WO2017175870A1 - Graft material for reconstructing tissue of liver subjected to hepatectomy, method of manufacturing same, and method of reconstructing liver subjected to hepatectomy - Google Patents

Graft material for reconstructing tissue of liver subjected to hepatectomy, method of manufacturing same, and method of reconstructing liver subjected to hepatectomy Download PDF

Info

Publication number
WO2017175870A1
WO2017175870A1 PCT/JP2017/014581 JP2017014581W WO2017175870A1 WO 2017175870 A1 WO2017175870 A1 WO 2017175870A1 JP 2017014581 W JP2017014581 W JP 2017014581W WO 2017175870 A1 WO2017175870 A1 WO 2017175870A1
Authority
WO
WIPO (PCT)
Prior art keywords
liver
transplant
decellularized
tissue
cells
Prior art date
Application number
PCT/JP2017/014581
Other languages
French (fr)
Japanese (ja)
Inventor
八木 洋
雄光 北川
一樹 田島
啓文 下田
Original Assignee
学校法人慶應義塾
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人慶應義塾 filed Critical 学校法人慶應義塾
Priority to JP2018510681A priority Critical patent/JPWO2017175870A1/en
Publication of WO2017175870A1 publication Critical patent/WO2017175870A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/52Hydrogels or hydrocolloids

Definitions

  • the present invention relates to a transplant for tissue reconstruction of a liver that has undergone liver resection.
  • the present invention also relates to a method for producing a transplant for liver tissue reconstruction that has undergone liver resection.
  • the present invention also relates to a method for reconstructing a liver that has undergone hepatectomy.
  • Surgical treatment that removes a part of an organ for cancer treatment is important in aiming for radical cure, and more than tens of thousands of people undergo partial resection of various organs every year in Japan alone.
  • organ failure after resection is sometimes fatal and is always the most important complication.
  • organ failure occurs, for example, artificial dialysis or insulin treatment must be performed throughout life, and the quality of life of patients (QOL: (Quality of Life) gets worse. This also causes an increase in the number of cancer patients that cannot be treated.
  • liver failure leads to death, and postoperative liver failure is a major problem, but at present there is no curative treatment other than liver transplantation.
  • donors who provide the liver are necessary, but there are chronic donor shortages worldwide, including Japan, and more than a few percent of patients can receive transplants. It is not considered. Therefore, in order to eliminate such chronic donor shortage, development of a new treatment technique that replaces the conventional treatment is being demanded.
  • tissue engineering which is a fusion of medicine and engineering, has shown remarkable development.
  • tissue engineering which is a fusion of medicine and engineering.
  • stem cells using pluripotent stem cells (ES cells, iPS cells, etc.) or the differentiation induction of those cells has been developed in parallel. ⁇ Attempts to build organs are being made all over the world.
  • the former is a method of stacking cells, which are the smallest unit, for example, a method of stacking sheets of cells to form tissues / organs, or a method of stacking spheroid cells like blocks to store tissues / organs.
  • the method of construction is mentioned.
  • an organ derived from a mammal leave an extracellular matrix (ECM) skeleton using an agent that crushes cell membranes such as a surfactant, and construct an organ there Examples include a technique of engrafting necessary cells again by seeding and culturing them, and creating an organ in vitro (Patent Document 1, Patent Document 2, Non-Patent Document 1, and Non-Patent Document 2).
  • the former method is currently limited to the construction of thin tissues such as the retina and gastrointestinal mucosa.
  • the latter method has not yet led to the development of an organ having a complete function as a substitute for an organ in a living body, and further research and development are required in the future.
  • Non-patent Document 3 Several decellularized scaffolds prepared from tissues collected from humans and non-human animals have already been commercialized, and are used in treatments that assist and fill tissue defect sites in the body.
  • a decellularized skeleton that has been commercialized is applied to a part of an organ (heart valve, pericardium, etc.) or a part of a tissue (soft tissue, tendon, skin, etc.), and the organ itself No product has been developed.
  • this invention makes it a subject to provide the transplant material for the tissue reconstruction of the liver which received liver resection. Moreover, this invention makes it a subject to provide the method of manufacturing the transplant material for the tissue reconstruction of the liver which received liver resection. Moreover, this invention makes it a subject to provide the reconstruction method of the liver which received liver resection.
  • the present inventors have conducted research and development by adding studies from various angles.
  • the transplant material for liver tissue reconstruction that has undergone hepatectomy according to the present invention is applied to a hepatectomy section, the vascular structure is quickly reconstructed from the hepatectomy section.
  • the liver tissue was reconstructed from the liver excision section. It was also found that the reconstruction of the bile duct structure is also induced. That is, the present invention is as follows.
  • a transplant for tissue reconstruction of a liver that has undergone liver resection A graft material, wherein the graft material includes a decellularized scaffold having an extracellular matrix derived from a decellularized mammalian liver and a coating covering at least a part of the extracellular matrix.
  • [8] A method for producing an implant according to any one of [1] to [7], (A) freezing the liver of the mammal; (B) thawing the frozen liver; (C) perfusing a cell destruction medium containing a surfactant into the thawed liver to destroy the cells; (D) washing the liver from which the cells have been destroyed; Including a method.
  • Step is (C-1) perfusing a cell disruption medium containing an ionic surfactant to the thawed liver, and (c-2) a nonionic surfactant and a zwitterionic interface to the thawed liver Perfusing a cell disruption medium comprising an active agent;
  • the method according to [8], wherein the method comprises: [10] The method according to [9], wherein the ionic surfactant is selected from the group consisting of sodium dodecyl sulfate (SDS), deoxycholate, cholate, sarkosyl, and combinations thereof.
  • SDS sodium dodecyl sulfate
  • a method of reconstructing liver tissue that has undergone hepatectomy (I) a step of forming a liver adhesion part in the transplant material according to any one of [1] to [7] in accordance with the shape of the excised section of the liver; (Ii) a step of bringing the excised section of the liver into contact with the liver adhesion part and attaching the liver; Including methods.
  • the transplant material for liver tissue reconstruction that has undergone hepatectomy according to the present invention and the transplant material produced by the manufacturing method thereof can be easily molded into an appropriate size, and a large amount of liver for liver cancer with liver cirrhosis or metastatic liver cancer It is possible to cover and adhere to the size of the liver excision section that always occurs during resection.
  • the skeleton of the three-dimensional lumen structure left in the inside promotes early migration / engraftment of vascular endothelial cells, bile duct epithelial cells, etc. from the resected liver. It has a unique feature that allows the structure to be reproduced in advance. Through this regenerated vessel, hepatocytes can infiltrate extensively into the transplant made of extracellular matrix with high affinity, so that the structure of the liver itself is complemented early, reducing the risk of liver failure Therefore, early recovery after surgery is expected.
  • FIG. 1 is a conceptual diagram of the present invention.
  • FIG. 2 shows a porcine decellularized skeleton.
  • A It is a figure which shows the pig liver after washing
  • B It is a figure which shows the pig liver currently processed with the SDS containing cell destruction medium.
  • C Porcine decellularized skeleton after washing cells destroyed after treatment with cell disruption media.
  • FIG. 3 is a diagram showing a decellularization system for porcine liver and decellularized porcine liver tissue.
  • B HE-stained image in a tissue section of normal pig liver.
  • FIG. 4 is an enlarged view of the porcine decellularized skeleton with a scanning electron microscope.
  • A Porcine decellularized skeleton decellularized using only SDS.
  • B Porcine decellularized skeleton decellularized using SDS, Triton X-100 and CHAPS.
  • FIG. 5 is a diagram showing a procedure for attaching a porcine decellularized skeleton to a resected liver stump.
  • FIG. 6 shows the histological analysis results (10 days after transplantation) of the porcine decellularized skeleton after transplantation.
  • A HE staining observation image of a tissue section in the vicinity of the skeleton boundary line between porcine decellularized skeleton and pig liver.
  • B It is a fluorescence-microscope observation image of the tissue section near the skeleton boundary line of a pig decellularized skeleton and a pig liver.
  • C Hepatocytes (albumin (ALB) positive cells, green) engrafted in a porcine decellularized skeleton.
  • FIG. 7 shows the histological analysis results (28 days after transplantation) of the transplanted porcine liver decellularized skeleton.
  • A It is a fluorescence-microscope observation image which shows the CK19 positive cell (green) of the porcine decellularization frame
  • (B, C) It is a fluorescence-microscope observation image which shows the CK19 positive cell (green) which expanded a part in the porcine decellularization frame
  • (D) It is a fluorescence-microscope observation image which shows the vascular endothelial cell marker positive cell (CD31 positive cell, green) in the periphery of a porcine decellularization frame
  • E) HE staining observation image of a tissue section in the vicinity of the skeleton boundary line between porcine decellularized skeleton and pig liver. A dotted line indicates a bounding boundary line.
  • FIG. 8 is a view showing an HE staining observation image (28 days after transplantation) in the vicinity of the boundary line between the porcine decellularized skeleton and the porcine liver.
  • Black arrows indicate vasculature including bile ducts and blood vessels.
  • a white arrow indicates a vascular structure including bile ducts and blood vessels extending deep inside the skeleton.
  • FIG. 9 is a diagram showing a rat liver decellularization system and a decellularized rat liver tissue.
  • FIG. 10 is a diagram showing a porcine liver decellularized skeleton after the crosslinking treatment.
  • FIG. 10 is a diagram showing a porcine liver decellularized skeleton after the crosslinking treatment.
  • FIG. 11 is a diagram showing the boundary between the porcine liver decellularized skeleton and the pig liver on the 10th day after the pig liver decellularized skeleton after crosslinking treatment is attached to the pig liver.
  • slice of the whole pig liver in which the pig liver decellularization skeleton was attached is shown.
  • FIG. 12 shows the rat liver decellularized skeleton after injection of collagen gel.
  • A Rat liver decellularized skeleton after injection of type I collagen gel.
  • organ generally refers to a living organ including cells that make up an organ, a skeleton based on an extracellular matrix, and a vascular system (arteries, veins, capillaries) that supply oxygen and nutrients to each cell. It is covered with a film.
  • the organ include heart, liver, lung, kidney, pancreas, spleen, brain, uterus, bladder, brain and the like.
  • the fluid (for example, blood) introduced from the vascular system is basically an outlet if the organ has substantially no damage to the coating and the internal vascular system. It is not excreted from other than the vascular system.
  • the organ has a continuous structure in which arteries that introduce blood branch off inside the organ to form fine capillary structures, and the capillary structures join again to form veins. Actually, liquid does not leak from other than a specific entrance.
  • film means a film covering the surface of an organ.
  • the surface of an organ is covered with a single layer of squamous epithelium (mesothelial cells) called serosa.
  • the lower layer of the serosa has connective tissue, and the serosa and connective tissue are also called the peritoneum.
  • capsule is taken as the broadest meaning including serosa, connective tissue, or peritoneum.
  • extracellular matrix and “ECM” are used interchangeably in the present specification, and a substance rich in collagen and the like existing between cells of a mammalian tissue, and a substance derived therefrom are subjected to any treatment. Also includes other materials. “Extracellular matrix” and “ECM” are also called extracellular matrix, intercellular matrix. The component constituting the extracellular matrix is composed of, for example, collagen, proteoglycan, fibronectin, cadherin, laminin, tenascin, enctin, elastin and the like, and the composition varies depending on the tissue / organ.
  • the extracellular matrix is mainly produced from cells that constitute the connective tissue, but a part thereof is also secreted from cells having a basement membrane such as epithelial cells and endothelial cells. In multicellular organisms, it plays various roles such as filling of extracellular space, skeletal structure to maintain the shape, scaffold for cell adhesion (scaffold) and promotion of cell differentiation induction. Due to the presence of the extracellular matrix, cells are arranged three-dimensionally, contributing to the formation of complex forms of organs and tissues.
  • the term “decellularization” means that a structure (skeleton) composed of an extracellular matrix as a main constituent component is maintained from a part of a living body such as an organ or a tissue, and is adhered thereto. That the removed cells are removed by a desired method.
  • a decellularized living organism-derived organ or tissue becomes a skeleton mainly constituted by an extracellular matrix, but the constituted protein is not limited to an extracellular matrix-related protein.
  • a decellularized living body-derived organ or tissue is observed with an electron microscope, it is observed as a skeleton having a network structure having voids whose main component is an extracellular matrix.
  • the method of decellularization can be appropriately changed depending on the organ / tissue.
  • decellularized scaffold refers to a three-dimensional structure mainly having an extracellular matrix that remains after a cell is removed from a living organ or tissue or a part thereof by a decellularization treatment. Means the skeleton of the structure.
  • the decellularized skeleton apparently maintains the same form as the organ or tissue before decellularization treatment or a part thereof.
  • the decellularized skeleton is derived from a living organ, at least a part of its surface has a coating.
  • the decellularized skeleton contained in the transplant material of the present invention is a blood vessel that is continuous with an artery, a capillary network, and a vein held in an organ or tissue before decellularization skeleton decellularization or a part thereof.
  • the structure skeleton is also substantially maintained. Thereby, when transplanted in the living body, the blood vessel structure is quickly reconstructed, and blood reperfusion is promoted.
  • the decellularized skeleton contained in the transplant material of the present invention is derived from the liver, the three-dimensional skeleton substantially formed by the bile duct is maintained.
  • the bile duct structure when transplanted into a living body, the bile duct structure is quickly reconstructed, promotes early migration / engraftment of vascular endothelial cells, bile duct epithelial cells, etc., and the vascular structure is regenerated in advance. It has unique characteristics. Furthermore, the decellularized skeleton contained in the transplant material of the present invention maintains a specific extracellular matrix that promotes the engraftment, proliferation, and differentiation of cells constituting the organ / tissue. Promotes the reconstruction of organs and tissues by the cells that make up
  • the “transplant” includes a decellularized skeleton obtained by decellularization of an organ or tissue derived from a living body or a part thereof, and optionally additionally, cell survival. Processing for adding, binding, etc., a protein, a drug or the like that promotes adhesion, growth or differentiation may be performed.
  • the transplant material according to the present invention may be a transplant material that has been engrafted (recellularized) by previously seeding and culturing desired cells. The cell type and the number of cells may be appropriately selected depending on the organ / tissue to be transplanted.
  • the cell to be used may be any cell as long as it constitutes an organ / tissue to be treated, and may be a commercially available cell or a cell collected from a living body.
  • the method for collecting cells from a living body is not particularly limited as long as a known method is followed. Further, it may be a cell obtained by inducing differentiation from a pluripotent stem cell.
  • a pluripotent stem cell is a cell which has a self-replication ability and a pluripotency, and a cell provided with the ability (pluripotent) to form all the cells which comprise a body.
  • Self-replicating ability refers to the ability to make two undifferentiated cells from one cell.
  • the pluripotent stem cells used in the present invention include embryonic stem cells (embryonic stem cells: ES cells), embryonic carcinoma cells (embryonal carcinoma cells: EC cells), trophoblast stem cells (TS cells), shrimp.
  • Blast stem cell epiblast stem cell: EpiS cell
  • embryonic germ cell embryonic germ cell: EG cell
  • pluripotent germline stem cell mGS cell
  • artificial pluripotent stem cell induced plumped stem cell
  • Muse cells see: International Publication WO2011 / 007900
  • the method for inducing differentiation into an arbitrary somatic cell is not particularly limited as long as it is a known method.
  • Yagi H. et al. Et al. Yagi H., et al., Human-scale whol-organ bioengineering for live translation: a regenerative medicine app. Cell Transplant.
  • the present invention is not limited to this.
  • the origin of the organ or tissue or part of the animal species used as the material for the transplant of the present invention is, for example, human, rat, mouse, guinea pig, marmoset, rabbit, dog, cat, sheep, pig, horse, cow, goat Mammals such as monkeys, chimpanzees or immunodeficient animals thereof.
  • the organ or tissue collected or a part thereof may be collected from a living individual or may be collected from a dead body. Even when the animal species to which the transplant of the present invention is applied is human, it is very low in immunogenicity due to the decellularization treatment and hardly causes rejection. An organ or tissue or part thereof may be used.
  • a known method or a method obtained by partially modifying it can be carried out according to the organ or tissue as a material or the animal species thereof.
  • Methods for decellularization include (1) cell membrane destruction by mechanical stimulation: high pressure, freezing, electroporation, osmotic pressure change, and (2) washing / cell destruction with cell destruction media such as drugs: surfactants, Acid / alkali, enzyme, and alcohol are roughly classified into two types, and these can be used in combination. These methods can destroy cells, remove immunogenic cell fragments, and leave extracellular matrix and other substances that promote engraftment, proliferation, migration or differentiation of cells.
  • Examples of the method for producing a transplant material for reconstructing liver tissue that has undergone liver resection according to the present invention include the following steps. (A) freezing the liver of the mammal; (B) thawing the frozen liver; (C) perfusing a cell destruction medium containing a surfactant into the thawed liver to destroy the cells; (D) A step of washing the liver in which cells are destroyed.
  • Examples of the method of destroying the cell membrane by mechanical stimulation include freezing and thawing methods. By freezing and thawing, the moisture contained in the cells expands and the cell membrane can be destroyed.
  • the freezing temperature is, for example, ⁇ 10 ° C. or lower, ⁇ 20 ° C. or lower, ⁇ 30 ° C. or lower, ⁇ 40 ° C. or lower, ⁇ 50 ° C. or lower, ⁇ 60 ° C. or lower, ⁇ 70 ° C. or lower, ⁇ 80 ° C. or lower, or ⁇ 90 ° C.
  • it can be carried out at a temperature of ⁇ 100 ° C. or lower or lower.
  • the freezing temperature can be in the range of ⁇ 150 ° C.
  • the thawing temperature may be, for example, 37 ° C., room temperature, room temperature, or 4 ° C.
  • the thawing temperature may be, for example, 4 ° C. to 50 ° C., 4 ° C. to 45 ° C., 4 ° C. to 40 ° C. It is preferable to set -80 ° C. for freezing and room temperature for thawing as temperatures at which cells can be destroyed while maintaining the extracellular matrix as much as possible.
  • the surfactant contained in the cell disruption medium refers to an amphiphilic molecule having a hydrophobic group and a hydrophilic group in the molecule. Surfactant destroys the lipid bilayer that forms the cell membrane and nuclear membrane. Examples of the surfactant contained in the cell disruption medium include ionic surfactants, nonionic surfactants, and zwitterionic surfactants. Examples of the ionic surfactant used in the cell disruption medium include sodium dodecyl sulfate (SDS), deoxycholate, cholate, sarkosyl, Triton X-200, or a combination thereof.
  • SDS sodium dodecyl sulfate
  • deoxycholate deoxycholate
  • cholate cholate
  • sarkosyl Triton X-200
  • Nonionic surfactants used for cell disruption media include, for example, Triton X-100, n-dodecyl- ⁇ -D-maltoside (DDM), digitonin, twin 20 (Tween 20), twin 80 (Tween 80), or The combination is mentioned.
  • Examples of the zwitterionic surfactant used in the cell disruption medium include 3-[; (3-cholamidopropyl) dimethylammonio];-1-propanesulfonic acid (CHAPS). These surfactants can be appropriately selected according to the organ / tissue to be decellularized.
  • a transplant that can reconstruct liver tissue by decellularization using an ionic surfactant, particularly SDS.
  • a nonionic surfactant particularly Triton X-100
  • a zwitterionic surfactant particularly CHAPS
  • the solvent contained in the cell disruption medium water, physiological saline, buffer solution (for example, PBS), alcohols, acetic acid, tributyl phosphate (TBP), or the like can be used.
  • the cell disruption medium may further contain nuclease, trypsin and / or dispase.
  • a chelating material EDTA, EGTA
  • EDTA EDTA
  • EGTA chelating material
  • the time for cell destruction by the cell disruption medium may be appropriately adjusted according to the organ or tissue to be decellularized or the animal species.
  • water, physiological saline, or a buffer solution for example, PBS
  • PBS a buffer solution for example, PBS
  • the above-described method for perfusing the cell disruption medium can be performed by a known method or a partially modified method.
  • cannulas catheters
  • the cell disruption medium and / or lavage fluid can be continuously perfused with a perfusion device.
  • the cell destruction medium and / or the washing solution may be perfused from a tube other than an artery or vein, for example, in the case of the liver, from the portal vein or hepatic vein.
  • a part of them is ligated so that the inlet / drainage of the cell destruction medium and / or the washing solution is obtained.
  • the exit may be restricted.
  • a cell destruction medium retains efficiently in an organ, and decellularization processing can be performed efficiently.
  • the perfusion rate may be adjusted to such an extent that structures such as blood vessels in the decellularized skeleton are not destroyed, and may be appropriately adjusted according to the organ or tissue or animal species thereof or the degree of progression of decellularization.
  • arbitrary pumps such as a peristaltic pump, a centrifugal pump, a syringe pump, can be used, for example.
  • the transplant material of the present invention is preferably further subjected to protein crosslinking treatment.
  • Protein cross-linking refers to linking two or more molecules by chemical covalent bonds.
  • different amino acid molecules in the same protein for example, disulfide between cysteine residues in the same protein.
  • a reaction for constructing a bond (sulfhydryl group) and the like is also included.
  • the graft material of the present invention is subjected to protein cross-linking treatment, whereby the physical strength is increased and the skeletal form is more stable. This makes it possible to provide a space (scaffold) for regenerating the liver for a long time without being crushed in the abdominal cavity even after transplantation into a living body, and as a result, good liver regeneration is realized. .
  • the protein cross-linking agent used in the present invention is known in the art, and includes, for example, an inter-amino group cross-linking agent: for example, DSG (disuccinimidyl glutarate); DSS (disuccinimidyl suberate); BS3 ( Bis (sulfosuccinimidyl) suberate); TSAT (tris- (succinimidyl) aminotriacetate); BS (PEG) 5 (PEGylated bis (sulfosuccinimidyl) suberate); BS (PEG) 9; DSP (dithiobis) (Succinimidyl propionate)); DTSSP (3,3′-dithiobis (sulfosuccinimidyl propionate)); DST (disuccinimidyl tartrate); BSOCOES (bis [2- (succinimidooxycarbonyl) Oxy) ethyl] sulfone); EGS
  • protein crosslinking agent you may use aldehyde type crosslinking agents: For example, formaldehyde, paraformaldehyde, glutaraldehyde, etc .; Polyfunctional epoxides: For example, polyethyleneglycol diglycidyl ether.
  • the protein crosslinking agent the above-mentioned protein crosslinking agent may be used alone, or a combination of two or more protein crosslinking agents may be used.
  • the use of a “combination” of two or more types of protein cross-linking agents is used in the meaning including both cases where two or more types of protein cross-linking agents are used simultaneously and separately.
  • two or more types of protein cross-linking agents may be processed using a mixed solution dissolved in the same solvent, and multiple transplants may be prepared using different solutions containing different protein cross-linking agents. It may be processed, or may be processed simultaneously using different solutions containing different protein cross-linking agents. These usage modes are appropriately changed depending on the type of protein crosslinking agent to be used.
  • the order of the protein cross-linking agents to be used is not particularly limited.
  • the protein cross-linking agent for treating the graft material of the present invention is preferably selected from aldehyde-based cross-linking agents, carboxyl group-amino group cross-linking agents, and combinations thereof. More preferably, it is selected from glutaraldehyde, EDC (water-soluble carbodiimide (WSC)) and combinations thereof. Most preferred is a combination of glutaraldehyde and EDC (water-soluble carbodiimide (WSC)).
  • the transplant material of the present invention may be transplanted to a subject as it is after being treated with a protein cross-linking agent, or may be transplanted after a washing treatment.
  • the graft material is washed after the protein crosslinking treatment.
  • a washing solution used for washing the transplant of the present invention a known solution can be used.
  • PBS phosphate buffered saline
  • saline Tris buffered saline
  • HEPES buffer Physiological saline
  • Ringer's solution 5% aqueous glucose solution
  • isotonic agents eg, glucose, D-sorbitol, D-mannitol, lactose, sodium chloride
  • the transplant material of the present invention is also preferable because the form can be stably maintained when the hydrogel is filled therein.
  • the transplant material of the present invention filled with hydrogel can provide a space (scaffold) for regenerating the liver for a long period of time without being crushed in the abdominal cavity even after transplantation into a living body. Thereby, good liver regeneration is realized.
  • the hydrogel used in the present invention is composed of a material that can be transplanted into a living body without causing toxicity to tissues, cells, and the like constituting the living body.
  • “hydrogel” is a substance that can contain a large amount of water, and it is useful for cell survival, such as oxygen, water, water-soluble nutrients, polypeptides such as enzymes and cytokines.
  • hydrogel has a material or form capable of easily diffusing and transferring necessary substances and wastes. It usually means something that is biocompatible.
  • an aqueous solution containing suspended or colloidal particles is preferable. If it is a flowable hydrogel, it becomes possible to fill the inside of the transplant material of the present invention.
  • the hydrogel that can be used in the present invention include water-soluble, water-affinity, or water-absorbing synthesis such as polyacrylamide, polyacrylic acid, polyhydroxyethyl methacrylate, polyvinyl alcohol, polylactic acid, and polyglycolic acid.
  • polysaccharide include, but are not limited to, glycosaminoglycans such as hyaluronic acid and chondroitin sulfate, starch, glycogen, agarose, pectin, and cellulose.
  • proteins include collagen and hydrolysates thereof such as gelatin, proteoglycan, fibronectin, vitronectin, laminin, entactin, tenascin, thrombospondin, von Willebrand factor, osteopontin, fibrinogen, Matrigel (registered trademark) and the like.
  • a hydrogel made of a material that is biocompatible and can be degraded by cells in vivo is suitable for the present invention. If the hydrogel has such properties, good liver regeneration can be realized without inhibiting the effect of cells infiltrating, proliferating and engrafting in the transplant material of the present invention.
  • it is a hydrogel that enhances the effect of infiltration, proliferation, and engraftment of cells, such as collagen, gelatin, proteoglycan, fibronectin, vitronectin, laminin, entactin, tenascin, thrombospondin, von Willebrand factor, osteopontin , Fibrinogen, Matrigel (registered trademark) and other protein hydrogels.
  • cells such as collagen, gelatin, proteoglycan, fibronectin, vitronectin, laminin, entactin, tenascin, thrombospondin, von Willebrand factor, osteopontin , Fibrinogen, Matrigel (registered trademark) and other protein hydrogels.
  • the method of filling the graft material of the present invention with hydrogel is not particularly limited.
  • the method etc. are mentioned.
  • the hydrogel form applied to the present invention is an aqueous solution containing suspended or colloidal particles
  • the concentration is not limited because it varies depending on the properties of the main component of the hydrogel selected, It is preferable that the concentration is such that it can be filled in the container and does not flow out after filling.
  • the transplant material of the present invention must be used by being implanted in a living body by transplantation and highly sterilized from the viewpoint of preventing pathogen infection by transplantation.
  • Known methods can be used to sterilize the transplant material of the present invention.
  • sterilization with antibiotics penicillin, ampicillin, tetracycline, streptomycin, gentamicin, amteforicin B, etc.
  • autoclave sterilization UV irradiation sterilization, gamma ray Irradiation sterilization, ozone sterilization, ethylene oxide gas (EOG) sterilization, or a combination thereof may be mentioned.
  • the treatment by these sterilization methods is preferably carried out to such an extent that the structure and properties of the extracellular matrix contained in the transplant material are not impaired.
  • gamma irradiation is particularly preferable because of its high sterilization effect.
  • the temperature at which the graft material of the present invention is stored may be, for example, 4 ° C. to 30 ° C., 4 ° C. to 28 ° C., 4 ° C. to 26 ° C., room temperature, or room temperature until use. It may be frozen and stored.
  • the freezing temperature is, for example, ⁇ 10 ° C., ⁇ 20 ° C., ⁇ 30 ° C., ⁇ 40 ° C., ⁇ 50 ° C., ⁇ 60 ° C., ⁇ 70 ° C., ⁇ 80 ° C., ⁇ 90 ° C., ⁇ 100 ° C., or The following temperatures may be used.
  • the freezing temperature may be in the range of ⁇ 150 ° C.
  • the temperature for thawing the frozen transplant material of the present invention may be, for example, 37 ° C., room temperature, room temperature, or 4 ° C.
  • the thawing temperature may be, for example, 4 ° C. to 50 ° C., 4 ° C. to 45 ° C., 4 ° C. to 40 ° C.
  • the transplant material of the present invention can reconstruct an organ or tissue by transplanting into a living body.
  • the organ to which the transplant of the present invention is applied is the liver
  • it can be applied to the excised section of the liver to reconstruct liver tissue, which has conventionally been difficult to regenerate from the excised section of the liver.
  • the transplant material of the present invention contains a liver-derived decellularized skeleton, migration and engraftment of endothelial cells and bile duct epithelial cells are promoted inside the transplant material, and a functional structure with a capillary structure and a bile duct structure is promoted. The vasculature is reconstructed and regeneration of liver tissue is promoted (FIG. 1). This is a transplant material that has not been realized by conventional transplant materials, and was realized for the first time by the present invention.
  • the liver is recognized as a regenerating organ, but the mechanism of the regeneration is not the extension and enlargement of the liver after excision as it was, but the remaining liver enlarges compensably (compensatory) Overall capacity is secured by “hypertrophy”.
  • hypotrophy In order for this “compensatory hypertrophy” to occur sufficiently, the balance between the amount of hepatic resection and the reserve capacity (health state) of the liver greatly contributes, and if the preoperative evaluation is mistaken, there is a risk of death from liver failure. Therefore, especially when a patient suffering from cirrhosis undergoes hepatectomy, a strict upper limit of resection is determined by the patient's own liver function.
  • Intra-curtain classification This method of determining the upper resection limit is called “intra-curtain classification”.
  • the liver is said to regenerate even if about 70% is excised, but as specified in this classification, depending on the degree of cirrhosis, there is a risk that hepatic failure may occur even if nearly 70% remains. This can be said to be because the liver is fibrotic due to cirrhosis, in other words, in an environment where the internal hepatocytes cannot proliferate in a state of extracellular matrix failure.
  • the transplant material of the present invention provides a pericellular environment / stereostructure composed of a normal extracellular matrix, and can promote regeneration on the excision stump side of the liver which is not originally regenerated. By using the transplant material of the present invention, it is possible to avoid a dangerous state in which compensatory hypertrophy is insufficient, to enable safe hepatectomy, and thus to perform radical treatment for more cancer patients.
  • a known surgical means may be used as a method of excising an organ or tissue or a part thereof to which the transplant material of the present invention is applied, and examples thereof include a scalpel, an electric knife, a scissors, a scissors, a forceps and the like.
  • a known surgical technique can be used for the method of attaching the transplant of the present invention to a cut section of an organ or tissue or a part thereof, for example, a coating of an organ or tissue remaining after excision and the present invention. And a method of suturing and ligating the coating of the graft (attachment).
  • the graft of the present invention is formed with an adhesive portion having no coating at least in part according to the shape of the cut section of the organ or tissue to be applied or a part thereof.
  • a scalpel, an electric knife, a scissors, a scissors, a forceps, or the like is used as the adhesive portion.
  • the decellularized skeleton is cut to form the adhesive portion having no coating on the cut surface.
  • the transplant material includes a decellularized skeleton derived from the liver
  • the graft material can be cut with a scalpel to form a liver adhesion portion that matches the shape of the excised section of the liver to be applied.
  • the graft material can be transplanted by attaching the liver adhesion portion in contact with the excised section of the liver.
  • cells that form liver tissue such as vascular endothelial cells, bile duct epithelial cells, hepatic parenchymal cells, hepatic progenitor cells, Kupffer cells, homologous endothelial cells, and stellate cells migrate from the hepatectomized section and live. It induces angiogenesis and bile duct neoplasia in the transplant material, and promotes remodeling of liver tissue.
  • the transplant of the present invention may be provided in a state in which an adhesive portion is formed in advance, or may be formed at the surgical site according to the cut section of an organ or tissue or a part thereof immediately before attachment.
  • the transplant material of the present invention can be prepared in various size variations according to the volume to be excised.
  • the transplant material of the present invention When used for reconstruction of liver tissue, it can be used for the treatment of primary or metastatic liver cancer, fatty liver, cirrhosis, hepatitis, autoimmune hepatitis and the like. Due to the above-mentioned diseases, the graft material of the present invention is sutured and adhered to the excised surface obtained by performing hepatectomy, so that the vascular structure / bile duct structure of the excised part different from the conventional hypertrophic regeneration mechanism It is possible to promote hepatocyte infiltration by the regenerative mechanism, dramatically increase the post-operative liver capacity at an early stage, and prevent liver function from being compensated and liver failure. This realizes early structure regeneration and cell infiltration in cm units, which are clearly different in scale from currently available fibrin glue and sheet-like structures.
  • Example 1 Male LWD pigs (All-Agricultural Feed and Livestock Research Center, Ibaraki, Japan) were used for the production of porcine decellularized scaffolds and for transplantation experiments. Pigs were anesthetized with 0.2 mg midazolam (kg Astellas, Tokyo, Japan) and 0.08 mg medetomidine (Nippon Zenyaku Kogyo, Fukushima, Japan) per kg, and then connected to a standard respiratory system. During the procedure, isoflurane was inhaled to maintain anesthesia.
  • midazolam kg Astellas, Tokyo, Japan
  • medetomidine Nippon Zenyaku Kogyo, Fukushima, Japan
  • liver and pre-treatment were collected from live pig.
  • the liver was partially modified by using the method (Human-scale whol-organ bioengineering for live translation: a regenerative medicine approach. Cell Transplant. 2013; 22 (2): 231-242). went. Specifically, immediately before collecting the pig liver, heparin 5000 IU was introduced from the vein, and then the liver was collected by vertical midline incision. The gallbladder was removed from the collected liver. The bile duct, hepatic artery, hepatic vein and lower hepatic inferior vena cava were ligated. The portal vein and upper hepatic inferior vena cava were cannulated. Heparin-containing (5000 U / L) 0.9 w / v% physiological saline was perfused from the portal vein until no blood came out. After injecting physiological saline, it was frozen and stored at -80 ° C.
  • ⁇ Decellularization treatment of liver SDS + TritonX-100 + CHAPS
  • a frozen liver is thawed at room temperature in a clean bench, and a solution containing 500 U / L heparin sodium (AY Pharma, Tokyo) is drained through the portal vein at 100 ml / min to remove blood. Perfused until clear.
  • the liver was then perfused with deionized water containing 0.5 w / v% sodium dodecyl sulfate (SDS; SERVA Electrophoresis, Germany) for the first 24 hours.
  • the liver was washed with deionized water for 15 minutes, 12 hours, 1 v / v% Triton X-100 (Sigma), 0.05 w / v% ethylene glycol bis (2-aminoethyl ether) -N, N, Washed with a PBS solution containing N ′, N′-tetraacetic acid (EGTA; Tokyo Chemical Industry Co., Ltd.), 0.05 w / v% sodium azide (Sigma), 4 mM CHAPS (Dojindo Laboratories, Kumamoto) (FIG. 3 (A)). Decellularized liver was washed with PBS for 1 hour.
  • PBS containing antibiotics (1 v / v% penicillin / streptomycin, 1 v / v% gentamicin, 1 v / v% amphotericin B) was perfused at 20 mL / min for 30 to 1 hour. Thereafter, the decellularized liver was further sterilized using gamma rays (25 kGy). It preserve
  • ⁇ Decellularization of liver SDS + TritonX-100>
  • the frozen liver was thawed at room temperature and perfused with PBS overnight at 30 ml / min through the portal vein to remove blood.
  • the liver was then perfused with deionized water containing 0.01 w / v% sodium dodecyl sulfate (SDS; Sigma, St. Louis, MO, USA) for the first 24 hours, followed by 0.1 w / v for 24 hours.
  • Perfusion was performed with deionized water containing% SDS, followed by perfusion with deionized water containing 1 w / v% SDS for at least 48 hours.
  • the liver was washed with deionized water for 15 minutes, and washed with deionized water containing 1 v / v% Triton X-100 (Sigma) for 30 minutes.
  • Decellularized liver was washed with PBS for 1 hour.
  • Decellularized livers were washed with PBS containing 0.1 v / v% peracetic acid (Sigma, St. Louis, MO, USA) for 1 hour. The decellularized liver was thoroughly washed with sterile PBS.
  • livers decellularized in PBS supplemented with antibiotics (1 v / v% penicillin / streptomycin, 1 v / v% gentamicin, 1 v / v% amphotericin B) were stored at 4 ° C.
  • the decellularized liver was observed using a scanning electron microscope.
  • the liver decellularized with the perfusate further containing CHAPS has a good residual state of the internal vasculature.
  • FIG. 4B Compared with the decellularized skeleton (Fig. 4 (A)) that has been decellularized without using CHAPS has a hard matrix shape, the decellularized skeleton that has been decellularized with CHAPS has undergone decellularization. It has been clarified that the cellular skeleton has a delicate matrix remaining in detail, and extremely few microparticles that are considered to have cytotoxicity considered to be particles in the SDS washing solution (FIG. 4 ( B)).
  • Example 2 ⁇ Evaluation of cell engraftment on decellularized liver (transplant)> The porcine liver was decellularized by the same method as in Example 1 liver decellularization (SDS + TritonX-100, SDS + TritonX-100 + CHAPS). Yagi H. Et al. (Yagi H., et al., Human-scale whol-organ bioengineering for liver translation: a regenerative medicaine approach.
  • Cell Transplant. Pig liver parenchymal cells and vascular endothelial cells were seeded and cultured, and the cells were observed to be engrafted.
  • Example 3 Porcine liver was decellularized by the same method as in Example 1 liver decellularization (SDS + TritonX-100 + CHAPS).
  • the decellularized transplant was molded into a form similar to that of the liver to be excised.
  • a 15-20 kg female LWD SPF pig (Shiroishi Animal Co., Ltd., Saitama, Japan) was laparotomized, and part of the liver (left and middle lobe left) was excised.
  • the liver excision surface and the cut surface of the graft material were brought into contact with each other, and the respective coatings were sutured to close the abdomen (FIG. 5). After the operation, normal breeding was performed.
  • the decellularized skeleton in the vicinity of the adhesion boundary region 10 days after transplantation and 28 days after transplantation includes hepatocytes (albumin positive cells, FIG. 6 (C)) and bile duct epithelial cells (CK19 positive cells, FIG. 6 (D), It was confirmed that FIGS. 7A to 7C were engrafted. It was also confirmed that vascular endothelial cells were engrafted to form a luminal structure in the peripheral part of the transplanted decellularized skeleton (FIG. 7D). Further, also from FIGS.
  • the decellularized liver decellularized with CHAPS shows a clearly lower infection rate compared with the case without gamma sterilization when combined with sterilization with gamma rays, and is good in the liver after adhesion. Cell engraftment was observed.
  • the phenomenon of regenerating the vascular structure accompanied with the vascular structure and the bile duct structure as seen in the present invention is not known.
  • the transplant material of the present invention makes it possible for the first time to regenerate liver tissue having a vascular structure with blood vessels and bile ducts.
  • Example 4 The purchased pig liver was frozen at ⁇ 80 ° C. and thawed at room temperature. The portal vein and upper hepatic inferior vena cava were cannulated. Thereafter, the gallbladder was removed, and the bile duct, artery and lower inferior vena cava were ligated. From the portal vein side, heparinized physiological saline was perfused until no blood came out. The following decellularization treatment, sterilization treatment and transplantation to the hepatectomy surface were performed in the same procedure as in Examples 1 and 2. As a result, the same results as in Examples 1 and 2 were obtained.
  • Example 5 Female Lewis rats (200-250 g, Sankyo Institute) and male Lewis rats (450-500 g, Sankyo Institute) were used.
  • Rats were maintained under anesthesia with inhalation of 1.5-3.0% isoflurane (Mylan). After abdominal incision, heparin (450 units) was injected into the space in the heart. A 20G cannula was inserted into the portal vein and 10-15 mL of PBS containing heparin (50 units) was injected. IHVC (lower hepatic vena cava) was ligated and the entire liver was excised. SHVC (superhepatic vena cava) was excised without ligation. The resulting liver was frozen at ⁇ 80 ° C. for at least 24 hours. Soto-Gutierrez et al.
  • Example 6 Porcine liver was decellularized by the same method as in Example 1 liver decellularization (SDS + TritonX-100 + CHAPS). The obtained porcine liver decellularized skeleton was subjected to a treatment for cross-linking proteins. The crosslinking treatment was performed using the following reagents and procedures.
  • the cross-linked porcine liver decellularized skeleton was obtained by the method described above (FIG. 10). By performing the cross-linking treatment, it became possible for the porcine liver decellularized skeleton to maintain a more stable form as compared to the skeleton not subjected to the cross-linking treatment.
  • the porcine liver decellularized skeleton subjected to crosslinking treatment was attached to a part of the pig liver according to the procedure of Example 3.
  • a tissue section of porcine liver 10 days after the attachment was prepared and observed by HE staining, and as a result, hepatic parenchymal cell group (dotted line on the right in FIG. 11), bile duct structure (right on FIG. 11, arrow), blood vessel structure (see FIG. 11 right, arrow) was observed, and it became clear that internal bile duct cell infiltration was enhanced.
  • These structures were also observed at the site farthest from the attachment surface in the transplanted porcine liver decellularized skeleton (left side of FIG. 11).
  • the cross-linking treatment increased the physical strength of the porcine liver decellularized skeleton, and it became possible to maintain a stable morphology even after the transplantation.
  • a space (scaffold) for regenerating the liver for a long period of time without being crushed in the abdominal cavity even after transplantation can be provided, and good liver regeneration can be realized.
  • Example 7 As in Example 5, the rat liver was decellularized. The obtained rat liver decellularized skeleton was injected with collagen gel according to the following reagents and procedures.
  • ⁇ Filling method of collagen gel • Make a 6 mg / ml collagen solution. • Mix 1 ml of 10 ⁇ PBS, 2.62 ml of milliQ, and 144 ⁇ L of 1N NaOH. -Add 6.24 ml of collagen solution to the above solution and mix. Inject 5 ml from the hepatic vein of the decellularized rat liver and 5 ml from the portal vein.
  • the rat liver decellularized skeleton filled with collagen gel was obtained by the above-described method (FIG. 12A).
  • the obtained rat liver decellularized skeleton was attached to a part of the rat liver according to the procedure of Example 5. Examination of the rat liver 21 days after implantation confirmed that the transplanted decellularized skeleton did not collapse and remained engrafted (FIG. 12 (B), dotted line portion).

Abstract

The present invention provides a graft material for reconstructing the tissue of a liver that has been subjected to a hepatectomy, wherein the graft material includes a decellularized scaffold comprising an extracellular matrix derived from the decellularized liver of a mammal, and a film which covers at least part of the extracellular matrix. Further, the present invention provides a method of manufacturing said graft material, including: a step of freezing a liver of a mammal; a step of thawing the frozen liver; a step of perfusing a cell disrupting medium including a surfactant into the thawed liver to disrupt the cells in the liver; and a step of washing the liver of which the cells have been disrupted. Further, the present invention provides a method of reconstructing a liver, including: a step of forming a liver adhering portion in the graft material in accordance with the shape of the excised section of the liver; and a step of bringing the excised section of the liver into contact with the liver adhering portion and suturing the liver thereto.

Description

肝切除を受けた肝臓の組織再構築用移植材、その製造方法、及び肝切除を受けた肝臓の再構築方法Transplant for liver tissue reconstruction that has undergone hepatectomy, its production method, and method for reconstruction of liver that has undergone liver resection
 本発明は、肝切除を受けた肝臓の組織再構築用移植材に関する。また、本発明は、肝切除を受けた肝臓の組織再構築用移植材を製造する方法に関する。また、本発明は、肝切除を受けた肝臓の再構築方法に関する。 The present invention relates to a transplant for tissue reconstruction of a liver that has undergone liver resection. The present invention also relates to a method for producing a transplant for liver tissue reconstruction that has undergone liver resection. The present invention also relates to a method for reconstructing a liver that has undergone hepatectomy.
 癌治療などのために臓器を一部切除する外科的治療は、根治を目指す上で重要であり、年間本邦だけで数万人以上が毎年各種臓器の部分切除術を受けている。しかしながら、切除後の臓器不全は時には致死的となり、合併症として常に最重要課題である。臓器機能不全の根治的治療法はなく、体外循環などに頼っているが、臓器不全に至ってしまえば、例えば、人工透析やインシュリン治療を生涯にわたって行う必要があり、患者の生活の質(QOL:Quality of Life)は格段に悪化する。このことが、治療のできない癌患者を増加させる原因ともなっている。 Surgical treatment that removes a part of an organ for cancer treatment is important in aiming for radical cure, and more than tens of thousands of people undergo partial resection of various organs every year in Japan alone. However, organ failure after resection is sometimes fatal and is always the most important complication. There is no definitive treatment for organ dysfunction and relies on extracorporeal circulation. However, if organ failure occurs, for example, artificial dialysis or insulin treatment must be performed throughout life, and the quality of life of patients (QOL: (Quality of Life) gets worse. This also causes an increase in the number of cancer patients that cannot be treated.
 再生可能といわれる肝臓であっても、その臓器不全は死に繋がるために、術後の肝不全は大きな問題となっているが、現在のところ、肝臓移植以外にその根治的治療法は存在しない。肝臓移植を行うためには、肝臓を提供するドナーが必要であるが、日本を含む世界中において慢性的にドナーが不足しており、移植を受けることができている患者は数割にも満たないと考えられている。そのため、このような慢性的なドナー不足を解消するために、従来治療に代わる新たな治療技術の開発が求められているところである。 Even in the liver, which is said to be reproducible, organ failure leads to death, and postoperative liver failure is a major problem, but at present there is no curative treatment other than liver transplantation. In order to perform liver transplantation, donors who provide the liver are necessary, but there are chronic donor shortages worldwide, including Japan, and more than a few percent of patients can receive transplants. It is not considered. Therefore, in order to eliminate such chronic donor shortage, development of a new treatment technique that replaces the conventional treatment is being demanded.
 近年、こうした課題を解決するために様々な再生医療技術が開発されており、中でも組織工学(Tissue Engineering)と呼ばれる医学と工学とを融合させた技術は著しい発展を見せている。また、多能性幹細胞(ES細胞、iPS細胞等)などを用いた幹細胞、又はそれらの細胞の分化誘導に関する技術開発も同時並行で発展しており、こうした技術を組み合わせることで、生体外で組織・臓器を構築する試みが世界中で取り組まれているところである。 In recent years, various regenerative medical technologies have been developed to solve these problems, and in particular, a technology called tissue engineering, which is a fusion of medicine and engineering, has shown remarkable development. In addition, the development of stem cells using pluripotent stem cells (ES cells, iPS cells, etc.) or the differentiation induction of those cells has been developed in parallel.・ Attempts to build organs are being made all over the world.
 組織工学的手法を用いた再生臓器の構築方法としては、大きく分けて、いわゆるボトムアップ型とトップダウン型の手法が開発されている。前者は、最小単位である細胞を積み上げてゆく方式であり、例えば、シート状の細胞を積層して組織・臓器を形成する方法や、スフェロイド状の細胞をブロックの様に積み上げ、組織・臓器を構築する方法等が挙げられる。後者としては、例えば、哺乳動物由来の臓器を用い、界面活性剤などの細胞膜を破砕する薬剤を用いて細胞外マトリックス(Extra Cellular Matrix:ECM)骨格だけを残し、そこへ臓器を構築するために必要な細胞を再度播種し、培養することによって、生着させ、生体外で臓器を作成する技術が挙げられる(特許文献1、特許文献2、非特許文献1及び非特許文献2)。前者の手法においては、現在のところ、網膜や消化管粘膜などの薄い組織の構築に限られている。一方、後者の方法は、現在のところ、生体内の臓器の代替となるような完全な機能を有した臓器の開発までには至っておらず、今後さらなる研究と開発が求められているところである。 As a method for constructing a regenerative organ using a tissue engineering technique, a so-called bottom-up type and top-down type technique have been developed. The former is a method of stacking cells, which are the smallest unit, for example, a method of stacking sheets of cells to form tissues / organs, or a method of stacking spheroid cells like blocks to store tissues / organs. The method of construction is mentioned. As the latter, for example, to use an organ derived from a mammal, leave an extracellular matrix (ECM) skeleton using an agent that crushes cell membranes such as a surfactant, and construct an organ there Examples include a technique of engrafting necessary cells again by seeding and culturing them, and creating an organ in vitro (Patent Document 1, Patent Document 2, Non-Patent Document 1, and Non-Patent Document 2). The former method is currently limited to the construction of thin tissues such as the retina and gastrointestinal mucosa. On the other hand, the latter method has not yet led to the development of an organ having a complete function as a substitute for an organ in a living body, and further research and development are required in the future.
 ヒト及び非ヒト動物から採取された組織より作製された脱細胞化骨格は、いくつか既に製品化されており、身体の組織欠損部位を補助・充填する治療で用いられている(非特許文献3)。しかしながら、製品化されている脱細胞化骨格は、臓器の一部(心臓弁、心膜等)又は組織の一部(軟部組織、腱、皮膚等)に適用されているものであり、臓器そのものを再生する製品は開発されていない。 Several decellularized scaffolds prepared from tissues collected from humans and non-human animals have already been commercialized, and are used in treatments that assist and fill tissue defect sites in the body (Non-patent Document 3). ). However, a decellularized skeleton that has been commercialized is applied to a part of an organ (heart valve, pericardium, etc.) or a part of a tissue (soft tissue, tendon, skin, etc.), and the organ itself No product has been developed.
国際公開第2007/025233号International Publication No. 2007/025233 米国特許出願公開第2005/0249816号明細書US Patent Application Publication No. 2005/0249816
 上述のように、移植が必要な重篤な疾患を抱えた臓器、特に肝臓を治療するための技術が開発されているが、未だ十分なものが提供されるに至っていない。そこで、本発明は、肝切除を受けた肝臓の組織再構築用移植材を提供することを課題とする。また、本発明は、肝切除を受けた肝臓の組織再構築用移植材を製造する方法を提供することを課題とする。また、本発明は、肝切除を受けた肝臓の再構築方法を提供することを課題とする。 As described above, a technique for treating an organ having a serious disease requiring transplantation, particularly a liver, has been developed, but a sufficient technique has not yet been provided. Then, this invention makes it a subject to provide the transplant material for the tissue reconstruction of the liver which received liver resection. Moreover, this invention makes it a subject to provide the method of manufacturing the transplant material for the tissue reconstruction of the liver which received liver resection. Moreover, this invention makes it a subject to provide the reconstruction method of the liver which received liver resection.
 本発明者らは、上記課題を解決するために、種々の角度から検討を加えて研究開発を行ってきた。その結果、驚くべきことに本発明の肝切除を受けた肝臓の組織再構築用移植材を肝切除断面に適用すると、肝切除断面を起源に、該移植材内部に速やかに血管構造の再構築を誘導し、肝臓切除断面から肝臓の組織が再構築されることを見出した。また、胆管構造の再構築も誘導することを見出した。すなわち、本発明は、以下のとおりである。 In order to solve the above-mentioned problems, the present inventors have conducted research and development by adding studies from various angles. As a result, surprisingly, when the transplant material for liver tissue reconstruction that has undergone hepatectomy according to the present invention is applied to a hepatectomy section, the vascular structure is quickly reconstructed from the hepatectomy section. The liver tissue was reconstructed from the liver excision section. It was also found that the reconstruction of the bile duct structure is also induced. That is, the present invention is as follows.
 [1] 肝切除を受けた肝臓の組織再構築用移植材であって、
 該移植材が、脱細胞化された哺乳動物の肝臓由来の細胞外マトリックスと、該細胞外マトリックスの少なくとも一部を被覆する被膜とを有する脱細胞化骨格を含む、移植材。
 [2] 該移植材が、タンパク質架橋処理されたものである、[1]に記載の移植材。
 [3] 該移植材は、ハイドロゲルが充填されたものである、[1]又は[2]に記載の移植材。
 [4] 該移植材が、さらに該被膜を有さない肝臓接着部を有し、肝臓の切除断面に適用することを特徴とする、[1]~[3]のいずれかに記載の移植材。
 [5] 該肝臓接着部が、肝臓の切除断面に適用する直前に、肝臓の切除断面の形状に合わせて形成されるものである、[[4]に記載の移植材。
 [6] 該哺乳動物が、非ヒト哺乳動物である、[1]~[5]のいずれかに記載の移植材。
 [7] 肝切除断面を起源に、該移植材内に血管新生及び胆管新生を誘導する、[1]~[6]のいずれかに記載の移植材。
[1] A transplant for tissue reconstruction of a liver that has undergone liver resection,
A graft material, wherein the graft material includes a decellularized scaffold having an extracellular matrix derived from a decellularized mammalian liver and a coating covering at least a part of the extracellular matrix.
[2] The transplant according to [1], wherein the transplant is subjected to protein crosslinking treatment.
[3] The transplant according to [1] or [2], wherein the transplant is filled with hydrogel.
[4] The transplant according to any one of [1] to [3], wherein the transplant further has a liver adhesion part not having the coating and is applied to a cut section of the liver. .
[5] The transplant according to [[4], wherein the liver adhesion part is formed in conformity with the shape of the liver excision section immediately before application to the liver excision section.
[6] The transplant material according to any one of [1] to [5], wherein the mammal is a non-human mammal.
[7] The transplant material according to any one of [1] to [6], wherein angiogenesis and bile duct neoplasia are induced in the transplant material from a hepatectomy section.
 [8] [1]~[7]のいずれかに記載の移植材の製造方法であって、
  (a) 哺乳動物の肝臓を凍結する工程、
  (b) 凍結された該肝臓を解凍する工程、
  (c) 解凍された該肝臓に界面活性剤を含む細胞破壊媒体を灌流して細胞を破壊する工程、
  (d) 細胞が破壊された該肝臓を洗浄する工程、
を含む、方法。
 [9] (c)工程が、
  (c-1) 解凍された該肝臓にイオン性界面活性剤を含む細胞破壊媒体を灌流する工程、及び
  (c-2) 解凍された該肝臓に非イオン性界面活性剤及び双性イオン性界面活性剤を含む細胞破壊媒体を灌流する工程、
を含む工程である、[8]に記載の方法。
 [10] 該イオン性界面活性剤が、硫酸ドデシルナトリウム(SDS)、デオキシコール酸塩、コール酸塩、サルコシル、及びその組み合わせからなる群から選択される、[9]に記載の方法。
 [11] 該非イオン性界面活性剤が、トリトンX-100、DDM、ジギトニン、ツイン20、ツイン80、及びその組み合わせからなる群から選択される、[9]又は[10]に記載の方法。
 [12] 該双性イオン性界面活性剤がCHAPSである、[9]~[11]のいずれかに記載の方法。
 [13] (e)該移植材を、タンパク質架橋剤によって処理する工程、
をさらに含む、[8]~[12]のいずれかに記載の方法。
 [14] 該タンパク質架橋剤が、アルデヒド系架橋剤、カルボキシル基-アミノ基間架橋剤、及びその組合せから選択される、[13]に記載の方法。
 [15] 該カルボキシル基-アミノ基間架橋剤が、水溶性カルボジイミド(WSC)である、[14]に記載の方法。
 [16] 該アルデヒド系架橋剤が、グルタルアルデヒドである、[14]又は[15]に記載の方法。
 [17] (f)該移植材を滅菌する工程、
をさらに含む、[8]~[16]に記載の方法。
 [18] 該(f)工程が、ガンマ線によって滅菌する工程、
を含む、[17]に記載の方法。
 [19] (g)該移植材にハイドロゲルを充填する工程、をさらに含む、[8]~[18]のいずれかに記載の方法。
 [20] (h)肝臓の切除断面の形状に合わせて、該移植材に肝臓接着部を形成する工程、をさらに含む、[8]~[19]のいずれかに記載の方法。
[8] A method for producing an implant according to any one of [1] to [7],
(A) freezing the liver of the mammal;
(B) thawing the frozen liver;
(C) perfusing a cell destruction medium containing a surfactant into the thawed liver to destroy the cells;
(D) washing the liver from which the cells have been destroyed;
Including a method.
[9] (c) Step is
(C-1) perfusing a cell disruption medium containing an ionic surfactant to the thawed liver, and (c-2) a nonionic surfactant and a zwitterionic interface to the thawed liver Perfusing a cell disruption medium comprising an active agent;
The method according to [8], wherein the method comprises:
[10] The method according to [9], wherein the ionic surfactant is selected from the group consisting of sodium dodecyl sulfate (SDS), deoxycholate, cholate, sarkosyl, and combinations thereof.
[11] The method according to [9] or [10], wherein the nonionic surfactant is selected from the group consisting of Triton X-100, DDM, digitonin, Twin 20, Twin 80, and combinations thereof.
[12] The method according to any one of [9] to [11], wherein the zwitterionic surfactant is CHAPS.
[13] (e) treating the graft material with a protein crosslinking agent;
The method according to any one of [8] to [12], further comprising:
[14] The method according to [13], wherein the protein crosslinking agent is selected from aldehyde-based crosslinking agents, carboxyl group-amino group crosslinking agents, and combinations thereof.
[15] The method according to [14], wherein the carboxyl group-amino group cross-linking agent is water-soluble carbodiimide (WSC).
[16] The method according to [14] or [15], wherein the aldehyde-based crosslinking agent is glutaraldehyde.
[17] (f) a step of sterilizing the transplant material;
The method according to [8] to [16], further comprising:
[18] The step (f) is a step of sterilizing with gamma rays,
The method according to [17], comprising:
[19] The method according to any one of [8] to [18], further comprising (g) a step of filling the graft material with hydrogel.
[20] The method according to any one of [8] to [19], further comprising the step of (h) forming a liver adhesion part on the transplant material in accordance with the shape of the excised section of the liver.
 [21] 肝切除を受けた肝臓の組織を再構築する方法であって、
  (i)[1]~[7]のいずれかに記載の移植材に、肝臓の切除断面の形状に合わせて肝臓接着部を形成する工程、
  (ii)該肝臓の切除断面と、該肝臓接着部とを接触させて逢着する工程、
を含む方法。
[21] A method of reconstructing liver tissue that has undergone hepatectomy,
(I) a step of forming a liver adhesion part in the transplant material according to any one of [1] to [7] in accordance with the shape of the excised section of the liver;
(Ii) a step of bringing the excised section of the liver into contact with the liver adhesion part and attaching the liver;
Including methods.
 本発明の肝切除を受けた肝臓の組織再構築用移植材及びその製造方法により作製された移植材は、容易に適切なサイズに成形可能であり、肝硬変を伴う肝癌や転移性肝癌に対する大量肝切除の際に必ず生じる肝切除断面に合わせたサイズを手術中に被覆・逢着可能である。断面に逢着された該移植材は、その内部に残された立体管腔構造の骨格が、切除された肝臓からの早期の血管内皮細胞・胆管上皮細胞等の遊走/生着を促し、脈管構造を先行的に再生させる他に類を見ない特徴を有する。この再生された脈管を通じて、肝細胞が細胞親和性の高い細胞外マトリックスからなる該移植材に広範囲に浸潤可能であるため、肝臓の構造自体が早期に補完され、肝不全の危険性を軽減し、術後の早期回復が見込まれる。 The transplant material for liver tissue reconstruction that has undergone hepatectomy according to the present invention and the transplant material produced by the manufacturing method thereof can be easily molded into an appropriate size, and a large amount of liver for liver cancer with liver cirrhosis or metastatic liver cancer It is possible to cover and adhere to the size of the liver excision section that always occurs during resection. In the graft material attached to the cross section, the skeleton of the three-dimensional lumen structure left in the inside promotes early migration / engraftment of vascular endothelial cells, bile duct epithelial cells, etc. from the resected liver. It has a unique feature that allows the structure to be reproduced in advance. Through this regenerated vessel, hepatocytes can infiltrate extensively into the transplant made of extracellular matrix with high affinity, so that the structure of the liver itself is complemented early, reducing the risk of liver failure Therefore, early recovery after surgery is expected.
図1は、本発明の概念図である。FIG. 1 is a conceptual diagram of the present invention. 図2は、ブタ脱細胞化骨格を示す図である。(A)PBSで洗浄後のブタ肝臓を示す図である。(B)SDS含有細胞破壊媒体で処理中のブタ肝臓を示す図である。(C)細胞破壊媒体で処理後に破壊された細胞を洗浄した後のブタ脱細胞化骨格を示す図である。FIG. 2 shows a porcine decellularized skeleton. (A) It is a figure which shows the pig liver after washing | cleaning with PBS. (B) It is a figure which shows the pig liver currently processed with the SDS containing cell destruction medium. (C) Porcine decellularized skeleton after washing cells destroyed after treatment with cell disruption media. 図3は、ブタ肝臓用脱細胞化システム及び脱細胞化したブタ肝組織を示す図である。(A)本発明の脱細胞化骨格を含む移植材を作製するための脱細胞化システム(ブタ用)を示す図である。(B)正常なブタ肝臓の組織切片におけるHE染色像である。(C)正常なブタ肝臓の組織切片における核(DAPI、青)を示す蛍光顕微鏡像である。(D)脱細胞化処理を行ったブタ肝臓の組織切片におけるHE染色像である。(E)脱細胞化処理を行ったブタ肝臓の組織切片における核(DAPI、青)を示す蛍光顕微鏡像である。FIG. 3 is a diagram showing a decellularization system for porcine liver and decellularized porcine liver tissue. (A) It is a figure which shows the decellularization system (for pigs) for producing the transplant material containing the decellularization frame | skeleton of this invention. (B) HE-stained image in a tissue section of normal pig liver. (C) Fluorescence microscopic image showing nuclei (DAPI, blue) in tissue sections of normal pig liver. (D) HE-stained image in a tissue section of porcine liver that has been decellularized. (E) It is a fluorescence microscope image which shows the nucleus (DAPI, blue) in the tissue section | slice of the pig liver which performed the decellularization process. 図4は、ブタ脱細胞化骨格を走査線電子顕微鏡で拡大した図である。(A)SDSのみを用いて脱細胞化したブタ脱細胞化骨格である。(B)SDS、TritonX-100及びCHAPSを用いて脱細胞化したブタ脱細胞化骨格である。FIG. 4 is an enlarged view of the porcine decellularized skeleton with a scanning electron microscope. (A) Porcine decellularized skeleton decellularized using only SDS. (B) Porcine decellularized skeleton decellularized using SDS, Triton X-100 and CHAPS. 図5は、ブタ脱細胞化骨格の切除肝断端への逢着手順を示す図である。FIG. 5 is a diagram showing a procedure for attaching a porcine decellularized skeleton to a resected liver stump. 図6は、移植後のブタ脱細胞化骨格の組織学的解析結果(移植10日後)を示す図である。(A)ブタ脱細胞化骨格とブタ肝臓の骨格境界線付近の組織切片のHE染色観察像である。(B)ブタ脱細胞化骨格とブタ肝臓の骨格境界線付近の組織切片の蛍光顕微鏡観察像である。(C)ブタ脱細胞化骨格に生着した肝細胞(アルブミン(ALB)陽性細胞、緑)を示す図である。(D)ブタ脱細胞化骨格に再構築された胆管上皮細胞(CK19陽性、緑)を示す図である。(E)ブタ脱細胞化骨格に再構築された血管構造(CD31陽性、緑)を示す図である。FIG. 6 shows the histological analysis results (10 days after transplantation) of the porcine decellularized skeleton after transplantation. (A) HE staining observation image of a tissue section in the vicinity of the skeleton boundary line between porcine decellularized skeleton and pig liver. (B) It is a fluorescence-microscope observation image of the tissue section near the skeleton boundary line of a pig decellularized skeleton and a pig liver. (C) Hepatocytes (albumin (ALB) positive cells, green) engrafted in a porcine decellularized skeleton. (D) It is a figure which shows the bile duct epithelial cell (CK19 positive, green) reconstructed to the porcine decellularization frame | skeleton. (E) It is a figure which shows the blood-vessel structure (CD31 positive, green) reconstructed to the porcine decellularization frame | skeleton. 図7は、移植したブタ肝臓脱細胞化骨格の組織学的解析結果(移植28日後)を示す図である。(A)ブタ脱細胞化骨格とブタ肝臓の骨格境界線付近のCK19陽性細胞(緑)を示す蛍光顕微鏡観察像である。バーは1000μmを示す。(B、C)(A)のブタ脱細胞化骨格内の一部を拡大したCK19陽性細胞(緑)を示す蛍光顕微鏡観察像である。バーは200μmを示す。(D)ブタ脱細胞化骨格の末梢における血管内皮細胞マーカー陽性細胞(CD31陽性細胞、緑)を示す蛍光顕微鏡観察像である。青(DAPI)は核の位置を示す。(E)ブタ脱細胞化骨格とブタ肝臓の骨格境界線付近における組織切片のHE染色観察像を示す。点線は逢着境界線を示す。(F)脱細胞化骨格を逢着しない対照群としてのブタ肝臓の切除後断端のCK19陽性細胞(緑)を示す蛍光顕微鏡観察像である。FIG. 7 shows the histological analysis results (28 days after transplantation) of the transplanted porcine liver decellularized skeleton. (A) It is a fluorescence-microscope observation image which shows the CK19 positive cell (green) of the porcine decellularization frame | skeleton and the skeleton boundary line vicinity of a pig liver. The bar indicates 1000 μm. (B, C) It is a fluorescence-microscope observation image which shows the CK19 positive cell (green) which expanded a part in the porcine decellularization frame | skeleton of (A). The bar represents 200 μm. (D) It is a fluorescence-microscope observation image which shows the vascular endothelial cell marker positive cell (CD31 positive cell, green) in the periphery of a porcine decellularization frame | skeleton. Blue (DAPI) indicates the position of the nucleus. (E) HE staining observation image of a tissue section in the vicinity of the skeleton boundary line between porcine decellularized skeleton and pig liver. A dotted line indicates a bounding boundary line. (F) It is a fluorescence-microscope observation image which shows the CK19 positive cell (green) of the post-resected stump of the pig liver as a control group which does not adhere to a decellularized skeleton. 図8は、逢着したブタ脱細胞化骨格とブタ肝臓との境界線付近のHE染色観察像(移植28日後)を示す図である。黒矢印は胆管・血管を含む脈管構造を示す。白矢印は骨格内部深くまで伸展した胆管・血管を含む脈管構造を示す。FIG. 8 is a view showing an HE staining observation image (28 days after transplantation) in the vicinity of the boundary line between the porcine decellularized skeleton and the porcine liver. Black arrows indicate vasculature including bile ducts and blood vessels. A white arrow indicates a vascular structure including bile ducts and blood vessels extending deep inside the skeleton. 図9は、ラット肝臓脱細胞化システム及び脱細胞化したラット肝組織を示す図である。(A)本発明の脱細胞化骨格を含む足場素材を作製するための脱細胞化システム(ラット用)を示す図である。(B)本発明の脱細胞化骨格を含む移植材を作製するための脱細胞化システム(ラット用)の一部を示す図である。(C)10μmの蛍光ビーズを注入し血管網が保たれていることを示した図である。(D)ラットから採取したヘパリン化血液を注入し、血管網が保たれており、漏出がないことを示した図である。(E)電子顕微鏡解析によってコラーゲン線維が保たれていることを示した図である。FIG. 9 is a diagram showing a rat liver decellularization system and a decellularized rat liver tissue. (A) It is a figure which shows the decellularization system (for rat) for producing the scaffold raw material containing the decellularization frame | skeleton of this invention. (B) It is a figure which shows a part of decellularization system (for rats) for producing the transplant material containing the decellularization frame | skeleton of this invention. (C) It is the figure which injected the 10 micrometer fluorescent bead and showed that the vascular network was maintained. (D) Heparinized blood collected from rats was injected to show that the vascular network was maintained and there was no leakage. (E) It is the figure which showed that the collagen fiber was maintained by the electron microscope analysis. 図10は、架橋処理後のブタ肝臓脱細胞化骨格を示す図である。FIG. 10 is a diagram showing a porcine liver decellularized skeleton after the crosslinking treatment. 図11は、架橋処理後のブタ肝臓脱細胞化骨格をブタ肝臓に逢着後、10日目のブタ肝臓脱細胞化骨格及びブタ肝臓の境界部を示す図である。右)ブタ肝臓脱細胞化骨格が逢着されたブタ肝臓全体の切片をHE染色した図を示す。左)逢着したブタ肝臓脱細胞化骨格の一部を拡大(左図の一部の拡大)した図である。点線:肝実質細胞、矢印:胆管、矢頭:血管を示す。FIG. 11 is a diagram showing the boundary between the porcine liver decellularized skeleton and the pig liver on the 10th day after the pig liver decellularized skeleton after crosslinking treatment is attached to the pig liver. Right) The figure which HE-stained the section | slice of the whole pig liver in which the pig liver decellularization skeleton was attached is shown. (Left) An enlarged view of a part of the porcine liver decellularized skeleton (enlarged part of the left figure). Dotted line: hepatocytes, arrow: bile duct, arrowhead: blood vessel. 図12は、コラーゲンゲルを注入後のラット肝臓脱細胞化骨格を示す。(A)タイプIコラーゲンゲルを注入後のラット肝臓脱細胞化骨格を示す。(B)(A)で得られたラット肝臓脱細胞化骨格を逢着した21日後のブタ肝臓を示す図である。点線内が逢着したラット肝臓脱細胞化骨格部分である。FIG. 12 shows the rat liver decellularized skeleton after injection of collagen gel. (A) Rat liver decellularized skeleton after injection of type I collagen gel. (B) It is a figure which shows the pig liver 21 days after attaching the rat liver decellularization frame | skeleton obtained by (A). The rat liver decellularized skeletal part attached within the dotted line.
 本明細書で使用される用語は、本発明の具体的な実施形態を説明することを目的としており、本発明を限定することを意図していない。特段の定義がない限り、本明細書で使用される全ての技術的及び科学的な用語は、本発明が属する分野の当業者によって共通して理解されるものと同様の意味を有する。 The terminology used herein is for the purpose of describing specific embodiments of the present invention and is not intended to limit the present invention. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs.
 また、本明細書の前に、又は後に参照される全ての文献、特許出願に記載された内容は、それらの全体が参照により本明細書に組み込まれる。 In addition, the contents described in all documents and patent applications that are referred to before or after this specification are incorporated herein by reference in their entirety.
 用語「臓器」とは、一般に、臓器を構成する細胞、細胞外マトリックスによる骨格、各細胞に酸素や栄養分を供給する血管系(動脈、静脈、毛細血管)を含む生体器官であり、その表面は被膜に被われている。臓器は、例えば、心臓、肝臓、肺、腎臓、膵臓、脾臓、脳、子宮、膀胱、脳等が挙げられる。臓器は被膜で被われているため、実質的にその被膜及び内部の血管系に損傷を有さない臓器であれば、血管系から導入された液体(例えば、血液)は、基本的には出口となる血管系以外からは排出されない。つまり、臓器は、血液を導入する動脈が臓器内部で枝分かれして微細な毛細血管構造を形成し、またその毛細血管構造が再び合流して静脈を形成する連続的な構造を備えており、基本的には特定の出入口以外からは液体が漏出しない。 The term “organ” generally refers to a living organ including cells that make up an organ, a skeleton based on an extracellular matrix, and a vascular system (arteries, veins, capillaries) that supply oxygen and nutrients to each cell. It is covered with a film. Examples of the organ include heart, liver, lung, kidney, pancreas, spleen, brain, uterus, bladder, brain and the like. Since the organ is covered with a coating, the fluid (for example, blood) introduced from the vascular system is basically an outlet if the organ has substantially no damage to the coating and the internal vascular system. It is not excreted from other than the vascular system. In other words, the organ has a continuous structure in which arteries that introduce blood branch off inside the organ to form fine capillary structures, and the capillary structures join again to form veins. Actually, liquid does not leak from other than a specific entrance.
 本明細書における用語「被膜」とは、臓器の表面を被覆する膜を意味する。一般に、臓器の表面は、漿膜と呼ばれる単層の扁平上皮(中皮細胞)で被われている。漿膜の下層には結合組織を有し、漿膜と結合組織を含めて腹膜とも呼ばれる。本明細書において、「被膜」とは、漿膜、結合組織、又は腹膜を含む最も広い意味として解釈される。 In this specification, the term “film” means a film covering the surface of an organ. In general, the surface of an organ is covered with a single layer of squamous epithelium (mesothelial cells) called serosa. The lower layer of the serosa has connective tissue, and the serosa and connective tissue are also called the peritoneum. As used herein, “capsule” is taken as the broadest meaning including serosa, connective tissue, or peritoneum.
 用語「細胞外マトリックス」及び「ECM」は、本明細書において互換的に使用され、哺乳動物組織の細胞間に存在するコラーゲン等を豊富に含む物質、及びその由来物質に任意の処理が施された材料も含んでいる。「細胞外マトリックス」及び「ECM」は、細胞外基質、細胞間マトリックスとも呼ばれる。細胞外マトリックスを構成する成分としては、例えば、コラーゲン、プロテオグリカン、フィブロネクチン、カドヘリン、ラミニン、テネイシン、エンクチン、エラスチン等によって構成され、組織・臓器により、その構成が異なる。細胞外マトリックスは、主に結合組織を構成する細胞から産生されるが、一部は上皮細胞や内皮細胞のような基底膜を保有する細胞からも分泌される。多細胞生物において、細胞外の空間の充填、形体を維持する骨格的、細胞が接着するための足場(スキャフォールド)及び細胞の分化誘導の促進等、多様な役割を果たしている。細胞外マトリックスの存在によって、細胞は三次元的に配置されることとなり、臓器や組織の複雑な形態を形成することに寄与している。 The terms “extracellular matrix” and “ECM” are used interchangeably in the present specification, and a substance rich in collagen and the like existing between cells of a mammalian tissue, and a substance derived therefrom are subjected to any treatment. Also includes other materials. “Extracellular matrix” and “ECM” are also called extracellular matrix, intercellular matrix. The component constituting the extracellular matrix is composed of, for example, collagen, proteoglycan, fibronectin, cadherin, laminin, tenascin, enctin, elastin and the like, and the composition varies depending on the tissue / organ. The extracellular matrix is mainly produced from cells that constitute the connective tissue, but a part thereof is also secreted from cells having a basement membrane such as epithelial cells and endothelial cells. In multicellular organisms, it plays various roles such as filling of extracellular space, skeletal structure to maintain the shape, scaffold for cell adhesion (scaffold) and promotion of cell differentiation induction. Due to the presence of the extracellular matrix, cells are arranged three-dimensionally, contributing to the formation of complex forms of organs and tissues.
 用語「脱細胞化」とは、本明細書において、臓器又は組織等の生体の一部から、細胞外マトリックスを主要構成成分として構成された構造(骨格)は維持しつつ、そこに接着していた細胞を所望の方法によって取り除くことをいう。脱細胞化された生体由来の臓器又は組織は、主に細胞外マトリックスによって構成される骨格となるが、構成されるタンパク質は、細胞外マトリックス関連タンパク質に限定されない。脱細胞化された生体由来の臓器又は組織を電子顕微鏡で観察した場合、細胞外マトリックスを主要構成成分とする空隙を有する網目構造の骨格として観察される。脱細胞化の方法は、臓器・組織に応じて適宜変更することが可能である。 In this specification, the term “decellularization” means that a structure (skeleton) composed of an extracellular matrix as a main constituent component is maintained from a part of a living body such as an organ or a tissue, and is adhered thereto. That the removed cells are removed by a desired method. A decellularized living organism-derived organ or tissue becomes a skeleton mainly constituted by an extracellular matrix, but the constituted protein is not limited to an extracellular matrix-related protein. When a decellularized living body-derived organ or tissue is observed with an electron microscope, it is observed as a skeleton having a network structure having voids whose main component is an extracellular matrix. The method of decellularization can be appropriately changed depending on the organ / tissue.
 用語「脱細胞化骨格」とは、本明細書において、生体由来の臓器若しくは組織又はその一部から、脱細胞化処理によって細胞が除かれた後に残存する、主に細胞外マトリックスを有する三次元構造の骨格を意味する。本発明において、脱細胞化骨格は、外見上は脱細胞化処理前の臓器若しくは組織又はその一部と同様の形態を維持している。特に、脱細胞化骨格が生体の臓器由来である場合、その表面の少なくとも一部は被膜を有している。本発明における移植材に含まれる脱細胞化骨格は、脱細胞化骨格脱細胞化処理前の臓器若しくは組織又はその一部がその内部に有していた動脈-毛細血管網-静脈と連続した血管構造の骨格をも実質的に維持している。これにより、生体内に移植した時に、速やかに血管構造が再構築され、血液の再灌流が促進される。また、本発明の移植材に含まれる脱細胞化骨格が肝臓由来である場合、実質的に胆管が形成していた三次元骨格を維持している。これにより、生体内に移植した時に、速やかに胆管構造が再構築され、早期の血管内皮細胞・胆管上皮細胞等の遊走/生着を促し、脈管構造が先行的に再生されるという他に類を見ない特徴を有する。さらにまた、本発明の移植材に含まれる脱細胞化骨格は、臓器・組織を構成する細胞の生着、増殖、分化を促進する特異的な細胞外マトリックスを維持しており、当該臓器・組織を構成する細胞による臓器・組織の再構築を促進する。 The term “decellularized scaffold” as used herein refers to a three-dimensional structure mainly having an extracellular matrix that remains after a cell is removed from a living organ or tissue or a part thereof by a decellularization treatment. Means the skeleton of the structure. In the present invention, the decellularized skeleton apparently maintains the same form as the organ or tissue before decellularization treatment or a part thereof. In particular, when the decellularized skeleton is derived from a living organ, at least a part of its surface has a coating. The decellularized skeleton contained in the transplant material of the present invention is a blood vessel that is continuous with an artery, a capillary network, and a vein held in an organ or tissue before decellularization skeleton decellularization or a part thereof. The structure skeleton is also substantially maintained. Thereby, when transplanted in the living body, the blood vessel structure is quickly reconstructed, and blood reperfusion is promoted. In addition, when the decellularized skeleton contained in the transplant material of the present invention is derived from the liver, the three-dimensional skeleton substantially formed by the bile duct is maintained. As a result, when transplanted into a living body, the bile duct structure is quickly reconstructed, promotes early migration / engraftment of vascular endothelial cells, bile duct epithelial cells, etc., and the vascular structure is regenerated in advance. It has unique characteristics. Furthermore, the decellularized skeleton contained in the transplant material of the present invention maintains a specific extracellular matrix that promotes the engraftment, proliferation, and differentiation of cells constituting the organ / tissue. Promotes the reconstruction of organs and tissues by the cells that make up
 本発明において、「移植材」とは、生体由来の臓器若しくは組織又はその一部を脱細胞化して得られた脱細胞化骨格を含むものであって、任意に、追加的に、細胞の生着、増殖又は分化を促進するタンパク質、薬剤等を添加、結合等を行う処理が行われていてもよい。また、本発明に斯かる移植材は、予め所望の細胞を播種して培養することによって生着(再細胞化)させた移植材であってもよい。細胞種や細胞数は、移植の目的となる臓器・組織によって適宜選択すればよい。また、使用する細胞は、治療する目的となる臓器・組織を構成するものであればよく、市販の細胞や生体から採取された細胞であってもよい。生体から細胞を採取する方法は公知の方法に従えばよく限定されない。また、多能性幹細胞から分化誘導して得られた細胞であってもよい。本明細書において、多能性幹細胞とは、自己複製能と多分化能を有する細胞であり、体を構成するあらゆる細胞を形成する能力(pluriopotent)を備える細胞をいう。自己複製能とは、1つの細胞から自分と同じ未分化な細胞を2つ作る能力のことをいう。本発明で用いられる多能性幹細胞には、胚性幹細胞(embryonic stem cell:ES細胞)、胚性癌腫細胞(embryonal carcinoma cell:EC細胞)、栄養芽幹細胞(trophoblast stem cell:TS細胞)、エビブラスト幹細胞(epiblast stem cell:EpiS細胞)、胚性生殖細胞(embryonic germ cell:EG細胞)、多能性生殖細胞(multipotent germline stem cell:mGS細胞)、人工多能性幹細胞(induced pluripotent stem cell:iPS細胞)、Muse細胞(参照:国際公開WO2011/007900)などが含まれる。任意の体細胞へ分化誘導する方法については、公知の方法に従えばよく特に限定されない。本発明の移植材に細胞を播種する方法としては、例えば、Yagi H.らの方法(Yagi H.,et al.,Human-scale whole-organ bioengineering for liver transplantation:a regenerative medicine approach.Cell Transplant.2013;22(2):231-242.)を採用することができるが、これに限定されない。 In the present invention, the “transplant” includes a decellularized skeleton obtained by decellularization of an organ or tissue derived from a living body or a part thereof, and optionally additionally, cell survival. Processing for adding, binding, etc., a protein, a drug or the like that promotes adhesion, growth or differentiation may be performed. Further, the transplant material according to the present invention may be a transplant material that has been engrafted (recellularized) by previously seeding and culturing desired cells. The cell type and the number of cells may be appropriately selected depending on the organ / tissue to be transplanted. Moreover, the cell to be used may be any cell as long as it constitutes an organ / tissue to be treated, and may be a commercially available cell or a cell collected from a living body. The method for collecting cells from a living body is not particularly limited as long as a known method is followed. Further, it may be a cell obtained by inducing differentiation from a pluripotent stem cell. In this specification, a pluripotent stem cell is a cell which has a self-replication ability and a pluripotency, and a cell provided with the ability (pluripotent) to form all the cells which comprise a body. Self-replicating ability refers to the ability to make two undifferentiated cells from one cell. The pluripotent stem cells used in the present invention include embryonic stem cells (embryonic stem cells: ES cells), embryonic carcinoma cells (embryonal carcinoma cells: EC cells), trophoblast stem cells (TS cells), shrimp. Blast stem cell (epiblast stem cell: EpiS cell), embryonic germ cell (embryonic germ cell: EG cell), pluripotent germline stem cell (mGS cell), artificial pluripotent stem cell (induced plumped stem cell) iPS cells), Muse cells (see: International Publication WO2011 / 007900) and the like. The method for inducing differentiation into an arbitrary somatic cell is not particularly limited as long as it is a known method. As a method of seeding cells on the transplant material of the present invention, for example, Yagi H. et al. Et al. (Yagi H., et al., Human-scale whol-organ bioengineering for live translation: a regenerative medicine app. Cell Transplant. However, the present invention is not limited to this.
 本発明の移植材の材料となる臓器若しくは組織又はその一部の動物種の由来は、例えば、ヒト、ラット、マウス、モルモット、マーモセット、ウサギ、イヌ、ネコ、ヒツジ、ブタ、ウマ、ウシ、ヤギ、サル、チンパンジー又はその免疫不全動物などの哺乳動物が挙げられる。採取される臓器若しくは組織又はその一部は、生きた個体より採取されてもよく、死体より採取されるものであってもよい。本発明の移植材が適用される動物種がヒトであった場合であっても、脱細胞化処理によって免疫原性が非常に低く、拒絶反応をほとんど起こさないことから、非ヒト哺乳動物由来の臓器若しくは組織又はその一部を使用してもよい。 The origin of the organ or tissue or part of the animal species used as the material for the transplant of the present invention is, for example, human, rat, mouse, guinea pig, marmoset, rabbit, dog, cat, sheep, pig, horse, cow, goat Mammals such as monkeys, chimpanzees or immunodeficient animals thereof. The organ or tissue collected or a part thereof may be collected from a living individual or may be collected from a dead body. Even when the animal species to which the transplant of the present invention is applied is human, it is very low in immunogenicity due to the decellularization treatment and hardly causes rejection. An organ or tissue or part thereof may be used.
 臓器若しくは組織又はその一部を脱細胞化する方法については、材料となる臓器若しくは組織又はその動物種に応じて、公知の方法又はそれを一部改変した方法を実施することができる。脱細胞化する方法としては、(1)機械的刺激による細胞膜破壊:高圧、凍結、エレクトロポレーション、浸透圧変化と、(2)薬剤等の細胞破壊媒体による洗浄・細胞破壊:界面活性剤・酸/アルカリ・酵素・アルコール、の2つに大別され、これらを組み合わせて用いることも可能である。これらの方法により、細胞を破壊し、免疫原性がある細胞断片は除去し、細胞外マトリックス及びその他の細胞の生着、増殖、遊走又は分化を促進する物質は残存させることが可能となる。 As for the method of decellularizing an organ or tissue or a part thereof, a known method or a method obtained by partially modifying it can be carried out according to the organ or tissue as a material or the animal species thereof. Methods for decellularization include (1) cell membrane destruction by mechanical stimulation: high pressure, freezing, electroporation, osmotic pressure change, and (2) washing / cell destruction with cell destruction media such as drugs: surfactants, Acid / alkali, enzyme, and alcohol are roughly classified into two types, and these can be used in combination. These methods can destroy cells, remove immunogenic cell fragments, and leave extracellular matrix and other substances that promote engraftment, proliferation, migration or differentiation of cells.
 本発明の、肝切除を受けた肝臓の組織再構築用移植材の製造方法としては、例えば、以下の工程が含まれる。
  (a) 哺乳動物の肝臓を凍結する工程、
  (b) 凍結された該肝臓を解凍する工程、
  (c) 解凍された該肝臓に界面活性剤を含む細胞破壊媒体を灌流して細胞を破壊する工程、
  (d) 細胞が破壊された該肝臓を洗浄する工程。
Examples of the method for producing a transplant material for reconstructing liver tissue that has undergone liver resection according to the present invention include the following steps.
(A) freezing the liver of the mammal;
(B) thawing the frozen liver;
(C) perfusing a cell destruction medium containing a surfactant into the thawed liver to destroy the cells;
(D) A step of washing the liver in which cells are destroyed.
 機械的刺激により細胞膜を破壊する方法としては、凍結及び解凍する方法が挙げられる。凍結及び解凍することにより、細胞内に含まれる水分が膨張し、細胞膜を破壊することが可能となる。凍結する温度は、例えば、-10℃以下、-20℃以下、-30℃以下、-40℃以下、-50℃以下、-60℃以下、-70℃以下、-80℃以下、-90℃以下、-100℃以下、又はそれ以下の温度において実施することができる。また、凍結する温度は、例えば、-150℃~-10℃、-130℃~-15℃、-100℃~-20℃の範囲で行うことが可能である。温度が低い方が、短時間で凍結可能であり、また、細胞膜の破壊効果が高く好ましい。解凍する温度は、例えば、37℃であってもよく、室温であってもよく、常温であってもよく、4℃であってもよい。また、解凍する温度は、例えば、4℃~50℃、4℃~45℃、4℃~40℃であってもよい。細胞外マトリックスを可能な限り保持しながら、細胞を破壊可能な温度として、凍結は-80℃、解凍は室温に設定するのが好ましい。 Examples of the method of destroying the cell membrane by mechanical stimulation include freezing and thawing methods. By freezing and thawing, the moisture contained in the cells expands and the cell membrane can be destroyed. The freezing temperature is, for example, −10 ° C. or lower, −20 ° C. or lower, −30 ° C. or lower, −40 ° C. or lower, −50 ° C. or lower, −60 ° C. or lower, −70 ° C. or lower, −80 ° C. or lower, or −90 ° C. Hereinafter, it can be carried out at a temperature of −100 ° C. or lower or lower. The freezing temperature can be in the range of −150 ° C. to −10 ° C., −130 ° C. to −15 ° C., −100 ° C. to −20 ° C., for example. A lower temperature is preferable because it can be frozen in a short time and has a high cell membrane destruction effect. The thawing temperature may be, for example, 37 ° C., room temperature, room temperature, or 4 ° C. The thawing temperature may be, for example, 4 ° C. to 50 ° C., 4 ° C. to 45 ° C., 4 ° C. to 40 ° C. It is preferable to set -80 ° C. for freezing and room temperature for thawing as temperatures at which cells can be destroyed while maintaining the extracellular matrix as much as possible.
 細胞破壊媒体に含まれる界面活性剤は、その分子内に疎水基及び親水基を有する両親媒性の分子をいう。界面活性剤により、細胞膜や核膜を構成する脂質二重膜を破壊する。細胞破壊媒体に含まれる界面活性剤としては、イオン性界面活性剤、非イオン界面活性剤、双性イオン性界面活性剤が挙げられる。細胞破壊媒体に用いられるイオン性界面活性剤としては、例えば、硫酸ドデシルナトリウム(SDS)、デオキシコール酸塩、コール酸塩、サルコシル、トリトンX-200、又はその組み合わせが挙げられる。細胞破壊媒体に用いられる非イオン性界面活性剤としては、例えば、トリトンX-100、n-ドデシル-β-D-マルトシド(DDM)、ジギトニン、ツイン20(Tween20)、ツイン80(Tween80)、又はその組み合わせが挙げられる。細胞破壊媒体に用いられる双性イオン性界面活性剤としては、例えば、3-[;(3-コールアミドプロピル)ジメチルアンモニオ];-1-プロパンスルホン酸(CHAPS)が挙げられる。これらの界面活性剤は、脱細胞化する臓器・組織に応じ、適宜選択することができる。肝臓、特にブタ肝臓の脱細胞化を例に挙げると、イオン性界面活性剤、特にSDSを用いて脱細胞化することにより、肝組織を再構築可能な移植材を得ることが可能となる。また、さらに、非イオン性界面活性剤、特にトリトンX-100を用いることにより、肝組織を再構築可能な移植材を得ることが可能となる。また、さらに、双性イオン性界面活性剤、特にCHAPSを用いることで、より細胞の生着に優れる肝組織を再構築可能な移植材を得ることが可能となる。細胞破壊媒体に含まれる溶媒としては、水、生理食塩水、緩衝液(例えば、PBS)、アルコール類、酢酸、リン酸トリブチル(TBP)等を用いることができる。また、細胞破壊媒体には、さらに、ヌクレアーゼ、トリプシン及び/又はディスパーセを含んでもよい。また、さらに、細胞が細胞外骨格へ接着することを防止するために、キレート材(EDTA、EGTA)を含んでもよい。 The surfactant contained in the cell disruption medium refers to an amphiphilic molecule having a hydrophobic group and a hydrophilic group in the molecule. Surfactant destroys the lipid bilayer that forms the cell membrane and nuclear membrane. Examples of the surfactant contained in the cell disruption medium include ionic surfactants, nonionic surfactants, and zwitterionic surfactants. Examples of the ionic surfactant used in the cell disruption medium include sodium dodecyl sulfate (SDS), deoxycholate, cholate, sarkosyl, Triton X-200, or a combination thereof. Nonionic surfactants used for cell disruption media include, for example, Triton X-100, n-dodecyl-β-D-maltoside (DDM), digitonin, twin 20 (Tween 20), twin 80 (Tween 80), or The combination is mentioned. Examples of the zwitterionic surfactant used in the cell disruption medium include 3-[; (3-cholamidopropyl) dimethylammonio];-1-propanesulfonic acid (CHAPS). These surfactants can be appropriately selected according to the organ / tissue to be decellularized. Taking the decellularization of the liver, particularly pig liver, as an example, it becomes possible to obtain a transplant that can reconstruct liver tissue by decellularization using an ionic surfactant, particularly SDS. Furthermore, by using a nonionic surfactant, particularly Triton X-100, it is possible to obtain a transplant that can reconstruct liver tissue. Furthermore, by using a zwitterionic surfactant, particularly CHAPS, it becomes possible to obtain a transplant that can reconstruct liver tissue with better cell engraftment. As the solvent contained in the cell disruption medium, water, physiological saline, buffer solution (for example, PBS), alcohols, acetic acid, tributyl phosphate (TBP), or the like can be used. The cell disruption medium may further contain nuclease, trypsin and / or dispase. Furthermore, a chelating material (EDTA, EGTA) may be included in order to prevent cells from adhering to the extracellular skeleton.
 細胞破壊媒体による細胞を破壊する時間は、脱細胞化する臓器若しくは組織又はその動物種に応じて、適宜調節すればよい。 The time for cell destruction by the cell disruption medium may be appropriately adjusted according to the organ or tissue to be decellularized or the animal species.
 細胞破壊媒体を洗浄するための洗浄液としては、例えば、水、生理食塩水、緩衝液(例えば、PBS)を用いることが可能である。洗浄時間、洗浄回数は、上述の細胞破壊媒体が残存しない程度に行えばよい。 For example, water, physiological saline, or a buffer solution (for example, PBS) can be used as a cleaning solution for cleaning the cell disruption medium. What is necessary is just to perform washing | cleaning time and the frequency | count of washing | cleaning to such an extent that the above-mentioned cell destruction medium does not remain | survive.
 臓器若しくは組織又はその一部を脱細胞化する際に、上述の細胞破壊媒体を灌流する方法については公知の方法又はその一部改変した方法で行うことができる。例えば、臓器の動脈及び静脈にカニューレ(カテーテル)を挿入し、灌流装置によって継続的に細胞破壊媒体及び/又は洗浄液を灌流することができる。臓器又は組織の種類によっては、動脈又は静脈以外の管、例えば、肝臓の場合は門脈又は肝静脈より細胞破壊媒体及び/又は洗浄液を灌流してもよい。また、細胞破壊媒体及び/又は洗浄液を流入/排出することが可能な複数の動脈、静脈又は管を有する場合は、その一部を結紮して、細胞破壊媒体及び/又は洗浄液の流入口/排出口を制限してもよい。これにより、特に臓器の脱細胞化処理を行う場合、臓器内に効率的に細胞破壊媒体が滞留し、効率的に脱細胞化処理することができる。灌流速度は、脱細胞化骨格内の血管等の構造が破壊されない程度に調節するのがよく、臓器若しくは組織又はその動物種、あるいは脱細胞化の進行の程度に応じて適宜調節すればよい。灌流手段としては、例えば、ペリスタポンプ、遠心ポンプ、シリンジポンプ等の任意のポンプを用いることができる。 When deorganizing an organ or tissue or a part thereof, the above-described method for perfusing the cell disruption medium can be performed by a known method or a partially modified method. For example, cannulas (catheters) can be inserted into arteries and veins of organs, and the cell disruption medium and / or lavage fluid can be continuously perfused with a perfusion device. Depending on the type of organ or tissue, the cell destruction medium and / or the washing solution may be perfused from a tube other than an artery or vein, for example, in the case of the liver, from the portal vein or hepatic vein. In addition, in the case of having a plurality of arteries, veins, or tubes capable of flowing in / out the cell destruction medium and / or the washing solution, a part of them is ligated so that the inlet / drainage of the cell destruction medium and / or the washing solution is obtained. The exit may be restricted. Thereby, especially when performing decellularization processing of an organ, a cell destruction medium retains efficiently in an organ, and decellularization processing can be performed efficiently. The perfusion rate may be adjusted to such an extent that structures such as blood vessels in the decellularized skeleton are not destroyed, and may be appropriately adjusted according to the organ or tissue or animal species thereof or the degree of progression of decellularization. As a perfusion means, arbitrary pumps, such as a peristaltic pump, a centrifugal pump, a syringe pump, can be used, for example.
 本発明の移植材は、さらに、タンパク質架橋処理されたものであることが好ましい。タンパク質架橋とは、化学的共有結合によって、2以上の分子を連結することをいうが、本明細書においては、同一タンパク質内の異なるアミノ酸分子同士、例えば、同一タンパク質内のシステイン残基間にジスルフィド結合(スルフヒドリル基)等を構築させる反応も含まれる。本発明の移植材は、タンパク質架橋処理が行われることにより、物理的強度が増し、その骨格形態がより安定する。それにより、生体内に移植した後であっても、腹腔内で潰されることなく、長期間、肝臓を再生する空間(足場)を提供可能となる、その結果、良好な肝臓再生が実現される。 The transplant material of the present invention is preferably further subjected to protein crosslinking treatment. Protein cross-linking refers to linking two or more molecules by chemical covalent bonds. In this specification, different amino acid molecules in the same protein, for example, disulfide between cysteine residues in the same protein. A reaction for constructing a bond (sulfhydryl group) and the like is also included. The graft material of the present invention is subjected to protein cross-linking treatment, whereby the physical strength is increased and the skeletal form is more stable. This makes it possible to provide a space (scaffold) for regenerating the liver for a long time without being crushed in the abdominal cavity even after transplantation into a living body, and as a result, good liver regeneration is realized. .
 本発明に用いられるタンパク質架橋剤は、当該技術分野において公知であり、例えば、アミノ基間架橋剤:例えば、DSG(ジスクシンイミジルグルタレート);DSS(ジスクシンイミジルスベレート);BS3(ビス(スルホスクシンイミジル)スベレート);TSAT(トリス-(スクシンイミジル)アミノトリアセテート);BS(PEG)5(PEG化ビス(スルホスクシンイミジル)スベレート);BS(PEG)9;DSP(ジチオビス(スクシンイミジルプロピオネート));DTSSP(3,3’-ジチオビス(スルホスクシンイミジルプロピオネート));DST(酒石酸ジスクシンイミジル);BSOCOES(ビス[2-(スクシンイミドオキシカルボニルオキシ)エチル]スルホン);EGS(エチレングリコールビス(スルホスクシンイミジルスクシネート));スルホ-EGS;DMA(ジメチルアジピミデートヒドロクロリド);DMP(ジメチルピメリミデートヒドロクロリド);DMS(ジメチルスベルイミデートヒドロクロリド)、スルフヒドリル基間架橋剤:例えば、BMOE(ビスマレイミドエタン);BMB(1,4-ビスマレイミドブタン);BMH(ビスマレイミドヘキサン);TMEA(トリス(2-マレイミドエチル)アミン);BM(PEG)2(1,8-ビスマレイミド-ジエチレングリコール);BM(PEG)3;DTME(ジチオビスマレイミドエタン)、アミノ基-スルフヒドリル基間架橋剤:例えば、AMAS(N-α-マレイミドアセト-オキシスクシンイミドエステル);BMPS(N-β-マレイミドプロピル-オキシスクシンイミドエステル);GMBS(N-γ-マレイミドブチリル-オキシスクシンイミドエステル)及びスルホ-GMBS;MBS(m-マレイミドベンゾイル-N-ヒドロキシスクシンイミドエステル)及びスルホ-MBS;SMCC(スクシンイミジル-4-(N-マレイミドメチル)シクロヘキサン-1-カルボキシレート)及びスルホ-SMCC;EMCS(N-ε-マレイミドカプロイル-オキシスルホスクシンイミドエステル)及びスルホ-EMCS;SMPB(スクシンイミジル-4-(p-マレイミドフェニル)ブチレート)及びスルホ-SMPB;SMPH(スクシンイミジル-6-(β-マレイミドプロピオンアミド)ヘキサノエート);LC-SMCC(スクシンイミジル-4-(N-マレイミドメチル)-シクロヘキサン-1-カルボキシ(6-アミドカプロエート));スルホ-KMUS(N-κ-マレイミドウンデカノイル-オキシスルホスクシンイミドエステル);SPDP(スクシンイミジル-3-(2-ピリジルジチオ)プロピオネート);LC-SPDP(スルホスクシンイミジル-6-[3(2-ピリジルジチオ)プロピオンアミド]ヘキサノエート)及びスルホLC-SPDP;SMPT(4-スクシンイミジルオキシカルボニル-α-メチル-α(2-ピリジルジチオ)トルエン);SIA(スクシンイミジルヨードアセテート);SBAP(スクシンイミジル3-(ブロモアセトアミド)プロプロピオネート);SIAB(スクシンイミジル(4-ヨードアセチル)アミノベンゾエート)及びスルホ-SIAB、カルボキシル基-アミノ基間架橋剤:例えば、DCC(N,N’-ジシクロヘキシルカルボジイミド);EDC(1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミドハイドロクロライド)(別名:水溶性カルボジイミド(WSC);NHS(N-ヒドロキシスクシンイミド)及びスルホNHS、スルフヒドリル基-糖鎖間架橋剤;例えば、BMPH(N-β-マレイミドプロピオン酸ヒドラジド);EMCH(N-ε-マレイミドカプロン酸ヒドラジド);MPBH(4-(4-N-マレイミドフェニル)酪酸ヒドラジド);KMUH(N-(κ-マレイミドウンデカン酸)ヒドラジド);PDPH(3-(2-ピリジルジチオ)プロピオニルヒドラジド)、光反応性架橋剤:例えば、ANB-NOS(N-5-アジド-ニトロベンゾイルオキシスクシンイミド);スルホ-SANPAH(スルホスクシンイミジル6-(4’-アジド-2’-ニトロフェニルアミノ)ヘキサノエート);SDA(スクシンイミジル4,4’-アジペンタノエート)及びスルホ-SDA;LC-SDA(スクシンイミジル6-(4,4’-アジペンタノアミド)ヘキサノエート)及びスルホ-LC-SDA;SDAD(スクシンイミジル2-[(4,4’-アジペンタンアミド)エチル]-1,3’-ジチオプロピオネート)及びスルホ-SDAD、を用いることができる。また、タンパク質架橋剤として、アルデヒド系架橋剤:例えば、ホルムアルデヒド、パラホルムアルデヒド、グルタルアルデヒドなど;多官能エポキシド類:例えば、ポリエチレングリコールジクリシジルエーテルを用いてもよい。本発明の一実施態様において、タンパク質架橋剤は、上述のタンパク質架橋剤を単独で用いても良く、2種類以上のタンパク質架橋剤の組合せを用いても良い。本明細書において、2種類以上のタンパク質架橋剤の「組合せ」を用いるとは、2種類以上のタンパク質架橋剤を同時に用いる場合及び別々に用いる場合の両者を含む意味で使用される。例えば、2種類以上のタンパク質架橋剤が同一の溶媒に溶解された混合溶液を用いて処理するものであってもよく、別々のタンパク質架橋剤を含む別々の溶液を用いて、複数回移植材を処理するものであってもよく、別々のタンパク質架橋剤を含む別々の溶液を用いて、同時に処理するものであってもよい。これらの使用態様は、使用するタンパク質架橋剤の種類によって適宜変更される。本発明の他の実施態様において、2種類以上のタンパク質架橋剤が別々に用いられる場合、使用するタンパク質架橋剤の順番は特に限定されない。 The protein cross-linking agent used in the present invention is known in the art, and includes, for example, an inter-amino group cross-linking agent: for example, DSG (disuccinimidyl glutarate); DSS (disuccinimidyl suberate); BS3 ( Bis (sulfosuccinimidyl) suberate); TSAT (tris- (succinimidyl) aminotriacetate); BS (PEG) 5 (PEGylated bis (sulfosuccinimidyl) suberate); BS (PEG) 9; DSP (dithiobis) (Succinimidyl propionate)); DTSSP (3,3′-dithiobis (sulfosuccinimidyl propionate)); DST (disuccinimidyl tartrate); BSOCOES (bis [2- (succinimidooxycarbonyl) Oxy) ethyl] sulfone); EGS (ethylene glycol) Bis (sulfosuccinimidyl succinate)); sulfo-EGS; DMA (dimethyl adipimidate hydrochloride); DMP (dimethylpimelimidate hydrochloride); DMS (dimethyl suberimidate hydrochloride), sulfhydryl group Intercrosslinking agents: for example, BMOE (bismaleimide ethane); BMB (1,4-bismaleimide butane); BMH (bismaleimide hexane); TMEA (tris (2-maleimidoethyl) amine); BM (PEG) 2 (1 , 8-bismaleimide-diethylene glycol); BM (PEG) 3; DTME (dithiobismaleimide ethane), amino group-sulfhydryl group cross-linking agent: for example, AMAS (N-α-maleimidoaceto-oxysuccinimide ester); BMPS ( N-β-maleimide Pill-oxysuccinimide ester); GMBS (N-γ-maleimidobutyryl-oxysuccinimide ester) and sulfo-GMBS; MBS (m-maleimidobenzoyl-N-hydroxysuccinimide ester) and sulfo-MBS; SMCC (succinimidyl-4- (N-maleimidomethyl) cyclohexane-1-carboxylate) and sulfo-SMCC; EMCS (N-ε-maleimidocaproyl-oxysulfosuccinimide ester) and sulfo-EMCS; SMPB (succinimidyl-4- (p-maleimidophenyl) Butyrate) and sulfo-SMPB; SMPH (succinimidyl-6- (β-maleimidopropionamido) hexanoate); LC-SMCC (succinimidyl-4- (N-maleimidometh) ) -Cyclohexane-1-carboxy (6-amidocaproate)); sulfo-KMUS (N-κ-maleimidoundecanoyl-oxysulfosuccinimide ester); SPDP (succinimidyl-3- (2-pyridyldithio) propionate) LC-SPDP (sulfosuccinimidyl-6- [3 (2-pyridyldithio) propionamido] hexanoate) and sulfo LC-SPDP; SMPT (4-succinimidyloxycarbonyl-α-methyl-α (2 -Pyridyldithio) toluene); SIA (succinimidyl iodoacetate); SBAP (succinimidyl 3- (bromoacetamido) propionate); SIAB (succinimidyl (4-iodoacetyl) aminobenzoate) and sulfo-SIAB, carbo Sil group-amino group cross-linking agent: for example, DCC (N, N′-dicyclohexylcarbodiimide); EDC (1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride) (also known as water-soluble carbodiimide (WSC)) NHS (N-hydroxysuccinimide) and sulfo NHS, sulfhydryl group-sugar chain cross-linking agent; for example, BMPH (N-β-maleimidopropionic acid hydrazide); EMCH (N-ε-maleimidocaproic acid hydrazide); MPBH (4 -(4-N-maleimidophenyl) butyric acid hydrazide); KMUH (N- (κ-maleimidoundecanoic acid) hydrazide); PDPH (3- (2-pyridyldithio) propionylhydrazide), photoreactive cross-linking agent: for example, ANB -NOS (N-5-azido-nitrobenzo Sulfo-SANPAH (sulfosuccinimidyl 6- (4′-azido-2′-nitrophenylamino) hexanoate); SDA (succinimidyl 4,4′-adipanoate) and sulfo-SDA; LC-SDA (succinimidyl 6- (4,4′-adipanoamido) hexanoate) and sulfo-LC-SDA; SDAD (succinimidyl 2-[(4,4′-adiptanamido) ethyl) -1,3 ′ -Dithiopropionate) and sulfo-SDAD. Moreover, as a protein crosslinking agent, you may use aldehyde type crosslinking agents: For example, formaldehyde, paraformaldehyde, glutaraldehyde, etc .; Polyfunctional epoxides: For example, polyethyleneglycol diglycidyl ether. In one embodiment of the present invention, as the protein crosslinking agent, the above-mentioned protein crosslinking agent may be used alone, or a combination of two or more protein crosslinking agents may be used. In the present specification, the use of a “combination” of two or more types of protein cross-linking agents is used in the meaning including both cases where two or more types of protein cross-linking agents are used simultaneously and separately. For example, two or more types of protein cross-linking agents may be processed using a mixed solution dissolved in the same solvent, and multiple transplants may be prepared using different solutions containing different protein cross-linking agents. It may be processed, or may be processed simultaneously using different solutions containing different protein cross-linking agents. These usage modes are appropriately changed depending on the type of protein crosslinking agent to be used. In another embodiment of the present invention, when two or more kinds of protein cross-linking agents are used separately, the order of the protein cross-linking agents to be used is not particularly limited.
 本発明の移植材を処理するタンパク質架橋剤は、好ましくは、アルデヒド系架橋剤、カルボキシル基-アミノ基間架橋剤、及びその組合せから選択される。より好ましくは、グルタルアルデヒド、EDC(水溶性カルボジイミド(WSC))及びその組合せから選択される。最も好ましくは、グルタルアルデヒド及びEDC(水溶性カルボジイミド(WSC))の組合せである。 The protein cross-linking agent for treating the graft material of the present invention is preferably selected from aldehyde-based cross-linking agents, carboxyl group-amino group cross-linking agents, and combinations thereof. More preferably, it is selected from glutaraldehyde, EDC (water-soluble carbodiimide (WSC)) and combinations thereof. Most preferred is a combination of glutaraldehyde and EDC (water-soluble carbodiimide (WSC)).
 本発明の移植材を、タンパク質架橋剤で処理した後、そのまま対象に移植してもよく、洗浄処理を行った後に移植してもよい。好ましくは、タンパク質架橋処理後に、移植材を洗浄することが好ましい。本発明の移植材の洗浄に用いられる洗浄液としては、公知の溶液を用いることが可能であり、例えば、リン酸緩衝生理食塩水(PBS)、生理食塩水、トリス緩衝化生理食塩水、HEPES緩衝化生理食塩水、リンゲル液、5%グルコース水溶液、哺乳動物培養用の液体培地、等張剤(ブドウ糖、D-ソルビトール、D-マンニトール、ラクトース、塩化ナトリウム等)等を用いることができる。 The transplant material of the present invention may be transplanted to a subject as it is after being treated with a protein cross-linking agent, or may be transplanted after a washing treatment. Preferably, the graft material is washed after the protein crosslinking treatment. As a washing solution used for washing the transplant of the present invention, a known solution can be used. For example, phosphate buffered saline (PBS), saline, Tris buffered saline, HEPES buffer Physiological saline, Ringer's solution, 5% aqueous glucose solution, liquid medium for mammalian culture, isotonic agents (eg, glucose, D-sorbitol, D-mannitol, lactose, sodium chloride) can be used.
 本発明の移植材はまた、ハイドロゲルがその内部に充填されることにより、その形態を安定して維持することが可能となり、好ましい。ハイドロゲルが充填された本発明の移植材は、生体内に移植した後であっても腹腔内で潰されることなく、長期間肝臓を再生する空間(足場)を提供可能となる。これにより、良好な肝臓再生が実現される。本発明に用いられるハイドロゲルとは、生体を構成する組織、細胞等に毒性を与えることなく、生体に移植可能な材料から構成される。本明細書中で使用される「ハイドロゲル」とは、水を大量に含むことができる物質であって、酸素、水、水溶性の栄養物、酵素やサイトカイン等のポリペプチドなど、細胞生存に必要な物質、老廃物などを容易に拡散移動させることができる材料または形態を有するものである。それは、通常、生体適合性であるものを意味する。本発明に適用されるハイドロゲルの形状もしくは形態としては、懸濁状若しくはコロイド粒子を含有する水溶液が好ましい。流動可能なハイドロゲルであれば、本発明の移植材の内部に充填することが可能となる。本発明に用いることができるハイドロゲルとしては、例えば、ポリアクリルアミド、ポリアクリル酸、ポリヒドロキシエチルメタアクリレート、ポリビニルアルコール、ポリ乳酸、ポリグリコール酸などの水溶性、水親和性、若しくは水吸収性合成高分子、多糖、タンパク質、核酸などを化学架橋したハイドロゲルからなる粒子である。多糖としては、ヒアルロン酸やコンドロイチン硫酸などのグリコサミノグリカン、デンプン、グリコーゲン、アガロース、ペクチン、セルロース等が挙げられるが、これらに限定されない。また、タンパク質としては、コラーゲン及びその加水分解物であるゼラチン、プロテオグリカン、フィブロネクチン、ビトロネクチン、ラミニン、エンタクチン、テネイシン、トロンボスポンジン、フォンビルブランド因子、オステオポンチン、フィブリノーゲン、マトリゲル(登録商標)等が挙げられるが、これらに限定されない。好ましくは、生体適合性で、かつ、生体内で細胞により分解される材料からなるハイドロゲルが本発明には適している。このような性質を有するハイドロゲルであれば、本発明の移植材内部に細胞が、浸潤、増殖、生着する効果を阻害することなく、良好な肝臓再生が実現可能となる。さらに好ましくは、細胞が浸潤、増殖、生着する効果を増強するハイドロゲルであり、例えば、コラーゲン、ゼラチン、プロテオグリカン、フィブロネクチン、ビトロネクチン、ラミニン、エンタクチン、テネイシン、トロンボスポンジン、フォンビルブランド因子、オステオポンチン、フィブリノーゲン、マトリゲル(登録商標)等のタンパク質のハイドロゲルである。 The transplant material of the present invention is also preferable because the form can be stably maintained when the hydrogel is filled therein. The transplant material of the present invention filled with hydrogel can provide a space (scaffold) for regenerating the liver for a long period of time without being crushed in the abdominal cavity even after transplantation into a living body. Thereby, good liver regeneration is realized. The hydrogel used in the present invention is composed of a material that can be transplanted into a living body without causing toxicity to tissues, cells, and the like constituting the living body. As used herein, “hydrogel” is a substance that can contain a large amount of water, and it is useful for cell survival, such as oxygen, water, water-soluble nutrients, polypeptides such as enzymes and cytokines. It has a material or form capable of easily diffusing and transferring necessary substances and wastes. It usually means something that is biocompatible. As the shape or form of the hydrogel applied to the present invention, an aqueous solution containing suspended or colloidal particles is preferable. If it is a flowable hydrogel, it becomes possible to fill the inside of the transplant material of the present invention. Examples of the hydrogel that can be used in the present invention include water-soluble, water-affinity, or water-absorbing synthesis such as polyacrylamide, polyacrylic acid, polyhydroxyethyl methacrylate, polyvinyl alcohol, polylactic acid, and polyglycolic acid. It is a particle made of a hydrogel obtained by chemically cross-linking polymers, polysaccharides, proteins, nucleic acids and the like. Examples of the polysaccharide include, but are not limited to, glycosaminoglycans such as hyaluronic acid and chondroitin sulfate, starch, glycogen, agarose, pectin, and cellulose. Examples of proteins include collagen and hydrolysates thereof such as gelatin, proteoglycan, fibronectin, vitronectin, laminin, entactin, tenascin, thrombospondin, von Willebrand factor, osteopontin, fibrinogen, Matrigel (registered trademark) and the like. However, it is not limited to these. Preferably, a hydrogel made of a material that is biocompatible and can be degraded by cells in vivo is suitable for the present invention. If the hydrogel has such properties, good liver regeneration can be realized without inhibiting the effect of cells infiltrating, proliferating and engrafting in the transplant material of the present invention. More preferably, it is a hydrogel that enhances the effect of infiltration, proliferation, and engraftment of cells, such as collagen, gelatin, proteoglycan, fibronectin, vitronectin, laminin, entactin, tenascin, thrombospondin, von Willebrand factor, osteopontin , Fibrinogen, Matrigel (registered trademark) and other protein hydrogels.
 本発明の移植材にハイドロゲルを充填する方法については、特に限定されないが、例えば、注射器を用いて、移植材の門脈及び/又は肝静脈から充填する方法、ハイドロゲルを含む溶液を灌流させる方法などが挙げられる。本発明に適用されるハイドロゲル形態が懸濁状若しくはコロイド粒子を含有する水溶液である場合、その濃度は、選択されるハイドロゲルの上記主成分の性質によって異なるために限定されないが、移植材内に充填可能であり、かつ、充填後に流出しない濃度であることが好ましい。 The method of filling the graft material of the present invention with hydrogel is not particularly limited. For example, using a syringe, the method of filling from the portal vein and / or hepatic vein of the graft material, the solution containing the hydrogel is perfused. The method etc. are mentioned. When the hydrogel form applied to the present invention is an aqueous solution containing suspended or colloidal particles, the concentration is not limited because it varies depending on the properties of the main component of the hydrogel selected, It is preferable that the concentration is such that it can be filled in the container and does not flow out after filling.
 本発明の移植材は、移植によって生体内に埋め込まれて使用し、移植による病原体の感染を防止する観点から高度に滅菌が施される必要がある。本発明の移植材を滅菌する方法は公知の方法を用いることができるが、例えば、抗生物質(ペニシリン、アンピシリン、テトラサイクリン、ストレプトマイシン、ゲンタマイシン、アムテホリシンB等)による滅菌、オートクレーブ滅菌、UV照射滅菌、ガンマ線照射滅菌、オゾン滅菌、エチレンオキサイドガス(EOG)滅菌、又はこれらの組み合わせが挙げられる。これらの滅菌方法による処理は、移植材に含まれる細胞外マトリックスの構造や性質が損なわれない程度に実施することが好ましい。本発明において、ガンマ線照射は特に滅菌効果が高く、好ましい。 The transplant material of the present invention must be used by being implanted in a living body by transplantation and highly sterilized from the viewpoint of preventing pathogen infection by transplantation. Known methods can be used to sterilize the transplant material of the present invention. For example, sterilization with antibiotics (penicillin, ampicillin, tetracycline, streptomycin, gentamicin, amteforicin B, etc.), autoclave sterilization, UV irradiation sterilization, gamma ray Irradiation sterilization, ozone sterilization, ethylene oxide gas (EOG) sterilization, or a combination thereof may be mentioned. The treatment by these sterilization methods is preferably carried out to such an extent that the structure and properties of the extracellular matrix contained in the transplant material are not impaired. In the present invention, gamma irradiation is particularly preferable because of its high sterilization effect.
 本発明の移植材を保存する温度は、使用するまで、例えば、4℃~30℃、4℃~28℃、4℃~26℃であってもよく、室温であってもよく、常温であってもよく、凍結して保存してもよい。凍結する温度としては、例えば、-10℃、-20℃、-30℃、-40℃、-50℃、-60℃、-70℃、-80℃、-90℃、-100℃、又はそれ以下の温度であってもよい。また、凍結する温度は、例えば、-150℃~-10℃、-130℃~-15℃、-100℃~-20℃の範囲で行うことも可能である。本発明の移植材を保存する溶液は、例えば、水、生理食塩水、PBS等が挙げられる。また、凍結した本発明の移植材を解凍する温度は、例えば、37℃であってもよく、室温であってもよく、常温であってもよく、4℃であってもよい。また、解凍する温度は、例えば、4℃~50℃、4℃~45℃、4℃~40℃であってもよい。細胞外マトリックスを可能な限り保持し、本発明の移植材の効果を最大限発揮するための最適な温度としては、凍結は-80℃、解凍は室温に設定するのが好ましい。 The temperature at which the graft material of the present invention is stored may be, for example, 4 ° C. to 30 ° C., 4 ° C. to 28 ° C., 4 ° C. to 26 ° C., room temperature, or room temperature until use. It may be frozen and stored. The freezing temperature is, for example, −10 ° C., −20 ° C., −30 ° C., −40 ° C., −50 ° C., −60 ° C., −70 ° C., −80 ° C., −90 ° C., −100 ° C., or The following temperatures may be used. In addition, the freezing temperature may be in the range of −150 ° C. to −10 ° C., −130 ° C. to −15 ° C., −100 ° C. to −20 ° C., for example. Examples of the solution for storing the transplant of the present invention include water, physiological saline, PBS and the like. Further, the temperature for thawing the frozen transplant material of the present invention may be, for example, 37 ° C., room temperature, room temperature, or 4 ° C. The thawing temperature may be, for example, 4 ° C. to 50 ° C., 4 ° C. to 45 ° C., 4 ° C. to 40 ° C. As the optimum temperature for holding the extracellular matrix as much as possible and maximizing the effect of the transplant material of the present invention, it is preferable to set the freezing at −80 ° C. and the thawing at room temperature.
 本発明の移植材は、生体内へ移植することによって臓器又は組織を再構築することが可能となる。特に、本発明の移植材を適用する臓器が肝臓である場合、肝臓の切除断面に適用することにより、従来は肝臓の切除断面からの再生が困難であった肝組織の再構築が可能となる。特に、本発明の移植材が肝臓由来の脱細胞化骨格を含む場合、該移植材内部へ内皮細胞及び胆管上皮細胞の遊走及び生着が促進されて毛細血管構造及び胆管構造を伴う機能的な脈管構造が再構築され、肝組織の再生が促進される(図1)。これは従来の移植材では実現されていない移植材であり、本発明によって初めて実現されたものである。 The transplant material of the present invention can reconstruct an organ or tissue by transplanting into a living body. In particular, when the organ to which the transplant of the present invention is applied is the liver, it can be applied to the excised section of the liver to reconstruct liver tissue, which has conventionally been difficult to regenerate from the excised section of the liver. . In particular, when the transplant material of the present invention contains a liver-derived decellularized skeleton, migration and engraftment of endothelial cells and bile duct epithelial cells are promoted inside the transplant material, and a functional structure with a capillary structure and a bile duct structure is promoted. The vasculature is reconstructed and regeneration of liver tissue is promoted (FIG. 1). This is a transplant material that has not been realized by conventional transplant materials, and was realized for the first time by the present invention.
 肝臓は再生する臓器と認識されているが、その再生の機序は、切除された後の肝臓が元の通りに延長・肥大するのではなく、残った肝臓が代償性に肥大する「代償性肥大」によって全体の容量が確保される。この「代償性肥大」が十分に起こるためには、肝切除量と肝臓の予備力(健康状態)のバランスが大きく寄与し、術前の評価を見誤ると肝不全から死に至る危険がある。従って特に肝硬変を患う患者が肝切除を受ける場合、患者本人の肝機能によって、厳密な切除上限が決められている。この切除上限を決める方法は、「幕内分類」と呼ばれる。肝臓は70%程度を切除しても再生すると言われるが、この分類で明記されているように、肝硬変の程度によっては、逆に70%近くが残る場合でも肝不全に陥る危険性がある。これは肝硬変によって肝臓の線維化が強い病態、言い換えれば細胞外マトリックス不全の状態で、内部の肝細胞が増殖できない環境にあるためと言える。これに対して本発明の移植材は、正常な細胞外マトリックスから成る細胞周囲環境・立体構造を提供し、本来再生しない肝臓の切除断端側の再生を促すことができる。本発明の移植材の使用によって、代償性肥大が不十分な危険な状態を回避し、安全な肝切除が可能となり、ひいてはより多くの癌患者に根治的治療を実施可能となる。 The liver is recognized as a regenerating organ, but the mechanism of the regeneration is not the extension and enlargement of the liver after excision as it was, but the remaining liver enlarges compensably (compensatory) Overall capacity is secured by “hypertrophy”. In order for this “compensatory hypertrophy” to occur sufficiently, the balance between the amount of hepatic resection and the reserve capacity (health state) of the liver greatly contributes, and if the preoperative evaluation is mistaken, there is a risk of death from liver failure. Therefore, especially when a patient suffering from cirrhosis undergoes hepatectomy, a strict upper limit of resection is determined by the patient's own liver function. This method of determining the upper resection limit is called “intra-curtain classification”. The liver is said to regenerate even if about 70% is excised, but as specified in this classification, depending on the degree of cirrhosis, there is a risk that hepatic failure may occur even if nearly 70% remains. This can be said to be because the liver is fibrotic due to cirrhosis, in other words, in an environment where the internal hepatocytes cannot proliferate in a state of extracellular matrix failure. On the other hand, the transplant material of the present invention provides a pericellular environment / stereostructure composed of a normal extracellular matrix, and can promote regeneration on the excision stump side of the liver which is not originally regenerated. By using the transplant material of the present invention, it is possible to avoid a dangerous state in which compensatory hypertrophy is insufficient, to enable safe hepatectomy, and thus to perform radical treatment for more cancer patients.
 本発明の移植材を適用する臓器若しくは組織又はその一部を切除する方法は、公知の外科的な手段を用いればよく、例えば、メス、電気メス、剪刀、鑷子、鉗子等の手段が挙げられ、特に限定されない。臓器若しくは組織又はその一部の切除断面に対して、本発明の移植材を逢着する方法は公知の外科的な手法を用いることができ、例えば、切除後に残存した臓器若しくは組織の被膜及び本発明の移植片の被膜を縫合結紮する方法(逢着)が挙げられる。このとき、本発明の移植片は、適用する臓器若しくは組織又はその一部の切除断面の形状に応じて、少なくとも一部に被膜を有さない接着部が形成されている。該接着部は、例えば、メス、電気メス、剪刀、鑷子、鉗子等を用い、例えば、脱細胞化骨格を切断することによってその切断面に被膜を有さない該接着部が形成される。例えば、該移植材が肝臓由来の脱細胞化骨格を含む場合、該移植材をメスで切断することで、適用する肝臓の切除断面の形状に合わせた肝臓接着部を形成することができる。該肝臓接着部を肝臓の切除断面に接触させた状態で逢着することで、該移植材を移植できる。これにより、肝切除断面を起源に、血管内皮細胞、胆管上皮細胞、肝実質細胞、肝前駆細胞、クッパ-細胞、類同内皮細胞、星細胞等の肝組織を形成する細胞が遊走して生着し、移植材内に血管新生及び胆管新生を誘導し、肝組織の再構築を促進する。 A known surgical means may be used as a method of excising an organ or tissue or a part thereof to which the transplant material of the present invention is applied, and examples thereof include a scalpel, an electric knife, a scissors, a scissors, a forceps and the like. There is no particular limitation. A known surgical technique can be used for the method of attaching the transplant of the present invention to a cut section of an organ or tissue or a part thereof, for example, a coating of an organ or tissue remaining after excision and the present invention. And a method of suturing and ligating the coating of the graft (attachment). At this time, the graft of the present invention is formed with an adhesive portion having no coating at least in part according to the shape of the cut section of the organ or tissue to be applied or a part thereof. For example, a scalpel, an electric knife, a scissors, a scissors, a forceps, or the like is used as the adhesive portion. For example, the decellularized skeleton is cut to form the adhesive portion having no coating on the cut surface. For example, when the transplant material includes a decellularized skeleton derived from the liver, the graft material can be cut with a scalpel to form a liver adhesion portion that matches the shape of the excised section of the liver to be applied. The graft material can be transplanted by attaching the liver adhesion portion in contact with the excised section of the liver. As a result, cells that form liver tissue such as vascular endothelial cells, bile duct epithelial cells, hepatic parenchymal cells, hepatic progenitor cells, Kupffer cells, homologous endothelial cells, and stellate cells migrate from the hepatectomized section and live. It induces angiogenesis and bile duct neoplasia in the transplant material, and promotes remodeling of liver tissue.
 本発明の移植材は、予め接着部が形成された状態で提供されてもよく、逢着する直前に臓器若しくは組織又はその一部の切除断面に応じて、手術現場において形成してもよい。また、本発明の移植材は、切除予定の体積に応じ、様々なサイズバリエーションで準備することも可能である。 The transplant of the present invention may be provided in a state in which an adhesive portion is formed in advance, or may be formed at the surgical site according to the cut section of an organ or tissue or a part thereof immediately before attachment. In addition, the transplant material of the present invention can be prepared in various size variations according to the volume to be excised.
 本発明の移植材が、肝組織の再構築に用いられる場合、例えば、原発性若しくは転移性の肝がん、脂肪肝、肝硬変、肝炎、又は自己免疫性肝炎等の治療に用いることができる。上述の疾患が原因で、肝切除を行った切除面に対し、本発明の移植材を縫合接着することで、これまでの肥大型の再生機序とは異なる切除部の血管構造・胆管構造の再生機序によって肝細胞の浸潤を促し、術後の肝臓容量を早期に飛躍的に増大させ、肝機能の補填と肝不全を未然に防ぐことが可能となる。これは、現在使用可能なフィブリン糊やシート状構造物とは明らかにスケールの異なるcm単位での早期の構造再生と細胞浸潤を実現する。 When the transplant material of the present invention is used for reconstruction of liver tissue, it can be used for the treatment of primary or metastatic liver cancer, fatty liver, cirrhosis, hepatitis, autoimmune hepatitis and the like. Due to the above-mentioned diseases, the graft material of the present invention is sutured and adhered to the excised surface obtained by performing hepatectomy, so that the vascular structure / bile duct structure of the excised part different from the conventional hypertrophic regeneration mechanism It is possible to promote hepatocyte infiltration by the regenerative mechanism, dramatically increase the post-operative liver capacity at an early stage, and prevent liver function from being compensated and liver failure. This realizes early structure regeneration and cell infiltration in cm units, which are clearly different in scale from currently available fibrin glue and sheet-like structures.
 以下に、本発明を実施例に基づいて更に詳しく説明するが、これらは本発明を何ら限定するものではない。なお、本実施例におけるラット及びブタを用いた実験プロトコールは、慶應義塾大学の動物実験に関する倫理委員会によって承認されたものであり、「研究機関等における動物実験等の実施に関する基本指針」(文部科学省)に沿って実施した。 In the following, the present invention will be described in more detail based on examples, but these do not limit the present invention in any way. The experimental protocol using rats and pigs in this example was approved by the Ethics Committee on Animal Experiments at Keio University. “Basic Guidelines for Implementation of Animal Experiments at Research Institutions” (Ministry of Science).
実施例1
<動物>
 ブタ脱細胞化骨格作製用及び移植実験用に、体重20~23kgの雄LWDのブタ(全農飼料畜産中央研究所、茨城県、日本)を使用した。ブタを、1kgあたり0.2mgのミダゾラム(アステラス製薬、東京、日本)及び0.08mgのメデトミジン(日本全薬工業、福島、日本)にて麻酔を行い、その後、標準呼吸器システムに接続し、処置を行う間、麻酔を持続するためにイソフルランを吸入させた。
Example 1
<Animals>
Male LWD pigs (All-Agricultural Feed and Livestock Research Center, Ibaraki, Japan) were used for the production of porcine decellularized scaffolds and for transplantation experiments. Pigs were anesthetized with 0.2 mg midazolam (kg Astellas, Tokyo, Japan) and 0.08 mg medetomidine (Nippon Zenyaku Kogyo, Fukushima, Japan) per kg, and then connected to a standard respiratory system. During the procedure, isoflurane was inhaled to maintain anesthesia.
<肝臓の採取及び事前処理(生存ブタより採取)>
 Yagi H.らの方法(Human-scale whole-organ bioengineering for liver transplantation:a regenerative medicine approach.Cell Transplant.2013;22(2):231-242)を一部改変した方法を用いて肝臓の採取及び事前処理を行った。具体的には、ブタ肝臓を採取する直前に、ヘパリン5000IUを静脈より導入し、その後、垂直正中切開にて肝臓を採取した。採取した肝臓から胆嚢を除去した。胆管、肝動脈、肝静脈及び肝下部下大静脈を結紮した。門脈及び肝上部下大静脈をカニュレーションした。門脈よりヘパリン含有(5000U/L)0.9w/v%生理食塩水を血液が出てこなくなるまで灌流した。生理食塩水を注入した後、-80℃にて凍結して保存した。
<Collection of liver and pre-treatment (collected from live pig)>
Yagi H. The liver was partially modified by using the method (Human-scale whol-organ bioengineering for live translation: a regenerative medicine approach. Cell Transplant. 2013; 22 (2): 231-242). went. Specifically, immediately before collecting the pig liver, heparin 5000 IU was introduced from the vein, and then the liver was collected by vertical midline incision. The gallbladder was removed from the collected liver. The bile duct, hepatic artery, hepatic vein and lower hepatic inferior vena cava were ligated. The portal vein and upper hepatic inferior vena cava were cannulated. Heparin-containing (5000 U / L) 0.9 w / v% physiological saline was perfused from the portal vein until no blood came out. After injecting physiological saline, it was frozen and stored at -80 ° C.
<肝臓の脱細胞化処理(SDS+TritonX-100+CHAPS)>
 凍結した肝臓をクリーンベンチ内において室温で解凍し、血液を除去するために門脈を介して100ml/分にて500U/Lヘパリンナトリウム(エイワイファーマ、東京)含有のPBSを排出される溶液が透明になるまで灌流した。その後、肝臓を最初の24時間は0.5w/v%のドデシル硫酸ナトリウム(SDS;SERVA Electrophoresis、ドイツ)含有脱イオン水にて灌流した。続いて、肝臓を脱イオン水で15分間洗浄し、12時間、1v/v%トリトンX-100(シグマ)、0.05w/v%エチレングリコールビス(2-アミノエチルエーテル)-N,N,N’,N’-四酢酸(EGTA;東京化成工業株式会社、東京)、0.05w/v%アジ化ナトリウム(シグマ)、4mM CHAPS(同仁化学研究所、熊本)含有のPBS溶液で洗浄した(図3(A))。脱細胞化された肝臓を1時間PBSで洗浄した。抗生物質(1v/v%ペニシリン/ストレプトマイシン、1v/v%ゲンタマイシン、1v/v%アムホテリシンB)を含有するPBSを、20mL/分にて、30~1時間灌流した。その後、ガンマ線(25kGy)を用いて脱細胞化した肝臓をさらに滅菌した。使用するまで4℃で保存した(図2、図3(A)参照)。上記処理によって、ブタ肝臓が脱細胞化されていることを確認した(図3(C)及び(D))。
<Decellularization treatment of liver (SDS + TritonX-100 + CHAPS)>
A frozen liver is thawed at room temperature in a clean bench, and a solution containing 500 U / L heparin sodium (AY Pharma, Tokyo) is drained through the portal vein at 100 ml / min to remove blood. Perfused until clear. The liver was then perfused with deionized water containing 0.5 w / v% sodium dodecyl sulfate (SDS; SERVA Electrophoresis, Germany) for the first 24 hours. Subsequently, the liver was washed with deionized water for 15 minutes, 12 hours, 1 v / v% Triton X-100 (Sigma), 0.05 w / v% ethylene glycol bis (2-aminoethyl ether) -N, N, Washed with a PBS solution containing N ′, N′-tetraacetic acid (EGTA; Tokyo Chemical Industry Co., Ltd.), 0.05 w / v% sodium azide (Sigma), 4 mM CHAPS (Dojindo Laboratories, Kumamoto) (FIG. 3 (A)). Decellularized liver was washed with PBS for 1 hour. PBS containing antibiotics (1 v / v% penicillin / streptomycin, 1 v / v% gentamicin, 1 v / v% amphotericin B) was perfused at 20 mL / min for 30 to 1 hour. Thereafter, the decellularized liver was further sterilized using gamma rays (25 kGy). It preserve | saved at 4 degreeC until use (refer FIG. 2, FIG. 3 (A)). It was confirmed that the porcine liver was decellularized by the above treatment (FIGS. 3C and 3D).
<肝臓の脱細胞化処理(SDS+TritonX-100)>
 凍結した肝臓を室温で解凍し、血液を除去するために門脈を介して30ml/分にてPBSを一晩灌流した。その後、肝臓を最初の24時間は0.01w/v%のドデシル硫酸ナトリウム(SDS;シグマ、セントルイス、ミズーリ州、米国)含有脱イオン水にて灌流し、続く24時間は、0.1w/v%SDS含有脱イオン水にて灌流し、その後48時間以上1w/v%SDS含有脱イオン水にて灌流した。続いて、肝臓を脱イオン水で15分間洗浄し、1v/v%トリトンX-100(シグマ)含有脱イオン水で30分間洗浄した。脱細胞化した肝臓を1時間PBSで洗浄した。脱細胞化した肝臓を、0.1v/v%過酢酸(シグマ、セントルイス、ミズーリ州、米国)を含むPBSで1時間洗浄した。滅菌したPBSを用いて、脱細胞化した肝臓を徹底的に洗浄した。使用するまで、抗生物質(1v/v%ペニシリン/ストレプトマイシン、1v/v%ゲンタマイシン、1v/v%アムホテリシンB)を添加したPBS中にて脱細胞化した肝臓を4℃で保存した。
<Decellularization of liver (SDS + TritonX-100)>
The frozen liver was thawed at room temperature and perfused with PBS overnight at 30 ml / min through the portal vein to remove blood. The liver was then perfused with deionized water containing 0.01 w / v% sodium dodecyl sulfate (SDS; Sigma, St. Louis, MO, USA) for the first 24 hours, followed by 0.1 w / v for 24 hours. Perfusion was performed with deionized water containing% SDS, followed by perfusion with deionized water containing 1 w / v% SDS for at least 48 hours. Subsequently, the liver was washed with deionized water for 15 minutes, and washed with deionized water containing 1 v / v% Triton X-100 (Sigma) for 30 minutes. Decellularized liver was washed with PBS for 1 hour. Decellularized livers were washed with PBS containing 0.1 v / v% peracetic acid (Sigma, St. Louis, MO, USA) for 1 hour. The decellularized liver was thoroughly washed with sterile PBS. Until use, livers decellularized in PBS supplemented with antibiotics (1 v / v% penicillin / streptomycin, 1 v / v% gentamicin, 1 v / v% amphotericin B) were stored at 4 ° C.
<結果>
 走査型電子顕微鏡を用いて、脱細胞化した肝臓を観察した。その結果、SDSを主に用いた脱細胞法(図4(A))と比較して、CHAPSをさらに含む灌流液で脱細胞化した肝臓は、その内部の脈管の残存状態が良好であることが示された(図4(B))。CHAPSを用いないで脱細胞化処理を行った脱細胞化骨格(図4(A))が硬いマトリックス形状を成しているのと比較して、CHAPSを用いて脱細胞化処理を行った脱細胞化骨格は、繊細なマトリックスが細部に渡り残存しており、またSDS洗浄液内の粒子と考えられる細胞傷害性を有すると考えられる微粒子の残存が極めて少ないことが明らかとなった(図4(B))。
<Result>
The decellularized liver was observed using a scanning electron microscope. As a result, as compared with the decellularization method mainly using SDS (FIG. 4 (A)), the liver decellularized with the perfusate further containing CHAPS has a good residual state of the internal vasculature. (FIG. 4B). Compared with the decellularized skeleton (Fig. 4 (A)) that has been decellularized without using CHAPS has a hard matrix shape, the decellularized skeleton that has been decellularized with CHAPS has undergone decellularization. It has been clarified that the cellular skeleton has a delicate matrix remaining in detail, and extremely few microparticles that are considered to have cytotoxicity considered to be particles in the SDS washing solution (FIG. 4 ( B)).
実施例2
<脱細胞化肝臓(移植材)への細胞生着の評価>
 実施例1の肝臓の脱細胞化処理(SDS+TritonX-100、SDS+TritonX-100+CHAPS)と同様の方法により、ブタ肝臓の脱細胞化処理を行った。Yagi H.らの方法(Yagi H.,et al.,Human-scale whole-organ bioengineering for liver transplantation: a regenerative medicine approach.Cell Transplant.2013;22(2):231-242.)に従って脱細胞化処理を行ったブタ肝臓に対して、ブタ肝実質細胞及び血管内皮細胞を播種して培養し、細胞が生着する様子を観察した。
Example 2
<Evaluation of cell engraftment on decellularized liver (transplant)>
The porcine liver was decellularized by the same method as in Example 1 liver decellularization (SDS + TritonX-100, SDS + TritonX-100 + CHAPS). Yagi H. Et al. (Yagi H., et al., Human-scale whol-organ bioengineering for liver translation: a regenerative medicaine approach. Cell Transplant. Pig liver parenchymal cells and vascular endothelial cells were seeded and cultured, and the cells were observed to be engrafted.
<結果>
 37℃の培養液中で灌流を行った場合、CHAPS用いなかった脱細胞化肝臓と比較してCHAPS用いて脱細胞化処理した脱細胞化肝臓の方がその組織の安定性が高く、再細胞化後の血管内皮細胞の脈管壁への生着が良好であった。
<Result>
When perfusion is performed in a culture solution at 37 ° C., the decellularized liver treated with CHAPS has higher tissue stability compared to the decellularized liver not used with CHAPS. The engraftment of vascular endothelial cells to the vascular wall after conversion was good.
実施例3
 実施例1の肝臓の脱細胞化処理(SDS+TritonX-100+CHAPS)と同様の方法により、ブタ肝臓の脱細胞化処理を行った。
Example 3
Porcine liver was decellularized by the same method as in Example 1 liver decellularization (SDS + TritonX-100 + CHAPS).
<脱細胞化肝臓(移植材)の移植>
 脱細胞化した移植材を、切除予定の肝臓の形態と同様の形態へと成形した。15~20kgの雌LWDのSPFブタ(白石動物株式会社、埼玉、日本)を開腹し、肝臓の一部(左葉および中葉左側)を切除した。肝切除面と移植材の切断面とを接触させ、それぞれの被膜を縫合して閉腹した(図5)。術後は、通常の飼育を行った。
<Transplantation of decellularized liver (transplant)>
The decellularized transplant was molded into a form similar to that of the liver to be excised. A 15-20 kg female LWD SPF pig (Shiroishi Animal Co., Ltd., Saitama, Japan) was laparotomized, and part of the liver (left and middle lobe left) was excised. The liver excision surface and the cut surface of the graft material were brought into contact with each other, and the respective coatings were sutured to close the abdomen (FIG. 5). After the operation, normal breeding was performed.
<結果>
 移植後10日後及び移植後28日後の逢着境界領付近の脱細胞化骨格には、肝細胞(アルブミン陽性細胞、図6(C))及び胆管上皮細胞(CK19陽性細胞、図6(D)、図7(A)~(C))が生着していることが確認された。また、移植した脱細胞化骨格の末梢部において、血管内皮細胞が生着し管腔構造を形成していることも確認された(図7(D))。さらに、図7(E)及び図8からも、肝臓の切断面への肝細胞骨格の移植により、脱細胞化骨格を足場として逢着領域から末梢部まで血管内皮細胞が生着し、管腔構造を伴った毛細血管網が再構築され、血流を回復させることが明らかとなった。また、逢着領域付近から胆管構造を徐々に再構築しながら肝小葉構造を再構築することが明らかとなった。一方、本発明の移植材を逢着しなかった対照群には、血管構造及び胆管構造を伴う脈管構造が再生する現象は見られなかった(図7(F))。
<Result>
The decellularized skeleton in the vicinity of the adhesion boundary region 10 days after transplantation and 28 days after transplantation includes hepatocytes (albumin positive cells, FIG. 6 (C)) and bile duct epithelial cells (CK19 positive cells, FIG. 6 (D), It was confirmed that FIGS. 7A to 7C were engrafted. It was also confirmed that vascular endothelial cells were engrafted to form a luminal structure in the peripheral part of the transplanted decellularized skeleton (FIG. 7D). Further, also from FIGS. 7E and 8, by transplanting the hepatocyte skeleton to the cut surface of the liver, vascular endothelial cells are engrafted from the anchoring region to the peripheral part using the decellularized skeleton as a scaffold, and the luminal structure It was clarified that the capillary network accompanied with the blood flow was reconstructed and blood flow was restored. It was also revealed that the hepatic lobule structure was reconstructed while gradually reconstructing the bile duct structure from the vicinity of the attachment area. On the other hand, in the control group that did not wear the graft material of the present invention, a phenomenon in which the vascular structure and the vascular structure accompanied with the bile duct structure were regenerated was not observed (FIG. 7F).
 また、CHAPS用いて脱細胞化処理した脱細胞化肝臓は、ガンマ線による滅菌と組み合わせることによって、ガンマ線滅菌を用いなかった場合と比較して明らかに低い感染率を示し、逢着後の肝臓において良好な細胞の生着が見られた。 In addition, the decellularized liver decellularized with CHAPS shows a clearly lower infection rate compared with the case without gamma sterilization when combined with sterilization with gamma rays, and is good in the liver after adhesion. Cell engraftment was observed.
 スキャフォールドを用いた肝臓の再生において、本発明で見られたような血管構造及び胆管構造を伴う脈管構造を再生する現象は知られていない。本発明の移植材により、初めて血管及び胆管を伴う脈管構造を有する肝組織を再生することが可能となった。 In the regeneration of the liver using the scaffold, the phenomenon of regenerating the vascular structure accompanied with the vascular structure and the bile duct structure as seen in the present invention is not known. The transplant material of the present invention makes it possible for the first time to regenerate liver tissue having a vascular structure with blood vessels and bile ducts.
実施例4
 購入したブタ肝臓を-80℃で凍結後、常温にて解凍した。門脈及び肝上部下大静脈をカニュレーションした。その後、胆嚢を摘出し、胆管、動脈及び肝下部下大静脈を結紮した。門脈側より、ヘパリン加生理食塩水を血液が出てこなくなるまで灌流した。以下の脱細胞化処理、滅菌処理及び肝切除面への移植は、実施例1及び2と同様の手順で行った。その結果、実施例1及び2と同様の結果が得られた。
Example 4
The purchased pig liver was frozen at −80 ° C. and thawed at room temperature. The portal vein and upper hepatic inferior vena cava were cannulated. Thereafter, the gallbladder was removed, and the bile duct, artery and lower inferior vena cava were ligated. From the portal vein side, heparinized physiological saline was perfused until no blood came out. The following decellularization treatment, sterilization treatment and transplantation to the hepatectomy surface were performed in the same procedure as in Examples 1 and 2. As a result, the same results as in Examples 1 and 2 were obtained.
実施例5
<動物>
 雌のLewisラット(200~250g、三共研究所)及び雄Lewisラット(450~500g、三共研究所)を使用した。
Example 5
<Animals>
Female Lewis rats (200-250 g, Sankyo Institute) and male Lewis rats (450-500 g, Sankyo Institute) were used.
<肝臓の単離及び脱細胞化処理>
 ラットを1.5~3.0%イソフルラン(マイラン)を吸入させて麻酔下で維持した。腹部切開後、心臓内の空間にヘパリン(450単位)を注入した。門脈に20Gカニューレを挿入し、ヘパリン(50単位)を含有するPBSを10~15mLを注入した。IHVC(下肝大静脈)を結紮し、肝臓全体を切除した。SHVC(上肝大静脈)は結紮せずに切除した。得られた肝臓を少なくとも24時間、-80℃にて凍結した。Soto-Gutierrezらの方法(Soto-Gutierrez A,et al.,A whole-organ regenerative medicine approach for liver replacement.Tissue Eng.Part C Methods.2011 Jun;17(6):677-86.)を一部改変した方法により脱細胞化処理を行った。具体的には37℃にて解凍後、SHVCより、トリプシン(0.2v/v%)、TritonX-100(0.1v/v%)、EGTA(0.05w/v%)を含有するPBSを用いて、24時間、3mL/時にて灌流して脱細胞化処理を行った(図9)。得られた脱細胞化肝臓をガンマ線によって滅菌し、小さな尾状葉、左葉及び右小葉を取り除いた。
<Isolation and decellularization of liver>
Rats were maintained under anesthesia with inhalation of 1.5-3.0% isoflurane (Mylan). After abdominal incision, heparin (450 units) was injected into the space in the heart. A 20G cannula was inserted into the portal vein and 10-15 mL of PBS containing heparin (50 units) was injected. IHVC (lower hepatic vena cava) was ligated and the entire liver was excised. SHVC (superhepatic vena cava) was excised without ligation. The resulting liver was frozen at −80 ° C. for at least 24 hours. Soto-Gutierrez et al. (Soto-Gutierrez A, et al., A whol-organ regenerative medical for live replacement. Tissue Eng. Decellularization treatment was performed by a modified method. Specifically, after thawing at 37 ° C., PBS containing trypsin (0.2 v / v%), Triton X-100 (0.1 v / v%), EGTA (0.05 w / v%) from SHVC. The cells were perfused for 24 hours at 3 mL / hour for decellularization treatment (FIG. 9). The resulting decellularized liver was sterilized by gamma radiation and the small caudate, left and right lobule were removed.
<脱細胞化肝臓(移植材)の移植及びその結果>
 得られた脱細胞化骨格を、肝切除面の大きさに合わせて成形した。成形した脱細胞化骨格を、肝臓の一部(左葉および中葉左側)を切除した別のラットの肝切除面に接触させ、それぞれの被膜を縫合して逢着し、閉腹した。術後は、通常の飼育を行った。その結果、実施例1~3と同様、肝切断面より血管構造及び胆管構造を伴う脈管構造を再生する現象が観察された。
<Transplantation of decellularized liver (transplant) and results>
The obtained decellularized skeleton was molded according to the size of the hepatectomy surface. The molded decellularized skeleton was brought into contact with the liver excision surface of another rat from which a part of the liver (left lobe and left side of the middle lobe) was excised, and each coat was sutured and attached, and the abdomen was closed. After the operation, normal breeding was performed. As a result, as in Examples 1 to 3, a phenomenon was observed in which the vascular structure accompanied by the vascular structure and the bile duct structure was regenerated from the liver cut surface.
実施例6
 実施例1の肝臓の脱細胞化処理(SDS+TritonX-100+CHAPS)と同様の方法により、ブタ肝臓の脱細胞化処理を行った。得られたブタ肝臓脱細胞化骨格に対し、タンパク質を架橋するための処理を行った。架橋処理は、以下の試薬及び手順により行った。
Example 6
Porcine liver was decellularized by the same method as in Example 1 liver decellularization (SDS + TritonX-100 + CHAPS). The obtained porcine liver decellularized skeleton was subjected to a treatment for cross-linking proteins. The crosslinking treatment was performed using the following reagents and procedures.
 <試薬>
 ・25%グルタルアルデヒド(GA)溶液(ナカライテスク、Cat;17003-05)
 ・PBS
 ・水溶性カルボジイミド(WSC)(Dojindo、Cat;346-03632)
<Reagent>
25% glutaraldehyde (GA) solution (Nacalai Tesque, Cat; 17003-05)
・ PBS
Water-soluble carbodiimide (WSC) (Dojindo, Cat; 346-03632)
 <タンパク質の架橋方法>
 1)100ml/分の速度でブタ肝臓脱細胞化骨格にPBSを循環させる。
 2)循環させたままPBSで5%に希釈したGA溶液に脱細胞化肝臓を5分浸漬する。
 3)PBS溶液に交換した後、1分×3回浸漬し洗浄する。
 4)γ線滅菌する。
 5)PBSで120mMに調整したWSCをフィルター滅菌した後、100mlを外固定した脱細胞化肝臓の門脈から注入する。
<Protein crosslinking method>
1) Circulate PBS through the porcine liver decellularized scaffold at a rate of 100 ml / min.
2) The decellularized liver is immersed for 5 minutes in a GA solution diluted to 5% with PBS while being circulated.
3) After changing to a PBS solution, wash by immersing for 1 minute × 3 times.
4) Sterilize with gamma rays.
5) After filter sterilization of WSC adjusted to 120 mM with PBS, 100 ml is injected from the portal vein of the decellularized liver with external fixation.
 上述の方法により、架橋したブタ肝臓脱細胞化骨格が得られた(図10)。架橋処理を行ったことにより、架橋処理を行なっていない骨格に比べて、ブタ肝臓脱細胞化骨格が、より安定した形態を保持することが可能となった。 The cross-linked porcine liver decellularized skeleton was obtained by the method described above (FIG. 10). By performing the cross-linking treatment, it became possible for the porcine liver decellularized skeleton to maintain a more stable form as compared to the skeleton not subjected to the cross-linking treatment.
 架橋処理したブタ肝臓脱細胞化骨格を、実施例3の手順に従って、ブタの肝臓の一部へと逢着した。逢着10日後のブタ肝臓の組織切片を作成し、HE染色を行って観察したところ、肝実質細胞群(図11右の点線部)や、胆管構造(図11右、矢印)、血管構造(図11右、矢印)が認められ、内部胆管細胞浸潤が増強していることが明らかとなった。これらの構造は、移植したブタ肝臓脱細胞化骨格内の逢着面から最も遠い部位においても観察された(図11左)。 The porcine liver decellularized skeleton subjected to crosslinking treatment was attached to a part of the pig liver according to the procedure of Example 3. A tissue section of porcine liver 10 days after the attachment was prepared and observed by HE staining, and as a result, hepatic parenchymal cell group (dotted line on the right in FIG. 11), bile duct structure (right on FIG. 11, arrow), blood vessel structure (see FIG. 11 right, arrow) was observed, and it became clear that internal bile duct cell infiltration was enhanced. These structures were also observed at the site farthest from the attachment surface in the transplanted porcine liver decellularized skeleton (left side of FIG. 11).
 架橋処理により、ブタ肝臓脱細胞化骨格の物理的強度が増し、移植後の部位においても安定した形態が保持可能となった。それにより、移植後も腹腔内で潰されることなく、長期間、肝臓を再生する空間(足場)を提供し、良好な肝臓再生が実現可能となった。 The cross-linking treatment increased the physical strength of the porcine liver decellularized skeleton, and it became possible to maintain a stable morphology even after the transplantation. As a result, a space (scaffold) for regenerating the liver for a long period of time without being crushed in the abdominal cavity even after transplantation can be provided, and good liver regeneration can be realized.
実施例7
 実施例5と同様、ラット肝臓の脱細胞化処理を行った。得られたラット肝臓脱細胞化骨格に、以下の試薬及び手順に従い、コラーゲンゲル注入した。
Example 7
As in Example 5, the rat liver was decellularized. The obtained rat liver decellularized skeleton was injected with collagen gel according to the following reagents and procedures.
 <試薬>
 ・Type I collagen Rat tail high concentration(9.61mg/ml)(Corning、Cat;354249)
 ・10×PBS
 ・1N NaOH
 ・milliQ水
<Reagent>
Type I collagen Rat tail high concentration (9.61 mg / ml) (Corning, Cat; 354249)
・ 10 × PBS
・ 1N NaOH
・ MilliQ water
 <コラーゲンゲルの充填方法>
 ・6mg/mlコラーゲン溶液を作製する。
 ・10×PBS 1ml、milliQ 2.62ml、1N NaOH 144μLを混和する。
 ・上記溶液にコラーゲン溶液6.24mlを加えて混和する。
 ・脱細胞化ラット肝臓の肝静脈から5ml、門脈から5mlを注入する。
<Filling method of collagen gel>
• Make a 6 mg / ml collagen solution.
Mix 1 ml of 10 × PBS, 2.62 ml of milliQ, and 144 μL of 1N NaOH.
-Add 6.24 ml of collagen solution to the above solution and mix.
Inject 5 ml from the hepatic vein of the decellularized rat liver and 5 ml from the portal vein.
 上述の方法により、コラーゲンゲルを充填したラット肝臓脱細胞化骨格が得られた(図12(A))。得られたラット肝臓脱細胞化骨格を、実施例5の手順に従って、ラットの肝臓の一部へと逢着した。逢着21日後のラット肝臓を調べたところ、移植した脱細胞化骨格が、潰れることなく、形態を保持したまま生着していることが確認された(図12(B)点線部分)。 The rat liver decellularized skeleton filled with collagen gel was obtained by the above-described method (FIG. 12A). The obtained rat liver decellularized skeleton was attached to a part of the rat liver according to the procedure of Example 5. Examination of the rat liver 21 days after implantation confirmed that the transplanted decellularized skeleton did not collapse and remained engrafted (FIG. 12 (B), dotted line portion).

Claims (21)

  1.  肝切除を受けた肝臓の組織再構築用移植材であって、
     該移植材が、脱細胞化された哺乳動物の肝臓由来の細胞外マトリックスと、該細胞外マトリックスの少なくとも一部を被覆する被膜とを有する脱細胞化骨格を含む、移植材。
    A transplant for tissue reconstruction of the liver that has undergone hepatectomy,
    A graft material, wherein the graft material includes a decellularized scaffold having an extracellular matrix derived from a decellularized mammalian liver and a coating covering at least a part of the extracellular matrix.
  2.  該移植材が、タンパク質架橋処理されたものである、請求項1に記載の移植材。 The graft material according to claim 1, wherein the graft material has been subjected to protein crosslinking treatment.
  3.  該移植材は、ハイドロゲルが充填されたものである、請求項1又は2に記載の移植材。 The transplant material according to claim 1 or 2, wherein the transplant material is filled with hydrogel.
  4.  該移植材が、さらに該被膜を有さない肝臓接着部を有し、肝臓の切除断面に適用することを特徴とする、請求項1~3のいずれか1項に記載の移植材。 The transplant material according to any one of claims 1 to 3, wherein the transplant material further has a liver adhesion part not having the coating, and is applied to a resected section of the liver.
  5.  該肝臓接着部が、肝臓の切除断面に適用する直前に、肝臓の切除断面の形状に合わせて形成されるものである、請求項4に記載の移植材。 The transplant according to claim 4, wherein the liver adhesion part is formed in accordance with the shape of the liver excision section immediately before application to the liver excision section.
  6.  該哺乳動物が、非ヒト哺乳動物である、請求項1~5のいずれか1項に記載の移植材。 The transplant material according to any one of claims 1 to 5, wherein the mammal is a non-human mammal.
  7.  肝切除断面を起源に、該移植材内に血管新生及び胆管新生を誘導する、請求項1~6のいずれか1項に記載の移植材。 The transplant material according to any one of claims 1 to 6, which induces angiogenesis and bile duct neoplasia in the transplant material from a hepatectomy section.
  8.  請求項1~7のいずれか1項に記載の移植材の製造方法であって、
     (a)哺乳動物の肝臓を凍結する工程、
     (b)凍結された該肝臓を解凍する工程、
     (c)解凍された該肝臓に界面活性剤を含む細胞破壊媒体を灌流して細胞を破壊する工程、
     (d)細胞が破壊された該肝臓を洗浄する工程、
    を含む、方法。
    A method for producing an implant according to any one of claims 1 to 7,
    (A) freezing the liver of a mammal;
    (B) thawing the frozen liver;
    (C) perfusing a cell disruption medium containing a surfactant into the thawed liver to destroy the cells;
    (D) washing the liver from which the cells have been destroyed;
    Including a method.
  9.  (c)工程が、
     (c-1)解凍された該肝臓にイオン性界面活性剤を含む細胞破壊媒体を灌流する工程、及び
     (c-2)解凍された該肝臓に非イオン性界面活性剤及び双性イオン性界面活性剤を含む細胞破壊媒体を灌流する工程、
    を含む工程である、請求項8に記載の方法。
    (C) The process is
    (C-1) perfusing a cell disruption medium containing an ionic surfactant to the thawed liver, and (c-2) a nonionic surfactant and a zwitterionic interface to the thawed liver Perfusing a cell disruption medium comprising an active agent;
    The method according to claim 8, wherein the method comprises:
  10.  該イオン性界面活性剤が、硫酸ドデシルナトリウム(SDS)、デオキシコール酸塩、コール酸塩、サルコシル、トリトンX-200及びその組み合わせからなる群から選択される、請求項9に記載の方法。 10. The method of claim 9, wherein the ionic surfactant is selected from the group consisting of sodium dodecyl sulfate (SDS), deoxycholate, cholate, sarkosyl, Triton X-200 and combinations thereof.
  11.  該非イオン性界面活性剤が、トリトンX-100、DDM、ジギトニン、ツイン20、ツイン80、及びその組み合わせからなる群から選択される、請求項9又は10に記載の方法。 The method according to claim 9 or 10, wherein the nonionic surfactant is selected from the group consisting of Triton X-100, DDM, digitonin, Twin 20, Twin 80, and combinations thereof.
  12.  該双性イオン性界面活性剤がCHAPSである、請求項9~11のいずれか1項に記載の方法。 The method according to any one of claims 9 to 11, wherein the zwitterionic surfactant is CHAPS.
  13.  (e)該移植材を、タンパク質架橋剤によって処理する工程、
    をさらに含む、請求項8~12のいずれか1項に記載の方法。
    (E) treating the graft with a protein cross-linking agent;
    The method according to any one of claims 8 to 12, further comprising:
  14.  該タンパク質架橋剤が、アルデヒド系架橋剤、カルボキシル基-アミノ基間架橋剤、及びその組合せから選択される、請求項13に記載の方法。 The method according to claim 13, wherein the protein crosslinking agent is selected from an aldehyde-based crosslinking agent, a carboxyl group-amino group crosslinking agent, and a combination thereof.
  15.  該カルボキシル基-アミノ基間架橋剤が、水溶性カルボジイミド(WSC)である、請求項14に記載の方法。 The method according to claim 14, wherein the carboxyl group-amino group cross-linking agent is water-soluble carbodiimide (WSC).
  16.  該アルデヒド系架橋剤が、グルタルアルデヒドである、請求項14又は15に記載の方法。 The method according to claim 14 or 15, wherein the aldehyde-based crosslinking agent is glutaraldehyde.
  17.  (f)該移植材を滅菌する工程、
    をさらに含む、請求項8~16のいずれか1項に記載の方法。
    (F) sterilizing the graft material;
    The method according to any one of claims 8 to 16, further comprising:
  18.  (f)工程が、ガンマ線によって滅菌する工程、
    を含む、請求項17に記載の方法。
    (F) the step of sterilizing with gamma rays;
    The method of claim 17, comprising:
  19.  (g)該移植材にハイドロゲルを充填する工程、
    をさらに含む、請求項8~18のいずれか1項に記載の方法。
    (G) filling the graft material with hydrogel;
    The method according to any one of claims 8 to 18, further comprising:
  20.  (h)肝臓の切除断面の形状に合わせて、該移植材に肝臓接着部を形成する工程、
    をさらに含む、請求項8~19のいずれか1項に記載の方法。
    (H) a step of forming a liver adhesion part in the transplant material in accordance with the shape of the excised section of the liver;
    The method according to any one of claims 8 to 19, further comprising:
  21.  肝切除を受けた肝臓の組織を再構築する方法であって、
     (i)請求項1~7のいずれか1項に記載の移植材に、肝臓の切除断面の形状に合わせて肝臓接着部を形成する工程、
     (ii)該肝臓の切除断面と、該肝臓接着部とを接触させて逢着する工程、
    を含む方法。
    A method of reconstructing liver tissue that has undergone hepatectomy,
    (I) a step of forming a liver adhesion part in the transplant material according to any one of claims 1 to 7 in accordance with the shape of the excised section of the liver;
    (Ii) a step of bringing the excised section of the liver into contact with the liver adhesion part and attaching the liver;
    Including methods.
PCT/JP2017/014581 2016-04-08 2017-04-07 Graft material for reconstructing tissue of liver subjected to hepatectomy, method of manufacturing same, and method of reconstructing liver subjected to hepatectomy WO2017175870A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018510681A JPWO2017175870A1 (en) 2016-04-08 2017-04-07 Transplant for liver tissue reconstruction that has undergone hepatectomy, its production method, and method for reconstruction of liver that has undergone liver resection

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016078249 2016-04-08
JP2016-078249 2016-04-08

Publications (1)

Publication Number Publication Date
WO2017175870A1 true WO2017175870A1 (en) 2017-10-12

Family

ID=60001256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/014581 WO2017175870A1 (en) 2016-04-08 2017-04-07 Graft material for reconstructing tissue of liver subjected to hepatectomy, method of manufacturing same, and method of reconstructing liver subjected to hepatectomy

Country Status (2)

Country Link
JP (1) JPWO2017175870A1 (en)
WO (1) WO2017175870A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110424030A (en) * 2019-08-30 2019-11-08 广州三孚新材料科技股份有限公司 Cyanide-free alkaline copper electroplating solution, preparation thereof and application thereof in flexible printed circuit board
CN111518744A (en) * 2020-04-27 2020-08-11 西安交通大学医学院第一附属医院 Liver acellular scaffold construction method based on irreversible electroporation technology
CN112135913A (en) * 2018-05-18 2020-12-25 株式会社百义纳理 Method for imaging and diagnosing biological tissue three-dimensional nucleic acid by using isothermal nucleic acid amplification
WO2021034911A1 (en) * 2019-08-19 2021-02-25 Miromatrix Medical Inc. Sealing of decellularized and recellularized engineered organ grafts
CN114796615A (en) * 2022-04-20 2022-07-29 诺一迈尔(苏州)医学科技有限公司 Cartilage acellular matrix and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005063316A1 (en) * 2003-12-26 2005-07-14 Cardio Incorporated Transplantable biomaterial and method of preparing the same
WO2015168254A1 (en) * 2014-04-29 2015-11-05 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Method of preparing artificial organs and related compositions

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005063316A1 (en) * 2003-12-26 2005-07-14 Cardio Incorporated Transplantable biomaterial and method of preparing the same
WO2015168254A1 (en) * 2014-04-29 2015-11-05 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Method of preparing artificial organs and related compositions

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
INOMATA, K ET AL.: "Liver fabrication using whole organ scaffold for transplantable graft in large animal.", AMERICAN JOURNAL OF TRANSPLANTATION, vol. 15, no. SUPPL. 3, 2015, ISSN: 1600-6135 *
KAJBAFZADEH, ABDOL-MOHAMMAD ET AL.: "Determining the Optimal Decellularization and Sterilization Protocol for Preparing a Tissue Scaffold of a Human-Sized Liver Tissue", TISSUE ENGINEERING, vol. 19, no. 8, 2013, pages 642 - 651, XP055430967, ISSN: 2152-4947 *
NANA SHIRAKIGAWA: "Datsu Saiboka Kanzo o Ashiba to shita Kanzo Kochiku Gijutsu no Kaihatsu", DAI 27 KAI DOKUSOSEI O HIRAKU SENTAN GIJUTSU TAISHO, 2013, Retrieved from the Internet <URL:http://www.fbi-award.jp/sentan/jusyou/2013/3.pdf> [retrieved on 20170609] *
SHIMODA, HIROFUMI ET AL.: "Decellularized liver scaffold promote liver regeneration after partial hepatectomy", HEPATOLOGY, vol. 63, no. 1, November 2016 (2016-11-01), pages 689A, ISSN: 0270-9139 *
WANG, WANG Y ET AL.: "Reduced human immune responses to genipin cross linked decellularized porcine whole liver matrices as scaffolds for hepatic bioengineering", HEPATOLOGY INTERNATIONAL, vol. 9, no. 1, March 2015 (2015-03-01), pages S315, ISSN: 1936-0533 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112135913A (en) * 2018-05-18 2020-12-25 株式会社百义纳理 Method for imaging and diagnosing biological tissue three-dimensional nucleic acid by using isothermal nucleic acid amplification
WO2021034911A1 (en) * 2019-08-19 2021-02-25 Miromatrix Medical Inc. Sealing of decellularized and recellularized engineered organ grafts
CN110424030A (en) * 2019-08-30 2019-11-08 广州三孚新材料科技股份有限公司 Cyanide-free alkaline copper electroplating solution, preparation thereof and application thereof in flexible printed circuit board
CN111518744A (en) * 2020-04-27 2020-08-11 西安交通大学医学院第一附属医院 Liver acellular scaffold construction method based on irreversible electroporation technology
CN114796615A (en) * 2022-04-20 2022-07-29 诺一迈尔(苏州)医学科技有限公司 Cartilage acellular matrix and preparation method thereof
CN114796615B (en) * 2022-04-20 2023-08-25 诺一迈尔(苏州)医学科技有限公司 Cartilage acellular matrix and preparation method thereof

Also Published As

Publication number Publication date
JPWO2017175870A1 (en) 2019-02-14

Similar Documents

Publication Publication Date Title
WO2017175870A1 (en) Graft material for reconstructing tissue of liver subjected to hepatectomy, method of manufacturing same, and method of reconstructing liver subjected to hepatectomy
Neishabouri et al. Decellularization in tissue engineering and regenerative medicine: evaluation, modification, and application methods
Ko et al. Bioengineered transplantable porcine livers with re-endothelialized vasculature
Arenas-Herrera et al. Decellularization for whole organ bioengineering
Zhang et al. Decellularized skin/adipose tissue flap matrix for engineering vascularized composite soft tissue flaps
Kajbafzadeh et al. Determining the optimal decellularization and sterilization protocol for preparing a tissue scaffold of a human-sized liver tissue
Baptista et al. The use of whole organ decellularization for the generation of a vascularized liver organoid
Orlando Regenerative medicine applications in organ transplantation
Ko et al. Enhanced re-endothelialization of acellular kidney scaffolds for whole organ engineering via antibody conjugation of vasculatures
JP6267197B2 (en) Implant and method for producing implant
Naeem et al. Decellularized liver transplant could be recellularized in rat partial hepatectomy model
JP2006519865A (en) Decellularized liver for tissue repair and treatment of organ defects
JP2006519681A (en) A framework for cell growth and differentiation
Ansari et al. Development and characterization of a porcine liver scaffold
Dai et al. Recent advances in liver engineering with decellularized scaffold
WO2010139209A1 (en) Kit used for obtaining whole liver scaffold and method for obtaining whole liver scaffold
Vasanthan et al. Extracellular matrix extraction techniques and applications in biomedical engineering
Khajavi et al. Recent advances in optimization of liver decellularization procedures used for liver regeneration
Zhang et al. Polyethylene glycol crosslinked decellularized single liver lobe scaffolds with vascular endothelial growth factor promotes angiogenesis in vivo
CN111544658B (en) Cardiovascular implant for regulating and controlling immune response and promoting intimal regeneration and preparation method thereof
TW201906586A (en) a method for producing a decellularized material for transplantation, and a graft composition comprising a biocompatible material comprising the material
US20170049941A1 (en) Method of Preparing Artificial Organs, and Related Compositions
JP4149897B2 (en) Method for preparing tracheal graft and tracheal graft
Li et al. The fetal porcine aorta and mesenteric acellular matrix as small-caliber tissue engineering vessels and microvasculature scaffold
WO2020191374A1 (en) Improved decellularization of isolated organs

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018510681

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17779247

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17779247

Country of ref document: EP

Kind code of ref document: A1