下することから、Siの含有量の上限値を0.5重量%とする。一方でSiの含有量の下限値は特に制限はないが、コストを考慮してSiの含有量の下限値は0.001重量%とする。なお、Siの含有量は、より好ましくは0.001~0.02重量%である。
(Si: 0.001 to 0.5% by weight)
Si is an element that increases the strength of the metal plate 1 for battery containers. If the Si content is excessive, the strength increases excessively and the rollability decreases, so the upper limit of the Si content is set to 0.5% by weight. On the other hand, the lower limit value of the Si content is not particularly limited, but considering the cost, the lower limit value of the Si content is set to 0.001% by weight. The Si content is more preferably 0.001 to 0.02% by weight.
(Mn:0.01~1.0重量%)
 Mnは、電池容器用金属板1の強度を高める元素である。Mnの含有量が過剰であると強度が上昇し過ぎて圧延性が低下することから、Mnの含有量の上限値を1.0重量%とする。一方でMnの含有量の下限値は特に制限はないが、コストを考慮してMnの含有量の下限値は0.01重量%とする。なお、Mnの含有量は、より好ましくは0.01~0.5%重量%である。
(Mn: 0.01 to 1.0% by weight)
Mn is an element that increases the strength of the metal plate 1 for battery containers. If the Mn content is excessive, the strength increases excessively and the rollability decreases, so the upper limit of the Mn content is 1.0% by weight. On the other hand, the lower limit of the Mn content is not particularly limited, but considering the cost, the lower limit of the Mn content is set to 0.01% by weight. The Mn content is more preferably 0.01 to 0.5% by weight.
(P:0.001~0.05重量%)
 Pは、電池容器用金属板1の強度を高める元素である。Pの含有量が過剰になると強度が上昇し過ぎて圧延性が低下することから、Pの含有量の上限値を0.05重量%とする。一方、Pの含有量の下限値は特に制限はないが、コストを考慮してPの含有量の下限値は0.001重量%とする。なお、Pの含有量は、より好ましくは0.001~0.02重量%である。 
(P: 0.001 to 0.05% by weight)
P is an element that increases the strength of the metal plate 1 for battery containers. If the P content is excessive, the strength increases excessively and the rollability decreases, so the upper limit of the P content is 0.05% by weight. On the other hand, the lower limit value of the P content is not particularly limited, but considering the cost, the lower limit value of the P content is 0.001% by weight. The P content is more preferably 0.001 to 0.02% by weight.
(S:0.0001~0.02重量%)
 Sは、電池容器用金属板1の耐腐食性を低下させる元素である。そのため、Sの含有量は少ないほど好ましい。特に、Sの含有量が0.02重量%を超えると耐腐食性の低下が顕著となることから、Sの含有量の上限値を0.02重量%とする。一方でSの含有量の下限値は特に制限はないが、コストを考慮してSの含有量の下限値は0.0001重量%とする。なお、Sの含有量は、より好ましくは0.001~0.01重量%である。 
(S: 0.0001 to 0.02% by weight)
S is an element that reduces the corrosion resistance of the metal plate 1 for battery containers. Therefore, the smaller the S content, the better. In particular, when the S content exceeds 0.02% by weight, the corrosion resistance decreases significantly, so the upper limit of the S content is 0.02% by weight. On the other hand, the lower limit of the S content is not particularly limited, but considering the cost, the lower limit of the S content is set to 0.0001% by weight. The S content is more preferably 0.001 to 0.01% by weight.
(Al:0.0005~0.20重量%)
 Alは、例えば電池容器用金属板1の脱酸元素として添加される。脱酸による効果を得るためには、Alの含有量を0.0005重量%以上とすることが好ましい。しかしながら、Alの含有量が過剰になると圧延性が低下することから、Alの含有量の上限値を0.20重量%とする。一方で、Alの含有量の下限値は特に制限はないが、コストを考慮してAlの含有量の下限値は0.0005重量%とする。なお、Alの含有量は、より好ましくは0.001~0.10%である。 
(Al: 0.0005 to 0.20% by weight)
For example, Al is added as a deoxidizing element of the metal plate 1 for battery containers. In order to obtain the effect of deoxidation, the Al content is preferably 0.0005% by weight or more. However, if the Al content is excessive, the rollability deteriorates, so the upper limit of the Al content is 0.20% by weight. On the other hand, the lower limit value of the Al content is not particularly limited, but considering the cost, the lower limit value of the Al content is set to 0.0005% by weight. The Al content is more preferably 0.001 to 0.10%.
(N:0.0001~0.0040重量%)
 Nは、電池容器用金属板1の加工性を低下させる元素である。そのため、Nの含有量は少ないほど好ましい。特に、Nの含有量が0.0040重量%を超えると加工性の低下が顕著となることから、Nの含有量の上限値を0.0040重量%とする。一方でNの含有量の下限値は特に制限はないが、コストを考慮してNの含有量の下限値は0.0001重量%とする。なお、Nの含有量は、より好ましくは0.001~0.0040重量%である。
(N: 0.0001 to 0.0040% by weight)
N is an element that reduces the workability of the metal plate 1 for battery containers. Therefore, the smaller the N content, the better. In particular, when the N content exceeds 0.0040% by weight, the workability deteriorates significantly, so the upper limit of the N content is set to 0.0040% by weight. On the other hand, the lower limit value of the N content is not particularly limited, but the lower limit value of the N content is set to 0.0001% by weight in consideration of cost. The N content is more preferably 0.001 to 0.0040% by weight.
(残部:Fe及び不可避的不純物)
 電池容器用金属板1の残部のうち主要な元素はFeであり、その他は製造時に不可避的に混入してしまう不純物である。 
(Balance: Fe and inevitable impurities)
The main element of the balance of the metal plate 1 for battery containers is Fe, and the other is an impurity that is inevitably mixed during manufacture.
 その他、付加成分として、Ti、Nb、B、Cu、Ni、Sn、及びCrなどが含有されていてもよい。特にTi及びNbは、電池容器用金属板1中のC及びNを炭化物及び窒化物として固定して、電池容器用金属板1の加工性を向上させる効果を有するので、Ti:0.01~0.8重量%、Nb:0.005~0.05重量%の範囲で1種または2種を含有させてもよい。また、本実施形態に係る電池容器用金属板1はCrが10.5%以下の鋼板がより好ましい。 In addition, Ti, Nb, B, Cu, Ni, Sn, Cr, and the like may be contained as additional components. In particular, Ti and Nb have the effect of fixing C and N in the battery case metal plate 1 as carbides and nitrides and improving the workability of the battery case metal plate 1, so that Ti: 0.01 to One or two of 0.8 wt% and Nb: 0.005 to 0.05 wt% may be contained. Moreover, the metal plate 1 for battery containers which concerns on this embodiment has a more preferable steel plate whose Cr is 10.5% or less.
 なお本実施形態に係る電池容器用金属板1は、冷間圧延された後で焼鈍されることで、以下の特性を備えている。なお、本実施形態の焼鈍に必要な温度と時間は、450℃~650℃(より好ましくは500~600℃)で行う場合は2~9時間、さらに好ましくは2~6時間である。また、700~800℃で焼鈍を行う場合、その所要時間は20~120秒である。
(引張強度)
 本実施形態に係る電池容器用金属板1の引張強度は、300~700MPaである。引張強度が300MPaより小さいと、電池容器として用いた際に外部からの力で変形してしまうことにより割れ・孔が発生し、これにより電解液の漏れなどが発生してしまう問題がある。また、引張強度が700MPaを超えると加工性が乏しくなってしまうためである。なお、電池容器用金属板1の引張強度は、より好ましくは、350~650MPaである。より加工性を必要とする場合には、更に好ましくは350~450MPaである。
 なお電池容器用金属板1の引張強度は、JIS規格のZ2241に記載された「金属材料引張試験方法」に準じて行った。
In addition, the metal plate 1 for battery containers which concerns on this embodiment is equipped with the following characteristics by annealing after cold-rolling. Note that the temperature and time required for annealing in this embodiment are 2 to 9 hours, more preferably 2 to 6 hours when the annealing is performed at 450 ° C. to 650 ° C. (more preferably 500 to 600 ° C.). When annealing is performed at 700 to 800 ° C., the required time is 20 to 120 seconds.
(Tensile strength)
The tensile strength of the metal plate 1 for battery containers according to the present embodiment is 300 to 700 MPa. When the tensile strength is less than 300 MPa, there is a problem that cracks and holes are generated due to deformation by an external force when used as a battery container, thereby causing leakage of the electrolyte. Moreover, it is because workability will become scarce when tensile strength exceeds 700 Mpa. The tensile strength of the battery container metal plate 1 is more preferably 350 to 650 MPa. When more workability is required, it is more preferably 350 to 450 MPa.
In addition, the tensile strength of the metal plate 1 for battery containers was performed according to the “metal material tensile test method” described in JIS standard Z2241.
(伸び)
 本実施形態に係る電池容器用金属板1の伸びは、5~35%である。電池容器用金属板1の伸びが5%未満だと角(隅)部において加工性が乏しくなり、加工の際に割れが生じるおそれがあるためである。また、伸びが36%以上であるとこのような特性を出すための焼鈍条件として高い温度・長い時間が必要となるため、生産性が悪くなるためである。なお、電池容器用金属板の伸びは、より好ましくは、5~20%である。特に、電池容器用金属板1の厚みが薄い場合には5~15%が好ましく、更に好ましくは7~12%である。
 なお電池容器用金属板1の伸びは、JIS規格のZ2241に記載された「金属材料引張試験方法」の「20:破断伸び(%)Aの測定の式(7)」に準じて行った。
(Elongation)
The elongation of the battery container metal plate 1 according to this embodiment is 5 to 35%. This is because if the elongation of the metal plate for battery container 1 is less than 5%, the workability is poor at the corners (corners), and cracks may occur during processing. Further, if the elongation is 36% or more, a high temperature and a long time are required as annealing conditions for obtaining such characteristics, and thus productivity is deteriorated. The elongation of the battery container metal plate is more preferably 5 to 20%. In particular, when the thickness of the metal plate 1 for battery containers is small, it is preferably 5 to 15%, more preferably 7 to 12%.
The elongation of the metal plate 1 for battery containers was performed according to “20: Elongation at break (%) A measurement formula (7)” in “Metal material tensile test method” described in JIS standard Z2241.
(結晶粒径の比)
 本実施形態に係る電池容器用金属板1の平面方向(圧延方向)と厚み方向における結晶粒径の比(平面方向/厚み方向)は、0.8~8である。なお本実施形態の「結晶粒径」は、単位面積(例えば1μm×1μm)当たりに存在する結晶粒径の平均値である。この平均結晶粒径を測定する方法に特に制限はないが、例えば走査型電子顕微鏡(SEM)で金属板の断面写真の撮影を行った上でJIS G0551(附属書BまたはC)に準拠して測定することができる。平面方向(圧延方向)と厚み方向における比を求めるには、平面方向に沿った試験線と厚み方向に沿った試験線のそれぞれに基づいて結晶粒径を求め、その比を計算する。なお、測定対象となる複数の粒子それぞれにおいて、圧延方向における最長の長さ値と、厚み方向における最長の長さ値とを対比することで上述した結晶粒径の比を算出してもよい。
 電池容器用金属板1の上記した結晶粒径の比が0.8未満となるようなものは一般的な製造方法において困難である。また、上記した結晶粒径の比が8を超えると加工の際に割れが生じやすい。なお、電池容器用金属板1の上記した結晶粒径の比は、より好ましくは0.8~5である。より加工性が求められる場合、電池容器用金属板1の上記した結晶粒径の比は、更に好適には0.8~4である。
(Ratio of crystal grain size)
The ratio of crystal grain size in the planar direction (rolling direction) to the thickness direction (planar direction / thickness direction) of the metal plate for battery container 1 according to the present embodiment is 0.8 to 8. The “crystal grain size” in the present embodiment is an average value of crystal grain sizes present per unit area (for example, 1 μm × 1 μm). The method for measuring the average crystal grain size is not particularly limited. For example, after taking a cross-sectional photograph of a metal plate with a scanning electron microscope (SEM), it conforms to JIS G0551 (Appendix B or C). Can be measured. In order to obtain the ratio in the plane direction (rolling direction) and the thickness direction, the crystal grain size is obtained based on each of the test line along the plane direction and the test line along the thickness direction, and the ratio is calculated. In each of the plurality of particles to be measured, the ratio of the crystal grain sizes described above may be calculated by comparing the longest length value in the rolling direction with the longest length value in the thickness direction.
It is difficult in a general manufacturing method that the above-mentioned crystal grain size ratio of the metal plate 1 for battery containers is less than 0.8. Further, if the above-mentioned crystal grain size ratio exceeds 8, cracks are likely to occur during processing. The ratio of the crystal grain sizes of the metal plate 1 for battery containers is more preferably 0.8 to 5. When more workability is required, the above-mentioned crystal grain size ratio of the battery container metal plate 1 is more preferably 0.8-4.
<表面処理層>
 本実施形態に係る電池容器用金属板1上には、表面処理層2が形成されていてもよい。この表面処理層2としては、例えば上に形成される樹脂との密着性向上のためにはCrめっき又はNiめっきが挙げられ、単層またはこれらを複層させてもよく、これらの上に、あるいはこれらに代えて耐食性向上のための処理層(例えば、Ni-Coめっき処理層、ZnめっきやZn-Ni、Zn-CoめっきなどのZn系めっき処理層、Snめっき処理層、これらのめっきと下地金属との間の分散めっき処理層、酸化物皮膜を形成する化成処理層、シランカップリング剤処理層など)を設けても良い。なお本実施形態の表面処理層は、例えば電池容器用金属板1が冷間圧延後に焼鈍された後に形成してもよいし、電池容器用金属板1が冷間圧延された後であって焼鈍される前に形成することも可能である。また、図1においては電池容器用金属板1の両面に表面処理層2が形成されているが、少なくとも一方の面に表面処理層2が形成される態様でもよい。
<Surface treatment layer>
A surface treatment layer 2 may be formed on the battery plate metal plate 1 according to the present embodiment. As this surface treatment layer 2, for example, Cr plating or Ni plating may be mentioned for improving the adhesion with the resin formed thereon, and a single layer or multiple layers thereof may be used. Alternatively, a treatment layer for improving corrosion resistance (for example, Ni—Co plating treatment layer, Zn plating treatment layer such as Zn plating, Zn—Ni, Zn—Co plating, Sn plating treatment layer, and the like) A dispersion plating treatment layer between the base metal, a chemical conversion treatment layer for forming an oxide film, a silane coupling agent treatment layer, and the like may be provided. The surface treatment layer of this embodiment may be formed, for example, after the battery container metal plate 1 is annealed after cold rolling or after the battery container metal plate 1 is cold rolled. It is also possible to form it before it is done. Moreover, in FIG. 1, although the surface treatment layer 2 is formed in both surfaces of the metal plate 1 for battery containers, the aspect in which the surface treatment layer 2 is formed in at least one surface may be sufficient.
 なお、電池容器用金属板1上にNiめっきを施す場合には、冷間圧延した金属板を通常の方法で電解脱脂、酸洗した後、例えば一例として以下に示すNiめっき浴を用いることができる。なおNiめっき浴としてはワット浴と称される硫酸ニッケル浴が主と用いられるが、この他、スルファミン酸浴、ほうフッ化物浴、塩化物浴などを用いてもよい。
(Niめっき浴組成、条件)
 硫酸ニッケル:200~350g/l
 塩化ニッケル:20~60g/l
 ほう酸:10~50g/l
 pH:1.5~5.0
 浴温度:40~70℃
 電流密度:1~40A/dm
In addition, when performing Ni plating on the metal plate 1 for battery containers, after carrying out electrolytic degreasing and pickling of the cold-rolled metal plate by a normal method, for example, the Ni plating bath shown below is used as an example. it can. As the Ni plating bath, a nickel sulfate bath called a watt bath is mainly used, but a sulfamic acid bath, a borofluoride bath, a chloride bath, or the like may be used.
(Ni plating bath composition and conditions)
Nickel sulfate: 200-350 g / l
Nickel chloride: 20-60g / l
Boric acid: 10-50 g / l
pH: 1.5-5.0
Bath temperature: 40-70 ° C
Current density: 1 to 40 A / dm 2
 なお、電池容器用金属板1上に形成される表面処理層2は、少なくとも電池容器用金属板1において容器の内面となる面に設ければよいが、容器の外面・内面の両面に形成してもよい。また、電池容器用金属板1上に形成される表面処理層2としてのニッケルめっきは、純粋なNiだけでなく、Ni-Co合金や、Fe-Ni合金などのようにNiを含む合金を用いて形成されたものであってもよい。
 また、本実施形態のニッケルめっきの厚みは、好ましくは0.1~5μmである。このうち下限の値については、より好ましくは0.3μm、さらに好ましくは0.5μmである。一方で上限の値については、より好ましくは3μm、さらに好ましくは1μmである。
 また、表面処理層2としてニッケルめっきを電池容器用金属板1上に形成した後、熱処理を施す場合、Fe-Ni拡散層が形成される。加工性向上の観点から、このFe-Ni拡散層は0.2μm以上あることが好ましく、更には0.5μm以上の厚みがあるとより好ましい。
The surface treatment layer 2 formed on the battery container metal plate 1 may be provided on at least the surface of the battery container metal plate 1 that will be the inner surface of the container, but may be formed on both the outer and inner surfaces of the container. May be. The nickel plating as the surface treatment layer 2 formed on the metal plate 1 for battery containers uses not only pure Ni but also an alloy containing Ni such as Ni—Co alloy or Fe—Ni alloy. It may be formed.
In addition, the thickness of the nickel plating of this embodiment is preferably 0.1 to 5 μm. Of these, the lower limit value is more preferably 0.3 μm, and even more preferably 0.5 μm. On the other hand, the upper limit value is more preferably 3 μm, and even more preferably 1 μm.
Further, when nickel plating is formed as the surface treatment layer 2 on the battery plate metal plate 1 and then heat treatment is performed, an Fe—Ni diffusion layer is formed. From the viewpoint of improving workability, the Fe—Ni diffusion layer is preferably 0.2 μm or more, and more preferably 0.5 μm or more.
 また、電池容器用金属板1上にCrめっきを施す場合には、冷間圧延した金属板を通常の方法で電解脱脂、酸洗した後、例えば一例として以下に示すCrめっき浴を用いることができる。この場合、表面処理層2としてのCrめっきの厚みは、0.05~1.0μmが好適である。
(Crめっき浴組成、条件)
 CrO:30~200g/l
 NaF:5~10g/l
 浴温度:35~65℃
 電流密度:5~50A/dm
In addition, when Cr plating is performed on the metal plate 1 for battery containers, the cold-rolled metal plate is electrolytically degreased and pickled by a normal method, and then, for example, the following Cr plating bath is used as an example. it can. In this case, the thickness of the Cr plating as the surface treatment layer 2 is preferably 0.05 to 1.0 μm.
(Cr plating bath composition, conditions)
CrO 3 : 30 to 200 g / l
NaF: 5-10 g / l
Bath temperature: 35-65 ° C
Current density: 5 to 50 A / dm 2
<熱可塑性樹脂>
 本実施形態に係る電池容器用金属板1は、少なくとも一方の面が熱可塑性樹脂3で被覆されていてもよい。かような熱可塑性樹脂3の厚みは、10~50μmであり、より好ましくは10~30μmである。
 また、本実施形態の熱可塑性樹脂3としては、ポリオレフィン系樹脂、ポリエステル系樹脂又はポリアミド樹脂が例示される。そしてこのポリオレフィン系樹脂、ポリエステル系樹脂又はポリアミド樹脂は、電池容器用金属板1の両面を被覆していることが好ましい。この場合においては、電池容器用金属板1のうち一方の面(電池缶の内面側)はポリプロピレン樹脂で被覆されることが好ましい。一方で、電池容器用金属板1のうち他方の面(電池缶の外面側)は、ポリエステル樹脂、特にポリエチレンテレフタレートで被覆することが好ましい。なおポリエステル樹脂としては、ポリエチレンテレフタレートの他に例えば、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート等を使用することができる。また、ウレタン変性ポリエステル樹脂、アクリル変性ポリエステル樹脂、エポキシ変性ポリエステル樹脂などの変性樹脂を用いても良い。
<Thermoplastic resin>
The metal plate 1 for a battery container according to the present embodiment may be coated with a thermoplastic resin 3 on at least one surface. The thickness of the thermoplastic resin 3 is 10 to 50 μm, more preferably 10 to 30 μm.
Moreover, as the thermoplastic resin 3 of this embodiment, polyolefin resin, polyester resin, or polyamide resin is illustrated. And it is preferable that this polyolefin resin, polyester-type resin, or polyamide resin has coat | covered both surfaces of the metal plate 1 for battery containers. In this case, it is preferable that one surface (the inner surface side of the battery can) of the metal plate for battery container 1 is covered with a polypropylene resin. On the other hand, the other surface (the outer surface side of the battery can) of the metal plate for battery container 1 is preferably covered with a polyester resin, particularly polyethylene terephthalate. As the polyester resin, for example, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate and the like can be used in addition to polyethylene terephthalate. Further, modified resins such as urethane-modified polyester resin, acrylic-modified polyester resin, and epoxy-modified polyester resin may be used.
 なお、電池容器用金属板1のうち一方の面(例えば電池缶の内面側)を被覆する樹脂の厚みと、他方の面(例えば電池缶の外面側)を被覆する樹脂の厚みは、要求される耐食性・加工性により上記厚み範囲の間で適宜調整すればよく、両面の厚みは同じでも異なっていてもよい。
 また、ポリエステル樹脂を使用する場合、このポリエステル樹脂は無配向であることが好ましい。
 また、電池容器用金属板1のうち他方の面(電池缶の外面側)は、上記したポリエステル樹脂(ポリエチレンテレフタレート)に限られず、電池容器用金属板1の両面共にポリプロピレン樹脂で被覆してもよい。あるいは、電池容器用金属板1の両面共にポリエステル樹脂で被覆してもよい。
In addition, the thickness of the resin that covers one surface (for example, the inner surface side of the battery can) of the metal plate for battery container 1 and the thickness of the resin that covers the other surface (for example, the outer surface side of the battery can) are required. The thickness may be adjusted appropriately between the above thickness ranges depending on the corrosion resistance and workability, and the thicknesses on both sides may be the same or different.
Moreover, when using a polyester resin, it is preferable that this polyester resin is non-oriented.
Further, the other surface (the outer surface side of the battery can) of the battery container metal plate 1 is not limited to the above-described polyester resin (polyethylene terephthalate), and both surfaces of the battery container metal plate 1 may be covered with a polypropylene resin. Good. Or you may coat | cover both surfaces of the metal plate 1 for battery containers with a polyester resin.
 また、熱可塑性樹脂3は、公知の接着剤を介して電池容器用金属板1を被覆している形態であってもよい。なお公知の接着剤としては、例えば、酸変性ポリオレフィン樹脂、エポキシ樹脂、アクリル樹脂、ウレタン樹脂、シリコン樹脂、ポリイソブチレン系樹脂、フッ素樹脂、或いは水ガラス等の無機接着剤などを用いることができる。
 前記熱可塑性樹脂3は、フィルムを形成した後に前記電池容器用金属板1にラミネートするものであってもよいし、加熱溶融した前記熱可塑性樹脂を押し出し成形機の押し出し幅のスリットによってフィルム状に押し出し、直接金属板1上にラミネートする押し出しラミネート法によるものであってもよい。上記フィルムを形成した後でラミネートする場合、上記フィルムとしては特に限定されず、たとえば、無延伸フィルムであっても一軸延伸フィルムであっても二軸延伸フィルムであってもよい。
Moreover, the form which has coat | covered the metal plate 1 for battery containers through the well-known adhesive agent may be sufficient as the thermoplastic resin 3. FIG. As the known adhesive, for example, an acid-modified polyolefin resin, an epoxy resin, an acrylic resin, a urethane resin, a silicon resin, a polyisobutylene resin, a fluororesin, or an inorganic adhesive such as water glass can be used.
The thermoplastic resin 3 may be laminated on the metal plate 1 for a battery container after forming a film, or the thermoplastic resin heated and melted may be formed into a film by a slit of an extrusion width of an extrusion molding machine. An extrusion lamination method in which extrusion is performed and lamination directly on the metal plate 1 may be used. When laminating after forming the film, the film is not particularly limited. For example, the film may be an unstretched film, a uniaxially stretched film, or a biaxially stretched film.
<電池容器用金属板の製造方法>
 次いで、図2を参照しつつ本実施形態の電池容器用金属板の製造方法について説明する。
 まず、鉄又は鉄の合金からなる金属板を準備し、プレス加工を行う圧延機に当該金属板を投入することによって冷間圧延を行う(ステップ1)。これにより、厚さが10~100μmの冷間圧延された電池容器用金属板1が形成される。この冷間圧延は必要に応じて多段階で行ってもよく、間に熱処理を行ってもよい。
<Method for producing metal plate for battery container>
Next, a method for manufacturing the metal plate for a battery container according to this embodiment will be described with reference to FIG.
First, a metal plate made of iron or an iron alloy is prepared, and cold rolling is performed by putting the metal plate into a rolling machine that performs press working (step 1). As a result, the cold rolled metal plate 1 for battery containers having a thickness of 10 to 100 μm is formed. This cold rolling may be performed in multiple stages as necessary, and heat treatment may be performed in between.
 次いで、電池容器用金属板1に対して焼鈍処理を行う(ステップ2)。このとき、焼鈍処理における電池容器用金属板1の温度は、450℃~650℃、より好ましくは500~600℃である。また、この焼鈍処理における所要時間は、2~9時間、より好ましくは2~6時間行われる。また、700~800℃で焼鈍処理を行う場合は20~120秒で行うこともできるが、加工性向上の観点から前者の温度範囲で行うのが好ましい。 Next, the battery container metal plate 1 is annealed (step 2). At this time, the temperature of the metal plate for battery container 1 in the annealing treatment is 450 to 650 ° C., more preferably 500 to 600 ° C. The time required for this annealing treatment is 2 to 9 hours, more preferably 2 to 6 hours. Further, when the annealing treatment is performed at 700 to 800 ° C., it can be performed for 20 to 120 seconds, but it is preferably performed in the former temperature range from the viewpoint of improving workability.
 ステップ2の後、好適には電池容器用金属板1に表面処理(めっき処理)を施して当該電池容器用金属板1上に表面処理層2を形成する(ステップ3)。このとき、例えば電池容器用金属板1上には表面処理層2としてNiめっき層が形成される。
 なお、ステップ3で形成される表面処理層2の厚みとしては、例えばNiめっき層であれば0.1~5μm、Crめっき層であれば0.05~1.0μmが好適である。なお、ステップ2の焼鈍は表面処理層2を形成した後に行ってもよい。また、ステップ2の焼鈍を行った後で表面処理層2を形成した後に、例えばNiめっき層の加工性向上を狙いとして熱処理をさらに施してもよい。このNiめっき後の熱処理条件としては、ステップ2で記載される焼鈍条件と同様の条件で行うことが可能である。
なお、ステップ1の圧延工程をめっき処理の後に行うと、Niめっき皮膜の表面にクラックが生じて密着性、耐食性が低下する可能性があり、好ましくない。
After step 2, the battery container metal plate 1 is preferably subjected to surface treatment (plating treatment) to form a surface treatment layer 2 on the battery container metal plate 1 (step 3). At this time, for example, a Ni plating layer is formed as the surface treatment layer 2 on the metal plate 1 for battery containers.
The thickness of the surface treatment layer 2 formed in step 3 is preferably, for example, 0.1 to 5 μm for the Ni plating layer and 0.05 to 1.0 μm for the Cr plating layer. The annealing in step 2 may be performed after the surface treatment layer 2 is formed. Further, after the surface treatment layer 2 is formed after the annealing in Step 2, for example, heat treatment may be further performed for the purpose of improving the workability of the Ni plating layer. The heat treatment conditions after the Ni plating can be performed under the same conditions as the annealing conditions described in Step 2.
In addition, when the rolling process of step 1 is performed after a plating process, a crack may arise on the surface of a Ni plating film, and adhesiveness and corrosion resistance may fall, and it is not preferable.
 なお、ステップ2、3を経た後の電池容器用金属板1は、引張強度が300~700MPa、伸びが5~35%、且つ電池容器用金属板1の平面方向(圧延方向)と厚み方向における結晶粒径の比が0.8~8という特性を備えている。 The metal plate for battery container 1 after passing through steps 2 and 3 has a tensile strength of 300 to 700 MPa, an elongation of 5 to 35%, and the planar direction (rolling direction) and thickness direction of the metal plate 1 for battery container. The crystal grain size ratio is 0.8 to 8.
 次にステップ4では、表面処理層2が形成された電池容器用金属板1に対して、上記で説明した熱可塑性樹脂3を10~50μm程度の厚みで被覆する処理(樹脂被覆処理)を行う。より具体的には、電池容器用金属板1のうち容器内面側となる一方の面にはポリプロピレン樹脂を形成するとともに、容器外面側となる一方の面にはポリエチレンテレフタレート樹脂又はポリプロピレン樹脂を形成する。樹脂の形成方法としては、上述したように、フィルムラミネートでも良いし、押し出しラミネートによる方法でも良い。なお、この熱可塑性樹脂3を被覆する際の電池容器用金属板1の温度は、200~280℃に調整される。 Next, in step 4, the battery container metal plate 1 on which the surface treatment layer 2 is formed is subjected to a treatment (resin coating treatment) for coating the thermoplastic resin 3 described above with a thickness of about 10 to 50 μm. . More specifically, a polypropylene resin is formed on one surface on the inner surface side of the metal plate 1 for battery containers, and a polyethylene terephthalate resin or a polypropylene resin is formed on one surface on the outer surface side of the container. . As described above, the resin may be formed by film lamination or extrusion lamination. The temperature of the battery container metal plate 1 when the thermoplastic resin 3 is coated is adjusted to 200 to 280 ° C.
 そしてステップ5では、深絞り加工を行って、電池容器用金属板1を図4に示すような容器形状に成形する。より具体的には、本実施形態の容器形状は、矩形の電極板が収容可能なように四隅に曲率半径Rの隅部が形成された深さDの矩形状の凹部を有している。なお、図4の容器では四隅のRが等しくなっているが、この四隅のRはそれぞれ異なった値としてもよい。 In step 5, deep drawing is performed to form the battery container metal plate 1 into a container shape as shown in FIG. More specifically, the container shape of the present embodiment has a rectangular recess having a depth D in which corners with a radius of curvature R are formed at four corners so that a rectangular electrode plate can be accommodated. In the container of FIG. 4, the Rs at the four corners are equal, but the Rs at the four corners may be different from each other.
 なお電池容器は、電極板や電解液などの電池要素を収容した後で密封されるが、本実施形態の電池容器用金属板1は密封に用いられる電池容器の蓋部材としても適用できる。かような電池容器の構成部材である蓋部材は、図4に示した電池容器本体と同様な収容空間を形成されていてもよいし、平板のまま用いることもできる。また、電池容器の密封に際しては、絞り加工された収容部を有する電池容器本体の周縁のフランジ部で、上記した蓋部材とヒートシールするのが好ましい。この場合、電池容器本体と蓋部材の向かい合う面の被覆樹脂が、ポリプロピレン樹脂同士またはポリエステル樹脂同士のように同種類の樹脂が向き合うよう構成することが好ましい。なお上記した密封方法は一例であってこれに限らず、例えば公知の接着剤を用いてもよい。 The battery container is sealed after housing battery elements such as an electrode plate and an electrolytic solution, but the battery container metal plate 1 of the present embodiment can also be applied as a lid member of a battery container used for sealing. The lid member which is a constituent member of such a battery container may be formed with a storage space similar to that of the battery container main body shown in FIG. 4, or may be used as a flat plate. Further, when sealing the battery container, it is preferable to heat-seal the lid member described above at the peripheral flange portion of the battery container main body having the drawn housing portion. In this case, it is preferable that the coating resin on the facing surfaces of the battery container body and the lid member is configured such that the same kind of resin faces each other like polypropylene resins or polyester resins. The above-described sealing method is an example, and is not limited thereto. For example, a known adhesive may be used.
 本実施形態で得られた電池容器は、上述した本実施形態の電池容器用金属板1を用いて形成されるものであるため、ニッケルめっき金属板またはクロムめっき金属板と、樹脂との密着性が高く、それでいて量産加工性に優れるものであるため、アルカリ電池、ニッケル水素電池、ニッケル・カドミウム電池、リチウムイオン電池など種々の一次電池または二次電池の電池容器として好適に用いることができる。 Since the battery container obtained in this embodiment is formed using the battery container metal plate 1 of this embodiment described above, the adhesion between the nickel-plated metal plate or the chrome-plated metal plate and the resin. Therefore, it can be suitably used as a battery container for various primary batteries or secondary batteries such as alkaline batteries, nickel-metal hydride batteries, nickel-cadmium batteries, and lithium ion batteries.
 次に実施例を挙げて本発明についてより具体的に説明する。まず、後述する実施例または比較例で用いた材料No.A~材料No.Fの電池容器用金属板1の製造条件を、次の表1に記す。 Next, the present invention will be described more specifically with reference to examples. First, the material No. used in Examples or Comparative Examples described later is used. A to material No. The manufacturing conditions of the battery plate metal plate 1 for F are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<材料No.A>
 材料No.Aとして、まず基材として下記に示す化学組成を有する低炭素アルミキルド鋼の冷間圧延板(厚さ25μm)を準備した。
C:0.04重量%、Mn:0.32重量%、Si:0.01重量%、P:0.012重量%、S:0.014重量%、残部:Feおよび不可避的不純物
<Material No. A>
Material No. As A, first, a cold rolled sheet (thickness 25 μm) of low carbon aluminum killed steel having the following chemical composition was prepared as a base material.
C: 0.04 wt%, Mn: 0.32 wt%, Si: 0.01 wt%, P: 0.012 wt%, S: 0.014 wt%, balance: Fe and inevitable impurities
 次に、準備した基材について、電解脱脂、硫酸浸漬の酸洗を行った後、下記条件にてNiめっきを行って厚さ1.0μmの表面処理(Niめっき)層2を形成した。なお、Niめっきの条件は、以下の通りとした。
(ニッケルめっきの条件)
 浴組成:硫酸ニッケル、塩化ニッケル、ホウ酸、ピット抑制剤
 pH:4.0~4.6
 浴温:60℃
 電流密度:25~30A/dm
Next, the prepared substrate was subjected to electrolytic degreasing and pickling by sulfuric acid immersion, and then Ni plating was performed under the following conditions to form a surface treatment (Ni plating) layer 2 having a thickness of 1.0 μm. The conditions for Ni plating were as follows.
(Nickel plating conditions)
Bath composition: Nickel sulfate, nickel chloride, boric acid, pit inhibitor pH: 4.0 to 4.6
Bath temperature: 60 ° C
Current density: 25-30 A / dm 2
 Niめっき層が形成された基材に対し、焼鈍を600℃で3時間行うことで、以下の特性を有する電池容器用金属板1を得た。
・引張強度:390MPa
・伸び:10%
・平面(圧延)方向と厚み方向の結晶粒径の比:1.2
 なお、結晶粒径は、図3及び図5に示すように、走査型電子顕微鏡(SEM)で電池容器用金属板1の断面写真の撮影を行った上でJIS G0551(附属書C)に準拠して、平面方向及び厚み方向のそれぞれについて測定した。
The battery plate metal plate 1 having the following characteristics was obtained by annealing the substrate on which the Ni plating layer was formed at 600 ° C. for 3 hours.
・ Tensile strength: 390 MPa
・ Elongation: 10%
-Ratio of crystal grain size in the plane (rolling) direction and thickness direction: 1.2
As shown in FIGS. 3 and 5, the crystal grain size conforms to JIS G0551 (Appendix C) after taking a cross-sectional photograph of the metal plate 1 for a battery container with a scanning electron microscope (SEM). And it measured about each of the plane direction and the thickness direction.
 材料No.B~Eに関しては、材料No.Aと同じ基材を用い、上記めっき条件と熱処理条件を以下のとおり変えて材料No.B~Eをそれぞれ用意した。 Material No. Regarding B to E, the material no. Using the same base material as A, changing the plating conditions and heat treatment conditions as follows, the material No. B to E were prepared.
<材料No.B>
 材料No.Bでは、材料No.Aのニッケルめっき層の代わりに、以下の条件で厚さ0.1μmの表面処理層2としてのCrめっき層を形成した。
(クロムめっきの条件)
 クロムめっき浴: CrO:100g/l、NaF:5g/l
 浴温度:40℃、
 電流密度:50A/dm
<Material No. B>
Material No. In B, material no. Instead of the nickel plating layer of A, a Cr plating layer as a surface treatment layer 2 having a thickness of 0.1 μm was formed under the following conditions.
(Chrome plating conditions)
Chromium plating bath: CrO 3 : 100 g / l, NaF: 5 g / l
Bath temperature: 40 ° C
Current density: 50 A / dm 2
 その後、材料No.Aと同様に600℃の温度で3時間の条件で焼鈍を行い、以下の特性を有する電池容器用金属板1を得た。
・引張強度:390MPa
・伸び:10%
・平面(圧延)方向と厚み方向の結晶粒径の比:1.2
Thereafter, the material No. Similarly to A, annealing was performed at a temperature of 600 ° C. for 3 hours to obtain a metal plate 1 for a battery container having the following characteristics.
・ Tensile strength: 390 MPa
・ Elongation: 10%
-Ratio of crystal grain size in the plane (rolling) direction and thickness direction: 1.2
<材料No.C>
 材料No.Cでは、焼鈍条件を550℃の温度で3時間とした以外は、材料No.Aと同様にして、以下の特性を有する電池容器用金属板1を得た。
・引張強度:390MPa
・伸び:11%
・平面(圧延)方向と厚み方向の結晶粒径の比:3
<Material No. C>
Material No. In C, material No. was changed except that the annealing condition was set at a temperature of 550 ° C. for 3 hours. In the same manner as A, a metal plate 1 for a battery container having the following characteristics was obtained.
・ Tensile strength: 390 MPa
・ Elongation: 11%
-Ratio of crystal grain size in the plane (rolling) direction and thickness direction: 3
<材料No.D>
 材料No.Dでは、焼鈍条件を450℃の温度で3時間とした以外は、材料No.Aと同様にして、以下の特性を有する電池容器用金属板1を得た。
・引張強度:630MPa
・伸び:5.5%
・平面(圧延)方向と厚み方向の結晶粒径の比:5
<Material No. D>
Material No. In D, material No. was changed except that the annealing condition was set at 450 ° C. for 3 hours. In the same manner as A, a metal plate 1 for a battery container having the following characteristics was obtained.
・ Tensile strength: 630 MPa
・ Elongation: 5.5%
-Ratio of crystal grain size in the plane (rolling) direction and thickness direction: 5
<材料No.E>
 材料No.Eでは、焼鈍条件を行わなかった以外は材料No.Aと同様にして、以下の特性を有する電池容器用金属板1を得た。
・引張強度:780MPa
・伸び:3%
・平面(圧延)方向と厚み方向の結晶粒径の比:10
<Material No. E>
Material No. In E, material No. except that the annealing condition was not performed. In the same manner as A, a metal plate 1 for a battery container having the following characteristics was obtained.
・ Tensile strength: 780 MPa
・ Elongation: 3%
-Ratio of crystal grain size in the plane (rolling) direction and thickness direction: 10
<材料No.F>
 材料No.Fでは、下記の組成を有する厚み25μmの純アルミニウム板(JIS H4000合金番号A1050のO材)を、表面処理層を設けず、焼鈍処理を行わずに、電池容器用金属板1として用いた。
<Material No. F>
Material No. In F, a 25 μm-thick pure aluminum plate (O material of JIS H4000 alloy number A1050) having the following composition was used as the metal plate 1 for a battery container without providing a surface treatment layer and without performing an annealing treatment.
 この材料No.Fの特性は次に示すとおりである。なお材料No.Fについては、結晶粒径の測定は行わなかった。
・引張強度:60MPa
・伸び:5%
This material No. The characteristics of F are as follows. In addition, material No. For F, the crystal grain size was not measured.
・ Tensile strength: 60 MPa
・ Elongation: 5%
 次いで、このようにして得られた材料No.A~材料No.Fを用いた電池容器用金属板1に対し、電池容器用金属板1のうち容器内面側となる一方の面にはポリプロピレン樹脂を形成するとともに、容器外面側となる一方の面にはポリエチレンテレフタレート樹脂をそれぞれ形成した。なお、このときのラミネート温度(電池容器用金属板1の温度)は、260℃とした。 Next, the material no. A to material No. For the battery container metal plate 1 using F, a polypropylene resin is formed on one surface of the battery container metal plate 1 on the container inner surface side, and polyethylene terephthalate is formed on the one surface on the container outer surface side. Each resin was formed. In addition, the lamination temperature (temperature of the metal plate 1 for battery containers) at this time was 260 ° C.
(電池容器への加工)
 上記のごとく両面に熱可塑性樹脂3が形成された電池容器用金属板1に対し、図4に示すように、外形寸法を縦H=70mm×横W=70mm、電池容器の四隅における曲率半径Rを12.5、15、20および25mmとしてそれぞれ加工した。このとき、深さDを4~17mmの範囲で絞り加工を行って電池容器を形成した。
 なお、電池容器への加工に際しては、絞り加工の深さをD、曲率半径Rとした場合、D/Rの値が重要となることが判明した。より具体的には、D/Rの値が大きいほど加工が厳しくなるが、より容量の大きい電池容器の形成が可能となる。かような知見に基づけば、D/Rの値は、好ましくは0.4以上、より好ましくは0.9以上である。これにより電池容器としての容量を大きくすることができる。
(Processing into battery containers)
As shown in FIG. 4, the outer dimensions of the metal plate 1 for a battery container having the thermoplastic resin 3 formed on both sides as described above are as follows: vertical dimension H = 70 mm × horizontal W = 70 mm, and radius of curvature R at the four corners of the battery container. Were processed as 12.5, 15, 20, and 25 mm, respectively. At this time, the battery container was formed by drawing the depth D in the range of 4 to 17 mm.
It has been found that the value of D / R is important when the depth of the drawing process is D and the radius of curvature R when processing the battery container. More specifically, the larger the D / R value, the more severe the processing, but it becomes possible to form a battery container with a larger capacity. Based on such knowledge, the D / R value is preferably 0.4 or more, more preferably 0.9 or more. Thereby, the capacity | capacitance as a battery container can be enlarged.
(加工後の評価方法)
 加工後の評価は、電池容器の四隅で基材の割れや熱可塑性樹脂の浮きや割れを目視にて観察して評価した。
 なお評価は以下の基準で行った(後述の他の実施例や比較例も同様)。
[評価基準]
3点:目視で判定した結果、基材の割れや熱可塑性樹脂の浮き/割れが認められなかった。
2点:目視で判定した結果、実用には供せるが一部に割れや浮きが認められた。
1点:目視で判定した結果、実用に供せない程度の基材の割れや熱可塑性樹脂の浮き/割れが認められた。
(Evaluation method after processing)
The evaluation after processing was evaluated by visually observing cracks in the base material and floats and cracks in the thermoplastic resin at the four corners of the battery container.
The evaluation was performed based on the following criteria (the same applies to other examples and comparative examples described later).
[Evaluation criteria]
3 points: As a result of visual determination, no cracks in the base material and no floating / cracking in the thermoplastic resin were observed.
2 points: As a result of visual judgment, cracks and floats were partially observed although they could be put to practical use.
1 point: As a result of visual judgment, cracks in the base material and floating / cracking of the thermoplastic resin that were not practically used were observed.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
<実施例1>
 電池容器用金属板1として表1に示す材料No.Aを用いた。そしてこの電池容器用金属板1のうち容器内面側となる一方の面にはポリプロピレン樹脂を厚さ30μmで形成するとともに、容器外面側となる一方の面にはポリエチレンテレフタレート樹脂を厚さ12μmでそれぞれ形成した。なお、このときのラミネート温度(電池容器用金属板1の温度)は、260℃とした。
 そして絞り加工時の深さを11mmとして電池容器への加工を行った。
 この実施例1における材料仕様、絞り加工条件および加工結果の評価を表2に示す。
<Example 1>
Material No. 1 shown in Table 1 as the metal plate 1 for battery containers. A was used. In addition, a polypropylene resin is formed with a thickness of 30 μm on one surface of the metal plate for battery container 1 on the inner surface side of the container, and a polyethylene terephthalate resin is formed with a thickness of 12 μm on one surface on the outer surface side of the container. Formed. In addition, the lamination temperature (temperature of the metal plate 1 for battery containers) at this time was 260 ° C.
And the depth at the time of a drawing process was 11 mm, and it processed into the battery container.
Table 2 shows the material specifications, drawing conditions, and evaluation of the processing results in Example 1.
<実施例2>
 絞り加工時の深さを15mmとした以外は、実施例1と同様に行った。
 この実施例2における材料仕様、絞り加工条件および加工結果の評価を表2に示す。
<Example 2>
The same operation as in Example 1 was performed except that the depth during drawing was set to 15 mm.
Table 2 shows the evaluation of material specifications, drawing conditions, and processing results in Example 2.
<実施例3>
 絞り加工時の深さを17mmとした以外は、実施例1と同様に行った。
 この実施例3における材料仕様、絞り加工条件および加工結果の評価を表2に示す。
<Example 3>
The same operation as in Example 1 was performed except that the depth during drawing was 17 mm.
Table 2 shows the material specifications, drawing conditions, and evaluation of the processing results in Example 3.
<実施例4>
 電池容器の外面側に形成されるポリエチレンテレフタレート樹脂の厚みを30μmとし、絞り加工時の深さを17mmとした以外は、実施例1と同様に行った。
 この実施例4における材料仕様、絞り加工条件および加工結果の評価を表2に示す。
<Example 4>
The same procedure as in Example 1 was performed except that the thickness of the polyethylene terephthalate resin formed on the outer surface side of the battery container was 30 μm and the depth during drawing was 17 mm.
Table 2 shows the material specifications, drawing conditions, and evaluation of the processing results in Example 4.
<実施例5>
 電池容器の内面側に形成されるポリプロピレン樹脂の厚みを20μm、電池容器の外面側に形成されるポリエチレンテレフタレート樹脂の厚みを30μmとし、絞り加工時の深さを17mmとした以外は、実施例1と同様に行った。
 この実施例5における材料仕様、絞り加工条件および加工結果の評価を表2に示す。
<Example 5>
Example 1 except that the thickness of the polypropylene resin formed on the inner surface side of the battery container is 20 μm, the thickness of the polyethylene terephthalate resin formed on the outer surface side of the battery container is 30 μm, and the depth during drawing is 17 mm. As well as.
Table 2 shows the material specifications, drawing conditions, and evaluation of the processing results in Example 5.
<実施例6>
 電池容器用金属板として表1に示す材料No.Bを用い、絞り加工時の深さを17mmとした以外は、実施例1と同様に行った。
 この実施例6における材料仕様、絞り加工条件および加工結果の評価を表2に示す。
<Example 6>
Material Nos. Shown in Table 1 as metal plates for battery containers. The same procedure as in Example 1 was performed except that B was used and the depth during drawing was 17 mm.
Table 2 shows the material specifications, drawing conditions, and evaluation of the processing results in Example 6.
<実施例7>
 電池容器用金属板として表1に示す材料No.Cを用いた以外は、実施例1と同様に行った。
 この実施例7における材料仕様、絞り加工条件および加工結果の評価を表2に示す。
<Example 7>
Material Nos. Shown in Table 1 as metal plates for battery containers. The same procedure as in Example 1 was performed except that C was used.
Table 2 shows the material specifications, drawing conditions, and evaluation of the processing results in Example 7.
<実施例8>
 電池容器用金属板として表1に示す材料No.Dを用い、絞り加工時の深さを5mmとした以外は、実施例1と同様に行った。
 この実施例8における材料仕様、絞り加工条件および加工結果の評価を表2に示す。
<Example 8>
Material Nos. Shown in Table 1 as metal plates for battery containers. The same operation as in Example 1 was performed except that D was used and the depth at the time of drawing was changed to 5 mm.
Table 2 shows the material specifications, drawing conditions, and evaluation of the processing results in Example 8.
<実施例9>
 絞り加工時の深さを6mmとした以外は、実施例8と同様に行った。
 この実施例9における材料仕様、絞り加工条件および加工結果の評価を表2に示す。
<Example 9>
The same operation as in Example 8 was performed except that the depth during drawing was 6 mm.
Table 2 shows the evaluation of material specifications, drawing conditions and processing results in Example 9.
<実施例10>
 絞り加工時の深さを7mmとした以外は、実施例8と同様に行った。
 この実施例10における材料仕様、絞り加工条件および加工結果の評価を表2に示す。
<Example 10>
The same operation as in Example 8 was performed except that the depth at the time of drawing was set to 7 mm.
Table 2 shows the material specifications, drawing conditions, and evaluation of the processing results in Example 10.
<実施例11>
 絞り加工時の深さ11mmとした以外は、実施例8と同様に行った。
 この実施例11における材料仕様、絞り加工条件および加工結果の評価を表2に示す。
<Example 11>
The same operation as in Example 8 was performed except that the depth at the time of drawing was 11 mm.
Table 2 shows the evaluation of material specifications, drawing conditions, and processing results in Example 11.
<比較例1>
 電池容器用金属板として表1に示す材料No.Eを用い、絞り加工時の深さを4mmとした以外は、実施例1と同様に行った。
 この比較例1における材料仕様、絞り加工条件および加工結果の評価を表2に示す。
<Comparative Example 1>
Material Nos. Shown in Table 1 as metal plates for battery containers. The same procedure as in Example 1 was performed except that E was used and the depth during drawing was changed to 4 mm.
Table 2 shows the material specifications, drawing conditions, and evaluation of the processing results in Comparative Example 1.
<比較例2>
 絞り加工時の深さを5mmとした以外は、比較例1と同様に行った。
 この比較例2における材料仕様、絞り加工条件および加工結果の評価を表2に示す。
<Comparative Example 2>
The same operation as in Comparative Example 1 was performed except that the depth during drawing was set to 5 mm.
Table 2 shows the material specifications, drawing conditions, and evaluation of the processing results in Comparative Example 2.
<比較例3>
 絞り加工時の深さを6mmとした以外は、比較例1と同様に行った。
 この比較例3における材料仕様、絞り加工条件および加工結果の評価を表2に示す。
<Comparative Example 3>
The same operation as in Comparative Example 1 was performed except that the depth during drawing was 6 mm.
Table 2 shows the material specifications, drawing conditions, and evaluation of the processing results in Comparative Example 3.
<比較例4>
 電池容器の外面側に形成される樹脂を厚さ19μmの延伸ポリエチレンテレフタレート樹脂とし、絞り加工時の深さを5mmとした以外は、比較例1と同様に行った。
 この比較例4における材料仕様、絞り加工条件および加工結果の評価を表2に示す。
<Comparative Example 4>
The same procedure as in Comparative Example 1 was performed except that the resin formed on the outer surface side of the battery container was a stretched polyethylene terephthalate resin having a thickness of 19 μm and the depth during drawing was 5 mm.
Table 2 shows the material specifications, drawing conditions, and evaluation of the processing results in Comparative Example 4.
<比較例5>
 電池容器用金属板として表1に示す材料No.Fを用いた以外は、比較例1と同様に行った。
 この比較例5における材料仕様、絞り加工条件および加工結果の評価を表2に示す。
<Comparative Example 5>
Material Nos. Shown in Table 1 as metal plates for battery containers. The same procedure as in Comparative Example 1 was performed except that F was used.
Table 2 shows the evaluation of material specifications, drawing conditions, and processing results in Comparative Example 5.
<比較例6>
 絞り加工時の深さを5mmとした以外は、比較例5と同様に行った。
 この比較例6における材料仕様、絞り加工条件および加工結果の評価を表2に示す。
<Comparative Example 6>
The same operation as in Comparative Example 5 was performed except that the depth at the time of drawing was changed to 5 mm.
Table 2 shows the evaluation of material specifications, drawing conditions, and processing results in Comparative Example 6.
<比較例7>
 絞り加工時の深さを6mmとした以外は、比較例5と同様に行った。
 この比較例7における材料仕様、絞り加工条件および加工結果の評価を表2に示す。
<Comparative Example 7>
The same operation as in Comparative Example 5 was performed except that the depth during drawing was 6 mm.
Table 2 shows the material specifications, drawing conditions, and evaluation of the processing results in Comparative Example 7.
 表2に示すように、実施例1~11では電池缶の四隅で良好な加工結果を得ることができた。これは、電解液に対する耐食性や樹脂と基材との密着性を確保しつつ電池容器のうち発電要素(電極板、スペーサ、電解液など)が収容される空間を最大限確保できることを意味する。
 一方で比較例1~7では特に曲率半径が小さいほど加工結果は悪化しており、実用に耐えるだけの特性を備えていないことが判明した。
As shown in Table 2, in Examples 1 to 11, good processing results could be obtained at the four corners of the battery can. This means that the space in which the power generating elements (electrode plates, spacers, electrolytic solution, etc.) are accommodated in the battery container can be secured to the maximum while the corrosion resistance against the electrolytic solution and the adhesion between the resin and the substrate are secured.
On the other hand, in Comparative Examples 1 to 7, it was found that the smaller the radius of curvature, the worse the processing result, and it did not have the characteristics to withstand practical use.
 また、本発明者らは、絞り加工の深さDと電池缶の四隅における曲率半径Rとの関係に着目し、これらの比(絞り加工の深さDと曲率半径Rの比(D/R))について考察した。D/Rは加工の度合を表すことができ、深さDが大きいほど、また、Rが小さいほど、つまりD/Rが大きいほど加工は厳しくなる。そして曲率半径Rを変化させた場合(R12.5、R15、R20およびR25)におけるこれら比(D/R)について下記に示す表3にまとめた。
 また、実施例1~11および比較例1~7で用いた電池容器用金属板のトータルの厚み(μm)と、絞り加工の深さと曲率半径Rの比(D/R)との比(トータル板厚/絞り加工の深さDと曲率半径Rの比)についても表3にまとめた。
Further, the inventors pay attention to the relationship between the drawing depth D and the radius of curvature R at the four corners of the battery can, and the ratio of these (the ratio of the drawing depth D to the radius of curvature R (D / R )). D / R can represent the degree of processing, and the greater the depth D, the smaller the R, that is, the greater the D / R, the more severe the processing. These ratios (D / R) when the radius of curvature R is changed (R12.5, R15, R20, and R25) are summarized in Table 3 below.
Further, the total thickness (μm) of the battery case metal plates used in Examples 1 to 11 and Comparative Examples 1 to 7, and the ratio (D / R) of the ratio of the drawing depth to the radius of curvature R (D / R) Table 3 also summarizes the ratio of sheet thickness / drawing depth D and radius of curvature R).
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 この表3に基づけば、本発明においては以下の特徴を具備しているということができる。
(a)同一板厚においては、実施例で規定した条件では、絞り加工の深さDと曲率半径Rとの比(D/R)が0.4以上でも加工が可能であり、実施例3~6においては少なくとも1.4のD/Rが可能であることが実証されたものである。このことは、例えば電池容器の隅部における曲率半径Rが5mmの容器形状の場合、絞り加工の深さDが7mm程度まで成形可能であることを示唆する。一方で、比較例で規定した条件では、絞り加工の深さと曲率半径Rとの比(D/R)は0.3が限界となる。
Based on Table 3, it can be said that the present invention has the following features.
(A) With the same plate thickness, processing is possible even if the ratio (D / R) between the drawing depth D and the radius of curvature R is 0.4 or more under the conditions specified in the embodiment. It has been demonstrated that a D / R of at least 1.4 is possible in .about.6. This suggests that, for example, in the case of a container shape having a radius of curvature R of 5 mm at the corner of the battery container, the drawing depth D can be formed up to about 7 mm. On the other hand, under the conditions defined in the comparative example, the limit (D / R) between the drawing depth and the radius of curvature R is 0.3.
(b)トータル板厚と絞り加工の深さと曲率半径Rとの比(D/R)との関係においては、実施例で規定した条件では、少なくとも0.05以上で加工が可能であることが実証された。一方で、比較例で規定した条件では、0.28以上でないと加工が困難となる。 (B) With respect to the relationship between the total plate thickness, the ratio of the depth of drawing and the ratio (D / R) of the radius of curvature R, it may be possible to process at least 0.05 or more under the conditions specified in the examples. Proven. On the other hand, under the conditions specified in the comparative example, the processing becomes difficult unless the value is 0.28 or more.
 以上説明したように、本発明の電池容器用金属板およびその製造方法は、圧延金属板を用いて角部の曲率半径Rが小さい深絞り加工を行う場合においても良好な特性を示すことができ、電池を使用する幅広い分野の産業への適用が可能である。 As described above, the metal plate for battery containers and the manufacturing method thereof according to the present invention can exhibit good characteristics even when deep drawing with a small radius of curvature R is performed using a rolled metal plate. It can be applied to a wide range of industries that use batteries.
1 電池容器用金属板
2 表面処理層
3 熱可塑性樹脂
1 Metal plate for battery container 2 Surface treatment layer 3 Thermoplastic resin

Claims (10)

  1.  電池容器として用いられる鉄又は鉄の合金からなる金属板であって、
     前記金属板の厚みが10~100μmであり、
     前記金属板の引張強度が300~700MPaであり、
     前記金属板の伸びが5~35%であり、且つ、
     前記金属板の平面方向と厚み方向における結晶粒径の比が0.8~8であることを特徴とする電池容器用金属板。
    A metal plate made of iron or an iron alloy used as a battery container,
    The metal plate has a thickness of 10 to 100 μm;
    The tensile strength of the metal plate is 300 to 700 MPa,
    The elongation of the metal plate is 5 to 35%, and
    A metal plate for a battery container, wherein a ratio of a crystal grain size in a plane direction and a thickness direction of the metal plate is 0.8 to 8.
  2.  前記金属板上にCr又はNiを含む表面処理層を有する請求項1に記載の電池容器用金属板。 The metal plate for a battery container according to claim 1, further comprising a surface treatment layer containing Cr or Ni on the metal plate.
  3.  前記金属板は熱可塑性樹脂で被覆されている請求項1又は2に記載の電池容器用金属板。 The metal plate for a battery container according to claim 1 or 2, wherein the metal plate is coated with a thermoplastic resin.
  4.  前記熱可塑性樹脂はポリオレフィン系樹脂又はポリエステル樹脂を含む請求項3に記載の電池容器用金属板。 The metal plate for a battery container according to claim 3, wherein the thermoplastic resin includes a polyolefin resin or a polyester resin.
  5.  前記ポリオレフィン系樹脂又はポリエステル樹脂は、前記金属板の両面を被覆する請求項4に記載の電池容器用金属板。 The metal plate for a battery container according to claim 4, wherein the polyolefin resin or polyester resin covers both surfaces of the metal plate.
  6.  前記金属板のうち一方の面を被覆する前記ポリオレフィン系樹脂はポリプロピレン樹脂であり、
     前記金属板のうち他方の面を被覆するポリエステル樹脂はポリエチレンテレフタレートである請求項5に記載の電池容器用金属板。
    The polyolefin resin covering one surface of the metal plate is a polypropylene resin,
    The metal plate for a battery container according to claim 5, wherein the polyester resin covering the other surface of the metal plate is polyethylene terephthalate.
  7.  前記ポリエステル樹脂は無配向である請求項6に記載の電池容器用金属板。 The metal plate for a battery container according to claim 6, wherein the polyester resin is non-oriented.
  8.  前記熱可塑性樹脂の厚みは、10~50μmである請求項3~7のいずれか一項に記載の電池容器用金属板。 The metal plate for a battery container according to any one of claims 3 to 7, wherein the thickness of the thermoplastic resin is 10 to 50 µm.
  9.  鉄又は鉄の合金の金属板からなる電池容器用金属板の製造方法であって、
     前記金属板を冷間圧延してその厚みを10~100μmとする第1工程と、
     前記第1工程の後に、前記金属板を焼鈍する第2工程を有し、
     前記金属板の引張強度が300~700MPa、前記金属板の伸びが5~35%、且つ前記金属板の平面方向と厚み方向における結晶粒径の比が0.8~8となるように軟化させることを特徴とする電池容器用金属板の製造方法。
    A method for producing a metal plate for a battery container comprising a metal plate of iron or an iron alloy,
    A first step of cold rolling the metal plate to a thickness of 10 to 100 μm;
    A second step of annealing the metal plate after the first step;
    The metal plate is softened so that the tensile strength of the metal plate is 300 to 700 MPa, the elongation of the metal plate is 5 to 35%, and the ratio of the crystal grain size in the plane direction and the thickness direction of the metal plate is 0.8 to 8. The manufacturing method of the metal plate for battery containers characterized by the above-mentioned.
  10.  前記第1工程の後で、前記第2工程の前または後に、前記金属板に表面処理層を形成する第3工程を有する請求項9記載の電池容器用金属板の製造方法。 The method for producing a metal plate for a battery container according to claim 9, further comprising a third step of forming a surface treatment layer on the metal plate after the first step and before or after the second step.
PCT/JP2017/014429 2016-04-13 2017-04-07 Metal sheet for battery container, and method of manufacturing metal sheet for battery container WO2017179492A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780014719.2A CN108701782B (en) 2016-04-13 2017-04-07 Metal plate for battery container and method for manufacturing same
KR1020187022621A KR102323071B1 (en) 2016-04-13 2017-04-07 Metal plate for battery container and method for manufacturing the metal plate for battery container

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-080104 2016-04-13
JP2016080104A JP6913440B2 (en) 2016-04-13 2016-04-13 Metal plate for battery container and method for manufacturing this metal plate for battery container

Publications (1)

Publication Number Publication Date
WO2017179492A1 true WO2017179492A1 (en) 2017-10-19

Family

ID=60042474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/014429 WO2017179492A1 (en) 2016-04-13 2017-04-07 Metal sheet for battery container, and method of manufacturing metal sheet for battery container

Country Status (4)

Country Link
JP (1) JP6913440B2 (en)
KR (1) KR102323071B1 (en)
CN (1) CN108701782B (en)
WO (1) WO2017179492A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020045627A1 (en) * 2018-08-31 2020-03-05 東洋鋼鈑株式会社 Metal plate for cell container, and method for manufacturing metal plate for cell container
WO2022176553A1 (en) * 2021-02-19 2022-08-25 東洋鋼鈑株式会社 Steel foil for battery containers and pouch battery container produced from same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3117215A1 (en) * 2018-10-24 2020-04-30 HHeLI, LLC Polymer dipped pouch cell
JP7364881B2 (en) 2019-10-03 2023-10-19 日本製鉄株式会社 battery cell case

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1092395A (en) * 1996-09-12 1998-04-10 Katayama Tokushu Kogyo Kk Battery can forming material and manufacture thereof
JP2004156078A (en) * 2002-11-05 2004-06-03 Toyo Kohan Co Ltd Method of producing surface treated steel sheet for battery vessel, surface treated steel sheet for battery vessel, battery vessel obtained by using the steel sheet, and battery using the vessel
WO2015122523A1 (en) * 2014-02-17 2015-08-20 新日鉄住金マテリアルズ株式会社 Stainless steel foil and method for manufacturing same
WO2016013572A1 (en) * 2014-07-22 2016-01-28 新日鐵住金株式会社 Steel foil for electricity-storing-device container, container for electricity-storing device, electricity-storing device, and method for manufacturing steel foil for electricity-storing-device container
WO2016013575A1 (en) * 2014-07-22 2016-01-28 新日鐵住金株式会社 Steel foil for power storage device container, container for power storage device, power storage device, and method for manufacturing steel foil for power storage device container

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001202932A (en) 2000-01-18 2001-07-27 Yuasa Corp Package for enclosed type cattery and enclosed type battery
JP5349076B2 (en) * 2009-02-23 2013-11-20 新日鉄住金マテリアルズ株式会社 Resin-coated stainless steel foil for power storage device containers
JP6481270B2 (en) 2014-07-03 2019-03-13 新日鐵住金株式会社 Resistance spot welding method and welded joint of high strength low specific gravity steel plate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1092395A (en) * 1996-09-12 1998-04-10 Katayama Tokushu Kogyo Kk Battery can forming material and manufacture thereof
JP2004156078A (en) * 2002-11-05 2004-06-03 Toyo Kohan Co Ltd Method of producing surface treated steel sheet for battery vessel, surface treated steel sheet for battery vessel, battery vessel obtained by using the steel sheet, and battery using the vessel
WO2015122523A1 (en) * 2014-02-17 2015-08-20 新日鉄住金マテリアルズ株式会社 Stainless steel foil and method for manufacturing same
WO2016013572A1 (en) * 2014-07-22 2016-01-28 新日鐵住金株式会社 Steel foil for electricity-storing-device container, container for electricity-storing device, electricity-storing device, and method for manufacturing steel foil for electricity-storing-device container
WO2016013575A1 (en) * 2014-07-22 2016-01-28 新日鐵住金株式会社 Steel foil for power storage device container, container for power storage device, power storage device, and method for manufacturing steel foil for power storage device container

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHIGEO OWAKU, JIS TEKKO ZAIRYO NYUMON, 10 February 1997 (1997-02-10), pages 30 - 37 , 112 to 113, 116 to 117 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020045627A1 (en) * 2018-08-31 2020-03-05 東洋鋼鈑株式会社 Metal plate for cell container, and method for manufacturing metal plate for cell container
CN112639171A (en) * 2018-08-31 2021-04-09 东洋钢钣株式会社 Metal plate for battery container and method for manufacturing same
JPWO2020045627A1 (en) * 2018-08-31 2021-09-09 東洋鋼鈑株式会社 Metal plate for battery container and method for manufacturing this metal plate for battery container
JP7413264B2 (en) 2018-08-31 2024-01-15 東洋鋼鈑株式会社 Metal plate for battery container and method for manufacturing this metal plate for battery container
WO2022176553A1 (en) * 2021-02-19 2022-08-25 東洋鋼鈑株式会社 Steel foil for battery containers and pouch battery container produced from same

Also Published As

Publication number Publication date
CN108701782B (en) 2021-07-16
JP6913440B2 (en) 2021-08-04
JP2017191703A (en) 2017-10-19
KR102323071B1 (en) 2021-11-05
CN108701782A (en) 2018-10-23
KR20180134327A (en) 2018-12-18

Similar Documents

Publication Publication Date Title
WO2017179492A1 (en) Metal sheet for battery container, and method of manufacturing metal sheet for battery container
US10205135B2 (en) Steel foil for power storage device container, power storage device container, power storage device, and manufacturing method of steel foil for power storage device container
US10418601B2 (en) Steel foil for power storage device container, power storage device container, power storage device, and manufacturing method of steel foil for power storage device container
JP2005022336A (en) Packaging material excellent in moldability and packaging container molded by using the material
JP7413264B2 (en) Metal plate for battery container and method for manufacturing this metal plate for battery container
JP2021184400A (en) Current collector for battery and battery
KR20230145964A (en) Pouch film lamination, pouch-type battery case and pouch-type secondary battery
WO2022176553A1 (en) Steel foil for battery containers and pouch battery container produced from same
WO2021200506A1 (en) Ni-PLATED STEEL FOIL FOR NICKEL HYDROGEN SECONDARY BATTERY COLLECTORS, NICKEL HYDROGEN SECONDARY BATTERY COLLECTOR, AND NICKEL HYDROGEN SECONDARY BATTERY
TW201700752A (en) Stainless steel foil for outer package of battery
JP2021163639A (en) Nickel plating steel foil for nickel-hydrogen secondary battery current collector, nickel-hydrogen secondary battery current collector, and nickel-hydrogen secondary battery
JP2006326879A (en) Resin coated metal sheet, housing for electric cell equipped with resin coated metal sheet and electric cell equipped with housing
JP7475931B2 (en) Ni-plated steel foil for nickel-hydrogen secondary battery current collector, nickel-hydrogen secondary battery current collector, and nickel-hydrogen secondary battery
JPWO2004093220A1 (en) Surface-treated steel sheet for battery case and battery case
KR20230097597A (en) Pouch film laminate and battery case prepared by using the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187022621

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17782308

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17782308

Country of ref document: EP

Kind code of ref document: A1