WO2017176018A1 - Hydrogen gas sensor and method for manufacturing same - Google Patents

Hydrogen gas sensor and method for manufacturing same Download PDF

Info

Publication number
WO2017176018A1
WO2017176018A1 PCT/KR2017/003642 KR2017003642W WO2017176018A1 WO 2017176018 A1 WO2017176018 A1 WO 2017176018A1 KR 2017003642 W KR2017003642 W KR 2017003642W WO 2017176018 A1 WO2017176018 A1 WO 2017176018A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
carbon
particles
carbon nanowires
gas sensor
Prior art date
Application number
PCT/KR2017/003642
Other languages
French (fr)
Korean (ko)
Inventor
신흥주
임영진
서준영
Original Assignee
울산과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 울산과학기술원 filed Critical 울산과학기술원
Publication of WO2017176018A1 publication Critical patent/WO2017176018A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/501Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion
    • C01B3/503Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion characterised by the membrane
    • C01B3/505Membranes containing palladium
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/404Cells with anode, cathode and cell electrolyte on the same side of a permeable membrane which separates them from the sample fluid, e.g. Clark-type oxygen sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/404Cells with anode, cathode and cell electrolyte on the same side of a permeable membrane which separates them from the sample fluid, e.g. Clark-type oxygen sensors
    • G01N27/4045Cells with anode, cathode and cell electrolyte on the same side of a permeable membrane which separates them from the sample fluid, e.g. Clark-type oxygen sensors for gases other than oxygen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
    • G01N27/4146Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS involving nanosized elements, e.g. nanotubes, nanowires
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036Specially adapted to detect a particular component
    • G01N33/005Specially adapted to detect a particular component for H2

Definitions

  • the present invention relates to a hydrogen gas sensor and a method of manufacturing the same, and more particularly, to manufacture a floating-type carbon nanowire hydrogen gas sensor to build a low-cost high-sensitivity sensor by depositing palladium nanoparticles locally on carbon nanowires by an electroplating method. It is about a method.
  • hydrogen is an explosive gas, and more than 4% is present in the air, and there is a risk of explosion, so an initial detection of hydrogen gas is required.
  • Nanomaterials have characteristics such as quantum confinement effects and very high surface to volume rat io that are not seen in materials larger than micrometers. Not only is it possible to develop a sensor with sensitivity, selectivity, and quick response, but it is also advantageous for miniaturization and portable device development due to its small size.
  • nanomaterials are being actively conducted to maximize the effect of the high volume to surface area ratio of nanomaterials, and nanowires, which are one-dimensional nanomaterials of nanomaterials, have a high volume to surface area ratio, By measuring the change in resistance across the wire The change in electrical conductivity can be detected and is actively used as a sensor material.
  • the high surface area of the nanowires can be maximized and the transfer efficiency of external materials to the nanowires can be maximized to improve sensor performance. It can have the advantage of minimizing the influence of heat, contaminants, etc. of the substrate.
  • the carbon-MEMS process which consists of photolithography and polymer pyrolys is process, which is a semiconductor batch process, can be used to produce a notary floating carbon nanowire. Techniques have been developed.
  • a hydrogen detection sensor was developed by depositing a palladium (Pal adium, Pd) thin film, which is a hydrogen sensing material, on an airborne carbon nanostructure made of carbon-mess using E-beam evaporat ion. It became.
  • palladium is a material whose electrical conductivity changes according to the external hydrogen concentration, and thus the hydrogen concentration can be measured by measuring the resistance change of palladium, and the resistance between the electrode portions supporting the airborne carbon nanowires on which the palladium thin film is deposited is measured. By measuring, the hydrogen concentration can be measured.
  • the present invention is to solve the above problems by depositing spherical palladium nanoparticles having various sizes locally on carbon nanowires using a small amount of palladium compared to the conventional electron beam deposition method, the hydrogen saturation state at high hydrogen concentration It is not an object of the present invention to provide a hydrogen gas sensor and a method of manufacturing the same, which can detect hydrogen at a concentration, and can construct a low cost and high sensitivity sensor.
  • a pair of electrode portions disposed on a substrate and opposed to each other at predetermined intervals, positioned between the electrode portions, supported by the electrode portion, carbon nanowires, and the surface of the carbon nanowires Hydrogen sensing particles located in;
  • the hydrogen sensing particles are located in the island form on the surface of the carbon nanowires, are located locally on the surface of the carbon nanowires, the particle size of the hydrogen sensing particles is 1 to 500 nm It provides a hydrogen gas sensor.
  • the electrode unit may be a carbon electrode unit.
  • the portion of the electrode portion described as the carbon electrode portion is described by taking an example of the electrode portion material, and the electrode portion material is not limited to carbon.
  • the hydrogen sensing particles may be located on the surface of the carbon nanowires in the form of primary particles.
  • the hydrogen sensing particles may be located on the surface of the carbon nanowires in the form of secondary particles in which primary particles are collected.
  • the particle diameter of the secondary particles may be 10 to 500 nra.
  • the area in which the hydrogen sensing particles are located may be 90 to 100 areas> 100 area% of the total surface area of the carbon nanowires.
  • the hydrogen detecting particles may be palladium particles.
  • the specific surface area of the hydrogen detecting particles may be 0.5 to 250 ra 2 / g.
  • the carbon nanowires may have a diameter of about 100 nm to about 500 nm.
  • the high-sensitivity sensor caps and the high-density sensor caps located on the substrate, the high-sensitivity sensor caps and high-concentration sensor caps, each independently, facing each other at a predetermined interval A pair of electrode units; Carbon nanowires disposed between the electrode portions and supported by the electrode portions; And hydrogen sensing particles located on the surface of the carbon nanowires, wherein the hydrogen sensing particles in the high sensitivity sensor mode are located in an island form on the surface of the carbon nanowires and are locally located on the surface of the carbon nanowires.
  • the particle diameter is 1 to 10 nm, the hydrogen-sensing particles in the high concentration sensor mode, is located in the island shape on the surface of the carbon nanowires, is located locally on the surface of the carbon nanowires, the particle diameter is greater than 10 nm and 500 It provides a hydrogen gas sensor of nm.
  • the area where the hydrogen sensing particles are located may be 90 to 100 area% with respect to 100 area% of the total surface of the carbon nanowires in the high sensitivity sensor mode. With respect to 100% of the total surface area of the carbon nanowires for high concentration, the area where the hydrogen detecting particles are located may be 90 to 100 area 3 ⁇ 4>.
  • the specific surface area of the hydrogen detecting particles in the high sensitivity sensor mode may be 25 to 250 m 2 / g.
  • the specific surface area of the hydrogen detecting particles in the high concentration sensor mode may be 0.5 to 25 m 2 / g.
  • a pair of carbon electrode parts facing each other at a predetermined interval; Located between the carbon electrode portion, preparing a support comprising a carbon nanowires supported by the carbon electrode portion; and among the support, the hydrogen sensing particles locally on the surface of the carbon nanowires by electroplating method It provides a method of manufacturing a hydrogen gas sensor comprising the step of depositing.
  • the surface of the carbon nanowires by electroplating In the step of locally depositing hydrogen sensing particles, a working electrode is connected to the carbon electrode portion and carbon nanowires, and a counter electrode and a reference electrode are immersed in a palladium plating solution. After positioning, electroplating can be performed.
  • the electroplating method may include a palladium seed forming step and a palladium seed growing step, and the palladium seed forming step may be performed at a higher voltage and a shorter time condition than the palladium seed growing step.
  • the electroplating method may include forming a palladium seed step and a palladium seed growth step, and alternately performing the palladium seed formation step and the palladium seed growth step a plurality of times to form palladium particles in the form of secondary particles.
  • the support may be prepared by a method including pyrolyzing the pair of photoresist electrode portions and the photoresist microwires and converting the pair of carbon electrode portions and carbon nanowires.
  • the airborne carbon nanowires formed integrally with the electrode part are manufactured using the carbon-MEMS process, which is a batch MEMS process, and thus has a high yield and low cost manufacturing effect.
  • the shape of the photomask, the amount of secondary exposure and the pyrolysis process conditions Since the shape of the carbon nanowires is determined by, the carbon nanowire structure having various sizes can be manufactured as necessary.
  • spherical palladium nanoparticles are deposited on carbon nanowires, and the gas sensor sensitivity is high due to a relatively high volume-to-surface area ratio at the same thickness as compared to the conventional thin film type.
  • palladium nanoparticles of various sizes are deposited on carbon nanowires, so that hydrogen cannot be saturated even at high hydrogen concentrations.
  • the reaction to low concentrations of hydrogen gas decreases, but it is not saturated even at high concentrations of hydrogen. Therefore, after integrating a plurality of carbon nanowires on one chip, palladium nanoparticles of various sizes suitable for low and high concentrations of hydrogen can be selectively deposited on each carbon nanowire so that low and high concentrations can be deposited. Hydrogen can be measured with one chip.
  • FIG. 1 is an exemplary view briefly showing a process of manufacturing a hydrogen gas sensor according to an embodiment of the present invention.
  • FIG. 2 is an exemplary photograph showing a pair of photoresist electrode portions and a photoresist microwire structure before pyrolysis and a pair of carbon electrode portions and carbon nanowire structures after pyrolysis according to an embodiment of the present invention.
  • 3 is an exemplary view showing a state of depositing palladium on carbon nanowires by an electroplating method according to an embodiment of the present invention.
  • FIG. 4 is an exemplary view showing a state in which palladium is deposited on carbon nanowires according to a voltage by electroplating according to an embodiment of the present invention.
  • FIG. 5 is a graph showing a change in measurement current according to an applied voltage of airborne carbon nanowires before and after deposition of palladium nanoparticles according to an exemplary embodiment of the present invention.
  • Figure 6 is a graph showing the rate of change according to the hydrogen concentration of the hydrogen gas sensor according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a hydrogen sensing sensor having a plurality of sensor heads and SEM photographs of the respective heads.
  • FIG. 8 is an exemplary view illustrating a current flow after palladium nanoparticles are deposited according to an embodiment of the present invention, and a change in measurement current according to an applied voltage of airborne carbon nanowires before and after palladium nanoparticle deposition and for a plurality of modules. The graph shown.
  • FIG. 9 is a graph of a resistance change rate according to a change in hydrogen concentration of a hydrogen detecting sensor having a plurality of sensor modules.
  • a pair of carbon electrode portions disposed on a substrate and opposed to each other at predetermined intervals; Carbon nanowires disposed between the carbon electrode portions and supported by the carbon electrode portions; And hydrogen sensing particles positioned on the surface of the carbon nanowires, wherein the hydrogen sensing particles are positioned in an island form on the surface of the carbon nanowires, and are locally located on the surface of the carbon nanowires, and have a particle diameter of the hydrogen sensing particles. It provides a hydrogen gas sensor that is 1 to 500 nm.
  • the hydrogen detecting particles may be palladium particles.
  • the hydrogen sensing particles may be located on the surface of the carbon nanowires in the form of primary particles.
  • the particle size of the primary particles may be 1 to 10 nm level. This range has the significance of increasing hydrogen sensitivity.
  • the hydrogen sensing particles may be located on the surface of the carbon nanowires in the form of secondary particles in which primary particles are collected.
  • the particle diameter of the secondary particles may be 10 to 500 ran. This range has the significance of not being saturated with high concentrations of hydrogen.
  • Such primary particles or secondary particles may be determined by the electroplating method described below.
  • the particle size of the hydrogen-sensing particles (for example, palladium) to be plated and the area where the hydrogen-sensing particles are located on the carbon wire there may be a difference in the sensitivity and the concentration of sensing the hydrogen of the sensor. This can be adjusted according to the desired specifications.
  • the hydrogen-sensing particles for example, palladium
  • the area where the hydrogen sensing particles are located may be 90 to 100 area% with respect to 100 area% of the total surface of the carbon nanowires.
  • the area ratio of the hydrogen sensing particles occupying the surface of the carbon nanowire may also affect the specification of the sensor.
  • the range is determined to be a range that can be used as a real commercial sensor.
  • the area where the parallax particles coat the carbon nanowires can be adjusted.
  • the specific surface area of the hydrogen detecting particles may be 0.5 to 250 m 2 / g. This range is when the diameter of the hydrogen sensing particles is 1 to 500 nm, the smaller the diameter of the hydrogen sensing particles, the larger the specific surface area. As the specific surface area increases, the rate of change of resistance of the hydrogen sensing particles according to reaction or absorption of hydrogen on the surface of the hydrogen sensing particles increases, thereby improving sensitivity.
  • the high-sensitivity sensor caps and the high-density sensor caps located on the substrate, the high-sensitivity sensor caps and high-concentration sensor caps, each independently, facing each other at a predetermined interval
  • a pair of carbon electrode portions Carbon nanowires disposed between the carbon electrode portions and supported by the carbon electrode portions;
  • hydrogen sensing particles positioned on the surface of the carbon nanowires, wherein the hydrogen sensing particles in the high sensitivity sensor module are located in an island form on the surface of the carbon nanowires and are locally located on the surface of the carbon nanowires.
  • the particle diameter is 1 to 10 nm
  • the hydrogen-sensing particles in the high concentration sensor mode is located in the island shape on the surface of the carbon nanowires, is located locally on the surface of the carbon nanowires, the particle diameter is 10 nm to 500 nra It provides a hydrogen gas sensor.
  • the hydrogen gas sensor may include a plurality of modules.
  • the sensor module may include high sensitivity sensor modules and high concentration sensor modules. This may be divided according to the particle diameter of the hydrogen sensing particles to be plated on each carbon nanowire.
  • the resistance change may be insufficient for a small concentration of hydrogen, but may be effective in detecting high concentrations of hydrogen.
  • the area where the hydrogen sensing particles are located may be 90 to 100 area%. This range is achieved through carbon nanowires and palladium nanoparticles.
  • Increased current flow rate Increases the ratio of the current flowing through the palladium nanoparticles to increase hydrogen sensitivity by increasing the effect of resistance change of the palladium nanoparticles reacting with hydrogen on the overall resistance.
  • the specific surface area of the hydrogen detecting particles in the high sensitivity sensor mode may be 25 to 250 m 2 / g. This range can be effective to speed up the reaction with high sensitivity.
  • the higher the specific surface area the higher the rate of change of resistance due to hydrogen reaction and absorption on the surface.
  • the hydrogen absorption is determined by the surface area, and the resistance to change due to the hydrogen absorption is a property related to the volume of the nanoparticles, so the greater the volume-to-surface area ratio, the greater the effect of reaction on the surface. Therefore, sensitivity and reaction speed can be improved.
  • the specific surface area of the hydrogen detecting particles in the high concentration sensor mode may be 0.5 to 25 m 2 / g. This range is not easily saturated even at high concentrations of hydrogen and may be effective for detecting high concentrations of hydrogen.
  • the larger the specific surface area ratio the greater the sensitivity, but since the actual volume is reduced, it can be easily saturated with hydrogen. Therefore, if the specific surface area ratio decreases, that is, the size of the nanoparticles increases, the resistance change may occur even with a high concentration of hydrogen even with a loss in sensitivity.
  • a pair of carbon electrode parts facing each other at a predetermined interval; Preparing a support including a carbon nanowire positioned between the carbon electrode parts and supported by the carbon electrode parts; And locally depositing hydrogen sensing particles on the surface of the carbon nanowires by electroplating in the support.
  • the support may be prepared by various conventional methods.
  • a pair of carbon electrode portions opposed to each other at predetermined intervals Located between the carbon electrode portion, supported by the carbon electrode portion Preparing a support comprising a carbon nanowire;
  • the support may be prepared by a method including a step of thermally decomposing the pair of photoresist electrode parts and the photoresist microwires, and converting the pair of carbon electrode parts and carbon nanowires.
  • the airborne carbon nanowire structure formed integrally with a pair of electrode portions supporting carbon nanowires is manufactured using carbon-MEMS, so that a high yield and low cost can be manufactured, and carbon is more conventional.
  • carbon-MEMS carbon-MEMS
  • airborne carbon nanowire hydrogen gas sensors in which palladium nanoparticles of various sizes are deposited may be manufactured to prevent hydrogen saturation at high hydrogen concentration.
  • step (a) the insulating layer 11 is formed on the upper surface of the silicon wafer 10.
  • the formation of the insulating layer (11) is carried out by thermal oxidation (thermal oxidat ion) deposition, the silicon wafer (10) having an element symbol of Si by applying a heat of 800 ⁇ 1200 ° C.,
  • the insulating layer 11 whose element symbol is Si0 2 is formed by vapor deposition on the upper surface of the silicon wafer 10.
  • the thickness of the insulating layer 11 to be deposited is 0.1 ⁇ 10 ⁇ can be formed by selectively selecting the thickness according to the thickness of the silicon wafer 10 and the measuring capacity of the sensor.
  • step (b) a pair of photoresist electrode portions 21 and the pair of photoresist are photolithographically formed on the insulating layer 11 of the silicon wafer 10 formed by the step (a).
  • the photoresist microwires 22 connecting the electrode portions 21 are formed.
  • the photolithography when ultraviolet rays are irradiated to the substrate coated with the photosensitive resin through a photomask, the pattern engraved on the photomask is transferred to the photoresist and developed to form a pattern on the substrate.
  • Step (b) consists of a plurality of steps, which are described in more detail as follows.
  • step (b-1) the photoresist layer 20 is formed by applying photoresist on the insulating layer 11 formed by step (a).
  • SU-8 is used as the photoresist material to be applied to the insulating layer 11, and the photoresist is evenly applied on the insulating layer 11 by spin coating, and on the insulating layer 11.
  • the photoresist layer 20 is formed.
  • the thickness of the photoresist layer 20 to be formed is 5 ⁇ 100 kPa, the thickness is selectively selected according to the measuring capacity of the sensor.
  • step (b-2) the first photomask 31 having the perforated area of the pair of electrode portions formed on the photoresist layer 20 formed by the step (b-1) is perforated. Thereafter, ultraviolet rays are irradiated to carry out the first exposure.
  • the primary exposure is to perform exposure with sufficient energy such that optical deposition (Polymer i zat ion) is performed to the bottom of the photoresist layer 20 floating on the region of the photoresist layer 20. Desirable
  • step (b-3) a region where the photoresist microwire position is formed on the photoresist layer 20 where the pair of electrode regions are first exposed by the step (b-2) is perforated. After the secondary photomask 32 is placed, secondary exposure is performed with ultraviolet rays.
  • the photoresist microwires 22 connecting the pair of photoresist electrode portions 21 are formed in the form of micro-sized wires. It is preferable to adjust the dose so that only the upper portion of the polymerization is carried out, the thickness of the photoresist microwire 22 can be adjusted according to the ultraviolet exposure energy.
  • step (b-4) the exposure is performed by steps (b-2) and (a-3).
  • the photoresist layer 20 except for the region is developed and removed, and the pair of photoresist electrode portions 21 and the photoresist electrode portions 21 are formed on the insulating layer 11 of the silicon wafer 10.
  • Photoresist microwires 22 are formed to connect them.
  • the airborne photoresist microwires 22 and the photoresist microwires made of a photoresist material polymerized using a developer capable of selectively etching portions other than the optically evaporated portions irradiated with ultraviolet rays are formed.
  • the pair of photoresist electrode portions 21 and the photoresist microwires 22 formed on the insulating layer 11 are thermally decomposed by the step (b). It converts into the carbon electrode part 41 and the carbon nanowire 42.
  • the pair of photoresist electrode portions 21 and the photoresist microwires 22 structure of the polymerized photoresist material are accommodated in a chamber, and the inner atmosphere of the chamber is 500 ° C. or higher in a vacuum or inert gas environment.
  • a polymer pyrolysis step of heating to temperature is carried out.
  • the structure of the photoresist electrode portion 21 and the photoresist microwire 22 is shown, and the structure of the pair of photoresist electrode portion 21 and the photoresist microwire 22 after thermal decomposition is shown.
  • the pair of photoresist electrode portions 21 and the photoresist microwires 22 structures are reduced by about 80% in volume compared to the volume before pyrolysis.
  • the pyrolysis process may control the volume reduction of the pair of photoresist electrode portions 21 and the photoresist microwires 22 structures according to conditions such as time, temperature, heating rate, cooling rate, injection gas, and the like. have. Therefore, the size and exposure of the photomask for polymer microfabrication Energy shape and polymer pyrolysis conditions can be adjusted to control the shape of the final carbon nanowires.
  • the size of the photoresist microwire is a diameter ⁇ number
  • the length is a few ⁇ hundreds
  • the interval between the conducting wafer and the notarized photoresist microwire is selected to be produced from 1 to several hundred, carbon nanowires through the pyrolysis process
  • the size of the dome is several tens of nm ⁇ several
  • the length is several hundreds of mi
  • step (d) palladium nanoparticles are locally formed on the surfaces of the carbon nanowires 42 of the pair of carbon electrode portions 41 and the carbon nanowires 42 converted by the step (c). To deposit.
  • the deposition of palladium nanoparticles is performed by electroplating, and the electroplating is performed by using a counter electrode as a counter electrode (Counter electrode: 1) and a reference electrode as a reference for measuring electrode potential.
  • a working electrode (3) is required for the purpose of flowing an electric current in the sample when generating an electrode reaction, in which platinum (Platinum, Pt) is used as the counter electrode (1), Silver chloride (Silver / Silver chloride, Ag / AgCl) is used as a reference electrode (2), and a working electrode (3) is in contact with one or both sides of the pyrolyzed carbon electrode portion 41, A voltage (electricity) is applied to the carbon electrode 42 to deposit the palladium nanoparticles 50 on the carbon nanowires 42 exposed to the palladium plating solution (electrolyte) by electrochemical deposition.
  • platinum Platinum
  • Silver chloride Silver / Silver chloride, Ag / AgCl
  • a voltage is applied to the carbon electrode 42 to deposit the palladium nanoparticles 50 on the carbon nanowires 42 exposed to the palladium plating solution (electrolyte) by electrochemical deposition.
  • the plating solution Na 2 PdCl 4 , Sodium tetrachloropalladate
  • the working electrode (3) Immersed in, and the working electrode (3) in contact with one or both carbon electrodes 41, the counter electrode (1) made of platinum and the reference electrode (2) made of silver-silver chloride are carbon nanowires (42) and Electroplating is performed by applying a voltage (electricity) to the working electrode (3) while being immersed in the palladium plating solution.
  • the concentration of the palladium plating solution is to proceed to ⁇ ⁇ lOOraM
  • the concentration of the palladium plating solution is increased, palladium nanoparticles may be formed faster and particles larger than the nano size may be formed.
  • the size and spacing of the palladium nanoparticles vary with the voltage and deposition time of the working electrode 3.
  • one embodiment of the present invention first applies a high voltage of ⁇ 0.8 V to the working electrode 2 for 5 seconds to form palladium nanoparticles on a surface of carbon having relatively low electrochemical activity. After the deposition is formed, a voltage of ⁇ 0.2 V is applied for 20 seconds to limit the growth rate of the deposited palladium nanoparticles 50 to form palladium nanoparticles of relatively small size on the carbon nanowires 42.
  • FIG. 4 (b) shows that palladium nanoparticles 50 are applied to the carbon nanowires 42 by applying a voltage of ⁇ 0.8 V to the working electrode 2 for 5 seconds and then applying a voltage of ⁇ 0.2 V for 80 seconds.
  • Palladium nanomiZip is deposited by secondary deposition of these
  • Figure 4 (c) is a voltage of -0.8 V to the working electrode (2) for 5 seconds, and then successively applying a voltage of -0.2V for 120 seconds
  • the palladium nanoparticles 50 were deposited on the carbon nanowires 42 by applying a voltage of -0.8V to 10 seconds and finally to a voltage of -0.2V to 60 seconds.
  • a voltage of ⁇ 0.2 V is applied for 80 seconds to palladium to the carbon nanowires 42.
  • Nanoparticles 50 are second deposited. In this case, it can be seen that a relatively large amount of palladium nanoparticles are formed on the carbon nanowires at regular intervals.
  • FIG. 4C shows the working electrode 2 for 5 seconds.
  • palladium nano to carbon nanowires 42 It is a shape in which the particles 50 were deposited. In this case, it can be seen that large-sized palladium nanoparticles are continuously formed along the outer circumferential surface of the carbon nanowires.
  • the size and spacing of the palladium nanoparticles may be controlled by the voltage and deposition time of the working electrode 3.
  • Annealing in order to further increase the adhesion (adhes ion) between the palladium nanoparticles (50) and the carbon nanowires 42 deposited by the electrochemical (electroplating) method in a vacuum or inert gas environment Annealing can be performed at temperatures above 100 ° C.
  • FIG. 5 is a graph showing changes in voltage and current of a notary-type carbon nanowire before and after deposition of palladium nanoparticles according to an embodiment of the present invention.
  • palladium nanoparticles 50 are deposited on carbon nanowires 42 to form carbon nanowires 42.
  • the overall electrical resistance is reduced.
  • the decrease in the electrical resistance of the carbon nanowires is because the electrical resistance of the palladium nanoparticles 50 is lower than that of the carbon nanowires 42.
  • the current flows not only through the carbon nanowires 42 but also through the palladium nanoparticles 50.
  • the electrical resistance of the floating carbon nanowires also changes, and based on this, hydrogen can be detected.
  • Figure 6 is a graph showing the resistance change rate according to the hydrogen concentration of the airborne carbon nanowire hydrogen gas sensor according to an embodiment of the present invention, as shown in Figure 6 airborne type manufactured by one embodiment of the present invention
  • the carbon nanowire hydrogen gas sensor can be observed that the electrical resistance changes according to the hydrogen concentration.
  • Figure 7 (a) is a schematic image of two airborne carbon nanowires coated with palladium nanoparticles of different sizes integrated on one chip.
  • Figure 7 (b) is an electron microscopy image of two airborne carbon nanowires coated with different sized palladium nanoparticles on one chip.
  • the size and spacing of the palladium nanoparticles depend on the voltage of the working electrode and the deposition time.
  • the nanowire (NW 1) of FIG. 7 is a nanowire having palladium nanoparticles of several nanometer size deposited by applying a voltage of ⁇ 1.2 V to a working electrode for 5 seconds and then applying a voltage of 0.8 V for 5 seconds in succession. to be.
  • Nanowire 2 in FIG. 7 applies a voltage of ⁇ 1.2 V to the working electrode for 5 seconds. After the addition, a voltage of -0.8 V was applied for 25 seconds to deposit nanoscale palladium nanoparticles of tens of nanometers in size. However, the size of the parallax nanoparticles is determined by the resistance of the carbon nanowires, the concentration of the palladium solution, the applied voltage and time of the electroplating.
  • FIG. 7 (c, d) is a side and top electron microscope image.
  • FIG. 7 (e) is an electron microscope image of nanowire (X1) coated with small size (a few nanometers) of palladium nanoparticles.
  • 7 (f) An electron microscope image of Nanowire 2 (X2) coated with large size (tens of nanometers) of palladium nanoparticles.
  • Figure 8 (a) is a schematic image of the current flow in the airborne carbon nanowires coated with palladium nanoparticles.
  • FIG. 8 (b) is a voltage-current graph before and after palladium nanoparticle deposition (bare carbon nanowi re).
  • Figure 9 is a 'and the resistance change ratio graph according to the hydrogen concentration of the hydrogen sensor.
  • Figure 9 (a) is for the nanowire 1 (NW 1)
  • Figure 9 (b) is for the nanowire 2 (NW 2).
  • the green shadows represent hydrogen environments of 5, 3.5, 2.5, 1, 0.1%, 700, 500, 200, 100, 80, 50, 30, 20, and 10 ppm, respectively.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Combustion & Propulsion (AREA)
  • Medicinal Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nanotechnology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

The present invention relates to a hydrogen gas sensor and a method for manufacturing the same. A hydrogen gas sensor may be provided that includes: a pair of electrode parts disposed on a substrate and facing each other at a predetermined distance; a carbon nano-wire disposed between the electrode parts and supported by the electrode parts; and hydrogen detection particles disposed on a surface of the carbon nano-wire. The hydrogen detection particles are disposed in the form of an island on the surface of the carbon nano-wire and are disposed locally on the surface of the carbon nano-wire, and the particle diameter of the hydrogen detection particles is 1 nm to 500 nm.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
수소가스센서 및 이의 제조방법  Hydrogen gas sensor and its manufacturing method
【기술분야】  Technical Field
본 발명은 수소가스센서 및 이의 제조방법에 관한 것으로, 더욱 상세하게는 전기도금방식으로 탄소나노와이어에 국부적으로 팔라듐 나노입자들을 증착시켜 저비용 고감도 센서를 구축하는 공중부유형 탄소나노와이어 수소가스센서 제조방법에 관한 것이다.  The present invention relates to a hydrogen gas sensor and a method of manufacturing the same, and more particularly, to manufacture a floating-type carbon nanowire hydrogen gas sensor to build a low-cost high-sensitivity sensor by depositing palladium nanoparticles locally on carbon nanowires by an electroplating method. It is about a method.
【배경기술】  Background Art
일반적으로 수소는 미래 유망한 재생 에너지로서 현재 널리 이용되고 있는 화석연료의 유한성과 환경오염 문제를 동시에 해결할 수 있어, 수소에너지의 대중화 시대가 열릴 것으로 예상된다.  In general, hydrogen is a promising renewable energy in the future, and it is expected to solve the problem of finite and environmental pollution of fossil fuel which is widely used now, and it is expected that the era of popularization of hydrogen energy will open.
그러나 수소는 폭발성 가스로, 공기 중에 4% 이상이 존재하며 폭발의 위험성을 가지고 있어 수소가스에 대한 초기 감지가 필요하다.  However, hydrogen is an explosive gas, and more than 4% is present in the air, and there is a risk of explosion, so an initial detection of hydrogen gas is required.
하지만, 종래에 개발된 수소감지센서들은 생산 공정이 복잡할 뿐만 아니라 낮은 수율로 인하여 상업성이 떨어져 이를 극복할 수 있는 고효율, 고민감도를 가지는 새로운 타입의 센서의 개발이 필요하다.  However, conventionally developed hydrogen detection sensors are not only complicated production process, but also need to develop a new type of sensor having high efficiency and high sensitivity to overcome the commercial viability due to low yield.
상용화된 수소 감지 센서들의 단점을 보완하기 위해 등록특허 제 10- 0655640(2006. 12.04)와 같이 나노 기술 기반 가스센서 개발이 활발하게 진행되고 있다.  In order to make up for the shortcomings of commercially available hydrogen detection sensors, development of nanotechnology-based gas sensors has been actively conducted as in Patent Registration No. 10-0655640 (December 4, 2006).
나노 물질은 마이크로미터 이상의 크기의 물질에서 볼 수 없었던 양자구속효과 (Quantum Conf inement Ef fect )와 매우 높은 부피 대 표면적 비 (Surface to volume rat io)등의 특성을 가지고 있어, 센서 물질로 활용할 경우 높은 감도와 선택도, 빠른 웅답성을 가지는 센서 개발이 가능할 뿐만 아니라, 작은 사이즈로 인하여 기기의 소형화 및 휴대용 기기 개발에 유리하다.  Nanomaterials have characteristics such as quantum confinement effects and very high surface to volume rat io that are not seen in materials larger than micrometers. Not only is it possible to develop a sensor with sensitivity, selectivity, and quick response, but it is also advantageous for miniaturization and portable device development due to its small size.
그리고 나노물질의 높은 부피 대 표면적 비의 효과를 극대화하기 위한 나노물질의 형상 조절 및 집적 연구도 활발히 진행되고 있고, 나노물질 중 1차원 나노물질인 나노와이어는 높은 부피 대 표면적 비를 가지면서, 나노와이어 양단의 저항 변화를 측정하여 외부 환경에 의해 변화되는 전기전도도 변화를 감지할 수 있어 센서 물질로 활발하게 웅용되고 있다. In addition, researches on shape control and integration of nanomaterials are being actively conducted to maximize the effect of the high volume to surface area ratio of nanomaterials, and nanowires, which are one-dimensional nanomaterials of nanomaterials, have a high volume to surface area ratio, By measuring the change in resistance across the wire The change in electrical conductivity can be detected and is actively used as a sensor material.
또한, 나노와이어를 기판과 일정 간격 떨어진 다리 형태, 즉 공증부유형으로 가공하면, 나노와이어의 높은 표면적을 최대한 활용할 수 있으며 외부 물질들의 나노와이어로의 전달 효율을 극대화할 수 있어 센서 성능을 향상시킬 수 있고, 기판의 열, 오염물질 등의 영향을 최소화할 수 있다는 장점을 가질 수 있다.  In addition, if the nanowires are processed in the form of legs separated from the substrate, that is, notary type, the high surface area of the nanowires can be maximized and the transfer efficiency of external materials to the nanowires can be maximized to improve sensor performance. It can have the advantage of minimizing the influence of heat, contaminants, etc. of the substrate.
그러나, 현재 소개된 공중부유형 나노 구조 제작방법은 공정이 복잡하며 사이즈와 형태를 조절하기 어려울 뿐만 아니라 그만큼 수율이 낮다는 것이 단점이 있다.  However, currently introduced airborne nanostructure fabrication method has a disadvantage that the process is complex, difficult to control the size and shape, and the yield is low.
이러한 문제점을 극복하기 위해 반도체 일괄공정인 포토리소그래피 (photol i thography)와 폴리머 열분해 (polymer pyrolys i s) 공정으로 구성되는 카본 -멤스 (carbon-MEMS)공정을 이용하여 공증부유형 탄소 나노와이어를 제작할 수 있는 기법이 개발되었다.  In order to overcome this problem, the carbon-MEMS process, which consists of photolithography and polymer pyrolys is process, which is a semiconductor batch process, can be used to produce a notary floating carbon nanowire. Techniques have been developed.
포토리소그래피 공정 특성상 나노와이어의 사이즈와 형태를 조절하기 용이하고, 폴리머 열분해 과정 중에 높은 부피 감소가 발생하여 마이크로 사이즈의 폴리머 구조를 복잡하고 고가인 나노공장장비의 사용 없이 나노 크기의 탄소 구조체로 가공할 수 있다.  Due to the nature of the photolithography process, it is easy to control the size and shape of nanowires, and high volume reduction occurs during the polymer pyrolysis process, so that micro-sized polymer structures can be processed into nano-sized carbon structures without the use of complex and expensive nano-fabrication equipment. Can be.
더불어, 카본-멤스를 이용하여 제작된 공중부유형 탄소 나노구조체에 수소 감지 물질인 팔라듐 (Pal l adium, Pd) 박막을 전자빔 증착법 (E-beam evaporat ion)을 이용하여 증착한 수소 감지센서가 개발되었다.  In addition, a hydrogen detection sensor was developed by depositing a palladium (Pal adium, Pd) thin film, which is a hydrogen sensing material, on an airborne carbon nanostructure made of carbon-mess using E-beam evaporat ion. It became.
이때 팔라듐은 외부 수소 농도에 따라 전기전도도가 변하는 물질로 팔라듐의 저항 변화를 측정함으로써 수소 농도 측정이 가능하고, 팔라듬 박막이 증착된 공중부유형 탄소 나노와이어를 지지하고 있는 전극부 사이의 저항을 측정함으로써 수소농도 측정을 할 수 있다.  At this time, palladium is a material whose electrical conductivity changes according to the external hydrogen concentration, and thus the hydrogen concentration can be measured by measuring the resistance change of palladium, and the resistance between the electrode portions supporting the airborne carbon nanowires on which the palladium thin film is deposited is measured. By measuring, the hydrogen concentration can be measured.
그러나, 귀금속인 팔라듐을 탄소나노와이어 표면에 코팅하기 위해서는 기판 전체에 팔라둠을 증착하여야 하기 때문에 비용이 높다는 단점이 있었고, 또한 팔라듐 박막의 얇은 두께로 인하여 수소 가스에 의해 쉽게 포화되어 고농도 수소 가스 감지가 어려운 문제점을 안고 있었다. 【발명의 내용】 However, in order to coat palladium, a precious metal, on the surface of carbon nanowires, it is expensive to deposit palladium over the entire substrate. Also, due to the thin thickness of the palladium thin film, it is easily saturated by hydrogen gas and thus detects high concentration hydrogen gas. Had a difficult problem. [Content of invention]
【해결하려는 과제】  [Problem to solve]
본 발명은 상기한 문제점을 해소하기 위해 종래의 전자빔 증착법에 비해 적은 양의 팔라듐을 사용하여 탄소나노와이어에 국부적으로 다양한 크기를 갖는 구형의 팔라듐 나노입자들을 증착시켜, 높은 수소 농도에서도 수소 포화 상태가 되지 않아 농도의 수소를 감지할 수 있고, 저비용 고감도 센서를 구축할 수 있는 수소가스센서 및 이의 제조방법을 제공하는 것을 그 목적으로 한다.  The present invention is to solve the above problems by depositing spherical palladium nanoparticles having various sizes locally on carbon nanowires using a small amount of palladium compared to the conventional electron beam deposition method, the hydrogen saturation state at high hydrogen concentration It is not an object of the present invention to provide a hydrogen gas sensor and a method of manufacturing the same, which can detect hydrogen at a concentration, and can construct a low cost and high sensitivity sensor.
【과제의 해결 수단】  [Measures of problem]
본 발명의 일 구현예에서는, 기판 상에 위치하고, 소정의 간격을 두고 대향하는 한쌍의 전극부, 상기 전극부 사이에 위치하며, 상기 전극부에 의해 지지되는 탄소나노와이어, 및 상기 탄소나노와이어 표면에 위치하는 수소감지입자;를 포함하고, 상기 수소감지입자는 상기 탄소나노와이어 표면에 아일랜드 형태로 위치하며, 상기 탄소나노와이어 표면에 국부적으로 위치하고, 상기 수소감지입자의 입경은 1 내지 500 nm인 것인 수소가스센서를 제공한다.  In one embodiment of the present invention, a pair of electrode portions disposed on a substrate and opposed to each other at predetermined intervals, positioned between the electrode portions, supported by the electrode portion, carbon nanowires, and the surface of the carbon nanowires Hydrogen sensing particles located in; The hydrogen sensing particles are located in the island form on the surface of the carbon nanowires, are located locally on the surface of the carbon nanowires, the particle size of the hydrogen sensing particles is 1 to 500 nm It provides a hydrogen gas sensor.
보다 구체적으로, 상기 전극부는 탄소전극부일 수 있다. 본 명세서에서 전극부를 탄소전극부로 설명하는 부분은 전극부 재질의 일 예시를 들어 설명하는 것으로, 전극부 재질이 탄소에 한정되는 것은 아니다. 상기 수소감지입자는 1차 입자 형태로 상기 탄소나노와이어 표면에 위치할 수 있다.  More specifically, the electrode unit may be a carbon electrode unit. In the present specification, the portion of the electrode portion described as the carbon electrode portion is described by taking an example of the electrode portion material, and the electrode portion material is not limited to carbon. The hydrogen sensing particles may be located on the surface of the carbon nanowires in the form of primary particles.
상기 수소감지입자는 1차 입자가 모여 형성된 2차 입자 형태로 상기 탄소나노와이어 표면에 위치할 수 있다.  The hydrogen sensing particles may be located on the surface of the carbon nanowires in the form of secondary particles in which primary particles are collected.
상기 2차 입자의 입경은 10 내지 500 nra일 수 있다.  The particle diameter of the secondary particles may be 10 to 500 nra.
상기 탄소나노와이어 전체 표면 100면적 %에 대해, 상기 수소감지입자가 위치하는 면적은 90 내지 100 면적 >일 수 있다.  The area in which the hydrogen sensing particles are located may be 90 to 100 areas> 100 area% of the total surface area of the carbon nanowires.
상기 수소감지입자는 팔라듐 입자일 수 있다.  The hydrogen detecting particles may be palladium particles.
상기 수소감지입자의 비표면적은 0.5 내지 250 ra2/g일 수 있다. The specific surface area of the hydrogen detecting particles may be 0.5 to 250 ra 2 / g.
상기 탄소나노와이어의 직경은 100 내지 500 nm일 수 있다. 본 발명의 다른 일 구현예에서는, 기판 상에 위치하는 고감도용 센서모들 및 고농도용 센서모들을 포함하고 , 상기 고감도용 센서 모들 및 고농도용 센서모들은, 각각 독립적으로, 소정의 간격을 두고 대향하는 한쌍의 전극부; 상기 전극부 사이에 위치하며, 상기 전극부에 의해 지지되는 탄소나노와이어; 및 상기 탄소나노와이어 표면에 위치하는 수소감지입자;를 포함하고, 상기 고감도용 센서 모들 내 수소감지 입자는, 상기 탄소나노와이어 표면에 아일랜드 형태로 위치하며, 상기 탄소나노와이어 표면에 국부적으로 위치하며, 입경은 1 내지 10 nm이고, 상기 고농도용 센서 모들 내 수소감지 입자는, 상기 탄소나노와이어 표면에 아일랜드 형태로 위치하며, 상기 탄소나노와이어 표면에 국부적으로 위치하며, 입경은 10 nm 초과 및 500 nm 인 수소가스센서를 제공한다. The carbon nanowires may have a diameter of about 100 nm to about 500 nm. In another embodiment of the present invention, the high-sensitivity sensor caps and the high-density sensor caps located on the substrate, the high-sensitivity sensor caps and high-concentration sensor caps, each independently, facing each other at a predetermined interval A pair of electrode units; Carbon nanowires disposed between the electrode portions and supported by the electrode portions; And hydrogen sensing particles located on the surface of the carbon nanowires, wherein the hydrogen sensing particles in the high sensitivity sensor mode are located in an island form on the surface of the carbon nanowires and are locally located on the surface of the carbon nanowires. The particle diameter is 1 to 10 nm, the hydrogen-sensing particles in the high concentration sensor mode, is located in the island shape on the surface of the carbon nanowires, is located locally on the surface of the carbon nanowires, the particle diameter is greater than 10 nm and 500 It provides a hydrogen gas sensor of nm.
상기 고감도용 센서 모들 내 탄소나노와이어 전체 표면 100면적 %에 대해, 상기 수소감지입자가 위치하는 면적은 90 내지 100 면적 %일 수 있다. 상기 고농도용 탄소나노와이어 전체 표면 100면적 %에 대해, 상기 수소감지입자가 위치하는 면적은 90 내지 100 면적 ¾>일 수 있다.  The area where the hydrogen sensing particles are located may be 90 to 100 area% with respect to 100 area% of the total surface of the carbon nanowires in the high sensitivity sensor mode. With respect to 100% of the total surface area of the carbon nanowires for high concentration, the area where the hydrogen detecting particles are located may be 90 to 100 area ¾>.
상기 고감도용 센서 모들 내 상기 수소감지입자의 비표면적은 25 내지 250 m2/g 일 수 있다. The specific surface area of the hydrogen detecting particles in the high sensitivity sensor mode may be 25 to 250 m 2 / g.
상기 고농도용 센서 모들 내 상기 수소감지입자의 비표면적은 0.5 내지 25 m2/g 일 수 있다. The specific surface area of the hydrogen detecting particles in the high concentration sensor mode may be 0.5 to 25 m 2 / g.
본 발명의 또 다른 일 구현예에서는, 소정의 간격을 두고 대향하는 한쌍의 탄소전극부; 상기 탄소전극부 사이에 위치하며, 상기 탄소전극부에 의해 지지되는 탄소나노와이어;를 포함하는 지지체를 준비하는 단계 및 상기 지지체 중, 상기 탄소나노와이어의 표면에 전기도금방식으로 수소감지입자를 국부적으로 증착하는 단계를 포함하는 수소가스센서의 제조방법을 제공한다.  In another embodiment of the present invention, a pair of carbon electrode parts facing each other at a predetermined interval; Located between the carbon electrode portion, preparing a support comprising a carbon nanowires supported by the carbon electrode portion; and among the support, the hydrogen sensing particles locally on the surface of the carbon nanowires by electroplating method It provides a method of manufacturing a hydrogen gas sensor comprising the step of depositing.
상기 지지체 중, 상기 탄소나노와이어의 표면에 전기도금방식으로 수소감지입자를 국부적으로 증착하는 단계 ;에서, 상기 탄소나노와이어에 전해액을 위치하는데, 상기 전해액은 10nM ~ lOOraM 농도의 팔라듐도금액 (Na2 PdC , Sodium tetrachloropal l adate)일 수 있다. Locally depositing hydrogen sensing particles on the surface of the carbon nanowires by electroplating in the support; wherein an electrolyte is placed on the carbon nanowires, and the electrolyte is a palladium plating solution having a concentration of 10 nM to 100 RAM. 2 PdC, Sodium tetrachloropalladate).
상기 지지체 중, 상기 탄소나노와이어의 표면에 전기도금방식으로 수소감지입자를 국부적으로 증착하는 단계에서, 작업전극 (Working el ectrode)은 상기 탄소전극부 및 탄소나노와이어에 연결하며, 상대전극 (Counter electrode) 및 기준전극 (Reference electrode)은 팔라듐도금액에 침지하여 위치한 후, 전기도금을 실시할 수 있다. Of the support, the surface of the carbon nanowires by electroplating In the step of locally depositing hydrogen sensing particles, a working electrode is connected to the carbon electrode portion and carbon nanowires, and a counter electrode and a reference electrode are immersed in a palladium plating solution. After positioning, electroplating can be performed.
상기 전기도금방법은, 팔라듐 시드 형성 단계 및 팔라듐 시드를 성장 단계 ;를 포함하고, 상기 팔라듐 시드 형성 단계는 상기 팔라듐 시드 성장 단계보다 높은 전압 및 짧은 시간 조건에서 수행할 수 있다.  The electroplating method may include a palladium seed forming step and a palladium seed growing step, and the palladium seed forming step may be performed at a higher voltage and a shorter time condition than the palladium seed growing step.
상기 전기도금방법은, 팔라듐 시드 형성 단계 및 팔라듐 시드를 성장 단계를 포함하고, 상기 팔라듐 시드 형성 단계 및 팔라듐 시드 성장 단계를 교대로 복수회 실시하여 2차 입자 형태의 팔라듐 입자를 형성시킬 수 있다. 상기 지지체 중, 상기 탄소나노와이어의 표면에 전기도금방식으로 수소감지입자를 국부적으로 증착하는 단계 이후, 상기 수소감지입자가 증착된 탄소나노와이어를 진공 또는 불활성 가스 환경에서 어닐링하는 단계를 더 포함할 수 있다.  The electroplating method may include forming a palladium seed step and a palladium seed growth step, and alternately performing the palladium seed formation step and the palladium seed growth step a plurality of times to form palladium particles in the form of secondary particles. Locally depositing hydrogen sensing particles on the surface of the carbon nanowires of the support by electroplating, further comprising the step of annealing the carbon nanowires on which the hydrogen sensing particles are deposited in a vacuum or inert gas environment. Can be.
상기 소정의 간격을 두고 대향하는 한쌍의 탄소전극부 상기 탄소전극부 사이에 위치하며, 상기 탄소전극부에 의해 지지되는 탄소나노와이어를 포함하는 지지체를 준비하는 단계는,  Preparing a support including a carbon nanowires positioned between the pair of carbon electrode portions facing each other at the predetermined intervals and supported by the carbon electrode portion,
기판을 준비하는 단계, 기판 상에 절연층을 형성하는 단계, 상기 절연층 상에 포토리소그래피로 한 쌍의 포토레지스트 전극부 및 상기 한 쌍의 포토레지스트 전극부를 연결한 포토레지스트 마이크로와이어를 형성하는 단계 및 상기 한 쌍의 포토레지스트 전극부 및 포토레지스트 마이크로와이어를 열분해하여, 한 쌍의 탄소전극부와 탄소나노와이어로 변환하는 단계를 포함하는 방법에 의해 지지체가 준비될 수 있다. .  Preparing a substrate, forming an insulating layer on the substrate, and forming a photoresist microwire connecting the pair of photoresist electrode portions and the pair of photoresist electrode portions by photolithography on the insulating layer. The support may be prepared by a method including pyrolyzing the pair of photoresist electrode portions and the photoresist microwires and converting the pair of carbon electrode portions and carbon nanowires. .
[발명의 효과]  [Effects of the Invention]
본 발명의 일 실시예에 따른 수소가스센서 및 이의 제조방법에 의해 나타나는 효과는 다음과 같다.  Effects of the hydrogen gas sensor and the manufacturing method according to an embodiment of the present invention are as follows.
첫째, 전극부와 일체형으로 형성된 공중부유형 탄소나노와이어는 일괄 멤스 공정인 Carbon— MEMS를 이용하여 제작되므로 높은 수율 및 저비용 제작이 가능한 효과를 가진다.  First, the airborne carbon nanowires formed integrally with the electrode part are manufactured using the carbon-MEMS process, which is a batch MEMS process, and thus has a high yield and low cost manufacturing effect.
둘째, 포토마스크 모양, 2차 노광의 양 그리고 열분해 공정 조건에 의해 탄소나노와이어의 형상이 결정되므로, 필요에 따라 다양한 크기의 탄소나노와이어 구조체 제작이 가능한 효과를 가진다. Secondly, the shape of the photomask, the amount of secondary exposure and the pyrolysis process conditions Since the shape of the carbon nanowires is determined by, the carbon nanowire structure having various sizes can be manufactured as necessary.
셋째, 종래의 전자빔 증착법에 비해 적은 양의 괄라듐을 사용하여, 탄소나노와이어에 국부적으로 팔라듐 나노입자들을 증착시켜 저비용으로 고감도의 수소가스센서를 구축할 수 있는 효과를 가진다.  Third, by using palladium in a small amount compared to the conventional electron beam deposition method, by depositing palladium nanoparticles locally on carbon nanowires, it is possible to build a high-sensitivity hydrogen gas sensor at low cost.
넷째, 탄소나노와이어에 구형의 팔라듐 나노입자들을 증착하여, 종래의 박막형과 비교해 동일한 두께에서 상대적으로 부피 대 표면적 비가 높아 가스 센서 감도가 높은 효과를 가진다.  Fourth, spherical palladium nanoparticles are deposited on carbon nanowires, and the gas sensor sensitivity is high due to a relatively high volume-to-surface area ratio at the same thickness as compared to the conventional thin film type.
다섯째, 다양한 크기의 팔라듐 나노입자를 탄소나노와이어에 증착하여 높은 수소 농도에서도 수소 포화 상태가 되지 않아 높은 농도의 수소를 감지할 수 있는 효과를 가진다.  Fifth, palladium nanoparticles of various sizes are deposited on carbon nanowires, so that hydrogen cannot be saturated even at high hydrogen concentrations.
여섯째, 팔라듐 나노입자의 크기가 커짐에 따라 저농도의 수소 가스에 대한 반웅성을 감소하나, 고농도의' 수소에서도 포화되지 않는다. 따라서, 하나의 칩 (chip)에 다수의 탄소나노와이어를 집적한 후, 각각의 탄소나노와이어에 저농도 및 고농도의 수소 검출에 적합한 다양한 크기의 팔라듐 나노입자를 선택적으로 증착할 수 있어 저농도 및 고농도의 수소를 하나의 칩으로 측정할 수 있다.  Sixth, as the size of the palladium nanoparticles increases, the reaction to low concentrations of hydrogen gas decreases, but it is not saturated even at high concentrations of hydrogen. Therefore, after integrating a plurality of carbon nanowires on one chip, palladium nanoparticles of various sizes suitable for low and high concentrations of hydrogen can be selectively deposited on each carbon nanowire so that low and high concentrations can be deposited. Hydrogen can be measured with one chip.
【도면의 간단한 설명】  [Brief Description of Drawings]
도 1은 본 발명의 일 실시에 따라 수소가스센서가 제조되는 과정을 간략하게 보인 예시도이다.  1 is an exemplary view briefly showing a process of manufacturing a hydrogen gas sensor according to an embodiment of the present invention.
도 2는 본 발명의 일 실시 예에 따른 열분해 전의 한 쌍의 포토레지스트 전극부 및 포토레지스트 마이크로와이어 구조체와, 열분해 후의 한 쌍의 탄소전극부 및 탄소나노와이어 구조체를 보인 예시사진이다. 도 3은 본 발명의 일 실시에 따라 전기도금방식으로 탄소나노와이어에 팔라듐을 증착하는 상태를 보인 예시도이다.  2 is an exemplary photograph showing a pair of photoresist electrode portions and a photoresist microwire structure before pyrolysis and a pair of carbon electrode portions and carbon nanowire structures after pyrolysis according to an embodiment of the present invention. 3 is an exemplary view showing a state of depositing palladium on carbon nanowires by an electroplating method according to an embodiment of the present invention.
도 4는 본 발명의 일 실시에 따라 전기도금방식으로 탄소나노와이어에 팔라듐이 전압에 따라 증착된 상태를 보인 예시도이다. 도 5는 본 발명의 일 실시에 따른 팔라듐 나노입자 증착 전후의 공중부유형 탄소나노와이어의 인가전압에 따른 측정전류의 변화를 나타낸 그래프이다. 도 6은 본 발명의 일 실시에 따른 수소가스센서의 수소농도에 따른 지항 변화율을 나타낸 그래프이다. 4 is an exemplary view showing a state in which palladium is deposited on carbon nanowires according to a voltage by electroplating according to an embodiment of the present invention. FIG. 5 is a graph showing a change in measurement current according to an applied voltage of airborne carbon nanowires before and after deposition of palladium nanoparticles according to an exemplary embodiment of the present invention. Figure 6 is a graph showing the rate of change according to the hydrogen concentration of the hydrogen gas sensor according to an embodiment of the present invention.
도 7은 복수개의 센서 모들을 가지는 수소감지센서의 개략도 및 각각의 모들에 대한 SEM사진이다.  7 is a schematic diagram of a hydrogen sensing sensor having a plurality of sensor heads and SEM photographs of the respective heads.
도 8은 본 발명의 일 실시에 따른 팔라듐 나노입자가 증착된 후의 전류 흐름을 나타내는 예시도와 팔라듐 나노입자 증착 전후 및 복수개의 모들에 대한 공중부유형 탄소나노와이어의 인가전압에 따른 측정전류의 변화를 나타낸 그래프이다.  8 is an exemplary view illustrating a current flow after palladium nanoparticles are deposited according to an embodiment of the present invention, and a change in measurement current according to an applied voltage of airborne carbon nanowires before and after palladium nanoparticle deposition and for a plurality of modules. The graph shown.
도 9은 복수개의 센서 모들을 가지는 수소 감지 센서의 수소농도 변화에 따른 저항 변화율 그래프이다.  9 is a graph of a resistance change rate according to a change in hydrogen concentration of a hydrogen detecting sensor having a plurality of sensor modules.
【발명을 실시하기 위한 구체적인 내용】  [Specific contents to carry out invention]
이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시 예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는. 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여, 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.  Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. Prior to this, the terms or words used in the present specification and claims should be construed to be limited to ordinary or dictionary meanings. No, the inventor should be interpreted as meanings and concepts corresponding to the technical idea of the present invention, based on the principle that the concept of terms can be properly defined in order to explain his invention in the best way.
따라서 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 실시 예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들은 대체할 수 있는 균등한 변형 예들이 있을 수 있음을 이해하여야 한다.  Therefore, the embodiments described in the present specification and the configuration shown in the drawings are only the most preferred embodiments of the present invention, and do not represent all of the technical idea of the present invention. It should be understood that there may be variations.
본 발명의 일 구현예에서는, 기판 상에 위치하고, 소정의 간격을 두고 대향하는 한쌍의 탄소전극부; 상기 탄소전극부 사이에 위치하며, 상기 탄소전극부에 의해 지지되는 탄소나노와이어; 및 상기 탄소나노와이어 표면에 위치하는 수소감지입자;를 포함하고, 상기 수소감지입자는 상기 탄소나노와이어 표면에 아일랜드 형태로 위치하며, 상기 탄소나노와이어 표면에 국부적으로 위치하고, 상기 수소감지입자의 입경은 1 내지 500 nm인 것인 수소가스센서를 제공한다.  In one embodiment of the present invention, a pair of carbon electrode portions disposed on a substrate and opposed to each other at predetermined intervals; Carbon nanowires disposed between the carbon electrode portions and supported by the carbon electrode portions; And hydrogen sensing particles positioned on the surface of the carbon nanowires, wherein the hydrogen sensing particles are positioned in an island form on the surface of the carbon nanowires, and are locally located on the surface of the carbon nanowires, and have a particle diameter of the hydrogen sensing particles. It provides a hydrogen gas sensor that is 1 to 500 nm.
상기 수소감지입자는 팔라듐 입자일 수 있다.  The hydrogen detecting particles may be palladium particles.
이하 설명에서는 팔라듐에 대해 언급하고 있는 부분은 수소감지입자의 구체적인 예시를 들어 설명한 것일 뿐 팔라듐에 제한된 설명은 아니다. In the following description, the part referring to palladium is Specific examples of the hydrogen sensing particles have been described, but are not limited to palladium.
보다 구체적으로, 하기 실시예에서 상세히 설명하고 있는 바와 같이 , 도 4를 보면 팔라듐 입자의 직경이 수 나노미터부터 수백 나노미터까지인 것을 확인할 수 있다.  More specifically, as described in detail in the following examples, looking at Figure 4 it can be seen that the diameter of the palladium particles from several nanometers to several hundred nanometers.
상기 수소감지입자는 1차 입자 형태로 상기 탄소나노와이어 표면에 위치할 수 있다.  The hydrogen sensing particles may be located on the surface of the carbon nanowires in the form of primary particles.
상기 1차 입자의 입경은 1 내지 10 nm 수준일 수 있다. 이러한 범위는 수소 감지도를 높일 수 있다는 의의를 가진다.  The particle size of the primary particles may be 1 to 10 nm level. This range has the significance of increasing hydrogen sensitivity.
또는, 상기 수소감지입자는 1차 입자가 모여 형성된 2차 입자 형태로 상기 탄소나노와이어 표면에 위치할 수 있다.  Alternatively, the hydrogen sensing particles may be located on the surface of the carbon nanowires in the form of secondary particles in which primary particles are collected.
상기 2차 입자의 입경은 10 내지 500 ran 일 수 있다. 이러한 범위는 고농도의 수소에 포화되지 않는다는 의의를 가진다.  The particle diameter of the secondary particles may be 10 to 500 ran. This range has the significance of not being saturated with high concentrations of hydrogen.
이러한 1차 입자 또는 2차 입자는 후술하는 전기도금방법에 의해 결정될 수 있다.  Such primary particles or secondary particles may be determined by the electroplating method described below.
도금되는 수소감지입자 (예를 들어, 팔라듐)의 입경 및 수소감지입자가 탄소와이어에 위치하는 면적 등에 의해, 센서의 수소를 감지하는 민감도 및 감지 농도의 차이가 나타날 수 있다. 이는 목적하는 스펙에 따라 조절될 수 있다.  Depending on the particle size of the hydrogen-sensing particles (for example, palladium) to be plated and the area where the hydrogen-sensing particles are located on the carbon wire, there may be a difference in the sensitivity and the concentration of sensing the hydrogen of the sensor. This can be adjusted according to the desired specifications.
보다 구체적인 수소감지입자의 형성 과정은 후술하는 제조방법에서 상세하게 설명하도록 한다.  The formation process of more specific hydrogen sensing particles will be described in detail in the manufacturing method described later.
상기 탄소나노와이어 전체 표면 100면적 %에 대해, 상기 수소감지입자가 위치하는 면적은 90 내지 100 면적 %일 수 있다. 이러한 탄소나노와이어 표면에서 차지하는 수소감지입자의 면적 비율도 센서의 스펙에 영향을 줄 수 있다. 상기 범위는 실제 상업적 센서로 활용 가능한 범위로 판단된다.  The area where the hydrogen sensing particles are located may be 90 to 100 area% with respect to 100 area% of the total surface of the carbon nanowires. The area ratio of the hydrogen sensing particles occupying the surface of the carbon nanowire may also affect the specification of the sensor. The range is determined to be a range that can be used as a real commercial sensor.
보다 구체적으로, 도 4를 보면 팔라듬 입자가 탄소나노와이어를 코팅하는 면적은 조절이 가능하다. 다만, 수소센서로 활용하기 위해서는 전류가 팔라듐나노입자로 우회하여 흐르는 비율이 높을수록 수소에 대한 저항변화가 커지므로 카본나노와이어의 표면을 90% 이상 팔라듐으로 코팅하는 것이 바람직할 수 있다. More specifically, referring to FIG. 4, the area where the parallax particles coat the carbon nanowires can be adjusted. However, in order to utilize as a hydrogen sensor, the higher the ratio of current flowing through the palladium nanoparticles, the greater the change in resistance to hydrogen, so that the surface of the carbon nanowire is more than 90% palladium. It may be desirable to coat.
상기 수소감지입자의 비표면적은 0.5 내지 250 m2/g 일 수 있다. 이러한 범위는 수소감지입자의 직경이 1 내지 500 nm 일 경우로, 수소감지입자의 직경이 작아질수록 비표면적이 커진다. 비표면적이 커질수록 수소감지입자 표면에서의 수소에 대한 반웅이나 흡수에 따른 수소감지입자의 저항 변화율이 증가하여 감도가 향상된다. The specific surface area of the hydrogen detecting particles may be 0.5 to 250 m 2 / g. This range is when the diameter of the hydrogen sensing particles is 1 to 500 nm, the smaller the diameter of the hydrogen sensing particles, the larger the specific surface area. As the specific surface area increases, the rate of change of resistance of the hydrogen sensing particles according to reaction or absorption of hydrogen on the surface of the hydrogen sensing particles increases, thereby improving sensitivity.
본 발명의 다른 일 구현예에서는, 기판 상에 위치하는 고감도용 센서모들 및 고농도용 센서모들을 포함하고, 상기 고감도용 센서 모들 및 고농도용 센서모들은, 각각 독립적으로, 소정의 간격을 두고 대향하는 한쌍의 탄소전극부; 상기 탄소전극부 사이에 위치하며, 상기 탄소전극부에 의해 지지되는 탄소나노와이어; 및 상기 탄소나노와이어 표면에 위치하는 수소감지입자;를 포함하고, 상기 고감도용 센서 모듈 내 수소감지 입자는, 상기 탄소나노와이어 표면에 아일랜드 형태로 위치하며, 상기 탄소나노와이어 표면에 국부적으로 위치하며, 입경은 1 내지 10 nm이고, 상기 고농도용 센서 모들 내 수소감지 입자는, 상기 탄소나노와이어 표면에 아일랜드 형태로 위치하며, 상기 탄소나노와이어 표면에 국부적으로 위치하며, 입경은 10 nm 내지 500 nra 인 수소가스센서를 제공한다.  In another embodiment of the present invention, the high-sensitivity sensor caps and the high-density sensor caps located on the substrate, the high-sensitivity sensor caps and high-concentration sensor caps, each independently, facing each other at a predetermined interval A pair of carbon electrode portions; Carbon nanowires disposed between the carbon electrode portions and supported by the carbon electrode portions; And hydrogen sensing particles positioned on the surface of the carbon nanowires, wherein the hydrogen sensing particles in the high sensitivity sensor module are located in an island form on the surface of the carbon nanowires and are locally located on the surface of the carbon nanowires. , The particle diameter is 1 to 10 nm, the hydrogen-sensing particles in the high concentration sensor mode, is located in the island shape on the surface of the carbon nanowires, is located locally on the surface of the carbon nanowires, the particle diameter is 10 nm to 500 nra It provides a hydrogen gas sensor.
상기 수소가스센서는 복수의 모들을 포함할 수 있다.  The hydrogen gas sensor may include a plurality of modules.
보다 구체적으로, 고감도용 센서 모들과 고농도용 센서 모들을 포함할 수 있다. 이는 각각의 탄소나노와이어에 도금되는 수소감지입자의 입경에 따라 나뉠 수 있다.  More specifically, the sensor module may include high sensitivity sensor modules and high concentration sensor modules. This may be divided according to the particle diameter of the hydrogen sensing particles to be plated on each carbon nanowire.
예를 들어, 소입경의 수소감지입자를 사용하는 경우, 적은 농도의 수소를 고감도로 감지할 수 있으나, 수소감지입자의 양이 적기 때문에 쉽게 포화될 수 있다.  For example, in the case of using hydrogen particle having a small particle size, it is possible to detect a small concentration of hydrogen with high sensitivity, but because the amount of hydrogen detection particle is small, it can be easily saturated.
이와 반대로 대입경의 수소감지입자를 사용하는 경우, 수소감지입자의 부피가 크기 때문에, 적은 농도의 수소에는 저항 변화가 미흡할 수는 있으나, 고농도의 수소를 감지하는 면에서는 효과적일 수 있다. 상기 고감도용 및 고농도용 센서 모들 내 탄소나노와이어 전체 표면 100 면적 ¾)에 대해, 상기 수소감지입자가 위치하는 면적은 90 내지 100 면적 % 일 수 있다. 이러한 범위는 탄소나노와이어와 팔라듐나노입자를 통해 흐르는 전류 전체 증 팔라듐 나노입자를 경유해 흐르는 전류의 비율을 높여 수소와 반웅하여 변화하는 팔라듐 나노입자의 저항 변화가 전체 저항에 미치는 영향을 높여 수소 감도를 높일 수 있다. On the contrary, in the case of using the hydrogen-sensing particles having a large particle size, since the volume of the hydrogen-sensing particles is large, the resistance change may be insufficient for a small concentration of hydrogen, but may be effective in detecting high concentrations of hydrogen. With respect to the total surface area 100 ¾ of the carbon nanowires in the high sensitivity and high concentration sensor mode, the area where the hydrogen sensing particles are located may be 90 to 100 area%. This range is achieved through carbon nanowires and palladium nanoparticles. Increased current flow rate Increases the ratio of the current flowing through the palladium nanoparticles to increase hydrogen sensitivity by increasing the effect of resistance change of the palladium nanoparticles reacting with hydrogen on the overall resistance.
상기 고감도용 센서 모들 내 상기 수소감지입자의 비표면적은 25 내지 250 m2/g 일 수 있다. 이러한 범위는 높은 감도와 함께 반응속도를 높이는데 효과적일 수 있다. The specific surface area of the hydrogen detecting particles in the high sensitivity sensor mode may be 25 to 250 m 2 / g. This range can be effective to speed up the reaction with high sensitivity.
보다 구체적으로, 비표면적이 높아지면, 표면에서의 수소 반웅 및 흡수에 따른 저항 변화율이 높아진다. 수소흡수는 표면적에 의해 결정되고, 수소흡수에 따른 변화하는 저항은 나노입자의 부피와 관련된 특성이기 때문에 부피대 표면적비가 커질수록 표면에서 일어나는 반웅이 부피의 특성에 미치는 영향이 커질 수 있다. 따라서, 감도와 반웅속도가 향상될 수 있다.  More specifically, the higher the specific surface area, the higher the rate of change of resistance due to hydrogen reaction and absorption on the surface. The hydrogen absorption is determined by the surface area, and the resistance to change due to the hydrogen absorption is a property related to the volume of the nanoparticles, so the greater the volume-to-surface area ratio, the greater the effect of reaction on the surface. Therefore, sensitivity and reaction speed can be improved.
상기 고농도용 센서 모들 내 상기 수소감지입자의 비표면적은 0.5 내지 25 m2/g 일 수 있다. 이러한 범위는 고농도의 수소에 대해서도 쉽게 포화되지 않아 고농도 수소 감지하는데 효과적일 수 있다. The specific surface area of the hydrogen detecting particles in the high concentration sensor mode may be 0.5 to 25 m 2 / g. This range is not easily saturated even at high concentrations of hydrogen and may be effective for detecting high concentrations of hydrogen.
보다 구체적으로, 비표면적비가 커지면 감도가 커지나, 실제 부피가 감소하므로 쉽게 수소에 포화될 수 있다. 따라서 , 비표면적비가 감소하면 즉 나노 입자의 크기가 커지면 감도에서 손해를 보더라도 고농도의 수소에 대해서도 저항변화가 농도 변화에 따라 발생할 수 있다.  More specifically, the larger the specific surface area ratio, the greater the sensitivity, but since the actual volume is reduced, it can be easily saturated with hydrogen. Therefore, if the specific surface area ratio decreases, that is, the size of the nanoparticles increases, the resistance change may occur even with a high concentration of hydrogen even with a loss in sensitivity.
본 발명의 다른 일 구현예에서는, 소정의 간격을 두고 대향하는 한쌍의 탄소전극부; 상기 탄소전극부 사이에 위치하며, 상기 탄소전극부에 의해 지지되는 탄소나노와이어;를 포함하는 지지체를 준비하는 단계; 및 상기 지지체 중, 상기 탄소나노와이어의 표면에 전기도금방식으로 수소감지입자를 국부적으로 증착하는 단계를 포함하는 수소가스센서의 제조방법을 제공한다.  In another embodiment of the present invention, a pair of carbon electrode parts facing each other at a predetermined interval; Preparing a support including a carbon nanowire positioned between the carbon electrode parts and supported by the carbon electrode parts; And locally depositing hydrogen sensing particles on the surface of the carbon nanowires by electroplating in the support.
상기 지지체는 종래의 다양한 방법으로 준비될 수 있다.  The support may be prepared by various conventional methods.
다만, 하기와 같은 포토레지시트 방법을 통해 준비될 수도 있으며, 이에 대해 구체적으로 설명하도록 한다.  However, it may be prepared through the photoresist method as described below, and will be described in detail.
상기 소정의 간격을 두고 대향하는 한쌍의 탄소전극부; 상기 탄소전극부 사이에 위치하며 , 상기 탄소전극부에 의해 지지되는 탄소나노와이어;를 포함하는 지지체를 준비하는 단계;는, 기판을 준비하는 단계; 기판 상에 절연층을 형성하는 단계; 상기 절연층 상에 포토리소그래피로 한 쌍의 포토레지스트 전극부 및 상기 한 쌍의 포토레지스트 전극부를 연결한 포토레지스트 마이크로와이어를 형성하는 단계; 및 상기 한 쌍의 포토레지스트 전극부 및 포토레지스트 마이크로와이어를 열분해하여, 한 쌍의 탄소전극부와 탄소나노와이어로 변환하는 단계 ;를 포함하는 방법에 의해 지지체가 준비될 수도 있다. A pair of carbon electrode portions opposed to each other at predetermined intervals; Located between the carbon electrode portion, supported by the carbon electrode portion Preparing a support comprising a carbon nanowire; The step of preparing a substrate; Forming an insulating layer on the substrate; Forming a photoresist microwire connecting the pair of photoresist electrode portions and the pair of photoresist electrode portions by photolithography on the insulating layer; The support may be prepared by a method including a step of thermally decomposing the pair of photoresist electrode parts and the photoresist microwires, and converting the pair of carbon electrode parts and carbon nanowires.
이하 상기 포토레지스트를 이용한 방벙을 포함하여 구체적인 예를 들어 , 도면과 함께 구체적인 제조 방법에 대해 설명하도록 한다 .  Hereinafter, a specific manufacturing method including a drawing using the photoresist will be described with reference to the accompanying drawings.
본 발명의 일 구현예는 탄소나노와이어를 지지하는 한 쌍의 전극부와 일체형으로 형성된 공중부유형 탄소나노와이어 구조체는 Carbon-MEMS를 이용하여 제작하므로 높은 수율 및 저비용 제작이 가능하고, 종래보다 탄소나노와이어에 국부적으로 구형의 팔라듐 나노입자들을 증착시켜 적은 양의 팔라듐을 사용하여, 저비용으로 고감도의 센서를 구축할 수 있다.  According to one embodiment of the present invention, the airborne carbon nanowire structure formed integrally with a pair of electrode portions supporting carbon nanowires is manufactured using carbon-MEMS, so that a high yield and low cost can be manufactured, and carbon is more conventional. By depositing spherical palladium nanoparticles locally on the nanowire, a small amount of palladium can be used to build a highly sensitive sensor at low cost.
이에 따라, 높은 수소 농도에서 수소 포화 상태가 되지 않도록 다양한 크기의 팔라듐 나노 입자를 증착한 공중부유형 탄소나노와이어 수소가스센서를 제조할 수 있다.  Accordingly, airborne carbon nanowire hydrogen gas sensors in which palladium nanoparticles of various sizes are deposited may be manufactured to prevent hydrogen saturation at high hydrogen concentration.
먼저, 도 1을 참조하여 살펴보면 (a)단계로, 실리콘웨이퍼 ( 10) 상면에 절연층 ( 11)을 형성한다.  First, referring to FIG. 1, in step (a), the insulating layer 11 is formed on the upper surface of the silicon wafer 10.
이때, 실시되는 절연층 ( 11)의 형성은 열 산화 ( thermal oxidat ion)방식의 증착으로 이루어지는데, 원소기호가 Si인 실리콘웨이퍼 ( 10) 상면을 800~1200 °C의 열을 가해 산화시켜, 실리콘웨이퍼 ( 10) 상면에 원소기호가 Si02 인 절연층 ( 11)을 증착 형성한다. 여기서, 증착 형성되는 상기 절연층 ( 11)의 두께는 0. 1~10卿로 상기 실리콘웨이퍼 ( 10)의 두께 및 센서의 측정용량에 따라 그 두께를 선택적으로 선정하여 증착 형성할 수 있다. At this time, the formation of the insulating layer (11) is carried out by thermal oxidation (thermal oxidat ion) deposition, the silicon wafer (10) having an element symbol of Si by applying a heat of 800 ~ 1200 ° C., The insulating layer 11 whose element symbol is Si0 2 is formed by vapor deposition on the upper surface of the silicon wafer 10. Here, the thickness of the insulating layer 11 to be deposited is 0.1 ~ 10 卿 can be formed by selectively selecting the thickness according to the thickness of the silicon wafer 10 and the measuring capacity of the sensor.
다음은 (b)단계로, 상기 (a)단계에 의해 형성된 상기 실리콘웨이퍼 ( 10)의 절연층 ( 11) 상에 포토리소그래피로 한 쌍의 포토레지스트 전극부 (21) 및 상기 한 쌍의 포토레지스트 전극부 (21)를 연결한 포토레지스트 마이크로와이어 (22)를 형성한다. 상기 포토리소그래피는 감광성 수지를 도포한 기판에 포토마스크를 통해 자외선을 조사하면 포토마스크에 새겨진 패턴이 포토레지스트에 전사되고, 이를 현상하여 기판 상에 패턴을 형성하는 것으로, 상기Next, in step (b), a pair of photoresist electrode portions 21 and the pair of photoresist are photolithographically formed on the insulating layer 11 of the silicon wafer 10 formed by the step (a). The photoresist microwires 22 connecting the electrode portions 21 are formed. In the photolithography, when ultraviolet rays are irradiated to the substrate coated with the photosensitive resin through a photomask, the pattern engraved on the photomask is transferred to the photoresist and developed to form a pattern on the substrate.
(b)단계는 복수 개의 단계로 이루어지는데, 이를 보다 상세하게 살펴보면 다음과 같다. Step (b) consists of a plurality of steps, which are described in more detail as follows.
먼저 (b— 1)단계로, 상기 (a)단계에 의해 형성된 절연층 (11) 상에 포토레지스트를 도포하여 포토레지스트층 (20)을 형성한다.  First, in step (b-1), the photoresist layer 20 is formed by applying photoresist on the insulating layer 11 formed by step (a).
이때, 상기 절연층 (11)에 도포되는 포토레지스트 재질로는 SU-8을 이용하고, 스핀 코팅방식으로 포토레지스트를 상기 절연층 ( 11) 상에 고르게 도포하여, 상기 절연층 ( 11) 상에 포토레지스트층 (20)을 형성한다.  In this case, SU-8 is used as the photoresist material to be applied to the insulating layer 11, and the photoresist is evenly applied on the insulating layer 11 by spin coating, and on the insulating layer 11. The photoresist layer 20 is formed.
여기서, 형성되는 포토레지스트층 (20)의 두께는 5~100卿로 센서의 측정용량에 따라 그 두께가 선택적으로 선정되어 이루어진다.  Here, the thickness of the photoresist layer 20 to be formed is 5 ~ 100 kPa, the thickness is selectively selected according to the measuring capacity of the sensor.
다음은 (b-2)단계로, 상기 (b-1)단계에 의해 형성된 포토레지스트층 (20) 상부에 한 쌍의 전극부 위치와 대웅하는 영역이 타공된 제 1포토마스크 (31)를 위치한 후, 자외선을 조사하여 1차 노광올 실시한다. 이때, 실시되는 1차 노광은 상기 포토레지스트층 (20) 증 전극부 영역에 상웅하는 포토레지스트층 (20)의 바닥까지 광학적 증합 (Polymer i zat ion)이 이루어질 만큼 충분한 에너지로 노광을 실시하는 것이 바람직하다ᅳ  Next, in step (b-2), the first photomask 31 having the perforated area of the pair of electrode portions formed on the photoresist layer 20 formed by the step (b-1) is perforated. Thereafter, ultraviolet rays are irradiated to carry out the first exposure. In this case, the primary exposure is to perform exposure with sufficient energy such that optical deposition (Polymer i zat ion) is performed to the bottom of the photoresist layer 20 floating on the region of the photoresist layer 20. Desirable
그리고 다음은 (b-3)단계로, 상기 (b— 2)단계에 의해 한 쌍의 전극부 영역이 1차 노광된 포토레지스트층 (20) 상부에 포토레지스트 마이크로와이어 위치와 대웅하는 영역이 타공된 게 2포토마스크 (32)를 위치한 후, 자외선으로 2차 노광을 실시한다.  Next, in step (b-3), a region where the photoresist microwire position is formed on the photoresist layer 20 where the pair of electrode regions are first exposed by the step (b-2) is perforated. After the secondary photomask 32 is placed, secondary exposure is performed with ultraviolet rays.
이때 한 쌍의 포토레지스트 전극부 (21)를 연결하는 포토레지스트 마이크로와이어 (22)는 마이크로 크기의 와이어 형태로 형성되기 위해 2차 노광시에는 포토레지스트 마이크로와이어 영역에 상웅하는 포토레지스트층 (20)의 상단 부분만 중합이 이루어지도록 조사량을 조절하는 것이 바람직한데, 자외선 노광 에너지에 따라 상기 포토레지스트 마이크로와이어 (22)의 두께가 조절할 수 있다.  At this time, the photoresist microwires 22 connecting the pair of photoresist electrode portions 21 are formed in the form of micro-sized wires. It is preferable to adjust the dose so that only the upper portion of the polymerization is carried out, the thickness of the photoresist microwire 22 can be adjusted according to the ultraviolet exposure energy.
다음은 (b-4)단계로, 상기 (b-2)단계 및 (a-3)단계에 의해 노광된 영역을 제외한 나머지 부분의 포토레지스트층 (20)을 현상 제거하여, 상기 실리콘웨이퍼 ( 10)의 절연층 (11) 상에 한 쌍의 포토레지스트 전극부 (21)와 상기 포토레지스트 전극부 (21)들을 연결하는 포토레지스트 마이크로와이어 (22)를 형성한다. Next, in step (b-4), the exposure is performed by steps (b-2) and (a-3). The photoresist layer 20 except for the region is developed and removed, and the pair of photoresist electrode portions 21 and the photoresist electrode portions 21 are formed on the insulating layer 11 of the silicon wafer 10. Photoresist microwires 22 are formed to connect them.
이때 자외선이 조사되어 광학적으로 증합된 부분을 제외한 부분을 선택적으로 에칭할 수 있는 현상액 (Developer )을 사용하여 중합된 포토레지스트 재질의 공중부유형 포토레지스트 마이크로와이어 (22)와 상기 포토레지스트 마이크로와이어 (22)를 지지하는 한 쌍의 포토레지스트 전극부 (21) 구조체가 형성된다.  At this time, the airborne photoresist microwires 22 and the photoresist microwires made of a photoresist material polymerized using a developer capable of selectively etching portions other than the optically evaporated portions irradiated with ultraviolet rays ( A pair of photoresist electrode portion 21 structures supporting 22 are formed.
다음은 (c)단계로, 상기 (b)단계에 의해 상기 절연층 ( 11) 상에 형성된 상기 한 쌍의 포토레지스트 전극부 (21) 및 포토레지스트 마이크로와이어 (22)를 열분해하여, 한 쌍의 탄소전극부 (41)와 탄소나노와이어 (42)로 변환한다.  Next, in the step (c), the pair of photoresist electrode portions 21 and the photoresist microwires 22 formed on the insulating layer 11 are thermally decomposed by the step (b). It converts into the carbon electrode part 41 and the carbon nanowire 42.
이때, 중합된 포토레지스트 재질의 상기 한 쌍의 포토레지스트 전극부 (21) 및 포토레지스트 마이크로와이어 (22) 구조체는 챔버에 수용되어 , 상기 챔버의 내부 분위기가 진공 또는 불활성 가스 환경에서 500 °C 이상의 온도로 가열하는 폴리머 열분해 공정을 실시한다.  At this time, the pair of photoresist electrode portions 21 and the photoresist microwires 22 structure of the polymerized photoresist material are accommodated in a chamber, and the inner atmosphere of the chamber is 500 ° C. or higher in a vacuum or inert gas environment. A polymer pyrolysis step of heating to temperature is carried out.
상기한 폴리머 열분해 공정을 통한 상기 한 쌍의 포토레지스트 전극부 (21) 및 포토레지스트 마이크로와이어 (22) 구조체는 부피감소로 인해 형상변화가 발생하는데, 도 2의 (a)는 열분해 전의 한 쌍의 포토레지스트 전극부 (21) 및 포토레지스트 마이크로와이어 (22) 구조체를 보인 것이고, 열분해 후의 한 쌍의 포토레지스트 전극부 (21) 및 포토레지스트 마이크로와이어 (22) 구조체를 보인 것이다.  The pair of photoresist electrode portions 21 and the photoresist microwires 22 structure through the polymer pyrolysis process generate a shape change due to volume reduction, and FIG. The structure of the photoresist electrode portion 21 and the photoresist microwire 22 is shown, and the structure of the pair of photoresist electrode portion 21 and the photoresist microwire 22 after thermal decomposition is shown.
도 2에 도시한 바와 같이 상기한 폴리머 열분해 과정에서 상기 한 쌍의 포토레지스트 전극부 (21) 및 포토레지스트 마이크로와이어 (22) 구조체는 열분해 전, 부피에 비해 부피가 약 80% 정도 감소하게 된다.  As shown in FIG. 2, the pair of photoresist electrode portions 21 and the photoresist microwires 22 structures are reduced by about 80% in volume compared to the volume before pyrolysis.
여기서, 상기한 열분해 공정은 시간, 온도, 가열 속도, 냉각 속도, 주입 가스 등의 조건에 따라 상기 한 쌍의 포토레지스트 전극부 (21) 및 포토레지스트 마이크로와이어 (22) 구조체의 부피 감소를 조절할 수 있다. 따라서, 폴리머 마이크로 제작용 포토마스크의 크기 및 노광 에너지조절 및 폴리머 열분해 조건을 조절하여 최종 탄소나노와이어의 형상을 조절할 수 있다. Here, the pyrolysis process may control the volume reduction of the pair of photoresist electrode portions 21 and the photoresist microwires 22 structures according to conditions such as time, temperature, heating rate, cooling rate, injection gas, and the like. have. Therefore, the size and exposure of the photomask for polymer microfabrication Energy shape and polymer pyrolysis conditions can be adjusted to control the shape of the final carbon nanowires.
이때, 포토레지스트 마이크로와이어의 크기는 직경이 ~ 수 , 길이는 수 ~ 수백 , 실시콘웨이퍼와 공증부유된 포토레지스트 마이크로와이어의 간격은 1 ~ 수백 로 선정되어 제조되어, 열분해 공정을 통한 탄소나노와이어의 크기는 직경이 수십 nm ~ 수 , 길이는 수 ~ 수백 mi, 기판과 와이어의 간격은 수백 nm ~ 수백 로 이루어진다.  At this time, the size of the photoresist microwire is a diameter ~ number, the length is a few ~ hundreds, the interval between the conducting wafer and the notarized photoresist microwire is selected to be produced from 1 to several hundred, carbon nanowires through the pyrolysis process The size of the dome is several tens of nm ~ several, the length is several hundreds of mi, the distance between the substrate and the wire hundreds of nm to hundreds.
다음은 (d)단계로, 상기 (c)단계에 의해 변환된 한 쌍의 탄소전극부 (41)와 탄소나노와이어 (42) 중 상기 탄소나노와이어 (42)의 표면에 팔라듐 나노입자를 국부적으로 증착한다.  Next, in step (d), palladium nanoparticles are locally formed on the surfaces of the carbon nanowires 42 of the pair of carbon electrode portions 41 and the carbon nanowires 42 converted by the step (c). To deposit.
이때, 도 3에 도시한 바와 같이 팔라듐 나노입자의 증착은 전기도금방식으로 실시하는데, 전기도금은 대향전극인 상대전극 (Counter electrode: 1), 전극전위의 측정 기준이 되는 기준전극 (Reference electrode: 2), 전극 반웅을 일으킬 때 시료 중에 전류를 흐르게 할 목적으로 작업전극 (Working electrode: 3)을 필요로 하는데, 이때 백금 (Platinum, Pt)을 상대전극 (Counter electrode: 1)으로 하고, 은- 염화은 (Silver/Silver chloride, Ag/AgCl)을 기준전극 (Reference electrode: 2)으로 사용하며, 작업전극 (Working electrode: 3)은 열분해된 탄소전극부 (41)의 일측 또는 양측에 접촉시켜, 상기 탄소전극 (42)에 전압 (전기)을 인가하여 팔라듐도금액 (전해액)에 노출된 탄소나노와이어 (42)에 팔라듐 나노입자 (50)를 전기화학증착 (Electrodeposition)방식으로 증착한다.  In this case, as shown in FIG. 3, the deposition of palladium nanoparticles is performed by electroplating, and the electroplating is performed by using a counter electrode as a counter electrode (Counter electrode: 1) and a reference electrode as a reference for measuring electrode potential. 2) A working electrode (3) is required for the purpose of flowing an electric current in the sample when generating an electrode reaction, in which platinum (Platinum, Pt) is used as the counter electrode (1), Silver chloride (Silver / Silver chloride, Ag / AgCl) is used as a reference electrode (2), and a working electrode (3) is in contact with one or both sides of the pyrolyzed carbon electrode portion 41, A voltage (electricity) is applied to the carbon electrode 42 to deposit the palladium nanoparticles 50 on the carbon nanowires 42 exposed to the palladium plating solution (electrolyte) by electrochemical deposition.
보다 상세하게 살펴보면, 본 발명의 일 실시에 따라 제조된 실리콘웨이퍼 (10)의 절연층 (11) 상에 공증부유된 탄소나노와이어 (42)를 팔라듬도금액 (Na2 PdCl4 , Sodium tetrachloropalladate)에 침지하고, 일측 또는 양측의 탄소전극 (41)에 작업전극 (3)을 접촉시키며, 백금으로 이루어진 상대전극 (1) 및 은 -염화은으로 이루어진 기준전극 (2)은 탄소나노와이어 (42)와 함께 팔라듐도금액 속에 침지하여 위치한 상태에서 작업전극 (3)에 전압 (전기)을 가해 전기도금을 실시한다. Looking in more detail, the plating solution (Na 2 PdCl 4 , Sodium tetrachloropalladate) of the notarized carbon nanowires 42 on the insulating layer 11 of the silicon wafer 10 manufactured according to an embodiment of the present invention Immersed in, and the working electrode (3) in contact with one or both carbon electrodes 41, the counter electrode (1) made of platinum and the reference electrode (2) made of silver-silver chloride are carbon nanowires (42) and Electroplating is performed by applying a voltage (electricity) to the working electrode (3) while being immersed in the palladium plating solution.
이때, 팔라듐도금액의 농도는 ΙΟηΜ ~ lOOraM로 진행하는 것이 바람직하고, 상기 팔라듐도금액의 농도가 증가함에 따라 팔라듐 나노입자 형성속도가 빨라지고 나노 크기 보다 더 큰 입자들이 형성될 수 있다. At this time, the concentration of the palladium plating solution is to proceed to ΙΟηΜ ~ lOOraM Preferably, as the concentration of the palladium plating solution is increased, palladium nanoparticles may be formed faster and particles larger than the nano size may be formed.
팔라듐 나노 입자들의 크기 및 간격은 상기 작업전극 (3)의 전압 및 증착 시간에 따라 변화한다.  The size and spacing of the palladium nanoparticles vary with the voltage and deposition time of the working electrode 3.
도 4(a)를 참조하면, 본 발명의 일 실시예는, 먼저 5초 동안 작업전극 (2)에 고전압인 -0.8V의 전압을 가하여 상대적으로 전기화학 활성도가 낮은 탄소 표면에 팔라듐 나노입자를 증착형성한 후, -0.2V의 전압을 20초 동안 가하여 증착된 팔라듐 나노입자 (50)의 성장 속도를 제한하여 비교적 작은 크기의 팔라듐 나노입자를 탄소나노와이어 (42)에 형성한다 .  Referring to FIG. 4 (a), one embodiment of the present invention first applies a high voltage of −0.8 V to the working electrode 2 for 5 seconds to form palladium nanoparticles on a surface of carbon having relatively low electrochemical activity. After the deposition is formed, a voltage of −0.2 V is applied for 20 seconds to limit the growth rate of the deposited palladium nanoparticles 50 to form palladium nanoparticles of relatively small size on the carbon nanowires 42.
그리고, 도 4의 (b)는 5초 동안 작업전극 (2)에 -0.8V의 전압을 가한 후, -0.2V의 전압을 80초 동안 가하여 탄소나노와이어 (42)에 팔라듐 나노 입자 (50)들을 2차 중착하여 팔라듐 나노밉자를 증착한 형상이며, 도 4의 (c)는 5초 동안 작업전극 (2)에 -0.8 V의 전압을 가한 후, 연달아 -0.2V의 전압을 120초 동안 가하고 다시 -0.8V의 전압을 10초, 마지막으로 -0.2V의 전압을 60초 가하여 탄소나노와이어 (42)에 팔라듐 나노 입자 (50)들을 증착한 형상이다.  4 (b) shows that palladium nanoparticles 50 are applied to the carbon nanowires 42 by applying a voltage of −0.8 V to the working electrode 2 for 5 seconds and then applying a voltage of −0.2 V for 80 seconds. Palladium nanomiZip is deposited by secondary deposition of these, and Figure 4 (c) is a voltage of -0.8 V to the working electrode (2) for 5 seconds, and then successively applying a voltage of -0.2V for 120 seconds The palladium nanoparticles 50 were deposited on the carbon nanowires 42 by applying a voltage of -0.8V to 10 seconds and finally to a voltage of -0.2V to 60 seconds.
도 4의 (b)를 참조하면, 5초 동안 작업전극 (2)에 -0.8V의 전압을 가하여 1차 증착한 후, -0.2V의 전압을 80초 동안 가하여 탄소나노와이어 (42)에 팔라듐 나노 입자 (50)들을 2차 증착한다. 이 경우, 비교적 중간크기의 다량의 팔라듐나노입자가 일정간격을 가지고 탄소나노와이어에 형성되는 것을 알 수 있다.  Referring to (b) of FIG. 4, after first deposition by applying a voltage of −0.8 V to the working electrode 2 for 5 seconds, a voltage of −0.2 V is applied for 80 seconds to palladium to the carbon nanowires 42. Nanoparticles 50 are second deposited. In this case, it can be seen that a relatively large amount of palladium nanoparticles are formed on the carbon nanowires at regular intervals.
다음으로 도 4의 (c)를 참조하면, 도 4(c)는 5초 동안 작업전극 (2)에 Next, referring to FIG. 4C, FIG. 4C shows the working electrode 2 for 5 seconds.
-0.8 V의 전압을 가한 후, 연달아 -0.2V의 전압을 120초 동안 가하고 다시 -0.8V의 전압을 10초, 마지막으로 -0.2V의 전압을 60초 가하여 탄소나노와이어 (42)에 팔라듐 나노 입자 (50)들을 증착한 형상이다. 이 경우, 탄소나노와이어의 외주면을 따라 큰 크기의 팔라듐나노입자가 연속적으로 증착되어 형성되는 것을 알 수 있다. After applying a voltage of -0.8 V, successively -0.2V voltage for 120 seconds, -0.8V voltage for 10 seconds, -0.2V voltage for 60 seconds and then palladium nano to carbon nanowires 42 It is a shape in which the particles 50 were deposited. In this case, it can be seen that large-sized palladium nanoparticles are continuously formed along the outer circumferential surface of the carbon nanowires.
이와 같이 팔라듐 나노 입자들의 크기 및 간격은 상기 작업전극 (3)의 전압 및 증착 시간에 의하여 조절될 수 있다. 또한, 본 발명의 일 실시에서는 전기화학 (전기도금)방식으로 증착된 팔라듐 나노입자 (50)들과 탄소나노와이어 (42) 사이의 접착력 (adhes ion)을 보다 더 높이기 위해 진공상태나 불활성 가스 환경에서 100°C이상의 온도로 어닐링 (anneal ing) 처리를 할 수 있다. As such, the size and spacing of the palladium nanoparticles may be controlled by the voltage and deposition time of the working electrode 3. In addition, in one embodiment of the present invention in order to further increase the adhesion (adhes ion) between the palladium nanoparticles (50) and the carbon nanowires 42 deposited by the electrochemical (electroplating) method in a vacuum or inert gas environment Annealing can be performed at temperatures above 100 ° C.
도 5는 본 발명의 일 실시예에 따른 팔라듐 나노입자 증착 전후의 공증부유형 탄소나노와이어의 전압 및 전류의 변화를 나타낸 그래프이다. 도 5를 참조하면, 본 발명의 일실시예에 따라 제조된 공중부유형 탄소 나노와이어 수소가스센서는 팔라듐 나노입자 (50)들이 탄소나노와이어 (42)에 증착되어, 탄소나노와이어 (42)의 전체 전기저항이 감소하게 된다. 상기 탄소나노와이어의 전기저항 감소는 탄소나노와이어 (42)에 비해 팔라듐 나노입자 (50)의 전기저항이 낮기 때문이다.  FIG. 5 is a graph showing changes in voltage and current of a notary-type carbon nanowire before and after deposition of palladium nanoparticles according to an embodiment of the present invention. Referring to FIG. 5, in the airborne carbon nanowire hydrogen gas sensor manufactured according to an exemplary embodiment of the present invention, palladium nanoparticles 50 are deposited on carbon nanowires 42 to form carbon nanowires 42. The overall electrical resistance is reduced. The decrease in the electrical resistance of the carbon nanowires is because the electrical resistance of the palladium nanoparticles 50 is lower than that of the carbon nanowires 42.
본 발명의 일실시예에 따른 공중부유형 탄소나노와이어에 있어서, 전류는 상기 탄소나노와이어 (42) 뿐만 아니라, 팔라듐 나노입자 (50)를 통해서도 흐르게 되므로, 외부 수소 가스 농도가 변화하는 경우, 공중부유형 탄소나노와이어의 전기저항도 변화를 발생시켜, 이에 기초하여 수소를 감지할 수 있게 된다.  In the airborne carbon nanowires according to an embodiment of the present invention, the current flows not only through the carbon nanowires 42 but also through the palladium nanoparticles 50. The electrical resistance of the floating carbon nanowires also changes, and based on this, hydrogen can be detected.
도 6은 본 발명의 일 실시에 따른 공중부유형 탄소나노와이어 수소가스센서의 수소농도에 따른 저항 변화율을 나타낸 그래프로, 도 6에 도시된 바와 같이 본 발명의 일 실시에 의해 제조된 공중부유형 탄소나노와이어 수소가스센서가 수소 농도에 따라 전기저항이 변화되는 것을 관찰할 수 있다.  Figure 6 is a graph showing the resistance change rate according to the hydrogen concentration of the airborne carbon nanowire hydrogen gas sensor according to an embodiment of the present invention, as shown in Figure 6 airborne type manufactured by one embodiment of the present invention The carbon nanowire hydrogen gas sensor can be observed that the electrical resistance changes according to the hydrogen concentration.
도 7 (a)는, 다른 크기의 팔라듐 나노입자가 코팅된 두개의 공중부유형 탄소 나노와이어가 하나의 칩에 집적된 모식 이미지이다. 도 7 (b)는 다른 크기의 팔라듐 나노입자가 코팅된 두개의 공중부유형 탄소 나노와이어가 하나의 칩에 집적된 전자 현미경 이미지이다.  Figure 7 (a) is a schematic image of two airborne carbon nanowires coated with palladium nanoparticles of different sizes integrated on one chip. Figure 7 (b) is an electron microscopy image of two airborne carbon nanowires coated with different sized palladium nanoparticles on one chip.
보다 구체적으로, 팔라듐 나노 입자들의 크기 및 간격은 작업 전극의 전압, 증착 시간에 따라 달라진다. 도 7의 나노와이에 (NW 1)은 5초 동안 작업전극에 - 1.2 V의 전압을 가한 후, 연달아 - 0.8 V의 전압을 5초 동안 가하여 수나노미터 크기의 팔라듐 나노 입자가 증착된 나노와이어이다.  More specifically, the size and spacing of the palladium nanoparticles depend on the voltage of the working electrode and the deposition time. The nanowire (NW 1) of FIG. 7 is a nanowire having palladium nanoparticles of several nanometer size deposited by applying a voltage of −1.2 V to a working electrode for 5 seconds and then applying a voltage of 0.8 V for 5 seconds in succession. to be.
도 7의 나노와이어 2(丽 2)는 5초 동안 작업 전극에 - 1.2 V의 전압을 가한 후, - 0.8 V의 전압을 25초 동안 가하여 수십나노미터 크기의 팔라듐 나노 입자가 증착된 나노와이어이다. 단 팔라듬 나노입자의 크기는 탄소 나노와이어의 저항, 팔라듐 용액의 농도, 전기도금의 인가전압 및 시간에 따라 결정된다. Nanowire 2 in FIG. 7 applies a voltage of −1.2 V to the working electrode for 5 seconds. After the addition, a voltage of -0.8 V was applied for 25 seconds to deposit nanoscale palladium nanoparticles of tens of nanometers in size. However, the size of the parallax nanoparticles is determined by the resistance of the carbon nanowires, the concentration of the palladium solution, the applied voltage and time of the electroplating.
도 7 (c , d) 측면, 윗면 전자현미경 이지미이다. 도 7 (e) 작은 사이즈 (수 나노미터)의 팔라듐 나노입자가 코팅된 나노와이에 (爾 1)의 전자현미경 이미지이다. 도 7 ( f ) 큰 사이즈 (수십 나노미터)의 팔라듐 나노입자가 코팅된 나노와이어 2(而 2)의 전자현미경 이미지이다.  Fig. 7 (c, d) is a side and top electron microscope image. FIG. 7 (e) is an electron microscope image of nanowire (X1) coated with small size (a few nanometers) of palladium nanoparticles. 7 (f) An electron microscope image of Nanowire 2 (X2) coated with large size (tens of nanometers) of palladium nanoparticles.
도 8 (a) 팔라듐 나노입자가 코팅된 공중부유형 탄소 나노와이어에 전류 흐름에 대한 모식 이미지이다. 도 8(b)는 팔라듐 나노입자 증착 전 (bare carbon nanowi re)과 후 (NWl , 2)의 전압—전류 그래프이다.  Figure 8 (a) is a schematic image of the current flow in the airborne carbon nanowires coated with palladium nanoparticles. FIG. 8 (b) is a voltage-current graph before and after palladium nanoparticle deposition (bare carbon nanowi re).
이로부터 팔라듐 나노 입자를 증착하게 되면 탄소 나노와이어의 전체 저항이 즐어듦을 알 수 있다. 팔라듐 나노 입자들이 탄소 나노와이어에 중착되면 나노와이어의 전체 저항이 감소하게 된다. 또한 전기 전도도가 낮은 탄소 나노와이어에 비해 전기 전도도가 높은 팔라듐 나노 입자로 전류가 우회하여 흐르기 때문에 외부 수소 농도 변화에 따른 팔라듐 나노입자가 코팅된 탄소 나노와이어의 전체 저항이 민감하게 변하게 되어 고감도 수소 센싱이 가능하게 된다.  It can be seen that depositing the palladium nanoparticles enjoys the overall resistance of the carbon nanowires. When palladium nanoparticles are deposited on carbon nanowires, the overall resistance of the nanowires is reduced. In addition, since current flows bypassed to palladium nanoparticles having high electrical conductivity compared to carbon nanowires having low electrical conductivity, the overall resistance of the carbon nanowires coated with palladium nanoparticles is sensitively changed due to the change of the external hydrogen concentration. This becomes possible.
도 9은 수소 감지 센서의 수소농도 변화에 '따른 저항 변화율 그래프이다. 도 9 (a) 나노와이어 1 (NW 1)에 대한 것이며, 도 9(b)는 나노와이어 2(NW 2)에 대한 것이다. 초록색 그림자 영역은 각각 5, 3. 5, 2.5, 1, 0. 1 % , 700, 500, 200, 100, 80, 50 , 30 , 20, 10 ppm의 수소 환경을 의미한다. Figure 9 is a 'and the resistance change ratio graph according to the hydrogen concentration of the hydrogen sensor. Figure 9 (a) is for the nanowire 1 (NW 1), Figure 9 (b) is for the nanowire 2 (NW 2). The green shadows represent hydrogen environments of 5, 3.5, 2.5, 1, 0.1%, 700, 500, 200, 100, 80, 50, 30, 20, and 10 ppm, respectively.
앞서 기술한 바대로 팔라듐 나노 입자의 크기가 적을 경우 (NW1) 고감도 수소 센싱이 가능하나 상대작으로 낮은 수소 농도에서 포화가 일어나고 (도 9 (a) ) , 팔라듐 나노입자가 클 경우 (NW2) 고농도의 수소에서도 포화없이 수소가스 측정이 가능하다 (도 9(b) ) .  As described above, when the size of the palladium nanoparticles is small (NW1), high sensitivity hydrogen sensing is possible, but saturation occurs at a relatively low hydrogen concentration (Fig. 9 (a)), and when the palladium nanoparticles are large (NW2) Hydrogen gas can be measured without saturation even in hydrogen (Fig. 9 (b)).
본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. The present invention is not limited to the above embodiments and can be manufactured in various forms, and a person of ordinary skill in the art without changing the technical spirit or essential features of the present invention It will be appreciated that it may be embodied in other specific forms. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive.
【부호의 설명】  [Explanation of code]
- 1: 상대전극  1: counter electrode
2: 기준전극  2: reference electrode
3: 작업전극  3: working electrode
10 실리콘웨이퍼  10 Silicon Wafer
11 절연층  11 insulation layer
20. 포토레지스트층  20. Photoresist layer
21: 포토레지스트 전극부  21: photoresist electrode portion
22: 포토레지스트 마이크로와이어  22 : Photoresist Microwire
31: 제 1포토마스크  31 : The first photomask
32: 제 2포토마스크  32 : Second photomask
41: 타소겨극부  41 : Third small bran pole
42: 탄소나노와이어  42 : carbon nanowires
50: 팔라듐 나노입자  50: palladium nanoparticle

Claims

【청구범위】 [Claim]
【청구항 11  [Claim 11
기판 상에 위치하고, 소정의 간격을 두고 대향하는 한쌍의 전극부; 상기 전극부 사이에 위치하며, 상기 전극부에 의해 지지되는 탄소나노와이어; 및  A pair of electrode portions disposed on the substrate and opposed to each other at predetermined intervals; Carbon nanowires disposed between the electrode portions and supported by the electrode portions; And
상기 탄소나노와이어 표면에 위치하는 수소감지입자;를 포함하고, 상기 수소감지입자는 상기 탄소나노와이어 표면에 아일랜드 형태로 위치하며, 상기 탄소나노와이어 표면에 국부적으로 위치하고,  Hydrogen sensing particles located on the surface of the carbon nanowires; The hydrogen sensing particles are located in the island form on the surface of the carbon nanowires, and are located locally on the surface of the carbon nanowires,
상기 수소감지입자의 입경은 1 내지 500 nm인 것인 수소가스센서 .  The particle diameter of the hydrogen detecting particles is 1 to 500 nm hydrogen gas sensor.
[청구항 2】 [Claim 2]
제 1항에 있어서,  The method of claim 1,
상기 수소감지입자는 1차 입자 형태로 상기 탄소나노와이어 표면에 위치하는 것인 수소가스센서 .  The hydrogen detecting particle is a hydrogen gas sensor that is located on the surface of the carbon nanowires in the form of primary particles.
【청구항 3]  [Claim 3]
제 1항에 있어서,  The method of claim 1,
상기 수소감지입자는 1차 입자가 모여 형성된 2차 입자 형태로 상기 탄소나노와이어 표면에 위치하는 것인 수소가스센서.  The hydrogen detecting particle is a hydrogen gas sensor that is located on the surface of the carbon nanowires in the form of secondary particles, the primary particles are collected.
【청구항 4】  [Claim 4]
제 1항에 있어서,  The method of claim 1,
상기 2차 입자의 입경은 10 내지 500 nm 인 것인 수소가스센서 . The particle size of the secondary particles is 10 to 500 nm hydrogen gas sensor.
【청구항 5】 [Claim 5]
제 1항에 있어서,  The method of claim 1,
상기 탄소나노와이어 전쩨 표면 100면적 >에 대해, 상기 수소감지입자가 위치하는 면적은 90 내지 100 면적 %인 것인 수소가스센서 .  Hydrogen gas sensor with respect to the area of the carbon nanowire electrode surface 100>, wherein the area of the hydrogen sensing particles is 90 to 100% by area.
【청구항 6】 [Claim 6]
제 1항에 있어서,  The method of claim 1,
상기 수소감지입자는 팔라듐 입자인 것인 수소가스센서 .  The hydrogen detecting particle is a hydrogen gas sensor that is palladium particles.
【청구항 7】  [Claim 7]
저 U항에 있어서,  In that U term,
상기 수소감지입자의 비표면적은 0. 5 내지 250 m2/g인 것인 것인 수소가스센서 . Specific surface area of the hydrogen sensing particles is that of 0.5 to 250 m 2 / g Hydrogen gas sensor.
【청구항 8】  [Claim 8]
제 1항에 있어서,  The method of claim 1,
상기 탄소나노와이어의 직경은 100 내지 500 nm인 것인 수소가스센서 .  The carbon nanowires have a diameter of 100 to 500 nm.
【청구항 9】 . 【Claim 9】.
기판 상에 위치하는 고감도용 센서모들 및 고농도용 센서모들을 포함하고,  It comprises a high sensitivity sensor cap and a high concentration sensor cap located on the substrate,
상기 고감도용 센서 모들 및 고농도용 센서모들은, 각각 독립적으로, 소정의 간격을 두고 대향하는 한쌍의 전극부; 상기 전극부 사이에 위치하며, 상기 전극부에 의해 지지되는 탄소나노와이어; 및 상기 탄소나노와이어 표면에 위치하는 수소감지입지 를 포함하고,  The high-sensitivity sensor modules and high-concentration sensor hair, each independently, a pair of electrode parts facing each other at a predetermined interval; Carbon nanowires disposed between the electrode portions and supported by the electrode portions; And a hydrogen sensing location on the surface of the carbon nanowires;
상기 고감도용 센서 모들 내 수소감지 입자는, 상기 탄소나노와이어 표면에 아일랜드 형태로 위치하며, 상기 탄소나노와이어 표면에 국부적으로 위치하며, 입경은 1 내지 10 nm이고,  Hydrogen sensing particles in the high-sensitivity sensor mode, is located in the island shape on the surface of the carbon nanowires, is located locally on the surface of the carbon nanowires, the particle diameter is 1 to 10 nm,
상기 고농도용 센서 모들 내 수소감지 입자는, 상기 탄소나노와이어 표면에 아일랜드 형태로 위치하며, 상기 탄소나노와이어 표면에 국부적으로 위치하며, 입경은 10 nm 초과 및 500 nm 인 수소가스센서 .  Hydrogen-sensing particles in the high concentration sensor mode, is located in the form of islands on the surface of the carbon nanowires, locally located on the surface of the carbon nanowires, the particle diameter is more than 10 nm and 500 nm hydrogen gas sensor.
【청구항 10]  [Claim 10]
제 9항에 있어서,  The method of claim 9,
상기 고감도용 센서 모들 내 탄소나노와이어 전체 표면 100면적 %에 대해, 상기 수소감지입자가 위치하는 면적은 90 내지 100 면적 %인 것인 수소가스센서 .  Hydrogen gas sensor with respect to 100% by area of the total surface of the carbon nanowires in the high-sensitivity sensor mode, the area of the hydrogen sensing particles is 90 to 100 area%.
【청구항 11】  [Claim 11]
저 19항에 있어서,  According to that 19,
상기 고농도용 탄소나노와이어 전체 표면 100면적 %에 대해, 상기 수소감지입자가 위치하는 면적은 90 내지 100 면적 %인 것인 수소가스센서 .  Hydrogen gas sensor with respect to the total surface area 100% by area of the carbon nanowires for high concentration, the area where the hydrogen sensing particles are located is 90 to 100% by area.
【청구항 12] [Claim 12]
제 9항에 있어서,  The method of claim 9,
상기 고감도용 센서 모들 내 상기 수소감지입자의 비표면적은 25 내지 250 m2/g 인 것인 수소가스센서 . Hydrogen gas sensor that the specific surface area of the hydrogen detecting particles in the high sensitivity sensor mode is 25 to 250 m 2 / g.
【청구항 13】 [Claim 13]
제 9항에 있어서,  The method of claim 9,
상기 고농도용 센서 모들 내 상기 수소감지입자의 비표면적은 0.5 내지 25 m2/g 인 것인 수소가스센서 . Hydrogen gas sensor is a specific surface area of the hydrogen detecting particles in the high concentration sensor mode is 0.5 to 25 m 2 / g.
【청구항 14】  [Claim 14]
소정의 간격을 두고 대향하는 한쌍의 탄소전극부; 상기 탄소전극부 사이에 위치하며, 상기 탄소전극부에 의해 지지되는 탄소나노와이어;를 포함하는 지지체를 준비하는 단계; 및  A pair of carbon electrode portions opposed to each other at a predetermined interval; Preparing a support including a carbon nanowire positioned between the carbon electrode parts and supported by the carbon electrode parts; And
상기 지지체 중, 상기 탄소나노와이어의 표면에 전기도금방식으로 수소감지입자를 국부적으로 증착하는 단계를 포함하는 수소가스센서의 제조방법.  The method of manufacturing a hydrogen gas sensor comprising the step of locally depositing hydrogen sensing particles on the surface of the carbon nanowires by the electroplating method of the support.
【청구항 15]  [Claim 15]
제 14항에 있어서,  The method of claim 14,
상기 지지체 중 상기 탄소나노와이어의 표면에 전기도금방식으로 수소감지입자를 국부적으로 증착하는 단계;에서,  Locally depositing hydrogen sensing particles on the surface of the carbon nanowires in the support by electroplating;
상기 탄소나노와이어에 전해액을 위치하는데, 상기 전해액은 ΙΟηΜ - lOOmM 농도의 팔라듬도금액 (Na2 PdC , Sodium tetrachloropal l adate)인 것인 수소가스센서의 제조방법 . Wherein the electrolyte is placed on the carbon nanowires, the electrolyte is a method of producing a hydrogen gas sensor (Na 2 PdC, Sodium tetrachloropalladate) of ΙΟηΜ -OOmM concentration.
【청구항 16]  [Claim 16]
제 15항에 있어서,  The method of claim 15,
상기 지지체 중, 상기 탄소나노와이어의 표면에 전기도금방식으로 수소감지입자를 국부적으로 증착하는 단계;에서,  Locally depositing hydrogen sensing particles on the surface of the carbon nanowires by electroplating in the support;
작업전극 (Working electrode)은 상기 탄소전극부 및 탄소나노와이어에 연결하며, 상대전극 (Counter electrode) 및 기준전극 (Reference electrode)은 팔라듐도금액에 침지하여 위치한 후, 전기도금을 실시하는 것인 수소가스센서의 제조방법 .  A working electrode is connected to the carbon electrode and the carbon nanowires, and a counter electrode and a reference electrode are positioned by immersing in a palladium plating solution and performing electroplating. Manufacturing method of gas sensor.
【청구항 17】  [Claim 17]
제 16항에 있어서,  The method of claim 16,
상기 전기도금방법은,  The electroplating method,
팔라듐 시드 형성 단계 ; 및 팔라듐 시드를 성장 단계 ;를 포함하고, 상기 팔라듐 시드 형성 단계;는 상기 팔라듐 시드 성장 단계보다 높은 전압 및 짧은 시간조건에서 수행하는 것인 수소가스센서의 제조방법Palladium seed formation step; And growing a palladium seed; The palladium seed forming step; is a method of manufacturing a hydrogen gas sensor to be carried out at a higher voltage and shorter time conditions than the palladium seed growth step
【청구항 18] [Claim 18]
제 17항에 있어서,  The method of claim 17,
상기 전기도금방법은,  The electroplating method is,
팔라듐 시드 형성 단계; 및 팔라듐 시드를 성장 단계;를 포함하고, 상기 팔라듐 시드 형성 단계 및 팔라듐 시드 성장 단계;를 교대로 복수회 실시하여 2차 입자 형태의 팔라듐 입자를 형성시키는 것인 수소가스센서의 제조방법 .  Palladium seed formation step; And growing a palladium seed; wherein the palladium seed forming step and the palladium seed growing step are alternately performed a plurality of times to form palladium particles in the form of secondary particles.
【청구항 19】  [Claim 19]
제 14항에 있어서,  The method of claim 14,
상기 지지체 중, 상기 탄소나노와이어의 표면에 전기도금방식으로 수소감지입자를 국부적으로 증착하는 단계 ;이후,  Locally depositing hydrogen sensing particles on the surface of the carbon nanowires by electroplating in the support;
상기 수소감지입자가 증착된 탄소나노와이어를 진공 또는 불활성 가스 환경에서 어닐링하는 단계를 더 포함하는 것인 수소가스센서의 제조방법.  And annealing the carbon nanowires on which the hydrogen sensing particles are deposited in a vacuum or inert gas environment.
【청구항 20】  [Claim 20]
제 14항에 있어서, - 상기 소정의 간격을 두고 대향하는 한쌍의 탄소전극부; 상기 탄소전극부 사이에 위치하며, 상기 탄소전극부에 의해 지지되는 탄소나노와이어;를 포함하는 지지체를 준비하는 단계;는,  15. The method of claim 14, further comprising: a pair of carbon electrode portions facing each other at the predetermined intervals; Preparing a support including a carbon nanowire positioned between the carbon electrode parts and supported by the carbon electrode parts;
기판을 준비하는 단계 ;  Preparing a substrate;
기판 상에 절연층을 형성하는 단계 ;  Forming an insulating layer on the substrate;
상기 절연층 상에 포토리소그래피로 한 쌍의 포토레지스트 전극부 및 상기 한 쌍의 포토레지스트 전극부를 연결한 포토레지스트 마이크로와이어를 형성하는 단계 ; 및  Forming a photoresist microwire connecting the pair of photoresist electrode portions and the pair of photoresist electrode portions by photolithography on the insulating layer; And
상기 한 쌍의 포토레지스트 전극부 및 포토레지스트 마이크로와이어를 열분해하여, 한 쌍의 탄소전극부와 탄소나노와이어로 변환하는 단계;를 포함하는 방법에 의해 지지체가 준비되는 것인 수소가스센서의 제조방법 .  Pyrolyzing the pair of photoresist electrode portions and photoresist microwires, and converting the pair of carbon electrode portions and carbon nanowires to prepare a support by a method including a hydrogen gas sensor. .
PCT/KR2017/003642 2016-04-06 2017-04-03 Hydrogen gas sensor and method for manufacturing same WO2017176018A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20160042252 2016-04-06
KR10-2016-0042252 2016-04-06
KR20160149815 2016-11-10
KR10-2016-0149815 2016-11-10

Publications (1)

Publication Number Publication Date
WO2017176018A1 true WO2017176018A1 (en) 2017-10-12

Family

ID=60001355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/003642 WO2017176018A1 (en) 2016-04-06 2017-04-03 Hydrogen gas sensor and method for manufacturing same

Country Status (2)

Country Link
KR (2) KR20170114963A (en)
WO (1) WO2017176018A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102236193B1 (en) * 2019-05-30 2021-04-05 울산과학기술원 Nanoporous 3d carbon electrode-based heavy metal sensor and method for manufacturing thereof
KR102223066B1 (en) 2019-07-30 2021-03-05 한국과학기술원 Method and apparatus for producing sensor based on palladium
KR102345356B1 (en) * 2019-12-13 2021-12-30 울산대학교 산학협력단 Hydrogen sensor and method for producing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060213251A1 (en) * 2005-03-24 2006-09-28 University Of Florida Research Foundation, Inc. Carbon nanotube films for hydrogen sensing
US20060263255A1 (en) * 2002-09-04 2006-11-23 Tzong-Ru Han Nanoelectronic sensor system and hydrogen-sensitive functionalization
US20090084159A1 (en) * 2007-09-27 2009-04-02 Uchicago Argonne, Llc High-Performance Flexible Hydrogen Sensors
US20100089772A1 (en) * 2006-11-10 2010-04-15 Deshusses Marc A Nanomaterial-based gas sensors
KR20150026012A (en) * 2013-08-30 2015-03-11 에스케이이노베이션 주식회사 GAS SENSOR and Method for Manufacturing GAS SENSOR

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090115110A (en) * 2007-02-02 2009-11-04 군제 가부시키가이샤 Hydrogen gas sensor
JP4953306B2 (en) * 2007-06-27 2012-06-13 国立大学法人九州大学 Hydrogen gas sensor manufacturing method
KR101430398B1 (en) * 2012-08-09 2014-09-18 한국과학기술원 Graphene catalyst-decorated metal oxide nanorod, method for fabricating the same and sensors comprising the same
KR102125278B1 (en) * 2013-09-02 2020-06-22 에스케이이노베이션 주식회사 GAS SENSOR and Method for Manufacturing GAS SENSOR

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060263255A1 (en) * 2002-09-04 2006-11-23 Tzong-Ru Han Nanoelectronic sensor system and hydrogen-sensitive functionalization
US20060213251A1 (en) * 2005-03-24 2006-09-28 University Of Florida Research Foundation, Inc. Carbon nanotube films for hydrogen sensing
US20100089772A1 (en) * 2006-11-10 2010-04-15 Deshusses Marc A Nanomaterial-based gas sensors
US20090084159A1 (en) * 2007-09-27 2009-04-02 Uchicago Argonne, Llc High-Performance Flexible Hydrogen Sensors
KR20150026012A (en) * 2013-08-30 2015-03-11 에스케이이노베이션 주식회사 GAS SENSOR and Method for Manufacturing GAS SENSOR

Also Published As

Publication number Publication date
KR20180119151A (en) 2018-11-01
KR20170114963A (en) 2017-10-16
KR102013825B1 (en) 2019-08-23

Similar Documents

Publication Publication Date Title
KR101878343B1 (en) Method of measuring hydrogen gas using sensor for hydrogen gas
Hung et al. On-chip growth of semiconductor metal oxide nanowires for gas sensors: A review
US10132768B2 (en) Gas sensor and method for manufacturing same
Xiang et al. Lithographically patterned nanowire electrodeposition: A method for patterning electrically continuous metal nanowires on dielectrics
Ayesh Metal/metal-oxide nanoclusters for gas sensor applications
Walter et al. Palladium mesowire arrays for fast hydrogen sensors and hydrogen-actuated switches
Shim et al. Nanogap-controlled Pd coating for hydrogen sensitive switches and hydrogen sensors
Lupan et al. Room temperature gas nanosensors based on individual and multiple networked Au-modified ZnO nanowires
US20090242416A1 (en) Nanowire sensor, sensor array, and method for making the same
KR102013825B1 (en) Hydrogen gas sensor and Fabrication method of the same
US20060024438A1 (en) Radially layered nanocables and method of fabrication
Wang et al. CuO nanowire-based humidity sensor
Niu et al. A review of MEMS-based metal oxide semiconductors gas sensor in Mainland China
Mozalev et al. Formation and gas-sensing properties of a porous-alumina-assisted 3-D niobium-oxide nanofilm
Kiefer et al. Large arrays of chemo-mechanical nanoswitches for ultralow-power hydrogen sensing
KR102125278B1 (en) GAS SENSOR and Method for Manufacturing GAS SENSOR
Lee et al. Highly selective ppb-level detection of NH3 and NO2 gas using patterned porous channels of ITO nanoparticles
KR20150026012A (en) GAS SENSOR and Method for Manufacturing GAS SENSOR
KR20130009364A (en) Substance detection device using the oxide semiconductor nano rod and manufacturing method of the same
Wang et al. Humidity Sensing of Ordered Macroporous Silicon With ${\rm HfO} _ {2} $ Thin-Film Surface Coating
Dutta et al. Voltage controlled rupturing of TiO 2 nanotubes for gas sensor device applications: Correlation with surface and edge energy
Yang et al. Growth of Vertical ZnO Nanorods from Patterned Films via Decomposition of Zinc Acetate by Focused Ion Beam: Implication for UV Detection
KR100949081B1 (en) Nano wire including nanopore and nanobiosensor using thereof
KR100821740B1 (en) Pd nanowire hydrogen sensors and its manufacturing method
Gao et al. On-chip suspended gold nanowire electrode with a rough surface: Fabrication and electrochemical properties

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17779318

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17779318

Country of ref document: EP

Kind code of ref document: A1