WO2017179344A1 - Wave height calculating device, radar device, and wave height calculating method - Google Patents

Wave height calculating device, radar device, and wave height calculating method Download PDF

Info

Publication number
WO2017179344A1
WO2017179344A1 PCT/JP2017/009496 JP2017009496W WO2017179344A1 WO 2017179344 A1 WO2017179344 A1 WO 2017179344A1 JP 2017009496 W JP2017009496 W JP 2017009496W WO 2017179344 A1 WO2017179344 A1 WO 2017179344A1
Authority
WO
WIPO (PCT)
Prior art keywords
wave
correction coefficient
spectrum power
area
wave height
Prior art date
Application number
PCT/JP2017/009496
Other languages
French (fr)
Japanese (ja)
Inventor
亮祐 森垣
敏志 川浪
健介 井芹
ミン トラン
祐也 燒山
陵 中島
Original Assignee
古野電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古野電気株式会社 filed Critical 古野電気株式会社
Priority to JP2018511930A priority Critical patent/JP6676151B2/en
Publication of WO2017179344A1 publication Critical patent/WO2017179344A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C13/00Surveying specially adapted to open water, e.g. sea, lake, river or canal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/95Radar or analogous systems specially adapted for specific applications for meteorological use
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Definitions

  • the present invention relates to a wave height calculation device that calculates the height of a wave generated on a water surface, a radar device including the wave height calculation device, and a wave height calculation method.
  • m 0 is the zero-order moment of the wave spectrum
  • alpha is a fixed coefficient.
  • the wave height H 1/3 described above is a so-called significant wave height.
  • the significant wave height is the average of the significant wave heights.
  • a significant wave means that when a continuous wave is observed at a certain point, the height of the wave height is the upper third with the number of waves observed as a parameter. (For example, if 100 waves are observed in 20 minutes, the larger 33 waves).
  • the significant wave height defined as described above substantially coincides with the wave height monitored visually.
  • Kanazawa Local Meteorological Observatory “Kameme Mame Knowledge”, [online], [Search February 24, 2016], Internet ⁇ http://www.jma-net.go.jp/kanazawa/mame/nami/nami.html >
  • the way the echoes of the wavy line are reflected has an orientation dependency.
  • a transmission wave is transmitted in the traveling direction of the wave, that is, the traveling direction of the wave based on the direction from the analysis area including the wave whose wave height is to be calculated to the receiver.
  • the relative wave direction defined by is near 0 degrees
  • the wave spectrum power ⁇ m 0 tends to be large, and the echoes of the wavy line are easily reflected clearly.
  • the transmission wave is transmitted along the traveling direction of the wave, that is, when the relative wave direction is around 180 degrees
  • the wave spectrum power ⁇ m 0 is likely to increase, and the echo of the wave line is It is easy to see clearly.
  • the transmission wave is transmitted in a direction perpendicular to the traveling direction of the wave, that is, when the relative wave direction is around 90 degrees or around 270 degrees, the wave spectrum power ⁇ m 0 becomes small. It is easy and the echo of the wavy line is not easily reflected. As described above, since the reflection of the wavy line has direction dependency, the value of ⁇ m 0 varies depending on the direction of the analysis area even when the wave height is the same. That is, in the conventional method, a wave height measurement error due to the bearing occurs.
  • the present invention is for solving the above-described problems, and its purpose is to accurately calculate the wave height regardless of the relative wave direction of the wave to be calculated.
  • a wave height calculation apparatus is obtained from a receiver that receives an echo that is transmitted and reflected by a wave generated on a water surface in a detection area.
  • a wave height calculation device for calculating a wave height of a wave based on an echo signal, a wave spectrum power calculation unit for calculating a wave spectrum power in an analysis area included in the detection area, and the received wave from the analysis area
  • a wave spectrum power correction unit that corrects the wave spectrum power based on a relative wave direction that is a traveling direction of the waves in the analysis area with reference to the direction toward the vessel, and based on the corrected wave spectrum power
  • a wave height calculator for calculating the wave height of the waves in the analysis area.
  • the wave spectrum power correction unit calculates the wave spectrum power according to a first correction coefficient calculation formula that is a function of the relative wave direction that takes a minimum value when the relative wave direction is 0 degree.
  • the wave spectrum power is corrected using a first correction coefficient obtained by substituting the relative wave direction of the waves in the analysis area.
  • the first correction coefficient calculation formula takes a minimum value when the relative wave direction is 180 degrees.
  • the wave spectrum power correction unit multiplies the wave spectrum power by the first correction coefficient obtained by the first correction coefficient calculation expression represented by the following expression (1) to thereby calculate the wave spectrum power. Correct the spectral power.
  • is the first correction coefficient
  • is the relative wave direction
  • A, B, and C are correction coefficient parameters.
  • the wave spectrum power correction unit obtains the second correction coefficient obtained based on the first correction coefficient obtained by the first correction coefficient calculation formula represented by the following formula (2):
  • the wave spectrum power is corrected by multiplying the wave spectrum power.
  • i is a natural number given corresponding to the direction
  • ⁇ i is the first correction coefficient calculated corresponding to the direction of the wave
  • ⁇ i is the relative wave direction calculated corresponding to the direction of the wave.
  • A, B, and C are correction coefficient parameters, respectively.
  • the correction coefficient parameter is set according to the direction in which the waves arrive.
  • the correction coefficient parameter is set according to the wave period.
  • the wave height calculation device further includes a storage unit that stores a plurality of correction coefficient parameters.
  • the wave height calculation apparatus further includes a correction coefficient parameter calculation processing unit that calculates a plurality of correction coefficient parameters.
  • the correction coefficient parameter calculation processing unit calculates a wave spectrum for each area, which is a wave spectrum power included in each of the plurality of data acquisition areas set in the detection area.
  • a relative wave for each area that calculates a relative wave direction for each area, which is a traveling direction of waves in each of the data acquisition areas, based on a direction from each data acquisition area to the receiver.
  • the sample point specified by the direction calculation unit, the wave wave power per area and the relative wave direction per area corresponds to the first axis corresponding to the wave wave power per area and the relative wave direction per area.
  • a graph generating unit for generating a wave power spectrum by relative wave direction by plotting on coordinates having the second axis, and the wave by relative wave direction; It has a correction coefficient for parameter calculation unit for calculating a parameter for the correction coefficient based on Spectral power graph, a.
  • the plurality of wave spectrum powers per area obtained while the receiver rotates 360 degrees along the horizontal plane are each divided by the wave power spectrums of areas having the largest value among them.
  • the graph generation unit plots the normalized wave spectrum power for each area and the relative wave direction for each area on the coordinates to plot the wave spectrum power graph for each relative wave direction. Generate.
  • a radar apparatus is reflected by a transmitter that transmits a transmission wave, and the transmission wave is reflected by waves generated on a water surface in a detection area.
  • a wave height calculation method is obtained from a receiver that receives an echo that is transmitted and reflected by waves generated on a water surface in a detection area.
  • a wave height calculation method for calculating the wave height of a wave based on an echo signal, the step of calculating wave spectrum power in an analysis area included in the detection area, and a direction from the analysis area toward the receiver The wave spectrum power is corrected based on the relative wave direction that is the traveling direction of the waves in the analysis area with reference to the wave, and the waves in the analysis area are corrected based on the corrected wave spectrum power. Calculating a wave height.
  • the wave height can be accurately calculated regardless of the relative wave direction of the wave that is the wave height calculation target.
  • FIG. 1 is a block diagram of a radar apparatus according to an embodiment of the present invention. It is a block diagram which shows the structure of the wave height calculation process part shown in FIG. It is a figure which shows typically an example of the echo image produced
  • a wave height calculation processing unit 10 as a wave height calculation device according to an embodiment of the present invention a radar apparatus 1 including the wave height calculation processing unit 10, and a wave height calculation method will be described with reference to the drawings.
  • the present invention can be widely applied to a wave height calculation device that calculates the height of a wave generated on the water surface, a radar device including the wave height calculation device, and a wave height calculation method.
  • FIG. 1 is a block diagram of a radar apparatus 1 according to an embodiment of the present invention.
  • the radar apparatus 1 according to the present embodiment is provided in a ship such as a fishing boat. According to the radar apparatus 1, as will be described in detail below, the wave height that is the height of the waves generated on the water surface can be accurately calculated.
  • the radar device 1 includes an antenna unit 2, an anemometer 3, a wave height calculation processing unit 10 as a wave height calculation device, and a display 4.
  • the antenna unit 2 includes an antenna 5, a receiving unit 6, and an A / D conversion unit 7.
  • the antenna 5 is a radar antenna capable of transmitting a pulsed radio wave as a highly directional transmission wave.
  • the antenna 5 is configured to receive a reflected wave from a target (a wave in the case of the present embodiment). That is, the antenna 5 functions as a transmitter that transmits a transmission wave and a receiver that receives a reflected wave of the transmitted transmission wave as a reception wave.
  • the radar apparatus 1 measures the time from when a pulsed radio wave is transmitted until the reflected wave is received. Thereby, the radar apparatus 1 can detect the distance r to the target.
  • the antenna 5 is configured to be able to rotate 360 ° on a horizontal plane.
  • the antenna 5 is configured to repeatedly transmit and receive radio waves while changing the transmission direction of pulsed radio waves (for example, changing the antenna angle). With the above configuration, the radar apparatus 1 can detect a target on a plane around the ship over 360 °.
  • the operation from the transmission of a pulsed radio wave to the transmission of the next pulsed radio wave is referred to as “sweep”.
  • the operation of rotating the antenna 360 ° while transmitting and receiving radio waves is called “scan”.
  • the receiving unit 6 detects and amplifies an echo signal obtained from an echo received by the antenna 5.
  • the reception unit 6 outputs the amplified echo signal to the A / D conversion unit 7.
  • the A / D converter 7 samples an analog echo signal and converts it to digital data composed of a plurality of bits. This digital data is echo data.
  • the echo data includes data specifying the intensity of the echo signal obtained from the reflected wave received by the antenna 5.
  • the A / D converter 7 outputs the echo data to the wave height calculation processor 10.
  • the anemometer 3 measures the wind speed at sea (sea wind speed, surface wind speed), and is installed in the ship.
  • the anemometer 3 outputs data relating to the measured wind speed to the wave height calculation processing unit 10.
  • the wave height calculation processing unit 10 calculates the wave height (wave height) based on the echo data output from the antenna unit 2.
  • the wave height calculation processing unit 10 outputs data relating to the calculated wave height to the display 4.
  • the wave height calculation processing unit 10 does not calculate the wave height when the wind speed obtained by the anemometer 3 is equal to or less than a predetermined value. This is because when the wind speed is low, the wave height tends to be small, and it is difficult to calculate an accurate wave height.
  • the configuration and operation of the wave height calculation processing unit 10 will be described later in detail.
  • the display 4 displays data relating to the wave height output from the wave height calculation processing unit 10 (for example, a numerical value of the wave height). Thereby, the user can know the wave height at sea.
  • FIG. 2 is a block diagram showing a configuration of the wave height calculation processing unit 10 shown in FIG.
  • the wave height calculation processing unit 10 includes an image generation unit 11, an analysis area setting unit 12, a frequency analysis unit 13, a wave spectrum power calculation unit 14, a relative wave direction calculation unit 15, a correction coefficient calculation unit 16, and a wave A spectrum power correction unit 17 and a wave height calculation unit 18 are provided.
  • the wave height calculation processing unit 10 includes a hardware processor 8 (for example, CPU, FPGA, etc.) and a device such as a nonvolatile memory.
  • a hardware processor 8 for example, CPU, FPGA, etc.
  • the CPU reads the program from the nonvolatile memory and executes it, thereby causing the wave height calculation processing unit 10 to function as the image generation unit 11, the analysis area setting unit 12, the frequency analysis unit 13, the wave spectrum power calculation unit 14, and the like. be able to.
  • FIG. 3 is a diagram schematically illustrating an example of the echo image P generated by the image generation unit 11.
  • the image generation unit 11 generates an echo image P based on the echo data output from the antenna unit 2.
  • the echo image P is generated every time the antenna 5 rotates 360 ° (that is, every scan). Note that the example shown in FIG. 3 shows an example in which the wavy line w is relatively clearly reflected.
  • the analysis area setting unit 12 sets an analysis area Z for the echo image P (see FIG. 3).
  • the analysis area Z may be set as needed by the user, or may be set in advance when the apparatus is shipped.
  • analysis area Z as shown in FIG. 3 is set in front of the ship S 0.
  • the region where the analysis area Z is set at a region other than the ship S 0 backward are preferred. This is because the ship behind the region is because accurate wave analyzed by the undertow of the ship S 0 becomes difficult.
  • the frequency analysis unit 13 performs Fourier transform on the echo image in the analysis area, which is an echo image in the analysis area Z, obtained for each scan, and calculates the frequency spectrum S (f). Further, the frequency analysis unit 13 calculates the wave direction of the waves based on the frequency spectrum S (f) obtained by Fourier transform. In addition, since the calculation method of a wave direction is known, the description is abbreviate
  • the wave spectrum power calculation unit 14 calculates the zero-order moment m 0 of the wave spectrum in the analysis area Z using the following equation (3) based on the frequency spectrum S (f) obtained from the echo image in the analysis area. To do.
  • the relative wave direction calculation unit 15 refers to FIG. 3, and the wave direction dw of the waves in the analysis area Z calculated by the frequency analysis unit 13 based on the direction ds from the analysis area Z toward the ship S 0 as a reference.
  • the relative wave direction ⁇ defined by is calculated.
  • the relative wave direction calculation unit 15 calculates the relative wave direction ⁇ with the counterclockwise direction in FIG. 3 as the positive direction.
  • the correction coefficient calculation unit 16 substitutes the relative wave direction ⁇ calculated by the relative wave direction calculation unit 15 into the following equation (4), thereby calculating the wave spectrum power ⁇ calculated by the wave spectrum power calculation unit 14.
  • a correction coefficient ⁇ (first correction coefficient) for correcting m 0 is calculated.
  • Wave spectrum power correcting unit 17 the wave spectrum power ⁇ m 0 calculated by ocean wave spectrum power calculation unit 14, the wave spectrum power ⁇ m 0 by multiplying a correction coefficient calculated by the correction coefficient calculating unit 16 beta After correction, the corrected wave spectrum power ⁇ m 0 — new is calculated.
  • the wave height calculation unit 18 calculates the wave height H 1/3 of the wave in the analysis area Z by multiplying the corrected wave spectrum power ⁇ m 0_new calculated by the wave spectrum power correction unit 17 by the fixed coefficient ⁇ . Specifically, the wave height calculation unit 18 calculates the wave height H 1/3 based on the following equation (5).
  • the relative wave direction ⁇ is 0 degree (specifically, referring to FIG. 3, when ds and dw are in the same direction), or when 180 degrees (ds and dw are in opposite directions) ) Is a case where the transmission wave from the radar apparatus 1 is transmitted vertically toward the wave line w.
  • the wave spectrum power becomes relatively strong. Then, even if the wave height is calculated using the wave spectrum power as in the prior art, the wave height can be calculated relatively accurately.
  • the case where the relative wave direction ⁇ is 90 degrees or 270 degrees is a case where the transmission wave from the radar apparatus 1 is transmitted to the side of the wave line w.
  • the transmission wave only hits a relatively narrow range in the wave, and the wave spectrum power is calculated to be weak.
  • the tendency that the wave height is calculated to be lower than when the relative wave direction is 0 degree or 180 degrees becomes higher, and the wave height cannot be calculated accurately.
  • the correction coefficient ⁇ when the relative wave direction ⁇ is around 0 degrees or around 180 degrees, the correction coefficient ⁇ is a relatively small value.
  • the correction coefficient ⁇ when the relative wave direction ⁇ is around 90 degrees or around 270 degrees, the correction coefficient ⁇ is larger than when the relative wave direction is around 0 degrees or around 180 degrees. That is, by using the equation (4), even if the wave spectrum power ⁇ m 0 is calculated to be weak, the wave spectrum power ⁇ m 0 is corrected by the correction coefficient ⁇ so as to increase.
  • FIG. 4 is a flowchart for explaining each step performed when a preliminary experiment for determining the correction coefficient parameters A, B, and C for calculating the correction coefficient ⁇ shown in Expression (4) is performed. is there.
  • each step of the preliminary experiment for determining the correction coefficient parameters A, B, and C will be described with reference to FIG.
  • FIG. 5 is a diagram showing a position relative to the ship S 0 of wave spectrum power ⁇ m 0 is ⁇ data acquisition area Z1 calculated Z7 in preliminary experiments.
  • step S1 frequency analysis of echo signals included in each of the data acquisition areas Z1 to Z7 is performed based on the echoes obtained from each of the plurality of data acquisition areas Z1 to Z7 shown in FIG.
  • step S1 the echo images included in each of the data acquisition areas Z1 to Z7 are Fourier transformed to convert each echo image into a frequency spectrum.
  • step S2 wave directions in the respective data acquisition areas Z1 to Z7 are calculated based on the frequency spectrum generated in step S1.
  • step S2 the direction toward the ship S 0 from the data acquisition area Z1 ⁇ Z7 as a reference, a wave of wave direction in each data acquisition areas Z1 ⁇ Z7, the data acquisition area Z1 ⁇ Calculated as the relative wave direction of waves in Z7.
  • step S3 the wave spectrum power ⁇ m 0 in each of the data acquisition areas Z1 to Z7 is calculated before or after step S2 or in parallel with step S2.
  • the calculation method of the wave spectrum power ⁇ m 0 is the same as that of the wave spectrum power calculation unit 14.
  • step S4 ocean wave spectrum power ⁇ m 0 in each data acquisition areas Z1 ⁇ Z7 is normalized. Specifically, the wave spectrum power ⁇ m 0 in each of the data acquisition areas Z1 to Z7 is divided by the wave spectrum power of the data acquisition area having the highest wave spectrum power among the seven data acquisition areas Z1 to Z7. Is done. As a result, the wave spectrum power of each of the data acquisition areas Z1 to Z7 is normalized so that the wave spectrum power of the area having the highest wave spectrum power among the data acquisition areas Z1 to Z7 is 1. In addition, the wave spectrum power normalized in this way is hereinafter referred to as normalized wave spectrum power.
  • step S5 seven normalized wave spectrum powers acquired by performing steps S1 to S4 are calculated at each of a plurality of timings (ie, a plurality of scans).
  • step S6 as shown in FIG. 6, each of a large number of sample points having the normalized wave spectrum power calculated in step S5 as information has the relative wave direction ⁇ as the x axis and the normalized wave spectrum. Plotted on Cartesian coordinates with power as y-axis. Thereby, the normalized wave spectrum power graph classified by relative wave direction is generated.
  • the normalized wave spectrum power graph classified by relative wave direction is simply referred to as a scatter diagram SP.
  • sample points indicated by circles in FIG. 6 are sample points obtained when the wind class of the wind speed obtained by the anemometer is 5.
  • the sample points indicated by square marks are sample points obtained when the wind speed class obtained by the anemometer is 6.
  • the sample points indicated by triangles are sample points obtained when the wind speed class obtained by the anemometer is 7.
  • the sample points indicated by x are sample points obtained when the wind speed of the wind speed obtained by the anemometer is 8 or more.
  • step S7 correction coefficient parameters A, B, and C are calculated based on the scatter diagram SP generated in step S6. Specifically, in step S6, the sum of squares of the residuals between the above-described expression (4), the right side denominator (A + B cos ⁇ + C cos 2 ⁇ ), and each sample point constituting the scatter diagram SP is minimized. Then, correction coefficient parameters A, B, and C are calculated. That is, in step S6, correction coefficient parameters A, B, and C at A + B cos ⁇ + C cos 2 ⁇ are calculated by the least square method. Thus, the correction coefficient parameter can be calculated based on the wave spectrum power in each data acquisition area actually obtained. In FIG. 6, a graph indicating a mathematical formula (A + B cos ⁇ + C cos 2 ⁇ ) in which the correction coefficient parameters A, B, and C are calculated by the least square method is superimposed on the scatter diagram SP.
  • the wave height calculation processing unit 10 of the radar apparatus 1 corrects the wave spectrum power ⁇ m 0 based on the relative wave direction ⁇ to calculate the corrected wave spectrum power ⁇ m 0_new ,
  • the wave height H 1/3 is calculated by multiplying the corrected wave spectrum power ⁇ m 0 — new by a fixed coefficient ⁇ .
  • the wave height H 1/3 can be accurately calculated by correcting the wave spectrum power ⁇ m 0 based on the relative wave direction ⁇ as in the wave height calculation processing unit 10 of the present embodiment.
  • the wave height calculation processing unit 10 the wave height can be accurately calculated regardless of the relative wave direction ⁇ of the wave to be wave height calculation target.
  • a correction coefficient calculation formula for correcting the wave spectrum power ⁇ m 0 used in the wave height calculation processing unit 10 a formula that takes a minimum value when the relative wave direction ⁇ is 0 degree is employed.
  • the correction coefficient ⁇ can be appropriately set by adopting a correction coefficient calculation formula that reduces the correction coefficient when the wave spectrum power ⁇ m 0 tends to increase.
  • a correction coefficient calculation formula for correcting the wave spectrum power ⁇ m 0 used in the wave height calculation processing unit 10 a formula that takes a minimum value when the relative wave direction ⁇ is 180 degrees is adopted.
  • the correction coefficient ⁇ can be appropriately set by adopting a correction coefficient calculation formula that reduces the correction coefficient when the wave spectrum power ⁇ m 0 tends to increase.
  • Equation (4) the correction coefficient ⁇ increases when the wave spectrum power ⁇ m 0 tends to be small, specifically when the relative wave direction ⁇ is around 90 degrees or around 270 degrees. Therefore, the wave height calculation processing unit 10 can set the correction coefficient ⁇ more appropriately.
  • the correction coefficient parameters A, B, and C for calculating the correction coefficient ⁇ are preliminarily determined by preliminary experiments before the wave height calculation unit 18 calculates the wave height H 1/3. These values are set and stored in the correction coefficient calculation unit 16. This eliminates the need to calculate the correction coefficient parameters A, B, and C in parallel with the wave height calculation by the wave height calculation unit 18, thereby reducing the calculation load on the wave height calculation processing unit 10.
  • the radar apparatus 1 it is possible to provide a radar apparatus including a wave height calculation processing unit that can accurately calculate the wave height regardless of the wave traveling direction in which the wave height H 1/3 is calculated.
  • FIG. 7 is a block diagram of a wave height calculation processing unit 10a of a radar apparatus according to a modification.
  • the correction coefficient ⁇ is calculated using the correction coefficient parameters A, B, and C calculated based on preliminary experiments performed in advance.
  • correction coefficient parameters A, B, and C are calculated as needed in parallel with the calculation of the wave height by the wave height calculation unit 18.
  • the wave height calculation processing unit 10a includes a correction coefficient parameter calculation processing unit 20 in addition to the components included in the wave height calculation processing unit 10 of the above-described embodiment.
  • FIG. 8 is a block diagram showing the correction coefficient parameter calculation processing unit 20 shown in FIG.
  • the correction coefficient parameter calculation processing unit 20 includes a data acquisition area setting unit 21, an area frequency analysis unit 22, an area wave spectrum power calculation unit 23, a normalization unit 24, and an area relative wave direction calculation unit. 25, a graph generation unit 26, and a correction coefficient parameter calculation unit 27.
  • the data acquisition area setting unit 21 sets a plurality of data acquisition areas that are areas in which the wave spectrum power is calculated. For example, the data acquisition area setting unit 21 sets each of the data acquisition areas Z1 to Z7 shown in FIG. 5 as a data acquisition area.
  • the area-by-area frequency analysis unit 22 performs Fourier transform on the echo images in the data acquisition areas Z1 to Z7 obtained for each scan, and calculates a frequency spectrum. Further, the frequency analysis unit 22 for each area calculates the wave direction of the waves in each of the data acquisition areas Z1 to Z7 based on the frequency spectrum obtained by the Fourier transform.
  • the area-specific wave spectrum power calculation unit 23 calculates the area-specific wave spectrum power ⁇ m 0 in each data acquisition area based on the frequency spectrum obtained corresponding to each data acquisition area.
  • the wave wave power per area ⁇ m 0 is calculated in the same manner as in the above embodiment.
  • the normalizing unit 24 normalizes the wave spectrum power ⁇ m 0 for each area. Specifically, the normalization unit 24, by a plurality of areas each wave spectral power ⁇ m 0 obtained in the first scan, respectively, divided by the area per wave spectral power ⁇ m 0 most large value of them Normalize the wave spectrum power ⁇ m 0 per area. Thereby, the wave spectrum power for each area is normalized so that the wave spectrum power of the area having the highest wave spectrum power among the plurality of areas becomes 1. The normalization unit 24 normalizes the wave spectrum power ⁇ m 0 for each area for each scan.
  • the relative wave direction calculation unit 25 for each area is based on the wave direction calculated for each data acquisition area and the direction from each data acquisition area toward the ship. Calculate the relative wave direction of the waves.
  • the calculation method of the relative wave direction is the same as that of the relative wave direction calculation unit 15 of the above embodiment.
  • the graph generation unit 26 plots the sample points specified by the normalized wave spectrum power per area and the relative wave direction for each area obtained in the latest in the scatter diagram stored in the graph generation unit 26. Update the scatter plot to generate a new scatter plot.
  • the scatter diagram generated by the graph generation unit 26 is the same as that shown in FIG.
  • the correction coefficient parameter calculation unit 27 calculates correction coefficient parameters A, B, and C each time a new scatter diagram is generated by the graph generation unit 26. Specifically, the correction coefficient parameter calculation unit 27 uses correction coefficient parameters so that the sum of squares of the residuals between the expression represented by A + B cos ⁇ + C cos 2 ⁇ and each sample point constituting the updated scatter diagram is minimized. Parameters A, B, and C are calculated.
  • the wave spectrum power correction unit 17 uses the correction coefficient parameters A, B, and C calculated after taking into account the normalized wave spectrum power obtained at the latest timing.
  • the wave spectrum power in the analysis area Z is corrected based on the obtained correction coefficient ⁇ .
  • the wave height calculation unit 18 calculates the wave height in the analysis area Z based on the corrected wave spectrum power.
  • the correction coefficient parameter A calculated in consideration of the normalized wave spectrum power obtained at the latest timing. , B, and C are used to correct the wave spectrum power in the analysis area Z based on the correction coefficient ⁇ , and the wave height H 1/3 in the analysis area Z is calculated based on the corrected wave spectrum power. Is done. That is, according to the wave height calculation processing unit 10a of the present modification, the wave height H 1/3 in the analysis area Z can be calculated based on the latest data, and therefore the wave height H 1/3 can be calculated more accurately. .
  • the wave height calculation processing unit 10a as the configuration requirements of the correction coefficient parameter calculation processing unit 20, the area-specific wave spectrum power calculation unit 23, the area-specific relative wave direction calculation unit 25, the graph generation unit 26, and the correction coefficient parameter A calculation unit 27 is provided. Thereby, according to the wave height calculation process part 10a, the specific structure for calculating the wave height H1 / 3 in the analysis area Z can be provided based on the newest data.
  • the wave height calculation processing unit 10a normalizes a plurality of wave spectrum powers obtained for each scan and calculates correction coefficient parameters A, B, and C based on the normalized wave spectrum powers. Generates a scatter plot.
  • the wave height calculation processing unit 10a of this modification in the case of the wave height calculation processing unit 10a of this modification, the plurality of wave spectrum powers obtained for each scan are normalized for each scan, and the correction coefficient parameters A, A scatter diagram for calculating B and C is generated. In this way, the magnitude of the wave spectrum power caused by the wind speed can be made uniform, so that it is not necessary to generate a scatter diagram for each wind speed. Thereby, it is possible to reduce the calculation load on the wave height calculation processing unit 10a for calculating the correction coefficient parameters A, B, and C.
  • FIG. 9 is a block diagram showing a configuration of the wave height calculation processing unit 10b of the radar apparatus according to the modification.
  • the wave height calculation processing unit 10 that calculates the wave height of waves arriving from one direction has been described as an example, but the present invention is not limited thereto.
  • a wave height calculation processing unit 10b that can accurately calculate the wave height of each wave coming from a plurality of directions can be configured.
  • the configurations and operations of the frequency analysis unit 13a, the relative wave direction calculation unit 15a, and the correction coefficient calculation unit 16a are different from those in the above embodiment. Below, a different part from the said embodiment is demonstrated and description is abbreviate
  • the frequency analysis unit 13a calculates the frequency spectrum S (f) in the same manner as in the above embodiment, and then calculates the wave direction of each wave arriving from a plurality of directions based on the frequency spectrum S (f).
  • the relative wave direction calculation unit 15a calculates the relative wave direction ⁇ i of waves arriving from each direction.
  • the correction coefficient calculation unit 16a calculates a wave-by-wave correction coefficient ⁇ i (first correction coefficient) for each wave from each direction. Specifically, the correction coefficient calculation unit 16a calculates a wave-by-wave correction coefficient ⁇ i corresponding to waves from each direction based on the following equation (6). Then, the correction coefficient calculating unit 16a calculates the correction coefficient ⁇ (second correction coefficient) by substituting the wave-by-wave correction coefficient ⁇ i obtained corresponding to each direction into the following equation (7). . That is, Expression (6) is a first correction coefficient calculation expression, and Expression (7) is a second correction coefficient calculation expression.
  • the wave spectrum power correction unit 17 multiplies the wave spectrum power ⁇ m 0 calculated by the wave spectrum power calculation unit 14 by the correction coefficient ⁇ calculated by the correction coefficient calculation unit 16a to thereby generate the wave spectrum power ⁇ m.
  • the corrected wave spectrum power ⁇ m 0 — new is calculated by correcting 0 .
  • the wave height calculation processing unit 10b can accurately calculate the wave height regardless of the relative wave direction ⁇ of the wave that is the wave height calculation target, as in the case of the above-described embodiment.
  • equation (8) is used instead of equation (7) to correct the wave size from each direction (for example, the peak value of the wave spectrum power).
  • the coefficient ⁇ can be calculated. Thereby, the wave height can be calculated more accurately.
  • ⁇ i is a weighting coefficient, which is a numerical value determined in accordance with the magnitude of the wave from each direction. A larger value is set as the wave is larger, and a smaller value is set as the wave is smaller. .
  • FIG. 10 is a block diagram showing a configuration of the wave height calculation processing unit 10c of the radar apparatus according to the modification.
  • the correction coefficient ⁇ is calculated using the correction coefficient parameters A, B, and C calculated using the same scatter diagram SP regardless of the arrival direction of the waves.
  • this is not restrictive.
  • correction coefficient parameters A i , B i , and C i calculated based on a scatter diagram SP i (not shown) generated for each direction in which waves arrive are stored in the correction coefficient calculation unit 16b.
  • the correction coefficient calculation unit 16b calculates a wave-by-wave correction coefficient ⁇ i (first correction coefficient) corresponding to the waves from each direction based on the following equation (9).
  • the correction coefficient calculation unit 16b calculates the correction coefficient ⁇ (second correction coefficient) using Expression (7), as in the case of the modification described with reference to FIG.
  • the wave spectrum power correction unit 17 multiplies the wave spectrum power ⁇ m 0 calculated by the wave spectrum power calculation unit 14 by the correction coefficient ⁇ calculated by the correction coefficient calculation unit 16b to thereby generate the wave spectrum power ⁇ m.
  • the corrected wave spectrum power ⁇ m 0 — new is calculated by correcting 0 .
  • the wave height calculation processing unit 10c can also accurately calculate the wave height regardless of the relative wave direction ⁇ of the wave that is the wave height calculation target, as in the case of the above embodiment.
  • the correction coefficient ⁇ can be calculated in consideration of the waves from these directions. Therefore, according to this modification, the wave height can be calculated more accurately. Moreover, according to the present modification, the correction coefficient ⁇ can be calculated using the correction coefficient parameters A i , B i , and C i calculated for each azimuth, so that the wave height can be calculated more accurately.
  • FIG. 11 is a block diagram showing a configuration of the wave height calculation processing unit 10d of the radar apparatus according to the modification.
  • the wave height is calculated using the correction coefficient ⁇ calculated based on the same correction coefficient parameters A, B, and C regardless of the wave period for which the wave height is to be calculated.
  • the present invention is not limited to this, and different correction coefficient parameters may be used depending on the wave period.
  • the correction coefficient calculation unit 16c has a wave having a period of 8 seconds or less and a period of 8 seconds or more. Different correction coefficient parameters may be used for the waves.
  • waves include wind and swell, and these characteristics are different from each other.
  • the period of wind is approximately 8 seconds or less
  • the period of undulation is approximately 8 seconds or more. That is, as described above, the correction coefficient ⁇ corresponding to each of the wind and swell having different characteristics can be calculated by using different correction coefficient parameters depending on the wave period. Accordingly, since an appropriate correction coefficient ⁇ can be calculated according to each of waves having different characteristics (for example, wind and swell), the wave height can be calculated more accurately according to the type of the waves.
  • the wave period that is a wave height calculation target is calculated by the frequency analysis unit 13, and the correction coefficient calculation unit 16 c uses any correction coefficient parameter depending on the wave period value calculated by the frequency analysis unit 13. Decide whether to use.
  • Wave height calculation processing unit (wave height calculation device) 14 Wave Spectrum Power Calculation Unit 17 Wave Spectrum Power Correction Unit 18 Wave Height Calculation Unit

Abstract

[Problem] To calculate a wave height accurately irrespective of the direction of progress of the wave of which the wave height is being calculated. [Solution] The present invention provides a wave height calculating device 10 provided with: a wave spectrum power calculating unit 14 which calculates a wave spectrum power √m0 within an analysis area included in a detection area; a wave spectrum power correcting unit 17 which corrects the wave spectrum power √m0 on the basis of a relative wave direction θ, which is the direction of progress of waves in the analysis area relative to a direction from the analysis area toward a wave receiver; and a wave height calculating unit 18 which calculates a wave height H1/3 of waves in the analysis area on the basis of the corrected wave spectrum power √m0_new.

Description

波高算出装置、レーダ装置、及び波高算出方法Wave height calculation device, radar device, and wave height calculation method
 本発明は、水面に生じる波の高さを算出する波高算出装置、この波高算出装置を備えたレーダ装置、及び波高算出方法に関する。 The present invention relates to a wave height calculation device that calculates the height of a wave generated on a water surface, a radar device including the wave height calculation device, and a wave height calculation method.
 従来から知られている波高算出装置では、波浪の高さである波高H1/3を、所定の算出式(H1/3=α√m)に基づいて算出している。但し、mは波浪スペクトルの0次モーメントであり、αは固定係数である。 In a conventionally known wave height calculation device, the wave height H 1/3 which is the height of a wave is calculated based on a predetermined calculation formula (H 1/3 = α√m 0 ). However, m 0 is the zero-order moment of the wave spectrum, alpha is a fixed coefficient.
 なお、上述した波高H1/3とは、いわゆる有義波高である。有義波高とは、有義波の波高を平均したものである。有義波とは、非特許文献1に記載されるように、ある地点で連続する波を観測したとき、波高の高さが、観測された波の数を母数とした上位3分の1に含まれる波(例えば20分間で100個の波が観測されれば、大きい方の33個の波)のことである。一般的に、上述のように定義される有義波高は、目視で監視される波高と概ね一致することが知られている。 The wave height H 1/3 described above is a so-called significant wave height. The significant wave height is the average of the significant wave heights. As described in Non-Patent Document 1, a significant wave means that when a continuous wave is observed at a certain point, the height of the wave height is the upper third with the number of waves observed as a parameter. (For example, if 100 waves are observed in 20 minutes, the larger 33 waves). Generally, it is known that the significant wave height defined as described above substantially coincides with the wave height monitored visually.
 ところで、波峰線のエコーの映り方には方位依存性がある。具体的には、波浪の進行方向に向かって送信波が送波される場合、すなわち、波高算出対象となる波浪が含まれる解析エリアから受波器に向かう方向を基準とした前記波浪の進行方向で定義される相対波向が0度付近である場合には、波浪スペクトルパワー√mが大きくなり易く、波峰線のエコーが明瞭に映りやすい。同様に、波浪の進行方向に沿って送信波が送波される場合、すなわち、相対波向が180度付近である場合にも、波浪スペクトルパワー√mが大きくなり易く、波峰線のエコーが明瞭に映りやすい。一方、波浪の進行方向に対して垂直な方向に送信波が送波される場合、すなわち、相対波向が90度付近又は270度付近である場合には、波浪スペクトルパワー√mが小さくなり易く、波峰線のエコーが映りにくい。このように、波峰線の映り方には方位依存性があるため、波浪の高さが同じ場合であっても、解析エリアの方位によって√mの値が変動してしまう。すなわち、従来の手法では、方位による波高計測誤差が生じてしまう。 By the way, the way the echoes of the wavy line are reflected has an orientation dependency. Specifically, when a transmission wave is transmitted in the traveling direction of the wave, that is, the traveling direction of the wave based on the direction from the analysis area including the wave whose wave height is to be calculated to the receiver. When the relative wave direction defined by is near 0 degrees, the wave spectrum power √m 0 tends to be large, and the echoes of the wavy line are easily reflected clearly. Similarly, when the transmission wave is transmitted along the traveling direction of the wave, that is, when the relative wave direction is around 180 degrees, the wave spectrum power √m 0 is likely to increase, and the echo of the wave line is It is easy to see clearly. On the other hand, when the transmission wave is transmitted in a direction perpendicular to the traveling direction of the wave, that is, when the relative wave direction is around 90 degrees or around 270 degrees, the wave spectrum power √m 0 becomes small. It is easy and the echo of the wavy line is not easily reflected. As described above, since the reflection of the wavy line has direction dependency, the value of √m 0 varies depending on the direction of the analysis area even when the wave height is the same. That is, in the conventional method, a wave height measurement error due to the bearing occurs.
 本発明は、上記課題を解決するためのものであり、その目的は、波高算出対象となる波浪の相対波向によらず、波高を正確に算出することである。 The present invention is for solving the above-described problems, and its purpose is to accurately calculate the wave height regardless of the relative wave direction of the wave to be calculated.
 (1)上記課題を解決するため、本発明のある局面に係る波高算出装置は、送信波が探知エリア内の水面に生じる波浪で反射して帰来するエコーを受波する受波器から得られるエコー信号に基づいて、波浪の波高を算出する波高算出装置であって、前記探知エリア内に含まれる解析エリア内の波浪スペクトルパワーを算出する波浪スペクトルパワー算出部と、前記解析エリアから前記受波器に向かう方向を基準とした前記解析エリア内の波浪の進行方向である相対波向、に基づいて、前記波浪スペクトルパワーを補正する波浪スペクトルパワー補正部と、補正された前記波浪スペクトルパワーに基づいて前記解析エリア内の波浪の波高を算出する波高算出部と、を備えている。 (1) In order to solve the above-described problem, a wave height calculation apparatus according to an aspect of the present invention is obtained from a receiver that receives an echo that is transmitted and reflected by a wave generated on a water surface in a detection area. A wave height calculation device for calculating a wave height of a wave based on an echo signal, a wave spectrum power calculation unit for calculating a wave spectrum power in an analysis area included in the detection area, and the received wave from the analysis area A wave spectrum power correction unit that corrects the wave spectrum power based on a relative wave direction that is a traveling direction of the waves in the analysis area with reference to the direction toward the vessel, and based on the corrected wave spectrum power And a wave height calculator for calculating the wave height of the waves in the analysis area.
 (2)前記波浪スペクトルパワー補正部は、前記相対波向が0度となる場合に最小値をとる前記相対波向の関数である第1補正係数算出式に、前記波浪スペクトルパワーの算出が行われた前記解析エリア内の波浪の前記相対波向を代入することにより得られる第1補正係数を用いて、前記波浪スペクトルパワーを補正する。 (2) The wave spectrum power correction unit calculates the wave spectrum power according to a first correction coefficient calculation formula that is a function of the relative wave direction that takes a minimum value when the relative wave direction is 0 degree. The wave spectrum power is corrected using a first correction coefficient obtained by substituting the relative wave direction of the waves in the analysis area.
 (3)前記第1補正係数算出式は、前記相対波向が180度となる場合に極小値をとる。 (3) The first correction coefficient calculation formula takes a minimum value when the relative wave direction is 180 degrees.
 (4)前記波浪スペクトルパワー補正部は、以下の式(1)で表される前記第1補正係数算出式により得られた前記第1補正係数を前記波浪スペクトルパワーに乗算することにより、前記波浪スペクトルパワーを補正する。 (4) The wave spectrum power correction unit multiplies the wave spectrum power by the first correction coefficient obtained by the first correction coefficient calculation expression represented by the following expression (1) to thereby calculate the wave spectrum power. Correct the spectral power.
 [数1]
 β(θ)=1/(A+Bcosθ+Ccos2θ) …(1)
[Equation 1]
β (θ) = 1 / (A + B cos θ + C cos 2θ) (1)
 但し、βは前記第1補正係数、θは前記相対波向、A,B,Cは、それぞれ、補正係数用パラメータである。 However, β is the first correction coefficient, θ is the relative wave direction, and A, B, and C are correction coefficient parameters.
 (5)前記波浪スペクトルパワー補正部は、以下の式(2)で表される前記第1補正係数算出式により得られた前記第1補正係数、に基づいて得られた第2補正係数を前記波浪スペクトルパワーに乗算することにより、前記波浪スペクトルパワーを補正する。 (5) The wave spectrum power correction unit obtains the second correction coefficient obtained based on the first correction coefficient obtained by the first correction coefficient calculation formula represented by the following formula (2): The wave spectrum power is corrected by multiplying the wave spectrum power.
 [数2]
 β(θ)=1/(A+Bcosθ+Ccos2θ) …(2)
[Equation 2]
β i (θ i) = 1 / (A + Bcosθ i + Ccos2θ i) ... (2)
 但し、iは方位に対応して付される自然数、βは波浪の方位に対応して算出される前記第1補正係数、θは波浪の方位に対応して算出される前記相対波向、A,B,Cは、それぞれ、補正係数用パラメータである。 However, i is a natural number given corresponding to the direction, β i is the first correction coefficient calculated corresponding to the direction of the wave, and θ i is the relative wave direction calculated corresponding to the direction of the wave. , A, B, and C are correction coefficient parameters, respectively.
 (6)前記補正係数用パラメータは、波浪が到来する方位に応じて設定される。 (6) The correction coefficient parameter is set according to the direction in which the waves arrive.
 (7)前記補正係数用パラメータは、波浪の周期に応じて設定される。 (7) The correction coefficient parameter is set according to the wave period.
 (8)前記波高算出装置は、複数の前記補正係数用パラメータを記憶する記憶部を更に備えている。 (8) The wave height calculation device further includes a storage unit that stores a plurality of correction coefficient parameters.
 (9)前記波高算出装置は、複数の前記補正係数用パラメータの算出を行う補正係数用パラメータ算出処理部を更に備えている。 (9) The wave height calculation apparatus further includes a correction coefficient parameter calculation processing unit that calculates a plurality of correction coefficient parameters.
 (10)前記補正係数用パラメータ算出処理部は、前記探知エリア内に設定される複数のデータ取得用エリアのそれぞれに含まれる波浪スペクトルパワーであるエリア毎波浪スペクトルパワー、を算出するエリア毎波浪スペクトルパワー算出部と、各前記データ取得用エリアから前記受波器に向かう方向を基準とした各前記データ取得用エリア内の波浪の進行方向であるエリア毎相対波向、を算出するエリア毎相対波向算出部と、前記エリア毎波浪スペクトルパワーと、前記エリア毎相対波向とで特定されるサンプル点を、前記エリア毎波浪スペクトルパワーに対応する第1軸と前記エリア毎相対波向に対応する第2軸とを有する座標にプロットして相対波向別波浪スペクトルパワーグラフを生成するグラフ生成部と、前記相対波向別波浪スペクトルパワーグラフに基づいて前記補正係数用パラメータを算出する補正係数用パラメータ算出部と、を有している。 (10) The correction coefficient parameter calculation processing unit calculates a wave spectrum for each area, which is a wave spectrum power included in each of the plurality of data acquisition areas set in the detection area. A relative wave for each area that calculates a relative wave direction for each area, which is a traveling direction of waves in each of the data acquisition areas, based on a direction from each data acquisition area to the receiver. The sample point specified by the direction calculation unit, the wave wave power per area and the relative wave direction per area corresponds to the first axis corresponding to the wave wave power per area and the relative wave direction per area. A graph generating unit for generating a wave power spectrum by relative wave direction by plotting on coordinates having the second axis, and the wave by relative wave direction; It has a correction coefficient for parameter calculation unit for calculating a parameter for the correction coefficient based on Spectral power graph, a.
 (11)前記受波器が水平面に沿って360度回転する間に得られる複数の前記エリア毎波浪スペクトルパワーは、それぞれが、それらのうち最も値が大きいエリア毎波浪スペクトルパワーで除算されて正規化され、前記グラフ生成部は、正規化された前記エリア毎波浪スペクトルパワーと前記エリア毎相対波向とで特定されるサンプルを、前記座標にプロットして前記相対波向別波浪スペクトルパワーグラフを生成する。 (11) The plurality of wave spectrum powers per area obtained while the receiver rotates 360 degrees along the horizontal plane are each divided by the wave power spectrums of areas having the largest value among them. The graph generation unit plots the normalized wave spectrum power for each area and the relative wave direction for each area on the coordinates to plot the wave spectrum power graph for each relative wave direction. Generate.
 (12)上記課題を解決するため、本発明のある局面に係るレーダ装置は、送信波を送波する送波器と、前記送信波が探知エリア内の水面に生じる波浪で反射して帰来するエコー、を受波する受波器と、前記受波器で受波された前記エコーから得られるエコー信号に基づいて波浪の波高を算出する上述したいずれかの波高算出装置と、を備えている。 (12) In order to solve the above-described problem, a radar apparatus according to an aspect of the present invention is reflected by a transmitter that transmits a transmission wave, and the transmission wave is reflected by waves generated on a water surface in a detection area. A receiver for receiving an echo, and any of the above-described wave height calculation devices for calculating the wave height of a wave based on an echo signal obtained from the echo received by the receiver. .
 (13)上記課題を解決するため、本発明のある局面に係る波高算出方法は、送信波が探知エリア内の水面に生じる波浪で反射して帰来するエコーを受波する受波器から得られるエコー信号に基づいて、波浪の波高を算出する波高算出方法であって、前記探知エリア内に含まれる解析エリア内の波浪スペクトルパワーを算出するステップと、前記解析エリアから前記受波器に向かう方向を基準とした前記解析エリア内の波浪の進行方向である相対波向、に基づいて、前記波浪スペクトルパワーを補正するステップと、補正された前記波浪スペクトルパワーに基づいて前記解析エリア内の波浪の波高を算出するステップと、を含む。 (13) In order to solve the above-described problem, a wave height calculation method according to an aspect of the present invention is obtained from a receiver that receives an echo that is transmitted and reflected by waves generated on a water surface in a detection area. A wave height calculation method for calculating the wave height of a wave based on an echo signal, the step of calculating wave spectrum power in an analysis area included in the detection area, and a direction from the analysis area toward the receiver The wave spectrum power is corrected based on the relative wave direction that is the traveling direction of the waves in the analysis area with reference to the wave, and the waves in the analysis area are corrected based on the corrected wave spectrum power. Calculating a wave height.
 本発明によれば、波高算出対象となる波浪の相対波向によらず、波高を正確に算出できる。 According to the present invention, the wave height can be accurately calculated regardless of the relative wave direction of the wave that is the wave height calculation target.
本発明の実施形態に係るレーダ装置のブロック図である。1 is a block diagram of a radar apparatus according to an embodiment of the present invention. 図1に示す波高算出処理部の構成を示すブロック図である。It is a block diagram which shows the structure of the wave height calculation process part shown in FIG. 画像生成部によって生成されるエコー画像の一例を模式的に示す図である。It is a figure which shows typically an example of the echo image produced | generated by the image generation part. 補正係数を算出するための補正係数用パラメータを決定するための予備実験を行う際に実施される各工程を説明するためのフローチャートである。It is a flowchart for demonstrating each process implemented when performing the preliminary experiment for determining the parameter for correction coefficients for calculating a correction coefficient. 予備実験において波浪スペクトルパワーが算出されるデータ取得用エリアの自船に対する位置を示す図である。It is a figure which shows the position with respect to the own ship of the area for data acquisition from which a wave spectrum power is calculated in a preliminary experiment. 予備実験で得られた散布図と、該散布図から得られた補正係数算出式を示すグラフとを重ねて示す図である。It is a figure which overlaps and shows the scatter diagram obtained by the preliminary experiment, and the graph which shows the correction coefficient calculation formula obtained from this scatter diagram. 変形例に係るレーダ装置の波高算出処理部のブロック図である。It is a block diagram of the wave height calculation process part of the radar apparatus which concerns on a modification. 図7に示す補正係数用パラメータ算出処理部を示すブロック図である。It is a block diagram which shows the parameter calculation process part for correction coefficients shown in FIG. 変形例に係るレーダ装置の波高算出処理部のブロック図である。It is a block diagram of the wave height calculation process part of the radar apparatus which concerns on a modification. 変形例に係るレーダ装置の波高算出処理部の構成を示すブロック図である。It is a block diagram which shows the structure of the wave height calculation process part of the radar apparatus which concerns on a modification. 変形例に係るレーダ装置の波高算出処理部の構成を示すブロック図である。It is a block diagram which shows the structure of the wave height calculation process part of the radar apparatus which concerns on a modification.
 以下、本発明の実施形態に係る波高算出装置としての波高算出処理部10、この波高算出処理部10を備えたレーダ装置1、及び波高算出方法について図面を参照しつつ説明する。本発明は、水面に生じる波の高さを算出する波高算出装置、この波高算出装置を備えたレーダ装置、及び波高算出方法に広く適用することができる。 Hereinafter, a wave height calculation processing unit 10 as a wave height calculation device according to an embodiment of the present invention, a radar apparatus 1 including the wave height calculation processing unit 10, and a wave height calculation method will be described with reference to the drawings. The present invention can be widely applied to a wave height calculation device that calculates the height of a wave generated on the water surface, a radar device including the wave height calculation device, and a wave height calculation method.
 図1は、本発明の実施形態に係るレーダ装置1のブロック図である。本実施形態のレーダ装置1は、例えば、漁船等の船舶としての自船に備えられている。このレーダ装置1によれば、以下で詳しく説明するように、水面に生じる波浪の高さである波高を正確に算出することができる。 FIG. 1 is a block diagram of a radar apparatus 1 according to an embodiment of the present invention. The radar apparatus 1 according to the present embodiment is provided in a ship such as a fishing boat. According to the radar apparatus 1, as will be described in detail below, the wave height that is the height of the waves generated on the water surface can be accurately calculated.
 図1に示すように、レーダ装置1は、アンテナユニット2と、風速計3と、波高算出装置としての波高算出処理部10と、表示器4と、を備えている。 As shown in FIG. 1, the radar device 1 includes an antenna unit 2, an anemometer 3, a wave height calculation processing unit 10 as a wave height calculation device, and a display 4.
 アンテナユニット2は、アンテナ5と、受信部6と、A/D変換部7と、を含んでいる。 The antenna unit 2 includes an antenna 5, a receiving unit 6, and an A / D conversion unit 7.
 アンテナ5は、指向性の強い送信波としてのパルス状電波を送波可能なレーダアンテナである。また、アンテナ5は、物標(本実施形態の場合、波浪)からの反射波を受波するように構成されている。すなわち、アンテナ5は、送信波を送波する送波器、及び送波された送信波の反射波を受信波として受波する受波器として機能する。レーダ装置1は、パルス状電波を送波してから反射波を受波するまでの時間を測定する。これにより、レーダ装置1は、物標までの距離rを検出することができる。アンテナ5は、水平面上で360°回転可能に構成されている。アンテナ5は、パルス状電波の送波方向を変えながら(例えば、アンテナ角度を変えながら)、電波の送受波を繰り返し行うように構成されている。以上の構成で、レーダ装置1は、自船周囲の平面上の物標を、360°にわたり探知することができる。 The antenna 5 is a radar antenna capable of transmitting a pulsed radio wave as a highly directional transmission wave. The antenna 5 is configured to receive a reflected wave from a target (a wave in the case of the present embodiment). That is, the antenna 5 functions as a transmitter that transmits a transmission wave and a receiver that receives a reflected wave of the transmitted transmission wave as a reception wave. The radar apparatus 1 measures the time from when a pulsed radio wave is transmitted until the reflected wave is received. Thereby, the radar apparatus 1 can detect the distance r to the target. The antenna 5 is configured to be able to rotate 360 ° on a horizontal plane. The antenna 5 is configured to repeatedly transmit and receive radio waves while changing the transmission direction of pulsed radio waves (for example, changing the antenna angle). With the above configuration, the radar apparatus 1 can detect a target on a plane around the ship over 360 °.
 なお、以下の説明では、パルス状電波を送波してから次のパルス状電波を送波するまでの動作を「スイープ」という。また、電波の送受波を行いながらアンテナを360°回転させる動作を「スキャン」と呼ぶ。 In the following description, the operation from the transmission of a pulsed radio wave to the transmission of the next pulsed radio wave is referred to as “sweep”. The operation of rotating the antenna 360 ° while transmitting and receiving radio waves is called “scan”.
 受信部6は、アンテナ5で受波したエコーから得られるエコー信号を検波して増幅する。受信部6は、増幅したエコー信号を、A/D変換部7へ出力する。A/D変換部7は、アナログ形式のエコー信号をサンプリングし、複数ビットからなるデジタルデータに変換する。このデジタルデータは、エコーデータである。エコーデータは、アンテナ5が受波した反射波から得られたエコー信号の強度を特定するデータを含んでいる。A/D変換部7は、エコーデータを、波高算出処理部10へ出力する。 The receiving unit 6 detects and amplifies an echo signal obtained from an echo received by the antenna 5. The reception unit 6 outputs the amplified echo signal to the A / D conversion unit 7. The A / D converter 7 samples an analog echo signal and converts it to digital data composed of a plurality of bits. This digital data is echo data. The echo data includes data specifying the intensity of the echo signal obtained from the reflected wave received by the antenna 5. The A / D converter 7 outputs the echo data to the wave height calculation processor 10.
 風速計3は、海上の風速(海上風速、水上風速)を計測するものであって、自船に装備されている。風速計3は、計測された風速に関するデータを、波高算出処理部10へ出力する。 The anemometer 3 measures the wind speed at sea (sea wind speed, surface wind speed), and is installed in the ship. The anemometer 3 outputs data relating to the measured wind speed to the wave height calculation processing unit 10.
 波高算出処理部10は、アンテナユニット2から出力されたエコーデータに基づき、波浪の高さ(波高)を算出する。波高算出処理部10は、算出した波高に関するデータを、表示器4へ出力する。なお、波高算出処理部10は、風速計3で得られた風速が所定値以下の場合には、波高の算出を行わない。これは、風速が小さい場合には波高が小さくなり易く、正確な波高を算出しにくくなるためである。波高算出処理部10の構成及び動作については、詳しくは後述する。 The wave height calculation processing unit 10 calculates the wave height (wave height) based on the echo data output from the antenna unit 2. The wave height calculation processing unit 10 outputs data relating to the calculated wave height to the display 4. The wave height calculation processing unit 10 does not calculate the wave height when the wind speed obtained by the anemometer 3 is equal to or less than a predetermined value. This is because when the wind speed is low, the wave height tends to be small, and it is difficult to calculate an accurate wave height. The configuration and operation of the wave height calculation processing unit 10 will be described later in detail.
 表示器4では、波高算出処理部10から出力された波高に関するデータ(例えば、波高の数値)が表示される。これにより、ユーザは、海上の波高を知ることができる。 The display 4 displays data relating to the wave height output from the wave height calculation processing unit 10 (for example, a numerical value of the wave height). Thereby, the user can know the wave height at sea.
 [波高算出処理部の構成]
 図2は、図1に示す波高算出処理部10の構成を示すブロック図である。波高算出処理部10は、画像生成部11と、解析エリア設定部12と、周波数解析部13と、波浪スペクトルパワー算出部14と、相対波向算出部15と、補正係数算出部16と、波浪スペクトルパワー補正部17と、波高算出部18とを備えている。
[Configuration of wave height calculation processing unit]
FIG. 2 is a block diagram showing a configuration of the wave height calculation processing unit 10 shown in FIG. The wave height calculation processing unit 10 includes an image generation unit 11, an analysis area setting unit 12, a frequency analysis unit 13, a wave spectrum power calculation unit 14, a relative wave direction calculation unit 15, a correction coefficient calculation unit 16, and a wave A spectrum power correction unit 17 and a wave height calculation unit 18 are provided.
 波高算出処理部10は、ハードウェア・プロセッサ8(例えば、CPU、FPGA等)及び不揮発性メモリ等のデバイスで構成される。例えば、CPUが不揮発性メモリからプログラムを読み出して実行することにより、波高算出処理部10を、画像生成部11、解析エリア設定部12、周波数解析部13、波浪スペクトルパワー算出部14等として機能させることができる。 The wave height calculation processing unit 10 includes a hardware processor 8 (for example, CPU, FPGA, etc.) and a device such as a nonvolatile memory. For example, the CPU reads the program from the nonvolatile memory and executes it, thereby causing the wave height calculation processing unit 10 to function as the image generation unit 11, the analysis area setting unit 12, the frequency analysis unit 13, the wave spectrum power calculation unit 14, and the like. be able to.
 図3は、画像生成部11によって生成されるエコー画像Pの一例を模式的に示す図である。画像生成部11は、アンテナユニット2から出力されたエコーデータに基づき、エコー画像Pを生成する。エコー画像Pは、アンテナ5が360°回転する毎に(すなわち、スキャン毎に)生成される。なお、図3に示す例では、波峰線wが比較的はっきりと映っている例を示している。 FIG. 3 is a diagram schematically illustrating an example of the echo image P generated by the image generation unit 11. The image generation unit 11 generates an echo image P based on the echo data output from the antenna unit 2. The echo image P is generated every time the antenna 5 rotates 360 ° (that is, every scan). Note that the example shown in FIG. 3 shows an example in which the wavy line w is relatively clearly reflected.
 解析エリア設定部12は、エコー画像Pに対して解析エリアZを設定する(図3参照)。この解析エリアZは、ユーザによって随時、設定されてもよく、或いは、装置の出荷時において予め設定されていてもよい。本実施形態では、例えば一例として、図3に示すように解析エリアZが自船Sの前方に設定される。なお、解析エリアZが設定される領域は、自船S後方以外の領域が好ましい。これは、自船後方の領域では、自船Sの引き波により正確な波浪解析が困難となるためである。 The analysis area setting unit 12 sets an analysis area Z for the echo image P (see FIG. 3). The analysis area Z may be set as needed by the user, or may be set in advance when the apparatus is shipped. In the present embodiment, for example, as an example, analysis area Z as shown in FIG. 3 is set in front of the ship S 0. The region where the analysis area Z is set at a region other than the ship S 0 backward are preferred. This is because the ship behind the region is because accurate wave analyzed by the undertow of the ship S 0 becomes difficult.
 周波数解析部13は、スキャン毎に得られる、解析エリアZ内のエコー画像である解析エリア内エコー画像、をフーリエ変換し、周波数スペクトルS(f)を算出する。また、周波数解析部13は、フーリエ変換により得られた周波数スペクトルS(f)に基づき、波浪の波向を算出する。なお、波向の算出手法は周知であるため、その説明を省略する。 The frequency analysis unit 13 performs Fourier transform on the echo image in the analysis area, which is an echo image in the analysis area Z, obtained for each scan, and calculates the frequency spectrum S (f). Further, the frequency analysis unit 13 calculates the wave direction of the waves based on the frequency spectrum S (f) obtained by Fourier transform. In addition, since the calculation method of a wave direction is known, the description is abbreviate | omitted.
 波浪スペクトルパワー算出部14は、解析エリア内エコー画像から得られた周波数スペクトルS(f)に基づき、以下の式(3)を用いて、解析エリアZにおける波浪スペクトルの0次モーメントmを算出する。そして、波浪スペクトルパワー算出部14は、その0次モーメントmの平方根をとることにより、解析エリアZ内の波浪スペクトルパワー√mを算出する。 The wave spectrum power calculation unit 14 calculates the zero-order moment m 0 of the wave spectrum in the analysis area Z using the following equation (3) based on the frequency spectrum S (f) obtained from the echo image in the analysis area. To do. The wave spectrum power calculation unit 14, by taking the square root of the zero-order moment m 0, to calculate the wave spectrum power √m 0 in the analysis area Z.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 相対波向算出部15は、図3を参照して、解析エリアZから自船Sに向かう方向dsを基準とした、周波数解析部13によって算出された解析エリアZ内の波浪の波向dw、で定義される相対波向θを算出する。相対波向算出部15は、図3における反時計回り方向を正方向として、相対波向θを算出する。 The relative wave direction calculation unit 15 refers to FIG. 3, and the wave direction dw of the waves in the analysis area Z calculated by the frequency analysis unit 13 based on the direction ds from the analysis area Z toward the ship S 0 as a reference. The relative wave direction θ defined by is calculated. The relative wave direction calculation unit 15 calculates the relative wave direction θ with the counterclockwise direction in FIG. 3 as the positive direction.
 補正係数算出部16は、相対波向算出部15で算出された相対波向θを、以下に示す式(4)に代入することにより、波浪スペクトルパワー算出部14によって算出された波浪スペクトルパワー√mを補正するための補正係数β(第1補正係数)を算出する。 The correction coefficient calculation unit 16 substitutes the relative wave direction θ calculated by the relative wave direction calculation unit 15 into the following equation (4), thereby calculating the wave spectrum power √ calculated by the wave spectrum power calculation unit 14. A correction coefficient β (first correction coefficient) for correcting m 0 is calculated.
 [数4]
 β=1/(A+Bcosθ+Ccos2θ) …(4)
 但し、A,B,及びCは、予め行われた実験によって決定されたパラメータ(補正係数用パラメータ)であって、それらの値は、補正係数算出部16に記憶されている。すなわち、補正係数算出部16は、補正係数用パラメータA,B,Cを記憶する記憶部としての機能も有する。この式(4)は、第1補正係数算出式である。
[Equation 4]
β = 1 / (A + B cos θ + C cos 2θ) (4)
However, A, B, and C are parameters (correction coefficient parameters) determined by an experiment performed in advance, and these values are stored in the correction coefficient calculation unit 16. That is, the correction coefficient calculation unit 16 also has a function as a storage unit that stores correction coefficient parameters A, B, and C. This formula (4) is a first correction coefficient calculation formula.
 波浪スペクトルパワー補正部17は、波浪スペクトルパワー算出部14によって算出された波浪スペクトルパワー√mに、補正係数算出部16によって算出された補正係数βを乗算することにより波浪スペクトルパワー√mを補正して、補正後波浪スペクトルパワー√m0_newを算出する。 Wave spectrum power correcting unit 17, the wave spectrum power √m 0 calculated by ocean wave spectrum power calculation unit 14, the wave spectrum power √m 0 by multiplying a correction coefficient calculated by the correction coefficient calculating unit 16 beta After correction, the corrected wave spectrum power √m 0 — new is calculated.
 波高算出部18は、波浪スペクトルパワー補正部17によって算出された補正後波浪スペクトルパワー√m0_newに固定係数αを乗算することにより、解析エリアZ内の波浪の波高H1/3を算出する。具体的には、波高算出部18は、以下の式(5)に基づいて、波高H1/3を算出する。 The wave height calculation unit 18 calculates the wave height H 1/3 of the wave in the analysis area Z by multiplying the corrected wave spectrum power √m 0_new calculated by the wave spectrum power correction unit 17 by the fixed coefficient α. Specifically, the wave height calculation unit 18 calculates the wave height H 1/3 based on the following equation (5).
 [数5]
 H1/3=α√m0_new …(5)
[Equation 5]
H 1/3 = α√m 0_new (5)
 [式(4)について]
 以下では、式(4)を用いて得ることができる補正係数βによって波浪スペクトルパワー√mを補正すると正確な波高H1/3を得ることができる理由について説明する。しかし、その前に、相対波向θと波浪スペクトルパワー√mとの関係について説明する。
[Regarding Formula (4)]
Hereinafter, the reason why an accurate wave height H 1/3 can be obtained when the wave spectrum power √m 0 is corrected by the correction coefficient β that can be obtained using the equation (4) will be described. However, before that, the relationship between the relative wave direction θ and the wave spectrum power √m 0 will be described.
 相対波向θが0度の場合(具体的には、図3を参照して、dsとdwとが同じ向きである場合)、又は180度の場合(dsとdwとが反対向きである場合)とは、レーダ装置1からの送信波が波峰線wに向かって垂直に送波される場合である。この場合、波浪における比較的広範囲に送信波が当たるため、波浪スペクトルパワーが比較的強くなる。そうすると、該波浪スペクトルパワーを用いて従来のように波高を算出しても、波高を比較的正確に算出することができる。 When the relative wave direction θ is 0 degree (specifically, referring to FIG. 3, when ds and dw are in the same direction), or when 180 degrees (ds and dw are in opposite directions) ) Is a case where the transmission wave from the radar apparatus 1 is transmitted vertically toward the wave line w. In this case, since the transmission wave hits a relatively wide area in the wave, the wave spectrum power becomes relatively strong. Then, even if the wave height is calculated using the wave spectrum power as in the prior art, the wave height can be calculated relatively accurately.
 一方、相対波向θが90度又は270度の場合とは、レーダ装置1からの送信波が波峰線wの側方に送波される場合である。この場合、波浪における比較的狭い範囲にしか送信波が当たらず、波浪スペクトルパワーが弱めに算出される。そうすると、相対波向が0度又は180度の場合よりも、波高が低めに算出される傾向が高くなり、波高を正確に算出できなくなる。 On the other hand, the case where the relative wave direction θ is 90 degrees or 270 degrees is a case where the transmission wave from the radar apparatus 1 is transmitted to the side of the wave line w. In this case, the transmission wave only hits a relatively narrow range in the wave, and the wave spectrum power is calculated to be weak. Then, the tendency that the wave height is calculated to be lower than when the relative wave direction is 0 degree or 180 degrees becomes higher, and the wave height cannot be calculated accurately.
 この点につき、式(4)を用いて波浪スペクトルパワー√mを補正することにより補正後波浪スペクトルパワー√m0_newを算出すると、解析エリアZ内に含まれる波浪の相対波向に関わらず、波浪スペクトルパワーを正確に算出できる。 In this regard, when the corrected wave spectrum power √m 0_new is calculated by correcting the wave spectrum power √m 0 using Equation (4), regardless of the relative wave direction of the waves included in the analysis area Z, Wave spectrum power can be calculated accurately.
 具体的には、式(4)を参照して、相対波向θが0度付近、又は180度付近の場合、補正係数βは比較的小さな値となる。一方、相対波向θが90度付近、又は270度付近の場合、補正係数βは、相対波向が0度付近又は180度付近の場合と比べて、大きくなる。すなわち、式(4)を用いれば、波浪スペクトルパワー√mが弱めに算出されても、その波浪スペクトルパワー√mが高くなるように、補正係数βによって補正される。 Specifically, with reference to Equation (4), when the relative wave direction θ is around 0 degrees or around 180 degrees, the correction coefficient β is a relatively small value. On the other hand, when the relative wave direction θ is around 90 degrees or around 270 degrees, the correction coefficient β is larger than when the relative wave direction is around 0 degrees or around 180 degrees. That is, by using the equation (4), even if the wave spectrum power √m 0 is calculated to be weak, the wave spectrum power √m 0 is corrected by the correction coefficient β so as to increase.
 [補正係数パラメータについて]
 図4は、式(4)に示す補正係数βを算出するための補正係数用パラメータA,B,Cを決定するための予備実験を行う際に実施される各工程を説明するためのフローチャートである。以下では、図4を用いて、補正係数用パラメータA,B,Cを決定するための予備実験の各工程について説明する。
[About correction coefficient parameters]
FIG. 4 is a flowchart for explaining each step performed when a preliminary experiment for determining the correction coefficient parameters A, B, and C for calculating the correction coefficient β shown in Expression (4) is performed. is there. Hereinafter, each step of the preliminary experiment for determining the correction coefficient parameters A, B, and C will be described with reference to FIG.
 図5は、予備実験において波浪スペクトルパワー√mが算出されるデータ取得用エリアZ1~Z7の自船Sに対する位置を示す図である。まず、ステップS1では、図5に示す複数のデータ取得用エリアZ1~Z7のそれぞれから得られるエコーに基づき、各データ取得用エリアZ1~Z7内に含まれるエコー信号の周波数解析が行われる。具体的には、ステップS1では、各データ取得用エリアZ1~Z7内に含まれるエコー画像がフーリエ変換されることにより、各エコー画像が周波数スペクトルに変換される。 Figure 5 is a diagram showing a position relative to the ship S 0 of wave spectrum power √m 0 is ~ data acquisition area Z1 calculated Z7 in preliminary experiments. First, in step S1, frequency analysis of echo signals included in each of the data acquisition areas Z1 to Z7 is performed based on the echoes obtained from each of the plurality of data acquisition areas Z1 to Z7 shown in FIG. Specifically, in step S1, the echo images included in each of the data acquisition areas Z1 to Z7 are Fourier transformed to convert each echo image into a frequency spectrum.
 次に、ステップS2では、ステップS1によって生成された周波数スペクトルに基づき、各データ取得用エリアZ1~Z7内の波浪の波向が算出される。そして、ステップS2では、各データ取得用エリアZ1~Z7から自船Sに向かう方向を基準とした、各データ取得用エリアZ1~Z7内の波浪の波向を、各データ取得用エリアZ1~Z7内の波浪の相対波向として算出する。 Next, in step S2, wave directions in the respective data acquisition areas Z1 to Z7 are calculated based on the frequency spectrum generated in step S1. In step S2, the direction toward the ship S 0 from the data acquisition area Z1 ~ Z7 as a reference, a wave of wave direction in each data acquisition areas Z1 ~ Z7, the data acquisition area Z1 ~ Calculated as the relative wave direction of waves in Z7.
 一方、ステップS3では、ステップS2の前又は後に、又はステップS2と並行して、各データ取得用エリアZ1~Z7内の波浪スペクトルパワー√mが算出される。波浪スペクトルパワー√mの算出手法は、波浪スペクトルパワー算出部14の場合と同様である。 On the other hand, in step S3, the wave spectrum power √m 0 in each of the data acquisition areas Z1 to Z7 is calculated before or after step S2 or in parallel with step S2. The calculation method of the wave spectrum power √m 0 is the same as that of the wave spectrum power calculation unit 14.
 次に、ステップS4では、各データ取得用エリアZ1~Z7内の波浪スペクトルパワー√mが正規化される。具体的には、各データ取得用エリアZ1~Z7内の波浪スペクトルパワー√mが、7つのデータ取得用エリアZ1~Z7のうち最も波浪スペクトルパワーが高いデータ取得用エリアの波浪スペクトルパワーで除算される。これにより、各データ取得用エリアZ1~Z7のうち最も波浪スペクトルパワーが高いエリアの波浪スペクトルパワーが1となるように、各データ取得用エリアZ1~Z7の波浪スペクトルパワーが正規化される。なお、このように正規化された波浪スペクトルパワーを、以下では、正規化波浪スペクトルパワーと称する。 Next, in step S4, ocean wave spectrum power √m 0 in each data acquisition areas Z1 ~ Z7 is normalized. Specifically, the wave spectrum power √m 0 in each of the data acquisition areas Z1 to Z7 is divided by the wave spectrum power of the data acquisition area having the highest wave spectrum power among the seven data acquisition areas Z1 to Z7. Is done. As a result, the wave spectrum power of each of the data acquisition areas Z1 to Z7 is normalized so that the wave spectrum power of the area having the highest wave spectrum power among the data acquisition areas Z1 to Z7 is 1. In addition, the wave spectrum power normalized in this way is hereinafter referred to as normalized wave spectrum power.
 次に、ステップS5では、ステップS1からステップS4のステップを行うことにより取得される7つの正規化波浪スペクトルパワーが、複数のタイミング(すなわち、複数のスキャン)のそれぞれで算出される。 Next, in step S5, seven normalized wave spectrum powers acquired by performing steps S1 to S4 are calculated at each of a plurality of timings (ie, a plurality of scans).
 次に、ステップS6では、ステップS5によって算出された正規化波浪スペクトルパワーを情報として有する多数のサンプル点が、それぞれ、図6に示すように、相対波向θをx軸とし且つ正規化波浪スペクトルパワーをy軸とした直交座標上にプロットされる。これにより、相対波向別正規化波浪スペクトルパワーグラフが生成される。以下では、この相対波向別正規化波浪スペクトルパワーグラフを、単に散布図SPと称する。 Next, in step S6, as shown in FIG. 6, each of a large number of sample points having the normalized wave spectrum power calculated in step S5 as information has the relative wave direction θ as the x axis and the normalized wave spectrum. Plotted on Cartesian coordinates with power as y-axis. Thereby, the normalized wave spectrum power graph classified by relative wave direction is generated. Hereinafter, the normalized wave spectrum power graph classified by relative wave direction is simply referred to as a scatter diagram SP.
 なお、図6において丸印で示されるサンプル点は、風速計によって得られた風速の風力階級が5のときに得られたサンプル点である。また、四角印で示されるサンプル点は、風速計によって得られた風速の風力階級が6のときに得られたサンプル点である。また、三角印で示されるサンプル点は、風速計によって得られた風速の風力階級が7のときに得られたサンプル点である。また、×印で示されるサンプル点は、風速計によって得られた風速の風力階級が8以上のときに得られたサンプル点である。 Note that the sample points indicated by circles in FIG. 6 are sample points obtained when the wind class of the wind speed obtained by the anemometer is 5. The sample points indicated by square marks are sample points obtained when the wind speed class obtained by the anemometer is 6. The sample points indicated by triangles are sample points obtained when the wind speed class obtained by the anemometer is 7. The sample points indicated by x are sample points obtained when the wind speed of the wind speed obtained by the anemometer is 8 or more.
 次に、ステップS7では、ステップS6によって生成された散布図SPに基づき、補正係数用パラメータA,B,Cが算出される。具体的には、ステップS6では、上述した式(4)右辺の分母(A+Bcosθ+Ccos2θ)で表される式と、散布図SPを構成する各サンプル点との残差の二乗和が最小となるように、補正係数用パラメータA,B,Cが算出される。すなわち、ステップS6では、最小二乗法により、A+Bcosθ+Ccos2θにおける補正係数用パラメータA,B,Cが算出される。これにより、実際に得られた各データ取得用エリアでの波浪スペクトルパワーに基づき、補正係数用パラメータを算出することができる。なお、図6では、最小二乗法により補正係数用パラメータA,B,Cが算出された数式(A+Bcosθ+Ccos2θ)を示すグラフが、散布図SPに重ねて表示されている。 Next, in step S7, correction coefficient parameters A, B, and C are calculated based on the scatter diagram SP generated in step S6. Specifically, in step S6, the sum of squares of the residuals between the above-described expression (4), the right side denominator (A + B cos θ + C cos 2θ), and each sample point constituting the scatter diagram SP is minimized. Then, correction coefficient parameters A, B, and C are calculated. That is, in step S6, correction coefficient parameters A, B, and C at A + B cos θ + C cos 2θ are calculated by the least square method. Thus, the correction coefficient parameter can be calculated based on the wave spectrum power in each data acquisition area actually obtained. In FIG. 6, a graph indicating a mathematical formula (A + B cos θ + C cos 2θ) in which the correction coefficient parameters A, B, and C are calculated by the least square method is superimposed on the scatter diagram SP.
 [効果]
 以上のように、本実施形態に係るレーダ装置1の波高算出処理部10は、相対波向θに基づいて波浪スペクトルパワー√mを補正して補正後波浪スペクトルパワー√m0_newを算出し、その補正後波浪スペクトルパワー√m0_newに固定係数αを乗算して波高H1/3を算出している。上述のように、波高が同じ場合であっても、相対波向θによって波浪スペクトルパワー√mの大小が異なってくる。よって、本実施形態の波高算出処理部10のように、相対波向θに基づいて波浪スペクトルパワー√mを補正することで、波高H1/3を正確に算出することができる。
[effect]
As described above, the wave height calculation processing unit 10 of the radar apparatus 1 according to the present embodiment corrects the wave spectrum power √m 0 based on the relative wave direction θ to calculate the corrected wave spectrum power √m 0_new , The wave height H 1/3 is calculated by multiplying the corrected wave spectrum power √m 0 — new by a fixed coefficient α. As described above, even if the wave height is the same, the magnitude of the wave spectrum power √m 0 varies depending on the relative wave direction θ. Therefore, the wave height H 1/3 can be accurately calculated by correcting the wave spectrum power √m 0 based on the relative wave direction θ as in the wave height calculation processing unit 10 of the present embodiment.
 従って、波高算出処理部10によれば、波高算出対象となる波浪の相対波向θによらず、波高を正確に算出できる。 Therefore, according to the wave height calculation processing unit 10, the wave height can be accurately calculated regardless of the relative wave direction θ of the wave to be wave height calculation target.
 また、波高算出処理部10で用いられる、波浪スペクトルパワー√mを補正するための補正係数算出式としては、相対波向θが0度のときに最小値をとる式が採用されている。相対波向θが0度のときには、解析エリアZ内の波浪が自船に向かって進行しているため、波浪スペクトルパワー√mが大きくなり易い。従って、このように波浪スペクトルパワー√mが大きくなり易い場合に補正係数が小さくなるような補正係数算出式を採用することで、補正係数βを適切に設定することができる。 Further, as a correction coefficient calculation formula for correcting the wave spectrum power √m 0 used in the wave height calculation processing unit 10, a formula that takes a minimum value when the relative wave direction θ is 0 degree is employed. When the relative wave direction θ is 0 degree, the waves in the analysis area Z are traveling toward the ship, so the wave spectrum power √m 0 tends to increase. Therefore, the correction coefficient β can be appropriately set by adopting a correction coefficient calculation formula that reduces the correction coefficient when the wave spectrum power √m 0 tends to increase.
 また、波高算出処理部10で用いられる、波浪スペクトルパワー√mを補正するための補正係数算出式としては、相対波向θが180度のときに極小値をとる式が採用されている。相対波向θが180度のときには、解析エリアZ内の波浪が自船から離れる方向に向かって進行しているため、波浪スペクトルパワー√mが大きくなり易い。従って、このように波浪スペクトルパワー√mが大きくなり易い場合に補正係数が小さくなるような補正係数算出式を採用することで、補正係数βを適切に設定することができる。 In addition, as a correction coefficient calculation formula for correcting the wave spectrum power √m 0 used in the wave height calculation processing unit 10, a formula that takes a minimum value when the relative wave direction θ is 180 degrees is adopted. When the relative wave direction θ is 180 degrees, the wave spectrum power √m 0 tends to increase because the waves in the analysis area Z are traveling in the direction away from the ship. Therefore, the correction coefficient β can be appropriately set by adopting a correction coefficient calculation formula that reduces the correction coefficient when the wave spectrum power √m 0 tends to increase.
 また、波高算出処理部10で用いられる、波浪スペクトルパワー√mを補正するための補正係数算出式としては、式(4)が採用されている。式(4)によれば、波浪スペクトルパワー√mが小さくなり易い状況下、具体的には、相対波向θが90度付近、又は270度付近の場合に、補正係数βが大きくなる。従って、波高算出処理部10によれば、補正係数βをより適切に設定することができる。 Further, as a correction coefficient calculation formula for correcting the wave spectrum power √m 0 used in the wave height calculation processing unit 10, formula (4) is adopted. According to Equation (4), the correction coefficient β increases when the wave spectrum power √m 0 tends to be small, specifically when the relative wave direction θ is around 90 degrees or around 270 degrees. Therefore, the wave height calculation processing unit 10 can set the correction coefficient β more appropriately.
 また、波高算出処理部10では、補正係数βを算出するための補正係数用パラメータA,B,Cが、波高算出部18での波高H1/3の算出が行われる前に予備実験によって予め設定され、それらの値が補正係数算出部16に記憶されている。これにより、波高算出部18による波高算出と並行して補正係数用パラメータA,B,Cを算出する必要がなくなるため、波高算出処理部10にかかる演算負荷を軽減できる。 In addition, in the wave height calculation processing unit 10, the correction coefficient parameters A, B, and C for calculating the correction coefficient β are preliminarily determined by preliminary experiments before the wave height calculation unit 18 calculates the wave height H 1/3. These values are set and stored in the correction coefficient calculation unit 16. This eliminates the need to calculate the correction coefficient parameters A, B, and C in parallel with the wave height calculation by the wave height calculation unit 18, thereby reducing the calculation load on the wave height calculation processing unit 10.
 また、本実施形態に係るレーダ装置1によれば、波高H1/3が算出される波浪の進行方向に関係なく波高を正確に算出できる波高算出処理部を備えたレーダ装置を提供できる。 Moreover, according to the radar apparatus 1 according to the present embodiment, it is possible to provide a radar apparatus including a wave height calculation processing unit that can accurately calculate the wave height regardless of the wave traveling direction in which the wave height H 1/3 is calculated.
 [変形例]
 以上、本発明の実施形態について説明したが、本発明はこれらに限定されるものではなく、本発明の趣旨を逸脱しない限りにおいて種々の変更が可能である。
[Modification]
As mentioned above, although embodiment of this invention was described, this invention is not limited to these, A various change is possible unless it deviates from the meaning of this invention.
 (1)図7は、変形例に係るレーダ装置の波高算出処理部10aのブロック図である。上述した実施形態では、予め実施された予備実験に基づいて算出された補正係数用パラメータA,B,Cを用いて補正係数βを算出した。これに対して、本変形例では、波高算出部18による波高の算出と並行して、補正係数用パラメータA,B,Cが随時、算出される。波高算出処理部10aは、上述した実施形態の波高算出処理部10が有する各構成要件の他に、補正係数用パラメータ算出処理部20を備えている。 (1) FIG. 7 is a block diagram of a wave height calculation processing unit 10a of a radar apparatus according to a modification. In the above-described embodiment, the correction coefficient β is calculated using the correction coefficient parameters A, B, and C calculated based on preliminary experiments performed in advance. On the other hand, in the present modification, correction coefficient parameters A, B, and C are calculated as needed in parallel with the calculation of the wave height by the wave height calculation unit 18. The wave height calculation processing unit 10a includes a correction coefficient parameter calculation processing unit 20 in addition to the components included in the wave height calculation processing unit 10 of the above-described embodiment.
 図8は、図7に示す補正係数用パラメータ算出処理部20を示すブロック図である。補正係数用パラメータ算出処理部20は、データ取得用エリア設定部21と、エリア毎周波数解析部22と、エリア毎波浪スペクトルパワー算出部23と、正規化部24と、エリア毎相対波向算出部25と、グラフ生成部26と、補正係数用パラメータ算出部27とを有している。 FIG. 8 is a block diagram showing the correction coefficient parameter calculation processing unit 20 shown in FIG. The correction coefficient parameter calculation processing unit 20 includes a data acquisition area setting unit 21, an area frequency analysis unit 22, an area wave spectrum power calculation unit 23, a normalization unit 24, and an area relative wave direction calculation unit. 25, a graph generation unit 26, and a correction coefficient parameter calculation unit 27.
 データ取得用エリア設定部21は、波浪スペクトルパワーが算出されるエリアであるデータ取得用エリアを複数、設定する。例えば、データ取得用エリア設定部21は、図5に示す各データ取得用エリアZ1~Z7を、データ取得用エリアとして設定する。 The data acquisition area setting unit 21 sets a plurality of data acquisition areas that are areas in which the wave spectrum power is calculated. For example, the data acquisition area setting unit 21 sets each of the data acquisition areas Z1 to Z7 shown in FIG. 5 as a data acquisition area.
 エリア毎周波数解析部22は、スキャン毎に得られる、各データ取得用エリアZ1~Z7内のエコー画像、をフーリエ変換し、周波数スペクトルを算出する。また、エリア毎周波数解析部22は、フーリエ変換により得られた周波数スペクトルに基づき、各データ取得用エリアZ1~Z7における波浪の波向を算出する。 The area-by-area frequency analysis unit 22 performs Fourier transform on the echo images in the data acquisition areas Z1 to Z7 obtained for each scan, and calculates a frequency spectrum. Further, the frequency analysis unit 22 for each area calculates the wave direction of the waves in each of the data acquisition areas Z1 to Z7 based on the frequency spectrum obtained by the Fourier transform.
 エリア毎波浪スペクトルパワー算出部23は、各データ取得用エリアに対応して得られた周波数スペクトルに基づき、各データ取得用エリアにおけるエリア毎波浪スペクトルパワー√mを算出する。なお、エリア毎波浪スペクトルパワー√mは、上記実施形態の場合と同様に算出される。 The area-specific wave spectrum power calculation unit 23 calculates the area-specific wave spectrum power √m 0 in each data acquisition area based on the frequency spectrum obtained corresponding to each data acquisition area. The wave wave power per area √m 0 is calculated in the same manner as in the above embodiment.
 正規化部24は、エリア毎波浪スペクトルパワー√mを正規化する。具体的には、正規化部24は、1スキャンで得られる複数のエリア毎波浪スペクトルパワー√mを、それぞれ、それらのうち最も値が大きいエリア毎波浪スペクトルパワー√mで除算することにより、エリア毎波浪スペクトルパワー√mを正規化する。これにより、複数のエリアのうち最も波浪スペクトルパワーが高いエリアの波浪スペクトルパワーが1となるように、エリア毎波浪スペクトルパワーが正規化される。正規化部24は、スキャン毎に、エリア毎波浪スペクトルパワー√mの正規化を行う。 The normalizing unit 24 normalizes the wave spectrum power √m 0 for each area. Specifically, the normalization unit 24, by a plurality of areas each wave spectral power √m 0 obtained in the first scan, respectively, divided by the area per wave spectral power √m 0 most large value of them Normalize the wave spectrum power √m 0 per area. Thereby, the wave spectrum power for each area is normalized so that the wave spectrum power of the area having the highest wave spectrum power among the plurality of areas becomes 1. The normalization unit 24 normalizes the wave spectrum power √m 0 for each area for each scan.
 エリア毎相対波向算出部25は、各データ取得用エリアに対応して算出された波浪の波向と、各データ取得用エリアから自船に向かう方向とに基づき、各データ取得用エリア内の波浪の相対波向を算出する。相対波向の算出手法については、上記実施形態の相対波向算出部15の場合と同様である。 The relative wave direction calculation unit 25 for each area is based on the wave direction calculated for each data acquisition area and the direction from each data acquisition area toward the ship. Calculate the relative wave direction of the waves. The calculation method of the relative wave direction is the same as that of the relative wave direction calculation unit 15 of the above embodiment.
 グラフ生成部26は、該グラフ生成部26が記憶している散布図に、直近で得られた正規化後のエリア毎波浪スペクトルパワーとエリア毎相対波向とで特定されるサンプル点をプロットしてその散布図を更新し、新たな散布図を生成する。グラフ生成部26によって生成される散布図は、図6に示すものと同様である。 The graph generation unit 26 plots the sample points specified by the normalized wave spectrum power per area and the relative wave direction for each area obtained in the latest in the scatter diagram stored in the graph generation unit 26. Update the scatter plot to generate a new scatter plot. The scatter diagram generated by the graph generation unit 26 is the same as that shown in FIG.
 補正係数用パラメータ算出部27は、グラフ生成部26によって新たな散布図が生成される毎に、補正係数用パラメータA,B,Cを算出する。具体的には、補正係数用パラメータ算出部27は、A+Bcosθ+Ccos2θで表される式と、更新された散布図を構成する各サンプル点との残差の二乗和が最小となるように、補正係数用パラメータA,B,Cを算出する。 The correction coefficient parameter calculation unit 27 calculates correction coefficient parameters A, B, and C each time a new scatter diagram is generated by the graph generation unit 26. Specifically, the correction coefficient parameter calculation unit 27 uses correction coefficient parameters so that the sum of squares of the residuals between the expression represented by A + B cos θ + C cos 2θ and each sample point constituting the updated scatter diagram is minimized. Parameters A, B, and C are calculated.
 そして、本変形例では、波浪スペクトルパワー補正部17が、直近のタイミングで得られた正規化後の波浪スペクトルパワーも加味された上で算出された補正係数用パラメータA,B,Cを用いて得られた補正係数βに基づいて、解析エリアZ内の波浪スペクトルパワーを補正する。そして、波高算出部18は、その補正された波浪スペクトルパワーに基づいて、解析エリアZ内の波高を算出する。 In this modification, the wave spectrum power correction unit 17 uses the correction coefficient parameters A, B, and C calculated after taking into account the normalized wave spectrum power obtained at the latest timing. The wave spectrum power in the analysis area Z is corrected based on the obtained correction coefficient β. Then, the wave height calculation unit 18 calculates the wave height in the analysis area Z based on the corrected wave spectrum power.
 以上のように、本変形例に係るレーダ装置の波高算出処理部10aによれば、直近のタイミングで得られた正規化後の波浪スペクトルパワーも加味された上で算出された補正係数用パラメータA,B,Cを用いて得られた補正係数βに基づいて解析エリアZ内の波浪スペクトルパワーが補正され、その補正された波浪スペクトルパワーに基づき、解析エリアZ内の波高H1/3が算出される。すなわち、本変形例の波高算出処理部10aによれば、最新のデータに基づいて解析エリアZ内の波高H1/3を算出することができるため、波高H1/3をより正確に算出できる。 As described above, according to the wave height calculation processing unit 10a of the radar apparatus according to the present modification, the correction coefficient parameter A calculated in consideration of the normalized wave spectrum power obtained at the latest timing. , B, and C are used to correct the wave spectrum power in the analysis area Z based on the correction coefficient β, and the wave height H 1/3 in the analysis area Z is calculated based on the corrected wave spectrum power. Is done. That is, according to the wave height calculation processing unit 10a of the present modification, the wave height H 1/3 in the analysis area Z can be calculated based on the latest data, and therefore the wave height H 1/3 can be calculated more accurately. .
 また、波高算出処理部10aでは、補正係数用パラメータ算出処理部20の構成要件として、エリア毎波浪スペクトルパワー算出部23、エリア毎相対波向算出部25、グラフ生成部26、及び補正係数用パラメータ算出部27が設けられている。これにより、波高算出処理部10aによれば、最新のデータに基づいて解析エリアZ内の波高H1/3を算出するための具体的な構成を提供できる。 Further, in the wave height calculation processing unit 10a, as the configuration requirements of the correction coefficient parameter calculation processing unit 20, the area-specific wave spectrum power calculation unit 23, the area-specific relative wave direction calculation unit 25, the graph generation unit 26, and the correction coefficient parameter A calculation unit 27 is provided. Thereby, according to the wave height calculation process part 10a, the specific structure for calculating the wave height H1 / 3 in the analysis area Z can be provided based on the newest data.
 また、波高算出処理部10aでは、スキャン毎に得られた複数の波浪スペクトルパワーをスキャン毎に正規化し、その正規化した波浪スペクトルパワーに基づき、補正係数用パラメータA,B,Cを算出するための散布図を生成している。 Further, the wave height calculation processing unit 10a normalizes a plurality of wave spectrum powers obtained for each scan and calculates correction coefficient parameters A, B, and C based on the normalized wave spectrum powers. Generates a scatter plot.
 ところで、波浪スペクトルパワーの正規化を行わずに散布図を生成する場合、波浪スペクトルパワーが風速の影響を大きく受けるため、補正係数用パラメータA,B,Cを正確に算出するために、例えば風速毎に(一例として風力階級毎に)散布図を生成する必要が生じる。 By the way, when the scatter diagram is generated without normalizing the wave spectrum power, the wave spectrum power is greatly affected by the wind speed. Therefore, in order to accurately calculate the correction coefficient parameters A, B, C, for example, the wind speed Every time (as an example, for each wind class), a scatter plot needs to be generated.
 この点につき、本変形例の波高算出処理部10aの場合、スキャン毎に得られた複数の波浪スペクトルパワーをスキャン毎に正規化し、その正規化した波浪スペクトルパワーに基づき、補正係数用パラメータA,B,Cを算出するための散布図を生成している。こうすると、風速に起因する波浪スペクトルパワーの大小を均一化できるため、風速毎に散布図を生成する必要がなくなる。これにより、補正係数用パラメータA,B,Cを算出するために波高算出処理部10aにかかる演算負荷を軽減できる。 In this regard, in the case of the wave height calculation processing unit 10a of this modification, the plurality of wave spectrum powers obtained for each scan are normalized for each scan, and the correction coefficient parameters A, A scatter diagram for calculating B and C is generated. In this way, the magnitude of the wave spectrum power caused by the wind speed can be made uniform, so that it is not necessary to generate a scatter diagram for each wind speed. Thereby, it is possible to reduce the calculation load on the wave height calculation processing unit 10a for calculating the correction coefficient parameters A, B, and C.
 (2)図9は、変形例に係るレーダ装置の波高算出処理部10bの構成を示すブロック図である。上記実施形態では、1方向から到来する波浪の波高を算出する波高算出処理部10を例に挙げて説明したが、これに限らない。具体的には、以下で説明するように、複数方向から到来する各波浪の波高を正確に算出可能な波高算出処理部10bを構成することもできる。 (2) FIG. 9 is a block diagram showing a configuration of the wave height calculation processing unit 10b of the radar apparatus according to the modification. In the above-described embodiment, the wave height calculation processing unit 10 that calculates the wave height of waves arriving from one direction has been described as an example, but the present invention is not limited thereto. Specifically, as will be described below, a wave height calculation processing unit 10b that can accurately calculate the wave height of each wave coming from a plurality of directions can be configured.
 本変形例の波高算出処理部10bでは、周波数解析部13a、相対波向算出部15a、補正係数算出部16aの構成及び動作が、上記実施形態におけるそれらの構成及び動作と異なる。以下では、上記実施形態と異なる箇所について説明し、それ以外の箇所については説明を省略する。 In the wave height calculation processing unit 10b of the present modification, the configurations and operations of the frequency analysis unit 13a, the relative wave direction calculation unit 15a, and the correction coefficient calculation unit 16a are different from those in the above embodiment. Below, a different part from the said embodiment is demonstrated and description is abbreviate | omitted about the other part.
 周波数解析部13aは、上記実施形態の場合と同様にして周波数スペクトルS(f)を算出した後、その周波数スペクトルS(f)に基づき、複数方向から到来する各波浪の波向を算出する。 The frequency analysis unit 13a calculates the frequency spectrum S (f) in the same manner as in the above embodiment, and then calculates the wave direction of each wave arriving from a plurality of directions based on the frequency spectrum S (f).
 相対波向算出部15aは、各方向から到来する波浪の相対波向θを算出する。但し、iは、各方向からの波浪に対応して付される数字であって、i=1,2,…,n、である。 The relative wave direction calculation unit 15a calculates the relative wave direction θ i of waves arriving from each direction. However, i is a number given corresponding to waves from each direction, and i = 1, 2,..., N.
 補正係数算出部16aは、各方向からの波浪ごとに、波浪毎補正係数β(第1補正係数)を算出する。具体的には、補正係数算出部16aは、以下の式(6)に基づいて、各方向からの波浪に対応する波浪毎補正係数βを算出する。そして、補正係数算出部16aは、各方向に対応して得られた波浪毎補正係数βを、以下の式(7)に代入することにより、補正係数β(第2補正係数)を算出する。すなわち、式(6)は第1補正係数算出式であり、式(7)は、第2補正係数算出式である。 The correction coefficient calculation unit 16a calculates a wave-by-wave correction coefficient β i (first correction coefficient) for each wave from each direction. Specifically, the correction coefficient calculation unit 16a calculates a wave-by-wave correction coefficient β i corresponding to waves from each direction based on the following equation (6). Then, the correction coefficient calculating unit 16a calculates the correction coefficient β (second correction coefficient) by substituting the wave-by-wave correction coefficient β i obtained corresponding to each direction into the following equation (7). . That is, Expression (6) is a first correction coefficient calculation expression, and Expression (7) is a second correction coefficient calculation expression.
 [数6]
 β=1/(A+Bcosθ+Ccos2θ) …(6)
[Equation 6]
β i = 1 / (A + B cos θ i + C cos 2θ i ) (6)
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 そして、波浪スペクトルパワー補正部17は、波浪スペクトルパワー算出部14によって算出された波浪スペクトルパワー√mに、補正係数算出部16aによって算出された補正係数βを乗算することにより波浪スペクトルパワー√mを補正して、補正後波浪スペクトルパワー√m0_newを算出する。 Then, the wave spectrum power correction unit 17 multiplies the wave spectrum power √m 0 calculated by the wave spectrum power calculation unit 14 by the correction coefficient β calculated by the correction coefficient calculation unit 16a to thereby generate the wave spectrum power √m. The corrected wave spectrum power √m 0 — new is calculated by correcting 0 .
 以上のように、本変形例の波高算出処理部10bでも、上記実施形態の場合と同様、波高算出対象となる波浪の相対波向θによらず、波高を正確に算出できる。 As described above, the wave height calculation processing unit 10b according to the present modification can accurately calculate the wave height regardless of the relative wave direction θ of the wave that is the wave height calculation target, as in the case of the above-described embodiment.
 更に、本変形例によれば、複数の方向から波浪が到来する場合であっても、それら複数方向からの波浪を考慮にいれて補正係数βを算出することができる。従って、本変形例によれば、波高をより正確に算出できる。 Furthermore, according to this modification, even when waves arrive from a plurality of directions, it is possible to calculate the correction coefficient β in consideration of the waves from these directions. Therefore, according to this modification, the wave height can be calculated more accurately.
 なお、本変形例において、式(7)の代わりに、以下の式(8)を用いることにより、各方向からの波浪の大きさ(例えば、波浪スペクトルパワーのピーク値)を考慮に入れた補正係数βを算出することができる。これにより、波高をより一層正確に算出できる。 In this modification, the following equation (8) is used instead of equation (7) to correct the wave size from each direction (for example, the peak value of the wave spectrum power). The coefficient β can be calculated. Thereby, the wave height can be calculated more accurately.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 但し、γは重み付け係数であって、各方向からの波浪の大きさに対応して決定される数値であり、波浪が大きいほど大きな値が設定され、波浪が小さいほど小さな値が設定される。 However, γ i is a weighting coefficient, which is a numerical value determined in accordance with the magnitude of the wave from each direction. A larger value is set as the wave is larger, and a smaller value is set as the wave is smaller. .
 (3)図10は、変形例に係るレーダ装置の波高算出処理部10cの構成を示すブロック図である。図9を用いて説明した変形例では、波浪の到来方向に関わらず、同じ散布図SPを用いて算出された補正係数用パラメータA,B,Cを用いて補正係数βを算出する例を挙げて説明したが、これに限らない。 (3) FIG. 10 is a block diagram showing a configuration of the wave height calculation processing unit 10c of the radar apparatus according to the modification. In the modification described with reference to FIG. 9, the correction coefficient β is calculated using the correction coefficient parameters A, B, and C calculated using the same scatter diagram SP regardless of the arrival direction of the waves. However, this is not restrictive.
 本変形例では、波浪が到来する方位毎に生成された散布図SP(図示省略)に基づいて算出された補正係数用パラメータA,B,Cが、補正係数算出部16bに記憶されている。そして、本変形例では、補正係数算出部16bは、以下の式(9)に基づいて、各方向からの波浪に対応する波浪毎補正係数β(第1補正係数)を算出する。その後、補正係数算出部16bは、図9を用いて説明した変形例の場合と同様、式(7)を用いて補正係数β(第2補正係数)を算出する。 In the present modification, correction coefficient parameters A i , B i , and C i calculated based on a scatter diagram SP i (not shown) generated for each direction in which waves arrive are stored in the correction coefficient calculation unit 16b. Has been. In this modification, the correction coefficient calculation unit 16b calculates a wave-by-wave correction coefficient β i (first correction coefficient) corresponding to the waves from each direction based on the following equation (9). Thereafter, the correction coefficient calculation unit 16b calculates the correction coefficient β (second correction coefficient) using Expression (7), as in the case of the modification described with reference to FIG.
 [数9]
 β=1/(A+Bcosθ+Ccos2θ) …(9)
[Equation 9]
β i = 1 / (A i + B i cos θ i + C i cos 2θ i ) (9)
 そして、波浪スペクトルパワー補正部17は、波浪スペクトルパワー算出部14によって算出された波浪スペクトルパワー√mに、補正係数算出部16bによって算出された補正係数βを乗算することにより波浪スペクトルパワー√mを補正して、補正後波浪スペクトルパワー√m0_newを算出する。 Then, the wave spectrum power correction unit 17 multiplies the wave spectrum power √m 0 calculated by the wave spectrum power calculation unit 14 by the correction coefficient β calculated by the correction coefficient calculation unit 16b to thereby generate the wave spectrum power √m. The corrected wave spectrum power √m 0 — new is calculated by correcting 0 .
 以上のように、本変形例の波高算出処理部10cでも、上記実施形態の場合と同様、波高算出対象となる波浪の相対波向θによらず、波高を正確に算出できる。 As described above, the wave height calculation processing unit 10c according to the present modification can also accurately calculate the wave height regardless of the relative wave direction θ of the wave that is the wave height calculation target, as in the case of the above embodiment.
 更に、本変形例によれば、複数の方向から波浪が到来する場合であっても、それら複数方向からの波浪を考慮にいれて補正係数βを算出することができる。従って、本変形例によれば、波高をより正確に算出できる。しかも、本変形例によれば、方位毎に算出された補正係数用パラメータA,B,Cを用いて補正係数βを算出できるため、波高をより一層正確に算出できる。 Furthermore, according to this modification, even when waves arrive from a plurality of directions, the correction coefficient β can be calculated in consideration of the waves from these directions. Therefore, according to this modification, the wave height can be calculated more accurately. Moreover, according to the present modification, the correction coefficient β can be calculated using the correction coefficient parameters A i , B i , and C i calculated for each azimuth, so that the wave height can be calculated more accurately.
 (4)図11は、変形例に係るレーダ装置の波高算出処理部10dの構成を示すブロック図である。上述した実施形態では、波高算出対象となる波浪の周期に関わらず、同じ補正係数用パラメータA,B,Cに基づいて算出された補正係数βを用いて波高を算出した。しかし、これに限らず、波浪の周期に応じて異なる補正係数用パラメータを用いてもよく、例えば一例として、補正係数算出部16cは、周期が8秒以下の波浪と、周期が8秒以上の波浪とで、異なる補正係数用パラメータを用いてもよい。 (4) FIG. 11 is a block diagram showing a configuration of the wave height calculation processing unit 10d of the radar apparatus according to the modification. In the above-described embodiment, the wave height is calculated using the correction coefficient β calculated based on the same correction coefficient parameters A, B, and C regardless of the wave period for which the wave height is to be calculated. However, the present invention is not limited to this, and different correction coefficient parameters may be used depending on the wave period. For example, the correction coefficient calculation unit 16c has a wave having a period of 8 seconds or less and a period of 8 seconds or more. Different correction coefficient parameters may be used for the waves.
 ところで、波浪には、風浪及びうねりが含まれ、これらの特性は互いに異なっている。例えば一例として、風浪の周期は概ね8秒以下であり、うねりの周期は概ね8秒以上である。すなわち、上述のように、波浪の周期に応じて異なる補正係数用パラメータを用いることで、互いに特性が異なる風浪及びうねりのそれぞれに対応した補正係数βを算出することができる。これにより、異なる特性を有する波浪(例えば風浪及びうねり)のそれぞれに応じて適切な補正係数βを算出できるため、波浪の種類に応じて波高をより正確に算出できる。なお、波高算出対象となる波浪の周期は、周波数解析部13で算出され、補正係数算出部16cは、周波数解析部13で算出された波浪の周期の値に応じて、いずれの補正係数用パラメータを用いるかを決定する。 By the way, waves include wind and swell, and these characteristics are different from each other. For example, as an example, the period of wind is approximately 8 seconds or less, and the period of undulation is approximately 8 seconds or more. That is, as described above, the correction coefficient β corresponding to each of the wind and swell having different characteristics can be calculated by using different correction coefficient parameters depending on the wave period. Accordingly, since an appropriate correction coefficient β can be calculated according to each of waves having different characteristics (for example, wind and swell), the wave height can be calculated more accurately according to the type of the waves. The wave period that is a wave height calculation target is calculated by the frequency analysis unit 13, and the correction coefficient calculation unit 16 c uses any correction coefficient parameter depending on the wave period value calculated by the frequency analysis unit 13. Decide whether to use.
 1          レーダ装置
 5          アンテナ(送波器、受波器)
 10,10a~10d 波高算出処理部(波高算出装置)
 14         波浪スペクトルパワー算出部
 17         波浪スペクトルパワー補正部
 18         波高算出部
1 Radar device 5 Antenna (transmitter, receiver)
10, 10a to 10d Wave height calculation processing unit (wave height calculation device)
14 Wave Spectrum Power Calculation Unit 17 Wave Spectrum Power Correction Unit 18 Wave Height Calculation Unit

Claims (13)

  1.  送信波が探知エリア内の水面に生じる波浪で反射して帰来するエコーを受波する受波器から得られるエコー信号に基づいて、波浪の波高を算出する波高算出装置であって、
     前記探知エリア内に含まれる解析エリア内の波浪スペクトルパワーを算出する波浪スペクトルパワー算出部と、
     前記解析エリアから前記受波器に向かう方向を基準とした前記解析エリア内の波浪の進行方向である相対波向、に基づいて、前記波浪スペクトルパワーを補正する波浪スペクトルパワー補正部と、
     補正された前記波浪スペクトルパワーに基づいて前記解析エリア内の波浪の波高を算出する波高算出部と、
     を備えていることを特徴とする、波高算出装置。
    A wave height calculation device that calculates the wave height of a wave based on an echo signal obtained from a receiver that receives an echo reflected by a wave generated on the water surface in the detection area and returning,
    A wave spectrum power calculation unit for calculating the wave spectrum power in the analysis area included in the detection area;
    A wave spectrum power correction unit that corrects the wave spectrum power based on a relative wave direction that is a traveling direction of the waves in the analysis area with reference to the direction from the analysis area toward the receiver;
    A wave height calculator for calculating the wave height of the waves in the analysis area based on the corrected wave spectrum power;
    A wave height calculation device comprising:
  2.  請求項1に記載の波高算出装置において、
     前記波浪スペクトルパワー補正部は、前記相対波向が0度となる場合に最小値をとる前記相対波向の関数である第1補正係数算出式に、前記波浪スペクトルパワーの算出が行われた前記解析エリア内の波浪の前記相対波向を代入することにより得られる第1補正係数を用いて、前記波浪スペクトルパワーを補正することを特徴とする、波高算出装置。
    In the wave height calculation apparatus according to claim 1,
    The wave spectrum power correction unit calculates the wave spectrum power in the first correction coefficient calculation formula that is a function of the relative wave direction that takes a minimum value when the relative wave direction is 0 degree. An apparatus for calculating a wave height, wherein the wave spectrum power is corrected using a first correction coefficient obtained by substituting the relative wave direction of waves in an analysis area.
  3.  請求項2に記載の波高算出装置において、
     前記第1補正係数算出式は、前記相対波向が180度となる場合に極小値をとることを特徴とする、波高算出装置。
    In the wave height calculation apparatus according to claim 2,
    The first correction coefficient calculation formula has a minimum value when the relative wave direction is 180 degrees.
  4.  請求項3に記載の波高算出装置において、
     前記波浪スペクトルパワー補正部は、以下の式(1)で表される前記第1補正係数算出式により得られた前記第1補正係数を前記波浪スペクトルパワーに乗算することにより、前記波浪スペクトルパワーを補正することを特徴とする、波高算出装置。
     [数1]
     β(θ)=1/(A+Bcosθ+Ccos2θ) …(1)
     但し、βは前記第1補正係数、θは前記相対波向、A,B,Cは、それぞれ、補正係数用パラメータである。
    In the wave height calculation apparatus according to claim 3,
    The wave spectrum power correction unit multiplies the wave spectrum power by the first correction coefficient obtained by the first correction coefficient calculation expression represented by the following expression (1), thereby calculating the wave spectrum power. A wave height calculation device, wherein correction is performed.
    [Equation 1]
    β (θ) = 1 / (A + B cos θ + C cos 2θ) (1)
    Where β is the first correction coefficient, θ is the relative wave direction, and A, B, and C are correction coefficient parameters.
  5.  請求項3に記載の波高算出装置であって、
     前記波浪スペクトルパワー補正部は、以下の式(2)で表される前記第1補正係数算出式により得られた前記第1補正係数、に基づいて得られた第2補正係数を前記波浪スペクトルパワーに乗算することにより、前記波浪スペクトルパワーを補正することを特徴とする、波高算出装置。
     [数2]
     β(θ)=1/(A+Bcosθ+Ccos2θ) …(2)
     但し、iは方位に対応して付される自然数、βは波浪の方位に対応して算出される前記第1補正係数、θは波浪の方位に対応して算出される前記相対波向、A,B,Cは、それぞれ、補正係数用パラメータである。
    The wave height calculation device according to claim 3,
    The wave spectrum power correction unit uses the first correction coefficient obtained by the first correction coefficient calculation formula represented by the following expression (2) as a second correction coefficient obtained from the wave spectrum power. The wave height calculation apparatus corrects the wave spectrum power by multiplying by.
    [Equation 2]
    β i (θ i) = 1 / (A + Bcosθ i + Ccos2θ i) ... (2)
    However, i is a natural number given corresponding to the direction, β i is the first correction coefficient calculated corresponding to the direction of the wave, and θ i is the relative wave direction calculated corresponding to the direction of the wave. , A, B, and C are correction coefficient parameters, respectively.
  6.  請求項4又は請求項5に記載の波高算出装置であって、
     前記補正係数用パラメータは、波浪が到来する方位に応じて設定されることを特徴とする、波高算出装置。
    The wave height calculation apparatus according to claim 4 or 5, wherein
    The correction coefficient parameter is set in accordance with a direction in which waves arrive.
  7.  請求項4又は請求項5に記載の波高算出装置であって、
     前記補正係数用パラメータは、波浪の周期に応じて設定されることを特徴とする、波高算出装置。
    The wave height calculation apparatus according to claim 4 or 5, wherein
    The correction coefficient parameter is set in accordance with a wave period, and the wave height calculation device.
  8.  請求項4から請求項7に記載の波高算出装置において、
     複数の前記補正係数用パラメータを記憶する記憶部を更に備えていることを特徴とする、波高算出装置。
    In the wave height calculation device according to claim 4 to 7,
    A wave height calculation device further comprising a storage unit for storing a plurality of correction coefficient parameters.
  9.  請求項8に記載の波高算出装置において、
     複数の前記補正係数用パラメータの算出を行う補正係数用パラメータ算出処理部を更に備えていることを特徴とする、波高算出装置。
    In the wave height calculation apparatus according to claim 8,
    A wave height calculation apparatus further comprising a correction coefficient parameter calculation processing unit that calculates a plurality of correction coefficient parameters.
  10.  請求項9に記載の波高算出装置において、
     前記補正係数用パラメータ算出処理部は、
     前記探知エリア内に設定される複数のデータ取得用エリアのそれぞれに含まれる波浪スペクトルパワーであるエリア毎波浪スペクトルパワー、を算出するエリア毎波浪スペクトルパワー算出部と、
     各前記データ取得用エリアから前記受波器に向かう方向を基準とした各前記データ取得用エリア内の波浪の進行方向であるエリア毎相対波向、を算出するエリア毎相対波向算出部と、
     前記エリア毎波浪スペクトルパワーと、前記エリア毎相対波向とで特定されるサンプル点を、前記エリア毎波浪スペクトルパワーに対応する第1軸と前記エリア毎相対波向に対応する第2軸とを有する座標にプロットして相対波向別波浪スペクトルパワーグラフを生成するグラフ生成部と、
     前記相対波向別波浪スペクトルパワーグラフに基づいて前記補正係数用パラメータを算出する補正係数用パラメータ算出部と、
     を有していることを特徴とする、波高算出装置。
    In the wave height calculation apparatus according to claim 9,
    The correction coefficient parameter calculation processing unit includes:
    An area-by-area wave spectrum power calculating unit that calculates an area-by-area wave spectrum power that is a wave spectrum power included in each of the plurality of data acquisition areas set in the detection area;
    A relative wave direction calculation unit for each area that calculates a relative wave direction for each area that is a traveling direction of waves in each of the data acquisition areas based on a direction from each data acquisition area to the receiver;
    Sample points specified by the area-specific wave spectrum power and the area-specific relative wave direction are represented by a first axis corresponding to the area-specific wave spectrum power and a second axis corresponding to the area-specific relative wave direction. A graph generating unit that generates a wave spectrum power graph according to relative wave direction by plotting to the coordinates having,
    A correction coefficient parameter calculation unit for calculating the correction coefficient parameter based on the relative wave direction wave spectrum power graph;
    A wave height calculation device characterized by comprising:
  11.  請求項10に記載の波高算出装置において、
     前記受波器が水平面に沿って360度回転する間に得られる複数の前記エリア毎波浪スペクトルパワーは、それぞれが、それらのうち最も値が大きいエリア毎波浪スペクトルパワーで除算されて正規化され、
     前記グラフ生成部は、正規化された前記エリア毎波浪スペクトルパワーと前記エリア毎相対波向とで特定されるサンプルを、前記座標にプロットして前記相対波向別波浪スペクトルパワーグラフを生成することを特徴とする、波高算出装置。
    The wave height calculation apparatus according to claim 10,
    The plurality of area wave spectrum powers obtained while the receiver rotates 360 degrees along a horizontal plane, each of which is normalized by being divided by the area wave spectrum power having the largest value among them.
    The graph generation unit plots a sample specified by the normalized wave power spectrum per area and the relative wave direction for each area on the coordinates to generate the wave spectrum power graph classified by relative wave direction. A wave height calculation device characterized by the above.
  12.  送信波を送波する送波器と、
     前記送信波が探知エリア内の水面に生じる波浪で反射して帰来するエコー、を受波する受波器と、
     前記受波器で受波された前記エコーから得られるエコー信号に基づいて波浪の波高を算出する請求項1から請求項11のいずれか1項に記載の波高算出装置と、
     を備えていることを特徴とする、レーダ装置。
    A transmitter for transmitting a transmission wave;
    A receiver that receives the echo reflected by the waves generated on the water surface in the detection area and returned,
    The wave height calculation device according to any one of claims 1 to 11, wherein a wave height is calculated based on an echo signal obtained from the echo received by the receiver.
    A radar apparatus comprising:
  13.  送信波が探知エリア内の水面に生じる波浪で反射して帰来するエコーを受波する受波器から得られるエコー信号に基づいて、波浪の波高を算出する波高算出方法であって、
     前記探知エリア内に含まれる解析エリア内の波浪スペクトルパワーを算出するステップと、
     前記解析エリアから前記受波器に向かう方向を基準とした前記解析エリア内の波浪の進行方向である相対波向、に基づいて、前記波浪スペクトルパワーを補正するステップと、
     補正された前記波浪スペクトルパワーに基づいて前記解析エリア内の波浪の波高を算出するステップと、
     を含むことを特徴とする、波高算出方法。
    A wave height calculation method for calculating the wave height of a wave based on an echo signal obtained from a receiver that receives an echo reflected by a wave generated on a water surface in a detection area and returning.
    Calculating the wave spectrum power in the analysis area included in the detection area;
    Correcting the wave spectrum power based on the relative wave direction, which is the traveling direction of the waves in the analysis area with reference to the direction from the analysis area toward the receiver;
    Calculating the wave height of the waves in the analysis area based on the corrected wave spectrum power;
    The wave height calculation method characterized by including.
PCT/JP2017/009496 2016-04-11 2017-03-09 Wave height calculating device, radar device, and wave height calculating method WO2017179344A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018511930A JP6676151B2 (en) 2016-04-11 2017-03-09 Wave height calculating device, radar device, and wave height calculating method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-079175 2016-04-11
JP2016079175 2016-04-11

Publications (1)

Publication Number Publication Date
WO2017179344A1 true WO2017179344A1 (en) 2017-10-19

Family

ID=60041620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/009496 WO2017179344A1 (en) 2016-04-11 2017-03-09 Wave height calculating device, radar device, and wave height calculating method

Country Status (2)

Country Link
JP (1) JP6676151B2 (en)
WO (1) WO2017179344A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109141376A (en) * 2018-08-06 2019-01-04 上海海事大学 It is a kind of unrestrained to detection method based on monocular vision
CN110823190A (en) * 2019-09-30 2020-02-21 广州地理研究所 Island reef shallow sea water depth prediction method based on random forest
CN111965628A (en) * 2020-08-11 2020-11-20 中国人民解放军91550部队 Method for estimating instantaneous wave parameters of vertical water outlet navigation body
CN112197749A (en) * 2020-09-30 2021-01-08 国家海洋环境预报中心 Cross calibration method and device for effective wave height of wave buoy
WO2021100402A1 (en) 2019-11-21 2021-05-27 古野電気株式会社 Solid-state radar device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003185743A (en) * 2001-12-19 2003-07-03 Yokohama Tlo Co Ltd Wave height calculator, method of calculating wave height, recording medium, and ship
JP2003307563A (en) * 2002-04-16 2003-10-31 Michio Nobeoka Radar wave height measuring instrument, radar wave height correction coefficient preparing method, and radar wave height correction coefficient preparing device
US20100315284A1 (en) * 2009-09-02 2010-12-16 Trizna Dennis B Method and apparatus for coherent marine radar measurements of properties of ocean waves and currents
JP2015014472A (en) * 2013-07-03 2015-01-22 古野電気株式会社 Echo signal processing device, ocean wave radar, echo signal processing method, and echo signal processing program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003185743A (en) * 2001-12-19 2003-07-03 Yokohama Tlo Co Ltd Wave height calculator, method of calculating wave height, recording medium, and ship
JP2003307563A (en) * 2002-04-16 2003-10-31 Michio Nobeoka Radar wave height measuring instrument, radar wave height correction coefficient preparing method, and radar wave height correction coefficient preparing device
US20100315284A1 (en) * 2009-09-02 2010-12-16 Trizna Dennis B Method and apparatus for coherent marine radar measurements of properties of ocean waves and currents
JP2015014472A (en) * 2013-07-03 2015-01-22 古野電気株式会社 Echo signal processing device, ocean wave radar, echo signal processing method, and echo signal processing program

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YUKIHARU HISAKI ET AL.: "Observations of sea wave by HF Ocean Radar", PROCEEDINGS OF THE 12TH JAPANESE CONFERENCE ON REMOTE SENSING, 7 May 1992 (1992-05-07), pages 63 - 66, ISSN: 09163611 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109141376A (en) * 2018-08-06 2019-01-04 上海海事大学 It is a kind of unrestrained to detection method based on monocular vision
CN109141376B (en) * 2018-08-06 2021-02-26 上海海事大学 Monocular vision-based wave direction detection method
CN110823190A (en) * 2019-09-30 2020-02-21 广州地理研究所 Island reef shallow sea water depth prediction method based on random forest
CN110823190B (en) * 2019-09-30 2020-12-08 广州地理研究所 Island reef shallow sea water depth prediction method based on random forest
WO2021100402A1 (en) 2019-11-21 2021-05-27 古野電気株式会社 Solid-state radar device
CN111965628A (en) * 2020-08-11 2020-11-20 中国人民解放军91550部队 Method for estimating instantaneous wave parameters of vertical water outlet navigation body
CN111965628B (en) * 2020-08-11 2023-09-12 中国人民解放军91550部队 Estimation method for instantaneous wave parameters of vertical water-yielding navigation body
CN112197749A (en) * 2020-09-30 2021-01-08 国家海洋环境预报中心 Cross calibration method and device for effective wave height of wave buoy
CN112197749B (en) * 2020-09-30 2021-06-29 国家海洋环境预报中心 Cross calibration method and device for effective wave height of wave buoy

Also Published As

Publication number Publication date
JPWO2017179344A1 (en) 2019-02-14
JP6676151B2 (en) 2020-04-08

Similar Documents

Publication Publication Date Title
WO2017179344A1 (en) Wave height calculating device, radar device, and wave height calculating method
JP5697910B2 (en) Threshold setting method, target detection method, threshold setting device, target detection device, threshold setting program, and target detection program
US10324190B2 (en) Wind measuring apparatus
JP2011053028A (en) Doppler radar apparatus and method of calculating doppler velocity
JP6404212B2 (en) Surface current estimation device, radar device, surface current estimation method, and surface current estimation program
JP5767002B2 (en) Ultrasonic transmission / reception device and fish quantity detection method
US11249185B2 (en) Signal processing device and radar apparatus
JP5664869B2 (en) Measuring apparatus, measuring system, measuring method, and program
JP6095899B2 (en) Target motion estimation device, target motion estimation method, and radar device
JP2013246022A (en) Target detection device, radar apparatus, target detection method, and target detection program
JP6154219B2 (en) Echo signal processing device, wave radar device, echo signal processing method, and echo signal processing program
JP6043083B2 (en) Target motion estimation device, target motion estimation method, and radar device
JP6289672B2 (en) Synthetic aperture radar signal processing apparatus and synthetic aperture radar signal processing program
JP6420136B2 (en) Wave height calculation device
JP5196959B2 (en) Radar equipment
JPH0228116B2 (en)
JP6362523B2 (en) Wind measuring device
JP2015232509A (en) Signal processor, rader system, signal processing method, and signal processing program
JP3777576B2 (en) Position estimation method and apparatus
JP6339074B2 (en) Sea state detection device, radar device, sea state detection method, and program
JP7269784B2 (en) Underwater detection device, underwater detection method and program
JP2000338238A (en) Radar equipment
CN116819534A (en) Shore-based ultrahigh frequency radar wind speed inversion method and system
JP2006071363A (en) Radar installation
JP2013088329A (en) Ultrasonic distance image generator

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018511930

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17782162

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17782162

Country of ref document: EP

Kind code of ref document: A1