WO2017178666A1 - Autonomous set of devices and method for detecting and identifying plant species in an agricultural crop for the selective application of agrochemicals - Google Patents

Autonomous set of devices and method for detecting and identifying plant species in an agricultural crop for the selective application of agrochemicals Download PDF

Info

Publication number
WO2017178666A1
WO2017178666A1 PCT/ES2016/070655 ES2016070655W WO2017178666A1 WO 2017178666 A1 WO2017178666 A1 WO 2017178666A1 ES 2016070655 W ES2016070655 W ES 2016070655W WO 2017178666 A1 WO2017178666 A1 WO 2017178666A1
Authority
WO
WIPO (PCT)
Prior art keywords
plant species
detection
identification
crop
agricultural crop
Prior art date
Application number
PCT/ES2016/070655
Other languages
Spanish (es)
French (fr)
Inventor
Diego Hernan Perez Roca
Original Assignee
Diego Hernan Perez Roca
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diego Hernan Perez Roca filed Critical Diego Hernan Perez Roca
Publication of WO2017178666A1 publication Critical patent/WO2017178666A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01CPLANTING; SOWING; FERTILISING
    • A01C21/00Methods of fertilising, sowing or planting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features

Definitions

  • the present invention relates to Application technologies in the agro industrial field. Particularly, it is a set of devices autonomous for the detection and identification of species vegetables in an agricultural crop for the application of Agrochemicals selectively.
  • the set consists of multiple cameras that must be arranged on the wing or boom arm of for example a machine sprayer, a detection device and plant species identification, a circuit electronic responsible for managing the opening and closing of the agrochemical product sprinkler peaks, and a Ultrasound sensor for each chamber in the set.
  • the device processing which is able to detect, segment and identify the different species for sure vegetables found in the image scene processed.
  • the device sends a signal to the electronic circuit which is responsible for the management of opening and closing of different solenoid valves of the sprinkler peaks of agrochemical product to open during a period of predetermined time a specific peak, falling from this way a defined dose of agrochemical product over the desired plant.
  • the processing device is able to diagnose the agrochemical to use based on a table of correspondence comprising the different species vegetables, what is your specific agrochemical for treatment and the recommended dose to use.
  • Artificial vision is a subfield of the artificial intelligence whose purpose is to program a computer to "understand" the characteristics of an image.
  • the typical objectives of artificial vision include: detection, segmentation, location and recognition of certain objects in images; evaluation of the results, such as segmentation, registration; registration of different images of the same scene or object, that is to make agree same object in different images; tracking a object in a sequence of images; mapping a scene to generate a three-dimensional model of it, what that could be used by a robot to navigate the scene; estimation of the three-dimensional positions of humans; and search for digital images by content.
  • Continuous signal images are reproduced by analog electronic devices that record image data accurately using several methods, such as a sequence of fluctuations of an electrical signal or changes in the chemical nature of an emulsion of a film, which vary continuously in different aspects of the image.
  • a continuous signal or an analog image must be convert first to an understandable digital format to the computer. This process applies to all images regardless of origin, complexity and if they are black and white or grayscale, or all color.
  • a digital image is composed of a matrix rectangular or square of pixels representing a series of intensity values ordered in a system of coordinates in a plane (x, y).
  • V1 Primary visual
  • This type network is a variation of a multilayer perceptron, but their operation makes them much more effective for artificial vision tasks, especially in the Image classification Per perceptron must understand an artificial neuron and basic unit of inference in the form of linear discriminator, this is a algorithm capable of generating a criterion to select a subgroup from one more component group big.
  • multithreading allows you to execute efficiently multiple threads at the same time on the same GPU, managing to process several algorithms in the form concurrent, and in this way take full potential of the processor and in a shorter space of time, being able to as needed share the same logical resources and / or system physicists.
  • the convolutional neural networks consist in multiple layers with different purposes. To the principle is the extraction phase of characteristics, composed of convolutional neurons and of sampling reduction. At the end of the network you they find simple perceptron neurons to make the final classification on features extracted.
  • the feature extraction phase is resembles the stimulating process in the cells of the visual cortex This phase consists of alternate layers of convolutional neurons and reduction neurons of sampling. As the data progresses along this phase, its dimensionality is reduced, being the neurons in distant layers much less sensitive to disturbances in the input data, but at the same time being these activated by characteristics every more and more complex
  • the simple neurons of a perceptron are replaced by matrix processors that perform an operation about the 2D image data that passes through them, in place of a single numerical value
  • the convolution operator has the effect of filter the input image with a kernel previously trained. This transforms the data in such a way that certain characteristics, determined by the shape of the core, become more dominant in the output image having these a higher numerical value assigned to the pixels that represent them.
  • These cores have specific image processing skills, such as edge detection that can be perform with cores that highlight a gradient in a particular address.
  • edge detection that can be perform with cores that highlight a gradient in a particular address.
  • the nuclei that they are trained by a convolutional neural network they are generally more complex to be able to extract other more abstract and non-trivial features.
  • Neural networks have some tolerance to small disturbances in the data of entry. For example, if two almost identical images differentiated only by a transfer of some pixels laterally are analyzed with a neural network, The result should be essentially the same. This is gets, in part, given the reduction in sampling that It occurs within a convolutional neural network. To the reduce resolution, same features will correspond to a greater activation field in the input image.
  • neural networks convolutional used a subsampling process to carry out this operation.
  • other operations such as by max-pooling example, they are much more effective in summarizing characteristics about a region.
  • this type of operation is similar to how the visual cortex can summarize information internally.
  • the max-pooling operation finds the value maximum between a sample window and pass this value as a summary of characteristics about that area. How result, the size of the data is reduced by a factor equal to the size of the sample window on the which one is operated
  • the data After one or more extraction phases of characteristics, the data finally reaches the phase of classification. By then, the data has been debugged up to a series of unique features to the input image, and it is now the work of the latter phase to classify these characteristics towards a label or other, depending on training objectives.
  • neural networks convolutional are being used for the Image recognition and classification.
  • recognition process using a classifier based on a convolutional neural network a image to the network and after several repetitions of convolution operations in a maximum space of sampling and complete connection, is extracted as a result of recognition an accurate classification of the image and a maximum level of security of the result.
  • Object tracking in English object tracking is a process that allows you to estimate over time the location of one or more mobile objects using the use of a camera
  • the improvements achieved in form accelerated in the quality and resolution of the sensors image, together with the impressive increase of The computing power achieved in the last decade has favored the creation of new algorithms and applications by tracking objects.
  • Object tracking can be a process slow due to the large amount of data contained in a video, which can increase its complexity in the face of possible need to use recognition techniques of objects to track.
  • Video cameras capture information on objects of interest in the form of a set of pixels
  • an object follower values the location of this object in time.
  • the relationship between the object and projection of its image is very complex and it may depend on more factors than just the object position, which implies that the tracking of objects is a difficult goal to achieve.
  • the main challenges to have in account in the design of an object follower are related to the similarity of aspect between the object of interest and other objects in the scene, as well as the variation of appearance of the object itself. Since the appearance of both other objects and the background can be similar to the object of interest, this may Interfere with your observation. In that case, the features extracted from those unwanted areas it can be difficult to differentiate from what is expected that the object of interest generates. This phenomenon is known. with the name of disorder ("clutter").
  • an object In a tracking scenario, an object is you can define as anything of interest for later analysis.
  • the objects can be represent through their forms and appearances, generally: points, primitive geometric shapes, object silhouette and contour, articulated models of shape, skeletal models.
  • the most desired visual feature is the uniqueness because objects can be distinguished easily in the space of features.
  • the details of the most common features are the following: color, margins, optical flow, texture.
  • Each tracking method requires an object detection mechanism, either in each frame or when the first object appears in the video.
  • a common method for object detection is the use of single-frame information.
  • some object detection methods make use of the temporal information calculated from a sequence of images to reduce the number of false detections. This temporary information is generally calculated using the “frame differencing” technique, which shows the changing regions in consecutive sections. Once the regions of the object in the image are taken into account, it is then the task of the follower to perform the object correspondence from one frame to another to generate the tracking.
  • the most popular methods in the context of object tracking are: point detectors, background subtraction, segmentation.
  • Point detectors are used to find points of interest in images that have an expressive texture in their respective locations. Points of interest have been used for a long time. time in the context of the movement and in the problems of follow up. A desirable feature in terms of the points of interest is its invariance in the changes of illumination and in the point of view of the camera.
  • Object detection can be achieved by building a representation of the scene called background model and then finding the model deviations for each incoming frame. Any significant change in a region of the background model image represents an object in movement. The pixels that make up the regions in change process are marked for later processing. In general, a component algorithm connected is applied to get connected regions that correspond to the objects. This process is known. as background subtraction.
  • segmentation algorithms of the image is to divide the image into regions perceptually similar.
  • Each algorithm of segmentation covers two problems, the criteria for a good partition and the method to get the efficient partition.
  • 2D motion models are simple, But less realistic. As a consequence, the systems of 3D segmentation are the most used in the practice. Within three-dimensional methods, They can distinguish two different algorithms: structure from the SFM movement (acronym for English structure from motion) and parametric algorithms.
  • the SFM generally handles 3D scenes that contain relevant depth information while that in parametric methods this is not assumed depth. Another important difference between the two algorithms is that in the SFM a movement is assumed rigid while in parametric algorithms only stiffness of movement is assumed in parts of the scene.
  • Object tracking is a very task important within the field of video processing. He main objective of the monitoring techniques of objects is to generate the trajectory of an object through of time, positioning it within the image. We can classify techniques according to three large groups: point tracking, tracking core (kernel) and silhouettes tracking.
  • Point tracking techniques the objects detected in consecutive images are represented each by one or several points and the association of these is based on the state of the object in the previous image, which may include position and movement.
  • An external mechanism is required that Detect the objects of each frame. This technique may present problems in scenarios where you object presents occlusions and in the entrances and exits of these.
  • Point tracking techniques can be Also classify into two broad categories: deterministic and statistical.
  • Core tracking techniques perform a calculation of the movement of the object, which is represented by an initial region of an image to the next
  • the movement of the object is expressed in general in the form of parametric movement (translation, rotation, related %) or through the flow field Calculated in the following frames.
  • parametric movement translation, rotation, related
  • Silhouettes tracking techniques are performed by valuing the region of the object in each image using the information it contains.
  • This information can be in the form of density of look or shape models that are generally presented with margin maps. It has two methods: correspondence of form and monitoring of contour.
  • Tracking objects of interest on video It is the basis of many applications ranging from video production to remote surveillance, and from Robotics to interactive games.
  • the Object followers are used to improve the understanding of certain video data sets of medical and safety applications; to increase the productivity by reducing the amount of labor that it is necessary to complete a task and to give rise to Natural interaction with machines.
  • optical flow in English "optical flow" is the pattern of the apparent movement of objects, surfaces and edges in a scene caused by the relative movement between an observer's eye or a Camera and scene.
  • a second definition then more refined define the term "affordances" as the possibilities of action that a user is aware of being able to perform.
  • Applications of optical flow such as motion detection, object segmentation, the time until the collision and the calculation approach of expansions, motion coding compensated and Stereoscopic disparity measurement use this movement of the surfaces and edges of the objects.
  • US Patent 6038337 A which refers to a hybrid system of neural networks for the object recognition that exhibits local sampling of image, a neural network of self-organized maps, and a hybrid convolutional neural network.
  • the car map organization provides quantification of samples image in a topological space where entries that are close in the original space are also in the exit space, then providing the dimensionality reduction and change invariance minors in the image sample, and the neural network convolutional hybrid provides partial invariance to the translation, rotation, scale, and deformation.
  • the net convolutional hybrid extracts features successively larger in a set of layers hierarchical Alternative embodiments are described. using the Karhunen-Lo + E, gra e + EE that transforms instead of the own organization map, and a multilayer perceptron instead of the convolutional network.
  • an autonomous vehicle carries the device chemical application and is, in part, controlled by the processing requirements of device vision component responsible for detecting and assigning lists of objectives to chemical ejectors that target these target points while the device evolves to Through the countryside or a natural environment.
  • the device request US20150245565A1 patent is only able to detect the presence of a plant, but is unable to identify What plant species is it? Can only distinguish two characteristics that are absolutely different, how is the soil of plants, and determine only with a certain probability whether it is a crop or not.
  • this system is unable to distinguish what plant species is it to apply the specific herbicide and thus eliminate said species.
  • it is not a system that works in all kinds of terrain without having a certain pattern to maintain its trajectory, it cannot identify the kind of species in question, you can't make a intelligent application of the necessary agrochemical with a great cost savings in agrochemicals and efficiency unbeatable in weed management.
  • the purpose of this invention is an autonomous set of devices for the detection and identification of plant species in an agricultural crop for the application of agrochemicals selectively, said set comprises: a chemical application device that comprises at least one container container of agrochemicals linked in fluid communication with a plurality of sprinkler peaks through a valve, a plurality of cameras that are arranged on the autonomous vehicle and focused on cultivation, where each camera has an associated ultrasound sensor for the height measurement to the crop in real time, and in where each camera is tilted forward at 45 degrees from normal; a device of detection and identification of plant species connected to the cameras to receive information from video of them, an electronic circuit in charge to manage the opening and closing of the valves of the sprinkler peaks of agrochemicals connected to detection device that manages through said circuit the opening and closing of the valves of the sprinkler peaks, and where, the set of devices is mounted on a vehicle of transport.
  • a chemical application device that comprises at least one container container of agrochemicals linked in fluid communication with a plurality of sprinkler peaks
  • the transport vehicle is a self-propelled vehicle or a tow vehicle.
  • the vehicle self-propelled is a vehicle for fumigation with arms sides arranged perpendicularly to it (mosquito).
  • the device Detection and identification consists of a processor.
  • the processor comprises a tool based on computer software developed in C ++ language, a vision framework artificial, and a neural network framework convolutional
  • step a) of the method allows distinguish weed cultivation.
  • step a) of the method allows to identify plant species to Determine the agrochemical to apply.
  • step c) of the method the dose of agrochemical is sprayed by opening a solenoid valve.
  • the species Vegetables correspond to the crop and weeds.
  • the agrochemical is a herbicide, a foliar fertilizer, an insecticide, a fungicide, or a protective compound.
  • the step b) also allows to determine the state of the crop.
  • step c) of the method comprises selecting a specific herbicide from a set of herbicides for each weed identified in step a) regarding the crop.
  • step c) of the method comprises selecting a specific foliar fertilizer of a set of foliar fertilizers for cultivation identified in step a) according to their status.
  • step c) of the method comprises selecting a specific insecticide from a set of insecticides for the crop identified in step a) according to its state of deterioration.
  • step c) of the method comprises selecting a specific fungicide from a set of fungicides for the identified crop in step a) according to its state of deterioration.
  • step c) of the method comprises select a specific protective compound from a set of protective compounds for cultivation identified in step a) according to their status.
  • the method for the detection and identification of plant species in an agricultural crop comprises the steps of: a) obtaining a Real Time Video Stream from a plurality of cameras positioned along the wings of the autonomous set of devices for the detection and identification of plant species in an agricultural crop for the application of agrochemicals in a selective way; b) process each of the frames obtained; c) convert the frame to a numerical matrix with the representation of RGB (Red-Green-Blue English) colors of each pixel in the image; d) trim the matrix to select the area of the frame to be processed; e) assign an area of the image to the corresponding sprinklers, so that if weeds are detected in that area, the opening order is sent to the corresponding sprinkler; f) apply 4 filters to obtain a mask of the predominant colors of the plant species to be identified; g) identify the contours of the image on the color mask by saving the information of the position of each one; h) estimate the travel speed with the positions of the contours found in the current frame and the positions of those same
  • step f) of the method previous separates strange elements like earth, dry vegetable residue and species stones vegetables, where: a first filter transforms the YCbCr color format matrix; a second filter subtracts two channels in the RGB format depending on the color to filter; a third filter is a logical AND operation (bit by bit) between the filter results previous first and second; and a fourth filter applies to the previous result a blur (Gaussian blur), converting the image to black and white and removing the noise.
  • a first filter transforms the YCbCr color format matrix
  • a second filter subtracts two channels in the RGB format depending on the color to filter
  • a third filter is a logical AND operation (bit by bit) between the filter results previous first and second
  • a fourth filter applies to the previous result a blur (Gaussian blur), converting the image to black and white and removing the noise.
  • FIG.1a schematically represents the way the data goes through different types of tests, in order to make a decision in A three layer network.
  • FIG. 1b schematically represents the way in which the input layers of the network contain neurons that encode pixel values from entry.
  • FIG.1c schematically represents a possible architecture with rectangles denoting the subnets in order to show how the convolutional neural networks.
  • FIG. 2a schematically represents a rapid detection to classify plants that allows distinguish weed cultivation.
  • FIG.2b schematically represents the area and perimeter analysis performed by the system a Once weeds are detected.
  • FIG.2c schematically represents the spray with precision and accuracy that performs the weed system once the species is detected Vegetable and its size.
  • FIG.3 represents a frame of a Flow Real Time Video obtained from a camera.
  • FIG. 4 represents a table of equivalences between number of seals (or shutters) per second and vehicle speed in movement that carries the cameras.
  • FIG. 5 represents the frame of FIG. 3 converted to a numeric matrix with representation of RGB (Red-Green-Blue English) colors of each Image pixel
  • FIG. 6 represents an ideal size of central horizontal strip of the image to be process from the frame of [FIG.3].
  • FIG. 7a represents a transformation that make a first matrix filter in color format YCbCr.
  • FIG.7b represents a transformation that makes a second filter by subtracting two channels in the RGB format depending on the color to filter.
  • FIG.7c represents a transformation AND logic (bit by bit) between the results of the two previous filters as shown in [FIG.7a] and [FIG.7b] that performs a third filter.
  • FIG.7d1 represents a transformation of a fourth filter that applies to the previous result of the [FIG. 7c] a Gaussian blur.
  • FIG.7d2 represents the conversion of the Image from [FIG.7d1] to black and white.
  • FIG.7d3 represents the elimination of noise of [FIG.7d2] corresponding to the points scattered whites.
  • FIG. 8 represents the identification of Contours of the image on the color mask.
  • FIG. 9 represents the image cropped in small squares of approximately the same size containing the contours of [FIG. 8].
  • FIG. 10 represents one of the squares cropped from [FIG. 9] with image size changed to a preferred size of 256 x 256 pixels.
  • FIG. 11a represents another of the squares cut out of [FIG. 9] corresponding to a weed present in cultivation.
  • FIG. 11b represents a sequence where the square of [FIG. 11a] of a 256 x 256 image pixels is sent to the first layer or input layer of the previously trained convolutional neural network for analysis and categorization until you reach a last layer
  • FIG. 12 represents a result in value average success of each of the categories obtained from the last layer or network exit layer convolutional neuronal according to the sequence of the [FIG. 11a].
  • FIG. 13 is a complete representation of the processed frame of the main video stream according to the sequence of [FIG. 11a], where the unwanted plant species identified framed in red to apply a necessary agrochemical in each One of the weeds.
  • FIG. 14 represents an AlexNet model that It consists of 5 convolutional layers according to the architecture chosen for the training of the Caffe network.
  • FIG. 15 schematically represents a preferred embodiment of the autonomous assembly of devices for the detection and identification of plant species according to the present invention, showing how the boards with a microcontroller and development environment IDE (acronym for "Integrated Drive Electronics") Integrated Control Electronics) with inputs and outputs analog and digital chicken to the CPU (acronym for English “Central Processing Unit”, Processing Unit Central) through a USB port (acronym for English “Universal Serial Bus”, Universal Serial Bus).
  • IDE Integrated Drive Electronics
  • FIG. 16 represents a detail of the end of a side arm of a spraying unit where you can observe the cameras tilted towards forward at an angle of approximately 45 degrees with respect to the lower vertical axis and a plurality of associated sprinklers.
  • FIG.17 schematically represents a camera tilted forward at an angle ⁇ of approximately 45 degrees from the vertical axis bottom that is installed on a side arm of a spray unit showing image and size approximate of the scene to process with that decline.
  • the present invention is constituted mainly by an autonomous set of devices for the detection and identification of plant species in an agricultural crop for the application of Agrochemicals selectively.
  • the set consists of multiple cameras that must be arranged on the wing or arm of the boom of, for example, a machine sprayer, a detection device and plant species identification, a circuit electronic responsible for managing the opening and closing of the agrochemical product sprinkler peaks, and a Ultrasound sensor for each chamber in the set.
  • an autonomous set of devices for the detection and identification of plant species in an agricultural crop for the application of agrochemicals selectively said set comprises: a product application device chemicals comprising at least one container container of agrochemicals linked in fluid communication with a plurality of sprinkler peaks through a valve, a plurality of cameras that are arranged on the autonomous vehicle and focused on cultivation, where each camera has an associated ultrasound sensor for the height measurement to the crop in real time, and in where each camera is tilted forward at 45 degrees from normal; a device of detection and identification of plant species connected to the cameras to receive information from video of them, an electronic circuit in charge to manage the opening and closing of the valves of the sprinkler peaks of agrochemicals connected to detection device that manages through said circuit the opening and closing of the valves of the sprinkler peaks, and where, the set of devices is mounted on a vehicle of transport.
  • FIG. 15], [FIG. 16] and [FIG. 17] show diagrams and diagrams of the autonomous set of devices for the detection and identification of plant species in an agricultural crop for application of agrochemicals selectively according to a preferred form of the present invention.
  • the transport vehicle is a self-propelled vehicle or a tow vehicle.
  • the self-propelled vehicle is a fumigation vehicle with side arms arranged perpendicular to it (mosquito).
  • the detection and identification device consists of a processor that comprises a tool based on computer software developed in language C ++, and the use of the artificial vision framework OpenCV, and the neural network framework convolutional “Caffe” by Berkeley Vision and Learning Center By using this tool you can achieve recognition of different species Vegetables with 96% effectiveness.
  • the network is trained to perform a certain type of processing Once reached a adequate training level, you go to the phase of operation, where the network is used to carry out the task for which she was trained.
  • the Convolutionary Neural Network a set of data (Data Set) of a minimum of 50,000 photographs of the different plant species that you want to identify during training, taking into account the specific region of the planet and the species predominant in that place. These photographs are loaded through different folders or directories that represent the category to which each one belongs of them. The different photographs are supplied for example in JPEG format and at a minimum size of 80 x 80 pixels, preferably in a recommended size 256 x 256 pixels, which are included for each species different situations of the seedling namely loose leaves, partial leaves, whole plant, flowers, plant in context, etc.
  • the architecture chosen for Caffe network training is the AlexNet model consisting of 5 convolutional layers [See FIG. 14].
  • the network Once the learning or training phase is finished, the network generates a “ deploy.prototxt ” file, which is basically the learning model, and in this way it can already be used to perform the task for which it was trained.
  • a “ deploy.prototxt ” file which is basically the learning model, and in this way it can already be used to perform the task for which it was trained.
  • One of the main advantages of this model is that the network learns the relationship between the data, acquiring the ability to generalize concepts. In this way, a convolutional neural network can operate with information that was not presented during the training phase.
  • the network based classifier convolved neurals comprises: a plurality of feature mapping layers, at least one map of characteristics in at least one of a plurality of function mapping layers that are divided into a plurality of regions; and a plurality of templates convolutional corresponding to the plurality of regions, respectively, each of the templates convolutional is used to obtain a value response of a neuron in the region correspondent.
  • FIG.1a is a example that illustrates how data passes through different types of tests, in order to take a decision in a three layer network.
  • FIG.1b is an example that illustrates how network input layers contain neurons that encode the values of the input pixels.
  • FIG.1c is an example that illustrates a possible architecture, with rectangles denoting the subnets This is not meant to be a realistic approach to solve the problem of detection and identification of plant species, it is only by way of example for understand how neural networks work convolutional
  • the set of devices allows to determine the state of the crop, and being the agrochemical a herbicide, a foliar fertilizer, a insecticide, a fungicide, or a protective compound, is you can apply the appropriate agrochemical according to each circumstance.
  • the method allows you to select a specific herbicide of a set of herbicides for each weed identified with respect to the crop; or a specific foliar fertilizer of a set of foliar fertilizers for the crop identified according to its state; or a specific insecticide of a set of insecticides for the crop identified according to its state of deterioration; or a specific fungicide of a set of fungicides for cultivation identified according to its state of deterioration; and / or a specific protective compound of a set of protective compounds for the identified crop according to your condition
  • the process flow step by step in the process of detection and identification of the plant varieties of interest is as follows: 1) A Real Time Video Stream [FIG.3] is obtained from one or several cameras positioned along the wings or arms of, for example, a spraying machine. This stage is done at 60 frames per second on shutters per second [FIG. 4]. The number of shutters (or shutters) per second depends on the speed of the moving vehicle. 2) Each of the frames obtained is processed. 3) The frame is converted to a numerical matrix with the representation of RGB colors (Red-Green-Blue English) of each pixel in the image [FIG. 5]. Each pixel has blue, green and red components.
  • RGB colors Red-Green-Blue English
  • Each of these components has a range of 0 to 255, which gives a total of 2,563 different possible colors.
  • the matrix is cut to select the area of the frame to be processed [FIG. 6].
  • a horizontal strip size of the image to be processed is determined. This area to be processed is taken according to the subsequent ability to open the sprinkler for the application of the agrochemical exactly on the specific area.
  • the area to be processed is exactly the middle strip, since it maintains an optimal ratio of distance to the camera, low image distortion and time that will pass between the processing and subsequent application of the agrochemical, and success in the shot on the plant .
  • An area of the image is assigned to the corresponding sprinklers, so if weeds are detected in that area, the opening order is sent to the corresponding sprinkler.
  • the first filter transforms the matrix to YCbCr color format and makes a logical operation between the channels, depending on the color to be filtered [FIG. 7a].
  • the second filter subtracts two channels in the RGB format, depending on the color to be filtered [FIG.7b].
  • the third filter is a logical AND (bitwise) operation between the results of the two previous filters [FIG.7c].
  • the fourth filter applies a blur [FIG.7d1] or Gaussian blur to the previous result, the image is converted to black and white [FIG.7d2], and the noise [FIG.7d3] which are the points is eliminated scattered whites. 7)
  • the contours of the image on the color mask are identified [FIG. 8] and the position information of each one is saved. 8)
  • An estimated calculation of the velocity is made with the positions of the contours found in the current frame and their positions in a previous frame. A pixel speed per frame is obtained and a pixel-meter ratio and the frame-second ratio are used to make the speed passage to meters per second.
  • FIG. 11 The 256 x 256 pixel image squares [FIG. 11a] are sent to the first layer or input layer of the convolutional neural network previously trained for analysis and categorization [FIG. 11b]. 12) Each square is processed within the Neural Network, which can process several at a time. The processing is carried out in parallel and executed internally in the GPU and not on the CPU, to achieve great performance in arithmetic operations. Previously trained within the network, the picture is taken and is performed in parallel one pass (forward) and the result to the output layer of the neural network is sent. 13) The result of the last layer or output layer of the convolutional neural network is obtained.
  • the result of the output layer gives us an average value of success of each of the categories, the highest value being the category of plant species to which the image belongs [FIG. 12].
  • the categories of the neural network are the NO plant species, in which there are unknown plant species and / or elements not to be taken into account, earth, sky, etc. If the result is this category, it means that in the analysis of this picture box there is no category of known or pre-trained plant species. 14)
  • the agrochemical to be used is determined.
  • the system contains a table with the possible plant species to be identified and their relationship with the agrochemical to be used according to diagnosis, if applicable.
  • the device for the detection and identification of plant species already has a complete representation of the identified plant species and the agrochemical required to be applied in each of the plants that appear in the processed frame that was obtained from the main video stream [FIG. 13].
  • the mathematical calculation of the exact moment of activation of the electromechanical order is made, taking into account the speed of the spray vehicle and the distance from the chamber to the ground. Depending on the area of the processed frame, only the electromechanical valve corresponding to the specific field of action is activated.
  • valve corresponding to the specific agrochemical to be used is activated. It allows to administer multiple tanks of agrochemical product according to a specific need.
  • a field test of the whole was carried out Autonomous device for detection and identification of plant species in a crop agricultural for the application of agrochemicals in the form selective in the town of Las Rosas, province of Santa Fe, on a lot of 20 hectares planted with soy.
  • the herbicide selected to be applied was glyphosate (RoundUp) to approximately 1.4 liters per hectare on average.
  • mosquito Pulp, MAP II 3250 model
  • MAP II 3250 model An autonomous type sprayer was used mosquito (Pla, MAP II 3250 model) composed of a 3250 liter tank, where the side arms they included a line of pads mounted TeeJet brand sprayers, commanded with solenoid valves connected directly to the computer that controls dose application of herbicide.
  • the height of the peaks and sensors with respect of the floor was 1 meter.
  • the propulsion speed of the fumigator was approximately 16 km / h during The whole application.
  • a quantity of 12 cameras was used with sensors distributed evenly throughout the wing of the boom 28 meters long.
  • the batch chosen for the trial was cultivated with 4-week post-emergence soybeans and it had a low percentage of weeds and high concentration "staining", this is weed randomly distributed in patches.

Abstract

The invention relates to an autonomous set of devices for detecting and identifying wild and cultivated plant species on a farm, using software which, by obtaining a video in real time, can detect, isolate and identify different wild and cultivated plant species by using convolutional neural networks able to distinguish distinctive aspects of the morphology, taxonomy and philotaxy of the plants. By previously training the convolutional neural networks on the characteristics that distinguish one species from another, the system allows the particular identification of each species. By means of a system of video cameras mounted along a transport vehicle, and with the data being obtained in real time, the computer system can determine the agrochemical to be applied according to the plant identified and electronically or mechanically actuate the opening of the valve of a spray nozzle. In this way, the plant receives the exact dose and the specific agrochemical according to the necessary treatment.

Description

CONJUNTO AUTÓNOMO DE DISPOSITIVOS Y MÉTODO PARA LA DETECCIÓN E IDENTIFICACIÓN DE ESPECIES VEGETALES EN UN CULTIVO AGRÍCOLA PARA LA APLICACIÓN DE AGROQUÍMICOS EN FORMA SELECTIVAAUTONOMOUS DEVICE SET AND METHOD FOR             THE DETECTION AND IDENTIFICATION OF VEGETABLE SPECIES IN A             AGRICULTURAL CULTURE FOR THE APPLICATION OF AGROCHEMICALS IN A SELECTIVE FORM
La presente invención se relaciona con tecnologías de aplicación en el campo agro industrial. Particularmente, se trata de un conjunto de dispositivos autónomo para la detección e identificación de especies vegetales en un cultivo agrícola para la aplicación de agroquímicos en forma selectiva. El conjunto consta de múltiples cámaras que deben estar dispuestas sobre el ala o brazo del botalón de por ejemplo una máquina pulverizadora, un dispositivo de detección e identificación de especies vegetales, un circuito electrónico encargado de gestionar la apertura y cierre de los picos aspersores de producto agroquímico, y un sensor de ultrasonido por cada cámara del conjunto. The present invention relates to                 Application technologies in the agro industrial field.                 Particularly, it is a set of devices                 autonomous for the detection and identification of species                 vegetables in an agricultural crop for the application of                 Agrochemicals selectively. The set consists of                 multiple cameras that must be arranged on the                 wing or boom arm of for example a machine                 sprayer, a detection device and                 plant species identification, a circuit                 electronic responsible for managing the opening and closing                 of the agrochemical product sprinkler peaks, and a                 Ultrasound sensor for each chamber in the set.
Más particularmente, a través de la obtención de imágenes digitales provistas por el conjunto de cámaras y enviadas en forma automática al dispositivo de procesamiento el cual es capaz de detectar, segmentar e identificar a ciencia cierta las distintas especies vegetales que se encuentran en la escena de la imagen procesada. En caso de identificar una especie vegetal previamente designada como especie a eliminar o maleza, el dispositivo envía una señal al circuito electrónico que se encarga de la gestión de apertura y cierre de las distintas electroválvulas de los picos aspersores de producto agroquímico para que abra durante un período de tiempo predeterminado un pico específico, cayendo de esta manera una dosis definida de producto agroquímico sobre la planta deseada. Más particularmente aun, el dispositivo de procesamiento es capaz de diagnosticar el agroquímico a utilizar en base a una tabla de correspondencia que comprende las distintas especies vegetales, cuál es su agroquímico específico para tratamiento y la dosis recomendada a utilizar. More particularly, through obtaining                 of digital images provided by the set of                 cameras and automatically sent to the device                 processing which is able to detect, segment and                 identify the different species for sure                 vegetables found in the image scene                 processed. In case of identifying a plant species                 previously designated as a species to be removed or weeds,                 the device sends a signal to the electronic circuit                 which is responsible for the management of opening and closing of                 different solenoid valves of the sprinkler peaks of                 agrochemical product to open during a period of                 predetermined time a specific peak, falling from                 this way a defined dose of agrochemical product                 over the desired plant. More particularly, the                 processing device is able to diagnose the                 agrochemical to use based on a table of                 correspondence comprising the different species                 vegetables, what is your specific agrochemical for                 treatment and the recommended dose to use.
En la actualidad existen diversos avances tecnológicos que han permitido al sector agro industrial incorporar nuevas herramientas, técnicas y maquinarias capaces de incrementar su eficiencia y lograr mejores rendimientos. Esta incorporación y aplicación de tecnologías al sector agro industrial se pasó a definir como “Agricultura de Precisión”. Dentro de esta nueva definición están comprendidas diversas áreas como por ejemplo tecnología de geo posicionamiento satelital, software de gestión, software de electrónica y robótica, como para nombrar algunos. There are currently several advances                 technology that have allowed the agro industrial sector                 incorporate new tools, techniques and machinery                 able to increase their efficiency and achieve better                 yields This incorporation and application of                 technologies to the agro industrial sector was defined                 as "Precision Agriculture." Within this new                 definition encompasses various areas as per                 example satellite geo positioning technology,                 management software, electronics and robotics software,                 Like to name a few.
Cabe destacar, además, que existe un nuevo campo en la industria de la informática llamado visión artificial, visión técnica o también visión por computador (del inglés computer vision) desarrollado en los últimos 10 años que realmente comenzó a tener mayor trascendencia y dar sus frutos de eficiencia en este último tiempo. Todo ello, gracias a los avances, disponibilidad en el mercado y a precios accesibles de cámaras de video digital de alta definición, con gran cantidad de fotogramas logrados por segundo, junto a computadoras con procesadores (CPU) más veloces, la incorporación de coprocesadores dedicados únicamente al cálculo de la carga gráfica llamados tarjetas gráficas (GPU), permitiendo lograr una real eficiencia para la gestión y análisis de video en tiempo real. It should also be noted that there is a new                 field in the computer industry called vision                 artificial, technical vision or also vision by                 computer (computer vision) developed in                 the last 10 years that really started to get older                 transcendence and bear fruit of efficiency in this                 last time. All this, thanks to the advances,                 availability in the market and at affordable prices of                 high definition digital video cameras, with great                 number of frames achieved per second, together with                 computers with faster processors (CPUs), the                 incorporation of coprocessors dedicated solely to                 graphical load calculation called graphics cards                 (GPU), allowing real efficiency to be achieved for                 Real-time video management and analysis.
La visión artificial es un subcampo de la inteligencia artificial cuyo propósito es programar un computador para que "entienda" las características de una imagen. Artificial vision is a subfield of the                 artificial intelligence whose purpose is to program a                 computer to "understand" the characteristics of                 an image.
Los objetivos típicos de la visión artificial incluyen: detección, segmentación, localización y reconocimiento de ciertos objetos en imágenes; evaluación de los resultados, como por ejemplo segmentación, registro; registro de diferentes imágenes de una misma escena u objeto, es decir hacer concordar un mismo objeto en diversas imágenes; seguimiento de un objeto en una secuencia de imágenes; mapeo de una escena para generar un modelo tridimensional de la misma, lo que podría ser usado por un robot para navegar por la escena; estimación de las posturas tridimensionales de humanos; y búsqueda de imágenes digitales por su contenido. The typical objectives of artificial vision                 include: detection, segmentation, location and                 recognition of certain objects in images;                 evaluation of the results, such as                 segmentation, registration; registration of different images                 of the same scene or object, that is to make agree                 same object in different images; tracking a                 object in a sequence of images; mapping a scene                 to generate a three-dimensional model of it, what                 that could be used by a robot to navigate the                 scene; estimation of the three-dimensional positions of                 humans; and search for digital images by                 content.
Estos objetivos se consiguen por medio de reconocimiento de patrones, aprendizaje estadístico, geometría de proyección, procesamiento de imágenes, teoría de grafos y otras técnicas. These objectives are achieved through                 pattern recognition, statistical learning,                 projection geometry, image processing,                 graph theory and other techniques.
Las imágenes de señal continua se reproducen mediante dispositivos electrónicos analógicos que registran los datos de la imagen con precisión utilizando varios métodos, como una secuencia de fluctuaciones de una señal eléctrica o cambios en la naturaleza química de una emulsión de una película, que varían continuamente en los diferentes aspectos de la imagen. Para procesar o visualizar en el ordenador una señal continua o una imagen analógica se la debe convertir primero a un formato digital comprensible para el ordenador. Este proceso se aplica a todas las imágenes con independencia de origen, complejidad y si son en blanco y negro o escala de grises, o a todo color. Una imagen digital se compone de una matriz rectangular o cuadrada de píxeles que representan una serie de valores de intensidad ordenados en un sistema de coordenadas en un plano (x,y). Continuous signal images are reproduced                 by analog electronic devices that                 record image data accurately                 using several methods, such as a sequence of                 fluctuations of an electrical signal or changes in the                 chemical nature of an emulsion of a film, which                 vary continuously in different aspects of the                 image. To process or display on the computer a                 continuous signal or an analog image must be                 convert first to an understandable digital format to                 the computer. This process applies to all                 images regardless of origin, complexity and if                 they are black and white or grayscale, or all                 color. A digital image is composed of a matrix                 rectangular or square of pixels representing a                 series of intensity values ordered in a system                 of coordinates in a plane (x, y).
En el campo de la Visión Artificial recién se están dando los primeros pasos de aplicación en la agricultura. Existen varios proyectos de investigación en curso, realizados por entes gubernamentales y/o universidades, pero hasta el momento ninguno ha pasado la etapa de investigación y desarrollo en laboratorio, ni adecuación de prototipo en el campo de acción, por lo que hasta la fecha no existe disponibilidad comercial alguna para la adquisición de esta tecnología por parte del consumidor perteneciente al campo agro industrial. No obstante, cabe aclarar que la aparición de estos nuevos inventos a través de la utilización de visión artificial están más enfocados en lograr aplicaciones para dotar a robots metal mecánicos de sistemas de guiado visual a través del campo. In the field of Artificial Vision just                 they are taking the first steps of application in the                 farming. There are several research projects                 in progress, carried out by government entities and / or                 universities, but so far none has passed                 the research and development stage in the laboratory,                 or prototype adaptation in the field of action, so                 that to date there is no commercial availability                 any for the acquisition of this technology by                 of the consumer belonging to the agro industrial field.                 However, it should be clarified that the appearance of these                 new inventions through the use of vision                 artificial are more focused on achieving applications                 to provide mechanical metal robots with systems of                 visual guidance through the field.
Otro de los últimos adelantos tecnológicos con los que contamos es la Inteligencia Artificial, aplicada a través de la utilización de redes neuronales convolucionales. Son un tipo de red neuronal artificial donde las neuronas corresponden a campos receptivos de una manera muy similar a las neuronas en la corteza visual primaria (V1) de un cerebro biológico. Este tipo de red es una variación de una perceptrón multicapa, pero su funcionamiento las hace mucho más efectivas para tareas de visión artificial, especialmente en la clasificación de imágenes. Por perceptrón debe entenderse a una neurona artificial y unidad básica de inferencia en forma de discriminador lineal, esto es un algoritmo capaz de generar un criterio para seleccionar un subgrupo a partir de un grupo de componentes más grande. Another of the latest technological advances with                 what we have is Artificial Intelligence, applied                 through the use of neural networks                 convolutional They are a type of artificial neural network                 where neurons correspond to receptive fields of                 a way very similar to the neurons in the cortex                 Primary visual (V1) of a biological brain. This type                 network is a variation of a multilayer perceptron,                 but their operation makes them much more effective for                 artificial vision tasks, especially in the                 Image classification Per perceptron must                 understand an artificial neuron and basic unit of                 inference in the form of linear discriminator, this is a                 algorithm capable of generating a criterion to select                 a subgroup from one more component group                 big.
Los fundamentos de las redes neuronales convolucionales se basan en el Neocognitron, concepto introducido por Kunihiko Fukushima en 1980, habiendo sido mejorado más tarde por Yann LeCun et al. en 1998 al introducir un método de aprendizaje basado en Backpropagation para entrenar el sistema correctamente. En el año 2012 estas redes fueron refinadas por Dan Ciresan et al. e implementadas en un GPU consiguiendo así resultados nunca imaginados. The basics of neural networks                 convolutional are based on the Neocognitron, concept                 introduced by Kunihiko Fukushima in 1980, having                 been improved later by Yann LeCun et al. in 1998 to                 introduce a learning method based on                 Backpropagation to train the system correctly.                 In 2012 these networks were refined by Dan                 Ciresan et al. and implemented in a GPU getting                 So results never imagined.
Asimismo, un procesamiento en paralelo multihilo (“multithreading”) permite ejecutar eficientemente múltiples hilos al mismo tiempo sobre la misma GPU, logrando procesar varios algoritmos en forma concurrente, y de esta forma sacar el máximo potencial del procesador y en un menor espacio de tiempo, pudiendo según necesidad compartir los mismos recursos lógicos y/o físicos del sistema. Also, a parallel processing                 multi-thread (“multithreading”) allows you to execute                 efficiently multiple threads at the same time on the                 same GPU, managing to process several algorithms in the form                 concurrent, and in this way take full potential                 of the processor and in a shorter space of time, being able to                 as needed share the same logical resources                 and / or system physicists.
Las redes neuronales convolucionales consisten en múltiples capas con distintos propósitos. Al principio se encuentra la fase de extracción de características, compuesta de neuronas convolucionales y de reducción de muestreo. Al final de la red se encuentran neuronas de perceptrón sencillas para realizar la clasificación final sobre las características extraídas. The convolutional neural networks consist                 in multiple layers with different purposes. To the                 principle is the extraction phase of                 characteristics, composed of convolutional neurons and                 of sampling reduction. At the end of the network you                 they find simple perceptron neurons to                 make the final classification on                 features extracted.
La fase de extracción de características se asemeja al proceso estimulante en las células de la corteza visual. Esta fase se compone de capas alternas de neuronas convolucionales y neuronas de reducción de muestreo. Según progresan los datos a lo largo de esta fase, se disminuye su dimensionalidad, siendo las neuronas en capas lejanas mucho menos sensibles a perturbaciones en los datos de entrada, pero al mismo tiempo siendo éstas activadas por características cada vez más complejas. The feature extraction phase is                 resembles the stimulating process in the cells of the                 visual cortex This phase consists of alternate layers                 of convolutional neurons and reduction neurons of                 sampling. As the data progresses along this                 phase, its dimensionality is reduced, being the                 neurons in distant layers much less sensitive to                 disturbances in the input data, but at the same                 time being these activated by characteristics every                 more and more complex
En la fase de extracción de características, las neuronas sencillas de un perceptrón son reemplazadas por procesadores en matriz que realizan una operación sobre los datos de imagen 2D que pasan por ellas, en lugar de un único valor numérico In the feature extraction phase,                 the simple neurons of a perceptron are replaced                 by matrix processors that perform an operation                 about the 2D image data that passes through them, in                 place of a single numerical value
El operador de convolución tiene el efecto de filtrar la imagen de entrada con un núcleo previamente entrenado. Esto transforma los datos de tal manera que ciertas características, determinadas por la forma del núcleo, se vuelven más dominantes en la imagen de salida al tener éstas un valor numérico más alto asignados a los píxeles que las representan. Estos núcleos tienen habilidades de procesamiento de imágenes específicas, como por ejemplo la detección de bordes que se puede realizar con núcleos que resaltan un gradiente en una dirección en particular. Sin embargo, los núcleos que son entrenados por una red neuronal convolucional generalmente son más complejos para poder éstos extraer otras características más abstractas y no triviales. The convolution operator has the effect of                 filter the input image with a kernel previously                 trained. This transforms the data in such a way that                 certain characteristics, determined by the shape of the                 core, become more dominant in the output image                 having these a higher numerical value assigned to                 the pixels that represent them. These cores have                 specific image processing skills,                 such as edge detection that can be                 perform with cores that highlight a gradient in a                 particular address. However, the nuclei that                 they are trained by a convolutional neural network                 they are generally more complex to be able to extract                 other more abstract and non-trivial features.
Las redes neuronales cuentan con cierta tolerancia a pequeñas perturbaciones en los datos de entrada. Por ejemplo, si dos imágenes casi idénticas diferenciadas únicamente por un traslado de algunos pixeles lateralmente se analizan con una red neuronal, el resultado debería ser esencialmente el mismo. Esto se obtiene, en parte, dado a la reducción de muestreo que ocurre dentro de una red neuronal convolucional. Al reducir la resolución, las mismas características corresponderán a un mayor campo de activación en la imagen de entrada. Neural networks have some                 tolerance to small disturbances in the data of                 entry. For example, if two almost identical images                 differentiated only by a transfer of some                 pixels laterally are analyzed with a neural network,                 The result should be essentially the same. This is                 gets, in part, given the reduction in sampling that                 It occurs within a convolutional neural network. To the                 reduce resolution, same features                 will correspond to a greater activation field in the                 input image.
Originalmente, las redes neuronales convolucionales utilizaban un proceso de subsampling para llevar a cabo esta operación. Sin embargo, estudios recientes han demostrado que otras operaciones, como por ejemplo max-pooling, son mucho más eficaces en resumir características sobre una región. Además, existe evidencia de que este tipo de operación es similar a cómo la corteza visual puede resumir información internamente. Originally, neural networks                 convolutional used a subsampling process                 to carry out this operation. However, studies                 recent have shown that other operations, such as by                 max-pooling example, they are much more effective in summarizing                 characteristics about a region. In addition, there is                 evidence that this type of operation is similar to                 how the visual cortex can summarize information                 internally.
La operación de max-pooling encuentra el valor máximo entre una ventana de muestra y pasa este valor como resumen de características sobre ese área. Como resultado, el tamaño de los datos se reduce por un factor igual al tamaño de la ventana de muestra sobre la cual se opera. The max-pooling operation finds the value                 maximum between a sample window and pass this value                 as a summary of characteristics about that area. How                 result, the size of the data is reduced by a                 factor equal to the size of the sample window on the                 which one is operated
Después de una o más fases de extracción de características, los datos finalmente llegan a la fase de clasificación. Para entonces, los datos han sido depurados hasta una serie de características únicas para la imagen de entrada, y es ahora la labor de esta última fase el poder clasificar estas características hacia una etiqueta u otra, según los objetivos de entrenamiento. After one or more extraction phases of                 characteristics, the data finally reaches the phase                 of classification. By then, the data has been                 debugged up to a series of unique features to                 the input image, and it is now the work of the latter                 phase to classify these characteristics towards a                 label or other, depending on training objectives.
Dado la naturaleza de las convoluciones dentro de las redes neuronales convolucionales, éstas son aptas para poder aprender a clasificar todo tipo de datos donde éstos estén distribuidos de una forma continua a lo largo del mapa de entrada, y a su vez sean estadísticamente similares en cualquier lugar del mapa de entrada. Por esta razón, son especialmente eficaces para clasificar imágenes, por ejemplo para el auto-etiquetado de imágenes. Given the nature of the convolutions within                 of the convolutional neural networks, these are suitable                 to learn to classify all types of data                 where these are distributed in a continuous way to                 along the entry map, and in turn be                 statistically similar anywhere on the map                 input For this reason, they are especially effective.                 to classify images, for example for                 Self-tagging of images.
Otro punto importante a tener en cuenta es que las redes neuronales convolucionales han demostrado su éxito en muchas aplicaciones, debido a su capacidad para resolver ciertos problemas con relativa facilidad de aplicación. Se han podido resolver problemas sin la necesidad de entender o aprender las propiedades analíticas y estadísticas de los mismos, ni los pasos de la solución. La investigación en redes neuronales convolucionales ha resultado en una amplia variedad de modelos y algoritmos de aprendizaje, pero recién en los últimos dos años es donde ha habido un cambio de paradigma excepcional. Another important point to keep in mind is that                 convolutional neural networks have demonstrated their                 success in many applications, due to its ability to                 solve certain problems with relative ease of                 application. We have been able to solve problems without the                 need to understand or learn the properties                 analytics and statistics thereof, nor the steps of                 the solution. Neural Network Research                 convolutional has resulted in a wide variety of                 models and learning algorithms, but only in the                 last two years is where there has been a change of                 exceptional paradigm.
Se han logrado avances en el campo de redes neuronales convolucionales artificiales que están pudiendo lograr utilizar metodologías similares para la identificación de especies vegetales, pero todas ellas están basadas en condiciones ideales de adquision de la imagen principalmente sobre fondo blanco, aislada de otras plantas, imagen fija, ejemplar de forma completa, etc., lo cual no sirve en entornos reales y/o en cultivos, donde las plantas interfieren entre sí, superponiéndose la masa foliar de unas con otras, condiciones de iluminación adversas, movimientos de las mismas por el viento y, lo que es fundamental, no son adquiridas las imágenes en formato video y a velocidades de hasta 20 km/h, con la consiguiente necesidad de procesamiento de hasta 7 metros de terreno por segundo. Progress has been made in the field of networks                 artificial convolutional neuronal that are                 being able to use similar methodologies for                 identification of plant species, but all of them                 they are based on ideal conditions of acquisition of the                 Image mainly on white background, isolated from                 other plants, still image, full copy,                 etc., which does not work in real environments and / or in                 crops, where plants interfere with each other,                 overlapping the leaf mass with each other,                 adverse lighting conditions, movements of the                 themselves by the wind and, what is fundamental, they are not                 acquired the images in video format and at speeds                 up to 20 km / h, with the consequent need for                 processing of up to 7 meters of land per second.
En relación al método utilizado para el entrenamiento de una red neuronal convolucional, se puede citar a la patente US 7747070 B2 concedida el 29 de junio de 2010 a Microsoft Corp. Dicha patente se refiere a una red neuronal convolucional implementada en una unidad de procesamiento gráfico, la cual es entonces entrenada a través de una serie de pasos hacia delante y hacia atrás, con núcleos convolucionales y matrices sesgadas modificados en cada paso hacia atrás de acuerdo con un gradiente de una función de error. La aplicación aprovecha las capacidades de procesamiento paralelo de las unidades de sombreado de píxeles en una GPU, y utiliza un conjunto de fórmulas de principio a fin para programar los cálculos en los sombreadores de píxeles. La entrada y salida al programa se realiza a través de texturas, y se emplea un proceso de sumatoria de múltiples pasos cuando se necesitan sumas a través de registros de unidades de sombreado de píxeles. In relation to the method used for                 training of a convolutional neural network, it                 You can cite the patent US 7747070 B2 granted on 29                 June 2010 to Microsoft Corp. Such patent is                 refers to a convolutional neural network implemented in                 a graphics processing unit, which is then                 trained through a series of steps forward and                 backward, with convolutional cores and matrices                 modified biases in each step backwards according                 with a gradient of an error function. The application                 take advantage of the parallel processing capabilities of                 pixel shader units in a GPU, and                 use a set of formulas from beginning to end to                 Schedule calculations in pixel shaders.                 The entry and exit to the program is done through                 textures, and a summation process of                 multiple steps when sums are needed through                 records of pixel shader units.
De esta manera, las redes neuronales convolucionales están siendo utilizadas para el reconocimiento y clasificación de imágenes. En el proceso de reconocimiento utilizando un clasificador basado en una red neuronal convolucional, se ingresa una imagen a la red y luego de varias repeticiones de operaciones de convolución en un espacio máximo de muestreo y conexión completa, se extrae como resultado del reconocimiento una clasificación precisa de la imagen y un nivel máximo en seguridad del resultado. In this way, neural networks                 convolutional are being used for the                 Image recognition and classification. At                 recognition process using a classifier                 based on a convolutional neural network, a                 image to the network and after several repetitions of                 convolution operations in a maximum space of                 sampling and complete connection, is extracted as a result                 of recognition an accurate classification of the                 image and a maximum level of security of the result.
Existen en el mercado además dos productos comerciales similares en su concepción tecnológica conocidos como "Trimble WeedSeeker" y "PSB- Weedit". Ambos sistemas pretenden como argumento comercial ser un detector de malezas pero por sus características y funcionalidades sólo son capaces de reconocer la presencia de clorofila a través de sus sensores de luz infrarroja. Esto es útil sólo en el momento en que un campo está en situación de barbecho, esto es un campo no cultivado en espera de una nueva siembra, o en premergencia si fue sembrado, ya que al no poder distinguir entre la planta específica del cultivo y las plantas que se van a tratar como malezas no es útil en otra situación. There are also two products on the market                 similar commercials in its technological conception                 known as "Trimble WeedSeeker" and "PSB-Weedit".                 Both systems claim as a commercial argument to be a                 weed detector but for its characteristics and                 functionalities are only able to recognize the                 presence of chlorophyll through its light sensors                 infrared This is useful only when a                 field is fallow, this is a field not                 grown in anticipation of a new planting, or in                 premergence if it was sown, since not being able                 distinguish between the specific crop plant and the                 plants to be treated as weeds is not useful in                 other situation
El seguimiento de objetos (en inglés object tracking) es un proceso que permite estimar en el tiempo la ubicación de uno o más objetos móviles mediante el uso de una cámara. Las mejoras logradas en forma acelerada en la calidad y resolución de los sensores de imagen, conjuntamente con el impresionante incremento de la potencia de cálculo logrado en la última década, ha favorecido la creación de nuevos algoritmos y aplicaciones mediante el seguimiento de objetos. Object tracking (in English object                 tracking) is a process that allows you to estimate over time                 the location of one or more mobile objects using the                 use of a camera The improvements achieved in form                 accelerated in the quality and resolution of the sensors                 image, together with the impressive increase of                 The computing power achieved in the last decade has                 favored the creation of new algorithms and                 applications by tracking objects.
El seguimiento de objetos puede ser un proceso lento debido a la gran cantidad de datos que contiene un video, lo cual puede incrementar su complejidad ante la posible necesidad de utilizar técnicas de reconocimiento de objetos para realizar el seguimiento. Object tracking can be a process                 slow due to the large amount of data contained in a                 video, which can increase its complexity in the face of                 possible need to use recognition techniques                 of objects to track.
Las cámaras de video capturan información sobre los objetos de interés en forma de conjunto de píxeles. Al modelar la relación entre el aspecto del objeto de interés y el valor de los píxeles correspondientes, un seguidor de objetos valora la ubicación de este objeto en el tiempo. La relación entre el objeto y la proyección de su imagen es muy compleja y puede depender de más factores que no sean solamente la posición del objeto, lo que implica que el seguimiento de objetos sea un objetivo dificultoso de lograr. Video cameras capture information                 on objects of interest in the form of a set of                 pixels When modeling the relationship between the appearance of                 object of interest and pixel value                 corresponding, an object follower values the                 location of this object in time. The relationship between                 the object and projection of its image is very complex and                 it may depend on more factors than just the                 object position, which implies that the tracking                 of objects is a difficult goal to achieve.
Los principales retos que hay que tener en cuenta en el diseño de un seguidor de objetos están relacionados con la similitud de aspecto entre el objeto de interés y el resto de objetos en la escena, así como la variación de aspecto del propio objeto. Dado que el aspecto tanto del resto de objetos como el fondo puede ser similar al del objeto de interés, esto puede interferir en su observación. En ese caso, las características extraídas de esas áreas no deseadas puede ser difícil de diferenciar de las que se espera que el objeto de interés genere. Este fenómeno se conoce con el nombre de desorden (“clutter”). The main challenges to have in                 account in the design of an object follower are                 related to the similarity of aspect between the object                 of interest and other objects in the scene, as well as                 the variation of appearance of the object itself. Since the                 appearance of both other objects and the background can                 be similar to the object of interest, this may                 Interfere with your observation. In that case, the                 features extracted from those unwanted areas                 it can be difficult to differentiate from what is expected                 that the object of interest generates. This phenomenon is known.                 with the name of disorder ("clutter").
Además del reto de seguimiento que causa el “clutter”, los cambios de aspecto del objeto en el plano de la imagen dificulta el seguimiento causado por uno o más de los siguientes factores: cambios de posición, iluminación ambiente, ruido, oclusiones. In addition to the follow-up challenge caused by the                 "Clutter", the changes of aspect of the object in the plane                 of the image makes it difficult to track caused by one or                 more of the following factors: position changes,                 ambient lighting, noise, occlusions.
En un escenario de seguimiento, un objeto se puede definir como cualquier cosa que sea de interés para su posterior análisis. Los objetos se pueden representar mediante sus formas y apariencias, generalmente: puntos, formas geométricas primitivas, silueta del objeto y contorno, modelos articulados de forma, modelos esqueléticos. In a tracking scenario, an object is                 you can define as anything of interest                 for later analysis. The objects can be                 represent through their forms and appearances,                 generally: points, primitive geometric shapes,                 object silhouette and contour, articulated models of                 shape, skeletal models.
También hay varias maneras de representar las características de aspecto de los objetos. Hay que tener en cuenta que las representaciones de forma también se pueden combinar con las de aspecto para llevar a cabo el seguimiento. Algunas de las representaciones de aspecto más comunes son: la densidad de probabilidad del aspecto de los objetos, plantillas, modelos activos de aspecto, modelos de aspecto multivista. There are also several ways to represent the                 appearance characteristics of objects. Must have                 keep in mind that shape representations are also                 can be combined with those of appearance to carry out the                 tracing. Some of the aspect representations                 most common are: the probability density of the aspect                 of objects, templates, active appearance models,                 Multivist-looking models.
Seleccionar las características adecuadas tiene un papel fundamental en el seguimiento. En general, la característica visual más deseada es la singularidad porque los objetos se pueden distinguir fácilmente en el espacio de características. Los detalles de las características más comunes son los siguientes: color, márgenes, flujo óptico, textura. Select the appropriate features                 It has a fundamental role in monitoring. In                 In general, the most desired visual feature is the                 uniqueness because objects can be distinguished                 easily in the space of features. The                 details of the most common features are the                 following: color, margins, optical flow, texture.
Cada método de seguimiento requiere un mecanismo de detección de objetos, ya sea en cada fotograma o cuando el primer objeto aparece en el vídeo. Un método común para la detección de objetos es el uso de la información de un solo fotograma. No obstante, algunos métodos de detección de objetos hacen uso de la información temporal calculada a partir de una secuencia de imágenes para reducir así el número de falsas detecciones. Esta información temporal se calcula generalmente con la técnica “frame differencing” , que pone de manifiesto las regiones cambiantes en tramos consecutivos. Una vez se tiene en cuenta las regiones del objeto en la imagen, es entonces tarea del seguidor de realizar la correspondencia de objeto de un fotograma a otro para generar el seguimiento. Los métodos más populares en el contexto del seguimiento de objetos son: los detectores de puntos, la sustracción del fondo, la segmentación. Each tracking method requires an object detection mechanism, either in each frame or when the first object appears in the video. A common method for object detection is the use of single-frame information. However, some object detection methods make use of the temporal information calculated from a sequence of images to reduce the number of false detections. This temporary information is generally calculated using the “frame differencing” technique, which shows the changing regions in consecutive sections. Once the regions of the object in the image are taken into account, it is then the task of the follower to perform the object correspondence from one frame to another to generate the tracking. The most popular methods in the context of object tracking are: point detectors, background subtraction, segmentation.
Los detectores de puntos se utilizan para encontrar los puntos de interés en imágenes que tienen una textura expresiva en sus respectivas localidades. Los puntos de interés se han utilizado durante mucho tiempo en el contexto del movimiento y en los problemas de seguimiento. Una característica deseable en cuanto a los puntos de interés es su invariación en los cambios de iluminación y en el punto de vista de la cámara. Point detectors are used to                 find points of interest in images that have                 an expressive texture in their respective locations.                 Points of interest have been used for a long time.                 time in the context of the movement and in the problems                 of follow up. A desirable feature in terms of                 the points of interest is its invariance in the changes                 of illumination and in the point of view of the camera.
La detección de objetos se puede conseguir mediante la construcción de una representación de la escena llamada modelo de fondo y después encontrando las desviaciones del modelo para cada fotograma entrante. Cualquier cambio significativo en una región de la imagen del modelo de fondo representa un objeto en movimiento. Los píxeles que constituyen las regiones en proceso de cambio se marcan para su posterior procesamiento. En general, un algoritmo de componentes conectados se aplica para obtener regiones conectadas que corresponden a los objetos. Este proceso se conoce como la sustracción de fondo. Object detection can be achieved                 by building a representation of the                 scene called background model and then finding the                 model deviations for each incoming frame.                 Any significant change in a region of the                 background model image represents an object in                 movement. The pixels that make up the regions in                 change process are marked for later                 processing In general, a component algorithm                 connected is applied to get connected regions                 that correspond to the objects. This process is known.                 as background subtraction.
El objetivo de los algoritmos de segmentación de la imagen es dividir la imagen en regiones perceptualmente similares. Cada algoritmo de segmentación abarca dos problemas, los criterios para una buena partición y el método para conseguir la partición eficiente. Existen diferentes técnicas de segmentación de objetos en movimiento que se pueden separar en dos grandes grupos: las basadas en movimientos y las basadas en características espaciotemporales. The objective of segmentation algorithms                 of the image is to divide the image into regions                 perceptually similar. Each algorithm of                 segmentation covers two problems, the criteria for                 a good partition and the method to get the                 efficient partition. There are different techniques of                 segmentation of moving objects that can be                 separate into two large groups: those based on                 movements and feature based                 spacetime.
Estas técnicas hacen uso principalmente de la información de movimiento. Dentro de este grupo podemos diferenciar dos tipos: los que trabajan con el movimiento en dos dimensiones (2D) y los que lo hacen en tres (3D). Dentro de las técnicas en dos dimensiones encontramos: técnicas basadas en las discontinuidades del flujo óptico y técnicas basadas en la detección de cambios. These techniques make use mainly of the                 movement information. Within this group we can                 differentiate two types: those who work with the                 two-dimensional movement (2D) and those who do it in                 three (3D). Within two-dimensional techniques                 We found: techniques based on discontinuities                 of optical flow and techniques based on the detection of                 changes
Los modelos de movimiento en 2D son simples, pero menos realistas. Como consecuencia, los sistemas de segmentación en 3D son los más utilizados en la práctica. Dentro de los métodos en tres dimensiones se pueden distinguir dos algoritmos diferentes: estructura a partir del movimiento SFM (acrónimo del inglés structure from motion) y algoritmos paramétricos. 2D motion models are simple,                 But less realistic. As a consequence, the systems of                 3D segmentation are the most used in the                 practice. Within three-dimensional methods,                 They can distinguish two different algorithms: structure                 from the SFM movement (acronym for English                 structure from motion) and parametric algorithms.
El SFM generalmente maneja escenas 3D que contienen información relevante de profundidad, mientras que en los métodos paramétricos no se asume esta profundidad. Otra diferencia importante entre los dos algoritmos es que en el SFM se asume un movimiento rígido, mientras que en los algoritmos paramétricos sólo se asume rigidez de movimiento en partes de la escena. The SFM generally handles 3D scenes that                 contain relevant depth information while                 that in parametric methods this is not assumed                 depth. Another important difference between the two                 algorithms is that in the SFM a movement is assumed                 rigid while in parametric algorithms only                 stiffness of movement is assumed in parts of the scene.
En las técnicas espaciotemporales, los métodos de segmentación basados únicamente en movimiento son sensibles a las inexactitudes de la valoración de movimiento. Para solucionar estos problemas, en los métodos espaciotemporales se propone complementar el movimiento mediante el uso de la información espacial. Hay dos enfoques dominantes: basados en límites y basados en regiones. In spacetime techniques, the methods                 segmentation based solely on motion are                 sensitive to the inaccuracies of the valuation of                 movement. To solve these problems, in the                 spacetime methods it is proposed to complement the                 movement through the use of spatial information.                 There are two dominant approaches: based on limits and                 based on regions.
El seguimiento de objetos es una tarea muy importante dentro del campo del procesado de vídeo. El objetivo principal de las técnicas de seguimiento de objetos es generar la trayectoria de un objeto a través del tiempo, posicionando éste dentro de la imagen. Podemos hacer una clasificación de técnicas según tres grandes grupos: seguimiento de puntos, seguimiento de núcleo (kernel) y seguimiento de siluetas. Object tracking is a very task                 important within the field of video processing. He                 main objective of the monitoring techniques of                 objects is to generate the trajectory of an object through                 of time, positioning it within the image.                 We can classify techniques according to three                 large groups: point tracking, tracking                 core (kernel) and silhouettes tracking.
Según las técnicas de seguimiento de puntos los objetos detectados en imágenes consecutivas están representados cada uno por uno o varios puntos y la asociación de éstos está basada en el estado del objeto en la imagen anterior, que puede incluir posición y movimiento. Se requiere de un mecanismo externo que detecte los objetos de cada fotograma. Esta técnica puede presentar problemas en escenarios donde le objeto presenta oclusiones y en las entradas y salidas de éstos. Las técnicas de seguimiento de puntos se pueden clasificar también en dos grandes categorías: deterministas y estadísticos. According to point tracking techniques                 the objects detected in consecutive images are                 represented each by one or several points and the                 association of these is based on the state of the object                 in the previous image, which may include position and                 movement. An external mechanism is required that                 Detect the objects of each frame. This technique                 may present problems in scenarios where you object                 presents occlusions and in the entrances and exits of                 these. Point tracking techniques can be                 Also classify into two broad categories:                 deterministic and statistical.
Las técnicas de seguimiento del núcleo realizan un cálculo del movimiento del objeto, el cual está representado por una región inicial, de una imagen a la siguiente. El movimiento del objeto se expresa en general en forma de movimiento paramétrico (translación, rotación, afín...) o mediante el campo de flujo calculado en los siguientes fotogramas. Podemos distinguir dos categorías: seguimiento utilizando plantillas y modelos de apariencia basados en densidad de probabilidad y seguimiento basado en modelos multivista. Core tracking techniques                 perform a calculation of the movement of the object, which                 is represented by an initial region of an image                 to the next The movement of the object is expressed in                 general in the form of parametric movement (translation,                 rotation, related ...) or through the flow field                 Calculated in the following frames. We can                 distinguish two categories: tracking using                 density templates and appearance models                 of probability and follow-up based on models                 multivist
Las técnicas de seguimiento de siluetas se realizan mediante la valoración de la región del objeto en cada imagen utilizando la información que contiene. Esta información puede ser en forma de densidad de aspecto o de modelos de forma que son generalmente presentados con mapas de márgenes. Dispone de dos métodos: correspondencia de forma y seguimiento del contorno. Silhouettes tracking techniques are                 performed by valuing the region of the object                 in each image using the information it contains.                 This information can be in the form of density of                 look or shape models that are generally                 presented with margin maps. It has two                 methods: correspondence of form and monitoring of                 contour.
El seguimiento de objetos de interés en vídeo es la base de muchas aplicaciones que van desde la producción de vídeo hasta la vigilancia remota, y desde la robótica hasta los juegos interactivos. Los seguidores de objetos se utilizan para mejorar la comprensión de ciertos conjuntos de datos de vídeo de aplicaciones médicas y de seguridad; para aumentar la productividad al reducir la cantidad de mano de obra que es necesaria para completar una tarea y par dar lugar a la interacción natural con máquinas. Tracking objects of interest on video                 It is the basis of many applications ranging from                 video production to remote surveillance, and from                 Robotics to interactive games. The                 Object followers are used to improve the                 understanding of certain video data sets of                 medical and safety applications; to increase the                 productivity by reducing the amount of labor that                 it is necessary to complete a task and to give rise to                 Natural interaction with machines.
El flujo óptico (en inglés “optical flow”) es el patrón del movimiento aparente de los objetos, superficies y bordes en una escena causado por el movimiento relativo entre el ojo de un observador o una cámara y la escena. The optical flow (in English "optical flow") is                 the pattern of the apparent movement of objects,                 surfaces and edges in a scene caused by the                 relative movement between an observer's eye or a                 Camera and scene.
El concepto de flujo óptico se estudió por primera vez en la década de 1940 y, finalmente, fue publicado por el psicólogo estadounidense James J. Gibson en su artículo “Teoría de Affordances” de 1977, donde describe todas las posibilidades de acción que son materialmente posibles en un contexto determinado, esto es la cualidad de un objeto o ambiente que permite a un individuo realizar una acción. The concept of optical flow was studied by                 first time in the 1940s and finally it was                 published by the American psychologist James J.                 Gibson in his article "Theory of Affordances" of 1977,                 where he describes all the possibilities of action that are                 materially possible in a given context, this                 it is the quality of an object or environment that allows a                 individual perform an action.
El concepto de “affordances” se puede interpretar a través del concepto de disponibilidades u ofertas. No existe una traducción al castellano normalmente aceptada del significado de este concepto, por lo que se le han otorgado significados variados tales como “permisividad”, “habilitación”, “oportunidades ambientales”, y hasta “invitaciones al uso”. The concept of "affordances" can be                 interpret through the concept of availabilities or                 offers. There is no translation into Spanish                 normally accepted of the meaning of this concept,                 for which they have been given varied meanings                 such as "permissiveness", "habilitation",                 “Environmental opportunities”, and even “invitations to                 use".
En 1988, Donald Norman utilizó el término “affordances” en el contexto HCI (acrónimo del inglés Human-Computer Interaction, esto es Interacción Humano-Computadora) para referirse a esas posibilidades de acción que son inmediatamente percibidas por el usuario. En su libro “The Design of Everyday Things” establece el concepto “affordances” no sólo dentro de las capacidades físicas del usuario, sino también en la capacidad de éste de nutrirse de experiencias pasadas, metas, planes, estimaciones comparando otro tipo de vivencias, etc. In 1988, Donald Norman used the term                 “Affordances” in the HCI context (acronym for English                 Human-Computer Interaction, this is Interaction                 Human-Computer) to refer to those possibilities                 of action that are immediately perceived by the                 Username. In his book "The Design of Everyday Things"                 establishes the concept "affordances" not only within                 the user's physical abilities, but also in the                 its ability to feed on past experiences,                 goals, plans, estimates comparing other types of                 experiences, etc.
Una segunda definición entonces más depurada define el término “affordances” como las posibilidades de acción que un usuario es consciente de poder realizar. Las aplicaciones del flujo óptico tales como la detección de movimiento, la segmentación de objetos, el tiempo hasta la colisión y el enfoque de cálculo de expansiones, la codificación del movimiento compensado y la medición de la disparidad estereoscópica utilizan este movimiento de las superficies y bordes de los objetos. A second definition then more refined                 define the term "affordances" as the possibilities                 of action that a user is aware of being able to                 perform. Applications of optical flow such as                 motion detection, object segmentation,                 the time until the collision and the calculation approach of                 expansions, motion coding compensated and                 Stereoscopic disparity measurement use                 this movement of the surfaces and edges of the                 objects.
Estas tecnologías pueden encontrase aplicadas en, por ejemplo, la Patente US 6038337 A que se refiere a un sistema híbrido de redes neuronales para el reconocimiento de objetos que exhibe muestreo local de imagen, una red neural de mapas auto organizada, y un red neural convolucional híbrida. El mapa de auto organización provee una cuantificación de las muestras de imagen en un espacio topológico donde las entradas que están cerca en el espacio original están también en el espacio de salida, proporcionando entonces la reducción de dimensionalidad e invariancia en cambios menores en la muestra de imagen, y la red neural convolucional híbrida provee invariancia parcial a la translación, rotación, escala, y deformación. La red convolucional híbrida extrae características sucesivamente más grandes en un conjunto de capas jerárquico. Se describen realizaciones alternativas usando el Karhunen-Lo + E, gra e + EE que se transforma en lugar del mapa de organización propia, y un perceptron multicapa en lugar de la red convolucional. These technologies may be applied.                 in, for example, US Patent 6038337 A which refers                 to a hybrid system of neural networks for the                 object recognition that exhibits local sampling of                 image, a neural network of self-organized maps, and a                 hybrid convolutional neural network. The car map                 organization provides quantification of samples                 image in a topological space where entries                 that are close in the original space are also in                 the exit space, then providing the                 dimensionality reduction and change invariance                 minors in the image sample, and the neural network                 convolutional hybrid provides partial invariance to the                 translation, rotation, scale, and deformation. The net                 convolutional hybrid extracts features                 successively larger in a set of layers                 hierarchical Alternative embodiments are described.                 using the Karhunen-Lo + E, gra e + EE that transforms                 instead of the own organization map, and a                 multilayer perceptron instead of the convolutional network.
Por su parte, la solicitud de patente US 20150245565 A1 se refiere a un dispositivo y método para la aplicación de productos químicos a plantas y partes de plantas en entornos naturales específicos, así como campos de cultivo. En una forma de realización preferida, un vehículo autónomo lleva el dispositivo de aplicación de productos químicos y es, en parte, controlado por los requisitos de procesamiento del componente de visión artificial del dispositivo responsable de la detección y la asignación de listas de objetivos a eyectores químicos que se dirigen a estos puntos objetivo al tiempo que el aparato evoluciona a través del campo o un medio ambiente natural. For its part, the US patent application                 20150245565 A1 refers to a device and method for                 the application of chemicals to plants and parts                 of plants in specific natural environments, as well as                 Farmlands. In one embodiment                 preferred, an autonomous vehicle carries the device                 chemical application and is, in part,                 controlled by the processing requirements of                 device vision component                 responsible for detecting and assigning lists of                 objectives to chemical ejectors that target these                 target points while the device evolves to                 Through the countryside or a natural environment.
Sin embargo, el dispositivo de la solicitud de patente US20150245565A1 sólo es capaz de detectar la presencia de una planta, pero es incapaz de identificar de qué especie vegetal se trata. Sólo puede distinguir dos características que sean absolutamente diferentes, como es el suelo de las plantas, y determinar solamente con una cierta probabilidad si se trata de cultivo o no. However, the device request                 US20150245565A1 patent is only able to detect the                 presence of a plant, but is unable to identify                 What plant species is it? Can only distinguish                 two characteristics that are absolutely different,                 how is the soil of plants, and determine only                 with a certain probability whether it is a crop or not.
Dicho sistema únicamente puede distinguir el cultivo siempre y cuando se den ciertos parámetros (párrafo [0024]) con un alto margen de error, lo que se traduce en un mal desempeño en el manejo del agroquímico a aplicar. Esto lo hace a través de la utilización de “computer vision” distinguiendo siempre la línea de cultivo principal, de este modo básicamente es capaz de aplicar herbicida o cualquier agroquímico sobre cualquier planta que esté fuera de línea principal. Por lo tanto, en primer lugar para el dispositivo de la solicitud en cuestión se trata de las plantas del cultivo sólo aquellas que se encuentren dentro de la hilera de cultivo, por lo que si están fuera de ella se consideran maleza. Si está dentro de la hilera pero la forma de la hoja es un tanto distinta, también se considera maleza; si está en la hilera y la forma de la hoja es similar pero el espacio entre planta y planta no es la que se utiliza habitualmente para la siembra de ese cultivo, también se considera maleza. En cambio, este sistema es incapaz de distinguir entre las distintas especies vegetales, no sólo si se trata de una planta o suelo. This system can only distinguish the crop as long as certain parameters are given (paragraph [0024]) with a high margin of error, which translates into poor performance in the handling of the agrochemical to be applied. This is done through the use of "computer vision" always distinguishing the main crop line, thus basically being able to apply herbicide or any agrochemical on any plant that is outside the main line. Therefore, in the first place for the device of the application in question, it is the crop plants only those that are within the crop row, so if they are outside it they are considered weeds. If it is inside the row but the shape of the leaf is somewhat different, it is also considered weed; if it is in the row and the shape of the leaf is similar but the space between plant and plant is not the one that is usually used for planting that crop, it is also considered weed. Instead, this system is unable to distinguish between different plant species, not only if it is a plant or soil.
El sistema propuesto en la solicitud de patente US 20150245565 A1 tiene la gran limitación de sólo poder trabajar en cultivos en hileras continuas. En los cultivos agrícolas la mayoría de las veces se cultiva en forma de hilera continua, pero es prácticamente imposible mantener ésta de forma uniforme en todo el lote, debido fundamentalmente a que el vehículo que realizó previamente la siembra realiza varios desvíos en su trayectoria, algunos inevitables; provocando eventualmente fallas en el intento de mantener la trayectoria del vehículo aplicador de agroquímico al tratar de seguir la línea principal. The system proposed in the request for                 US patent 20150245565 A1 has the great limitation of                 Only be able to work in crops in continuous rows. In                 agricultural crops most of the time it                 cultivate in a continuous row, but it is                 virtually impossible to keep this uniform                 in the whole lot, mainly because the                 vehicle that previously made the sowing performs                 several deviations in his career, some inevitable;                 eventually causing failures in the attempt to                 maintain the trajectory of the applicator vehicle of                 agrochemical when trying to follow the main line.
Además, este sistema es incapaz de distinguir de qué especie vegetal se trata para poder aplicar el herbicida específico y así eliminar dicha especie. Por lo tanto, no es un sistema que funcione en todo tipo de terreno sin necesidad de tener un patrón determinado para mantener su trayectoria, no puede identificar el tipo de especie de que se trata, tampoco puede hacer una aplicación inteligente del agroquímico necesario con un gran ahorro de costes en agroquímicos y una eficacia inmejorable en el manejo de las malezas. In addition, this system is unable to distinguish                 what plant species is it to apply the                 specific herbicide and thus eliminate said species. By                 therefore, it is not a system that works in all kinds of                 terrain without having a certain pattern                 to maintain its trajectory, it cannot identify the                 kind of species in question, you can't make a                 intelligent application of the necessary agrochemical with a                 great cost savings in agrochemicals and efficiency                 unbeatable in weed management.
Por otro lado, cuando menciona la utilización de cámara multiespectral (párrafo [0031]) claramente especifica que no es viable actualmente para una utilización en tiempo real debido a que sólo funciona con fotografías, no fuentes de vídeo en vivo. Además, necesita una normalización y/o calibración de la fuente de iluminación previa a cada análisis, lo cual es totalmente impracticable en un entorno no controlado de iluminación como lo es un sitio al aire libre. On the other hand, when you mention the use                 multispectral camera (paragraph [0031]) clearly                 specifies that it is not currently viable for a                 real-time use because it only works                 with pictures, not live video sources. Further,                 need a normalization and / or calibration of the source                 of lighting prior to each analysis, which is                 totally impracticable in an uncontrolled environment of                 lighting as it is an outdoor site.
Por lo tanto, es necesario aun contar con maquinaria agrícola que sirva no sólo para aplicar un herbicida sino también para identificar en forma específica qué plantas son hierbas diferenciándolas del cultivo, y direccionar la aplicación del herbicida solamente sobre las hierbas dosificándolo según su identificación y comportamiento para lograr un resultado satisfactorio máximo. En otras palabras, es necesario disponer de equipo agrícola que permita eliminar en forma efectiva y selectiva las hierbas de las plantas del cultivo con las dosis justas y específicas según sea la hierba identificada protegiendo de esta forma el desarrollo del cultivo y el medio ambiente. Therefore, it is still necessary to have                 agricultural machinery that serves not only to apply a                 herbicide but also to identify fit                 specific which plants are herbs differentiating them from                 cultivation, and direct herbicide application                 only on herbs dosing it according to its                 identification and behavior to achieve a result                 maximum satisfactory. In other words, it is necessary                 have agricultural equipment to eliminate                 effectively and selectively plant herbs                 of the crop with fair and specific doses as                 the grass identified thus protecting the                 crop development and the environment.
Por lo tanto, el objeto de la presente invención es un conjunto autónomo de dispositivos para la detección e identificación de especies vegetales en un cultivo agrícola para la aplicación de agroquímicos en forma selectiva, dicho conjunto comprende: un dispositivo de aplicación de productos químicos que comprende al menos un recipiente contenedor de agroquímicos vinculado en comunicación fluida con una pluralidad de picos aspersores a través de una válvula, una pluralidad de cámaras que están dispuestas sobre el vehículo autónomo y enfocadas al cultivo, en donde cada cámara cuenta con un sensor de ultrasonido asociado para la medición de altura al cultivo en tiempo real, y en donde cada cámara está inclinada hacia adelante a 45 grados respecto de la normal; un dispositivo de detección e identificación de especies vegetales conectado a las cámaras para recibir información de video de las mismas, un circuito electrónico encargado de gestionar la apertura y cierre de las válvulas de los picos aspersores de producto agroquímico conectado al dispositivo de detección que gestiona a través de dicho circuito la apertura y cierre de las válvulas de los picos aspersores, y en donde, el conjunto de dispositivos se encuentra montado sobre un vehículo de transporte. Therefore, the purpose of this                 invention is an autonomous set of devices for                 the detection and identification of plant species in                 an agricultural crop for the application of agrochemicals                 selectively, said set comprises: a                 chemical application device that                 comprises at least one container container of                 agrochemicals linked in fluid communication with a                 plurality of sprinkler peaks through a valve,                 a plurality of cameras that are arranged on the                 autonomous vehicle and focused on cultivation, where each                 camera has an associated ultrasound sensor for                 the height measurement to the crop in real time, and in                 where each camera is tilted forward at 45                 degrees from normal; a device of                 detection and identification of plant species                 connected to the cameras to receive information from                 video of them, an electronic circuit in charge                 to manage the opening and closing of the valves of the                 sprinkler peaks of agrochemicals connected to                 detection device that manages through said                 circuit the opening and closing of the valves of the                 sprinkler peaks, and where, the set of                 devices is mounted on a vehicle of                 transport.
Preferentemente, el vehículo de transporte es un vehículo autopropulsado o un vehículo de arrastre. Preferably, the transport vehicle is                 a self-propelled vehicle or a tow vehicle.
Más preferentemente, el vehículo autopropulsado es un vehículo para fumigación con brazos laterales dispuestos perpendicularmente al mismo (mosquito). More preferably, the vehicle                 self-propelled is a vehicle for fumigation with arms                 sides arranged perpendicularly to it                 (mosquito).
Más preferentemente aun, el dispositivo de detección e identificación consta de un procesador. More preferably, the device                 Detection and identification consists of a processor.
Todavía más preferentemente aun, el procesador comprende una herramienta basada en software informático desarrollado en lenguaje C++, un framework de visión artificial, y un framework de redes neuronales convolucionales. Even more preferably, the processor                 comprises a tool based on computer software                 developed in C ++ language, a vision framework                 artificial, and a neural network framework                 convolutional
Es otro objeto de la presente invención, un método para la detección e identificación de especies vegetales en un cultivo agrícola para la aplicación de agroquímicos en forma selectiva con el conjunto autónomo de dispositivos descrito anteriormente, dicho método comprende los pasos de: It is another object of the present invention, a                 method for the detection and identification of species                 vegetables in an agricultural crop for the application of                 agrochemicals selectively with the autonomous set                 of devices described above, said method                 Understand the steps of:
a) detectar y clasificar especies vegetales en un cultivo agrícola durante el recorrido del conjunto autónomo de dispositivos a través del cultivo; b) analizar la información obtenida en a) determinando área y perímetro de las malezas; y c) pulverizar la dosis adecuada de un agroquímico en el lugar correcto teniendo en cuenta la velocidad de avance del equipo. a) detect and classify plant species in                 an agricultural crop during the whole tour                 autonomous of devices through cultivation; b)                 analyze the information obtained in a) determining area                 and perimeter of weeds; and c) spray the dose                 proper of an agrochemical in the right place taking                 consider the speed of advance of the equipment.
Preferiblemente, el paso a) del método permite distinguir el cultivo de las malezas. Preferably, step a) of the method allows                 distinguish weed cultivation.
Más preferiblemente, el paso a) del método permite identificar las especies vegetales para determinar el agroquímico a aplicar. More preferably, step a) of the method                 allows to identify plant species to                 Determine the agrochemical to apply.
En forma preferible, en el paso c) del método la dosis de agroquímico se pulveriza abriendo una válvula solenoide. Preferably, in step c) of the method                 the dose of agrochemical is sprayed by opening a                 solenoid valve.
En forma también preferible, las especies vegetales corresponden al cultivo y a las malezas. Also preferably, the species                 Vegetables correspond to the crop and weeds.
En forma más preferible aun, el agroquímico es un herbicida, un fertilizante foliar, un insecticida, un fungicida, o un compuesto protector. More preferably, the agrochemical is                 a herbicide, a foliar fertilizer, an insecticide, a                 fungicide, or a protective compound.
En forma todavía más preferible aun, el paso b) además permite determinar el estado del cultivo. Even more preferably, the step                 b) also allows to determine the state of the crop.
Adicionalmente, el paso c) del método comprende seleccionar un herbicida específico de un conjunto de herbicidas para cada maleza identificada en el paso a) respecto del cultivo. Additionally, step c) of the method                 comprises selecting a specific herbicide from a                 set of herbicides for each weed identified in                 step a) regarding the crop.
También adicionalmente, el paso c) del método comprende seleccionar un fertilizante foliar específico de un conjunto de fertilizantes foliares para el cultivo identificado en el paso a) según su estado. Also additionally, step c) of the method                 comprises selecting a specific foliar fertilizer                 of a set of foliar fertilizers for cultivation                 identified in step a) according to their status.
En forma adicional, el paso c) del método comprende seleccionar un insecticida específico de un conjunto de insecticidas para el cultivo identificado en el paso a) según su estado de deterioro. Additionally, step c) of the method                 comprises selecting a specific insecticide from a                 set of insecticides for the crop identified in                 step a) according to its state of deterioration.
Todavía en forma adicional, el paso c) del método comprende seleccionar un fungicida específico de un conjunto de fungicidas para el cultivo identificado en el paso a) según su estado de deterioro. Still additionally, step c) of the                 method comprises selecting a specific fungicide from                 a set of fungicides for the identified crop                 in step a) according to its state of deterioration.
Además, el paso c) del método comprende seleccionar un compuesto protector específico de un conjunto de compuestos protectores para el cultivo identificado en el paso a) según su estado. In addition, step c) of the method comprises                 select a specific protective compound from a                 set of protective compounds for cultivation                 identified in step a) according to their status.
En forma más específica, el método para la detección e identificación de especies vegetales en un cultivo agrícola comprende los pasos de: a) obtener un Flujo de Video en Tiempo Real desde una pluralidad de cámaras posicionadas a lo largo de alas del conjunto autónomo de dispositivos para la detección e identificación de especies vegetales en un cultivo agrícola para la aplicación de agroquímicos en forma selectiva; b) procesar cada uno de los fotogramas obtenidos; c) convertir el fotograma a una matriz numérica con la representación de los colores RGB (del inglés Red-Green-Blue) de cada pixel de la imagen; d) recortar la matriz para seleccionar el área del fotograma a procesar; e) asignar un área de la imagen a los aspersores que correspondan, de manera que si se detecta maleza en esa área, se le envía la orden de apertura al aspersor que corresponda; f) aplicar 4 filtros para obtener una máscara de los colores predominantes de las especies vegetales a identificar; g) identificar los contornos de la imagen sobre la máscara de color guardando la información de la posición de cada uno; h) calcular estimativamente la velocidad de desplazamiento con las posiciones de los contornos encontrados en el fotograma actual y las posiciones de esos mismos contornos en un fotograma anterior; i) obtener una velocidad de pixeles por fotograma y hacer el pasaje de la velocidad a metros por segundo utilizando una relación pixel-metros y una relación fotogramas-segundos; j) recortar la imagen en cuadrados pequeños que contienen los contornos; k) cambiar el tamaño a cada uno de los cuadrados recortados de una parte de la imagen a un tamaño preferente; l) enviar los cuadrados de imágenes a la primera capa (capa de entrada) de la red neuronal convolucional previamente entrenada para su análisis y categorización; m) procesar cada cuadrado dentro de la Red Neuronal previamente entrenada, en donde se toma la imagen, se realiza en paralelo una pasada ( forward ) y se envía el resultado a la capa de salida de la red neuronal; n) obtener el resultado de la última capa (capa de salida) de la red neuronal convolucional; ñ) determinar el agroquímico a utilizar en función del valor numérico de la especie vegetal identificada; o) correlacionar la representación completa de las especies vegetales identificadas con el agroquímico necesario a aplicar en cada una de las plantas que aparecen en el fotograma procesado que se obtuvo del flujo de video principal, y p) enviar la orden de acuerdo a la especie identificada para cada imagen procesada por la red neuronal que está asociada a un aspersor por el área en donde se encuentra, de manera que la aspersión quede exactamente sobre la especie vegetal a tratar; More specifically, the method for the detection and identification of plant species in an agricultural crop comprises the steps of: a) obtaining a Real Time Video Stream from a plurality of cameras positioned along the wings of the autonomous set of devices for the detection and identification of plant species in an agricultural crop for the application of agrochemicals in a selective way; b) process each of the frames obtained; c) convert the frame to a numerical matrix with the representation of RGB (Red-Green-Blue English) colors of each pixel in the image; d) trim the matrix to select the area of the frame to be processed; e) assign an area of the image to the corresponding sprinklers, so that if weeds are detected in that area, the opening order is sent to the corresponding sprinkler; f) apply 4 filters to obtain a mask of the predominant colors of the plant species to be identified; g) identify the contours of the image on the color mask by saving the information of the position of each one; h) estimate the travel speed with the positions of the contours found in the current frame and the positions of those same contours in a previous frame; i) obtain a pixel speed per frame and make the speed passage in meters per second using a pixel-meter ratio and a frame-second ratio; j) crop the image into small squares that contain the contours; k) resize each of the squares cut out of a part of the image to a preferred size; l) send the squares of images to the first layer (input layer) of the previously trained convolutional neural network for analysis and categorization; m) processing each square within the previously trained neural network, wherein the image is taken, it is performed in parallel in one pass (forward) and the result is sent to the output layer of the neural network; n) obtain the result of the last layer (output layer) of the convolutional neural network; ñ) determine the agrochemical to be used based on the numerical value of the identified plant species; o) correlate the complete representation of the plant species identified with the agrochemical necessary to apply in each of the plants that appear in the processed frame that was obtained from the main video stream, and p) send the order according to the species identified for each image processed by the neural network that is associated with a sprinkler by the area where it is located, so that the spray is exactly on the plant species to be treated;
En forma preferida, en el paso f) del método anterior se separa elementos extraños como tierra, residuo vegetal seco y piedras de las especies vegetales, en donde: un primer filtro transforma la matriz a formato color YCbCr; un segundo filtro resta dos canales en el formato RGB dependiendo del color a filtrar; un tercer filtro es una operación lógica AND (bit a bit) entre los resultados de los filtros anteriores primero y segundo; y un cuarto filtro aplica al resultado anterior un blur (desenfoque gaussiano), convirtiendo la imagen a blanco y negro y eliminando el ruido. Preferably, in step f) of the method                 previous separates strange elements like earth,                 dry vegetable residue and species stones                 vegetables, where: a first filter transforms the                 YCbCr color format matrix; a second filter subtracts                 two channels in the RGB format depending on the color to                 filter; a third filter is a logical AND operation                 (bit by bit) between the filter results                 previous first and second; and a fourth filter applies                 to the previous result a blur (Gaussian blur),                 converting the image to black and white and removing the                 noise.
La [Fig.1a] representa esquemáticamente la manera en que los datos pasan a través de diferentes tipos de pruebas, con el fin de tomar una decisión en una red de tres capas. [Fig.1a] schematically represents the                 way the data goes through different                 types of tests, in order to make a decision in                 A three layer network.
La [Fig.1b] representa esquemáticamente la manera en que las capas de entrada de la red contienen neuronas que codifican los valores de los píxeles de entrada. [Fig. 1b] schematically represents the                 way in which the input layers of the network contain                 neurons that encode pixel values from                 entry.
La [Fig.1c] representa esquemáticamente una arquitectura posible con rectángulos que denotan las subredes con el objeto de mostrar cómo funcionan las redes neuronales convolucionales. [Fig.1c] schematically represents a                 possible architecture with rectangles denoting the                 subnets in order to show how the                 convolutional neural networks.
La [Fig.2a] representa esquemáticamente una rápida detección para clasificar plantas que permite distinguir el cultivo de las malezas. [Fig. 2a] schematically represents a                 rapid detection to classify plants that allows                 distinguish weed cultivation.
La [Fig.2b] representa esquemáticamente el análisis de área y perímetro que realiza el sistema una vez detectada la maleza. [Fig.2b] schematically represents the                 area and perimeter analysis performed by the system a                 Once weeds are detected.
La [Fig.2c] representa esquemáticamente la pulverización con precisión y exactitud que realiza el sistema sobre la maleza una vez detectada la especie vegetal y su tamaño. [Fig.2c] schematically represents the                 spray with precision and accuracy that performs the                 weed system once the species is detected                 Vegetable and its size.
La [Fig.3] representa un fotograma de un Flujo de Video en Tiempo Real obtenido a partir de una cámara. [Fig.3] represents a frame of a Flow                 Real Time Video obtained from a camera.
La [Fig.4] representa una tabla de equivalencias entre cantidad de obturaciones (o shutters) por segundo y la velocidad del vehículo en movimiento que lleva las cámaras. [Fig. 4] represents a table of                 equivalences between number of seals (or                 shutters) per second and vehicle speed in                 movement that carries the cameras.
La [Fig.5] representa el fotograma de la FIG. 3 convertido a una matriz numérica con la representación de los colores RGB (del inglés Red-Green-Blue) de cada pixel de la imagen. [Fig. 5] represents the frame of FIG.                 3 converted to a numeric matrix with representation                 of RGB (Red-Green-Blue English) colors of each                 Image pixel
La [Fig.6] representa un tamaño ideal de franja horizontal central de la imagen que se va a procesar del fotograma de la [FIG.3]. [Fig. 6] represents an ideal size of                 central horizontal strip of the image to be                 process from the frame of [FIG.3].
La [Fig.7a] representa una transformación que efectúa un primer filtro de la matriz a formato color YCbCr. [Fig. 7a] represents a transformation that                 make a first matrix filter in color format                 YCbCr.
La [Fig.7b] representa una transformación que efectúa un segundo filtro restando dos canales en el formato RGB dependiendo del color a filtrar. [Fig.7b] represents a transformation that                 makes a second filter by subtracting two channels in the                 RGB format depending on the color to filter.
La [Fig.7c] representa una transformación lógica AND (bit a bit) entre los resultados de los dos filtros anteriores según se muestra en las [FIG.7a] y [FIG.7b] que efectúa un tercer filtro. [Fig.7c] represents a transformation                 AND logic (bit by bit) between the results of the two                 previous filters as shown in [FIG.7a] and                 [FIG.7b] that performs a third filter.
La [Fig.7d1] representa una transformación de un cuarto filtro que aplica al resultado anterior de la [FIG. 7c] un blur o desenfoque gaussiano. [Fig.7d1] represents a transformation of                 a fourth filter that applies to the previous result of the                 [FIG. 7c] a Gaussian blur.
La [Fig.7d2] representa la conversión de la imagen de la [FIG.7d1] a blanco y negro. [Fig.7d2] represents the conversion of the                 Image from [FIG.7d1] to black and white.
La [Fig.7d3] representa la eliminación del ruido de la [FIG.7d2] que corresponde a los puntos blancos dispersos. [Fig.7d3] represents the elimination of                 noise of [FIG.7d2] corresponding to the points                 scattered whites.
La [Fig.8] representa la identificación de los contornos de la imagen sobre la máscara de color. [Fig. 8] represents the identification of                 Contours of the image on the color mask.
La [Fig.9] representa la imagen recortada en cuadrados pequeños de aproximadamente un mismo tamaño que contienen los contornos de la [FIG.8]. [Fig. 9] represents the image cropped in                 small squares of approximately the same size                 containing the contours of [FIG. 8].
La [Fig.10] representa a uno de los cuadrados recortados de la [FIG.9] con el tamaño de la imagen cambiada a un tamaño preferente de 256 x 256 pixeles. [Fig. 10] represents one of the squares                 cropped from [FIG. 9] with image size                 changed to a preferred size of 256 x 256 pixels.
La [Fig.11a] representa a otro de los cuadrados recortados de la [FIG.9] correspondiente a una maleza presente en cultivo. [Fig. 11a] represents another of the                 squares cut out of [FIG. 9] corresponding to a                 weed present in cultivation.
La [Fig.11b] representa una secuencia en donde el cuadrado de la [FIG.11a] de una imagen de 256 x 256 píxeles es enviado a la primera capa o capa de entrada de la red neuronal convolucional previamente entrenada para su análisis y categorización hasta llegar a una última capa. [Fig. 11b] represents a sequence where                 the square of [FIG. 11a] of a 256 x 256 image                 pixels is sent to the first layer or input layer                 of the previously trained convolutional neural network                 for analysis and categorization until you reach a                 last layer
La [Fig.12] representa un resultado en valor promedio de acierto de cada una de las categorías obtenido de la última capa o capa de salida de la red neuronal convolucional según la secuencia de la [FIG.11a]. [Fig. 12] represents a result in value                 average success of each of the categories                 obtained from the last layer or network exit layer                 convolutional neuronal according to the sequence of the                 [FIG. 11a].
La [Fig.13] es una representación completa del fotograma procesado del flujo de video principal según la secuencia de la [FIG.11a], en donde se observan las especies vegetales no deseadas identificadas enmarcadas en rojo para aplicar un agroquímico necesario en cada una de las malezas. [Fig. 13] is a complete representation of the                 processed frame of the main video stream according to                 the sequence of [FIG. 11a], where the                 unwanted plant species identified framed                 in red to apply a necessary agrochemical in each                 One of the weeds.
La [Fig.14] representa un modelo AlexNet que consta de 5 capas convolucionales según la arquitectura elegida para el entrenamiento de la red Caffe. [Fig. 14] represents an AlexNet model that                 It consists of 5 convolutional layers according to the architecture                 chosen for the training of the Caffe network.
La [Fig.15] representa esquemáticamente una forma preferida de realización del conjunto autónomo de dispositivos para la detección e identificación de especies vegetales según la presente invención, mostrando cómo se encuentran vinculadas entre sí las placas con un microcontrolador y entorno de desarrollo IDE (acrónimo del inglés “Integrated Drive Electronics”, Electrónica de Control Integrada) con entradas y salidas analógicas y digitales Arduino a la CPU (acrónimo del inglés “Central Processing Unit”, Unidad Procesadora Central) a través de un puerto USB (acrónimo del inglés “Universal Serial Bus”, Bus Serial Universal). A las placas Arduino se encuentran conectadas las cámaras, los sensores de ultrasonido y los aspersores. [Fig. 15] schematically represents a                 preferred embodiment of the autonomous assembly of                 devices for the detection and identification of                 plant species according to the present invention,                 showing how the                 boards with a microcontroller and development environment                 IDE (acronym for "Integrated Drive Electronics")                 Integrated Control Electronics) with inputs and outputs                 analog and digital Arduino to the CPU (acronym for                 English "Central Processing Unit", Processing Unit                 Central) through a USB port (acronym for English                 "Universal Serial Bus", Universal Serial Bus). At                 Arduino boards are connected cameras, the                 Ultrasound sensors and sprinklers.
La [Fig.16] representa un detalle del extremo de un brazo lateral de una unidad fumigadora donde puede observarse instaladas las cámaras inclinadas hacia adelante a un ángulo de aproximadamente 45 grados respecto del eje vertical inferior y una pluralidad de aspersores asociados. [Fig. 16] represents a detail of the end                 of a side arm of a spraying unit where you can                 observe the cameras tilted towards                 forward at an angle of approximately 45 degrees                 with respect to the lower vertical axis and a plurality of                 associated sprinklers.
La [Fig.17] representa esquemáticamente una cámara inclinada hacia adelante a un ángulo α de aproximadamente 45 grados respecto del eje vertical inferior que está instalada en un brazo lateral de una unidad fumigadora mostrando la toma de imagen y tamaño aproximado de la escena a procesar con esa declinación. [Fig.17] schematically represents a                 camera tilted forward at an angle α of                 approximately 45 degrees from the vertical axis                 bottom that is installed on a side arm of a                 spray unit showing image and size                 approximate of the scene to process with that decline.
La presente invención está constituida principalmente por un conjunto autónomo de dispositivos para la detección e identificación de especies vegetales en un cultivo agrícola para la aplicación de agroquímicos en forma selectiva. El conjunto consta de múltiples cámaras que deben estar dispuestas sobre el ala o brazo del botalón de, por ejemplo, una máquina pulverizadora, un dispositivo de detección e identificación de especies vegetales, un circuito electrónico encargado de gestionar la apertura y cierre de los picos aspersores de producto agroquímico, y un sensor de ultrasonido por cada cámara del conjunto. The present invention is constituted                 mainly by an autonomous set of devices                 for the detection and identification of plant species                 in an agricultural crop for the application of                 Agrochemicals selectively. The set consists of                 multiple cameras that must be arranged on the                 wing or arm of the boom of, for example, a machine                 sprayer, a detection device and                 plant species identification, a circuit                 electronic responsible for managing the opening and closing                 of the agrochemical product sprinkler peaks, and a                 Ultrasound sensor for each chamber in the set.
En forma más específica, es el objeto de la presente invención un conjunto autónomo de dispositivos para la detección e identificación de especies vegetales en un cultivo agrícola para la aplicación de agroquímicos en forma selectiva, dicho conjunto comprende: un dispositivo de aplicación de productos químicos que comprende al menos un recipiente contenedor de agroquímicos vinculado en comunicación fluida con una pluralidad de picos aspersores a través de una válvula, una pluralidad de cámaras que están dispuestas sobre el vehículo autónomo y enfocadas al cultivo, en donde cada cámara cuenta con un sensor de ultrasonido asociado para la medición de altura al cultivo en tiempo real, y en donde cada cámara está inclinada hacia adelante a 45 grados respecto de la normal; un dispositivo de detección e identificación de especies vegetales conectado a las cámaras para recibir información de video de las mismas, un circuito electrónico encargado de gestionar la apertura y cierre de las válvulas de los picos aspersores de producto agroquímico conectado al dispositivo de detección que gestiona a través de dicho circuito la apertura y cierre de las válvulas de los picos aspersores, y en donde, el conjunto de dispositivos se encuentra montado sobre un vehículo de transporte. More specifically, it is the object of the                 present invention an autonomous set of devices                 for the detection and identification of plant species                 in an agricultural crop for the application of                 agrochemicals selectively said set                 comprises: a product application device                 chemicals comprising at least one container container                 of agrochemicals linked in fluid communication with a                 plurality of sprinkler peaks through a valve,                 a plurality of cameras that are arranged on the                 autonomous vehicle and focused on cultivation, where each                 camera has an associated ultrasound sensor for                 the height measurement to the crop in real time, and in                 where each camera is tilted forward at 45                 degrees from normal; a device of                 detection and identification of plant species                 connected to the cameras to receive information from                 video of them, an electronic circuit in charge                 to manage the opening and closing of the valves of the                 sprinkler peaks of agrochemicals connected to                 detection device that manages through said                 circuit the opening and closing of the valves of the                 sprinkler peaks, and where, the set of                 devices is mounted on a vehicle of                 transport.
Las [FIG.15], [FIG.16] y [FIG.17] muestran diagramas y esquemas del conjunto autónomo de dispositivos para la detección e identificación de especies vegetales en un cultivo agrícola para la aplicación de agroquímicos en forma selectiva según una forma preferida de la presente invención. [FIG. 15], [FIG. 16] and [FIG. 17] show                 diagrams and diagrams of the autonomous set of                 devices for the detection and identification of                 plant species in an agricultural crop for                 application of agrochemicals selectively according to a                 preferred form of the present invention.
Asimismo, el vehículo de transporte es un vehículo autopropulsado o un vehículo de arrastre. Particularmente, el vehículo autopropulsado es un vehículo para fumigación con brazos laterales dispuestos perpendicularmente al mismo (mosquito). Also, the transport vehicle is a                 self-propelled vehicle or a tow vehicle.                 Particularly, the self-propelled vehicle is a                 fumigation vehicle with side arms arranged                 perpendicular to it (mosquito).
El dispositivo de detección e identificación consta de un procesador que comprende una herramienta basada en software informático desarrollado en lenguaje C++, y la utilización del framework de visión artificial OpenCV, y el framework de redes neuronales convolucionales “Caffe” de Berkeley Vision and Learning Center. Mediante la utilización de dicha herramienta se puede lograr el reconocimiento de las distintas especies vegetales con un 96% de efectividad. The detection and identification device                 consists of a processor that comprises a tool                 based on computer software developed in language                 C ++, and the use of the artificial vision framework                 OpenCV, and the neural network framework                 convolutional “Caffe” by Berkeley Vision and Learning                 Center By using this tool you                 can achieve recognition of different species                 Vegetables with 96% effectiveness.
Fases de la Red Neuronal ConvolucionalPhases of the Convolutionary Neural Network
En la operatoria de una red neuronal podemos distinguir claramente dos fases o modos de operación: (i) una fase de aprendizaje o entrenamiento y (ii) una fase de operación o ejecución. In the operation of a neural network we can                 clearly distinguish two phases or modes of operation:                 (i) a learning or training phase and (ii) a                 operation or execution phase.
Durante la primera fase, la fase de aprendizaje, la red es entrenada para realizar un determinado tipo de procesamiento. Una vez alcanzado un nivel de entrenamiento adecuado, se pasa a la fase de operación, donde la red es utilizada para llevar a cabo la tarea para la cual fue entrenada. During the first phase, the phase of                 learning, the network is trained to perform a                 certain type of processing Once reached a                 adequate training level, you go to the phase of                 operation, where the network is used to carry out                 the task for which she was trained.
Entrenamiento o Aprendizaje de la Red Neuronal Convolucional: Training or Learning of the Neural Network                 Convolutionary:
A continuación se detalla cómo es la arquitectura utilizada de la red neuronal convolucional, y cómo ésta es entrenada para el conocimiento y clasificación de las distintas especies vegetales conocidas en campos agrícolas. Below is detailed how is the                 architecture used of the convolutional neural network,                 and how it is trained for knowledge and                 classification of different plant species                 known in agricultural fields.
Se suministra a la Red Neuronal Convolucional un conjunto de datos (Data Set) de un mínimo de 50.000 fotografías de las diferentes especies vegetales que se desea identificar durante el entrenamiento, teniendo en cuenta la región especifica del planeta y las especies predominantes en dicho lugar. Estas fotografías son cargadas a través de diferentes carpetas o directorios que representan la categoría a la que pertenece cada una de ellas. Las distintas fotografías son suministradas por ejemplo en formato JPEG y en un tamaño mínimo de 80 x 80 pixeles, preferentemente en un tamaño recomendable de 256 x 256 pixeles, en las cuales se incluyen por cada especie diferentes situaciones de la plántula a saber hojas sueltas, hojas parciales, planta entera, flores, planta en su contexto, etc. La arquitectura elegida para el entrenamiento de la red Caffe es el modelo AlexNet que consta de 5 capas convolucionales [Ver FIG. 14]. It is supplied to the Convolutionary Neural Network                 a set of data (Data Set) of a minimum of 50,000                 photographs of the different plant species that                 you want to identify during training, taking into                 account the specific region of the planet and the species                 predominant in that place. These photographs are                 loaded through different folders or directories                 that represent the category to which each one belongs                 of them. The different photographs are supplied                 for example in JPEG format and at a minimum size of 80                 x 80 pixels, preferably in a recommended size                 256 x 256 pixels, which are included for each                 species different situations of the seedling namely                 loose leaves, partial leaves, whole plant, flowers,                 plant in context, etc. The architecture chosen for                 Caffe network training is the AlexNet model                 consisting of 5 convolutional layers [See FIG. 14].
Para el funcionamiento y entrenamiento de la red neuronal convolucional es necesario tener una computadora (CPU) con arquitectura x86 y una placa gráfica de video Nvidia con soporte CUDA 7.0 en adelante, con al menos 2500 CUDAs de capacidad de procesamiento, lo cual permite realizar en paralelo la ejecución de operaciones aritméticas e incrementar el poder de cálculo a través de la utilización de la unidad GPU (unidad de procesamiento gráfico). Una vez ejecutado el entrenamiento, el sistema devolverá un archivo “deploy.prototxt” que se usará de ahora en más, dentro del software de procesamiento de detección e identificación de especies vegetales. For the operation and training of the                 convolutional neural network is necessary to have a                 computer (CPU) with x86 architecture and a board                 Nvidia video graphic with CUDA 7.0 support in                 forward, with at least 2500 CUDAs of capacity                 processing, which allows to perform in parallel the                 execution of arithmetic operations and increase the                 computing power through the use of the unit                 GPU (graphics processing unit). Once executed                 the training, the system will return a file                 "Deploy.prototxt" to be used from now on, within                 of detection processing software e                 Identification of plant species.
Una vez finalizada la fase de aprendizaje o entrenamiento, la red genera un archivo “ deploy.prototxt ”, que es básicamente el modelo de aprendizaje, y de esta manera ya puede ser utilizada para realizar la tarea para la que fue entrenada. Una de las principales ventajas que posee este modelo es que la red aprende la relación existente entre los datos, adquiriendo la capacidad de generalizar conceptos. De este modo, una red neuronal convolucional puede operar con información que no le fue presentada durante la fase de entrenamiento. Once the learning or training phase is finished, the network generates a “ deploy.prototxt ” file, which is basically the learning model, and in this way it can already be used to perform the task for which it was trained. One of the main advantages of this model is that the network learns the relationship between the data, acquiring the ability to generalize concepts. In this way, a convolutional neural network can operate with information that was not presented during the training phase.
Acerca del funcionamiento del sistema de clasificación se incorpora aquí a modo de referencia las enseñanzas de la solicitud de patente US 2015036920 A1 publicada el 5 de febrero de 2015 y solicitada por FUJITSU LTD., la cual se refiere a un clasificador basado en redes neurales convolucionadas, un método de clasificación mediante el uso de un clasificador basado en redes neurales convolucionadas y un método para la formación del clasificador basado en redes neurales convolucionadas. El clasificador basado en redes neurales convolucionadas comprende: una pluralidad de capas de mapeo característica, al menos un mapa de características en al menos una de una pluralidad de capas de mapeo de función que se divide en una pluralidad de regiones; y una pluralidad de plantillas convolucionales correspondientes a la pluralidad de regiones, respectivamente, cada una de las plantillas convolucionales se utiliza para la obtención de un valor de respuesta de una neurona en la región correspondiente. About the operation of the system                 classification is incorporated here by way of reference                 teachings of patent application US 2015036920 A1                 published on February 5, 2015 and requested by                 FUJITSU LTD., Which refers to a classifier                 based on convoluted neural networks, a method of                 classification by using a classifier based                 in convoluted neural networks and a method for                 classifier training based on neural networks                 convoluted The network based classifier                 convolved neurals comprises: a plurality of                 feature mapping layers, at least one map of                 characteristics in at least one of a plurality of                 function mapping layers that are divided into a                 plurality of regions; and a plurality of templates                 convolutional corresponding to the plurality of                 regions, respectively, each of the templates                 convolutional is used to obtain a value                 response of a neuron in the region                 correspondent.
Según la presente invención, la [FIG.1a] es un ejemplo que ilustra cómo los datos pasan a través de diferentes tipos de pruebas, con el fin de tomar una decisión en una red de tres capas. According to the present invention, [FIG.1a] is a                 example that illustrates how data passes through                 different types of tests, in order to take a                 decision in a three layer network.
La [FIG.1b] es un ejemplo que ilustra cómo las capas de entrada de la red contienen neuronas que codifican los valores de los píxeles de entrada. Los datos de esta red neuronal se forman con imágenes de 28 x 28 píxeles, por lo que la capa de entrada contiene 784 = 28 × 28 neuronas. [FIG.1b] is an example that illustrates how                 network input layers contain neurons that                 encode the values of the input pixels. The                 data from this neural network are formed with images of 28                 x 28 pixels, so the input layer contains 784                 = 28 × 28 neurons.
La [FIG.1c] es un ejemplo que ilustra una posible arquitectura, con rectángulos que denotan las subredes. Esto no pretende ser un enfoque realista para resolver el problema de detección e identificación de especies vegetales, es sólo a modo de ejemplo para comprender cómo funcionan las redes neuronales convolucionales. [FIG.1c] is an example that illustrates a                 possible architecture, with rectangles denoting the                 subnets This is not meant to be a realistic approach to                 solve the problem of detection and identification of                 plant species, it is only by way of example for                 understand how neural networks work                 convolutional
Ejemplo de Diagramación Rápida del Proceso de Detección e Identificación utilizado en la Pulverización de Herbicida de forma Selectiva sobre Malezas en una plantación de Soja. Example of Rapid Diagramming of the Process of                 Detection and Identification used in Spraying                 Herbicide Selectively on Weeds in a                 Soya plantation.
Detección: La rápida clasificación de plantas permite distinguir el cultivo de las malezas [FIG.2a]. Detection: The rapid classification of plants                 allows us to distinguish weed culture [FIG. 2a].
Análisis: El conjunto de dispositivos detecta la maleza. Su área y perímetro son calculados para descargar la dosis de agroquímico exacto en el lugar correcto [FIG.2b]. Analysis: The set of devices detects                 weed. Its area and perimeter are calculated to                 download the exact agrochemical dose in place                 correct [FIG.2b].
Pulverización: Una vez detectada la especie vegetal y su tamaño por el sistema, teniendo en cuenta la velocidad de avance del equipo, se abre la válvula solenoide dejando pasar la dosis de agroquímico, pulverizando con precisión y exactitud sobre la especie vegetal [FIG.2c]. Spraying: Once the species is detected                 vegetable and its size by the system, taking into account                 the forward speed of the equipment, the valve opens                 solenoid bypassing the dose of agrochemical,                 spraying precisely and accurately on the species                 vegetable [FIG.2c].
Accesoriamente, el conjunto de dispositivos permite determinar el estado del cultivo, y siendo el agroquímico un herbicida, un fertilizante foliar, un insecticida, un fungicida, o un compuesto protector, se puede aplicar el agroquímico adecuado según cada circunstancia. Accessory, the set of devices                 allows to determine the state of the crop, and being the                 agrochemical a herbicide, a foliar fertilizer, a                 insecticide, a fungicide, or a protective compound, is                 you can apply the appropriate agrochemical according to each                 circumstance.
Por ejemplo, el método permite seleccionar un herbicida específico de un conjunto de herbicidas para cada maleza identificada respecto del cultivo; o un fertilizante foliar específico de un conjunto de fertilizantes foliares para el cultivo identificado según su estado; o un insecticida específico de un conjunto de insecticidas para el cultivo identificado según su estado de deterioro; o un fungicida específico de un conjunto de fungicidas para el cultivo identificado según su estado de deterioro; y/o un compuesto protector específico de un conjunto de compuestos protectores para el cultivo identificado según su estado. For example, the method allows you to select a                 specific herbicide of a set of herbicides for                 each weed identified with respect to the crop; or a                 specific foliar fertilizer of a set of                 foliar fertilizers for the crop identified                 according to its state; or a specific insecticide of a                 set of insecticides for the crop identified                 according to its state of deterioration; or a specific fungicide                 of a set of fungicides for cultivation                 identified according to its state of deterioration; and / or a                 specific protective compound of a set of                 protective compounds for the identified crop                 according to your condition
Flujo de Procesamiento Paso a Paso en el Proceso de Detección e Identificación de Malezas Processing Flow Step by Step in the                 Weed Detection and Identification Process
Según la presente invención, el flujo de procesamiento paso a paso en el proceso de detección e identificación de las variedades vegetales de interés es el siguiente: 1) Se obtiene un Flujo de Video en Tiempo Real [FIG.3] desde una o varias cámaras posicionadas a lo largo de las alas o brazos de, por ejemplo, una máquina pulverizadora. Esta etapa se efectúa a 60 fotogramas x segundo o n obturaciones x segundo [FIG.4]. La cantidad de obturaciones (o shutters) por segundo depende de la velocidad del vehículo en movimiento. 2) Se procesa cada uno de los fotogramas obtenidos. 3) Se convierte el fotograma a una matriz numérica con la representación de los colores RGB (del inglés Red-Green-Blue) de cada pixel de la imagen [FIG.5]. Cada pixel tiene componentes azules, verdes y rojos. Cada uno de estos componentes tiene un rango de 0 a 255, lo que da un total de 2.563 diferentes posibles colores. 4) Se recorta la matriz para seleccionar el área del fotograma a procesar [FIG.6]. Se determina un tamaño de franja horizontal de la imagen que se va a procesar. Este área a procesar es tomado en función de la capacidad posterior de abrir el aspersor para aplicación del agroquímico exactamente sobre el área específica. El área a procesar es exactamente la franja del medio, ya que mantiene una relación óptima de distancia a la cámara, baja distorsión de la imagen y tiempo que transcurrirá entre el procesamiento y la aplicación posterior del agroquímico, y acierto en el disparo sobre la planta. 5) Se asigna un área de la imagen a los aspersores que correspondan, de manera que si se detecta maleza en ese área, se le envía la orden de apertura al aspersor que corresponda. 6) Se aplican 4 filtros para obtener una máscara de los colores predominantes de las especies vegetales a identificar. De esta manera por ejemplo separamos la tierra, residuo vegetal seco, piedras, etc. El primer filtro transforma la matriz a formato color YCbCr y hace una operación lógica entre los canales, dependiendo del color a filtrar [FIG.7a]. El segundo filtro resta dos canales en el formato RGB, dependiendo del color a filtrar [FIG.7b]. El tercer filtro es una operación lógica AND (bit a bit) entre los resultados de los dos filtros anteriores [FIG.7c]. Por último, el cuarto filtro aplica al resultado anterior un blur [FIG.7d1] o desenfoque gaussiano, se convierte la imagen a blanco y negro [FIG.7d2], y se le elimina el ruido [FIG.7d3] que son los puntos blancos dispersos. 7) Se identifican los contornos de la imagen sobre la máscara de color [FIG.8] y se guarda la información de la posición de cada uno. 8) Se hace un cálculo estimado de la velocidad con las posiciones de los contornos encontrados en el fotograma actual y las posiciones de esos mismos en un fotograma anterior. Se obtiene una velocidad de pixeles por fotograma y se utiliza una relación pixel-metros y la relación fotogramas-segundos para hacer el pasaje de la velocidad a metros por segundo. Con esa velocidad y con la distancia real de los aspersores a las plantas que se ven en la franja de la imagen que se procesa, se determina el tiempo exacto en que se debe indicar a los aspersores que rocíen si luego se detecta una maleza. 9) Se recorta la imagen en cuadrados pequeños que contienen esos contornos [FIG.9]. Si un contorno es muy ancho, se lo separa en dos horizontalmente, si un contorno es muy alto, se lo separa en dos verticalmente y si un contorno es muy grande, se lo separa en cuatro cuadrados. Finalmente se obtienen cuadrados de un mismo tamaño aproximado. 10) A cada uno de estos cuadrados recortados de una parte de la imagen se le cambia el tamaño a un tamaño preferente de 256 x 256 píxeles, que es el tamaño que trabaja internamente la red neuronal convolucional [FIG.10]. 11) Los cuadrados de imágenes de 256 x 256 pixeles [FIG.11a] son enviados a la primera capa o capa de entrada de la red neuronal convolucional previamente entrenada para su análisis y categorización [FIG.11b]. 12) Cada cuadrado es procesado dentro de la Red Neuronal, que puede procesar de a varios a la vez. Se realiza en paralelo el procesamiento y se lo ejecuta internamente en la GPU y no sobre la CPU, para lograr un gran desempeño en las operaciones aritméticas. Dentro de la red previamente entrenada, se toma la imagen y se realiza en paralelo una pasada (forward ) y se envía el resultado a la capa de salida de la red neuronal. 13) Se obtiene el resultado de la última capa o capa de salida de la red neuronal convolucional. El resultado de la capa de salida nos entrega un valor promedio de acierto de cada una de las categorías, siendo el valor más alto, la categoría de especie vegetal a la que pertenece la imagen [FIG.12]. En una de las categorías de la red neuronal se encuentran las NO especies vegetales, en la que se encuentran especies vegetales desconocidas y/o elementos a no tener en cuenta, tierra, cielo, etc. Si el resultado es esta categoría, significa que en el análisis de este cuadro de imagen no hay contenida ninguna categoría de especie vegetal conocida o pre-entrenada. 14) En función del valor numérico de la especie vegetal identificada se determina el agroquímico a utilizar. El sistema contiene una tabla con las posibles especies vegetales a identificar y su relación con el agroquímico a utilizar según diagnóstico, en caso de que corresponda su aplicación. 15) El dispositivo de detección e identificación de especies vegetales ya tiene una representación completa de las especies vegetales identificadas y el agroquímico necesario a aplicar en cada una de las plantas que aparecen en el fotograma procesado que se obtuvo del flujo de video principal [FIG.13]. 16) Para cada imagen procesada por la red neuronal, que está asociada a un aspersor por el área en donde se encuentra, se envía la orden de acuerdo a la especie identificada, de manera que la aspersión quede exactamente sobre la especie vegetal a tratar. Se hace el cálculo matemático del momento exacto de accionamiento de la orden electromecánica, teniendo en cuenta la velocidad del vehículo pulverizador y la distancia de la cámara al suelo. En función del área del fotograma procesado se acciona únicamente la válvula electromecánica que corresponde al campo de acción específico. De esta manera se evita la aspersión de producto agroquímico en los lugares que no corresponde y sólo se aplica en la planta previamente identificada. En función del agroquímico necesario, se acciona la válvula correspondiente al agroquímico específico a utilizar. Permite administrar múltiples tanques de producto agroquímico según una necesidad específica. According to the present invention, the process flow step by step in the process of detection and identification of the plant varieties of interest is as follows: 1) A Real Time Video Stream [FIG.3] is obtained from one or several cameras positioned along the wings or arms of, for example, a spraying machine. This stage is done at 60 frames per second on shutters per second [FIG. 4]. The number of shutters (or shutters) per second depends on the speed of the moving vehicle. 2) Each of the frames obtained is processed. 3) The frame is converted to a numerical matrix with the representation of RGB colors (Red-Green-Blue English) of each pixel in the image [FIG. 5]. Each pixel has blue, green and red components. Each of these components has a range of 0 to 255, which gives a total of 2,563 different possible colors. 4) The matrix is cut to select the area of the frame to be processed [FIG. 6]. A horizontal strip size of the image to be processed is determined. This area to be processed is taken according to the subsequent ability to open the sprinkler for the application of the agrochemical exactly on the specific area. The area to be processed is exactly the middle strip, since it maintains an optimal ratio of distance to the camera, low image distortion and time that will pass between the processing and subsequent application of the agrochemical, and success in the shot on the plant . 5) An area of the image is assigned to the corresponding sprinklers, so if weeds are detected in that area, the opening order is sent to the corresponding sprinkler. 6) 4 filters are applied to obtain a mask of the predominant colors of the plant species to be identified. In this way, for example, we separate the soil, dry plant residue, stones, etc. The first filter transforms the matrix to YCbCr color format and makes a logical operation between the channels, depending on the color to be filtered [FIG. 7a]. The second filter subtracts two channels in the RGB format, depending on the color to be filtered [FIG.7b]. The third filter is a logical AND (bitwise) operation between the results of the two previous filters [FIG.7c]. Finally, the fourth filter applies a blur [FIG.7d1] or Gaussian blur to the previous result, the image is converted to black and white [FIG.7d2], and the noise [FIG.7d3] which are the points is eliminated scattered whites. 7) The contours of the image on the color mask are identified [FIG. 8] and the position information of each one is saved. 8) An estimated calculation of the velocity is made with the positions of the contours found in the current frame and their positions in a previous frame. A pixel speed per frame is obtained and a pixel-meter ratio and the frame-second ratio are used to make the speed passage to meters per second. With that speed and with the actual distance of the sprinklers to the plants that are seen in the strip of the image that is processed, the exact time in which the sprinklers should be instructed to spray is determined if a weed is then detected. 9) The image is cut into small squares that contain these contours [FIG. 9]. If a contour is very wide, it is separated in two horizontally, if a contour is very high, it is separated in two vertically and if a contour is very large, it is separated into four squares. Finally, squares of the same approximate size are obtained. 10) Each of these squares cut out of a part of the image is resized to a preferred size of 256 x 256 pixels, which is the size that the convolutional neural network works internally [FIG. 10]. 11) The 256 x 256 pixel image squares [FIG. 11a] are sent to the first layer or input layer of the convolutional neural network previously trained for analysis and categorization [FIG. 11b]. 12) Each square is processed within the Neural Network, which can process several at a time. The processing is carried out in parallel and executed internally in the GPU and not on the CPU, to achieve great performance in arithmetic operations. Previously trained within the network, the picture is taken and is performed in parallel one pass (forward) and the result to the output layer of the neural network is sent. 13) The result of the last layer or output layer of the convolutional neural network is obtained. The result of the output layer gives us an average value of success of each of the categories, the highest value being the category of plant species to which the image belongs [FIG. 12]. In one of the categories of the neural network are the NO plant species, in which there are unknown plant species and / or elements not to be taken into account, earth, sky, etc. If the result is this category, it means that in the analysis of this picture box there is no category of known or pre-trained plant species. 14) Depending on the numerical value of the identified plant species, the agrochemical to be used is determined. The system contains a table with the possible plant species to be identified and their relationship with the agrochemical to be used according to diagnosis, if applicable. 15) The device for the detection and identification of plant species already has a complete representation of the identified plant species and the agrochemical required to be applied in each of the plants that appear in the processed frame that was obtained from the main video stream [FIG. 13]. 16) For each image processed by the neural network, which is associated with a sprinkler by the area where it is located, the order is sent according to the identified species, so that the spray is exactly on the plant species to be treated. The mathematical calculation of the exact moment of activation of the electromechanical order is made, taking into account the speed of the spray vehicle and the distance from the chamber to the ground. Depending on the area of the processed frame, only the electromechanical valve corresponding to the specific field of action is activated. This avoids the spraying of agrochemicals in the places that do not apply and only applies to the previously identified plant. Depending on the required agrochemical, the valve corresponding to the specific agrochemical to be used is activated. It allows to administer multiple tanks of agrochemical product according to a specific need.
Se realizó un ensayo a campo del conjunto autónomo de dispositivos para la detección e identificación de especies vegetales en un cultivo agrícola para la aplicación de agroquímicos en forma selectiva en la localidad de Las Rosas, Provincia de Santa Fe, sobre un lote de 20 hectáreas sembradas con soja. A field test of the whole was carried out                     Autonomous device for detection and                     identification of plant species in a crop                     agricultural for the application of agrochemicals in the form                     selective in the town of Las Rosas, Province of                     Santa Fe, on a lot of 20 hectares planted                     with soy.
El herbicida seleccionado para ser aplicado fue glifosato (RoundUp) a aproximadamente 1,4 litros por hectárea en promedio. The herbicide selected to be                     applied was glyphosate (RoundUp) to approximately                     1.4 liters per hectare on average.
Se utilizó una fumigadora autónoma tipo mosquito (Pla, modelo MAP II 3250) compuesta por un tanque de 3250 litros, en donde los brazos laterales comprendían montada una línea de pastillas pulverizadoras de la marca TeeJet, comandadas con electroválvulas conectadas directamente a la computadora que controla la aplicación de la dosis de herbicida. An autonomous type sprayer was used                     mosquito (Pla, MAP II 3250 model) composed of a                     3250 liter tank, where the side arms                     they included a line of pads mounted                     TeeJet brand sprayers, commanded with                     solenoid valves connected directly to the                     computer that controls dose application                     of herbicide.
La altura de los picos y sensores respecto del piso fue de 1 metro. The height of the peaks and sensors with respect                     of the floor was 1 meter.
La velocidad de propulsión de la fumigadora fue de aproximadamente 16 km/h durante toda la aplicación. The propulsion speed of the                     fumigator was approximately 16 km / h during                     The whole application.
La aplicación del herbicida sobre las malezas del cultivo de soja se realizó a las 10 horas de la mañana.  The herbicide application on the                     soybean weed was made at 10                     morning hours
Se empleó una cantidad de 12 cámaras con sensores distribuidas uniformemente a lo largo del ala del botalón de 28 metros de largo. A quantity of 12 cameras was used with                     sensors distributed evenly throughout the                     wing of the boom 28 meters long.
El lote elegido para el ensayo estaba cultivado con soja de 4 semanas post emergencia y poseía un porcentaje bajo en cantidad de malezas y alta concentración "manchoneo", esto es malezas distribuidas al azar en manchones. The batch chosen for the trial was                     cultivated with 4-week post-emergence soybeans and                     it had a low percentage of weeds and                     high concentration "staining", this is weed                     randomly distributed in patches.
A partir del ensayo realizado a campo mediante la utilización del conjunto autónomo de dispositivos según el presente invento, se pudo detectar la presencia de malezas sobre el cultivo con un porcentaje de certeza que varió entre 76% y 92%, en donde el nivel de acierto dependió de los movimientos de la maquinaria dentro del cultivo y de la incidencia de la iluminación (luz y sombra) sobre el sensor detector. From the field test                     by using the autonomous set of                     devices according to the present invention, it was possible                     detect the presence of weeds on the crop                     with a certainty percentage that varied between 76% and                     92%, where the level of success depended on the                     machinery movements within the crop and of                     the incidence of lighting (light and shadow) on                     The detector sensor.
El porcentaje de ahorro obtenido en la aplicación del herbicida, al haberse aplicado únicamente sobre las malezas detectadas llego al 86% de producto sobre lo que hubiera sido una aplicación de cobertura total a 2 litros por hectárea. The percentage of savings obtained in the                     herbicide application, when applied                     only on weeds detected reached 86%                     of product on what would have been an application                     of total coverage at 2 liters per hectare.

Claims (19)

  1. Un conjunto autónomo de dispositivos para la detección e identificación de especies vegetales en un cultivo agrícola para la aplicación de agroquímicos en forma selectiva, dicho conjunto CARACTERIZADO PORQUE comprende: un dispositivo de aplicación de productos químicos que comprende al menos un recipiente contenedor de agroquímicos vinculado en comunicación fluida con una pluralidad de picos aspersores a través de una válvula, una pluralidad de cámaras que están dispuestas sobre el vehículo autónomo y enfocadas al cultivo, en donde cada cámara cuenta con un sensor de ultrasonido asociado para la medición de altura al cultivo en tiempo real, y en donde cada cámara está inclinada hacia adelante a 45 grados respecto de la normal; un dispositivo de detección e identificación de especies vegetales conectado a las cámaras para recibir información de video de las mismas, un circuito electrónico encargado de gestionar la apertura y cierre de las válvulas de los picos aspersores de producto agroquímico conectado al dispositivo de detección que gestiona a través de dicho circuito la apertura y cierre de las válvulas de los picos aspersores, y en donde, el conjunto de dispositivos se encuentra montado sobre un vehículo de transporte. A stand-alone set of devices for the                 detection and identification of plant species in a                 agricultural cultivation for the application of agrochemicals in                 selectively, said set CHARACTERIZED BECAUSE                 comprises: a product application device                 chemicals comprising at least one container container                 of agrochemicals linked in fluid communication with a                 plurality of sprinkler peaks through a valve,                 a plurality of cameras that are arranged on the                 autonomous vehicle and focused on cultivation, where each                 camera has an associated ultrasound sensor for                 the height measurement to the crop in real time, and in                 where each camera is tilted forward at 45                 degrees from normal; a device of                 detection and identification of plant species                 connected to the cameras to receive information from                 video of them, an electronic circuit in charge                 to manage the opening and closing of the valves of the                 sprinkler peaks of agrochemicals connected to                 detection device that manages through said                 circuit the opening and closing of the valves of the                 sprinkler peaks, and where, the set of                 devices is mounted on a vehicle of                 transport.
  2. El conjunto autónomo de la cláusula 1, CARACTERIZADO PORQUE el vehículo de transporte es un vehículo autopropulsado o un vehículo de arrastre. The autonomous set of clause 1,                 CHARACTERIZED BECAUSE the transport vehicle is a                 self-propelled vehicle or a tow vehicle.
  3. El conjunto autónomo de dispositivos de la cláusula 2, CARACTERIZADO PORQUE el vehículo autopropulsado es un vehículo para fumigación con brazos laterales dispuestos perpendicularmente al mismo (mosquito). The autonomous set of devices of the                 clause 2, CHARACTERIZED BECAUSE the vehicle                 self-propelled is a vehicle for fumigation with arms                 sides arranged perpendicularly to it                 (mosquito).
  4. El conjunto autónomo de dispositivos de cualquiera de las cláusulas 1 a 3, CARACTERIZADO PORQUE el dispositivo de detección e identificación consta de un procesador. The autonomous set of devices                 any of clauses 1 to 3, CHARACTERIZED BECAUSE                 The detection and identification device consists of                 a processor
  5. El conjunto autónomo de dispositivos de la cláusula 4, CARACTERIZADO PORQUE el procesador comprende una herramienta basada en software informático desarrollado en lenguaje C++, un framework de visión artificial, y un framework de redes neuronales convolucionales. The autonomous set of devices of the                 clause 4, CHARACTERIZED BECAUSE the processor comprises                 a tool based on computer software                 developed in C ++ language, a vision framework                 artificial, and a neural network framework                 convolutional
  6. Un método para la detección e identificación de especies vegetales en un cultivo agrícola para la aplicación de agroquímicos en forma selectiva con el conjunto autónomo de dispositivos de cualquiera de las cláusulas 1 a 5, dicho método CARACTERIZADO PORQUE comprende los pasos de: a) detectar y clasificar especies vegetales en un cultivo agrícola durante el recorrido del conjunto autónomo de dispositivos a través del cultivo; b) analizar la información obtenida en a) determinando área y perímetro de las malezas; y c) pulverizar la dosis adecuada de un agroquímico en el lugar correcto teniendo en cuenta la velocidad de avance del equipo. A method for the detection and identification of                 plant species in an agricultural crop for                 application of agrochemicals selectively with the                 autonomous set of devices of any of the                 clauses 1 to 5, said method CHARACTERIZED BECAUSE                 Understand the steps of: a) detect and classify                 plant species in an agricultural crop during                 travel of the autonomous set of devices through                 of the crop; b) analyze the information obtained in a)                 determining area and perimeter of weeds; and c)                 spray the appropriate dose of an agrochemical in the                 right place considering forward speed                 of the team.
  7. El método para la detección e identificación de especies vegetales en un cultivo agrícola de la cláusula 6, CARACTERIZADO PORQUE el paso a) permite distinguir el cultivo de las malezas. The method for the detection and identification of                 plant species in an agricultural crop clause                 6, CHARACTERIZED BECAUSE step a) allows to distinguish the                 weed cultivation
  8. El método para la detección e identificación de especies vegetales en un cultivo agrícola de la cláusula 6 ó 7, CARACTERIZADO PORQUE el paso a) permite identificar las especies vegetales para determinar el agroquímico a aplicar. The method for the detection and identification of                 plant species in an agricultural crop clause                 6 or 7, CHARACTERIZED BECAUSE step a) allows                 identify plant species to determine the                 agrochemical to apply.
  9. El método para la detección e identificación de especies vegetales en un cultivo agrícola de cualquiera de las cláusulas 6 a 8, CARACTERIZADO PORQUE en el paso c) la dosis de agroquímico se pulveriza abriendo una válvula solenoide. The method for the detection and identification of                 plant species in an agricultural crop of any                 of clauses 6 to 8, CHARACTERIZED BECAUSE in step                 c) the dose of agrochemical is sprayed by opening a                 solenoid valve.
  10. El método para la detección e identificación de especies vegetales en un cultivo agrícola de cualquiera de las cláusulas 6 a 9, CARACTERIZADO PORQUE las especies vegetales corresponden al cultivo y a las malezas. The method for the detection and identification of                 plant species in an agricultural crop of any                 of clauses 6 to 9, CHARACTERIZED BECAUSE the                 plant species correspond to the crop and                 weeds.
  11. El método para la detección e identificación de especies vegetales en un cultivo agrícola de cualquiera de las cláusulas 6 a 9, CARACTERIZADO PORQUE el agroquímico es un herbicida, un fertilizante foliar, un insecticida, un fungicida, o un compuesto protector. The method for the detection and identification of                 plant species in an agricultural crop of any                 of clauses 6 to 9, CHARACTERIZED BECAUSE the                 agrochemical is a herbicide, a foliar fertilizer, a                 insecticide, a fungicide, or a protective compound.
  12. El método para la detección e identificación de especies vegetales en un cultivo agrícola de cualquiera de las cláusulas 6 a 11, CARACTERIZADO PORQUE el paso b) además permite determinar el estado del cultivo. The method for the detection and identification of                 plant species in an agricultural crop of any                 of clauses 6 to 11, CHARACTERIZED BECAUSE step b)                 It also allows to determine the state of the crop.
  13. El método para la detección e identificación de especies vegetales en un cultivo agrícola de la cláusula 11 ó 12, CARACTERIZADO PORQUE el paso c) comprende además seleccionar un herbicida específico de un conjunto de herbicidas para cada maleza identificada en el paso a) respecto del cultivo. The method for the detection and identification of                 plant species in an agricultural crop clause                 11 or 12, CHARACTERIZED BECAUSE step c) comprises                 also select a specific herbicide from a                 set of herbicides for each weed identified in                 step a) regarding the crop.
  14. El método para la detección e identificación de especies vegetales en un cultivo agrícola de la cláusula 11 ó 12, CARACTERIZADO PORQUE el paso c) comprende además seleccionar un fertilizante foliar específico de un conjunto de fertilizantes foliares para el cultivo identificado en el paso a) según su estado. The method for the detection and identification of                 plant species in an agricultural crop clause                 11 or 12, CHARACTERIZED BECAUSE step c) comprises                 also select a specific foliar fertilizer from                 a set of foliar fertilizers for cultivation                 identified in step a) according to their status.
  15. El método para la detección e identificación de especies vegetales en un cultivo agrícola de la cláusula 11 ó 12, CARACTERIZADO PORQUE el paso c) comprende además seleccionar un insecticida específico de un conjunto de insecticidas para el cultivo identificado en el paso a) según su estado de deterioro. The method for the detection and identification of                 plant species in an agricultural crop clause                 11 or 12, CHARACTERIZED BECAUSE step c) comprises                 also select a specific insecticide from a                 set of insecticides for the crop identified in                 step a) according to its state of deterioration.
  16. El método para la detección e identificación de especies vegetales en un cultivo agrícola de la cláusula 11 ó 12, CARACTERIZADO PORQUE el paso c) comprende además seleccionar un fungicida específico de un conjunto de fungicidas para el cultivo identificado en el paso a) según su estado de deterioro. The method for the detection and identification of                 plant species in an agricultural crop clause                 11 or 12, CHARACTERIZED BECAUSE step c) comprises                 also select a specific fungicide from a                 set of fungicides for the crop identified in                 step a) according to its state of deterioration.
  17. El método para la detección e identificación de especies vegetales en un cultivo agrícola de la cláusula 11 ó 12, CARACTERIZADO PORQUE el paso c) comprende además seleccionar un compuesto protector específico de un conjunto de compuestos protectores para el cultivo identificado en el paso a) según su estado. The method for the detection and identification of                 plant species in an agricultural crop clause                 11 or 12, CHARACTERIZED BECAUSE step c) comprises                 also select a specific protective compound of                 a set of protective compounds for cultivation                 identified in step a) according to their status.
  18. El método para la detección e identificación de especies vegetales en un cultivo agrícola de la cláusula 6, CARACTERIZADO PORQUE comprende los pasos de: a) obtener un Flujo de Video en Tiempo Real desde una pluralidad de cámaras posicionadas a lo largo de alas del conjunto autónomo de dispositivos para la detección e identificación de especies vegetales en un cultivo agrícola para la aplicación de agroquímicos en forma selectiva; b) procesar cada uno de los fotogramas obtenidos; c) convertir el fotograma a una matriz numérica con la representación de los colores RGB (del inglés Red-Green-Blue) de cada pixel de la imagen; d) recortar la matriz para seleccionar el área del fotograma a procesar; e) asignar un área de la imagen a los aspersores que correspondan, de manera que si se detecta maleza en esa área, se le envía la orden de apertura al aspersor que corresponda; f) aplicar 4 filtros para obtener una máscara de los colores predominantes de las especies vegetales a identificar; g) identificar los contornos de la imagen sobre la máscara de color guardando la información de la posición de cada uno; h) calcular estimativamente la velocidad de desplazamiento con las posiciones de los contornos encontrados en el fotograma actual y las posiciones de esos mismos contornos en un fotograma anterior; i) obtener una velocidad de pixeles por fotograma y hacer el pasaje de la velocidad a metros por segundo utilizando una relación pixel-metros y una relación fotogramas-segundos; j) recortar la imagen en cuadrados pequeños que contienen los contornos; k) cambiar el tamaño a cada uno de los cuadrados recortados de una parte de la imagen a un tamaño preferente; l) enviar los cuadrados de imágenes a la primera capa (capa de entrada) de la red neuronal convolucional previamente entrenada para su análisis y categorización; m) procesar cada cuadrado dentro de la Red Neuronal previamente entrenada, en donde se toma la imagen, se realiza en paralelo una pasada ( forward ) y se envía el resultado a la capa de salida de la red neuronal; n) obtener el resultado de la última capa (capa de salida) de la red neuronal convolucional; ñ) determinar el agroquímico a utilizar en función del valor numérico de la especie vegetal identificada; o) correlacionar la representación completa de las especies vegetales identificadas con el agroquímico necesario a aplicar en cada una de las plantas que aparecen en el fotograma procesado que se obtuvo del flujo de video principal, y p) enviar la orden de acuerdo a la especie identificada para cada imagen procesada por la red neuronal que está asociada a un aspersor por el área en donde se encuentra, de manera que la aspersión quede exactamente sobre la especie vegetal a tratar; The method for the detection and identification of plant species in an agricultural crop of clause 6, CHARACTERIZED BECAUSE it comprises the steps of: a) obtaining a Real Time Video Stream from a plurality of cameras positioned along the wings of the autonomous set of devices for the detection and identification of plant species in an agricultural crop for the application of agrochemicals in a selective way; b) process each of the frames obtained; c) convert the frame to a numerical matrix with the representation of RGB (Red-Green-Blue English) colors of each pixel in the image; d) trim the matrix to select the area of the frame to be processed; e) assign an area of the image to the corresponding sprinklers, so that if weeds are detected in that area, the opening order is sent to the corresponding sprinkler; f) apply 4 filters to obtain a mask of the predominant colors of the plant species to be identified; g) identify the contours of the image on the color mask by saving the information of the position of each one; h) estimate the travel speed with the positions of the contours found in the current frame and the positions of those same contours in a previous frame; i) obtain a pixel speed per frame and make the speed passage in meters per second using a pixel-meter ratio and a frame-second ratio; j) crop the image into small squares that contain the contours; k) resize each of the squares cut out of a part of the image to a preferred size; l) send the squares of images to the first layer (input layer) of the previously trained convolutional neural network for analysis and categorization; m) processing each square within the previously trained neural network, wherein the image is taken, it is performed in parallel in one pass (forward) and the result is sent to the output layer of the neural network; n) obtain the result of the last layer (output layer) of the convolutional neural network; ñ) determine the agrochemical to be used based on the numerical value of the identified plant species; o) correlate the complete representation of the plant species identified with the agrochemical necessary to apply in each of the plants that appear in the processed frame that was obtained from the main video stream, and p) send the order according to the species identified for each image processed by the neural network that is associated with a sprinkler by the area where it is located, so that the spray is exactly on the plant species to be treated;
  19. El método para la detección e identificación de especies vegetales en un cultivo agrícola de la cláusula 18, CARACTERIZADO PORQUE en el paso f) se separa elementos extraños como tierra, residuo vegetal seco y piedras de las especies vegetales, en donde: un primer filtro transforma la matriz a formato color YCbCr; un segundo filtro resta dos canales en el formato RGB dependiendo del color a filtrar; un tercer filtro es una operación lógica AND (bit a bit) entre los resultados de los filtros anteriores primero y segundo; y un cuarto filtro aplica al resultado anterior un blur (desenfoque gaussiano), convirtiendo la imagen a blanco y negro y eliminando el ruido. The method for the detection and identification of                 plant species in an agricultural crop clause                 18, CHARACTERIZED BECAUSE in step f) it separates                 foreign elements such as soil, dry plant residue and                 stones of plant species, where: a first                 filter transforms the matrix to YCbCr color format; a                 second filter subtracts two channels in RGB format                 depending on the color to filter; a third filter is a                 AND logical operation (bit by bit) between the results of                 the first and second previous filters; and a quarter                 filter applies a blur to the previous result                 Gaussian), converting the image to black and white and                 Eliminating noise
PCT/ES2016/070655 2016-04-12 2016-09-20 Autonomous set of devices and method for detecting and identifying plant species in an agricultural crop for the selective application of agrochemicals WO2017178666A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ARP160100983A AR104234A1 (en) 2016-04-12 2016-04-12 AUTONOMOUS SET OF DEVICES AND METHOD FOR THE DETECTION AND IDENTIFICATION OF VEGETABLE SPECIES IN AN AGRICULTURAL CULTURE FOR THE APPLICATION OF AGROCHEMICALS IN A SELECTIVE FORM
AR20160100983 2016-04-12

Publications (1)

Publication Number Publication Date
WO2017178666A1 true WO2017178666A1 (en) 2017-10-19

Family

ID=59487587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2016/070655 WO2017178666A1 (en) 2016-04-12 2016-09-20 Autonomous set of devices and method for detecting and identifying plant species in an agricultural crop for the selective application of agrochemicals

Country Status (2)

Country Link
AR (1) AR104234A1 (en)
WO (1) WO2017178666A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108898059A (en) * 2018-05-30 2018-11-27 上海应用技术大学 Flowers recognition methods and its equipment
WO2019094266A1 (en) * 2017-11-07 2019-05-16 University Of Florida Research Foundation Detection and management of target vegetation using machine vision
CN110070101A (en) * 2019-03-12 2019-07-30 平安科技(深圳)有限公司 Floristic recognition methods and device, storage medium, computer equipment
WO2019226869A1 (en) * 2018-05-24 2019-11-28 Blue River Technology Inc. Semantic segmentation to identify and treat plants in a field and verify the plant treatments
CN111325240A (en) * 2020-01-23 2020-06-23 杭州睿琪软件有限公司 Weed-related computer-executable method and computer system
US10748042B2 (en) 2018-06-22 2020-08-18 Cnh Industrial Canada, Ltd. Measuring crop residue from imagery using a machine-learned convolutional neural network
US20210244010A1 (en) * 2020-02-12 2021-08-12 Martin Perry Heard Ultrasound controlled spot sprayer for row crops
WO2021176254A1 (en) 2020-03-05 2021-09-10 Plantium S.A. System and method of detection and identification of crops and weeds
RU2763438C2 (en) * 2019-06-20 2021-12-29 ФГБОУ ВО "Оренбургский государственный аграрный университет" Stand for setting up contactless sensors
CN115349340A (en) * 2022-09-19 2022-11-18 沈阳农业大学 Artificial intelligence-based sorghum fertilization control method and system
US11580718B2 (en) 2019-08-19 2023-02-14 Blue River Technology Inc. Plant group identification
EP4245135A1 (en) 2022-03-16 2023-09-20 Bayer AG Conducting and documenting an application of plant protection agents

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1000540A1 (en) * 1998-11-16 2000-05-17 McLoughlin, Daniel Image processing
US6714662B1 (en) * 2000-07-10 2004-03-30 Case Corporation Method and apparatus for determining the quality of an image of an agricultural field using a plurality of fuzzy logic input membership functions
JP2004180554A (en) * 2002-12-02 2004-07-02 National Agriculture & Bio-Oriented Research Organization Method and apparatus for selectively harvesting fruit vegetables
US20150245565A1 (en) * 2014-02-20 2015-09-03 Bob Pilgrim Device and Method for Applying Chemicals to Specific Locations on Plants

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1000540A1 (en) * 1998-11-16 2000-05-17 McLoughlin, Daniel Image processing
US6714662B1 (en) * 2000-07-10 2004-03-30 Case Corporation Method and apparatus for determining the quality of an image of an agricultural field using a plurality of fuzzy logic input membership functions
JP2004180554A (en) * 2002-12-02 2004-07-02 National Agriculture & Bio-Oriented Research Organization Method and apparatus for selectively harvesting fruit vegetables
US20150245565A1 (en) * 2014-02-20 2015-09-03 Bob Pilgrim Device and Method for Applying Chemicals to Specific Locations on Plants

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019094266A1 (en) * 2017-11-07 2019-05-16 University Of Florida Research Foundation Detection and management of target vegetation using machine vision
US11468670B2 (en) 2017-11-07 2022-10-11 University Of Florida Research Foundation, Incorporated Detection and management of target vegetation using machine vision
US11514671B2 (en) 2018-05-24 2022-11-29 Blue River Technology Inc. Semantic segmentation to identify and treat plants in a field and verify the plant treatments
WO2019226869A1 (en) * 2018-05-24 2019-11-28 Blue River Technology Inc. Semantic segmentation to identify and treat plants in a field and verify the plant treatments
US10713484B2 (en) 2018-05-24 2020-07-14 Blue River Technology Inc. Semantic segmentation to identify and treat plants in a field and verify the plant treatments
CN108898059A (en) * 2018-05-30 2018-11-27 上海应用技术大学 Flowers recognition methods and its equipment
US10748042B2 (en) 2018-06-22 2020-08-18 Cnh Industrial Canada, Ltd. Measuring crop residue from imagery using a machine-learned convolutional neural network
CN110070101A (en) * 2019-03-12 2019-07-30 平安科技(深圳)有限公司 Floristic recognition methods and device, storage medium, computer equipment
RU2763438C2 (en) * 2019-06-20 2021-12-29 ФГБОУ ВО "Оренбургский государственный аграрный университет" Stand for setting up contactless sensors
US11823388B2 (en) 2019-08-19 2023-11-21 Blue River Technology Inc. Plant group identification
US11580718B2 (en) 2019-08-19 2023-02-14 Blue River Technology Inc. Plant group identification
CN111325240A (en) * 2020-01-23 2020-06-23 杭州睿琪软件有限公司 Weed-related computer-executable method and computer system
US20210244010A1 (en) * 2020-02-12 2021-08-12 Martin Perry Heard Ultrasound controlled spot sprayer for row crops
WO2021176254A1 (en) 2020-03-05 2021-09-10 Plantium S.A. System and method of detection and identification of crops and weeds
EP4245135A1 (en) 2022-03-16 2023-09-20 Bayer AG Conducting and documenting an application of plant protection agents
WO2023174827A1 (en) 2022-03-16 2023-09-21 Bayer Aktiengesellschaft Carrying out and documenting the application of crop protection products
CN115349340A (en) * 2022-09-19 2022-11-18 沈阳农业大学 Artificial intelligence-based sorghum fertilization control method and system
CN115349340B (en) * 2022-09-19 2023-05-19 沈阳农业大学 Sorghum fertilization control method and system based on artificial intelligence

Also Published As

Publication number Publication date
AR104234A1 (en) 2017-07-05

Similar Documents

Publication Publication Date Title
WO2017178666A1 (en) Autonomous set of devices and method for detecting and identifying plant species in an agricultural crop for the selective application of agrochemicals
US10614562B2 (en) Inventory, growth, and risk prediction using image processing
Di Cicco et al. Automatic model based dataset generation for fast and accurate crop and weeds detection
Kamilaris et al. Deep learning in agriculture: A survey
Gao et al. A spraying path planning algorithm based on colour-depth fusion segmentation in peach orchards
Ajayi et al. Effect of varying training epochs of a faster region-based convolutional neural network on the accuracy of an automatic weed classification scheme
Grondin et al. Tree detection and diameter estimation based on deep learning
Ahn et al. An overview of perception methods for horticultural robots: From pollination to harvest
Zhang et al. Feasibility assessment of tree-level flower intensity quantification from UAV RGB imagery: a triennial study in an apple orchard
Olsen Improving the accuracy of weed species detection for robotic weed control in complex real-time environments
US11544920B2 (en) Using empirical evidence to generate synthetic training data for plant detection
Bulanon et al. Machine vision system for orchard management
Cruz Ulloa et al. Trend technologies for robotic fertilization process in row crops
Valicharla Weed recognition in agriculture: A mask R-CNN approach
Negrete Artificial vision in mexican agriculture for identification of diseases, pests and invasive plants
Chen Estimating plant phenotypic traits from RGB imagery
Garibaldi-Márquez et al. Segmentation and Classification Networks for Corn/Weed Detection Under Excessive Field Variabilities
Nirunsin et al. Size Estimation of Mango Using Mask-RCNN Object Detection and Stereo Camera for Agricultural Robotics
US20220383042A1 (en) Generating labeled synthetic training data
Lim et al. Classification and Detection of Obstacles for Rover Navigation
Han et al. Deep learning-based path detection in citrus orchard
Charitha et al. Detection of Weed Plants Using Image Processing and Deep Learning Techniques
Silvestre Computer vision techniques for greenness identification and obstacle detection in maize fields Técnicas de visión por computador para la detección del verdor y la detección de obstáculos en campos de maíz
Mejia Autonomous mobile robotics in open environments
Adaptable Building an aerial–ground robotics system for precision farming

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16898531

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25.02.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16898531

Country of ref document: EP

Kind code of ref document: A1