WO2017178674A1 - Organic hole transport materials containing an ionic liquid - Google Patents

Organic hole transport materials containing an ionic liquid Download PDF

Info

Publication number
WO2017178674A1
WO2017178674A1 PCT/ES2017/070168 ES2017070168W WO2017178674A1 WO 2017178674 A1 WO2017178674 A1 WO 2017178674A1 ES 2017070168 W ES2017070168 W ES 2017070168W WO 2017178674 A1 WO2017178674 A1 WO 2017178674A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl
void
transport composition
void transport
organic
Prior art date
Application number
PCT/ES2017/070168
Other languages
Spanish (es)
French (fr)
Inventor
Laura CALIÓ
Manuel SALADO MANZORRO
Samrana KAZIM
Shahzada Ahmad
Original Assignee
Abengoa Research, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abengoa Research, S.L. filed Critical Abengoa Research, S.L.
Publication of WO2017178674A1 publication Critical patent/WO2017178674A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2004Light-sensitive devices characterised by the electrolyte, e.g. comprising an organic electrolyte
    • H01G9/2013Light-sensitive devices characterised by the electrolyte, e.g. comprising an organic electrolyte the electrolyte comprising ionic liquids, e.g. alkyl imidazolium iodide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/50Organic perovskites; Hybrid organic-inorganic perovskites [HOIP], e.g. CH3NH3PbI3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • H10K30/15Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
    • H10K30/151Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2 the wide bandgap semiconductor comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to hollow transport compositions, electrochemical and / or optoelectronic devices, solar cells and the use of an ionic liquid as an additive and / or dopant of a cargo transport material.
  • perovskite-based hybrid organo-lead solar cells have shown the best performance among solid-state hybrid solar cells.
  • the hollow transport layer in perovskite solar cells represents one of the key components for achieving high power conversion efficiency (PCE).
  • PCE power conversion efficiency
  • Spiro-OMeTAD 2,2 ', 7,7'-tetrakis (N, N-di-p-methoxyphenyl amine) -9,9-spirobifluorene
  • HTM transporting holes
  • t-BP 4-tert-butylpyridine
  • the present invention attempts to provide other and / or different additives, which are effective in doping the organic void transport material used in these devices, but that do not have the disadvantages of LiTFSI, t-BP and cobalt complexes. It is therefore an objective to complement or dop the material for transporting holes with compounds that do not have the drawbacks mentioned above. In particular, it is an objective to avoid the detrimental effect of lithium-based salt on the stability of solar cells.
  • the present invention addresses the problems described above.
  • the present invention relates to new ionic liquids that efficiently allow doping cargo transport materials and, when used as an additive and / or dopant to an organic hollow transport material (HTM), effectively improve the transport characteristics loading of the material, while not affecting or even increasing the stability of optoelectronic devices, in particular sensitized solar cells.
  • HTM organic hollow transport material
  • the present invention provides a void transport composition
  • a void transport composition comprising an organic cargo transport material and an ionic liquid comprising an A * cation, wherein A + is a substituted or unsubstituted heterocyclic ring of 5 or 6 members having 1-3 heteroatoms that are independently selected from N, S and O, with the proviso that at least one of the heteroatoms is a quaternary nitrogen atom.
  • the present invention provides an optoelectronic and / or electrochemical device, comprising the void transport composition of the invention.
  • the present invention provides the use of an ionic liquid as a dopant and / or additive to a cargo transport material and / or a perovskite.
  • the present invention provides the use of an ionic liquid as a dopant and / or additive to a cargo transport material for one or more selected from the group:
  • HTMs hollow transport materials
  • optoelectronic device and / or electrochemical device comprising a load transport layer.
  • the present invention provides a solar cell, in particular a sensitizing dye and / or perovskite based on a solar cell, comprising the hollow transport composition of the invention.
  • the present invention provides a solar cell based on perovskite oxide.
  • the solar cell is a solid state solar cell, preferably a hybrid solid state solar cell.
  • FIG. 1 shows the J-V curves of illuminated solar cells, in accordance with the embodiments of the invention compared to conventional devices. All devices contain Spiro-OMeTAD as HTM and different concentrations of BMP TFSI ionic liquid as a dopant, or LiTFSI and t-BP salt as conventional additives. One of the devices includes only the HTM and no additives at all.
  • FIG. 2 shows the efficiency of conversion of incident photons into electrons (IPCE) of the same products as cited in Figure 1, with the exception of the device that does not contain any additives at all.
  • Figure 3 shows the J-V curves of solar cells according to other aspects of the invention. In these devices, BMIM TFSI ionic liquid was compared as an additive with combinations of different ionic liquids in the void transport layer.
  • Figure 4 shows the conversion efficiency curves of electron-incident photons (IPCE) for one of the devices cited in Figure 3.
  • Figure 5 shows the JV curve of a solar cell according to an aspect of the invention, which contains BMIM TFSI ionic liquid as a dopant.
  • Figure 6 shows the normalized stability, measured for devices containing Spiro-OMeTAD as HTM and, or different concentrations of BMP TFSI ionic liquid as a dopant, or of conventional LiTFSI and t-BP additives. The devices were kept at room temperature outside the glove box, with a humidity around 45%. Devices containing ionic liquid (IL) are clearly more stable than the device containing conventional LiTFSI and t-BP additives.
  • IL ionic liquid
  • Figure 7 is a schematic representation of a solar cell according to an aspect of the invention.
  • FIG. 8 is a schematic representation of a solar cell according to another aspect of the invention. Detailed description of the main aspects
  • the present invention relates to additives and / or dopants of cargo transport materials and especially organic cargo transport materials.
  • the invention provides compositions and / or void transport materials.
  • the invention relates to void transport compositions comprising organic cargo transport materials and additives.
  • the additives are preferably ionic liquids and / or molten salts.
  • the molten salts and ionic liquids have hydrophobic properties.
  • the ionic liquid comprises an A ⁇ cation in which A is a 5 or 6-membered substituted or unsubstituted heterocyclic ring, having 1-3 heteroatoms, which are independently selected from N, S and O, with the proviso that at least one of the heteroatoms is a quaternary nitrogen atom.
  • A is a 5 or 6-membered substituted or unsubstituted heterocyclic ring, having 1-3 heteroatoms, which are independently selected from N, S and O, with the proviso that at least one of the heteroatoms is a quaternary nitrogen atom.
  • Said 5 or 6 membered heterocyclic ring may be further substituted by one or more substituents possibly present in said quaternary nitrogen atom.
  • said 5 or 6 member ring comprising a substituted nitrogen atom and optionally carbon atom substituents.
  • cation A * is selected from the compounds of formulas (1) - (4) below:
  • R ⁇ R 10 , R 1 and R 2 are independently selected from substituents comprising 1-30 carbon atoms and 0-20 heteroatoms provided that, in R 1 and R 2 , said Substituents are connected to the nitrogen atom by means of a simple CN bond.
  • R 1 -R 10 and R 2 in the formula (2) can also be substituted by H.
  • any substituent can be, independently, partially or totally halogenated (Cl, Br, I, F), preferably fluorinated.
  • Heteroatoms are preferably selected from N, P, S, O, Se, Te, B, and Si.
  • said substituents comprising 1-30 carbon atoms and 0-20 heteroatoms are substituents comprising 1-20 carbon atoms and 0-10 heteroatoms, preferably substituents comprising 1-15 carbon atoms and 0-5 heteroatoms, more preferably 1-10 carbon atoms and 0 heteroatoms.
  • Optional halogens are not included in that number of 0-10 or 0-5 heteroatoms.
  • R 1 -R 1C , R, and R 2 are independently selected from C1-C30 hydrocarbons, which may be partially and / or fully halogenated, and which may be substituted by one or more selected from the alkoxy, thioalkyl groups. -CN and / or -N0 2 , while R 1 -R 10 and optionally R 2 of the formula (2) can also be substituted by H.
  • said C1-C30 hydrocarbons are partially or fully fluorinated.
  • R 1 -R 1C , R, and R 2 are independently selected from C1-C20.
  • R 1 -R 10 and optionally R 2 in the formula (2) can also be substituted by H.
  • R ⁇ and R 2 are selected independently between alkyl, alkenyl, alkynyl or aryl which are substituted or unsubstituted, wherein said alkyl, alkenyl, alkynyl or aryl can be, independently, partially or totally halogenated, for example fluorinate.
  • R 2 in formula (2) can also be selected from H.
  • R 1 .R 10 to the extent present, are independently selected from H and from alkyl, alkenyl.
  • the compounds with formula (1) - (4) comprise at least one alkyl to one of R 1 -R 10 which are present in the compound, while the others of said R ⁇ R 10 , in the to the extent possible, they may be H. Said alkyls may be partially or totally halogenated.
  • R 1 -R 10 to the extent present, are all H, or in the compound (1) at least one of R 1 -R 5 is alkyl, while the others are H. Said alkyl It can be partially or totally halogenated.
  • R 1 and R 2 are independently selected from C1-C10 alkyls. Said C1-C10 alkyls can be partially or totally halogenated.
  • R 1 -R 10 are all H, or at least one is alkyl and all others are H, and R, and R 2 , as far as present, are independently selected from C1-C10 alkyls. Some or more of one among said alkyls may be partially or totally halogenated.
  • R 2 in the formula (2) can be selected as H.
  • at least one of R 1 -R 5 is selected from H and a hydrocarbon other than H, preferably an alkyl (partially or totally halogenated), the others being H.
  • a * is selected from the group of pyridinium, imidazolium and / or pyrrolidinium compounds.
  • a * is selected from the group of pyridinium and / or imidazolium compounds.
  • said pyridinium, imidazolium and / or pyrrolidinium, a compound is a pyridine, imidazole and pyrrolidine ring, respectively, which is substituted on nitrogen, and which may comprise other substituents.
  • imidazolium one or preferably both of the ring nitrogen atoms may be substituted.
  • a + is selected in a selected manner, the compounds of formulas (I) and (II), respectively,
  • R ⁇ and R 2 are independently selected from the substituted or unsubstituted alkyl, alkenyl. alkynyl or aryl, which, independently, may be totally or partially halogenated;
  • R ' to R 5 are independently selected from H and from the substituted or unsubstituted alkyl, alkenyl, alkynyl or aryl, which. independently, they can be totally or partially halogenated.
  • R 1 to R s are H.
  • at least one of R 1 to R s is selected from H and alkyl, preferably at least one of R 1 to R 5 is an alkyl.
  • R 4 in formula (I) is an alkyl. Said alkyl may be totally or partially halogenated.
  • R 1 and (3 ⁇ 4> are independently selected from a substituted or unsubstituted alkyl, alkenyl, and alkynyl.
  • Said alkyl, alkenyl and alkynyl may be independently, totally or partially halogenated, preferably R , to R5, to the extent present, are H or an alkyl, said alkyl may be wholly or partially halogenated.
  • R 1 to R 5 , R, and R 2 is independently selected from a C1-C15 alkyl, a C2-C15 alkenyl, a C2-C15 alkynyl and a C6-C15 ring, wherein the alkyl, alkenyl, alkynyl and / or aryl can be partially or totally halogenated, and from R 1 to R 8 , it can also be selected from an H.
  • said alkyl, alkenyl, alkynyl or aryl is selected from C1- alkyl C10, C2-C10 alkenyl, C2-C1 alkynyl and C6-C12 aryl.
  • R 1 and R 2 are selected from C1-C10 alkyls.
  • R 4 in formula (I) is selected from a C1-C10 alkyl and from H, and R 1 to R 3 and R 5 are H.
  • a + is selected from the compounds of formulas (5) a (7), respectively,
  • R 1 and R 2 are independently selected from the substituted or unsubstituted alkyl, alkenyl, alkynyl or aryl, wherein said alkyl, alkenyl, alkynyl or aryl may be, independently, partially or totally halogenated, and R 4 is selected from an alkyl and an H, wherein said alkyl may be partially or completely halogenated.
  • said alkyl, alkenyl, alkynyl or aryl is selected from C1-C15 alkyl, C2-C15 alkenyl, C2-C15 alkynyl and C6-C15 aryl.
  • said alkyl, alkenyl, alkynyl or aryl is selected from C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl and from C6-C12 aryl.
  • R 1 and R 2 and is selected from a C1-C10 alkyl and R 4 is selected from C1-C10 alkyl and H.
  • any of said pyridinium, imidazolium and / or pyrrolidinium compounds for example, of structures (1) - (7) or (l) - (ll), R 1 and R 2 , as far as present, they are independently selected from a C1-C10 alkyl, wherein one or both of said C1-C10 alkyl can be, independently, partially or totally halogenated.
  • R 1 to R 10 the extent present, are preferably H or alkyl. If any one or more of R 1 to R 10 is an alkyl, any or more of said alkyls may be totally or partially halogenated.
  • said A + cation is a di-alkyl imidazolium, in which one or both of said alkyl groups can be, independently, totally or partially halogenated.
  • said A + cation is a methyl alkyl imidazolium, wherein said alkyl can be totally or partially halogenated.
  • said alkyl can be a C1-C10 alkyl, which can be totally or partially halogenated, for example fluorinated.
  • said A + cation is selected from a 1-butyl-3-methyl-pyridinium, 1-butyl-3-methyl-imidazolium and a 1-methyl-3- (3,3,4,4, 5,5,6,6,6- nonafluorohexyl) -1 H- ⁇ midazol-3- ⁇ (MFHI +), in particular of a 1-butyl-3-methylpyridin-1- io and 1-butyl-3- methyl-1H-imidazol-3-io.
  • the anion in this case may be TFSI (Bis (trifluoromethylsulfonyl) imide) ((CF 3 S0 2 ) 2 N " ) and / or iodide, for example.
  • the MFHI + cation mentioned above is an example of an A + cation comprising a substituent alkyl, which is partially fluorinated.
  • the alkyl substituent is -CHrCH 2 - (CF 2 ) 4-CF 3 .
  • the ionic liquid may comprise any suitable anion.
  • said ionic liquid comprises an anion selected from halides, such as chloride, bromide, fluoride, iodide and (CF 3 S0 2 ) 2 N-, (CFaCOafeN " , BF 4. , PF e " , NO 3 , CH 3 C0 2 , CF 3 SO 3 , (CFaSOafeC " , (CF 3 C0 2 ) 2 C ' , and N (CN) 2 ' .
  • Preferred anions are TFSI 15 and / or iodide.
  • the void transport composition of the invention comprises a combination of two or more different ionic liquids.
  • the two or more ionic liquids preferably comprise A + cations having different structures.
  • the anions can be the same or different.
  • the composition of the invention comprises two different ionic liquids, comprising A1 + and A2 + cations, wherein A1 + and A2 + are independently selected from A + cations as defined elsewhere herein. specification.
  • one of the different ionic liquids comprises a pyridinium compound and the other comprising an imidazolium compound.
  • A1 + of pyridinium compounds is selected and A2 * is selected from imidazolium compounds as defined in the present specification.
  • the void transport composition comprises a compound (A1 + ) of formula (1) and a compound (A2 + ) of formula (2) as defined above.
  • the void transport composition comprises a compound (A1 + ) of formula (I) and a compound (A2 + ) of formula (II) as defined above.
  • the void transport composition comprises a compound (A1 *) of formula (5) and a compound (A2 + ) of formula (6) as defined above.
  • the void transport composition comprises 1- butyl-1-methylpyridinium and 1-butyl-3-methyl-imidazolium.
  • the total weight percentages (100% by weight%) are formed by the total of the organic cargo transport materials, one or more ionic liquids present in the composition and additional optional or additive compounds .
  • the void transport composition is considered free of any solvent, and any residual solvent is not included in the percentages provided in this specification. It is not excluded that the composition comprises several structurally different organic cargo transport materials.
  • the Composition comprises only a structurally defined organic cargo transport material, which is preferably a small molecule or a particular characterized polymer, as discussed in this specification elsewhere.
  • the void transport composition is free of other additives, except for the cargo transport material and one or more ionic liquids, which comprises less than 5% by weight or less than 10% molar of other additives, in addition to the organic cargo transport material and that of one or more ionic liquids.
  • the void transport composition comprises 0.1% to 50% by weight of the ionic liquids and 50% to 99.9% by weight of the organic cargo transport material.
  • the void transport composition comprises from 0.3% to 30% by weight of ionic liquids and from 70% to 99.7% by weight of the organic cargo transport material and optionally other additives.
  • the other optional additives are therefore included in the percentage of organic cargo transport material (60 to 99.9% by weight).
  • the void transport composition comprises from 0.5% to 20% by weight of ionic liquids and from 80% to 99.5% by weight of organic cargo transport material and optionally other additives.
  • the void transport composition comprises 1.0% to 15% by weight of ionic liquids and 85% to 99.0% by weight of the organic cargo transport material and optionally other additives.
  • the void transport composition comprises from 1.25% to 10% by weight of ionic liquids and from 90% to 98.75% by weight of the organic cargo transport material and optionally other additives.
  • the void transport composition comprises 1.5% to 8% by weight of ionic liquids and 92% to 98.5% by weight of the organic cargo transport material and optionally other additives, preferably from 1.8% to 5% by weight of the ionic liquids and from 95% to 98.2% by weight of the organic cargo transport material and optionally other additives.
  • the void transport composition comprises 0.05% to 6.0% by weight of ionic liquids, preferably less than 5% by weight, and more preferably less than 1.0% to 5% by weight of ionic liquids
  • the void transport composition is free of other doping agents or additives.
  • the void transport composition is free of 4-tert-butylpyridine (t-BP) and / or lithium.
  • the void transport composition comprises less than 4% by weight, more preferably less than 2% by weight, even more preferably less than 1% by weight and more preferably less than 0.5% by weight of any of the group selected between lithium and t-BP. A low amount or absence of lithium ions is particularly preferred.
  • the organic void transport material is a small molecule (as opposed to a polymer), the molar concentrations of the ionic liquids compared to the organic charge transport material can also be significant.
  • the void transport composition comprises 0.5% to 50% molar of the ionic liquids and 50% to 99.5% molar of the organic cargo transport material and optionally other additives.
  • the other optional additives are included in the percentage of the organic cargo transport material (50 to 99.9 mol%).
  • the void transport composition comprises from 1.0% to 40% molar of the ionic liquids and from 60 m% to 99.0% molar of the organic cargo transport material and, optionally, other additives.
  • the void transport composition comprises 2.5% to 30% molar of the ionic liquids and 70% to 97.5% molar of the organic cargo transport material and optionally other additives.
  • the void transport composition comprises 3% to 25% molar of ionic liquids and 75% to 97% molar of the organic cargo transport material and optionally other additives. In one embodiment, the void transport composition comprises from 4.5% to 20% molar of the ionic liquids and from 80% to 95.5% molar of the organic cargo transport material and optionally other additives, preferably 5 % to 15% molar of ionic liquids and 85% to 95% molar of the organic cargo transport material and, optionally, other additives.
  • the void transport composition is preferably substantially free of other dopants or additives.
  • the void transport composition comprises less than 4 molar%, more preferably less than 2.5 molar, even more preferably less than 1 molar and most preferably less than 0.5 molar of any of the group selected between lithium and t-BP.
  • lithium ions are absent or present in low concentrations, as indicated.
  • the void transport composition preferably comprises an ionic liquid.
  • ionic liquid is a salt that is liquid at 100 ° C.
  • the ionic liquid of the invention is liquid at 50 ° C, preferably at 40 ° C.
  • a material It is considered liquid, if it has measurable liquid properties, in particular, if it has the property of a fluid (as opposed to a solid body) and any measurable viscosity.
  • a material is considered as liquid, if it has a viscosity of 20,000 cps (centipoise) or less, preferably 15,000 cps or less, more preferably 10,000 cps or less, most preferably 5,000 cps or less.
  • the terms "molten” or “co-molten” also refer to "liquid” as defined herein. The term does not refer liquid to the gaseous state.
  • the ionic liquid used in the present invention is liquid at room temperature or higher.
  • room temperature refers to the temperature of 25 ° C.
  • the hollow transport composition comprises a cargo transport material, preferably a hollow transport material (HTM).
  • the cargo transport material is preferably an organic cargo transport material, such as an organic HTM.
  • An organic cargo transport material is characterized in that the electric charges, in particular the holes and electrons, move by means of electronic movement through the material. Charges are generally not transported by diffusion of molecules, as would be the case in liquid electrolytes, for example. Accordingly, the organic charge transport composition and / or the load transport material of the present invention is preferably not an electrolyte.
  • the cargo transport material is Spiro-OMeTAD (2,2 ', 7,7-tetrakis (N, N-di-p-methoxyphenylamino) -9,9-spirobifluorene).
  • Spiro-OMeTAD (2,2 ', 7,7-tetrakis (N, N-di-p-methoxyphenylamino) -9,9-spirobifluorene).
  • HTM HTMs other than Spiro-OMeTAD can be doped or supplemented with one or more ionic liquids in accordance with the present invention.
  • WO 2007/107961 discloses an organic cargo transport material, such as tris (pmethoxyethoxyphenyl) amine (TMPA) and other compounds. A particularity of these compounds is that they can be in liquid form at least during the processing of optoelectronic devices. These compounds can be used as cargo transport materials according to the present invention.
  • TMPA tris (pmethoxyethoxyphenyl) amine
  • TMPA tris (pmethoxyethoxyphenyl) amine
  • TMPA tris (pmethoxyethoxyphenyl) amine
  • the organic cargo transport material is selected from spirofluorenes, such as spiro-OMeTAD (2,2 ', 7,7'-tetrakis (N, N-di-p-methoxyphenyl amine) -9.9- spirobifluorene) and derivatives of this and other spirofluorenes, carbazol and its derivatives, triazatruxene and derivatives thereof, compounds comprising the thiophene nucleus and derivatives thereof, triphenylamine and its derivatives, acene and derivatives thereof, and 2, 7'-bis (4-methoxyphenyl) amino) spiro [cyclopenta [2,1-b: 3,4- b '] dithiophene-4,9'-fluorene and derivatives thereof.
  • spirofluorenes such as spiro-OMeTAD (2,2 ', 7,7'-tetrakis (N, N-di-p
  • the organic cargo transport material is 2 ', 7-bis (4- methoxyjphenyl) amino) spiro [cyclopenta [2,1-b: 3,4-b'] dithiophene-4,9'- Fluorene (FDT).
  • FDT dithiophene-4,9'- Fluorene
  • the organic cargo transport material is not a polymeric compound and / or a small molecule.
  • a small molecule is a compound that has a molecular weight (or molecular mass) of ⁇ 5,000, preferably ⁇ 4,000, more preferably ⁇ 3,000 and most preferably ⁇ 2,000 (dalton).
  • the organic cargo transport material may be a polymeric compound.
  • organic cargo transport materials are poly-3,4ethylenedioxythiophen (PEDOT), in particular PEDOT: PSS, polytriarylamines, such as (PTAA) and its derivatives containing fluorene and indenofluorene, called PF8-TAA, and PIF8-TAA, polyfluorene derivatives (PFO, TFB and PFB), polyaniline (PA ⁇ I), poly (p-phenylene 20) (PPP), polythiophene (PT) and its derivatives, such as thiophene poly3-hexyl (P3HT) and poly (4.4 ' bis (N-carbazolyl) -1,1-biphenyl) (PPN).
  • PEDOT poly-3,4ethylenedioxythiophen
  • PSS polytriarylamines, such as (PTAA) and its derivatives containing fluorene and indenofluorene, called PF8-TAA, and PIF
  • the organic cargo transport material comprises one or more selected from the group of: PTAA (poly [bis (4-phenyl) (2,4,6-trimethylphenyl) amine]),
  • non-polymeric cargo transport materials and polymers mentioned above are examples of organic materials that can be doped by the addition of an ionic liquid according to the present invention.
  • the present invention encompasses optoelectronic and / or electrochemical devices comprising a layer of void transport material comprising the composition of the void transport material of the invention.
  • solar cell devices such as sensitized solar cells, for example dye solar cells or perovskite-based solar cells.
  • the solar cell is based on an organic-inorganic perovskite or a perovskite oxide.
  • the sensitized solar cells are solid state devices and / or lack an electrolyte, in particular, a liquid electrolyte comprising a redox pair.
  • the solar cell is a solid-state hybrid solar cell.
  • FIGs 7 and 8 schematically illustrate the solar cells 1 prepared according to the invention.
  • the solar cells of the invention are generally flat and / or layered devices, comprising two opposite sides 7 and 8.
  • the device of Figure 7 comprises a conductive current collector layer 5, a semiconductor layer of type n 2, a light collector or sensitized layer 3, a gap transport layer 4 and a layer to provide a current of embodiment 6, wherein the gap transport layer 4 is between said light harvester layer 3 and a layer for providing stream 6, said a gap conveyor layer comprising a cargo transport composition of the invention.
  • the invention provides a solar cell 1, as illustrated in Figure 8, comprising a surface augmentation structure 9.
  • the remaining reference numbers are as disclosed with respect to Figure 7.
  • the structure Surface augmentation 9 can be a nanoporous, mesoscopic structure, which can be made from nanoparticles, for example.
  • the surface augmentation structure 9 may be an insulating oxide, for example, alumina (Al 2 0 3 ), zirconia, silicon oxide (Si0 2 ), etc., or a n-type semiconductor material and / or may comprise the same material than layer 2. Titanium dioxide (Ti0 2 ) or other metal oxide semiconductor materials can be used for layers 2 and / or 9, for example.
  • the light collecting layer 3 is preferably provided between the surface augmentation structure 9 and the gap transport layer 4 comprising the composition of the invention.
  • Spiro-OMeTAD represented as 2,2 ', 7,7'-tetrakis (N, N-di-p methoxyphenylamine) -9,9-Spirobifluorene (Spiro-MeOTAD) was purchased from Merck KGaA, while methylamine iodide, CH 3 NH 3 I (IMA), was synthesized according to known literature.
  • the perovskite (CSP) solar cell devices were manufactured in FTO coated glass (TEC, Pilkington) modeled by laser engraving. Before any deposition, the substrates were cleaned using a Hellmanex® solution and subsequently rinsed with deionized water and ethanol. After this, they were sonicated in acetone, rinsed with ethanol and 2-propanol and dried through compressed air. A compact layer of T0 2 was deposited by spray pyrolysis at 450 ° C using 1 ml of titanium bis diisopropoxide (acetyl acetonate) as a precursor solution (75% in 2-propanol, Sigma Aldrich) dissolved in 19 ml of ethanol pure using 0 2 as carrier gas.
  • TEC FTO coated glass
  • the substrates were maintained for an additional 30 minutes at 450 ° C for anatase phase formation. Once the samples reached room temperature, they were treated with titanium tetrachloride (TiCI) (immersion in a 0.02M solution of TiC in deionized water at 70 ° C for 30 minutes) in order to obtain a homogeneous layer. Then, The samples were washed with deionized water, heated at 500 ° C for 10 minutes and cooled to room temperature.
  • TiCI titanium tetrachloride
  • a mesoporous layer of Ti0 2 (DYESOL, 30NRD) was deposited by centrifugation coating (4000 rpm for 30 s with 2000 rpm seconds ' 1 as acceleration) and the samples were annealed by heating them progressively at 450 ° C for 2 hours.
  • a mixed perovskite of organic cation and halide ((FAPbl 3 ) or, 85 (MAPbBr 3 ) or 15) was deposited by a one-step method.
  • a mixture of 1.4 M of lead iodide (Pbl 2 ), lead bromide (PbBr 2 ) and a mixture of formamidinium iodide (FAI) and methyl ammonium bromide (MABR) were mixed in a solvent mixture of N, N-dimethylformamide (DMF) and dimethylsulfoxide (DMSO).
  • the solution was prepared inside an argon glove box under controlled conditions of humidity and oxygen (H 2 0 level: ⁇ 1 ppm and 0 2 level : ⁇ 10 ppm) and kept under stirring at 80 ° C during the night in order to completely dissolve Pbl 2 .
  • Deposition of perovskite was carried out by a one-step method with solvent engineering.
  • the perovskite precursor solution was deposited by centrifugation over the mesoporous layer at 1,000 rpm for 10 seconds and then 6,000 rpm for 30 seconds.
  • chlorobenzene dripped into the center of the substrate in the last 15 seconds.
  • the samples were transferred to a hot plate and annealed at 100 0 C for 60 minutes.
  • the stock solution of ionic liquid was prepared by adding 35 mg of 1-butyl-1- methylpyridin-1-io bis (trifluoromethylsulfonyl) imide (BMP-TFSI) in 1 ml of acetonitrile. Then, the solutions of the void transport layer were prepared by adding different amounts of this stock solution in the 72.3 mg / mi Spiro-MeOTAD solution to obtain 0 mM, 3.2 mM, 4.7 mM, 6.1 mM and 7.5 mM concentration of BMP-TFSI respectively.
  • BMP-TFSI 1-butyl-1- methylpyridin-1-io bis (trifluoromethylsulfonyl) imide
  • the standard doped Spiro-MeOTAD solution was prepared by dissolving 72.3 mg of Spiro-MeOTAD in 1 ml of chlorobenzene, and adding as standard additives 17.5 ⁇ of a lithium bis-imide (trifluoromethylsulfonyl) (LiTFSI) stock solution (520 mg of LiTFSI in 1 ml of acetonitrile), 21.9 ⁇ of an FK209 (Tris (2- (1H-pyrazol-1-yl) -4-tert-butll) ridinna) -cobalt (lll) Tris (bis (trifluoromethylsulfonyl) imide))) stock solution (400 mg in 1 ml acetonitrile) and 28.8 ⁇ of 4-tert-butylpyridine (t-BP).
  • LiTFSI lithium bis-imide
  • FK209 Tris (2- (1H-pyrazol-1-yl) -4-tert-butll)
  • each HTM solution was thrown onto the perovskite substrates of the solar cell samples described above, and the samples were coated by centrifugation at 4,000 rpm for 30 seconds. Then, 80 nm of gold was used as a cathode which was thermally evaporated on the HTM under a vacuum between 1-10-6 and 1-10-5 torr, such as to obtain exemplary solar cells.
  • IPCE measurements were made using a 150W Newport Xenon lamp coupled to a motorized Oriel Cornerstone 260 1 ⁇ 4 m mono-Chromator as a light source, and a 2936-R Energy Meter to measure the short-circuit current.
  • Table 1 Photovoltaic properties of device-s prepared using different concentrations of BMP TFSI ionic liquid and the comparison with Spiro-OMeTAD using FK209 as a dopant, LiTFSI salt and t-BP additives.
  • HTM with BMP TFSI showed at least good or better performance than HTM 6 containing only Spiro-OMeTAD.
  • the cell of Example 2 showed the best performance of all devices, and, in particular, a higher yield than the cell of Example 3 and 4, which had a higher concentration of BMP.
  • the open circuit voltage (Voc) and the short-circuit current density (Jsc) were around 0.57 V and 18.38 mA .cm '2 , respectively.
  • the Voc and Jsc values have been greatly improved to 1.02 V and 21.17 mA.cm '2 , respectively.
  • the filling factor (FF) which reveals the intrinsic resistance and the degree of load recombination, also increased from 32.5% to 65.1%.
  • the devices of Example 2 exhibit the optimal BMP TFSI ionic liquid concentration for Spiro-OMeTAD HTM and showed the best performance when achieving an energy conversion efficiency (PCE) of 14.06%.
  • PCE energy conversion efficiency
  • Table 2 shows the amounts in percent by weight and the mole percent of HTM and ionic liquid in the void transport compositions of Examples 1-4.
  • Table 2 Molar and weight percentages of HTM and Ll (Ionic Liquid) compositions of the hollow conveyor material of the invention.
  • Solar cells were prepared as described above for Examples 1-6, using 1-butyl-3-methyl-1H-imidazol-3-io bis ((trifluoromethyl) sulfonyl) imide (BMIM TFSI) (Example 7) and combinations of BMIM TFSI with 1-butyl-3-methylpyridin-1-iobis ((trifluoromethyl) sulfonyl) imide (BMP TFSI).
  • BMIM TFSI 1-butyl-3-methyl-1H-imidazol-3-io bis ((trifluoromethyl) sulfonyl) imide
  • BMP TFSI 1-butyl-3-methylpyridin-1-iobis

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The present invention relates to hole transport compositions containing an organic charge transport material and a salt containing an organic cation. Preferably, the hole transport composition comprises an ionic liquid. The ionic liquid efficiently dopes the organic hole transport material. In a particular embodiment, the ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (BMP TFSI) is used as a dopant or additive. The invention also relates to optoelectronic and/or electrochemical devices containing the hole transport composition, particularly perovskite-based solar cells.

Description

Materiales orgánicos de transporte de huecos que contienen un líquido iónico  Organic materials for transporting holes containing an ionic liquid
Campo técnico Technical field
La presente invención se refiere a composiciones de transporte de huecos, a dispositivos electroquímicos y/o optoelectrónicos, a celdas solares y al uso de un líquido iónico como aditivo y/o dopante de un material de transporte de carga.  The present invention relates to hollow transport compositions, electrochemical and / or optoelectronic devices, solar cells and the use of an ionic liquid as an additive and / or dopant of a cargo transport material.
Estado del arte State of the art
Recientemente, células solares híbridas de organo-plomo basadas en perovskita han mostrado el mejor rendimiento entre las células solares híbridas de estado sólido. La capa de transporte de huecos en las células solares de perovskita representa uno de los componentes clave para lograr una alta eficiencia de conversión de potencia (PCE). Actualmente, para la realización de los mejores dispositivos de estado sólido, el Spiro-OMeTAD (2,2 ', 7,7'-tetrakis (N, N-di-p-metoxifenil amina) -9,9-spirobifluoreno) dopado ha sido usado como material de transporte de huecos (HTM) para el transporte de los huecos desde perovskita hacia el electrodo de metal. J. Burschka, N. Pellet, S.-J. Luna, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, M. Grátzel, Nature, 2013, 499, 316-319. Sin embargo, Spiro-OMeTAD en su forma pura no es muy eficaz y se obtienen rendimientos y eficiencia de conversión de potencia (PCE) muy bajos, debido a su baja conductividad y movilidad de los huecos, como se informó en U. Bach, D. Lupo, P. COMT, J. E. Mose, F. Weissortel, J. Salbeck, H. Sprietzer, M. Grátzel, Nature, 1998, 395, 583. Para superar este obstáculo, sales de litio (LiTFSI) (trifluorometano) sulfonimida. y/o complejos de cobalto se utilizaron como p-dopantes para aumentar la concentración de los huecos. Además, se utilizó 4-terc butilpiridina (t-BP) como aditivo para suprimir la recombinación de las cargas, como se describe en J. H. Noh, N. J. Jeon, Y. C. Choi, M.K. Nazeeruddin, M. y S. GrátzelllSeok, J. Mater. Chem. A, 2013, 1, 11842-11847. Ver también J. Burschka, A. Dualeh, F. Kessler, E. Baranoff, N. -L. Cevey-Ha, C. Yi, M. K. Nazeeruddin, M. Grátzel, J. A.m. Chem. Soc. 2011 , 133, 18042-18045. La adición de las sales de litio altamente higroscópicas por un lado mejora las propiedades fotovoltaica del dispositivo, mientras que por otro lado disminuye su estabilidad. La presente invención intenta proporcionar otros y/o diferentes aditivos, que son eficaces en el dopaje del material orgánico de transporte de huecos utilizado en estos dispositivos, pero que no presentan los inconvenientes de LiTFSI, de t-BP y de los complejos de cobalto. Es por tanto un objetivo de complementar o dopar el material de transporte de huecos con compuestos que no presentan los inconvenientes citados antes. En particular, es un objetivo evitar el efecto perjudicial de la sal a base de litio en la estabilidad de las células solares. Recently, perovskite-based hybrid organo-lead solar cells have shown the best performance among solid-state hybrid solar cells. The hollow transport layer in perovskite solar cells represents one of the key components for achieving high power conversion efficiency (PCE). Currently, for the realization of the best solid-state devices, Spiro-OMeTAD (2,2 ', 7,7'-tetrakis (N, N-di-p-methoxyphenyl amine) -9,9-spirobifluorene) doped has It has been used as a material for transporting holes (HTM) for transporting holes from perovskite to the metal electrode. J. Burschka, N. Pellet, S.-J. Luna, R. Humphry-Baker, P. Gao, MK Nazeeruddin, M. Grátzel, Nature, 2013, 499, 316-319. However, Spiro-OMeTAD in its pure form is not very effective and very low yields and power conversion efficiency (PCE) are obtained, due to its low conductivity and mobility of the voids, as reported in U. Bach, D Lupo, P. COMT, JE Mose, F. Weissortel, J. Salbeck, H. Sprietzer, M. Grátzel, Nature, 1998, 395, 583. To overcome this obstacle, lithium salts (LiTFSI) (trifluoromethane) sulfonimide. and / or cobalt complexes were used as p-dopants to increase the concentration of the gaps. In addition, 4-tert-butylpyridine (t-BP) was used as an additive to suppress charge recombination, as described in JH Noh, NJ Jeon, YC Choi, MK Nazeeruddin, M. and S. GrátzelllSeok, J. Mater. Chem. A, 2013, 1, 11842-11847. See also J. Burschka, A. Dualeh, F. Kessler, E. Baranoff, N. -L. Cevey-Ha, C. Yi, MK Nazeeruddin, M. Grátzel, JAm Chem. Soc. 2011, 133, 18042-18045. The addition of highly hygroscopic lithium salts on the one hand improves the photovoltaic properties of the device, while on the other hand decreases its stability. The present invention attempts to provide other and / or different additives, which are effective in doping the organic void transport material used in these devices, but that do not have the disadvantages of LiTFSI, t-BP and cobalt complexes. It is therefore an objective to complement or dop the material for transporting holes with compounds that do not have the drawbacks mentioned above. In particular, it is an objective to avoid the detrimental effect of lithium-based salt on the stability of solar cells.
La presente invención aborda los problemas descritos anteriormente. The present invention addresses the problems described above.
SUMARIO DE LA INVENCIÓN SUMMARY OF THE INVENTION
La presente invención se refiere a nuevos líquidos iónicos que permiten de manera eficiente dopar materiales de transporte de carga y, cuando se utiliza como un aditivo y/o dopante a un material orgánico de transporte de huecos (HTM), mejoran efectivamente las características de transporte de carga del material, mientras que no afectan o incluso aumentan la estabilidad de los dispositivos optoelectrónicos, en particular células solares sensibilizadas. The present invention relates to new ionic liquids that efficiently allow doping cargo transport materials and, when used as an additive and / or dopant to an organic hollow transport material (HTM), effectively improve the transport characteristics loading of the material, while not affecting or even increasing the stability of optoelectronic devices, in particular sensitized solar cells.
En un aspecto, la presente invención proporciona una composición de transporte de huecos que comprende un material orgánico de transporte de carga y un líquido iónico que comprende un catión A*, en la que A+ es un anillo heterociclico sustituido o no sustituido de 5 ó 6 miembros que tiene 1-3 heteroátomos que se seleccionan independientemente de N, S y O, con la condición de que al menos uno de los heteroátomos es un átomo de nitrógeno cuaternario. In one aspect, the present invention provides a void transport composition comprising an organic cargo transport material and an ionic liquid comprising an A * cation, wherein A + is a substituted or unsubstituted heterocyclic ring of 5 or 6 members having 1-3 heteroatoms that are independently selected from N, S and O, with the proviso that at least one of the heteroatoms is a quaternary nitrogen atom.
En un aspecto, la presente invención proporciona un dispositivo optoelectrónico y/o electroquímico, que comprende la composición de transporte de huecos de la invención. In one aspect, the present invention provides an optoelectronic and / or electrochemical device, comprising the void transport composition of the invention.
En un aspecto, la presente invención proporciona el uso de un líquido iónico como dopante y/o aditivo a un material de transporte de carga y/o a una perovskita. In one aspect, the present invention provides the use of an ionic liquid as a dopant and / or additive to a cargo transport material and / or a perovskite.
En un aspecto, la presente invención proporciona el uso de un líquido iónico como dopante y/o aditivo a un material de transporte de carga para uno o más seleccionados del grupo: In one aspect, the present invention provides the use of an ionic liquid as a dopant and / or additive to a cargo transport material for one or more selected from the group:
- dopaje un material de transporte de carga;  - doping a cargo transport material;
- el aumento de la movilidad de carga de un material de transporte de carga; - increasing the mobility of cargo of a cargo transport material;
- el aumento de la conductividad de un material de transporte de carga; y/o - el aumento de la estabilidad de los materiales de transporte de carga, - increasing the conductivity of a cargo transport material; I - increasing the stability of cargo transport materials,
y en particular materiales de transporte de huecos (HTMs) y/o de un dispositivo optoelectrónico y/o dispositivo electroquímico que comprende una capa de transporte de carga. and in particular hollow transport materials (HTMs) and / or an optoelectronic device and / or electrochemical device comprising a load transport layer.
En un aspecto, la presente invención proporciona una célula solar, en particular un colorante sensibilizador y/o perovskita basados en célula solar, que comprende la composición de transporte de huecos de la invención. En un aspecto, la presente invención proporciona una célula solar a base de óxido de perovskita. En una realización, la célula solar es una célula solar de estado sólido, preferiblemente una célula solar híbrida de estado sólido. In one aspect, the present invention provides a solar cell, in particular a sensitizing dye and / or perovskite based on a solar cell, comprising the hollow transport composition of the invention. In one aspect, the present invention provides a solar cell based on perovskite oxide. In one embodiment, the solar cell is a solid state solar cell, preferably a hybrid solid state solar cell.
Breve descripción de los dibujos: Brief description of the drawings:
Figura 1 muestra las curvas de J-V de células solares iluminadas, de acuerdo con los aspectos de realización de la invención en comparación con los dispositivos convencionales. Todos los dispositivos contienen Spiro-OMeTAD como HTM y diferentes concentraciones de líquido iónico BMP TFSI como dopante, o la sal LiTFSI y t-BP como aditivos convencionales. Uno de los dispositivos incluye solamente el HTM y no aditivos en absoluto.  Figure 1 shows the J-V curves of illuminated solar cells, in accordance with the embodiments of the invention compared to conventional devices. All devices contain Spiro-OMeTAD as HTM and different concentrations of BMP TFSI ionic liquid as a dopant, or LiTFSI and t-BP salt as conventional additives. One of the devices includes only the HTM and no additives at all.
Figura 2 muestra la eficiencia de conversión de fotones incidentes en electrones (IPCE) de los mismos productos que se citan en la Figura 1, con la excepción del dispositivo que no contiene ningún aditivo en absoluto. Figura 3 muestra las curvas J-V de células solares de acuerdo con otros aspectos de la invención. En estos dispositivos, se comparó el líquido iónico BMIM TFSI como aditivo con combinaciones de diferentes líquidos iónicos en la capa de transporte de huecos. Figura 4 muestra las curvas de eficiencia de conversión de fotones incidentes en electrones (IPCE) para una de los dispositivos que se citan en la Figura 3. Figure 2 shows the efficiency of conversion of incident photons into electrons (IPCE) of the same products as cited in Figure 1, with the exception of the device that does not contain any additives at all. Figure 3 shows the J-V curves of solar cells according to other aspects of the invention. In these devices, BMIM TFSI ionic liquid was compared as an additive with combinations of different ionic liquids in the void transport layer. Figure 4 shows the conversion efficiency curves of electron-incident photons (IPCE) for one of the devices cited in Figure 3.
Figura 5 muestra la curva de J-V de una célula solar de acuerdo con un aspecto de la invención, que contiene líquido iónico BMIM TFSI como dopante. Figura 6 muestra la estabilidad normalizada, medida para los dispositivos que contienen Spiro-OMeTAD como HTM y, o bien diferentes concentraciones de líquido iónico BMP TFSI como dopante, o de los aditivos convencionales LiTFSI y t-BP. Los dispositivos se mantuvieron a temperatura ambiente fuera de la caja de guantes, con una humedad alrededor de 45%. Los dispositivos que contengan líquido iónico (IL) son claramente más estables que el dispositivo que contienen los aditivos convencionales LiTFSI y t-BP. Figure 5 shows the JV curve of a solar cell according to an aspect of the invention, which contains BMIM TFSI ionic liquid as a dopant. Figure 6 shows the normalized stability, measured for devices containing Spiro-OMeTAD as HTM and, or different concentrations of BMP TFSI ionic liquid as a dopant, or of conventional LiTFSI and t-BP additives. The devices were kept at room temperature outside the glove box, with a humidity around 45%. Devices containing ionic liquid (IL) are clearly more stable than the device containing conventional LiTFSI and t-BP additives.
Figura 7 es una representación esquemática de una célula solar de acuerdo con un aspecto de la invención. Figure 7 is a schematic representation of a solar cell according to an aspect of the invention.
Figura 8 es una representación esquemática de una célula solar de acuerdo con otro aspecto de la invención. Descripción detallada de los aspectos principales Figure 8 is a schematic representation of a solar cell according to another aspect of the invention. Detailed description of the main aspects
La presente invención se refiere a aditivos y/o dopantes de materiales de transporte de carga y especialmente materiales orgánicos de transporte de carga. Preferiblemente, la invención proporciona composiciones y/o materiales de transporte de huecos. La invención se refiere a composiciones de transporte de huecos que comprende materiales orgánicos de transporte de carga y de aditivos. Los aditivos son preferiblemente líquidos iónicos y/o sales fundidas. Preferiblemente, las sales fundidas y líquidos iónicos tienen propiedades hidrofóbicas.  The present invention relates to additives and / or dopants of cargo transport materials and especially organic cargo transport materials. Preferably, the invention provides compositions and / or void transport materials. The invention relates to void transport compositions comprising organic cargo transport materials and additives. The additives are preferably ionic liquids and / or molten salts. Preferably, the molten salts and ionic liquids have hydrophobic properties.
De acuerdo con la invención, el líquido iónico comprende un catión A\ en la que A es un anillo heterocíclico sustituido o no sustituido de 5 ó 6 miembros, que tiene 1-3 heteroátomos, que se seleccionan independientemente de N, S y O, con la condición de que al menos uno de los heteroátomos es un átomo de nitrógeno cuaternario. Dicho anillo heterocíclico de 5 ó 6 miembros puede estar sustituido además por uno o más sustituyentes posiblemente presente en dicho átomo de nitrógeno cuaternario. In accordance with the invention, the ionic liquid comprises an A \ cation in which A is a 5 or 6-membered substituted or unsubstituted heterocyclic ring, having 1-3 heteroatoms, which are independently selected from N, S and O, with the proviso that at least one of the heteroatoms is a quaternary nitrogen atom. Said 5 or 6 membered heterocyclic ring may be further substituted by one or more substituents possibly present in said quaternary nitrogen atom.
En un aspecto, dicho anillo de 5 ó 6 miembros que comprende un átomo de nitrógeno sustituido y opcionalmente sustituyentes del átomos de carbono. In one aspect, said 5 or 6 member ring comprising a substituted nitrogen atom and optionally carbon atom substituents.
En una realización, catión A* se selecciona entre los compuestos de fórmulas (1) - (4) a continuación: In one embodiment, cation A * is selected from the compounds of formulas (1) - (4) below:
Figure imgf000006_0001
Figure imgf000006_0001
donde R^R10, R1 y R2, en la medida de lo presente, se seleccionan independientemente entre los sustituyentes que comprende de 1-30 átomos de carbono y 0-20 heteroátomos siempre que, en R1 y R2, dichos sustituyentes están conectados al átomo de nitrógeno por medio de un enlace simple C-N. R1-R10 y R2 en la fórmula (2) además puede ser substituido por H. Además o además de lo dicho 0-20 heteroátomos, cualquier sustituyente puede ser, independientemente, halogenado parcialmente o totalmente (Cl, Br, I, F), preferiblemente fluorado. where R ^ R 10 , R 1 and R 2 , as far as present, are independently selected from substituents comprising 1-30 carbon atoms and 0-20 heteroatoms provided that, in R 1 and R 2 , said Substituents are connected to the nitrogen atom by means of a simple CN bond. R 1 -R 10 and R 2 in the formula (2) can also be substituted by H. In addition to or in addition to the said 0-20 heteroatoms, any substituent can be, independently, partially or totally halogenated (Cl, Br, I, F), preferably fluorinated.
El término "independientemente", en este contexto, significa que uno cualquiera o más de un grupo de sustituyentes. tales como R^R10, y R2. pueden ser parcialmente o totalmente halogenados, independientemente de si o no otros sustituyentes del mismo grupo están halogenados. The term "independently", in this context, means any one or more of a group of substituents. such as R ^ R 10 , and R 2 . they can be partially or totally halogenated, regardless of whether or not other substituents of the same group are halogenated.
Los heteroátomos se seleccionan preferiblemente entre N, P, S, O, Se, Te, B, y Si. Preferiblemente, dichos sustituyentes que comprenden de 1-30 átomos de carbono y 0-20 heteroátomos son subtituyentes que comprenden de 1-20 átomos de carbono y 0-10 heteroátomos, preferiblemente sustituyentes que comprenden de 1-15 átomos de carbono y 0-5 heteroátomos, más preferiblemente 1-10 átomos de carbono y 0 heteroátomos. Los halógenos opcionales no están incluidos en dicho número de 0-10 o 0-5 heteroátomos. En una realización, R1-R1C, R, y R2, en la medida de lo presente, se seleccionan independientemente de hidrocarburos C1-C30, que pueden estar parcialmente y/o totalmente halogenados, y que pueden estar sustituidos por uno o más seleccionados entre los grupos alcoxi, tioalquilo. -CN y/o -N02, mientras que R1-R10 y opcionalmente R2 de la fórmula (2) pueden además ser substituidos por H. En una realización, dichos hidrocarburos C1-C30 están parcial o totalmente fluorados. En una realización, R1-R1C, R, y R2. en la medida de lo presente, se seleccionan independientemente de C1-C20. preferiblemente C1-C12 con sustituyentes aromáticos alifático y/o, que pueden ser totalmente o parcialmente halogenados, preferiblemente fluorados, y en la que R1-R10 y opcionalmente R2 en la fórmula (2) puede además ser substituido por H. Heteroatoms are preferably selected from N, P, S, O, Se, Te, B, and Si. Preferably, said substituents comprising 1-30 carbon atoms and 0-20 heteroatoms are substituents comprising 1-20 carbon atoms and 0-10 heteroatoms, preferably substituents comprising 1-15 carbon atoms and 0-5 heteroatoms, more preferably 1-10 carbon atoms and 0 heteroatoms. Optional halogens are not included in that number of 0-10 or 0-5 heteroatoms. In one embodiment, R 1 -R 1C , R, and R 2 , as far as present, are independently selected from C1-C30 hydrocarbons, which may be partially and / or fully halogenated, and which may be substituted by one or more selected from the alkoxy, thioalkyl groups. -CN and / or -N0 2 , while R 1 -R 10 and optionally R 2 of the formula (2) can also be substituted by H. In one embodiment, said C1-C30 hydrocarbons are partially or fully fluorinated. In one embodiment, R 1 -R 1C , R, and R 2 . to the extent herein, they are independently selected from C1-C20. preferably C1-C12 with aliphatic and / or aromatic substituents, which can be totally or partially halogenated, preferably fluorinated, and in which R 1 -R 10 and optionally R 2 in the formula (2) can also be substituted by H.
Si un sustituyente es aromático, tiene preferiblemente al menos 6 carbonos o 4-5 carbonos y uno o dos heteroátomos de N, O y/o S. En una realización, R^ y R2, en la medida de lo presente, se seleccionan independientemente entre alquilo, alquenilo, alquinilo o arilo que sean sustituidos o no sustituidos, en el que dicho alquilo, alquenilo, alquinilo o arilo pueden ser, independientemente, parcialmente o totalmente halogenados, por ejemplo fluorinatos. R2 en la fórmula (2) además puede ser seleccionado de H. R1.R10, en la medida de lo presente, se seleccionan independientemente entre H y entre alquilo, alquenilo. alquinilo o arilo que sean sustituidos o no sustituidos, en el que dicho alquilo, alquenilo, alquinilo o arilo pueden ser, independientemente, parcialmente o totalmente halogenados. En una realización, los compuestos con formula (1)-(4) comprenden por lo menos un alquilo a uno de R1-R10 que están presentes en el compuesto, mientras que los demás de los dichos R^R10, en la medida de lo presente, pueden ser de H. Dichos alquilos pueden ser parcialmente o totalmente halogenados. En una realización, R1-R10, en la medida de lo presente, son todos H, o en el compuesto (1) por lo menos uno entre R1-R5 es alquilo, mientras que los demás son H. Dicho alquilo puede ser parcialmente o totalmente halogenados. If a substituent is aromatic, it preferably has at least 6 carbons or 4-5 carbons and one or two heteroatoms of N, O and / or S. In one embodiment, R ^ and R 2 , as far as present, are selected independently between alkyl, alkenyl, alkynyl or aryl which are substituted or unsubstituted, wherein said alkyl, alkenyl, alkynyl or aryl can be, independently, partially or totally halogenated, for example fluorinate. R 2 in formula (2) can also be selected from H. R 1 .R 10 , to the extent present, are independently selected from H and from alkyl, alkenyl. alkynyl or aryl which are substituted or unsubstituted, wherein said alkyl, alkenyl, alkynyl or aryl can be, independently, partially or totally halogenated. In one embodiment, the compounds with formula (1) - (4) comprise at least one alkyl to one of R 1 -R 10 which are present in the compound, while the others of said R ^ R 10 , in the to the extent possible, they may be H. Said alkyls may be partially or totally halogenated. In one embodiment, R 1 -R 10 , to the extent present, are all H, or in the compound (1) at least one of R 1 -R 5 is alkyl, while the others are H. Said alkyl It can be partially or totally halogenated.
En una realización, R1 y R2, en la medida de lo presente, están independientemente seleccionados entre alquilos C1-C10. Dichos alquilos C1-C10 pueden ser parcialmente o totalmente halogenados. In one embodiment, R 1 and R 2 , as far as present, are independently selected from C1-C10 alkyls. Said C1-C10 alkyls can be partially or totally halogenated.
En una realización preferida, R1-R10, en la medida de lo presente, son todos H, o por lo menos uno es alquilo y todos los demás son H, y R, y R2, en la medida de lo presente, son independientemente seleccionados entre alquilos C1-C10. Alguno o más de uno entre dichos alquilos pueden ser parcialmente o totalmente halogenados. R2 en la formula (2) puede ser seleccionado como H. En particular, en el compuesto de piridinio (1), al menos uno de R1-R5 se selecciona de entre H y un hidrocarburo distinto de H, preferiblemente un alquilo (parcialmente o totalmente halogenado), siendo los otros H. En una realización, A* se selecciona del grupo de los compuestos de piridinio, imidazolio y/o pirrolidinio. Preferiblemente, A* se selecciona del grupo de compuestos de piridinio y / o de imidazolio. In a preferred embodiment, R 1 -R 10 , as far as present, are all H, or at least one is alkyl and all others are H, and R, and R 2 , as far as present, are independently selected from C1-C10 alkyls. Some or more of one among said alkyls may be partially or totally halogenated. R 2 in the formula (2) can be selected as H. In particular, in the pyridinium compound (1), at least one of R 1 -R 5 is selected from H and a hydrocarbon other than H, preferably an alkyl (partially or totally halogenated), the others being H. In one embodiment, A * is selected from the group of pyridinium, imidazolium and / or pyrrolidinium compounds. Preferably, A * is selected from the group of pyridinium and / or imidazolium compounds.
En una realización, dichos piridinio, imidazolio y / o pirrolidinio, un compuesto es un anillo de pirídina, imidazol y el de pirrolidina, respectivamente, que está sustituido en el nitrógeno, y que puede comprender otros sustituyentes. En caso de imidazolio, uno o preferiblemente ambos de los átomos de nitrógeno del anillo pueden ser sustituidos. In one embodiment, said pyridinium, imidazolium and / or pyrrolidinium, a compound is a pyridine, imidazole and pyrrolidine ring, respectively, which is substituted on nitrogen, and which may comprise other substituents. In the case of imidazolium, one or preferably both of the ring nitrogen atoms may be substituted.
En una realización preferida, A+ se selecciona de forma seleccionada, los compuestos de fórmulas (I) y (II), respectivamente, In a preferred embodiment, A + is selected in a selected manner, the compounds of formulas (I) and (II), respectively,
Figure imgf000008_0001
Figure imgf000008_0001
donde: where:
R< y R2, en la medida de lo presente, son seleccionados independientemente del sustituido o no sustituido alquilo, alquenilo. alquinilo o arílo, que, independientemente, puede estar halogenado total o parcialmente; R <and R 2 , to the extent herein, are independently selected from the substituted or unsubstituted alkyl, alkenyl. alkynyl or aryl, which, independently, may be totally or partially halogenated;
R' a R5, en la medida de lo presente, se seleccionan independientemente de H y del sustituido o no sustituido alquilo, alquenilo, alquinilo o arílo, que. independientemente, pueden ser total o parcialmente halogenado. R ' to R 5 , to the extent herein, are independently selected from H and from the substituted or unsubstituted alkyl, alkenyl, alkynyl or aryl, which. independently, they can be totally or partially halogenated.
En una realización preferida, en las fórmulas (l)-(ll), R1 a Rs, en la medida de lo presente, son H. En el estructura de la fórmula (I), al menos uno de R1 a Rs se selecciona de H y alquilo, preferiblemente al menos uno de R1 a R5 es un alquilo. Preferiblemente R4 en la fórmula (I) es un alquilo. Dicho alquilo puede estar totalmente o parcialmente halogenado. In a preferred embodiment, in the formulas (l) - (ll), R 1 to R s , as far as they are present, are H. In the structure of the formula (I), at least one of R 1 to R s is selected from H and alkyl, preferably at least one of R 1 to R 5 is an alkyl. Preferably R 4 in formula (I) is an alkyl. Said alkyl may be totally or partially halogenated.
En una realización preferida, en las fórmulas (l)-(ll), R1 y (¾>. en la medida de lo presente, son seleccionados independientemente de un sustituido o no sustituido alquilo, alquenilo, y alquinilo. Dicho alquilo, alquenilo y alquinilo puede ser. independientemente, total o parcialmente halogenado. Preferiblemente, R; a R5, en la medida de lo presente, son H o un alquilo. Dicho alquilo puede estar total o parcialmente halogenados. In a preferred embodiment, in the formulas (l) - (ll), R 1 and (¾>. To the extent present, they are independently selected from a substituted or unsubstituted alkyl, alkenyl, and alkynyl. Said alkyl, alkenyl and alkynyl may be independently, totally or partially halogenated, preferably R , to R5, to the extent present, are H or an alkyl, said alkyl may be wholly or partially halogenated.
Preferiblemente, R1 a R5, R, y R2, en la medida de lo presente, se selecciona independientemente de un alquilo C1-C15, un alquenilo C2-C15, un alquinilo C2-C15 y de un aillo C6-C15, donde el alquilo, alquenilo, alquinilo y/o arilo puede estar parcial o totalmente halogenado, y de R1 a R8, además se puede seleccionar de un H. Preferiblemente, dicho alquilo, alquenilo, alquinilo o arilo se selecciona de alquilo C1- C10, alquenilo C2-C10, alquinilo C2-C1 y de arilo C6-C12. Más preferentemente, R1 y R2 se seleccionan entre unos alquilos C1-C10. R4 en la fórmula (I) es seleccionado de un alquilo C1-C10 y de H, y R1 a R3 y R5 son H. En una realización preferida, A+ se seleccionado entre los compuestos de fórmulas (5) a (7), respectivamente, Preferably, R 1 to R 5 , R, and R 2 , to the extent present, is independently selected from a C1-C15 alkyl, a C2-C15 alkenyl, a C2-C15 alkynyl and a C6-C15 ring, wherein the alkyl, alkenyl, alkynyl and / or aryl can be partially or totally halogenated, and from R 1 to R 8 , it can also be selected from an H. Preferably, said alkyl, alkenyl, alkynyl or aryl is selected from C1- alkyl C10, C2-C10 alkenyl, C2-C1 alkynyl and C6-C12 aryl. More preferably, R 1 and R 2 are selected from C1-C10 alkyls. R 4 in formula (I) is selected from a C1-C10 alkyl and from H, and R 1 to R 3 and R 5 are H. In a preferred embodiment, A + is selected from the compounds of formulas (5) a (7), respectively,
Figure imgf000009_0001
donde:
Figure imgf000009_0001
where:
R1 y R2, en la medida de lo presente, se seleccionan independientemente del sustituido o no sustituido alquilo, alquenilo, alquinilo o arilo, en el que dicho alquilo, alquenilo, alquinilo o arilo puede ser, independientemente, parcial o totalmente halogenado, y R4 se selecciona de un alquilo y un H, en la que dicho alquilo puede estar parcial o totalmente halogenado. Preferiblemente, dicho alquilo, alquenilo, alquinilo o arilo se selecciona de alquilo C1-C15, alquenilo C2-C15, alquinilo C2-C15 y de C6-C15 arilo. Preferiblemente, dichos alquilo, alquenilo, alquinilo o arilo se selecciona de alquilo C1-C10, alquenilo C2-C10, alquinilo C2-C10 y de C6-C12 arilo. Lo más preferiblemente, R1 y R2 y se selecciona de un alquilo C1-C10 y R4 se selecciona de alquilo C1-C10 y de H. R 1 and R 2 , to the extent hereinbefore, are independently selected from the substituted or unsubstituted alkyl, alkenyl, alkynyl or aryl, wherein said alkyl, alkenyl, alkynyl or aryl may be, independently, partially or totally halogenated, and R 4 is selected from an alkyl and an H, wherein said alkyl may be partially or completely halogenated. Preferably, said alkyl, alkenyl, alkynyl or aryl is selected from C1-C15 alkyl, C2-C15 alkenyl, C2-C15 alkynyl and C6-C15 aryl. Preferably, said alkyl, alkenyl, alkynyl or aryl is selected from C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl and from C6-C12 aryl. Most preferably, R 1 and R 2 and is selected from a C1-C10 alkyl and R 4 is selected from C1-C10 alkyl and H.
En una realización preferida, cualquiera de dichos compuestos de pirídinio, imidazolio y/o pirrolidinio, por ejemplo, de estructuras (1)-(7) o (l)-(ll), R1 y R2, en la medida de lo presente, son seleccionados independientemente de un alquilo C1-C10, en donde uno o ambos de dichos alquilo C1-C10 puede ser, independientemente, parcial o totalmente halogenado. En estas realizaciones, R1 a R10, en la medida de lo presente, son preferentemente un H o un alquilo. Si cualquiera o más de R1 a R10 es un alquilo, cualquiera o más de dichos alquilos pueden estar total o parcialmente halogenados. In a preferred embodiment, any of said pyridinium, imidazolium and / or pyrrolidinium compounds, for example, of structures (1) - (7) or (l) - (ll), R 1 and R 2 , as far as present, they are independently selected from a C1-C10 alkyl, wherein one or both of said C1-C10 alkyl can be, independently, partially or totally halogenated. In these embodiments, R 1 to R 10, the extent present, are preferably H or alkyl. If any one or more of R 1 to R 10 is an alkyl, any or more of said alkyls may be totally or partially halogenated.
En una realización, dicho catión A+ es un di-alquil-imidazolio, en la que uno o ambos de dichos grupos alquilo puede ser, independientemente, total o parcialmente halogenado. En una realización, dicho catión A+ es un metil- alquil- imidazolio, en el que dicho alquilo puede ser total o parcialmente halogenado. Por ejemplo, dicho alquilo puede ser un alquilo C1-C10, que puede ser total o parcialmente halogenado, por ejemplo fluorado. En una realización preferida, dicho catión A+ se selecciona de un 1-butil-3-metil- pirídinio, 1-butil-3-metil-imidazolio y de un 1-metil-3-(3,3,4,4,5,5,6,6,6- nonafluorohexilo)-1 H-¡midazol-3-¡o (MFHI +), en particular de un 1-butil-3-metilpiridin-1- io y 1-butil-3-metil-1H-imidazol-3-io. Preferiblemente, el anión en este caso puede ser TFSI (Bis (trífluorometilsulfonil)imida) ((CF3S02)2N") y/o yoduro, por ejemplo. In one embodiment, said A + cation is a di-alkyl imidazolium, in which one or both of said alkyl groups can be, independently, totally or partially halogenated. In one embodiment, said A + cation is a methyl alkyl imidazolium, wherein said alkyl can be totally or partially halogenated. For example, said alkyl can be a C1-C10 alkyl, which can be totally or partially halogenated, for example fluorinated. In a preferred embodiment, said A + cation is selected from a 1-butyl-3-methyl-pyridinium, 1-butyl-3-methyl-imidazolium and a 1-methyl-3- (3,3,4,4, 5,5,6,6,6- nonafluorohexyl) -1 H-¡midazol-3-¡(MFHI +), in particular of a 1-butyl-3-methylpyridin-1- io and 1-butyl-3- methyl-1H-imidazol-3-io. Preferably, the anion in this case may be TFSI (Bis (trifluoromethylsulfonyl) imide) ((CF 3 S0 2 ) 2 N " ) and / or iodide, for example.
El catión MFHI+ mencionado anteriormente es un ejemplo de un catión A+ que comprende un alquilo sustituyente, que está parcialmente fluorínado. En este caso, el sustituyente alquilo es -CHrCH2-(CF2)4-CF3. El solicitante observó que la presencia de MFHI* yoduro mejora la estabilidad de los dispositivos de la invención. The MFHI + cation mentioned above is an example of an A + cation comprising a substituent alkyl, which is partially fluorinated. In this case, the alkyl substituent is -CHrCH 2 - (CF 2 ) 4-CF 3 . The applicant noted that the presence of MFHI * iodide improves the stability of the devices of the invention.
El líquido iónico puede comprender cualquier anión adecuado. Para el propósito de ilustración, unas pocas estructuras se proporcionan, de las cuales se pueden seleccionar los aniones. En una realización, dicho líquido iónico comprende un anión seleccionado de haluros, , tales como cloruro, bromuro, fluoruro, yoduro y de (CF3S02)2N-, (CFaCOafeN", BF4., PFe ", NO3 , CH3C02 , CF3SO3 , (CFaSOafeC" ,(CF3C02)2C', y N(CN)2 '. Los aniones preferidos son TFSI 15 y / o yoduro. En una realización, la composición del transporte de huecos de la invención comprende una combinación de dos o más líquidos iónicos diferentes. Los dos o más líquidos iónicos comprenden preferiblemente cationes A+ que tienen estructuras diferentes. Los aniones pueden ser los mismos o diferentes. The ionic liquid may comprise any suitable anion. For the purpose of illustration, a few structures are provided, from which the anions can be selected. In one embodiment, said ionic liquid comprises an anion selected from halides, such as chloride, bromide, fluoride, iodide and (CF 3 S0 2 ) 2 N-, (CFaCOafeN " , BF 4. , PF e " , NO 3 , CH 3 C0 2 , CF 3 SO 3 , (CFaSOafeC " , (CF 3 C0 2 ) 2 C ' , and N (CN) 2 ' . Preferred anions are TFSI 15 and / or iodide. In one embodiment, the void transport composition of the invention comprises a combination of two or more different ionic liquids. The two or more ionic liquids preferably comprise A + cations having different structures. The anions can be the same or different.
En una realización, la composición de la invención comprende dos líquidos iónicos diferentes, que comprenden cationes A1+ y A2+, en el que A1+ y A2+ se seleccionan independientemente a partir de cationes A+ tal como se define en otra parte en esta especificación. In one embodiment, the composition of the invention comprises two different ionic liquids, comprising A1 + and A2 + cations, wherein A1 + and A2 + are independently selected from A + cations as defined elsewhere herein. specification.
En una realización preferida, uno de los diferentes líquidos iónicos comprende un compuesto de piridinio y el otro que comprende un compuesto de imidazolio. Preferiblemente, se selecciona A1+ de compuestos de piridinio y A2* se selecciona a partir de compuestos de imidazolio como se define en la presente especificación. In a preferred embodiment, one of the different ionic liquids comprises a pyridinium compound and the other comprising an imidazolium compound. Preferably, A1 + of pyridinium compounds is selected and A2 * is selected from imidazolium compounds as defined in the present specification.
En una realización preferida, la composición del transporte de huecos comprende un compuesto (A1+) de fórmula (1) y un compuesto (A2+) de fórmula (2) como se define anteriormente. Preferiblemente, la composición del transporte de huecos comprende un compuesto (A1+) de fórmula (I) y un compuesto (A2+) de fórmula (II) como se define anteriormente. Preferiblemente, la composición del transporte de huecos comprende un compuesto (A1*) de fórmula (5) y un compuesto (A2+) de fórmula (6) como se define anteriormente. En una realización preferida, la composición de transporte de huecos comprende 1- butil-1-metilpiridinio y 1-butil-3-metil-imidazolio. In a preferred embodiment, the void transport composition comprises a compound (A1 + ) of formula (1) and a compound (A2 + ) of formula (2) as defined above. Preferably, the void transport composition comprises a compound (A1 + ) of formula (I) and a compound (A2 + ) of formula (II) as defined above. Preferably, the void transport composition comprises a compound (A1 *) of formula (5) and a compound (A2 + ) of formula (6) as defined above. In a preferred embodiment, the void transport composition comprises 1- butyl-1-methylpyridinium and 1-butyl-3-methyl-imidazolium.
Para los fines de las presentes especificaciones, el total de los porcentajes en peso (100 en peso%) está formado por el total de los materiales orgánicos de transporte de carga, uno o más líquidos iónicos presentes en la composición y compuestos adicionales opcionales o aditivos. Preferiblemente, la composición del transporte de huecos se considera libre de cualquier disolvente, y cualquier disolvente residual no está incluido en los porcentajes proporcionados en esta especificación. No se excluye que la composición comprende varios estructuralmente diferentes materiales orgánicos de transporte de carga. En una realización preferida, la composición comprende sólo un material orgánico de transporte de carga estructuralmente definido, que es preferiblemente una molécula pequeña o un particular polímero caracterizado, como se discute en esta especificación en otro lugar. En una realización preferida, la composición del transporte de huecos está libre de otros aditivos, a excepción del material de transporte de carga y uno o más líquidos iónicos, que comprende menos de 5% en peso o menos de 10% molar de otros aditivos, además del material orgánico de transporte de carga y la de uno o más líquidos iónicos. En una realización preferida, la composición del transporte de huecos comprende de 0,1% hasta 50% en peso de los líquidos iónicos y del 50% hasta 99,9% en peso del material orgánico de transporte de carga. For the purposes of these specifications, the total weight percentages (100% by weight%) are formed by the total of the organic cargo transport materials, one or more ionic liquids present in the composition and additional optional or additive compounds . Preferably, the void transport composition is considered free of any solvent, and any residual solvent is not included in the percentages provided in this specification. It is not excluded that the composition comprises several structurally different organic cargo transport materials. In a preferred embodiment, the Composition comprises only a structurally defined organic cargo transport material, which is preferably a small molecule or a particular characterized polymer, as discussed in this specification elsewhere. In a preferred embodiment, the void transport composition is free of other additives, except for the cargo transport material and one or more ionic liquids, which comprises less than 5% by weight or less than 10% molar of other additives, in addition to the organic cargo transport material and that of one or more ionic liquids. In a preferred embodiment, the void transport composition comprises 0.1% to 50% by weight of the ionic liquids and 50% to 99.9% by weight of the organic cargo transport material.
En una realización preferida, la composición del transporte de huecos comprende de 0,3% hasta 30% en peso de líquidos iónicos y del 70% hasta 99,7% en peso del material orgánico de transporte de carga y opcionalmente otros aditivos. Los otros aditivos opcionales están por lo tanto incluidos en el porcentaje del material orgánico de transporte de carga (60 a 99,9% en peso). Preferiblemente, la composición del transporte de huecos comprende de 0,5% hasta 20% en peso de líquidos iónicos y del 80% hasta 99,5% en peso de material orgánico de transporte de carga y opcionalmente otros aditivos. In a preferred embodiment, the void transport composition comprises from 0.3% to 30% by weight of ionic liquids and from 70% to 99.7% by weight of the organic cargo transport material and optionally other additives. The other optional additives are therefore included in the percentage of organic cargo transport material (60 to 99.9% by weight). Preferably, the void transport composition comprises from 0.5% to 20% by weight of ionic liquids and from 80% to 99.5% by weight of organic cargo transport material and optionally other additives.
En una realización, la composición del transporte de huecos comprende del 1 ,0% hasta el 15% en peso de líquidos iónicos y del 85% hasta 99,0% en peso del material orgánico de transporte de carga y opcionalmente otros aditivos. In one embodiment, the void transport composition comprises 1.0% to 15% by weight of ionic liquids and 85% to 99.0% by weight of the organic cargo transport material and optionally other additives.
En una realización, la composición de transporte de huecos comprende del 1 ,25% hasta el 10% en peso de líquidos iónicos y del 90% hasta el 98,75% en peso del material orgánico de transporte de carga y opcionalmente otros aditivos. In one embodiment, the void transport composition comprises from 1.25% to 10% by weight of ionic liquids and from 90% to 98.75% by weight of the organic cargo transport material and optionally other additives.
En una realización, la composición del transporte de huecos comprende del 1 ,5% hasta el 8% en peso de líquidos iónicos y del 92% hasta el 98,5% en peso del material orgánico de transporte de carga y opcionalmente otros aditivos, preferiblemente de 1 ,8% hasta 5% en peso de los líquidos iónicos y del 95% hasta el 98,2% en peso del material orgánico de transporte de carga y opcionalmente otro aditivos. En una realización, la composición del transporte de huecos comprende del 0,05% al 6,0% en peso de líquidos iónicos, preferiblemente menos de 5% en peso, y más preferiblemente menos del 1,0% al 5% en peso de líquidos iónicos. In one embodiment, the void transport composition comprises 1.5% to 8% by weight of ionic liquids and 92% to 98.5% by weight of the organic cargo transport material and optionally other additives, preferably from 1.8% to 5% by weight of the ionic liquids and from 95% to 98.2% by weight of the organic cargo transport material and optionally other additives. In one embodiment, the void transport composition comprises 0.05% to 6.0% by weight of ionic liquids, preferably less than 5% by weight, and more preferably less than 1.0% to 5% by weight of ionic liquids
En una realización preferida, la composición del transporte de huecos está libre de otros agentes de dopado o aditivos. Preferiblemente, la composición del transporte de huecos está libre de 4-terc-butilpiridina (t-BP) y/o de litio. Preferiblemente, la composición del transporte de huecos comprende menos de 4% en peso, más preferiblemente menos de 2% en peso, incluso más preferiblemente menos de 1% en peso y más preferiblemente menos de 0,5% en peso de cualquiera de las del grupo seleccionado entre litio y t-BP. Una baja cantidad o la ausencia de iones de litio es particularmente preferida. In a preferred embodiment, the void transport composition is free of other doping agents or additives. Preferably, the void transport composition is free of 4-tert-butylpyridine (t-BP) and / or lithium. Preferably, the void transport composition comprises less than 4% by weight, more preferably less than 2% by weight, even more preferably less than 1% by weight and more preferably less than 0.5% by weight of any of the group selected between lithium and t-BP. A low amount or absence of lithium ions is particularly preferred.
Si el material orgánico de transporte de huecos es una molécula pequeña (en contraposición a un polímero), las concentraciones molares de los líquidos iónicos en comparación con el material orgánico de transporte de carga pueden también ser significativas. If the organic void transport material is a small molecule (as opposed to a polymer), the molar concentrations of the ionic liquids compared to the organic charge transport material can also be significant.
En una realización, la composición de transporte de huecos comprende del 0,5% hasta el 50% molar de los líquidos iónicos y del 50% hasta 99,5% molar del material orgánico de transporte de carga y opcionalmente otros aditivos. Los otros aditivos opcionales se incluyen en el porcentaje del material orgánico de transporte de carga (del 50 al 99,9 % molar). Preferiblemente, la composición del transporte de huecos comprende de 1,0% hasta 40% molar de los líquidos iónicos y del 60 m% hasta el 99,0% molar del material orgánico de transporte de carga y, opcionalmente, otros aditivos. In one embodiment, the void transport composition comprises 0.5% to 50% molar of the ionic liquids and 50% to 99.5% molar of the organic cargo transport material and optionally other additives. The other optional additives are included in the percentage of the organic cargo transport material (50 to 99.9 mol%). Preferably, the void transport composition comprises from 1.0% to 40% molar of the ionic liquids and from 60 m% to 99.0% molar of the organic cargo transport material and, optionally, other additives.
En una realización, la composición del transporte de huecos comprende del 2,5% hasta 30% molar de los líquidos iónicos y del 70% hasta 97,5% molar del material orgánico de transporte de carga y opcionalmente otros aditivos. In one embodiment, the void transport composition comprises 2.5% to 30% molar of the ionic liquids and 70% to 97.5% molar of the organic cargo transport material and optionally other additives.
En una realización, la composición del transporte de huecos comprende del 3% hasta el 25% molar de líquidos iónicos y del 75% hasta el 97% molar del material orgánico de transporte de carga y opcionalmente otros aditivos. En una realización, la composición del transporte de huecos comprende del 4,5% hasta el 20% molar de los líquidos iónicos y del 80% al 95,5% molar del material orgánico de transporte de carga y opcionalmente otros aditivos, preferentemente de 5% al 15% molar de líquidos iónicos y del 85% al 95% molar del material orgánico de transporte de carga y, opcionalmente, otros aditivos. In one embodiment, the void transport composition comprises 3% to 25% molar of ionic liquids and 75% to 97% molar of the organic cargo transport material and optionally other additives. In one embodiment, the void transport composition comprises from 4.5% to 20% molar of the ionic liquids and from 80% to 95.5% molar of the organic cargo transport material and optionally other additives, preferably 5 % to 15% molar of ionic liquids and 85% to 95% molar of the organic cargo transport material and, optionally, other additives.
Como se ha indicado anteriormente, la composición del transporte de huecos esta preferiblemente sustancialmente libre de otros dopantes o aditivos. Preferiblemente, la composición del transporte de huecos comprende menos del 4% molar, más preferiblemente menos de 2,5% molar, incluso más preferiblemente menos de 1% molar y lo más preferiblemente menos de 0,5% molar de cualquiera de los del grupo seleccionado entre litio y t-BP. Preferiblemente, los iones de litio están ausentes o presentes en bajas concentraciones, como se indica. La composición del transporte de huecos comprende preferiblemente un líquido iónico. De acuerdo con la definición generalmente usada del término, "líquido iónico" es una sal que es líquido a 100 ° C. En una realización, el líquido iónico de la invención es líquido a 50 ° C, preferiblemente a 40 ° C. Un material se considera líquido, si tiene propiedades líquidos medibles, en particular, si tiene la propiedad de un fluido (en oposición a un cuerpo sólido) y cualquier viscosidad medible. De acuerdo con una realización preferida, un material se considera como líquido, si tiene una viscosidad de 20.000 cps (centipoises) o inferior, preferiblemente 15.000 cps o inferior, más preferiblemente 10.000 cps o inferior, lo más preferiblemente 5.000 cps o inferior. Los términos "fundido" o "co-fundido" también se refieren a "líquido" como se define aquí. El término no se refiere líquido al estado gaseoso. As indicated above, the void transport composition is preferably substantially free of other dopants or additives. Preferably, the void transport composition comprises less than 4 molar%, more preferably less than 2.5 molar, even more preferably less than 1 molar and most preferably less than 0.5 molar of any of the group selected between lithium and t-BP. Preferably, lithium ions are absent or present in low concentrations, as indicated. The void transport composition preferably comprises an ionic liquid. According to the generally used definition of the term, "ionic liquid" is a salt that is liquid at 100 ° C. In one embodiment, the ionic liquid of the invention is liquid at 50 ° C, preferably at 40 ° C. A material It is considered liquid, if it has measurable liquid properties, in particular, if it has the property of a fluid (as opposed to a solid body) and any measurable viscosity. According to a preferred embodiment, a material is considered as liquid, if it has a viscosity of 20,000 cps (centipoise) or less, preferably 15,000 cps or less, more preferably 10,000 cps or less, most preferably 5,000 cps or less. The terms "molten" or "co-molten" also refer to "liquid" as defined herein. The term does not refer liquid to the gaseous state.
De acuerdo con una realización preferida, el líquido iónico usado en la presente invención es líquido a temperatura ambiente o superior. El término "temperatura ambiente" se refiere a la temperatura de 25°C. According to a preferred embodiment, the ionic liquid used in the present invention is liquid at room temperature or higher. The term "room temperature" refers to the temperature of 25 ° C.
La composición del transporte de huecos comprende un material de transporte de cargas, preferiblemente un material de transporte de huecos (HTM). El material de transporte de cargas es preferiblemente un material orgánico de transporte de cargas, tal como un HTM orgánico. Un material orgánico de transporte de carga es caracterizado porque las cargas eléctricas, en particular los agujeros y electrones, se mueven por medio de movimiento electrónicos a través del material. Las cargas generalmente no son transportadas por difusión de moléculas, como sería el caso en electrolitos líquidos, por ejemplo. En consecuencia, la composición orgánica transporte de carga y/o el material de transporte de carga de la presente invención no es preferiblemente un electrolito. The hollow transport composition comprises a cargo transport material, preferably a hollow transport material (HTM). The cargo transport material is preferably an organic cargo transport material, such as an organic HTM. An organic cargo transport material is characterized in that the electric charges, in particular the holes and electrons, move by means of electronic movement through the material. Charges are generally not transported by diffusion of molecules, as would be the case in liquid electrolytes, for example. Accordingly, the organic charge transport composition and / or the load transport material of the present invention is preferably not an electrolyte.
En una realización preferida, el material de transporte de cargas es Spiro-OMeTAD (2,2 ', 7,7-tetraquis (N, N-di-p-methoxifenilamino) -9,9-spirobifluoreno). Sin embargo, la presente invención no se limita a un HTM en particular, y HTMs distintos de Spiro- OMeTAD pueden ser dopados o complementados con uno o más líquidos iónicos de acuerdo con la presente invención. In a preferred embodiment, the cargo transport material is Spiro-OMeTAD (2,2 ', 7,7-tetrakis (N, N-di-p-methoxyphenylamino) -9,9-spirobifluorene). However, the present invention is not limited to a particular HTM, and HTMs other than Spiro-OMeTAD can be doped or supplemented with one or more ionic liquids in accordance with the present invention.
WO 2007/107961 da a conocer un material orgánico de transporte de carga, tal como tris(pmethoxyethoxyphenyl)amina (TMPA) y otros compuestos. Una particularidad de estos compuestos es que pueden estar en forma líquida al menos durante el procesamiento de los dispositivos optoelectrónico. Estos compuestos se pueden utilizar como materiales de transporte de carga de acuerdo con la presente invención. Abate et al, Energy Environ. Sci., 2015,8, 2946-2953, describen silolotiofeno unido a trifenilamino como materiales de transporte de huecos estables para células solares basadas en perovskita con una alta eficiencia. Estos materiales de transporte de cargas también se pueden usar para el propósito de la presente invención. F. J. Ramos et al, RSC Adv., 2015,5, 53426-53432, y R. et al Kasparas, Triazatruxene-based Hole Transporting Materials for Highly Efficient Perovskite Solar Cells, Journal of the American ChemicalSociety, 2015, 137 (51), 16172-16178 da a conocer 5,10,15-trihexil-3,8,13-trimetoxi,15-dihidro-5H-d¡indolo [3,2-a:3',2'-c] carbazol (HMDI) o 5,10,15-tris(4-(hexiloxi)fenil)-10,15-dihidro-5H-diindolo [3,2-a: 3 ', 2'-c] carbazol (HPDI) y otros materiales de transporte de carga con triazatruxeno como núcleo-base. WO 2007/107961 discloses an organic cargo transport material, such as tris (pmethoxyethoxyphenyl) amine (TMPA) and other compounds. A particularity of these compounds is that they can be in liquid form at least during the processing of optoelectronic devices. These compounds can be used as cargo transport materials according to the present invention. Abate et al, Energy Environ. Sci., 2015,8, 2946-2953, describe triphenylamino-bound silolothiophene as stable hollow transport materials for perovskite-based solar cells with high efficiency. These cargo transport materials can also be used for the purpose of the present invention. FJ Ramos et al, RSC Adv., 2015.5, 53426-53432, and R. et al Kasparas, Triazatruxene-based Hole Transporting Materials for Highly Efficient Perovskite Solar Cells, Journal of the American Chemical Society, 2015, 137 (51), 16172-16178 discloses 5,10,15-trihexyl-3,8,13-trimethoxy, 15-dihydro-5H-dindole [3,2-a: 3 ', 2'-c] carbazole (HMDI) or 5,10,15-tris (4- (hexyloxy) phenyl) -10,15-dihydro-5H-diindolo [3,2-a: 3 ', 2'-c] carbazole (HPDI) and other transport materials loading with triazatruxen as core-base.
En una realización, el material orgánico de transporte de carga se selecciona de spirofluorenos, tales como spiro-OMeTAD (2,2',7,7'-tetrakis(N,N-di-p-metoxifenil amina)-9,9-spirobifluoreno) y derivados de esta y otros spirofluorenos, carbazol y sus derivados, triazatruxene y derivados de los mismos, compuestos que comprenden el núcleo de tiofeno y derivados de los mismos, trifenilamina y sus derivados, acene y derivados de los mismos, y 2,,7'-bis(4-metoxifenil)amino)spiro[ciclopenta [2,1-b: 3,4-b ']ditiofeno-4,9'-fluoreno y derivados de los mismos. En una realización, el material orgánico de transporte de carga es de 2',7-bis(4- metoxjfenil)amino)spiro[ciclopenta[2,1-b: 3,4-b ']ditiofeno-4,9'-fluoreno (FDT). Este compuesto mostró propiedades interesantes como materiales orgánicos de transporte de carga, en particular, cuando se combina con el aditivo líquido iónico de acuerdo con la invención. In one embodiment, the organic cargo transport material is selected from spirofluorenes, such as spiro-OMeTAD (2,2 ', 7,7'-tetrakis (N, N-di-p-methoxyphenyl amine) -9.9- spirobifluorene) and derivatives of this and other spirofluorenes, carbazol and its derivatives, triazatruxene and derivatives thereof, compounds comprising the thiophene nucleus and derivatives thereof, triphenylamine and its derivatives, acene and derivatives thereof, and 2, 7'-bis (4-methoxyphenyl) amino) spiro [cyclopenta [2,1-b: 3,4- b '] dithiophene-4,9'-fluorene and derivatives thereof. In one embodiment, the organic cargo transport material is 2 ', 7-bis (4- methoxyjphenyl) amino) spiro [cyclopenta [2,1-b: 3,4-b'] dithiophene-4,9'- Fluorene (FDT). This compound showed interesting properties as organic cargo transport materials, in particular, when combined with the ionic liquid additive according to the invention.
En una realización preferida, el material orgánico de transporte de carga no es un compuesto polimérico y/o una molécula pequeña. Para el propósito de esta especificación, una molécula pequeña es un compuesto que tiene un peso molecular (o masa molecular) de≤ 5.000, preferiblemente≤ 4.000, más preferiblemente≤ 3.000 y lo más preferiblemente≤ 2.000 (dalton). In a preferred embodiment, the organic cargo transport material is not a polymeric compound and / or a small molecule. For the purpose of this specification, a small molecule is a compound that has a molecular weight (or molecular mass) of ≤ 5,000, preferably ≤ 4,000, more preferably ≤ 3,000 and most preferably ≤ 2,000 (dalton).
En una realización alternativa, el material orgánico de transporte de carga puede ser un compuesto polímerico. Ejemplos de materiales orgánicos de transporte de carga son poli-3,4ethylendioxythiophen (PEDOT), en particular PEDOT: PSS, polytriarylamines, tales como (PTAA) y sus derivados que contienen fluoreno y indenofluoreno, llamado PF8-TAA, y PIF8-TAA, polifluoreno derivados (PFO, TFB y PFB), polianilina (PAÑI), poli (p-fenileno 20) (PPP), politiofeno (PT) y sus derivados, tales como tiofeno poly3-hexilo (P3HT) y poli (4,4 'bis (N-carbazolilo) -1,1 -bifenil) (PPN). In an alternative embodiment, the organic cargo transport material may be a polymeric compound. Examples of organic cargo transport materials are poly-3,4ethylenedioxythiophen (PEDOT), in particular PEDOT: PSS, polytriarylamines, such as (PTAA) and its derivatives containing fluorene and indenofluorene, called PF8-TAA, and PIF8-TAA, polyfluorene derivatives (PFO, TFB and PFB), polyaniline (PAÑI), poly (p-phenylene 20) (PPP), polythiophene (PT) and its derivatives, such as thiophene poly3-hexyl (P3HT) and poly (4.4 ' bis (N-carbazolyl) -1,1-biphenyl) (PPN).
En una realización, el material orgánico de transporte de carga comprende uno o más seleccionados a partir del grupo de: PTAA (poli[bis(4-fenil)(2,4,6-trimetilfenil)amina]), In one embodiment, the organic cargo transport material comprises one or more selected from the group of: PTAA (poly [bis (4-phenyl) (2,4,6-trimethylphenyl) amine]),
Figure imgf000016_0001
Figure imgf000016_0001
Figure imgf000017_0001
Figure imgf000017_0001
diilo}]), y derivados de uno o más de los anteriormente citados.  diyl}]), and derivatives of one or more of the aforementioned.
Los materiales de transporte de carga no poliméricos y polímeros mencionados anteriormente son ejemplos de materiales orgánicos que pueden ser dopados por medio de la adición de un líquido iónico de acuerdo con la presente invención.  The non-polymeric cargo transport materials and polymers mentioned above are examples of organic materials that can be doped by the addition of an ionic liquid according to the present invention.
La presente invención abarca dispositivos optoelectrónicos y/o electroquímicos que comprende una capa de material de transporte de huecos que comprende la composición del material de transporte de huecos de la invención. Ejemplos son dispositivos células solares, como las células solares sensibilizadas, por ejemplo células solares de colorante o células solares basadas en perovskita. En una realización, la célula solar está basada en una perovskita orgánica-inorgánica o en un óxido de perovskita. Preferiblemente, las células solares sensibilizadas son dispositivos de estado sólidos y / o carecen de un electrolito, en particular, un electrolito líquido que comprende una pareja redox. En una realización, la célula solar es una célula solar híbrida basada en estado sólido. The present invention encompasses optoelectronic and / or electrochemical devices comprising a layer of void transport material comprising the composition of the void transport material of the invention. Examples are solar cell devices, such as sensitized solar cells, for example dye solar cells or perovskite-based solar cells. In one embodiment, the solar cell is based on an organic-inorganic perovskite or a perovskite oxide. Preferably, the sensitized solar cells are solid state devices and / or lack an electrolyte, in particular, a liquid electrolyte comprising a redox pair. In one embodiment, the solar cell is a solid-state hybrid solar cell.
Las figuras 7 y 8 ilustran esquemáticamente las células solares 1 preparados de acuerdo con la invención. Las células solares de la invención son generalmente plana y / o dispositivos en capas, que comprende dos lados opuestos 7 y 8. El dispositivo de la figura 7 comprende una capa conductora de corriente de colector 5, una capa de semiconductor de tipo n 2, un captador de luz o capa sensibilizada 3, una capa de transporte de huecos 4 y una capa para proporcionar una corriente de la realización 6, donde la capa de transporte de huecos 4 se encuentra entre dicha capa cosechadora de la luz 3 y una capa para proporcionar corriente 6, dicho una capa transportadora de huecos que comprende una composición de transporte de carga de la invención. En otra realización, la invención proporciona una célula solar 1 , como se ilustra en la Figura 8, que comprende una estructura de aumento de superficie 9. Los números de referencia restantes son como se da a conocer con respecto a la figura 7. La estructura de aumento de superficie 9 puede ser una estructura nanoporosa, mesoscópica, que puede estar hecho a partir de nanopartículas, por ejemplo. La estructura de aumento superficie 9 puede ser un óxido aislante, por ejemplo, alúmina (Al203), zirconia, óxido de silicio (Si02), etc., o un material semiconductor tipo-n y / o puede comprender el mismo material que la capa 2. Dióxido de titanio (Ti02) u otros materiales semiconductores de óxido de metal se pueden usar para las capas 2 y / o 9, por ejemplo. La capa captadora de luz 3 se proporciona preferiblemente entre la estructura de aumento de superficie 9 y la capa de transporte de huecos 4 que comprende la composición de la invención. Figures 7 and 8 schematically illustrate the solar cells 1 prepared according to the invention. The solar cells of the invention are generally flat and / or layered devices, comprising two opposite sides 7 and 8. The device of Figure 7 comprises a conductive current collector layer 5, a semiconductor layer of type n 2, a light collector or sensitized layer 3, a gap transport layer 4 and a layer to provide a current of embodiment 6, wherein the gap transport layer 4 is between said light harvester layer 3 and a layer for providing stream 6, said a gap conveyor layer comprising a cargo transport composition of the invention. In another embodiment, the invention provides a solar cell 1, as illustrated in Figure 8, comprising a surface augmentation structure 9. The remaining reference numbers are as disclosed with respect to Figure 7. The structure Surface augmentation 9 can be a nanoporous, mesoscopic structure, which can be made from nanoparticles, for example. The surface augmentation structure 9 may be an insulating oxide, for example, alumina (Al 2 0 3 ), zirconia, silicon oxide (Si0 2 ), etc., or a n-type semiconductor material and / or may comprise the same material than layer 2. Titanium dioxide (Ti0 2 ) or other metal oxide semiconductor materials can be used for layers 2 and / or 9, for example. The light collecting layer 3 is preferably provided between the surface augmentation structure 9 and the gap transport layer 4 comprising the composition of the invention.
Ejemplos 1-4 y Ejemplos comparativos 5-6 Examples 1-4 and Comparative Examples 5-6
Material y métodos Material and methods
Productos químicos fueron adquiridos de Sigma Aldrich o Agros y fueron empleados sin ningún tratamiento o purificación. Spiro-OMeTAD representado como 2,2 ', 7,7'- tetrakis (N, N-di-p metoxifenilamina)-9,9-Spirobifluoreno (Spiro-MeOTAD) se adquirió de Merck KGaA, mientras el yoduro de metilamina, CH3NH3I (IMA), se sintetizó de acuerdo con la literatura conocida. Chemical products were purchased from Sigma Aldrich or Agros and were used without any treatment or purification. Spiro-OMeTAD represented as 2,2 ', 7,7'-tetrakis (N, N-di-p methoxyphenylamine) -9,9-Spirobifluorene (Spiro-MeOTAD) was purchased from Merck KGaA, while methylamine iodide, CH 3 NH 3 I (IMA), was synthesized according to known literature.
Fabricación de dispositivos: Device manufacturing:
Los dispositivos de células solares perovskita (CSP) fueron fabricados en vidrio recubierta con FTO (TEC, Pilkington) modelada por grabado láser. Antes de cualquier deposición, los sustratos fueron limpiados utilizando una solución de Hellmanex® y se enjuagaron posteriormente con agua desionizada y etanol. Después de esto, se sometieron a ultrasonidos en acetona, se enjuagaron con etanol y 2-propanol y se secaron a través de aire comprimido. Una capa compacta de T¡02 se depositó mediante pirólisis por pulverización a 450 °C usando 1 mi de bis diisopropóxido de titanio (acetil acetonato) como solución precursora (75% En 2-propanol, Sigma Aldrich) disuelto en 19 mi de etanol puro usando 02 como gas portador. Después de la deposición de la capa de bloqueo (capa compacta Ti02), los sustratos se mantuvieron durante 30 minutos más a 450 °C para la formación de la fase anatasa. Una vez que las muestras alcanzaron la temperatura ambiente, se trataron con tetracloruro de titanio (TiCI ) (inmersión en una solución 0,02 M de TiC en agua desionizada a 70 °C durante 30 minutos) con el objetivo de obtener una capa homogénea. A continuación, las muestras se lavaron con agua desionizada, se calentaron a 500 °C durante 10 minutos y se enfriaron a temperatura ambiente. Después de esto, una capa mesoporosa de Ti02 (DYESOL, 30NRD) fue depositada por recubrimiento por centrifugación (4000 rpm durante 30 s con 2000 rpm segundos'1 como la aceleración) y las muestras fueron recocidas por calentamiento de los mismos de manera progresiva a 450°C durante 2 horas. Encima de esto, una perovskita mixta de catión orgánico y haluro ((FAPbl3)o,85(MAPbBr3)o 15) fue depositada por un método en un paso. Una mezcla de 1 ,4 M de yoduro de plomo (Pbl2), bromuro de plomo (PbBr2) y una mezcla de yoduro de formamidinium (FAI) y bromuro de metilo de amonio (MABR) se mezclaron en una mezcla de disolventes de N, N-dimetilformamida (DMF) y dimetilsulfóxido (DMSO). La solución se preparó dentro de una caja de guantes de argón bajo condiciones controladas de humedad y oxígeno (H20 nivel: <1 ppm y el nivel de 02: <10 ppm) y se mantuvo en agitación a 80°C durante la noche con el fin de disolver completamente Pbl2. La deposición de la perovskita se llevó a cabo por un método de un paso con ingeniería de disolvente. En este método, la solución precursora de perovskita se depositó por recubrimiento por centrifugación sobre la capa mesoporosa a 1.000 rpm durante 10 segundos y, a continuación 6.000 rpm durante 30 segundos. Durante el segundo paso, el clorobenceno se goteó en el centro del sustrato en los últimos 15 segundos. Después del tratamiento con disolvente, las muestras se transfirieron a una placa caliente y se templaron a 100 0 C durante 60 minutos. Preparación HTM: The perovskite (CSP) solar cell devices were manufactured in FTO coated glass (TEC, Pilkington) modeled by laser engraving. Before any deposition, the substrates were cleaned using a Hellmanex® solution and subsequently rinsed with deionized water and ethanol. After this, they were sonicated in acetone, rinsed with ethanol and 2-propanol and dried through compressed air. A compact layer of T0 2 was deposited by spray pyrolysis at 450 ° C using 1 ml of titanium bis diisopropoxide (acetyl acetonate) as a precursor solution (75% in 2-propanol, Sigma Aldrich) dissolved in 19 ml of ethanol pure using 0 2 as carrier gas. After deposition of the blocking layer (Ti0 2 compact layer), the substrates were maintained for an additional 30 minutes at 450 ° C for anatase phase formation. Once the samples reached room temperature, they were treated with titanium tetrachloride (TiCI) (immersion in a 0.02M solution of TiC in deionized water at 70 ° C for 30 minutes) in order to obtain a homogeneous layer. Then, The samples were washed with deionized water, heated at 500 ° C for 10 minutes and cooled to room temperature. After this, a mesoporous layer of Ti0 2 (DYESOL, 30NRD) was deposited by centrifugation coating (4000 rpm for 30 s with 2000 rpm seconds ' 1 as acceleration) and the samples were annealed by heating them progressively at 450 ° C for 2 hours. On top of this, a mixed perovskite of organic cation and halide ((FAPbl 3 ) or, 85 (MAPbBr 3 ) or 15) was deposited by a one-step method. A mixture of 1.4 M of lead iodide (Pbl 2 ), lead bromide (PbBr 2 ) and a mixture of formamidinium iodide (FAI) and methyl ammonium bromide (MABR) were mixed in a solvent mixture of N, N-dimethylformamide (DMF) and dimethylsulfoxide (DMSO). The solution was prepared inside an argon glove box under controlled conditions of humidity and oxygen (H 2 0 level: <1 ppm and 0 2 level : <10 ppm) and kept under stirring at 80 ° C during the night in order to completely dissolve Pbl 2 . Deposition of perovskite was carried out by a one-step method with solvent engineering. In this method, the perovskite precursor solution was deposited by centrifugation over the mesoporous layer at 1,000 rpm for 10 seconds and then 6,000 rpm for 30 seconds. During the second step, chlorobenzene dripped into the center of the substrate in the last 15 seconds. After the solvent treatment, the samples were transferred to a hot plate and annealed at 100 0 C for 60 minutes. HTM Preparation:
Para el material de transporte de huecos, se disolvieron 72,3 mg de Spiro-MeOTAD en 1 mi de clorobenceno. 1-butil-1-metilpiridin-1-io(trifluorometilsulfonil) imida (BMP TFSI) líquido iónico se utilizó como dopante / aditivo para Spiro-MeOTAD.  For the hole transport material, 72.3 mg of Spiro-MeOTAD was dissolved in 1 ml of chlorobenzene. 1-Butyl-1-methylpyridin-1-io (trifluoromethylsulfonyl) imide (BMP TFSI) ionic liquid was used as a dopant / additive for Spiro-MeOTAD.
La solución madre de líquido iónico se preparó añadiendo 35 mg de 1-butil-1- metilpiridin-1-io bis (trifluorometilsulfonil)imida (BMP-TFSI) en 1 mi de acetonitrilo. Luego, las soluciones de la capa de transporte de huecos se prepararon añadiendo diferente cantidades de esta solución madre en el 72,3 mg / mi Spiro-MeOTAD solución para obtener 0 mM, 3,2 mM, 4,7 mM, 6,1 mM y 7,5 mM de concentración de BMP-TFSI respectivamente. Para la comparación, la solución estándar dopada de Spiro-MeOTAD se preparó disolviendo 72,3 mg de Spiro-MeOTAD en 1 mi de clorobenceno, y añadiendo como aditivos estándar de 17,5 μΙ de una bis-imida de litio (trifluorometilsulfonilo) (LiTFSI) solución madre (520 mg de LiTFSI en 1 mi de acetonitrílo), 21,9 μΙ de una FK209 (Tris (2- (1H-pirazol-1-il)-4-terc-but¡lp¡rid¡na)-cobalto (lll)Tris(bis(trifluorometilsulfonil)imida))) solución madre (400 mg en 1 mi de acetonitrílo) y 28,8 μΙ de 4-terc-butilpiridina (t-BP). The stock solution of ionic liquid was prepared by adding 35 mg of 1-butyl-1- methylpyridin-1-io bis (trifluoromethylsulfonyl) imide (BMP-TFSI) in 1 ml of acetonitrile. Then, the solutions of the void transport layer were prepared by adding different amounts of this stock solution in the 72.3 mg / mi Spiro-MeOTAD solution to obtain 0 mM, 3.2 mM, 4.7 mM, 6.1 mM and 7.5 mM concentration of BMP-TFSI respectively. For comparison, the standard doped Spiro-MeOTAD solution was prepared by dissolving 72.3 mg of Spiro-MeOTAD in 1 ml of chlorobenzene, and adding as standard additives 17.5 μΙ of a lithium bis-imide (trifluoromethylsulfonyl) (LiTFSI) stock solution (520 mg of LiTFSI in 1 ml of acetonitrile), 21.9 μΙ of an FK209 (Tris (2- (1H-pyrazol-1-yl) -4-tert-butll) ridinna) -cobalt (lll) Tris (bis (trifluoromethylsulfonyl) imide))) stock solution (400 mg in 1 ml acetonitrile) and 28.8 μΙ of 4-tert-butylpyridine (t-BP).
A continuación, 35 μΙ de cada solución HTM fueron lanzadas sobre los sustratos de perovskita de la muestras de células solares descrito anteriormente, y las muestras se recubrieron por centrifugación a 4.000 rpm durante 30 segundos. Después, 80 nm de oro fue utilizado como cátodo el cual fue evaporado térmicamente sobre el HTM bajo un vacío entre 1 - 10-6 y 1 - 10-5 torr, tal como para obtener células solares ejemplares. Next, 35 μΙ of each HTM solution was thrown onto the perovskite substrates of the solar cell samples described above, and the samples were coated by centrifugation at 4,000 rpm for 30 seconds. Then, 80 nm of gold was used as a cathode which was thermally evaporated on the HTM under a vacuum between 1-10-6 and 1-10-5 torr, such as to obtain exemplary solar cells.
Caracterización: Characterization:
Las curvas de densidad de corriente-tensión se registraron con un equipo de medida Keithley 2.400 bajo AM 1 ,5 G, 100 mW-cm2 con iluminación de una Clase AAA certificada, 450 W simulador solar (Oriel 94023 A). La potencia de la luz se calibró usando una celda de silicio monocristalino certificado de células solares. Una máscara de metal negro (0,16 cm2) se utilizó como área activa de las células solares cuadrada (0,5 cm2) durante la medida para reducir la influencia de la luz dispersada. Current-voltage density curves were recorded with a Keithley 2,400 measuring device under AM 1, 5 G, 100 mW-cm 2 with illumination of a certified AAA Class, 450 W solar simulator (Oriel 94023 A). The light power was calibrated using a monocrystalline silicon cell certified by solar cells. A black metal mask (0.16 cm 2 ) was used as an active area of the square solar cells (0.5 cm 2 ) during the measurement to reduce the influence of scattered light.
Las mediciones IPCE se realizaron utilizando una lámpara de Xenón de 150 W Newport acoplado a una Oriel Cornerstone 260 motorizados ¼ m mono-Chromator como fuente de luz, y un 2936-R Medidor de energía para medir la corriente de cortocircuito. The IPCE measurements were made using a 150W Newport Xenon lamp coupled to a motorized Oriel Cornerstone 260 ¼ m mono-Chromator as a light source, and a 2936-R Energy Meter to measure the short-circuit current.
Resultados y discusión: Results and Discussion:
El rendimiento fotovoltáico de los dispositivos preparados se muestra en las figuras 1 y 2 y en Tabla 1 a continuación.  The photovoltaic performance of the devices prepared is shown in Figures 1 and 2 and in Table 1 below.
Tabla 1: Propiedades fotovoltaicas de los dispositivo-s preparados usando diferentes concentraciones del líquido iónico BMP TFSI y la comparación con Spiro-OMeTAD usando FK209 como dopante, la sal LiTFSI y aditivos t-BP. Table 1: Photovoltaic properties of device-s prepared using different concentrations of BMP TFSI ionic liquid and the comparison with Spiro-OMeTAD using FK209 as a dopant, LiTFSI salt and t-BP additives.
Figure imgf000020_0001
Figure imgf000021_0001
Figure imgf000020_0001
Figure imgf000021_0001
Todos los HTM con BMP TFSI mostraron al menos bueno o mejor rendimiento que HTM 6 que contiene sólo Spiro-OMeTAD. La célula del Ejemplo 2 mostró el mejor rendimiento de todos dispositivos, y, en particular, un mayor rendimiento que la célula del Ejemplo 3 y 4, que tenían una mayor concentración de BMP. En el caso de la célula solar del (comparativo) Ejemplo 6 que contiene solo Spiro-OMeTAD, el voltaje de circuito abierto (Voc) y la densidad de corriente de cortocircuito (Jsc) eran alrededor de 0,57 V y 18,38 mA.cm'2, respectivamente. Mientras que en el caso de la célula solar de Ejemplo 2, los valores Voc y Jsc se han mejorado en gran medida a 1,02 V y 21,17 mA.cm'2, respectivamente. El factor de llenado (FF), que revela la resistencia intrínseca y el grado de recombinación de carga, también aumentó de 32,5% a 65,1%. Al parecer, los dispositivos del Ejemplo 2 exhiben la concentración óptima de líquido iónico BMP TFSI para Spiro-OMeTAD HTM y mostró el mejor comportamiento al lograr una eficiencia de conversión de energía (PCE) de 14,06%. Este valor PCE es muy próxima a la de las células solares convencionales basados en spiro-OMeTAD HTM contieniendo FK209 como dopante, y los aditivos LiTFSI y t-BP (PCE = 14,96%, Ejemplo comparativo 5). All HTM with BMP TFSI showed at least good or better performance than HTM 6 containing only Spiro-OMeTAD. The cell of Example 2 showed the best performance of all devices, and, in particular, a higher yield than the cell of Example 3 and 4, which had a higher concentration of BMP. In the case of the (comparative) solar cell Example 6 containing only Spiro-OMeTAD, the open circuit voltage (Voc) and the short-circuit current density (Jsc) were around 0.57 V and 18.38 mA .cm '2 , respectively. While in the case of the solar cell of Example 2, the Voc and Jsc values have been greatly improved to 1.02 V and 21.17 mA.cm '2 , respectively. The filling factor (FF), which reveals the intrinsic resistance and the degree of load recombination, also increased from 32.5% to 65.1%. Apparently, the devices of Example 2 exhibit the optimal BMP TFSI ionic liquid concentration for Spiro-OMeTAD HTM and showed the best performance when achieving an energy conversion efficiency (PCE) of 14.06%. This PCE value is very close to that of conventional solar cells based on spiro-OMeTAD HTM containing FK209 as a dopant, and the additives LiTFSI and t-BP (PCE = 14.96%, Comparative Example 5).
Estos resultados muestran que los líquidos iónicos son unos candidatos prometedores para el dopaje carga orgánica materiales de transporte. These results show that ionic liquids are promising candidates for doping organic cargo transport materials.
La Figura 2 revela, además, que en todos los ejemplos 1-4, se observó una amplia meseta sobre la totalidad visible de rango espectral y hasta 85% de los fotones pueden ser convertidos con éxito en electricidad en el caso de la concentración optimizada usada en los Ejemplos 1-4. El IPCE más alto se observó en la célula del Ejemplo 2. Estos resultados estaban de acuerdo con las mediciones J-V. Figure 2 further reveals that in all examples 1-4, a broad plateau was observed over the entire visible spectral range and up to 85% of the photons can be successfully converted to electricity in the case of the optimized concentration used. in Examples 1-4. The highest IPCE was observed in the cell of Example 2. These results were in accordance with the J-V measurements.
La Tabla 2 muestra las cantidades en porcentaje en peso y el porcentaje en moles de HTM y líquido iónico en las composiciones de transporte de huecos de los Ejemplos 1- 4. Tabla 2: Porcentajes molar y en peso de HTM y Ll (Líquido iónico) composiciones del material transportador de huecos de la invención. Table 2 shows the amounts in percent by weight and the mole percent of HTM and ionic liquid in the void transport compositions of Examples 1-4. Table 2: Molar and weight percentages of HTM and Ll (Ionic Liquid) compositions of the hollow conveyor material of the invention.
Figure imgf000022_0001
Figure imgf000022_0001
Los valores de las eficiencias de conversión de potencia (PCE) en la Tabla 2 fueron tomados de la Tabla 1. Los valores más altos fueron para los dispositivos de los Ejemplos 1-4, pero comenzó a disminuir ligeramente en Ejemplo 3. En consecuencia, se lograron resultados especialmente buenos cuando las composiciones del material de transporte de huecos (100% = HTM + Ll) contenían aproximadamente desde 5,3% hasta 12,3% molar de líquido iónico (87,7-94,7% molar de HTM orgánico) y 1,9% a 4,6% en peso de líquido iónico (98,1% a 95,4% en peso de material orgánico HTM), respectivamente. The values of power conversion efficiencies (PCE) in Table 2 were taken from Table 1. The highest values were for the devices of Examples 1-4, but began to decrease slightly in Example 3. Consequently, Especially good results were achieved when the compositions of the void transport material (100% = HTM + Ll) contained approximately 5.3% to 12.3% molar ionic liquid (87.7-94.7 mol% HTM organic) and 1.9% to 4.6% by weight of ionic liquid (98.1% to 95.4% by weight of HTM organic material), respectively.
Ejemplos 7-12: combinaciones de líquidos iónicos BMIM Examples 7-12: BMIM ionic liquid combinations
Se prepararon células solares como se describe anteriormente para los Ejemplos 1-6, usando 1-butil-3-metil-1H-imidazol-3-io bis ((trifluorometil)sulfonil) imida (BMIM TFSI) (Ejemplo 7) y combinaciones de BMIM TFSI con 1-butil-3-metilpirídin-1-iobis ((trifluorometil)sulfon¡l)imida (BMP TFSI). Solar cells were prepared as described above for Examples 1-6, using 1-butyl-3-methyl-1H-imidazol-3-io bis ((trifluoromethyl) sulfonyl) imide (BMIM TFSI) (Example 7) and combinations of BMIM TFSI with 1-butyl-3-methylpyridin-1-iobis ((trifluoromethyl) sulfonyl) imide (BMP TFSI).
En los Ejemplos 7-12, la cantidad y las concentraciones molares del líquido iónico (Ejemplo 7) o la combinación de líquidos iónicos (Ejemplos 8-12) se mantuvo constante a los valores correspondientes con el Ejemplo 2 anterior (4,7 mM). Se observa que el peso molecular de BMIM TFSI y BMP TFSI son muy similares, de tal manera que las relaciones indicadas en la Tabla 3 reflejan relaciones en peso, así como relaciones molares de los dos cationes (P.M. (BMP TFSI) = 430,05; P.M. (BMIM TFSI) = 419,36). Tabla 3: Eficiencia de conversión de energía en las células solares basadas en el líquido iónico BMIM TFSI y combinaciones de los líquidos iónicos. In Examples 7-12, the amount and molar concentrations of the ionic liquid (Example 7) or the combination of ionic liquids (Examples 8-12) was kept constant at the values corresponding to Example 2 above (4.7 mM) . It is observed that the molecular weight of BMIM TFSI and BMP TFSI are very similar, so that the ratios indicated in Table 3 reflect weight relationships, as well as molar ratios of the two cations (PM (BMP TFSI) = 430.05 ; PM (BMIM TFSI) = 419.36). Table 3: Energy conversion efficiency in solar cells based on BMIM TFSI ionic liquid and combinations of ionic liquids.
Figure imgf000023_0001
Figure imgf000023_0001
En los Ejemplos 7-12, las células solares que contienen composiciones de transportes de huecos que contienen combinaciones de diferentes líquidos iónicos en materiales orgánicos de transporte de huecos no alcanzaron tan altas eficiencias de conversión de potencia como las células que contienen un solo líquido iónico como dopante / aditivo. Por otra parte, las combinaciones proporcionan ventajas adicionales con respecto a la estabilidad de las células solares. In Examples 7-12, solar cells containing void transport compositions containing combinations of different ionic liquids in organic void transport materials did not reach as high power conversion efficiencies as cells containing a single ionic liquid such as dopant / additive. On the other hand, the combinations provide additional advantages over the stability of solar cells.

Claims

REIVINDICACIONES
1. Una composición de transportes de huecos que comprende un material orgánico de transporte de carga y un líquido iónico que comprende un catión A+, en la que A+ es un anillo heterocíclico sustituido o no sustituido de 5 ó 6 miembros que tiene 1-3 heteroátomos, que son de forma independiente seleccionado de N, S y O, con la condición de que al menos uno de los heteroátomos es un átomo de nitrógeno cuaternario. 1. A void transport composition comprising an organic cargo transport material and an ionic liquid comprising an A + cation, wherein A + is a 5 or 6 membered substituted or unsubstituted heterocyclic ring having 1- 3 heteroatoms, which are independently selected from N, S and O, with the proviso that at least one of the heteroatoms is a quaternary nitrogen atom.
2. La composición de transporte de huecos de la reivindicación 1, en el que dicho anillo de 5 ó 6 miembros comprende un átomo de nitrógeno sustituido y opcionalmente los sustituyentes en átomos de carbono. 2. The void transport composition of claim 1, wherein said 5 or 6 member ring comprises a substituted nitrogen atom and optionally the carbon atom substituents.
3. La composición de transporte de huecos de cualquiera de las reivindicaciones anteriores, en el que dicho anillo de 5 ó 6 miembros comprende un sustituyentes en átomos de carbono. 3. The void transport composition of any of the preceding claims, wherein said 5 or 6 member ring comprises a carbon atom substituents.
4. La composición de transporte de huecos de la reivindicación 1 , en la que A+ se selecciona del grupo de los compuestos pirídinio, imidazolio y / o pirrolidinio. 4. The void transport composition of claim 1, wherein A + is selected from the group of the pyridinium, imidazolium and / or pyrrolidinium compounds.
5. La composición de transporte de huecos de la reivindicación 4, en el que dicho compuesto de pirídinio, imidazolio y / o pirrolidinio es un anillo de pirídina, imidazol y pirrolidina, respectivamente, que está sustituido en el nitrógeno, y que puede comprender otros sustituyentes. 5. The void transport composition of claim 4, wherein said pyridinium, imidazolium and / or pyrrolidinium compound is a pyridine, imidazole and pyrrolidine ring, respectively, which is substituted on nitrogen, and which may comprise other substituents
6. La composición de transporte de huecos de cualquiera de las reivindicaciones anteriores, donde A* se selecciona de entre los compuestos de fórmulas (1) a (4), 6. The void transport composition of any of the preceding claims, wherein A * is selected from the compounds of formulas (1) to (4),
Figure imgf000024_0001
Figure imgf000024_0001
donde: R1 y R2, en la medida de lo presente, se seleccionan independientemente de sustituido o no sustituido alquilo, alquenilo, alquinilo o arilo, en el que dicho alquilo, alquenilo, alquinilo o arilo puede, independientemente, estar parcial o totalmente halogenado; R1 a R10, en la medida de lo presente, se selecciona independientemente de H y de sustituido o no sustituido alquilo, alquenilo, alquinilo o arilo, en el que dicho alquilo, alquenilo, alquinilo o arilo puede ser, independientemente, parcial o totalmente halogenado. where: R 1 and R 2 , to the extent hereinbefore, are independently selected from substituted or unsubstituted alkyl, alkenyl, alkynyl or aryl, wherein said alkyl, alkenyl, alkynyl or aryl may, independently, be partially or totally halogenated; R 1 to R 10 , to the extent herein, is independently selected from H and substituted or unsubstituted alkyl, alkenyl, alkynyl or aryl, wherein said alkyl, alkenyl, alkynyl or aryl may be, independently, partially or fully halogenated
7. La composición de transporte de huecos de cualquiera de las reivindicaciones anteriores, en el que se selecciona A* a partir de los compuestos de las fórmulas (5) a7. The void transport composition of any of the preceding claims, wherein A * is selected from the compounds of formulas (5) a
(7), (7),
Figure imgf000025_0001
donde:
Figure imgf000025_0001
where:
R1 y R2, en la medida de lo presente, se seleccionan independientemente del sustituido o no sustituido alquilo, alquenilo, alquinilo o arilo, donde dicho alquilo, alquenilo, alquinilo o arilo puede ser, independientemente, parcial o totalmente halogenado, y R4, en la medida de lo presente, se selecciona de alquilo y de H, en el que dicho alquilo puede estar parcial o totalmente halogenado. R 1 and R 2 , to the extent herein, are independently selected from the substituted or unsubstituted alkyl, alkenyl, alkynyl or aryl, wherein said alkyl, alkenyl, alkynyl or aryl may be, independently, partially or fully halogenated, and R 4 , as far as it is present, is selected from alkyl and from H, wherein said alkyl may be partially or totally halogenated.
8. La composición del transporte de huecos de cualquiera de las reivindicaciones 6 y 7, en el que, en dichos compuestos de pirídinio, imidazolio y / o pirrolidinio, R1 y R2, en la medida de lo presente, son seleccionado independientemente de alquilo C1-C10, R4 se selecciona de H y de alquilo C1-C10, en el que uno cualquiera o ambos de dicho alquilo C1-C10 puede ser, independientemente, parcial o totalmente halogenado. 8. The void transport composition of any of claims 6 and 7, wherein, in said pyridinium, imidazolium and / or pyrrolidinium compounds, R 1 and R 2 , to the extent herein, are independently selected from C1-C10 alkyl, R 4 is selected from H and from C1-C10 alkyl, wherein any one or both of said C1-C10 alkyl can be, independently, partially or totally halogenated.
9. La composición del transporte de huecos de cualquiera de las reivindicaciones anteriores, en el que A* es seleccionado de 1-butil-l-metilpirídinio, 1-butil-3-metil- imidazolio, y 1-metil-3-(3,3,4,4,5,5,6,6,&-nonafluorohexilo) -1 H-imidazol-3-io. 9. The void transport composition of any of the preceding claims, wherein A * is selected from 1-butyl-l-methylpyridinium, 1-butyl-3-methylimidazolium, and 1-methyl-3- (3 , 3,4,4,5,5,6,6, & - nonafluorohexyl) -1 H-imidazol-3-io.
10. La composición del transporte de huecos de cualquiera de las reivindicaciones anteriores, en el que dicho liquido iónico comprende un anión seleccionado de haluros, tales como cloruro, bromuro, fluoruro, yoduro y de (CFsSO^N', (CFaCO^N', BF4., PFe ", NO3-, CH3CO2 , CF3SO3 , (CF3S02)2C-,(CF3C02)2C-, y N(CN)2\ 10. The void transport composition of any of the preceding claims, wherein said ionic liquid comprises an anion selected from halides, such as chloride, bromide, fluoride, iodide and from (CFsSO ^ N ' , (CFaCO ^ N ' , BF 4. , PF e " , NO3-, CH3CO2, CF3SO3, (CF 3 S02) 2C -, (CF 3 C02) 2C-, and N (CN) 2 \
11. La composición del transporte de huecos de cualquiera de las reivindicaciones anteriores, que comprende de 0,1% hasta el 50% en peso de los líquidos iónicos y del 50% hasta 99,9% en peso del material orgánico de transporte de carga. 11. The void transport composition of any of the preceding claims, comprising from 0.1% to 50% by weight of the ionic liquids and from 50% to 99.9% by weight of the organic cargo transport material .
12. La composición del transporte de huecos de cualquiera de las reivindicaciones anteriores, en el que dicho material orgánico de transporte de carga se selecciona de spirofluorenos, tales como spiro-OMeTAD (2,2 ', TJ- tetraquis (N, N-di-p-metoxifenil amina) -9,9-spirobifluoreno), derivados de esta y otra spirofluorenos, carbazol y sus derivados, triaza-truxene y sus derivados, compuestos que comprenden el núcleo de tiofeno y sus derivados, trifenilamina y derivados de los mismos, acene y sus derivados, 2 ', T-b\s (4-metoxifenil) amino) espiro [ciclopenta [2,1-b: 3,4-b '] ditiofeno- 4,9-fluoreno y derivados de los mismos. 12. The void transport composition of any of the preceding claims, wherein said organic cargo transport material is selected from spirofluorenes, such as spiro-OMeTAD (2,2 ', TJ-tetrakis (N, N-di -p-methoxyphenyl amine) -9,9-spirobifluorene), derivatives of this and other spirofluorenes, carbazol and its derivatives, triaza-truxene and its derivatives, compounds comprising the thiophene core and its derivatives, triphenylamine and derivatives thereof , acene and its derivatives, 2 ', Tb \ s (4-methoxyphenyl) amino) spiro [cyclopenta [2,1-b: 3,4-b'] dithiophene-4,9-fluorene and derivatives thereof.
13. Un dispositivo optoelectrónico y/o electroquímico, que comprende la composición del transporte de huecos de cualquiera de las reivindicaciones 1-12. 13. An optoelectronic and / or electrochemical device, comprising the void transport composition of any of claims 1-12.
14. El dispositivo optoelectrónico y/o electroquímico de la reivindicación 13, que comprende un capa de transporte de huecos, la capa de transporte de huecos que comprende la composición del transporte de huecos de cualquiera de reivindicaciones 1-13. 14. The optoelectronic and / or electrochemical device of claim 13, comprising a void transport layer, the void transport layer comprising the void transport composition of any of claims 1-13.
15. El dispositivo optoelectrónico y/o electroquímico de la reivindicación 13 o 14, el cual es una celda solar de colorante o captadora de luz sensibilizada. 15. The optoelectronic and / or electrochemical device of claim 13 or 14, which is a solar dye cell or sensitized light collector.
16. El dispositivo optoelectrónico y/o electroquímico de cualquiera de las reivindicaciones 13 a 15, el cual es una célula solar basada en perovskita orgánica- inorgánica u óxidos de perovskita. 16. The optoelectronic and / or electrochemical device of any of claims 13 to 15, which is a solar cell based on organic-inorganic perovskite or perovskite oxides.
17. El uso de la composición del transporte de huecos de cualquiera de las reivindicaciones 1 a 12 como un dopante y/o aditivo a una célula solar de perovskita. 17. The use of the void transport composition of any of claims 1 to 12 as a dopant and / or additive to a perovskite solar cell.
PCT/ES2017/070168 2016-04-11 2017-03-22 Organic hole transport materials containing an ionic liquid WO2017178674A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201630446 2016-04-11
ES201630446A ES2641860B1 (en) 2016-04-11 2016-04-11 Organic materials for transporting holes containing an ionic liquid

Publications (1)

Publication Number Publication Date
WO2017178674A1 true WO2017178674A1 (en) 2017-10-19

Family

ID=60041466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2017/070168 WO2017178674A1 (en) 2016-04-11 2017-03-22 Organic hole transport materials containing an ionic liquid

Country Status (2)

Country Link
ES (1) ES2641860B1 (en)
WO (1) WO2017178674A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108039413A (en) * 2017-12-23 2018-05-15 苏州佳亿达电器有限公司 A kind of hole mobile material for perovskite thin film solar cell
CN108110143A (en) * 2017-12-23 2018-06-01 苏州佳亿达电器有限公司 A kind of hole mobile material for polymer solar battery
CN108559014A (en) * 2018-03-29 2018-09-21 南方科技大学 Organic polymer, hole mobile material, solar cell and light-emitting electronic devices comprising it
CN109309161A (en) * 2018-09-13 2019-02-05 华南师范大学 A kind of application of ionic liquid, solar cell device and preparation method thereof
CN109817810A (en) * 2019-01-22 2019-05-28 西北工业大学深圳研究院 A kind of perovskite solar battery and preparation method adulterating triazolium ion liquid
WO2020109787A1 (en) * 2018-11-28 2020-06-04 Oxford University Innovation Limited Long-term stable optoelectronic device
CN111349035A (en) * 2020-03-06 2020-06-30 江西理工大学 Organic-inorganic hybrid perovskite and preparation method and application thereof
US11034669B2 (en) 2018-11-30 2021-06-15 Nuvation Bio Inc. Pyrrole and pyrazole compounds and methods of use thereof
EP3727370A4 (en) * 2017-12-22 2021-11-17 Energy Everywhere, Inc. Fused and cross-linkable ionic hole transport materials for perovskite solar cells

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140000670A (en) * 2010-08-20 2014-01-03 로디아 오퍼레이션스 Films containing electrically conductive polymers
WO2014191767A1 (en) * 2013-05-30 2014-12-04 Isis Innovation Limited Organic semiconductor doping process

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140000670A (en) * 2010-08-20 2014-01-03 로디아 오퍼레이션스 Films containing electrically conductive polymers
WO2014191767A1 (en) * 2013-05-30 2014-12-04 Isis Innovation Limited Organic semiconductor doping process

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HONG ZHANG ET AL.: "A dual functional additive for the HTM layer in perovskite solar cells", CHEMICAL COMMUNICATIONS, vol. 50, no. 39, 1 January 2014 (2014-01-01), pages 5020, XP055134462, ISSN: 1359-7345 *
ZHAO, Y. ET AL.: "Application of Ionic Liquids in Solar Cells and Batteries: A Review", CURRENT ORGANIC CHEMISTRY, vol. 19, no. 6, 2015, pages 556 - 566 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3727370A4 (en) * 2017-12-22 2021-11-17 Energy Everywhere, Inc. Fused and cross-linkable ionic hole transport materials for perovskite solar cells
CN108110143A (en) * 2017-12-23 2018-06-01 苏州佳亿达电器有限公司 A kind of hole mobile material for polymer solar battery
CN108039413A (en) * 2017-12-23 2018-05-15 苏州佳亿达电器有限公司 A kind of hole mobile material for perovskite thin film solar cell
CN108110143B (en) * 2017-12-23 2021-05-14 苏州佳亿达电器有限公司 Hole transport material for polymer solar cell
CN108039413B (en) * 2017-12-23 2021-03-26 山西绿普光电新材料科技有限公司 Hole transport material for perovskite thin-film solar cell
CN108559014B (en) * 2018-03-29 2020-09-08 南方科技大学 Organic polymer, hole transport material comprising same, solar cell, and light-emitting electronic device
CN108559014A (en) * 2018-03-29 2018-09-21 南方科技大学 Organic polymer, hole mobile material, solar cell and light-emitting electronic devices comprising it
CN109309161A (en) * 2018-09-13 2019-02-05 华南师范大学 A kind of application of ionic liquid, solar cell device and preparation method thereof
WO2020109787A1 (en) * 2018-11-28 2020-06-04 Oxford University Innovation Limited Long-term stable optoelectronic device
CN113272986A (en) * 2018-11-28 2021-08-17 牛津大学科技创新有限公司 Long-term stable optoelectronic device
US11034669B2 (en) 2018-11-30 2021-06-15 Nuvation Bio Inc. Pyrrole and pyrazole compounds and methods of use thereof
CN109817810B (en) * 2019-01-22 2020-09-22 西北工业大学深圳研究院 Triazole ionic liquid doped perovskite solar cell and preparation method thereof
CN109817810A (en) * 2019-01-22 2019-05-28 西北工业大学深圳研究院 A kind of perovskite solar battery and preparation method adulterating triazolium ion liquid
CN111349035A (en) * 2020-03-06 2020-06-30 江西理工大学 Organic-inorganic hybrid perovskite and preparation method and application thereof
CN111349035B (en) * 2020-03-06 2021-09-03 江西理工大学 Organic-inorganic hybrid perovskite and preparation method and application thereof

Also Published As

Publication number Publication date
ES2641860A1 (en) 2017-11-14
ES2641860B1 (en) 2018-09-11

Similar Documents

Publication Publication Date Title
WO2017178674A1 (en) Organic hole transport materials containing an ionic liquid
Zhang et al. Additive engineering for efficient and stable perovskite solar cells
Park et al. A [2, 2] paracyclophane triarylamine-based hole-transporting material for high performance perovskite solar cells
Zhang et al. 4-tert-Butylpyridine free hole transport materials for efficient perovskite solar cells: a new strategy to enhance the environmental and thermal stability
Wang et al. Tuning the intermolecular interaction of A 2-A 1-DA 1-A 2 type non-fullerene acceptors by substituent engineering for organic solar cells with ultrahigh V oc of~ 1.2 V
Calió et al. Hole‐transport materials for perovskite solar cells
Zhou et al. Organic/inorganic hybrid p-type semiconductor doping affords hole transporting layer free thin-film perovskite solar cells with high stability
Wu et al. Acetate salts as nonhalogen additives to improve perovskite film morphology for high-efficiency solar cells
US10332688B2 (en) Methods for making perovskite solar cells having improved hole-transport layers
US11920042B2 (en) Bilateral amines for defect passivation and surface protection in perovskite solar cells
Wang et al. Defect passivation by amide-based hole-transporting interfacial layer enhanced perovskite grain growth for efficient p–i–n perovskite solar cells
Heo et al. Development of dopant-free donor–acceptor-type hole transporting material for highly efficient and stable perovskite solar cells
EP3427290A1 (en) A/m/x material production process with alkylamine
Mabrouk et al. Increased efficiency for perovskite photovoltaics via doping the PbI2 layer
EP3385269B1 (en) Organic-inorganic hybrid perovskite, method for preparing same, and solar cell comprising same
KR20180137431A (en) Perovskite Solar Cell with Wide Band-Gap and Fabrication Method Thereof
Sharma et al. Side-chain engineering of diketopyrrolopyrrole-based hole-transport materials to realize high-efficiency perovskite solar cells
Chen et al. A perylenediimide dimer containing an asymmetric π-bridge and its fused derivative for fullerene-free organic solar cells
ES2575511B1 (en) New compound and its use as hollow transport material
Yang et al. Dual functional doping of KmnO4 in Spiro-OMeTAD for highly effective planar perovskite solar cells
KR102472294B1 (en) Inorganic-organic Perovskite Compound Having Improved Stability
Sathiyan et al. Impact of fluorine substitution in organic functional materials for perovskite solar cell
Chao et al. Enhanced photovoltaic performance by synergistic effect of chlorination and selenophene π-bridge
Bae et al. Controlling the Morphology of Organic–Inorganic Hybrid Perovskites through Dual Additive-Mediated Crystallization for Solar Cell Applications
Lin et al. Molecularly engineered cyclopenta [2, 1-b; 3, 4-b′] dithiophene-based hole-transporting materials for high-performance perovskite solar cells with efficiency over 19%

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17781972

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17781972

Country of ref document: EP

Kind code of ref document: A1