WO2017175696A1 - Leo satellite system - Google Patents

Leo satellite system Download PDF

Info

Publication number
WO2017175696A1
WO2017175696A1 PCT/JP2017/013891 JP2017013891W WO2017175696A1 WO 2017175696 A1 WO2017175696 A1 WO 2017175696A1 JP 2017013891 W JP2017013891 W JP 2017013891W WO 2017175696 A1 WO2017175696 A1 WO 2017175696A1
Authority
WO
WIPO (PCT)
Prior art keywords
satellite
terminal device
management
satellites
management area
Prior art date
Application number
PCT/JP2017/013891
Other languages
French (fr)
Japanese (ja)
Inventor
洋平 石山
將友 矢羽田
石井 義之
幸太 松島
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2018510585A priority Critical patent/JPWO2017175696A1/en
Publication of WO2017175696A1 publication Critical patent/WO2017175696A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/10Artificial satellites; Systems of such satellites; Interplanetary vehicles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/195Non-synchronous stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q9/00Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom

Definitions

  • the present invention relates to an LEO (Low Earth Earth Orbit) satellite system constructed by an orbiting satellite group orbiting a low altitude orbit (LEO: Low Earth Earth Orbit).
  • LEO Low Earth Earth Orbit
  • An example of remote monitoring and control using satellites is an air traffic control system.
  • a satellite-based augmentation system (SBAS) is used to monitor and control air traffic.
  • SBAS satellite-based augmentation system
  • the air traffic control system is the regional service for the North American continent, Asia Pacific, and Europe, even with the most extensive navigation service.
  • Another example of remote monitoring and control is an ocean observation system.
  • fixed buoys equipped with observation sensors and satellite communication equipment are installed in the ocean, and the sensor values of the fixed buoys are collected at the earth station via a satellite line.
  • the Iridium satellite telephone system detects a call from an Iridium telephone on the earth and calls the destination Iridium telephone.
  • the Iridium satellite telephone system is an LEO satellite system, and a satellite constellation is formed by many satellites that are put into the LEO orbit.
  • Patent Documents 1 to 3 Technologies related to remote monitoring and control using satellites are disclosed in Patent Documents 1 to 3, for example.
  • Patent Document 1 discloses an ocean monitoring system.
  • this ocean observation system many floating buoys equipped with GPS receivers, observation sensors, and satellite communication equipment are installed in the ocean, and the position and sensor value of each floating buoy are transmitted to the earth station via a satellite line. Collecting.
  • Patent Document 2 and Patent Document 3 disclose techniques related to satellite constellation.
  • Patent Document 2 discloses a satellite communication system including an LEO satellite group, a plurality of user terminals, and an earth station.
  • a satellite telephone system is mainly disclosed.
  • Patent Document 3 also discloses a satellite communication system including an LEO satellite group, a plurality of user terminals, and an earth station.
  • the earth station determines a main path and an alternative path (backup path) for connecting each user terminal and notifies each satellite, and each satellite has a failure or congestion in inter-satellite communication (cross link).
  • a satellite constellation that combines autonomous rerouting when it occurs is disclosed.
  • JP 07-055911 A Special table 2003-526959 gazette Special table 2013-541912
  • the inventors wanted to realize constant remote monitoring and control of the position and state of many IoT devices (Internet of Things) on the earth. If this can be realized, it will be possible to better manage a large number of terminal devices, including unmanned airplanes, drones, self-driving cars, smartphones, and vending machines.
  • remote management functions can be used for various services in addition to common services such as checking the position coordinates of terminal devices.
  • transportation services by mobile objects such as autonomous vehicles and robot ships
  • ISR Intelligent, Surveillance and Reconnaissance
  • mobile objects such as drones, unmanned aircraft, and exploration rover
  • fixed unmanned sensors such as meteorometers and wave height meters
  • each terminal device used for service must operate normally. For example, if the operating status of the terminal device is a transportation or ISR service, whether it is operating along the scheduled flight (movement) route, whether it is operating on time, or whether an abnormal failure has occurred, etc. , Service vendors want to know. Also, if the terminal device is operating normally, the service vendor would like to know the measured value for the remote sensing service, the inventory of beverages and food, the storage status, the presence of change, etc. for the vending service.
  • continuous remote monitoring and remote control for a large number of service providing terminal devices cannot be realized at low cost in view of cost.
  • an earth station and a floating buoy connect a satellite line via a satellite and collect position information and sensor values.
  • a floating buoy terminal device
  • it is necessary to artificially control the number of connections to the satellite by setting the timing of communication with the satellite in advance on the terminal device side so as to adjust so as not to cause congestion.
  • the terminal device does not take into account that communication is distributed to multiple communication satellites or earth stations, and when increasing the number of floating buoys or observation areas, the number of communication satellites or base stations (satellite communication lines) It is necessary to increase it, and it is very costly to expand the service to a full-scale scale.
  • a satellite constellation capable of satellite-satellite communication and satellite-terminal communication is constructed and many terminal devices (satellite telephones) are managed. It is necessary to set a limit on the number of connections.
  • the earth station specifies a congestion prevention area, and each terminal device (satellite telephone) in the area executes call restriction (secretly concealed to the user) to prevent actual congestion. It is in charge.
  • the earth station determines communication paths to be established in various satellite groups, and each satellite is in charge of congestion prevention.
  • the number of telephones that are always connected cannot be increased beyond a certain level. In these satellite systems, it is necessary to drastically change the satellite constellation.
  • the inventors examined a satellite constellation that can always remotely manage a larger number of terminal devices at a lower cost than the current situation where each satellite is in the earth using a satellite communication system.
  • the number of terminal devices placed under the control of this satellite system can be managed more than that of the satellite systems described in Patent Documents 1 to 3.
  • a satellite constellation with an increased degree of freedom in the types of terminal devices placed under management is constructed.
  • the provision of a solution that can be deployed globally with the aim of “ensuring economics” and “ensuring diversity” is set as an issue.
  • the provision of a mechanism that can ensure "safety" as required is set as an issue.
  • the present invention has been made on the basis of the above-mentioned background. Specifically, it is an object of the present invention to provide an LEO satellite system that constructs a global watching infrastructure for many terminal devices.
  • the LEO satellite system includes a constellation composed of a large number of satellites orbiting in a low altitude orbit, and each of the large number of satellites is present on a large number of terminal devices and orbit side on the earth side.
  • the communication unit that communicates with other satellites, and the reaction conditions and reaction operations for each terminal device state are shared and managed with the other satellites via the communication unit, and the communication unit Executes communication with the terminal device group currently in the management area, and collects the status including the location information of the terminal device group existing in the management area, and the individual terminal device state is the reaction condition
  • a management unit that manages the multiple terminal devices by executing a reaction operation corresponding to the reaction condition when the two conditions are met, and the multiple satellites cooperate with each other to change the management area.
  • Present on the side A specific terminal device and / or a plurality of terminal device groups are watched globally.
  • An LEO satellite is configured to communicate with a large number of terminal devices ⁇ existing on the earth side and other satellites existing on the orbit side in a state of being arranged in a low-orbit orbit.
  • the communication unit and the reaction condition and reaction operation for each terminal device state are managed in common with the other satellites via the communication unit, and in the management area that is currently in charge via the communication unit.
  • a method for managing terminal device groups by LEO satellites is a method for managing terminal device groups by an LEO satellite system in which a constellation is formed by a large number of satellites orbiting in a low altitude orbit.
  • Each of the satellites includes a plurality of terminal devices ⁇ existing on the earth side and a communication unit communicating with other satellites existing on the orbit side, and a management unit responsible for cooperative operation with the other satellites.
  • Managing reaction conditions and reaction operations for each terminal device state in common with the other satellites via the communication unit, and each of the multiple satellites is currently in charge via the communication unit Executes communication with the terminal device group in the management area, collects the status including the positional information of the terminal device group in the management area, and the individual terminal device state matches the reaction condition In this case, the terminal device is managed by executing a reaction operation corresponding to the reaction condition.
  • FIG. 1 is a functional block diagram showing an artificial satellite that constructs an LEO satellite system 1.
  • FIG. 5 is a flowchart showing an operation example related to a state change detection unit 11B of the area management satellite 10. It is explanatory drawing used for description of the taking over method of the management area
  • FIG. 3 is an explanatory diagram used for explaining a method for taking over a plurality of management areas of the LEO satellite system 1; It is another explanatory drawing used for description of the taking over method of the some management area
  • FIG. 1 to FIG. 3 are explanatory diagrams used for explaining an LEO satellite system 1 according to an embodiment of the present invention.
  • FIG. 1 shows each satellite constituting the satellite constellation of the LEO satellite system 1 according to the present invention and its locus (orbit). In order to show the difference between the trajectory altitude of the low orbit and the orbital altitude of the geostationary or medium trajectory, only one orbit of the middle orbit is shown. Since each satellite is small with respect to the earth, only some of the satellites are shown as deformed in FIG. Each satellite orbits the earth in its own LEO orbit. A plurality of satellites are arranged in each orbit to form a satellite constellation.
  • each satellite constituting the satellite constellation autonomously cooperates with surrounding satellites to manage the terminal device group of the entire earth.
  • the entire management area of the LEO satellite system 1 may be operated by limiting a specific country or area.
  • the LEO satellite system 1 constitutes a constellation with a large number of satellites orbiting in a low altitude orbit.
  • Each satellite constituting the LEO satellite system 1 is a satellite capable of satellite-satellite communication and satellite-terminal communication.
  • Each satellite can communicate with an earth station (a ground station, a ship station, an aircraft station, etc.) as necessary.
  • Each satellite is preferably configured to be able to receive / communicate with a system such as SBAS, QZSS (Quasi-Zenith Satellite System), or GPS.
  • the LEO satellite system 1 divides the ground surface into a number of regions (grids), and each region satellite is responsible for many terminal devices existing in each region. The satellite in charge of this region is replaced with another satellite from time to time as the relative position of the LEO satellite relative to the earth changes.
  • the LEO satellite system 1 arranges the area charge satellites for each area without omission and realizes continuous management. By this constellation, the LEO satellite system 1 constructs a wide area remote monitoring and control network base, generally a global satellite cloud system.
  • each satellite of the LEO satellite system 1 can be launched with a rocket by configuring it with a small satellite rather than a medium-sized satellite, thereby establishing a cost advantage of the system.
  • the LEO satellite system 1 described below is assumed to cover the entire earth. The number of satellites is estimated to be 1300 or more even if the orbital altitude is 500 [km] and one satellite covers an area of 100 [km] x 100 [km] on the ground surface.
  • Each terminal is configured to be able to communicate with systems such as SBAS, QZSS, and GPS, so that the satellite can detect deviations from the planned route from the position information of the terminal device that changes from time to time and the planned route information. It becomes possible.
  • the communicable range of each satellite of the LEO satellite system 1 for the surface is determined by the orbit, antenna shape, beam shape, radio wave output intensity, and the like. Depending on the size of the area covering the ground surface, the communicable range of each satellite for the ground surface can cover a plurality of areas.
  • FIG. 2 is a functional block diagram showing an example of the configuration of individual artificial satellites that construct the LEO satellite system 1.
  • a reference numeral of an area management satellite 10 to be described later is given.
  • description of power supply systems such as solar cell panels, antennas, and the like is omitted.
  • the area management satellite 10 can be configured by using a management unit 11 and a communication unit 12 that execute operations described below.
  • the management unit 11 may be realized using a main processor and memory of an on-board computer, or may be realized using a sub processor separately from the main processor.
  • the management unit 11 may be formed in an FPGA (Field-Programmable-Gate-Array).
  • the management unit 11 identifies the management area that it currently handles and manages the status of the terminal group in the management area. In this status management, satellite-terminal communication with a terminal device group in the management area is executed as necessary. It is desirable that the status to be managed includes, in addition to the terminal device ID (identifier), position information associated with time information, a sensor value, an internal state, presence / absence of an alert, and the like. When starting the status management, the management unit 11 may perform the presence check of the terminal device in the management area.
  • the terminal device is configured to autonomously or actively notify the satellite of the LEO satellite system 1 (the area management satellite 10 at that timing) of the status managed by the device itself.
  • the communication unit 12 operates as a satellite communication unit 12A and a surface communication unit 12B.
  • the satellite communication unit 12A functions so as to be able to communicate with other satellites existing on the orbit side (space side) when LEO is introduced.
  • the ground surface communication unit 12B functions so as to be able to communicate with a terminal device group existing on the earth side when it is introduced into the LEO.
  • the satellite-satellite communication method, the satellite-terminal communication method, the frequency band used, and the like are not particularly limited, and may be used while switching the permitted method or band for each country or region.
  • the management unit 11 of the present embodiment includes a condition operation storage unit 11A that holds reaction conditions and reaction operations for each terminal device state, and a state change detection that detects a state change of each terminal device in the management area based on the reaction conditions. 11B and a previous state storage unit 11C that stores the previous state of each terminal device. It should be noted that the condition operation storage unit 11A, the state change detection unit 11B, and the previous state storage unit 11C are provided as separate components from the management unit 11 without being incorporated in the management unit 11 (remote manager) as illustrated. Also good.
  • reaction conditions and reaction operations managed by the condition operation storage unit 11A are managed separately for each terminal device, each terminal device group, each provided service, and each arbitrary category such as each service vendor. Whether or not each terminal device or group of terminal devices matches the reaction condition is determined by the state change detection unit 11B for each section.
  • the management unit 11 executes a reaction operation associated with the reaction condition when the state of any terminal device / group of terminal devices matches the reaction condition being managed.
  • the reaction operation is not particularly limited, for example, a predetermined communication command (control command) is transmitted to each terminal device or predetermined message information is notified to a specific earth station.
  • the LEO satellite system 1 receives a setting from the administrator (satellite infrastructure provider) of the LEO satellite system 1 for this reaction condition and reaction operation. At the same time, the LEO satellite system 1 accepts the reaction conditions and the reaction operation from a user who uses each terminal device or a group of terminal devices and a service vendor who provides an arbitrary service using the terminal device. This reaction condition and reaction operation may be shared and managed with other satellites that have constructed a satellite network via the communication unit 12. Thus, in the LEO satellite system 1, it is possible to diffuse the accepted reaction conditions and reaction operations globally to the management units 11 of all the satellites.
  • each satellite of the LEO satellite system 1 is connected to the terminal device managed by each satellite received from each service vendor or user in addition to the setting of the administrator of the LEO satellite system 1 via the communication unit 12. Sharing the reaction conditions and reaction operation settings for the terminal device status from moment to moment to prepare for remote monitoring and remote control. Note that even though not all satellites hold all reaction conditions and reaction operations, each satellite has a terminal device that belongs to the management target range that it may be responsible for. What is necessary is just to deliver the reaction condition and reaction action setting regarding the service to be provided.
  • FIG. 3 (a) and 3 (b) are flowcharts showing an operation example related to the state change detection unit 11B of the area management satellite 10.
  • FIG. 3A shows an operation example in the case of detecting a state change based on the status information of the terminal device
  • FIG. 3B shows a state change detection based on the position status information of the terminal device.
  • An example of operation in the case of performing is shown.
  • the state change detection unit 11B the contents of the state change detection process in the figure are set by referring to the reaction conditions and reaction operations stored in the condition operation storage unit 11A.
  • the area management satellite 10 executes the state change detection process set by the service vendor, the user, or the like for the terminal device group existing in the management area. By executing the state change detection process for each management area as set by each area management satellite 10, it is possible to provide multiple monitoring services that are similar and diverse on a global basis.
  • each satellite (management unit 11, state change detection unit 11B) reads reaction conditions such as for each terminal device, for each type, for each coordinate, etc., set and registered by the user or service vendor from the condition operation storage unit 11A (S101). Each satellite operates so as to appropriately apply the updated reaction conditions during the operation of the satellite.
  • Each satellite executes state change detection processing in accordance with the read reaction conditions, and reads the previous state (previous acquisition status) of the arbitrary terminal device from the previous state storage unit C. Further, the current state (status acquired this time) is acquired from the target terminal device (S102, S103).
  • each satellite (management unit 11, state change detection unit 11B) detects a change in state from the previous state and the current state, and changes to the reaction state acquired in S101, the reaction condition
  • the reaction operation predetermined control command
  • corresponding to the contents for example, when a specific state satisfying the reaction condition is reached in individual management or group management
  • each satellite (management unit 11, state change detection unit 11B) executes the read reaction operation (S105).
  • the satellite sends a predetermined control command to each terminal device that is the object of individual management or group management.
  • each satellite may be operated to perform message notification to each service vendor or each user.
  • each satellite (management unit 11, state change detection unit 11B) reads the reaction condition from the condition operation storage unit 11A (S201).
  • Each satellite (management unit 11, state change detection unit 11B) executes state change detection processing according to the read reaction conditions.
  • each satellite acquires the planned navigation route coordinates of the arbitrary terminal device to be watched over. (S202).
  • the planned navigation route coordinates may be acquired in advance from the arbitrary terminal device itself, or may be acquired from the administrator (user or service vendor).
  • Each satellite (management unit 11, state change detection unit 11B) reads the previous navigation route information of the arbitrary terminal device from the previous state storage unit 11C, and further acquires the current position status from the corresponding arbitrary terminal device ( S203, S204).
  • the navigation route information includes the previous position status and a state such as departure from the navigation route. Further, it is desirable that the contents of the navigation route appropriately include information such as moving speed and acceleration used for detecting the state change.
  • each satellite (management unit 11, state change detection unit 11B) detects a change in state from the previous navigation route information and the current position status, and changes to the reaction state acquired in S101 above. Then, the reaction operation (emergency stop, alarm notification command, route recalculation command, etc.) corresponding to the content of the reaction condition (for example, when the position status deviates from the navigation route) is read from the condition operation storage unit 11A (S205).
  • the reaction operation emergency stop, alarm notification command, route recalculation command, etc.
  • each satellite (management unit 11, state change detection unit 11B) executes the read reaction operation (S206).
  • the satellite sends a route recalculation command to each terminal device that is the object of individual management or group management.
  • each satellite performs a message notification regarding the transmission of the route recalculation command to each service vendor and each user, and a control command to be transmitted to the corresponding terminal device in a stepwise pause command or emergency stop command. It may be upgraded and operated.
  • the LEO satellite system 1 adjusts the contents of the state change detection process (reaction conditions and reaction operations) according to service requirements such as individual terminal devices, terminal device groups, service subscriber terminals, and service vendors. You can accept it freely.
  • reaction conditions include change to an abnormal status, abnormality notification, entry to a specific area, departure from a planned route, avoidance of danger, detection of a service flag, and the like.
  • reaction operation include generation of an abnormality notification (Anomaly_Notification) event, navigation recalculation, repositioning execution, direction change, emergency stop, sensor operation, alarm sounding, and the like.
  • the reaction operation may be freely set according to the service requirements. In addition, the reaction operation may be set by changing a plurality of operations or further conditional branching.
  • the state change detection can be performed by directly determining from the operation state (status change) of the terminal device, the pre-input travel / navigation / flight / cruising route information of the terminal device, Examples include a method of comparing position information and a method of detecting entry to a predesignated range or altitude.
  • the management unit 11 manages the reaction condition and the reaction operation for each state of the terminal device / group of terminal devices prepared in advance and manages the reaction operation in common with other satellites. Watch over the terminal devices. It is desirable that anomaly notification (Anomaly_Notification) events generated according to reaction conditions are immediately shared and managed with other satellites. In addition, it is desirable that the abnormality notification is shared with other satellites or the terrestrial sector with priority and abnormality level. In addition, each satellite shares anomaly notification with higher priority and anomaly with other satellites and the terrestrial sector when the frequency of occurrence of anomaly notifications in the management area increases abnormally or the occurrence locations are concentrated. It is desirable to provide a mechanism to do this.
  • anomaly notification Auto_Notification
  • the abnormality notification may be immediately notified to a specific ground sector via SBAS or QZSS as necessary.
  • each satellite autonomously refers to the priority and abnormality level assigned to the abnormality notification, and distributes the destination and the like.
  • each satellite operates while autonomously deciding whether to use QZSS or the like, or to which terrestrial sector to expand the abnormality notification.
  • each satellite acquires an individual operation plan (operation route, allowable sensor value, etc.) set by the user or service vendor for the object to be monitored (remote monitoring control object) before the area charge, and the terminal during the area charge Compare with various statuses collected from the device.
  • the satellite shares the abnormality notification event generated through the communication unit 12 with other satellites and earth stations.
  • This sharing makes it possible for the user and the service vendor together with the administrator of the LEO satellite system 1 to recognize that the terminal device has shown an abnormal value or the like.
  • the method for the user or service vendor to know the abnormality is not particularly limited, for example, the user can read out the abnormality notification collected and stored in the earth station (for example, the cloud space or data center of the service vendor) via the existing network line. .
  • the LEO satellite system 1 When the LEO satellite system 1 (regional satellite) matches the set reaction condition, the LEO satellite system 1 communicates a communication command associated with the reaction condition to the earth side, that is, to the corresponding terminal device.
  • This communication command may be registered in the LEO satellite system 1 so that a unique notification command created by the user or service vendor can be transmitted, in addition to being set by the administrator of the LEO satellite system 1 in advance. .
  • Safety_Command a safety command (Safety_Command) can be set for this notification command.
  • the corresponding terminal device and its surroundings perform danger avoidance and problem solving operations.
  • the safety command if it is a drone, it is sufficient to set one or a combination of communication commands for causing the corresponding drone to execute navigation recalculation / stop / direction change.
  • the user or service vendor can set the LEO satellite system 1 to transmit a notification command such as a safety command at an arbitrary timing instead of the notification command set in advance.
  • the user or the like can cause the terminal device to take a desired action at an arbitrary timing when an abnormality occurs.
  • the LEO satellite system 1 has a mechanism for notifying each satellite (regional satellite) immediately when necessary by giving priority (in order to improve immediacy), via SBAS or QZSS as necessary.
  • the LEO satellite system 1 accepts the setting of a prohibited flight area and the input of a flight route in advance from a service vendor. At the same time, the LEO satellite system 1 accepts setting of operations to be executed by each drone when the flight route is deviated from the service vendor. At this time, it is desirable for the administrator of the LEO satellite system 1 to set in advance settings such as a public flight prohibited area. As described above, as the preparation process, the reaction conditions and the reaction operation settings are accepted while appropriately providing classifications such as for each drone / for each region / for each service.
  • a “terminal device remote monitoring and remote control platform” is provided as a LEO satellite system 1 to the service vendor.
  • the LEO satellite system 1 can provide the same platform in a superimposed manner to various users and service vendors, and can reduce the cost per terminal device at a low cost.
  • the LEO satellite system 1 receives a travel route input from a service vendor or user in advance. In addition, the LEO satellite system 1 accepts an operation to be executed by the automatic driving vehicle and a report destination setting when the travel route is deviated from the service vendor or the user. In addition, the setting of a cloud space for managing (registering) the sequential status of the autonomous driving vehicle is accepted. Thus, as a preparation process, the reaction conditions and reaction operation settings are received together with various restrictions.
  • each satellite is notified from the autonomous driving vehicle whether the position coordinates of the autonomous driving vehicle are not deviated from the predetermined traveling route or whether they are out of the allowable traveling area. Is determined based on the position information included in the.
  • the permissible travel area is assumed to be an area where safety can be maintained from the distance between the front and rear traveling vehicles.
  • reaction operation may include a notification command in addition to the corresponding autonomous driving vehicle and / or a surrounding vehicle.
  • a communication command that notifies at least one of navigation recalculation / stop / direction change / warning is assumed.
  • the LEO satellite system 1 can provide platforms to various users and service vendors in a superimposed manner, and the cost per terminal device can be kept low.
  • the LEO satellite system 1 provides a security / privacy platform to users, service vendors, terminal devices, and the like.
  • each satellite implements randomization of the communication frequency between terminals and satellites, message encryption, and authentication functions. It is desirable that the security / privacy platform has at least the following three functions.
  • Concealment function The frequency used when the supervisory control edge manager communicates with the supervisory control agent is randomized (encrypted) based on the positioning time.
  • the concealment function makes it difficult for service operation information to be leaked to third parties.
  • End-to-End routing function (dynamic reconfiguration function): The monitoring control message implements end-to-end routing including the satellite network based on the sender / user information attached to the message itself. This dynamic reconfiguration function makes it difficult for monitoring control messages and the like to flow out to third parties.
  • Authentication function Requests authentication for sending and receiving monitoring control messages. It is necessary to authenticate the sending and receiving of monitoring control messages, such as watching users, service vendors, and third-party auditing organizations. Only those permitted by the end-to-end routing function and the authentication function can access the monitoring control message.
  • the LEO satellite system 1 can provide a monitoring infrastructure that provides economic efficiency, diversity, and safety to various users and service vendors.
  • the existing system constructs a system for each target terminal type for each region when the number of target terminal types and service types to be monitored increases.
  • using a global satellite cloud system makes it possible to cope with the same mechanism at a low cost.
  • third party organizations countries and local governments
  • third party organizations can audit interference with other services and social life by ensuring advanced access control of messages to and from the satellite communication network using authentication functions. become.
  • high information confidentiality can be ensured between users.
  • Each of a large number of satellites constituting the LEO satellite system 1 includes a management unit 11 and a communication unit 12 as in the first embodiment. Similar to the inter-satellite communication, the communication unit 12 is configured to be capable of bidirectional communication with a large number of terminal devices on the earth (area in charge).
  • the communication unit 12 of the present embodiment uses a DTN protocol (Delay, Disruption, Disconnection Tolerant Protocol) as a communication protocol.
  • DTN protocol Delay, Disruption, Disconnection Tolerant Protocol
  • ⁇ ⁇ By using this DTN protocol, it is possible to reinforce the continuous connectivity over communication protocols such as TCP (Transmission Control Protocol). More specifically, information that does not require loss, such as a safety command (Safety_Command) and anomaly notification (Anomaly_Nofitication), which will be described later, can be stored in the LEO satellite system 1 without loss even in a high-delay, intermittent communication environment. I can take it in. Also, by building a D-tolerant network between satellites and terminal devices using the DTN protocol, various status information (position information, sensor values, etc.) sent from the terminal device group in the management area is collected. It is possible to increase the overall communication line utilization rate and communication efficiency.
  • TCP Transmission Control Protocol
  • SDR software-defined radio
  • the communication unit 12 divides the satellite communication unit 12A and the surface communication unit 12B and configures them on a common hardware by software radio so that at least the surface communication unit can simultaneously communicate with the terminal device group by the multi-communication method. It is desirable to configure.
  • the communication unit 12 preferably employs SDN (Software Defined Network) / NFV (Network Functions Virtualization) in consideration of end-to-end communication and maintenance scalability.
  • SDN Software Defined Network
  • NFV Network Functions Virtualization
  • the LEO satellite system 1 may accept reaction conditions and reaction operation settings by any method, it is appropriate to provide a ground sector that is responsible for collecting and deploying information. This ground sector will be referred to as the supervisory control center manager station hereinafter.
  • This supervisory control center manager station receives and manages reaction conditions and reaction operation settings for each terminal device status from a service vendor or the like via a general communication network (such as an optical fiber network or a mobile communication network). .
  • the supervisory control center manager station sets the setting for each satellite every moment.
  • this satellite can be set by a communication method in which the terminal device communicates with the satellite, or a satellite network built between satellites can be established. It is good also as setting via. By setting via this satellite network, setting can be made possible even when, for example, the relationship between the supervisory control center manager station and the setting target satellite is not within the line of sight.
  • reaction condition and the reaction operation may be set by managing the reaction condition and the reaction operation using a satellite flying in a medium or high orbit such as a geostationary satellite or QZSS.
  • this supervisory control center manager station has a mechanism for receiving and managing the expected value for each time of the operation plan of the terminal device or the position of the terminal device from the user or service vendor via the communication network. In addition, it is possible to realize a remote service with a good balance of economy. In addition, the supervisory control center manager station can also aggregate and deploy notifications of abnormalities of terminal devices and control messages.
  • Each satellite accepts an operation plan for each terminal device or setting of an expected value for each time of the position of the terminal device by direct / indirect communication.
  • Each satellite compares this setting with the status (specifically position information) of many terminal devices sent from the management area on the earth side by moment, and the position coordinates of each terminal device are in the abnormal range. Determine if it is not.
  • the satellite executes a reaction operation set in advance for the terminal device, the service vendor, and the user. For example, the satellite may generate an abnormality notification and broadcast it to other satellites and / or earth stations, and transmit a safety command to the corresponding terminal device state.
  • each satellite it is desirable for each satellite to increase the priority of the abnormality notification or control message over other messages.
  • the satellite delivers the status of the terminal device group for each management area, it is desirable to give the generation time together with the generated abnormality notification of the terminal device to the terminal device group.
  • the relay satellite also provides a time history.
  • a safety command message can be delivered from a specific area to a management target terminal on the back side of the earth via the LEO satellite system 1.
  • the LEO satellite system 1 provides the processing resources of each satellite in charge to compare and judge the position coordinates and the actual position coordinates from time to time determined from the operation plan along with the reaction conditions and reaction actions described above. This makes it possible to provide safety and high reliability services at a low cost globally.
  • the watching mechanism by the LEO satellite system 1 can be realized globally by a large number of LEO satellites. In other words, it is possible to simultaneously provide a monitoring infrastructure for a certain area as well as a monitoring infrastructure for the backside of the earth.
  • each area satellite in the LEO satellite system 1 performs communication with the terminal apparatus group in the management area that it currently handles via the communication unit, and the terminal apparatus that exists in the management area. Status including group position information is collected, and when each terminal device state matches the reaction condition, a reaction operation corresponding to the reaction condition is executed to manage a large number of terminal devices.
  • each satellite can coordinately monitor a specific terminal device and / or a plurality of terminal device groups existing on the earth side (remote monitoring and control) while changing over each management area. Become.
  • the LEO satellite system 1 (satellite constellation) has a huge amount of information when all terminal statuses are exchanged between satellites when many terminal devices are remotely monitored and managed. For this reason, it is necessary to take measures against bandwidth compression and congestion when a larger number of terminal devices are targeted for service than the allowable capacity of the inter-satellite network. In such a case, it is necessary to moderately limit the amount of communication between satellites.
  • an embodiment of a satellite constellation in which a function for generating an abnormality notification message is provided in the satellite and only the abnormality notification message and the safety command are shared between the satellites via the inter-satellite network is also useful. Since this satellite constellation can reduce the amount of inter-satellite communication bandwidth, the number of satellites and the scale of the satellite are reduced, which is economical. In other words, a satellite constellation in which transmission of an abnormality notification message and a safety command is set as a main service can dramatically increase the number of services provided compared to a satellite constellation that transmits all the various statuses of the same scale.
  • the satellites constituting the LEO satellite system 1 determine whether the management unit generates an abnormality notification message based on the huge amount of information (terminal status) collected every moment as in the above-described embodiment, while determining whether the abnormality notification message is generated. If it is generated, it is shared with other satellites. In response to the abnormality notification message, the user or the like can also send the safety command to the corresponding terminal via the satellite network. Each satellite can execute a reaction operation registered in association with generation of an abnormality notification message as a reaction condition.
  • the operation form during the period for constructing the satellite constellation may be the present configuration, and after the number of satellites increases, the service may be expanded in accordance with the allowable communication capacity.
  • dynamic QoS control / route setting is performed at best effort according to the state of the inter-satellite communication network for various watching users with different service operation times and QoS (Quality of Service) requirements for monitoring control. It may be.
  • Management area takeover method Here, a description will be given of a method of taking over several management areas executed between the respective satellites constructing the satellite constellation of the LEO satellite system.
  • the management area takeover method of FIG. 4 is a system in which one satellite takes charge of one management area.
  • 5 is a method in which a single satellite is responsible for a plurality of management areas.
  • FIG. 4 (a) shows three satellites that form part of the satellite constellation of the LEO satellite system.
  • FIG. 4B shows an enlarged ground surface.
  • 4 (a) and 4 (b) a group of regions on the earth that are a part of the earth divided into a number of regions are visibly described.
  • This area division is an example, and generally, areas are allocated so as to fill the entire earth using polygons or circles of triangles or more. In this figure, for the sake of clarity of explanation, many satellites constituting the satellite constellation and many areas on the ground surface are omitted.
  • Each satellite (the area management satellite 10, the succeeding satellite 20, the preceding satellite 30, and other omitted satellite groups) constituting the LEO satellite system 1 can perform satellite-satellite communication within the communicable range.
  • Each satellite can perform satellite-terminal communication with a terminal device group existing on the earth side within the communicable range.
  • Each satellite can communicate with facilities (not shown) such as a supervisory control center manager station and a data center existing on the earth as necessary. It is also desirable to be able to communicate with existing satellite systems.
  • an area in which the satellite group autonomously transfers within the LEO satellite system 1 to be explained is called a management area (area A), and a terminal apparatus group existing in the area A is a terminal apparatus group.
  • area A is called and the other area surrounding the area A is called the surrounding area.
  • the satellite that has passed through the management area (area A) is responsible for the next area (area B).
  • area B is responsible for the next area (area B).
  • area B is managed in the LEO satellite system 1 while autonomously changing the management authority of the satellite group.
  • the terminal device group shown in FIG. 4B includes general-purpose products such as IoT devices, and may include drones such as vehicles (automobiles, aircrafts, ships), autonomous vehicles, multicopters, and flying objects. .
  • the number of terminal devices is described as being deformed.
  • These terminal device groups include devices that are fixedly installed, devices that are moved, devices that move autonomously, and devices that move incidentally.
  • the present LEO satellite system 1 is compatible with many communication systems, and there is no need to specifically limit the type of each terminal device.
  • many of these terminal devices support high-precision positioning at the present time or in the near future.
  • a terminal device that supports high-accuracy positioning can notify the LEO satellite system 1 of position time information. Further, many of these terminal devices can receive a notification command via the LEO satellite system 1 and execute this command.
  • Each satellite of the LEO satellite system 1 identifies the management area that it manages according to the management authority, and manages the status of the terminal device group in the management area.
  • the area management satellite 10 activates the management authority for the area A. For this reason, the area management satellite 10 manages the status together with the identifier (ID: identifier) of the terminal device group A in the management area A that it manages.
  • ID identifier
  • the confirmation of the new terminal device in the management area A and the acquisition of the status may be performed by a location check using satellite-terminal communication or a status acquisition request, such as the status acquisition of an existing IoT device.
  • the area management satellite 10 when a connection request to the satellite network from the terminal device side (for example, file or message transmission to a specific destination) is received, the area management satellite 10 at that time may acquire the state.
  • the status of the terminal device group A is acquired from surrounding satellites. Examples of the status include position information of each terminal device, states such as a power supply state and various internal settings of each terminal device.
  • the position information of the terminal device may be the position information measured by the terminal device, the position information of the terminal device specified on the LEO satellite system 1 side, or both, and is not particularly limited.
  • Each satellite may automatically collect other data (for example, sensing values and image data) from each terminal device together with the status, or may forward a message or packet from the terminal device to the destination.
  • the area management satellite 10 in FIGS. 4A and 4B has the area A within the communicable range at the current timing. Then, as time passes, the area management satellite 10 becomes unable to keep the area A within the communicable range or the communication efficiency deteriorates. For this reason, each satellite according to the present embodiment has the terminal device group A existing in the management area when the management area (area A) falls outside the management area with respect to the satellite (the subsequent satellite 20) within the communicable area. Status (managed status) is transferred by satellite-to-satellite communication. The status shared between the satellites may include an abnormality notification group generated during management by each satellite.
  • a mechanism may be provided in which the reaction conditions, reaction operations, expected values, and the like of the terminal device that generated the abnormality notification during management are notified to the subsequent satellites along with the status.
  • the succeeding satellite holds the reaction conditions and the like of the terminal device (group) in which the abnormality notification is generated more reliably.
  • a satellite region management satellite 10 that is out of the management area passes to the following satellite (following satellite 20) via an earth station (not shown) or a satellite (not shown) flying around. The status etc. may be handed over.
  • the satellite (region management satellite 10) out of the management area transmits the identifier of the terminal device group A existing in the management region together with the status of the terminal device group A. Further, if necessary, the satellite (region management satellite 10) out of the management area associates the time of stay of each terminal device, the error frequency, etc., and notifies the subsequent satellite (following satellite 20) as the status of the terminal device. It is good as well.
  • the satellite (subsequent satellite 20) taking over the management area (area A) receives and holds the status of the terminal device group A communicated from the preceding satellite (area management satellite 10), and manages the management area (area A).
  • This area (area A) management authority is activated when entering the range to start.
  • the management authority activation timing may be individually implemented between individual satellites in accordance with the negotiation of the takeover source and the takeover destination, and predetermined time intervals, switching space coordinates, and the like are determined in advance in the LEO satellite system.
  • the LEO satellite system may be operated so that the area management is changed according to the rules.
  • the satellite (successor satellite 20) that has taken over the management authority collects and manages the status of the terminal device group A existing in the management area. At this time, the status of the terminal device group A existing in this area is received in advance from the satellite that has previously managed this area (the area management satellite 10 that has left). The status of the terminal device group A can be managed without collecting from the beginning. If each identifier of the terminal device group A located in the management area is received from a satellite outside the management area (area management satellite 10), the presence check (location check, survival check) of the terminal can be omitted.
  • the terminal device group management method according to the present embodiment can dramatically increase the number of terminal devices that each satellite can handle / the available communication bandwidth, compared to the above-described method using satellites of the same scale. It becomes possible.
  • each satellite can acquire reaction conditions and reaction actions for the state of the terminal device in each area before sharing each area by sharing setting information and the like by the communication unit. Yes.
  • the terminal device group management method according to the present embodiment enables the monitoring and remote operation of a large number of terminal devices without generating a large amount of communication related to the instantaneous setting immediately after activating the authority in charge of the area.
  • the environment can be provided to service vendors seamlessly.
  • the management unit 11 uses the satellite communication unit 12A to indicate the statuses (bundles) of the terminal device group A existing in the management area when it leaves the management area and enters the management area that is assigned to the secondary area. 4 and the succeeding satellites 20 and 30). At this time, another satellite that flies around the succeeding satellite 20 while the succeeding satellite 20 manages the management area may be used as a backup satellite of the succeeding satellite 20.
  • the management part 11 is good also as extending to the management area
  • the management unit 11 identifies the next management area (area A) that the own satellite will handle, and the own satellite manages the area A from the satellite (preceding satellite 30) having the management authority of the previous management area (area A).
  • the satellite communication unit 12A receives and holds the status of the terminal device group A in the area A communicated from the satellite having the management authority (the preceding satellite 30).
  • the management unit 11 activates the management authority after entering the management area (area A), and uses the status of the terminal apparatus group A that has previously received and held the status management (management area A management) of the terminal apparatus group A. And start.
  • the management unit 11 updates the status of each terminal apparatus, collects the status of the terminal apparatus that newly exists in the area A, discards the status of the terminal apparatus that does not exist in the area A, And the like may be performed via the ground communication unit 12B. Further, during area management, the management unit 11 shares setting information (reaction conditions and reaction operation) for each terminal device state with other satellites via the communication unit 12. Other satellites need not be limited to the following satellites 20 and the preceding satellites 30, and may share setting information with satellites in the communication range as appropriate. Further, during the area management, when each terminal device state matches the reaction condition, the management unit 11 executes a reaction operation corresponding to the reaction condition to manage a large number of terminal devices.
  • the management unit 11 identifies the next peripheral area (area B) that the own satellite will handle, and the own satellite manages area B from the satellite having the management authority in front of the peripheral area (area B) (preceding satellite 30).
  • the satellite communication unit 12A receives and holds the status of the terminal device group B in the peripheral area (area B) communicated from the satellite having the management authority (preceding satellite 30).
  • the management unit 11 communicates at least the minimum status of the terminal device group A to the satellite (subsequent satellite 20) that is responsible for this management area (area A).
  • the management unit 11 withdraws the management authority of the management area A and ends the status management of the terminal device group. At this time, the management unit 11 activates management authority for the next management area B, and starts area management of the management area B (status management of the terminal device group B).
  • the management unit 11 mounted on each satellite autonomously and cooperatively executes the above operation, so that each satellite autonomously transfers the management area in which each satellite is responsible for the terminal device group and the management authority of the area.
  • a mechanism (satellite constellation) is established.
  • status acquisition requests are repeatedly transmitted from the plurality of satellites to each IoT device in the same area.
  • a request for status acquisition to the IoT device is required each time the management satellite is switched.
  • symptoms such as tight communication band in the area, congestion, and battery loss of IoT devices occur.
  • the LEO satellite system 1 can prevent these problems.
  • the present LEO satellite system 1 can suppress data loss and wasted bandwidth in an area where many terminal devices exist.
  • this LEO satellite system can increase the number of terminal devices that can be managed simultaneously without causing data loss in the region.
  • Each terminal device transmits a terminal identifier and various statuses on demand or voluntarily to a management satellite having its own management authority that changes from moment to moment.
  • the various statuses transmitted are transferred from the management satellite at that time to the succeeding satellites and managed in the LEO satellite system. For this reason, it is reduced or unnecessary for the terminal device to notify the LEO satellite system of the same information every time the management satellite is switched. This works beneficially for battery problems and communication volume reduction, for example, for individual IoT devices.
  • 5 (a) and 5 (b) are drawings similar to FIGS. 4 (a) and 4 (b).
  • This one satellite is different from the previous system in that it has the authority to manage a plurality of areas simultaneously.
  • 5 (a) and 5 (b) the area management satellite 10 sets management authority for the areas A, B, and C, and manages three management areas corresponding to the set management authority for each area. An example is shown.
  • Each satellite of the LEO satellite system 1 identifies one or a plurality of management areas managed by the LEO satellite system 1 according to the management authority, and manages the status of the terminal device group in the management area for each area. Also, the status of the terminal device group located in each area is transferred between the preceding satellite and the succeeding satellite by satellite-satellite communication.
  • the LEO satellite system 1 manages, for example, one region in a region where there are many terminal devices per unit area, and 1 in a region where there are few terminal devices per unit area.
  • One satellite can manage multiple areas.
  • FIG. 6 shows another area division example in which a plurality of areas are handled by one satellite.
  • FIG. 6A shows an example in which the area management satellite 10 sets management authority for the areas B, C, and D, and manages three management areas corresponding to the set management authority for each area. .
  • FIG. 6B shows an example in which the area management satellite 10 sets management authority for the areas B and D, and manages two management areas corresponding to the set management authority for each area.
  • the area division may be physically spaced.
  • each satellite can reduce the number and amount of information such as the status of the terminal device transferred between the satellites. Further, by using this method, it is possible to optimize the processing load between the satellites among the satellites. Furthermore, for example, when a specific satellite fails, it becomes possible to supplement area management with surrounding satellites.
  • the satellite group autonomously transfers the management of the terminal device and the management of the terminal device by each satellite.
  • the management of the global terminal device group by the LEO satellite system can be better maintained.
  • FIGS. 7A and 7B show a satellite in another orbit that was omitted in the above description. Note that description of terminal device group management, status sharing, and the like is omitted.
  • FIG. 7A shows an example in which one satellite manages one management area
  • FIG. 7B shows an example in which one satellite has management authority for one or a plurality of areas at the same time.
  • each satellite transmits the satellite that takes over the management authority of each region to the corresponding satellite (following satellite 20) using the management authority takeover notification.
  • the management authority for the corresponding area is activated.
  • the management authority takeover notification may be performed by notifying a plurality of areas in one message, or may be notified by a separate message for each area.
  • Each satellite included in the satellite constellation holds the orbit information of other satellites included in the satellite constellation, together with the system time, management area position information, and own orbit information.
  • each satellite may hold a life / death flag and a resource amount for each satellite.
  • Various types of information may be managed on table information covering the entire satellite constellation, or may be managed on a table with limited regions and orbits.
  • Each satellite refers to the orbit information of the other satellites held and selects a satellite more suitable for managing the management area as the next area management satellite.
  • the method for selecting the takeover destination satellite is not particularly limited, for example, from among a group of satellites that can be subsequent satellites, the center of the passing area (management area), the center of gravity of the terminal device distribution, and the center of gravity of the traffic distribution are all the same.
  • a method is used in which the closest satellite is selected as the satellite (successor satellite 20) to which management authority is transferred.
  • the area management satellite 10 may advertise a signal for requesting the takeover destination of the management area widely to surrounding satellites and notify the first responding satellite of the management authority takeover notification.
  • the area management satellite 10 advertises a signal for requesting the takeover destination of the management area widely to surrounding satellites, identifies the orbits of the plurality of responding satellites, and subsequently manages the management area for which it has the management authority. May be selected and notification of management authority takeover may be sent.
  • the area management satellite 10 identifies the orbits of surrounding satellite groups and subsequently manages the management area for which it has management authority. As a result, a satellite orbiting in another orbit (successor satellite 20 in the figure) is selected, and a notification of handover of management authority is notified to the corresponding satellite. In this example, it is determined that a satellite orbiting in another orbit (successor satellite 20 in the figure) is more suitable for management of the management area A than a satellite orbiting in the same orbit (successor satellite in the figure). This is the case.
  • the selected succeeding satellite 20 takes over the status of the terminal device group A from the area management satellite 10 in advance based on the notified management authority takeover notification and enters the management area A, so that the management authority of the corresponding area is given.
  • the terminal device group A is managed.
  • the area management satellite 10 identifies the orbits of the surrounding satellites, and subsequently manages the management areas (area A, area B, area C) for which it has management authority.
  • the satellite is selected for each area, and the management authority handover notification is notified to the two satellites (successor satellites 20-1 and 20-2 in the figure).
  • Each of the selected succeeding satellites 20-1 and 20-2 takes over the status of the terminal device group in the area in charge from the area management satellite 10 in advance based on the notification of takeover of the notified management authority and enters the management area in charge.
  • the management authority for the corresponding area is activated.
  • each satellite autonomously handles the terminal device and a mechanism for transferring the management authority of the area.
  • the process for determining the management authority may be performed by adopting a satellite constellation having a management satellite (not shown) that manages the management authority of the area, instead of selecting each satellite having the management authority at present. Good.
  • a management satellite for example, an existing geostationary satellite or quasi-zenith satellite can be used.
  • This management satellite identifies the orbit of each satellite that orbits each area to be managed, selects a group of satellites that manage each management area according to the timeline, and notifies the selected satellite to take over management authority. Can be notified.
  • this satellite constellation is adopted, it is not necessary for the area management satellite to select the succeeding satellite (takeover processing). As a result, a satellite assembled with an inexpensive configuration can be included in the satellite constellation.
  • both management authority management by the management satellite and autonomous management authority delivery may be used simultaneously.
  • the satellite (subsequent satellite 20) that finally performs dredging area management takes over the status of the terminal device group in the assigned area from the area management satellite 10 in advance based on the notified notification of management authority takeover, and is responsible for management.
  • the management authority for the area may be activated.
  • a satellite (management satellite) that transmits a management authority takeover notification is different from a satellite (region management satellite 10) that transmits the status of the terminal device group in the assigned area.
  • the satellite management can be exemplified by a method of assigning one satellite to one orbital plane, a method of managing by three geostationary satellites so as to cover all the satellites in the orbit, and the like.
  • FIG. 8 is an explanatory diagram visibly showing the operation and the like of taking over the status of the terminal device group between the satellites.
  • T1 to T3 are assumed to be autonomous flight type drones
  • T4 to T7 in FIG. 8 are assumed to be slope monitoring devices (IoT devices)
  • T8 to T10 are assumed to be weather observation devices (IoT devices).
  • Each satellite manages and manages the reaction conditions and reaction behavior for each terminal device status via the communication unit. As a result, each satellite stores a flight prohibition area, a prohibited action, a positional relationship, a weather condition, etc. of each area stored as reaction conditions. Then, when an object (terminal device (group)) that matches the reaction condition of each terminal device occurs in each management area, the state change is detected and the reaction operation is executed.
  • a service vendor provides a drone management service.
  • the satellite A of the LEO satellite system 1 uses the operation state (status) and position information (status) of the terminal device acquired by the terminal-satellite communication for detecting the abnormal state of the drone.
  • Each satellite sequentially manages a large number of drones (with other types of management terminal devices) in the management area A1. At this time, each drone under management is monitored by the state change detection unit 11B by individual management or group management.
  • the drone abnormality detection by the state change detection unit 11B can be directly determined from the operation state of the drone (status: power reserve capacity, altitude, speed, autonomous abnormality diagnosis result, etc.), or the pre-input flight prohibited area and drone Compare flight / cruise route information with current location information to determine if it is operating normally, and implement based on reaction conditions.
  • the state change detection unit 11B of the satellite refers to the previous state storage unit 11C as appropriate, and when an abnormality occurs (when normal is switched to abnormality or warning under the reaction conditions), generation and notification of an abnormality notification (surrounding satellites) And communication to the corresponding drone, such as speed adjustment, altitude adjustment, turning (re-navigation), emergency stop, etc. as a safety command with reference to the reaction action of the state action storage unit 11A Notification via satellite-to-terminal communication.
  • This reaction action is an action that, after correcting the abnormality by taking several steps of corrective actions by multiple communication commands such as speed adjustment and turn instruction, if the abnormality does not improve, it will eventually stop urgently. There may be.
  • a service vendor provides a slope management apparatus group management service.
  • the LEO satellite system 1 manages the slope monitoring device group for snowy mountains and dangerous slopes. If the position movement (collapse) of the slope monitoring device group or the positional relationship is broken (precursor) is detected in the reaction condition, the satellite B of the LEO satellite system 1 is described in the reaction operation together with the generation and notification of the abnormality notification. As is done, control is performed to send a communication command that outputs a warning to a smartphone, disaster prevention radio (alarm device), and various terminal devices in the vicinity.
  • a service vendor provides a regional management service using a weather observation device.
  • a meteorological observation device group for atmospheric observation PM2.5 or the like
  • an air purifier IoT device
  • the satellite C of the LEO satellite system 1 If the air pollutant concentration of the meteorological observation device group detects an abnormal value recorded in the reaction condition, the satellite C of the LEO satellite system 1 generates and reports the abnormality notification as described in the reaction operation. Based on the air pollutant concentration within a specific range, control is performed so that a communication command for operating the air purifier group is sent as a safety command.
  • each satellite interprets the satellite communication from the terminal device group currently in its management area and manages it according to the reaction condition and reaction operation, for example, a flight route with predetermined position coordinates.
  • the reaction condition and reaction operation for example, a flight route with predetermined position coordinates.
  • a communication command for the corresponding model that causes the drone to change direction or execute a predetermined operation is transmitted from the satellite to the earth side.
  • each satellite holds in advance a reaction condition for the status of the terminal device group and a communication command or the like that causes the corresponding terminal device to execute a predetermined operation when the reaction condition is met, so that a large number of terminal devices can be connected from the LEO satellite system. Can be managed by the same mechanism.
  • this LEO satellite system can manage many terminal devices at low cost from the viewpoint of the number of terminal devices. For this reason, for example, even a remote terminal device, a mountainous region, or a terminal device on the ocean can be connected to the network as long as the sky field of view is secured.
  • a LEO satellite system may be constructed so that a service provider, a government organization, a service user, and the like can appropriately set reaction conditions and reaction actions in the LEO satellite system for each service.
  • an LEO satellite system that constructs a global watching infrastructure for many terminal devices.
  • the number of terminal devices that can be managed by the LEO satellite system can be dramatically increased.
  • a large number of terminal devices can be managed globally at a low cost.
  • by incorporating the above-described security / privacy platform into the LEO satellite system it is possible to provide a terminal device group management method by the LEO satellite system having high safety. In other words, it is possible to provide a platform that serves as a basis for a wide variety of global solutions that include “Ensuring economics”, “Ensuring diversity” and “Ensuring safety”.
  • the computer system includes one or more processors and memory tailored to the desired form. Also, some / all of the computer system may be replaced with hardware or firmware (for example, one or more LSIs: Large-Scale Integration, FPGA: Field Programmable Gate Array, a combination of electronic elements).
  • the program that realizes the management unit may be recorded in a recording medium non-temporarily and distributed.
  • the program recorded on the recording medium is read into the memory via wired, wireless, or the recording medium itself, and operates a processor or the like.
  • the recording medium includes storage media, memory devices, storage devices, and the like having similar terms. Examples of this recording medium include an optical disk, a magnetic disk, a semiconductor memory device, a hard disk device, and a tape medium.
  • the recording medium is desirably non-volatile.
  • the recording medium may use a combination of a volatile module (for example, RAM: Random Access Memory) and a nonvolatile module (for example, ROM: Read Only Memory).
  • Constellation is composed of many satellites orbiting low altitude orbit, Each of the multiple satellites is A communication unit that communicates with many terminal devices existing on the earth side and other satellites existing on the orbit side; While managing the reaction conditions and reaction behavior for each terminal device state with the other satellites via the communication unit, Executes communication with the terminal device group existing in the management area currently handled by itself through the communication unit, collects status including the location information of the terminal device group existing in the management area, and individually A management unit that manages the plurality of terminal devices by executing a reaction operation corresponding to the reaction conditions when the terminal device state of the device matches the reaction conditions;
  • the LEO satellite system characterized in that the large number of satellites cooperate with each other to watch over a specific terminal device and / or a plurality of terminal device groups existing on the earth side while changing over each management area.
  • Each of the satellites uses a DTN protocol as a communication protocol with the terminal device and the earth station using the communication unit.
  • the LEO satellite system accepts reaction conditions and reaction operation settings for the terminal device status of the terminal device managed by each satellite from the service vendor that provides the service. Each of the satellites shares a reaction condition and a setting of a reaction operation for the terminal device status of each terminal device managed by each satellite received from each service vendor via the communication unit. LEO satellite system described in the appendix.
  • Each of the satellites Holding a communication command for causing a corresponding terminal device to execute a predetermined action when the reaction condition for the status of each terminal device group and the reaction condition are met,
  • communication commands corresponding to the reaction conditions are sent to the earth side.
  • the LEO satellite system according to the above supplementary note, wherein the LEO satellite system transmits.
  • Each of the satellites generates an abnormality notification as a reaction condition with respect to each terminal device state, and shares the abnormality notification generated through the communication unit with the other satellites. .
  • Each of the satellites is a control message that is a communication command including at least one of navigation recalculation / stop / return / return to a predetermined / required number of terminal devices as a reaction operation for an arbitrary reaction condition. Is transmitted from a satellite having the authority to manage the corresponding management area.
  • the LEO satellite system has a supervisory control center manager station on the ground, The supervisory control center manager station receives and manages the reaction conditions and reaction operation settings for each terminal device state held by each of the multiple satellites via a communication network, and manages each satellite constituting the constellation.
  • the LEO satellite system according to the above supplementary note, wherein the set reaction condition and reaction operation are set through a satellite network.
  • the LEO satellite system has a supervisory control center manager station on the ground, Each of the satellites generates an abnormality notification as a reaction condition for each terminal device state, relays and notifies the abnormality notification generated via the communication unit, and transmits the notification to the supervisory control center manager station.
  • the LEO satellite system has a supervisory control center manager station on the ground, The supervisory control center manager station receives and manages a service operation plan for calculating an expected value of position information, which is a state of each terminal device held by each of the multiple satellites, via a communication network from a user.
  • a service operation plan for calculating an expected value of position information, which is a state of each terminal device held by each of the multiple satellites, via a communication network from a user.
  • the LEO satellite system according to the above supplementary note, wherein a set service operation plan or an expected value of position information calculated from the service operation plan is set to each satellite constituting the constellation via a satellite network.
  • Each of the multiple satellites obtains a status including the location information of the terminal device group existing in the management area currently managed by the self through the communication unit, and the obtained location information is calculated from the operation plan or the operation plan. If the position information is out of the expected value of the location information, an abnormality notification is generated as a reaction condition for the corresponding terminal device state and broadcast to the other satellites and / or earth stations, and toward the corresponding terminal device state.
  • the LEO satellite system according to the above supplementary note, wherein a safety command is broadcast.
  • the satellite transmits the communication unit, A surface communication unit configured to be able to communicate with a group of terminal devices existing on the earth side when introduced into the LEO; A satellite communication unit configured to be able to communicate with the other satellites present on the orbital side when LEO is introduced; With SDR (Software Defined Radio)
  • the surface communication unit and the satellite communication unit support a plurality of communication methods, The surface communication unit collects the status of the terminal device group existing in the management area by executing satellite communication with the terminal device group existing in the management area by a communication method supported by each of the terminal devices.
  • the satellite communication unit takes over the management authority of the management area and the collected status of the terminal device group to the other satellites in a communication method supported by the other satellites of a plurality of types. Satellite system.
  • Each of the satellites identifies its own management area according to the management authority, and the status of the terminal device group in each management area is managed by the satellite having the individual management authority, and when the management area leaves the management area, The status of the terminal device group existing in the management area is communicated to the satellite of the following, and the subsequent satellite receives the status of the terminal apparatus group communicated from the preceding satellite and enters the management area,
  • the LEO satellite system according to the above supplementary note, wherein the subsequent satellite activates management authority and manages the status of the terminal device group in the management area.
  • the first satellite included in the multiple satellites identifies a management area that the current satellite is currently in charge of, performs satellite communication with a terminal device group in the management area, and a terminal that exists in the management area Manages the status of the device group, and communicates the status of the terminal device group existing in the management region to the subsequent second satellite when leaving the management region,
  • the second satellite included in the multiple satellites identifies a management area that the next satellite is responsible for, and transmits a status of a terminal device group existing in the management area via satellite communication from the first satellite.
  • the multiple satellites When delivering the status of the terminal device group for each management area, the multiple satellites at least transmit the generated terminal device abnormality notification and the generation time thereof to the terminal device group located in the management area.
  • the LEO satellite system as described in the above supplementary note.
  • the plurality of satellites transmit at least the control message transmitted to the terminal device group located in the management area and the transmission time thereof when delivering the status of the terminal device group for each management area.
  • each of the plurality of satellites sets management authority for one or a plurality of areas and manages one or a plurality of management areas corresponding to the set management authority for each area.
  • Each of the multiple satellites identifies the orbits of the other satellites included in the satellite constellation, selects the subsequent satellite that will manage the management area for which it has the management authority, and manages the selected satellite. Notification of takeover of The LEO satellite system according to the above supplementary note, wherein the selected corresponding satellite activates the management authority of the corresponding area when it enters the management area based on the notification of handover of the notified management authority.
  • the LEO satellite system includes a management satellite that manages the management authority of one or more satellites, The management satellite identifies the orbit of each satellite included in the satellite constellation, selects a satellite group that manages each management area according to the timeline, and notifies the selected satellite of the takeover notification of management authority, The LEO satellite system according to the above supplementary note, wherein the selected satellite activates the management authority of the corresponding area when entering the management area based on the notification of the handover of the notified management authority.
  • the management satellite is a geostationary satellite and / or a quasi-zenith satellite,
  • the management satellite identifies the orbit of each satellite included in the satellite constellation, selects a satellite group that manages each management area according to the timeline, and notifies the selected satellite of the takeover notification of management authority,
  • the LEO satellite system according to the above supplementary note, wherein the selected satellite activates the management authority of the corresponding area when entering the management area based on the notification of the handover of the notified management authority.
  • the management satellite is a geostationary satellite and / or a quasi-zenith satellite, The management satellite manages reaction conditions and reaction operation settings for each terminal device state held by each of the multiple satellites, and sets the reaction conditions and reaction operations set for each satellite constituting the constellation.
  • the LEO satellite system according to the above supplementary note, which is set through a network.
  • the LEO satellite system manages the drone as the terminal device, and when the position coordinate of the drone deviates from the predetermined flight route or enters the no-fly region, navigation recalculation / stop / direction to the drone.
  • the LEO satellite system according to the above supplementary note, wherein a communication command notifying at least one of the conversions is transmitted from a satellite having the management authority of the corresponding management area.
  • the LEO satellite system manages an autonomous driving vehicle as the terminal device, and recalculates navigation to the autonomous driving vehicle and / or surrounding vehicles when the position coordinates of the autonomous driving vehicle deviate from a predetermined travel route.
  • the LEO satellite system as described in the above supplementary note, wherein a communication command for notifying at least one of / stop / direction change / warning is transmitted from a satellite having management authority in the corresponding management area.
  • a communication unit configured to communicate with a large number of terminal devices existing on the earth side and other satellites existing on the orbit side in a state of being arranged in the low-altitude orbit. While managing the reaction conditions and reaction behavior for each terminal device state with the other satellites via the communication unit, Executes communication with the terminal device group existing in the management area currently handled by itself through the communication unit, collects status including the location information of the terminal device group existing in the management area, and individually And a management unit configured to manage the multiple terminal devices by executing a reaction operation corresponding to the reaction conditions when the terminal device state of the terminal device matches the reaction conditions.
  • LEO satellite LEO satellite.
  • the LEO satellite sets a reaction condition and a reaction operation setting for the terminal device status of each terminal device managed by each satellite received from each service vendor via the communication unit between the other satellites.
  • the LEO satellite is configured to generate an abnormality notification as a reaction condition for each terminal device state and share the abnormality notification generated via the communication unit with the other satellites.
  • the LEO satellite is a control message that is a communication command including at least one of navigation recalculation / stop / return / return to a predetermined / required number of terminal devices as a reaction operation for an arbitrary reaction condition.
  • the LEO satellite according to the above supplementary note, wherein the LEO satellite is configured to transmit
  • the LEO satellite generates an abnormality notification as a reaction condition for each terminal device state, and transmits the abnormality notification generated via the communication unit to the supervisory control center manager station via the satellite network.
  • the LEO satellite is set with the service operation plan that has been set or the expected value of the position information calculated from the service operation plan from the supervisory control center manager station via the satellite network. LEO satellite.
  • the LEO satellite acquires the status including the location information of the terminal device group existing in the management area that the LEO satellite currently handles via the communication unit from moment to moment, and the obtained location information is calculated from the operation plan or the operation plan.
  • an abnormality notification is generated as a reaction condition for the corresponding terminal device state and broadcast to the other satellites and / or earth stations, and safety is achieved for the corresponding terminal device state.
  • the LEO satellite as described in the above supplementary note, which broadcasts a command.
  • the LEO satellite transmits the communication unit to A surface communication unit configured to be able to communicate with a group of terminal devices existing on the earth side when introduced into the LEO; A satellite communication unit configured to be able to communicate with the other satellites present on the orbital side when LEO is introduced; With SDR (Software Defined Radio)
  • the surface communication unit and the satellite communication unit support a plurality of communication methods, The surface communication unit collects the status of the terminal device group existing in the management area by executing satellite communication with the terminal device group existing in the management area by a communication method supported by each of the terminal devices.
  • the LEO satellite identifies its own management area according to the management authority, and the status of the terminal device group in each management area is managed by the satellite having the individual management authority. Communicate the status of the terminal device group existing in the management area to the satellite of In addition, the LEO satellite receives the status of the terminal device group communicated from the preceding satellite, and when entering the management area, activates the management authority to manage the status of the terminal device group in the management area.
  • the LEO satellite identifies the management area that the LEO satellite currently handles, performs satellite communication with the terminal apparatus group in the management area, manages the status of the terminal apparatus group in the management area, and The LEO satellite as described in the above supplementary note, wherein when the control area is out of the management area, the status of the terminal device group existing in the management area is communicated to a subsequent satellite.
  • the LEO satellite When delivering the status of the terminal device group for each management area, the LEO satellite transmits at least the generated terminal device abnormality notification and the generation time to the terminal device group located in the management area.
  • the LEO satellite transmits at least a control message transmitted to a terminal device group located in the management area and its transmission time when delivering the status of the terminal device group for each management area.
  • the LEO satellite identifies the orbits of other satellites included in the satellite constellation, selects the subsequent satellite that will manage the management area for which it has the management authority, and takes over the management authority to the selected satellite.
  • the LEO satellite as described in the above supplementary note, which notifies a notification.
  • Each of the plurality of satellites includes a plurality of terminal devices existing on the earth side, a communication unit communicating with other satellites existing on the orbit side, and a management unit responsible for cooperative operation with the other satellites,
  • Each of the multiple satellites manages reaction conditions and reaction operations for each terminal device state in common with the other satellites via the communication unit, and and,
  • Each of the multiple satellites performs communication with a terminal device group existing in a management area that the satellite currently has via the communication unit, and includes status information of the terminal device group existing in the management area And when a state of each terminal device matches the reaction condition, a reaction operation corresponding to the reaction condition is executed to manage the multiple terminal devices.
  • Each of the satellites uses a DTN protocol as a communication protocol with the terminal device and the earth station using the communication unit.
  • the LEO satellite system accepts reaction conditions and reaction operation settings for the terminal device status of the terminal device managed by each satellite from the service vendor that provides the service. Each of the satellites shares a reaction condition and a setting of a reaction operation for the terminal device status of each terminal device managed by each satellite received from each service vendor via the communication unit. A management method of the terminal device group described in the appendix.
  • Each of the satellites generates an abnormality notification as a reaction condition for each terminal device state, and shares the abnormality notification generated via the communication unit with the other satellites. Management method.
  • Each of the satellites is a control message that is a communication command including at least one of navigation recalculation / stop / return / return to a predetermined / required number of terminal devices as a reaction operation for an arbitrary reaction condition. Is transmitted from a satellite having the authority to manage the corresponding management area.
  • the LEO satellite system has a supervisory control center manager station on the ground, The supervisory control center manager station receives and manages the reaction conditions and reaction operation settings for each terminal device state held by each of the multiple satellites via a communication network, and manages each satellite constituting the constellation.
  • the terminal device group management method according to the above supplementary note, wherein the set reaction condition and reaction operation are set via a satellite network.
  • the LEO satellite system has a supervisory control center manager station on the ground, Each of the satellites generates an abnormality notification as a reaction condition for each terminal device state, relays and notifies the abnormality notification generated via the communication unit, and transmits the notification to the supervisory control center manager station.
  • the LEO satellite system has a supervisory control center manager station on the ground, The supervisory control center manager station receives and manages a service operation plan for calculating an expected value of position information, which is a state of each terminal device held by each of the multiple satellites, via a communication network from a user.
  • a terminal device group as set forth in the above supplementary note, wherein a set service operation plan or an expected value of position information calculated from the service operation plan is set for each satellite constituting the constellation via a satellite network. Management method.
  • Each of the multiple satellites obtains a status including the location information of the terminal device group existing in the management area currently managed by the self through the communication unit, and the obtained location information is calculated from the operation plan or the operation plan. If the position information is out of the expected value of the location information, an abnormality notification is generated as a reaction condition for the corresponding terminal device state and broadcast to the other satellites and / or earth stations, and toward the corresponding terminal device state.
  • the satellite transmits the communication unit, A surface communication unit configured to be able to communicate with a group of terminal devices existing on the earth side when introduced into the LEO; A satellite communication unit configured to be able to communicate with the other satellites present on the orbital side when LEO is introduced; With SDR (Software Defined Radio)
  • the surface communication unit and the satellite communication unit support a plurality of communication methods, The surface communication unit collects the status of the terminal device group existing in the management area by executing satellite communication with the terminal device group existing in the management area by a communication method supported by each of the terminal devices.
  • Each of the satellites identifies its own management area according to the management authority, and the status of the terminal device group in each management area is managed by the satellite having the individual management authority, and when the management area leaves the management area, The status of the terminal device group existing in the management area is communicated to the satellite of the following, and the subsequent satellite receives the status of the terminal apparatus group communicated from the preceding satellite and enters the management area, The terminal device group management method as described in the above supplementary note, wherein the subsequent satellite activates a management authority and manages the status of the terminal device group in the management area.
  • the first satellite included in the multiple satellites identifies a management area that the current satellite is currently in charge of, performs satellite communication with a terminal device group in the management area, and a terminal that exists in the management area Manages the status of the device group, and communicates the status of the terminal device group existing in the management region to the subsequent second satellite when leaving the management region,
  • the second satellite included in the multiple satellites identifies a management area that the next satellite is responsible for, and transmits a status of a terminal device group existing in the management area via satellite communication from the first satellite.
  • Receive and manage, and when entering the management area identify the management area that it currently handles, and perform satellite communication with terminal devices in the management area to exist in the management area
  • the terminal device group management method according to the above supplementary note, wherein the status of the terminal device group is managed.
  • the plurality of satellites transmit together with identifiers of terminal device groups located in the management area when transferring the status of the terminal device group for each management area. Management method.
  • the multiple satellites When delivering the status of the terminal device group for each management area, the multiple satellites at least transmit the generated terminal device abnormality notification and the generation time thereof to the terminal device group located in the management area.
  • the plurality of satellites transmit at least the control message transmitted to the terminal device group located in the management area and the transmission time thereof when delivering the status of the terminal device group for each management area.
  • Each of the plurality of satellites sets management authority for one or more areas, and manages one or more management areas corresponding to the set management authority for each area. Management method.
  • Each of the multiple satellites identifies the orbits of the other satellites included in the satellite constellation, selects the subsequent satellite that will manage the management area for which it has the management authority, and manages the selected satellite. Notification of takeover of The selected corresponding satellite activates the management authority of the corresponding area when entering the management area based on the notified notification of the handover of the management authority.
  • the LEO satellite system includes a management satellite that manages the management authority of one or more satellites, The management satellite identifies the orbit of each satellite included in the satellite constellation, selects a satellite group that manages each management area according to the timeline, and notifies the selected satellite of the takeover notification of management authority, The selected satellite activates the management authority of the corresponding area when it enters the management area based on the notified management authority takeover notification. .
  • the management satellite is a geostationary satellite and / or a quasi-zenith satellite,
  • the management satellite identifies the orbit of each satellite included in the satellite constellation, selects a satellite group that manages each management area according to the timeline, and notifies the selected satellite of the takeover notification of management authority,
  • the selected satellite activates the management authority of the corresponding area when it enters the management area based on the notified management authority takeover notification. .
  • the management satellite is a geostationary satellite and / or a quasi-zenith satellite,
  • the management satellite manages reaction conditions and reaction operation settings for each terminal device state held by each of the multiple satellites, and sets the reaction conditions and reaction operations set for each satellite constituting the constellation.
  • the LEO satellite system manages an IoT device as the terminal device, and manages the terminal device group according to the above supplementary note.
  • the LEO satellite system manages the drone as the terminal device, and when the position coordinate of the drone deviates from the predetermined flight route or enters the no-fly region, navigation recalculation / stop / direction to the drone
  • the terminal device group management method as described in the above supplementary note, wherein a communication command notifying at least one of the conversions is transmitted from a satellite having management authority for the corresponding management area.
  • the LEO satellite system manages an autonomous driving vehicle as the terminal device, and recalculates navigation to the autonomous driving vehicle and / or surrounding vehicles when the position coordinates of the autonomous driving vehicle deviate from a predetermined travel route.
  • the terminal device group management method as described in the above supplementary note, wherein a communication command notifying at least one of / stop / direction change / warning is transmitted from a satellite having the management authority of the corresponding management area.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Remote Sensing (AREA)
  • Radio Relay Systems (AREA)
  • Selective Calling Equipment (AREA)

Abstract

A low earth orbit (LEO) satellite system in which a constellation is configured from a large number of satellites circling along a low-altitude orbit so as to construct a global monitoring infrastructure for many terminal devices, each of the large number of satellites including: a communication unit for communicating with a large number of terminal devices present on the earth side and other satellites present on the orbit side; and a management unit for managing the reaction condition and reactive motion of each of the satellites with respect to terminal device states jointly with other satellites via the communication unit, as well as executing communication via the communication unit with a terminal device group present in a management area of which the host satellite is currently in charge, collecting a position-information-including status of the terminal device group present in the management area, executing a reactive motion correlated to a reaction condition when each individual terminal device state meets the reaction condition, and managing the large number of terminal devices. The large number of satellites globally monitor, in cooperation, a specific terminal device and/or a plurality of terminal device groups present on the earth side while alternatingly taking charge of each management area.

Description

LEO衛星システムLEO satellite system
 本発明は、低高度軌道(LEO: Low Earth Orbit)を周回する周回衛星群で構築されるLEO(Low Earth Orbit)衛星システムに関する。 The present invention relates to an LEO (Low Earth Earth Orbit) satellite system constructed by an orbiting satellite group orbiting a low altitude orbit (LEO: Low Earth Earth Orbit).
 昨今、衛星通信を利用して地上や海上、飛翔中の様々な端末装置を遠隔監視及び遠隔制御している。 Recently, various terminal devices on the ground, sea and in flight are remotely monitored and controlled using satellite communications.
 衛星を用いた遠隔監視制御の例は、航空交通管制システムが挙げられる。航空交通管制システムでは、静止衛星補強システム(SBAS:Satellite Based Augmentation System)を用いて、航空交通の監視制御に役立てている。なお、航空交通管制システムは、最も広範囲にサービスしている航法サービスをもってしても北米大陸、アジア大洋州、欧州へのリージョナルサービスに留まっており全地球規模のグローバル性をもって提供した事例はない。 An example of remote monitoring and control using satellites is an air traffic control system. In the air traffic control system, a satellite-based augmentation system (SBAS) is used to monitor and control air traffic. The air traffic control system is the regional service for the North American continent, Asia Pacific, and Europe, even with the most extensive navigation service.
 また別の遠隔監視制御の例は、海洋観測システムが挙げられる。いくつかの海洋観測システムでは、観測用センサ、衛星通信機器を具備する固定ブイを海洋に設置して、衛星回線を介して固定ブイのセンサ値を地球局で収集している。 Another example of remote monitoring and control is an ocean observation system. In some ocean observation systems, fixed buoys equipped with observation sensors and satellite communication equipment are installed in the ocean, and the sensor values of the fixed buoys are collected at the earth station via a satellite line.
 また別の遠隔監視制御の例は、イリジウム(登録商標)衛星電話システムがある。イリジウム衛星電話システムは、地球上にあるイリジウム電話機の発呼を検出して、宛先のイリジウム電話機を呼び出す。イリジウム衛星電話システムは、LEO衛星システムであり、LEO軌道に投入される多くの衛星によって衛星コンステレーションが形成される。 Another example of remote monitoring control is the Iridium (registered trademark) satellite telephone system. The Iridium satellite telephone system detects a call from an Iridium telephone on the earth and calls the destination Iridium telephone. The Iridium satellite telephone system is an LEO satellite system, and a satellite constellation is formed by many satellites that are put into the LEO orbit.
 衛星を用いた遠隔監視制御に関連する技術は、例えば特許文献1ないし3に開示されている。 Technologies related to remote monitoring and control using satellites are disclosed in Patent Documents 1 to 3, for example.
 特許文献1は、海洋監視システムを開示している。この海洋観測システムでは、GPS受信機、観測用センサ、衛星通信機器を具備する浮遊式ブイを海洋に多く設置して、衛星回線を介して、各浮遊式ブイの位置、センサ値を地球局で収集している。 Patent Document 1 discloses an ocean monitoring system. In this ocean observation system, many floating buoys equipped with GPS receivers, observation sensors, and satellite communication equipment are installed in the ocean, and the position and sensor value of each floating buoy are transmitted to the earth station via a satellite line. Collecting.
 特許文献2及び特許文献3は、衛星コンステレーションに関連する技術を開示している。 Patent Document 2 and Patent Document 3 disclose techniques related to satellite constellation.
 特許文献2には、LEO衛星群と複数のユーザ端末と地球局とを具備した衛星通信システムが開示されている。この特許文献1では、主に衛星電話システムについて開示されており、地球局が各ユーザ端末(衛星電話機)の地球上の位置を特定する手法やユーザ端末のページング輻輳予防手法(発振規制手法)などを開示している。 Patent Document 2 discloses a satellite communication system including an LEO satellite group, a plurality of user terminals, and an earth station. In this patent document 1, a satellite telephone system is mainly disclosed. A method in which the earth station specifies the position of each user terminal (satellite telephone) on the earth, a paging congestion prevention method (oscillation regulation method) of the user terminal, and the like. Is disclosed.
 特許文献3にも、LEO衛星群と複数のユーザ端末と地球局とを具備した衛星通信システムが開示されている。特許文献3では、地球局が各ユーザ端末を接続する主パスと代替パス(予備パス)を判定して各衛星に通知することと、各衛星が衛星間通信(クロスリンク)に障害又は輻輳が生じた際に自律的に再ルーティングすることを組み合わせた衛星コンステレーションを開示している。 Patent Document 3 also discloses a satellite communication system including an LEO satellite group, a plurality of user terminals, and an earth station. In Patent Document 3, the earth station determines a main path and an alternative path (backup path) for connecting each user terminal and notifies each satellite, and each satellite has a failure or congestion in inter-satellite communication (cross link). A satellite constellation that combines autonomous rerouting when it occurs is disclosed.
特開平07-055911号公報JP 07-055911 A 特表2003-526959号公報Special table 2003-526959 gazette 特表2013-541912号公報Special table 2013-541912
 発明者らは、地球上にある数多くのIoT機器(Internet of Things)の位置及び状態の常時的な遠隔監視及び遠隔制御を実現したいと考えた。このことまで実現できれば、無人飛行機やドローン、自動運転車、スマートフォン、自動販売機などを含めて、数多くある端末装置群をより良く遠隔管理可能になるものと考える。 The inventors wanted to realize constant remote monitoring and control of the position and state of many IoT devices (Internet of Things) on the earth. If this can be realized, it will be possible to better manage a large number of terminal devices, including unmanned airplanes, drones, self-driving cars, smartphones, and vending machines.
 これら遠隔管理機能は、端末装置の位置座標確認などの共通的なサービス以外にも、様々なサービスに利用できる。例えば、自動運転車やロボット船等の移動体による輸送サービス、ドローンや無人航空機、探査ローバ等の移動体によるISR(Intelligence, Surveillance and Reconnaissance)サービス、気象計や波高計等の固定無人センサによるリモートセンシングサービス、ベンディングマシン(自動販売機)による飲料や食料の遠隔供給サービスなどが挙げられる。 These remote management functions can be used for various services in addition to common services such as checking the position coordinates of terminal devices. For example, transportation services by mobile objects such as autonomous vehicles and robot ships, ISR (Intelligence, Surveillance and Reconnaissance) services by mobile objects such as drones, unmanned aircraft, and exploration rover, and remote by fixed unmanned sensors such as meteorometers and wave height meters These include sensing services and remote supply services for beverages and food using vending machines.
 サービス品質を確保するためには、サービスに使用される端末装置各々の正常な稼働が必要となる。例えば、端末装置の稼働状況は、輸送、ISRサービスであれば、予定の飛行(移動)経路に沿って運行しているか、時間通りに運行しているか、異状故障が発生していないかなどを、サービスベンダーは知りたい。また、端末装置が正常に稼働していれば、リモートセンシングサービスであれば計測値や、ベンディングサービスであれば飲料や食料の在庫、保管状況、つり銭有無などもサービスベンダーは知りたい。しかし、既存の衛星通信サービスでは、数多くのサービス提供用端末装置に対して常時的な遠隔監視や遠隔制御を行うことについて、コスト面を踏まえて安価で実現できていない。 In order to ensure service quality, each terminal device used for service must operate normally. For example, if the operating status of the terminal device is a transportation or ISR service, whether it is operating along the scheduled flight (movement) route, whether it is operating on time, or whether an abnormal failure has occurred, etc. , Service vendors want to know. Also, if the terminal device is operating normally, the service vendor would like to know the measured value for the remote sensing service, the inventory of beverages and food, the storage status, the presence of change, etc. for the vending service. However, in the existing satellite communication service, continuous remote monitoring and remote control for a large number of service providing terminal devices cannot be realized at low cost in view of cost.
 一方、上記特許文献1ないし3に開示されている技術では、特定少数若しくは特定多数の端末装置(ブイ、電話機)を管理している。これらの端末装置の遠隔サービスは、地球局、衛星、端末装置の各々がシステム態様に合わせて動作することで実現している。 On the other hand, in the techniques disclosed in the above-mentioned Patent Documents 1 to 3, a specific small number or a specific large number of terminal devices (buoy, telephone) are managed. The remote service of these terminal devices is realized by each of the earth station, the satellite, and the terminal device operating according to the system mode.
 例えば特許文献1では、地球局と浮遊式ブイ(端末装置)が衛星を介して衛星回線を接続し、位置情報及びセンサ値を収集している。このシステムでは、端末装置側に衛星と通信するタイミングを予め設定することにより、衛星への接続数等を人為的に制御して、輻輳が生じないように調整する必要がある。しかし、端末装置は複数の通信衛星や地球局に分散して通信を行うことを考慮しておらず、浮遊式ブイ数や観測エリアを増やす場合、通信衛星数や基地局(衛星通信回線)を増やす必要があり、全休的な規模にサービスを広げる場合は非常にコストがかかる。さらに、海洋における観測用センサでの観測に特化しており、他の応用分野においては端末装置および基地局をそれぞれの分野に合わせて開発する必要がある。これは、全球的に情報を集める安全で汎用的なインフラが現在ではまだ整っていないことが一因となっている。また、各応用分野のシステム開発事業者が全球的な汎用の通信インフラの構築ノウハウをもっていないことが一因かもしれない。多くの応用分野ではその分野に応じた使用データ形式に特化して電送プロトコルやデータ処理のシステムが構築されている。このことが各分野の既存通信インフラを全球的かつ汎用的な用途に応用することについての妨げとなっている。 For example, in Patent Document 1, an earth station and a floating buoy (terminal device) connect a satellite line via a satellite and collect position information and sensor values. In this system, it is necessary to artificially control the number of connections to the satellite by setting the timing of communication with the satellite in advance on the terminal device side so as to adjust so as not to cause congestion. However, the terminal device does not take into account that communication is distributed to multiple communication satellites or earth stations, and when increasing the number of floating buoys or observation areas, the number of communication satellites or base stations (satellite communication lines) It is necessary to increase it, and it is very costly to expand the service to a full-scale scale. Furthermore, it specializes in observation with observation sensors in the ocean, and in other application fields, it is necessary to develop terminal devices and base stations in accordance with the respective fields. This is partly due to the fact that a secure and general-purpose infrastructure that collects information globally is not yet available. Another reason may be that system developers in each application field do not have the know-how to build a general-purpose general-purpose communication infrastructure. In many application fields, a transmission protocol and a data processing system have been established by specializing in the data format used according to the field. This hinders the application of the existing communication infrastructure in each field to global and general purpose applications.
 他方で、イリジウム電話機などの衛星通信システムでは、衛星-衛星間通信及び衛星-端末間通信が可能な衛星コンステレーションを構築して、多くの端末装置(衛星電話機)を管理しているものの、同時接続数の制限を設ける必要がある。これに対して、特許文献2では、地球局が輻輳予防地域を特定し、その地域にある各端末装置(衛星電話機)が発呼制限を(ユーザに秘匿して)実行して実輻輳予防を担当している。また、特許文献3では、地球局が各種衛星群に構築する通信パスを決定し、各衛星が輻輳予防を担当している。しかし、常時的に接続している電話機数を一定以上に増やすことはできない。これら衛星システムでは、衛星コンステレーションを抜本的に変更する必要がある。 On the other hand, in satellite communication systems such as iridium telephones, a satellite constellation capable of satellite-satellite communication and satellite-terminal communication is constructed and many terminal devices (satellite telephones) are managed. It is necessary to set a limit on the number of connections. On the other hand, in Patent Document 2, the earth station specifies a congestion prevention area, and each terminal device (satellite telephone) in the area executes call restriction (secretly concealed to the user) to prevent actual congestion. It is in charge. In Patent Document 3, the earth station determines communication paths to be established in various satellite groups, and each satellite is in charge of congestion prevention. However, the number of telephones that are always connected cannot be increased beyond a certain level. In these satellite systems, it is necessary to drastically change the satellite constellation.
 発明者らは、衛星通信システムを用いて、各衛星が地球内にある現状よりも更に数多くの端末装置を常時的に低コストで遠隔管理可能な衛星コンステレーションを検討した。この衛星システムで管理下に置く端末装置の数量は、特許文献1ないし3に記載されている衛星システムよりも より多く管理可能にする。加えて、管理下に置く端末装置の種別の自由度を増した衛星コンステレーションを構築する。すなわち、『経済性の確保』及び『多様性の確保』を図ったグローバル展開可能なソリューションの提供を課題に設定する。
また、必要に応じた『安全性の確保』を図り得る仕組みの提供を課題に設定する。
The inventors examined a satellite constellation that can always remotely manage a larger number of terminal devices at a lower cost than the current situation where each satellite is in the earth using a satellite communication system. The number of terminal devices placed under the control of this satellite system can be managed more than that of the satellite systems described in Patent Documents 1 to 3. In addition, a satellite constellation with an increased degree of freedom in the types of terminal devices placed under management is constructed. In other words, the provision of a solution that can be deployed globally with the aim of “ensuring economics” and “ensuring diversity” is set as an issue.
In addition, the provision of a mechanism that can ensure "safety" as required is set as an issue.
 本発明は、上記背景に基づいて成されたものであり、具体的には、多くの端末装置向けの全球的見守りインフラストラクチャを構築するLEO衛星システムの提供を目的とする。 The present invention has been made on the basis of the above-mentioned background. Specifically, it is an object of the present invention to provide an LEO satellite system that constructs a global watching infrastructure for many terminal devices.
 本発明の一実施形態に係るLEO衛星システムは、低高度軌道を周回する多数の衛星でコンステレーションを構成し、前記多数の衛星は各々、地球側に存在する多数の端末装置 及び 軌道側に存在する他の衛星と通信する通信部と、各々の端末装置状態に対する反応条件と反応動作を、前記通信部を介して前記他の衛星と共有して管理すると共に、前記通信部を介して自己が現在受け持つ管理領域に在る端末装置群との間の通信を実行して、該管理領域に存在する端末装置群の位置情報を含むステータスを収集し、また、個々の端末装置状態が前記反応条件に合致した場合に、該反応条件に対応付いた反応動作を実行して、前記多数の端末装置を管理する管理部を含み、前記多数の衛星は協調して、各管理領域を交代しながら地球側に存在する特定の端末装置及び/又は複数の端末装置群を全球的に見守ることを特徴とする。 The LEO satellite system according to an embodiment of the present invention includes a constellation composed of a large number of satellites orbiting in a low altitude orbit, and each of the large number of satellites is present on a large number of terminal devices and orbit side on the earth side. The communication unit that communicates with other satellites, and the reaction conditions and reaction operations for each terminal device state are shared and managed with the other satellites via the communication unit, and the communication unit Executes communication with the terminal device group currently in the management area, and collects the status including the location information of the terminal device group existing in the management area, and the individual terminal device state is the reaction condition And a management unit that manages the multiple terminal devices by executing a reaction operation corresponding to the reaction condition when the two conditions are met, and the multiple satellites cooperate with each other to change the management area. Present on the side A specific terminal device and / or a plurality of terminal device groups are watched globally.
 本発明の一実施形態に係るLEO衛星は、低高度軌道の周回軌道に配置された状態で、地球側に存在する多数の端末装置 及び 軌道側に存在する他の衛星と通信するように構成された通信部と、各々の端末装置状態に対する反応条件と反応動作を、前記通信部を介して前記他の衛星と共有して管理すると共に、前記通信部を介して自己が現在受け持つ管理領域に在る端末装置群との間の通信を実行して、該管理領域に存在する端末装置群の位置情報を含むステータスを収集し、また、個々の端末装置状態が前記反応条件に合致した場合に、該反応条件に対応付いた反応動作を実行して、前記多数の端末装置を管理するように構成された管理部を含むことを特徴とする。 An LEO satellite according to an embodiment of the present invention is configured to communicate with a large number of terminal devices 存在 existing on the earth side and other satellites existing on the orbit side in a state of being arranged in a low-orbit orbit. The communication unit and the reaction condition and reaction operation for each terminal device state are managed in common with the other satellites via the communication unit, and in the management area that is currently in charge via the communication unit. To collect status information including the location information of the terminal device group existing in the management area, and when each terminal device state matches the reaction condition, It includes a management unit configured to execute a reaction operation corresponding to the reaction condition and manage the plurality of terminal devices.
 本発明の一実施形態に係るLEO衛星による端末装置群の管理方法は、低高度軌道を周回する多数の衛星でコンステレーションを構成するLEO衛星システムによる端末装置群の管理方法であって、前記多数の衛星は各々、地球側に存在する多数の端末装置 及び 軌道側に存在する他の衛星と通信する通信部と、他の衛星との協調動作を受け持つ管理部を含み、前記多数の衛星は各々、各々の端末装置状態に対する反応条件と反応動作を、前記通信部を介して前記他の衛星と共有して管理し、且つ、前記多数の衛星は各々、前記通信部を介して自己が現在受け持つ管理領域に在る端末装置群との間の通信を実行して、該管理領域に存在する端末装置群の位置情報を含むステータスを収集し、また、個々の端末装置状態が前記反応条件に合致した場合に、該反応条件に対応付いた反応動作を実行して、前記多数の端末装置を管理することを特徴とする。 A method for managing terminal device groups by LEO satellites according to an embodiment of the present invention is a method for managing terminal device groups by an LEO satellite system in which a constellation is formed by a large number of satellites orbiting in a low altitude orbit. Each of the satellites includes a plurality of terminal devices 地球 existing on the earth side and a communication unit communicating with other satellites existing on the orbit side, and a management unit responsible for cooperative operation with the other satellites. , Managing reaction conditions and reaction operations for each terminal device state in common with the other satellites via the communication unit, and each of the multiple satellites is currently in charge via the communication unit Executes communication with the terminal device group in the management area, collects the status including the positional information of the terminal device group in the management area, and the individual terminal device state matches the reaction condition In this case, the terminal device is managed by executing a reaction operation corresponding to the reaction condition.
 本発明によれば、多くの端末装置向けの全球的見守りインフラストラクチャを構築するLEO衛星システムを提供できる。 According to the present invention, it is possible to provide an LEO satellite system that constructs a global watching infrastructure for many terminal devices.
本発明の一実施形態のLEO衛星システム1の説明に用いる説明図である。It is explanatory drawing used for description of the LEO satellite system 1 of one Embodiment of this invention. LEO衛星システム1を構築する人工衛星を示した機能ブロック図である。1 is a functional block diagram showing an artificial satellite that constructs an LEO satellite system 1. FIG. 領域管理衛星10の状態変化検出部11Bに関連する動作例を示したフローチャートである。5 is a flowchart showing an operation example related to a state change detection unit 11B of the area management satellite 10. LEO衛星システム1の管理領域の引き継ぎ手法の説明に用いる説明図である。It is explanatory drawing used for description of the taking over method of the management area | region of the LEO satellite system. LEO衛星システム1の複数の管理領域の引き継ぎ手法の説明に用いる説明図である。FIG. 3 is an explanatory diagram used for explaining a method for taking over a plurality of management areas of the LEO satellite system 1; LEO衛星システム1の複数の管理領域の引き継ぎ手法の説明に用いる別の説明図である。It is another explanatory drawing used for description of the taking over method of the some management area | region of the LEO satellite system. LEO衛星システム1の複数の管理領域の引き継ぎ手法の説明に用いる更に別の説明図である。It is another explanatory drawing used for description of the taking over method of the some management area | region of the LEO satellite system. LEO衛星システム1に係る衛星間の端末装置のステータスを引き継ぐ動作等を可視的に表した説明図である。It is explanatory drawing which represented visually the operation | movement etc. which take over the status of the terminal device between the satellites concerning the LEO satellite system.
 本発明の実施形態を図面を参照しながら説明する。 Embodiments of the present invention will be described with reference to the drawings.
[第1の実施形態] 
 図1ないし図3は、本発明の一実施形態のLEO衛星システム1の説明に用いる説明図である。図1は、本発明に係るLEO衛星システム1の衛星コンステレーションを成す各衛星とその軌跡(軌道)を示している。また、低軌道の軌道高度と 静止軌道や中軌道の軌道高度との違いを示すために、中軌道を一軌道のみ記載している。各衛星は地球に対して小さいため図1中ではデフォルメして一部の衛星のみ記載している。各衛星は、各々のLEO軌道で地球を周回している。各周回軌道には複数の衛星が配置されて、衛星コンステレーションを形成している。
[First Embodiment]
FIG. 1 to FIG. 3 are explanatory diagrams used for explaining an LEO satellite system 1 according to an embodiment of the present invention. FIG. 1 shows each satellite constituting the satellite constellation of the LEO satellite system 1 according to the present invention and its locus (orbit). In order to show the difference between the trajectory altitude of the low orbit and the orbital altitude of the geostationary or medium trajectory, only one orbit of the middle orbit is shown. Since each satellite is small with respect to the earth, only some of the satellites are shown as deformed in FIG. Each satellite orbits the earth in its own LEO orbit. A plurality of satellites are arranged in each orbit to form a satellite constellation.
 LEO衛星システム1では、衛星コンステレーションを成す各衛星が自律的に周囲の衛星と協調して、地球全体の端末装置群の管理を行う。なお、LEO衛星システム1の全管理域は、特定の国や地域を限定して運用することとしても構わない。 In the LEO satellite system 1, each satellite constituting the satellite constellation autonomously cooperates with surrounding satellites to manage the terminal device group of the entire earth. Note that the entire management area of the LEO satellite system 1 may be operated by limiting a specific country or area.
 LEO衛星システム1は上記したように、低高度軌道を周回する多数の衛星でコンステレーションを構成する。また、LEO衛星システム1を構成する各衛星は、衛星-衛星間通信及び衛星-端末間通信が可能な衛星である。また、各衛星は、必要に応じて地球局(地上局や船舶局、航空機局など)と通信可能である。また、各衛星は、SBASやQZSS(Quasi-Zenith Satellite System)、GPS等のシステムとも受信/通信可能に構成されることが望ましい。 As described above, the LEO satellite system 1 constitutes a constellation with a large number of satellites orbiting in a low altitude orbit. Each satellite constituting the LEO satellite system 1 is a satellite capable of satellite-satellite communication and satellite-terminal communication. Each satellite can communicate with an earth station (a ground station, a ship station, an aircraft station, etc.) as necessary. Each satellite is preferably configured to be able to receive / communicate with a system such as SBAS, QZSS (Quasi-Zenith Satellite System), or GPS.
 LEO衛星システム1は、地表面を数多くの領域(グリッド)に分割して、各領域に存在する多くの端末装置を、各領域担当衛星が担当する。この領域担当衛星は、LEO衛星の地球との相対位置の変化に伴い、時々刻々と別の衛星と入れ替わる。LEO衛星システム1は全球的に領域毎の領域担当衛星を漏れなく配置し、常時的な管理を実現する。このコンステレーションによって、LEO衛星システム1は、広域遠隔監視制御ネットワーク基盤、概して全球的衛星クラウドシステムを構築する。 The LEO satellite system 1 divides the ground surface into a number of regions (grids), and each region satellite is responsible for many terminal devices existing in each region. The satellite in charge of this region is replaced with another satellite from time to time as the relative position of the LEO satellite relative to the earth changes. The LEO satellite system 1 arranges the area charge satellites for each area without omission and realizes continuous management. By this constellation, the LEO satellite system 1 constructs a wide area remote monitoring and control network base, generally a global satellite cloud system.
 なお、LEO衛星システム1の各衛星は、中型衛星で構成するよりも小型衛星で構成することで、ロケットでの相乗り打ち上げが可能となり、システムのコスト面の優位を確立する。以下に説明するLEO衛星システム1は、地球全域をカバーすることを想定している。その衛星数は、軌道高度500[km]の場合、1衛星で地表面の100[km]×100[km]の領域をカバーするとしても1300機以上と見積もれる。 In addition, each satellite of the LEO satellite system 1 can be launched with a rocket by configuring it with a small satellite rather than a medium-sized satellite, thereby establishing a cost advantage of the system. The LEO satellite system 1 described below is assumed to cover the entire earth. The number of satellites is estimated to be 1300 or more even if the orbital altitude is 500 [km] and one satellite covers an area of 100 [km] x 100 [km] on the ground surface.
 各端末は、SBASやQZSS、GPS等のシステムとも通信可能に構成されることで、衛星は端末装置各々の時々刻々と変化する位置情報とその予定航路情報から予定航路からの逸脱を検出することなどが可能となる。 Each terminal is configured to be able to communicate with systems such as SBAS, QZSS, and GPS, so that the satellite can detect deviations from the planned route from the position information of the terminal device that changes from time to time and the planned route information. It becomes possible.
 なお、LEO衛星システム1の各衛星の地表向け(端末向け)通信可能範囲は、軌道や、アンテナ形状、ビーム形状、電波出力強度などによって定まる。地表面を覆う領域の広さにもよるものの、各衛星の地表向け通信可能範囲は、複数の領域をカバーできる。 Note that the communicable range of each satellite of the LEO satellite system 1 for the surface (for the terminal) is determined by the orbit, antenna shape, beam shape, radio wave output intensity, and the like. Depending on the size of the area covering the ground surface, the communicable range of each satellite for the ground surface can cover a plurality of areas.
 図2は、LEO衛星システム1を構築する個々の人工衛星の構成例を示した機能ブロック図である。説明上、後述する領域管理衛星10の符号を付与する。また、太陽電池パネル等の電源系統やアンテナ等は記載を省略する。 FIG. 2 is a functional block diagram showing an example of the configuration of individual artificial satellites that construct the LEO satellite system 1. For the sake of explanation, a reference numeral of an area management satellite 10 to be described later is given. In addition, description of power supply systems such as solar cell panels, antennas, and the like is omitted.
 この領域管理衛星10は、次に説明する動作を実行する管理部11と通信部12を用いて構成できる。なお、管理部11はオンボードコンピュータの主プロセッサーとメモリーを用いて実現してもよいし、主プロセッサーとは別にサブプロセッサーを用いて実現してもよい。また、管理部11はFPGA(Field Programmable Gate Array)内に形成してもよい。 The area management satellite 10 can be configured by using a management unit 11 and a communication unit 12 that execute operations described below. The management unit 11 may be realized using a main processor and memory of an on-board computer, or may be realized using a sub processor separately from the main processor. The management unit 11 may be formed in an FPGA (Field-Programmable-Gate-Array).
 管理部11は、自己が現在受け持つ管理領域を識別して、その管理領域に在る端末装置群のステータスを管理する。このステータス管理では、必要に応じて、その管理領域に在る端末装置群との間の衛星-端末間通信を実行する。管理対象のステータスは、端末装置ID(identifier)に加え、時刻情報と紐付いた位置情報やセンサ値、内部状態、アラートの有無などを含むことが望ましい。このステータス管理を開始するにあたって管理部11は、管理領域に在る端末装置の在圏確認を実施してもよい。 
 なお、端末装置は、自律的に若しくは能動的に、LEO衛星システム1の衛星(そのタイミングの領域管理衛星10)に、自装置が管理する上記ステータスを通知するように構成されている。
The management unit 11 identifies the management area that it currently handles and manages the status of the terminal group in the management area. In this status management, satellite-terminal communication with a terminal device group in the management area is executed as necessary. It is desirable that the status to be managed includes, in addition to the terminal device ID (identifier), position information associated with time information, a sensor value, an internal state, presence / absence of an alert, and the like. When starting the status management, the management unit 11 may perform the presence check of the terminal device in the management area.
The terminal device is configured to autonomously or actively notify the satellite of the LEO satellite system 1 (the area management satellite 10 at that timing) of the status managed by the device itself.
 通信部12は、衛星通信部12Aと地表通信部12Bとして動作する。衛星通信部12Aは、LEO投入された際に軌道側(宇宙側)に存在する他の衛星と通信可能に機能する。地表通信部12Bは、LEOに投入された際に地球側に存在する端末装置群と通信可能に機能する。なお、衛星-衛星間通信方式及び衛星-端末間通信方式、使用周波数帯などは特に限定しないので、国や地域ごとに許可されている方式や帯域を切り替えながら用いればよい。 The communication unit 12 operates as a satellite communication unit 12A and a surface communication unit 12B. The satellite communication unit 12A functions so as to be able to communicate with other satellites existing on the orbit side (space side) when LEO is introduced. The ground surface communication unit 12B functions so as to be able to communicate with a terminal device group existing on the earth side when it is introduced into the LEO. Note that the satellite-satellite communication method, the satellite-terminal communication method, the frequency band used, and the like are not particularly limited, and may be used while switching the permitted method or band for each country or region.
 本実施形態の管理部11は、各々の端末装置状態に対する反応条件と反応動作を保持する条件動作記憶部11A、管理領域にある端末装置各々の状態変化を反応条件に基づいて検出する状態変化検出部11B、および端末装置各々の前回状態を記憶する前回状態記憶部11Cを含み構成されている。なお、条件動作記憶部11A、状態変化検出部11B、および前回状態記憶部11Cは、図示するように管理部11(リモートマネージャ)に組み込まずとも、管理部11とは別の構成要素として設けてもよい。 The management unit 11 of the present embodiment includes a condition operation storage unit 11A that holds reaction conditions and reaction operations for each terminal device state, and a state change detection that detects a state change of each terminal device in the management area based on the reaction conditions. 11B and a previous state storage unit 11C that stores the previous state of each terminal device. It should be noted that the condition operation storage unit 11A, the state change detection unit 11B, and the previous state storage unit 11C are provided as separate components from the management unit 11 without being incorporated in the management unit 11 (remote manager) as illustrated. Also good.
 条件動作記憶部11Aで管理される反応条件と反応動作は、端末装置毎や、端末装置群毎、提供サービス毎に、サービスベンダー毎などの任意区分ごとに分けられて管理される。この区分ごとに状態変化検出部11Bによって、各端末装置や一群の端末装置が反応条件に合致しているか否かを判定する。 The reaction conditions and reaction operations managed by the condition operation storage unit 11A are managed separately for each terminal device, each terminal device group, each provided service, and each arbitrary category such as each service vendor. Whether or not each terminal device or group of terminal devices matches the reaction condition is determined by the state change detection unit 11B for each section.
 管理部11は、状態変化検出部11Bの検出結果に従って、任意の端末装置/一群の端末装置の状態が管理中の反応条件に合致した場合に、反応条件に対応付いている反応動作を実行する。反応動作は、特に限定しないものの例えば、各端末装置に所定の通信コマンド(制御コマンド)を送信したり、特定地球局に所定メッセージ情報を通知したりする例が挙げられる。 In accordance with the detection result of the state change detection unit 11B, the management unit 11 executes a reaction operation associated with the reaction condition when the state of any terminal device / group of terminal devices matches the reaction condition being managed. . Although the reaction operation is not particularly limited, for example, a predetermined communication command (control command) is transmitted to each terminal device or predetermined message information is notified to a specific earth station.
 LEO衛星システム1は、この反応条件と反応動作について、LEO衛星システム1の管理者(衛星インフラプロバイダ)から設定を受ける。また、併せて、LEO衛星システム1は、この反応条件と反応動作について、各端末装置もしくは一群の端末装置を使用するユーザや、端末装置を使用する任意サービスを提供するサービスベンダーからも受け付ける。この反応条件と反応動作は、通信部12を介して 衛星ネットワークを構築した他の衛星と共有管理ようにしてもよい。このことで、LEO衛星システム1では、受け付けた反応条件と反応動作を、全ての衛星の管理部11にまで全球的に拡散させることが可能になる。 The LEO satellite system 1 receives a setting from the administrator (satellite infrastructure provider) of the LEO satellite system 1 for this reaction condition and reaction operation. At the same time, the LEO satellite system 1 accepts the reaction conditions and the reaction operation from a user who uses each terminal device or a group of terminal devices and a service vendor who provides an arbitrary service using the terminal device. This reaction condition and reaction operation may be shared and managed with other satellites that have constructed a satellite network via the communication unit 12. Thus, in the LEO satellite system 1, it is possible to diffuse the accepted reaction conditions and reaction operations globally to the management units 11 of all the satellites.
 換言すれば、LEO衛星システム1の各衛星は、通信部12を介して、LEO衛星システム1の管理者の設定以外にも、各サービスベンダーやユーザから受け付けられた 各衛星が管理する端末装置の 時々刻々の端末装置状態に対する反応条件と反応動作の設定を共有して、遠隔監視及び遠隔コントロールに備える。なお、必ずしも全ての衛星が全ての反応条件及と反応動作を保持せずとも、各衛星には、受け持つ可能性がある管理対象範囲に属している端末装置 若しくは 受け持つ可能性がある管理対象範囲で提供するサービスに関する反応条件と反応動作の設定を届ければよい。 In other words, each satellite of the LEO satellite system 1 is connected to the terminal device managed by each satellite received from each service vendor or user in addition to the setting of the administrator of the LEO satellite system 1 via the communication unit 12. Sharing the reaction conditions and reaction operation settings for the terminal device status from moment to moment to prepare for remote monitoring and remote control. Note that even though not all satellites hold all reaction conditions and reaction operations, each satellite has a terminal device that belongs to the management target range that it may be responsible for. What is necessary is just to deliver the reaction condition and reaction action setting regarding the service to be provided.
 図3(a)及び図3(b)は、領域管理衛星10の状態変化検出部11Bに関連する動作例を示したフローチャートである。図3(a)は、端末装置のステータス情報をもとに状態変化の検出を行う場合の動作例を示し、図3(b)は、端末装置の位置ステータス情報をもとに状態変化の検出を行う場合の動作例を示している。状態変化検出部11Bでは、条件動作記憶部11Aに保存されている反応条件と反応動作を参照することで、図中の状態変化検出処理の内容が設定される。このことで、領域管理衛星10は、管理領域に存在する端末装置群にたいして、サービスベンダーやユーザ等に設定された状態変化検出処理を実行する。各管理領域を各々の領域管理衛星10によって設定どおりに状態変化検出処理を実行することで、全球的に同様な且つ多様性のある見守りサービスが多重的に提供可能になる。 3 (a) and 3 (b) are flowcharts showing an operation example related to the state change detection unit 11B of the area management satellite 10. FIG. FIG. 3A shows an operation example in the case of detecting a state change based on the status information of the terminal device, and FIG. 3B shows a state change detection based on the position status information of the terminal device. An example of operation in the case of performing is shown. In the state change detection unit 11B, the contents of the state change detection process in the figure are set by referring to the reaction conditions and reaction operations stored in the condition operation storage unit 11A. As a result, the area management satellite 10 executes the state change detection process set by the service vendor, the user, or the like for the terminal device group existing in the management area. By executing the state change detection process for each management area as set by each area management satellite 10, it is possible to provide multiple monitoring services that are similar and diverse on a global basis.
[図3(a)処理内容] 
 まず、各衛星(管理部11,状態変化検出部11B)は、ユーザ若しくはサービスベンダーが設定登録した端末装置毎,種別毎, 座標毎などの反応条件を条件動作記憶部11Aから読み込む(S101)。なお、各衛星は、衛星の運用中、更新された反応条件を適宜適用するように動作する。
[FIG. 3 (a) Processing contents]
First, each satellite (management unit 11, state change detection unit 11B) reads reaction conditions such as for each terminal device, for each type, for each coordinate, etc., set and registered by the user or service vendor from the condition operation storage unit 11A (S101). Each satellite operates so as to appropriately apply the updated reaction conditions during the operation of the satellite.
 各衛星(管理部11,状態変化検出部11B)は、読み込んだ反応条件に従い状態変化検出処理を実行して、任意端末装置の前回の状態(前回取得のステータス)を前回状態記憶部Cから読み込み、さらに現在の状態(今回取得したステータス)を対象端末装置から取得する(S102,S103)。 Each satellite (management unit 11, state change detection unit 11B) executes state change detection processing in accordance with the read reaction conditions, and reads the previous state (previous acquisition status) of the arbitrary terminal device from the previous state storage unit C. Further, the current state (status acquired this time) is acquired from the target terminal device (S102, S103).
 次に、各衛星(管理部11,状態変化検出部11B)は、前回の状態と現在の状態から状態の変化の検出を行い、上記S101にて取得した反応状態に変化した場合、反応条件の内容(例えば個別管理若しくは群管理で反応条件を満たす特定状態になった場合)に 対応する反応動作(所定制御コマンド)を条件動作記憶部11Aから読み出す(S104)。 Next, each satellite (management unit 11, state change detection unit 11B) detects a change in state from the previous state and the current state, and changes to the reaction state acquired in S101, the reaction condition The reaction operation (predetermined control command) corresponding to the contents (for example, when a specific state satisfying the reaction condition is reached in individual management or group management) is read from the condition operation storage unit 11A (S104).
 最後に、各衛星(管理部11,状態変化検出部11B)は、読み込んだ反応動作を実行する(S105)。この実行行為によって、衛星は、個別管理若しくは群管理の対象である各端末装置に所定制御コマンドを送出する。併せて、各衛星は、各サービスベンダーや各ユーザにメッセージ通知を実行するように動作させてもよい。 Finally, each satellite (management unit 11, state change detection unit 11B) executes the read reaction operation (S105). By this execution action, the satellite sends a predetermined control command to each terminal device that is the object of individual management or group management. In addition, each satellite may be operated to perform message notification to each service vendor or each user.
[図3(b)処理内容] 
 まず、各衛星(管理部11,状態変化検出部11B)は、反応条件を条件動作記憶部11Aから読み込む(S201)。
[FIG. 3 (b) Processing contents]
First, each satellite (management unit 11, state change detection unit 11B) reads the reaction condition from the condition operation storage unit 11A (S201).
 各衛星(管理部11,状態変化検出部11B)は、読み込んだ反応条件に従い状態変化検出処理を実行する。読み込んだ反応条件が、任意端末装置の予定航行ルートと移動位置を条件としている場合、各衛星(管理部11,状態変化検出部11B)は、見守り対象の任意端末装置の予定航行ルート座標を取得する(S202)。この予定航行ルート座標は、任意端末装置自体から予め取得してもよいし、その管理者(ユーザやサービスベンダ)から取得してもよい。また、各衛星(管理部11,状態変化検出部11B)は、任意端末装置の前回の航行ルート情報を前回状態記憶部11Cから読み込み、さらに、現在の位置ステータスを該当任意端末装置から取得する(S203,S204)。航行ルート情報には、前回の位置ステータスと、航行ルートからの離脱等の状態とを含むこととする。さらに航行ルートの内容には、状態変化の検出に用いる移動速度、加速度等の情報を適宜含めることが望ましい。 Each satellite (management unit 11, state change detection unit 11B) executes state change detection processing according to the read reaction conditions. When the read reaction condition is based on the planned navigation route and the moving position of the arbitrary terminal device, each satellite (the management unit 11 and the state change detection unit 11B) acquires the planned navigation route coordinates of the arbitrary terminal device to be watched over. (S202). The planned navigation route coordinates may be acquired in advance from the arbitrary terminal device itself, or may be acquired from the administrator (user or service vendor). Each satellite (management unit 11, state change detection unit 11B) reads the previous navigation route information of the arbitrary terminal device from the previous state storage unit 11C, and further acquires the current position status from the corresponding arbitrary terminal device ( S203, S204). The navigation route information includes the previous position status and a state such as departure from the navigation route. Further, it is desirable that the contents of the navigation route appropriately include information such as moving speed and acceleration used for detecting the state change.
 次に、各衛星(管理部11,状態変化検出部11B)は、前回の航行ルート情報と現在の位置ステータスから状態の変化の検出を行い、前記上記S101にて取得した反応状態に変化した場合、反応条件の内容(例えば位置ステータスが航行ルートから外れた場合)に 対応する反応動作(緊急停止やアラーム通知コマンド、経路再計算コマンド等)を条件動作記憶部11Aから読み出す(S205)。 Next, each satellite (management unit 11, state change detection unit 11B) detects a change in state from the previous navigation route information and the current position status, and changes to the reaction state acquired in S101 above. Then, the reaction operation (emergency stop, alarm notification command, route recalculation command, etc.) corresponding to the content of the reaction condition (for example, when the position status deviates from the navigation route) is read from the condition operation storage unit 11A (S205).
 最後に、各衛星(管理部11,状態変化検出部11B)は、読み込んだ反応動作を実行する(S206)。この実行行為によって、衛星は、個別管理若しくは群管理の対象である各端末装置に経路再計算コマンドを送出する。併せて、各衛星は、各サービスベンダーや各ユーザに対して、経路再計算コマンドの送信に関するメッセージ通知を実行したり、該当端末装置に送信する制御コマンドを段階的に一時停止コマンドや緊急停止コマンドなどに格上げさせて動作させてもよい。 Finally, each satellite (management unit 11, state change detection unit 11B) executes the read reaction operation (S206). By this execution action, the satellite sends a route recalculation command to each terminal device that is the object of individual management or group management. At the same time, each satellite performs a message notification regarding the transmission of the route recalculation command to each service vendor and each user, and a control command to be transmitted to the corresponding terminal device in a stepwise pause command or emergency stop command. It may be upgraded and operated.
 LEO衛星システム1は、状態変化検出処理の内容(反応条件と反応動作)を、個々の端末装置毎や、端末装置群毎、サービス加入端末毎、サービスベンダー毎など、サービスの要求事項に合わせて自由に受け付ければよい。 The LEO satellite system 1 adjusts the contents of the state change detection process (reaction conditions and reaction operations) according to service requirements such as individual terminal devices, terminal device groups, service subscriber terminals, and service vendors. You can accept it freely.
 反応条件を例示すれば、例えば異常ステータスへの変化,異常報知,特定地域への進入,予定ルート逸脱,要危険回避,サービス用フラグの検出などが挙げられる。また、反応動作を例示すれば、異常通知(Anomaly_Notification)イベントの生成、ナビゲーション再計算、再位置測位実行、方向転換、緊急停止、センサ稼働、アラーム音鳴動など、が挙げられる。反応動作はサービスの要求事項に合わせて自由に設定を受け付ければよい。また、反応動作は、複数の動作や、更なる条件分岐で変化を付けて設定してもよい。 Examples of reaction conditions include change to an abnormal status, abnormality notification, entry to a specific area, departure from a planned route, avoidance of danger, detection of a service flag, and the like. Examples of the reaction operation include generation of an abnormality notification (Anomaly_Notification) event, navigation recalculation, repositioning execution, direction change, emergency stop, sensor operation, alarm sounding, and the like. The reaction operation may be freely set according to the service requirements. In addition, the reaction operation may be set by changing a plurality of operations or further conditional branching.
 状態変化検出(反応条件合致)は、端末装置の動作状態(ステータス変化)から直接的に判別する方法や、予め入力された端末装置の走行/航行/飛行/巡航ルート情報と、各端末装置の位置情報を比較する方法、予め指定された範囲や高度への進入を検出する方法などが例示できる。 The state change detection (reaction condition match) can be performed by directly determining from the operation state (status change) of the terminal device, the pre-input travel / navigation / flight / cruising route information of the terminal device, Examples include a method of comparing position information and a method of detecting entry to a predesignated range or altitude.
 上記した動作例のように、管理部11は、予め準備された 各々の端末装置/一群の端末装置の状態 に対する反応条件とその反応動作を 他の衛星と共有して管理しつつ、管理領域内の端末装置群を見守る。反応条件に従って生成された異常通知(Anomaly_Notification)イベントは、他の衛星と即座に共有して管理することが望ましい。また、異常通知は、優先度や異常度を持たせて他の衛星や地上セクタなどと共有することが望ましい。また、各衛星は、管理領域内の異常通知の発生頻度が異常に高まったり、発生個所が集中していた場合に、優先度や異常度を高めた異常通知を他の衛星、地上セクタと共有する仕組みを設けることが望ましい。また、異常通知は、必要に応じてSBASやQZSSを介して、即座に特定地上セクタに通知する仕組みとしてもよい。この場合、各衛星が自律的に異常通知に付与されている優先度や異常度を参照して、宛先等を差配する。この過程で、各衛星は、QZSS等を使用するか、どの地域の地上セクタまで異常通知を展開するかなどを、自律的に定めながら動作する。この仕組みをLEO衛星システム1に設けることで、例えば、特定地上セクタに集まった特定種類の異常通知を参照することで、事故、地震、津波などの事象を抽出することも可能になる。 As in the above-described operation example, the management unit 11 manages the reaction condition and the reaction operation for each state of the terminal device / group of terminal devices prepared in advance and manages the reaction operation in common with other satellites. Watch over the terminal devices. It is desirable that anomaly notification (Anomaly_Notification) events generated according to reaction conditions are immediately shared and managed with other satellites. In addition, it is desirable that the abnormality notification is shared with other satellites or the terrestrial sector with priority and abnormality level. In addition, each satellite shares anomaly notification with higher priority and anomaly with other satellites and the terrestrial sector when the frequency of occurrence of anomaly notifications in the management area increases abnormally or the occurrence locations are concentrated. It is desirable to provide a mechanism to do this. Further, the abnormality notification may be immediately notified to a specific ground sector via SBAS or QZSS as necessary. In this case, each satellite autonomously refers to the priority and abnormality level assigned to the abnormality notification, and distributes the destination and the like. In this process, each satellite operates while autonomously deciding whether to use QZSS or the like, or to which terrestrial sector to expand the abnormality notification. By providing this mechanism in the LEO satellite system 1, it is possible to extract events such as accidents, earthquakes, and tsunamis by referring to specific types of abnormality notifications gathered in a specific ground sector.
 例えば、各衛星は、見守る対象(遠隔監視制御対象)に対してユーザやサービスベンダーが設定した個別の運行計画(運行ルートや許容センサ値など)を領域担当前に取得し、領域担当中に端末装置から収集した各種ステータスと比較する。その結果、運行計画から外れた端末装置を検出した場合に、その衛星は、通信部12を介して 生成した異常通知イベントを他の衛星や地球局と共有する。 For example, each satellite acquires an individual operation plan (operation route, allowable sensor value, etc.) set by the user or service vendor for the object to be monitored (remote monitoring control object) before the area charge, and the terminal during the area charge Compare with various statuses collected from the device. As a result, when a terminal device deviating from the operation plan is detected, the satellite shares the abnormality notification event generated through the communication unit 12 with other satellites and earth stations.
 この共有によって、LEO衛星システム1の管理者と共に、ユーザやサービスベンダーも、その端末装置が異常値等を示したことを認知可能になる。ユーザやサービスベンダーが異常を知る方法は特に限定しないものの、例えば地球局(例えばサービスベンダーのクラウドスペースやデータセンタなど)に収集保管された異常通知を、ユーザが既存ネットワーク回線経由で読み出せばよい。 This sharing makes it possible for the user and the service vendor together with the administrator of the LEO satellite system 1 to recognize that the terminal device has shown an abnormal value or the like. Although the method for the user or service vendor to know the abnormality is not particularly limited, for example, the user can read out the abnormality notification collected and stored in the earth station (for example, the cloud space or data center of the service vendor) via the existing network line. .
 LEO衛星システム1(領域担当衛星)は、設定されている反応条件に合致した際に、反応条件に対応付いた通信コマンドを地球側にすなわち該当端末装置に向けて通信する。
この通信コマンドは、LEO衛星システム1の管理者が予め準備済みのなかから設定すること以外に、ユーザやサービスベンダーが作成した独自の通知コマンドを送信可能にLEO衛星システム1に登録してもよい。
When the LEO satellite system 1 (regional satellite) matches the set reaction condition, the LEO satellite system 1 communicates a communication command associated with the reaction condition to the earth side, that is, to the corresponding terminal device.
This communication command may be registered in the LEO satellite system 1 so that a unique notification command created by the user or service vendor can be transmitted, in addition to being set by the administrator of the LEO satellite system 1 in advance. .
 また、この通知コマンドには、安全化コマンド(Safety_Command)が設定可能である。 Also, a safety command (Safety_Command) can be set for this notification command.
この安全化コマンドを用いることで、該当端末装置や周囲が危険回避や問題解決動作を実行する。この安全化コマンドは、ドローンであれば該当ドローンにナビゲーション再計算/停止/方向転換等を実行させる通信コマンドを1つ若しくは組み合わせて設定すればよい。なお、ユーザやサービスベンダーは、予め設定しておいた通知コマンドに替えて、任意タイミングで安全化コマンド等の通知コマンドの送信を、LEO衛星システム1に設定可能にすることが望ましい。この仕組みで、ユーザ等は、異常が起きた場合などに、所望動作を端末装置に任意のタイミングで取らせることが可能になる。この通知コマンドは、優先度を持たせる場合(即時性を高める場合)、必要に応じてSBASやQZSSを介して、即座に各衛星(領域担当衛星)に通知する仕組みをLEO衛星システム1に構築してもよい。
また、通知コマンドの優先度が高いことで、LEO衛星システム1内で伝搬速度を上げる仕組みを設けることも望ましい。また、安全化コマンドを最優先に処理する仕組みを各衛星(管理部11)に設けることとしてもよい。
By using this safety command, the corresponding terminal device and its surroundings perform danger avoidance and problem solving operations. For the safety command, if it is a drone, it is sufficient to set one or a combination of communication commands for causing the corresponding drone to execute navigation recalculation / stop / direction change. Note that it is desirable that the user or service vendor can set the LEO satellite system 1 to transmit a notification command such as a safety command at an arbitrary timing instead of the notification command set in advance. With this mechanism, the user or the like can cause the terminal device to take a desired action at an arbitrary timing when an abnormality occurs. The LEO satellite system 1 has a mechanism for notifying each satellite (regional satellite) immediately when necessary by giving priority (in order to improve immediacy), via SBAS or QZSS as necessary. May be.
It is also desirable to provide a mechanism for increasing the propagation speed in the LEO satellite system 1 because the priority of the notification command is high. Moreover, it is good also as providing the structure which processes a safety command in the highest priority in each satellite (management part 11).
 ここで、上記図3(b)で示した動作フロー例で、複数のサービスベンダーにインフラストラクチャを提供する場合を説明する。 Here, the case where infrastructure is provided to a plurality of service vendors will be described with reference to the example of the operation flow shown in FIG.
 まず、端末装置としてドローンを管理するサービスベンダーにインフラストラクチャを提供する場合を説明する。 First, a case where infrastructure is provided to a service vendor that manages a drone as a terminal device will be described.
 LEO衛星システム1は、サービスベンダーから予め飛行禁止領域の設定や都度の飛行ルートの入力を受け付ける。併せて、LEO衛星システム1は、サービスベンダーから飛行ルートを外れた際に各ドローンに実行させる動作の設定を受け付ける。この際、LEO衛星システム1の管理者は、公的な飛行禁止領域などの設定を予め設定しておくことが望ましい。このように準備工程として、反応条件と反応動作の設定をドローン毎/地域毎/サービス毎などの区分を適宜設けつつ受け付ける。 The LEO satellite system 1 accepts the setting of a prohibited flight area and the input of a flight route in advance from a service vendor. At the same time, the LEO satellite system 1 accepts setting of operations to be executed by each drone when the flight route is deviated from the service vendor. At this time, it is desirable for the administrator of the LEO satellite system 1 to set in advance settings such as a public flight prohibited area. As described above, as the preparation process, the reaction conditions and the reaction operation settings are accepted while appropriately providing classifications such as for each drone / for each region / for each service.
 その後、運用工程として、サービスベンダーに対して、LEO衛星システム1として“端末装置の遠隔監視及び遠隔制御プラットフォーム”を提供する。 After that, as an operation process, a “terminal device remote monitoring and remote control platform” is provided as a LEO satellite system 1 to the service vendor.
 このことで、サービスベンダーは、ドローンユーザに提供する“ドローンの遠隔監視及び遠隔制御”を実現するインフラストラクチャ(LEO衛星システム1)を、使用できる。 This enables service vendors to use the infrastructure (LEO satellite system 1) that realizes “drone remote monitoring and remote control” provided to drone users.
 このLEO衛星システム1は、さまざまなユーザ、サービスベンダーに同一のプラットフォームを重畳的に提供可能であり、1端末装置あたりのコストを安価に抑えることができる。 The LEO satellite system 1 can provide the same platform in a superimposed manner to various users and service vendors, and can reduce the cost per terminal device at a low cost.
 次に、端末装置として自動運転車を管理するサービスベンダーにインフラストラクチャを提供する場合を説明する。 Next, the case where infrastructure is provided to a service vendor that manages an autonomous driving vehicle as a terminal device will be described.
 LEO衛星システム1は、サービスベンダー若しくはユーザから予め走行ルートの入力を受け付ける。併せて、LEO衛星システム1は、サービスベンダー若しくはユーザから走行ルートを外れた際に自動運転車に実行させる動作や報告先の設定を受け付ける。また、自動運転車の逐次のステータスを管理(登録)するクラウドスペースの設定を受け付ける。このように準備工程として、このように、反応条件と反応動作の設定を各種制限事項などと共に受け付ける。 The LEO satellite system 1 receives a travel route input from a service vendor or user in advance. In addition, the LEO satellite system 1 accepts an operation to be executed by the automatic driving vehicle and a report destination setting when the travel route is deviated from the service vendor or the user. In addition, the setting of a cloud space for managing (registering) the sequential status of the autonomous driving vehicle is accepted. Thus, as a preparation process, the reaction conditions and reaction operation settings are received together with various restrictions.
 その後、運用工程として、各衛星は、自動運転車の位置座標が予め定められた走行ルートを外れていないかや、許容走行領域から外れていないか、などを、自動運転車から通知されるステータスに含まれる位置情報を元に判定する。この許容走行領域は、前方や後方の走行車との車間距離などから安全性が維持できる領域を想定する。 After that, as an operation process, each satellite is notified from the autonomous driving vehicle whether the position coordinates of the autonomous driving vehicle are not deviated from the predetermined traveling route or whether they are out of the allowable traveling area. Is determined based on the position information included in the. The permissible travel area is assumed to be an area where safety can be maintained from the distance between the front and rear traveling vehicles.
 また、反応動作は、該当自動運転車に加えて、及び/又は周囲の乗り物に対する通知コマンドを含ませておいてもよい。例えば、ナビゲーション再計算/停止/方向転換/警告の少なくとも一つを通知する通信コマンドが想定される。 In addition, the reaction operation may include a notification command in addition to the corresponding autonomous driving vehicle and / or a surrounding vehicle. For example, a communication command that notifies at least one of navigation recalculation / stop / direction change / warning is assumed.
 このように、様々なサービスベンダーは、LEO衛星システム1の“端末装置の遠隔監視及び遠隔制御プラットフォーム”を、異なるサービス用途に使用できる。 In this way, various service vendors can use the “terminal device remote monitoring and remote control platform” of the LEO satellite system 1 for different service applications.
 換言すれば、このLEO衛星システム1は、さまざまなユーザ、サービスベンダーにプラットフォームを重畳的に提供可能であり、1端末装置あたりのコストを安価に抑えることができる。 In other words, the LEO satellite system 1 can provide platforms to various users and service vendors in a superimposed manner, and the cost per terminal device can be kept low.
 すなわち、この構成によって、経済性及び多様性を有する多くの端末装置向けの全球的見守りインフラストラクチャを構築するLEO衛星システム1を提供できる。 That is, with this configuration, it is possible to provide the LEO satellite system 1 that constructs a global monitoring infrastructure for many terminal devices having economic efficiency and diversity.
 また、上記説明では省略していたが、LEO衛星システム1は、ユーザや、サービスベンダー、端末装置などに、セキュリティ・プライバシープラットフォームを合わせて提供する。 Although omitted in the above description, the LEO satellite system 1 provides a security / privacy platform to users, service vendors, terminal devices, and the like.
 セキュリティ・プライバシープラットフォームとして、各衛星は、端末-衛星間通信周波数のランダム化や、メッセージ暗号化、認証機能を実装する。セキュリティ・プライバシープラットフォームは、少なくとも以下の3機能を設けることが望ましい。 As a security / privacy platform, each satellite implements randomization of the communication frequency between terminals and satellites, message encryption, and authentication functions. It is desirable that the security / privacy platform has at least the following three functions.
 秘匿化機能:監視制御エッジマネージャが監視制御エージェントと通信する際に使用する周波数を測位時刻に基づきランダム化(暗号化)する。秘匿化機能によりサービス稼働情報などが第三者に流出しにくくなる。 Concealment function: The frequency used when the supervisory control edge manager communicates with the supervisory control agent is randomized (encrypted) based on the positioning time. The concealment function makes it difficult for service operation information to be leaked to third parties.
 End-to-Endルーティング機能(動的再構成機能):監視制御メッセージはメッセージそのものに付与されている発信者/利用者情報に基づき衛星ネットワークを間に含むEnd-to-Endルーティングを実装する。この動的再構成機能により監視制御メッセージなどが第三者に流出しにくくなる。 End-to-End routing function (dynamic reconfiguration function): The monitoring control message implements end-to-end routing including the satellite network based on the sender / user information attached to the message itself. This dynamic reconfiguration function makes it difficult for monitoring control messages and the like to flow out to third parties.
 認証機能:監視制御メッセージの送受信に認証を要求する。見守り対象ユーザやサービスベンダー、第三者監査機関など、監視制御メッセージの送受信を認証が必要になる。End-to-Endルーティング機能と認証機能により許可されたものだけが監視制御メッセージにアクセスできるようにする。 Authentication function: Requests authentication for sending and receiving monitoring control messages. It is necessary to authenticate the sending and receiving of monitoring control messages, such as watching users, service vendors, and third-party auditing organizations. Only those permitted by the end-to-end routing function and the authentication function can access the monitoring control message.
 上記したように、LEO衛星システム1は、様々なユーザやサービスベンダーに、経済性、多様性、安全性を提供する見守りインフラストラクチャを提供できる。 As described above, the LEO satellite system 1 can provide a monitoring infrastructure that provides economic efficiency, diversity, and safety to various users and service vendors.
 経済性の比較をおこなうとすれば、例えば、既存の無線通信システムや誘導・航法システムなどのインフラ整備の状態監視には莫大な経費をかけている。これに対して全球的衛星クラウドシステムを利用することで、安価に同等の仕組みを提供できる。 If you want to compare the economic efficiency, for example, it is very expensive to monitor the status of infrastructure development such as existing wireless communication systems and guidance / navigation systems. On the other hand, an equivalent mechanism can be provided at low cost by using a global satellite cloud system.
 また、既存システムは、見守る対象端末種別やサービス種別が増えた場合、地域毎に対象端末種別ごとにシステムを構築している。これに対して全球的衛星クラウドシステムを利用することで、安価に同等の仕組みで対応可能になる。 In addition, the existing system constructs a system for each target terminal type for each region when the number of target terminal types and service types to be monitored increases. On the other hand, using a global satellite cloud system makes it possible to cope with the same mechanism at a low cost.
 また、認証機能等を用いて、メッセージ送受信や衛星通信網への高度なアクセス制御性を確保することで、他のサービスや社会生活との干渉を第三者機関(国や自治体)が監査可能になる。また、利用者間に高い情報秘匿性を確保可能になる。 In addition, third party organizations (countries and local governments) can audit interference with other services and social life by ensuring advanced access control of messages to and from the satellite communication network using authentication functions. become. In addition, high information confidentiality can be ensured between users.
[他の実施形態] 
 次に、幾つかの実施形態の変形例を説明する。また、各変形例で説明する事項は適宜組み合わせることが可能である。なお、下記説明では、端末装置の管理など、説明済みの事柄の説明を省略する。
[Other Embodiments]
Next, modified examples of some embodiments will be described. In addition, items described in each modification can be combined as appropriate. In the following description, descriptions of matters already described such as management of terminal devices are omitted.
[変形例1] 
 LEO衛星システム1を構成する多数の衛星各々は、第1の実施形態と同様に、管理部11と通信部12とを含む構成である。通信部12は、衛星間通信と同様に、地球上(担当領域)の多数の端末装置との間で双方向通信可能に構成される。本実施形態の通信部12は、通信プロトコルにDTNプロトコル(Delay, Disruption, Disconnection Tolerant Protocol)を使用する。
[Modification 1]
Each of a large number of satellites constituting the LEO satellite system 1 includes a management unit 11 and a communication unit 12 as in the first embodiment. Similar to the inter-satellite communication, the communication unit 12 is configured to be capable of bidirectional communication with a large number of terminal devices on the earth (area in charge). The communication unit 12 of the present embodiment uses a DTN protocol (Delay, Disruption, Disconnection Tolerant Protocol) as a communication protocol.
 このDTNプロトコルを用いることで、TCP(Transmission Control Protocol)等の通信プロトコルに対して常時的接続性を補強できる。より具体的には、後述する安全化コマンド(Safety_Command)や異常通知(Anomaly_Nofitication)などの、損失を望まない情報を例え高遅延、断続的通信環境においてもロスすること無しにLEO衛星システム1内に取り込める。また、DTNプロトコルを用いて衛星-端末装置間で耐Dネットワークを構築することにより、管理領域に在る端末装置群から送られてくる各種ステータス情報(位置情報やセンサ値など)の収集に係る全体的な通信回線利用率を高め、また通信経済性を高めることができる。 常 時 By using this DTN protocol, it is possible to reinforce the continuous connectivity over communication protocols such as TCP (Transmission Control Protocol). More specifically, information that does not require loss, such as a safety command (Safety_Command) and anomaly notification (Anomaly_Nofitication), which will be described later, can be stored in the LEO satellite system 1 without loss even in a high-delay, intermittent communication environment. I can take it in. Also, by building a D-tolerant network between satellites and terminal devices using the DTN protocol, various status information (position information, sensor values, etc.) sent from the terminal device group in the management area is collected. It is possible to increase the overall communication line utilization rate and communication efficiency.
 また、各衛星の通信部12は、限定しないもののソフトウェア無線(SDR:Software-defined radio)で構築することが望ましい。ソフトウェア無線によって、通信部を構築することで、例えば、サービスベンダーの既存施設(例.鉄道無線設備や防災無線)とも新たに通信可能に衛星上で対応通信方式を切り替えたり、対応通信方式の追加/削除/バージョン変更などが可能になる。 Moreover, it is desirable to construct the communication unit 12 of each satellite by software-defined radio (SDR) although not limited thereto. By constructing a communication unit using software defined radio, for example, it is possible to newly communicate with existing facilities of service vendors (eg, railroad radio equipment and disaster prevention radio). / Deletion / version change etc. becomes possible.
 更に、通信部12は、衛星通信部12Aと、地表通信部12Bと、を分けてソフトウェア無線で共通ハードウェア上に構成し、少なくとも地表通信部をマルチ通信方式で端末装置群と同時通信可能に構成することが望ましい。 Furthermore, the communication unit 12 divides the satellite communication unit 12A and the surface communication unit 12B and configures them on a common hardware by software radio so that at least the surface communication unit can simultaneously communicate with the terminal device group by the multi-communication method. It is desirable to configure.
 このことによって、通信(端末種別)の更なる多様性や更なる拡張性を担保可能になる。なお、通信部12は、End-to-End通信や保守拡張性を考え、SDN(Software Defined Network)/NFV(Network Functions Virtualization)を採用しておくことが望ましい。 This makes it possible to ensure further diversity of communication (terminal type) and further expandability. The communication unit 12 preferably employs SDN (Software Defined Network) / NFV (Network Functions Virtualization) in consideration of end-to-end communication and maintenance scalability.
 このように各衛星を構成することで、経済性と多様性をより高められる。 ¡Establishing each satellite in this way can improve economic efficiency and diversity.
[変形例2] 
 LEO衛星システム1(衛星コンステレーション)は、どのような手法で反応条件と反応動作の設定を受け付けることとしても良いものの、情報の集約及び展開を受け持つ地上セクタを設けることが妥当である。この地上セクタを以後 監視制御センターマネージャ局と呼ぶ。
[Modification 2]
Although the LEO satellite system 1 (satellite constellation) may accept reaction conditions and reaction operation settings by any method, it is appropriate to provide a ground sector that is responsible for collecting and deploying information. This ground sector will be referred to as the supervisory control center manager station hereinafter.
 この監視制御センターマネージャ局は、一般的な通信ネットワーク(光ファイバ網や移動体通信網など)を介して、サービスベンダーなどから各々の端末装置状態に対する反応条件と反応動作の設定を受け付けて管理する。また、監視制御センターマネージャ局は、時々刻々とその設定を各衛星に設定する。この衛星への設定は、テレメトリやテレコマンドによる個々の衛星への直接的な通信以外にも、上記端末装置と衛星が通信する通信方式で設定したり、衛星-衛星間で構築する衛星ネットワークを介して設定することとしてもよい。この衛星ネットワークを介して設定することで、例えば監視制御センターマネージャ局と設定対象衛星との関係が見通し内に無い場合であっても、設定を可能にできる。また、設定対象衛星の周回を待たずに、見通し内にある衛星をトランスポンダとして用いることで、設定の即時性を高めることができる。また、反応条件と反応動作の設定は、静止衛星やQZSSなどの中軌道や高軌道を飛行する衛星を使用して、反応条件と反応動作の設定を管理することとしてもよい。 This supervisory control center manager station receives and manages reaction conditions and reaction operation settings for each terminal device status from a service vendor or the like via a general communication network (such as an optical fiber network or a mobile communication network). . In addition, the supervisory control center manager station sets the setting for each satellite every moment. In addition to direct communication to individual satellites by telemetry or telecommand, this satellite can be set by a communication method in which the terminal device communicates with the satellite, or a satellite network built between satellites can be established. It is good also as setting via. By setting via this satellite network, setting can be made possible even when, for example, the relationship between the supervisory control center manager station and the setting target satellite is not within the line of sight. In addition, by using a satellite that is in line-of-sight as a transponder without waiting for the setting target satellite to go around, it is possible to improve the immediacy of setting. In addition, the reaction condition and the reaction operation may be set by managing the reaction condition and the reaction operation using a satellite flying in a medium or high orbit such as a geostationary satellite or QZSS.
 また、この監視制御センターマネージャ局は、通信ネットワークを介して、ユーザやサービスベンダーから 端末装置の運用計画 若しくは 端末装置の位置の時間毎の期待値を受けつけて管理する仕組みを有することで、利便性及び経済性のバランスが良いリモートサービスを具現化できる。また、監視制御センターマネージャ局は、端末装置群の異常通知や制御メッセージの集約と展開を行うことも可能である。 In addition, this supervisory control center manager station has a mechanism for receiving and managing the expected value for each time of the operation plan of the terminal device or the position of the terminal device from the user or service vendor via the communication network. In addition, it is possible to realize a remote service with a good balance of economy. In addition, the supervisory control center manager station can also aggregate and deploy notifications of abnormalities of terminal devices and control messages.
 各衛星は、直接/間接通信で、端末装置毎の運用計画 若しくは 端末装置の位置の時間毎の期待値の設定を受け付ける。各衛星は、この設定と、地球側の管理対象領域から時々刻々と送られてくる数多くの端末装置のステータス(具体的には位置情報)を比較して、各端末装置の位置座標が異常範囲になっていないか判別する。衛星は、ある端末装置の位置座標が異常範囲になった場合、端末装置向けや、サービスベンダー、ユーザ向けに、予め設定されている反応動作を実行する。例えば、衛星は、異常通知を生成して他の衛星及び/又は地球局に向けて放送すると共に、該当端末装置状態に向けて安全化指令を送信すればよい。この際、各衛星は、異常通知や制御メッセージの優先度を他のメッセージに対して高めておくことが望ましい。また衛星は、管理領域毎の端末装置群のステータスを受け渡す際に、端末装置群に対して生成した端末装置の異常通知と共にその生成時刻を付与することが望ましい。また、異常通知メッセージや安全化指令メッセージのような重要な情報は、中継衛星も時刻履歴を付与することが望ましい。 Each satellite accepts an operation plan for each terminal device or setting of an expected value for each time of the position of the terminal device by direct / indirect communication. Each satellite compares this setting with the status (specifically position information) of many terminal devices sent from the management area on the earth side by moment, and the position coordinates of each terminal device are in the abnormal range. Determine if it is not. When the position coordinates of a certain terminal device are in an abnormal range, the satellite executes a reaction operation set in advance for the terminal device, the service vendor, and the user. For example, the satellite may generate an abnormality notification and broadcast it to other satellites and / or earth stations, and transmit a safety command to the corresponding terminal device state. At this time, it is desirable for each satellite to increase the priority of the abnormality notification or control message over other messages. In addition, when the satellite delivers the status of the terminal device group for each management area, it is desirable to give the generation time together with the generated abnormality notification of the terminal device to the terminal device group. For important information such as an abnormality notification message and a safety command message, it is desirable that the relay satellite also provides a time history.
 異常通知メッセージや安全化指令メッセージのような重要な情報の履歴は、例えば、端末装置のIDと判別結果と時間を紐付けて、監視制御センターマネージャ局や特定のデータセンタに集約することが望ましい。このように管理しておけば、サービスベンダーや、ユーザが適宜その情報にアクセスして、管理対象端末装置の状態確認や補修、回収、整備などの適切な対応が取れるようになる。例えば、特定地域から地球の裏側の管理対象端末に安全化指令メッセージを、LEO衛星システム1を介して届けることが可能になる。 It is desirable that the history of important information such as an abnormality notification message and a safety command message is aggregated in a monitoring control center manager station or a specific data center, for example, by associating the terminal device ID with the determination result and time. . If managed in this way, the service vendor or user can access the information as appropriate to take appropriate measures such as checking the status of the terminal device to be managed, repairing it, collecting it, and maintaining it. For example, a safety command message can be delivered from a specific area to a management target terminal on the back side of the earth via the LEO satellite system 1.
 このように、上記した反応条件及び反応動作と共に 若しくは 別に運行計画から定まる時々刻々の位置座標と現実の位置座標とを比較判断する ことを、LEO衛星システム1が各担当衛星の処理リソースを以て提供することで、全球的に低コストで安全や高信頼性サービスなどを提供可能になる。 In this way, the LEO satellite system 1 provides the processing resources of each satellite in charge to compare and judge the position coordinates and the actual position coordinates from time to time determined from the operation plan along with the reaction conditions and reaction actions described above. This makes it possible to provide safety and high reliability services at a low cost globally.
 このLEO衛星システム1による見守りの仕組みは、多数のLEO衛星によって全球的に実現できる。換言すればある地域への見守りインフラストラクチャと共に地球の裏側の見守りインフラストラクチャを同時に提供できる。 The watching mechanism by the LEO satellite system 1 can be realized globally by a large number of LEO satellites. In other words, it is possible to simultaneously provide a monitoring infrastructure for a certain area as well as a monitoring infrastructure for the backside of the earth.
 また、同時的に、全航空機と特定地域の全稼働ドローンと全路線バスとサービス加入者スマートフォンのように数多くの多種多様な端末装置を同じ仕組みで遠隔監視/遠隔制御することも可能である。技術的には、衛星見通し内であれば全球のどこに存在していても端末装置全てを常時的に見守ることが可能である。また、端末装置が衛星見通し内外を行き来したとしても、DTN通信を組み合わせていることで、非常に高い常時接続性を誇る見守りサービスを提供できる。 At the same time, it is also possible to remotely monitor / control a large number of various terminal devices such as all aircraft, all operating drones, all route buses, and service subscriber smartphones in a specific area with the same mechanism. Technically, it is possible to constantly watch all the terminal devices regardless of where they exist in the whole globe as long as they are within the satellite line-of-sight. Even if the terminal device moves back and forth within the satellite line-of-sight, it is possible to provide a monitoring service that boasts extremely high always-on connectivity by combining DTN communication.
 このように、LEO衛星システム1の各領域担当衛星は、通信部を介して自己が現在受け持つ管理領域に在る端末装置群との間の通信を実行して、該管理領域に存在する端末装置群の位置情報を含むステータスを収集し、また、個々の端末装置状態が反応条件に合致した場合に、該反応条件に対応付いた反応動作を実行して、多数の端末装置を管理する。 As described above, each area satellite in the LEO satellite system 1 performs communication with the terminal apparatus group in the management area that it currently handles via the communication unit, and the terminal apparatus that exists in the management area. Status including group position information is collected, and when each terminal device state matches the reaction condition, a reaction operation corresponding to the reaction condition is executed to manage a large number of terminal devices.
 このことで、各衛星は協調して、各管理領域を交代しながら地球側に存在する特定の端末装置及び/又は複数の端末装置群を全球的に見守る(遠隔監視制御する)ことが可能になる。 As a result, each satellite can coordinately monitor a specific terminal device and / or a plurality of terminal device groups existing on the earth side (remote monitoring and control) while changing over each management area. Become.
[変形例3] 
 LEO衛星システム1(衛星コンステレーション)は、多くの端末装置を遠隔監視及び遠隔管理する場合、全ての端末ステータスを衛星間でやり取りした場合に、膨大な情報量となる。このため、衛星間ネットワークの許容容量に比べて多くの端末装置をサービス対象とした場合に帯域圧迫や輻輳への対策が必要となる。このような際は、衛星間の通信量を適度に制限する必要が生じる。
[Modification 3]
The LEO satellite system 1 (satellite constellation) has a huge amount of information when all terminal statuses are exchanged between satellites when many terminal devices are remotely monitored and managed. For this reason, it is necessary to take measures against bandwidth compression and congestion when a larger number of terminal devices are targeted for service than the allowable capacity of the inter-satellite network. In such a case, it is necessary to moderately limit the amount of communication between satellites.
 この対策として、衛星に異常通知メッセージを生成する機能を設け、異常通知メッセージや安全化指令のみを衛星間ネットワークを介して衛星間で共有する衛星コンステレーションの実施形態も有益である。この衛星コンステレーションは、衛星間通信帯域量を少なくできるため、衛星数や衛星規模が少なくなり、経済性に富む。換言すれば、異常通知メッセージと安全化指令の伝達をメインサービスに据えた衛星コンステレーションは、同一規模の各種ステータス全部を伝達する衛星コンステレーションよりも、サービス提供台数が飛躍的に増やせる。 As a countermeasure, an embodiment of a satellite constellation in which a function for generating an abnormality notification message is provided in the satellite and only the abnormality notification message and the safety command are shared between the satellites via the inter-satellite network is also useful. Since this satellite constellation can reduce the amount of inter-satellite communication bandwidth, the number of satellites and the scale of the satellite are reduced, which is economical. In other words, a satellite constellation in which transmission of an abnormality notification message and a safety command is set as a main service can dramatically increase the number of services provided compared to a satellite constellation that transmits all the various statuses of the same scale.
 すなわち、LEO衛星システム1を構成する衛星は、上記した実施形態のように時々刻々と収集される膨大な情報(端末ステータス)を管理部で異常通知メッセージを生成するか判別しつつ、異常通知メッセージを生成した場合に他の衛星と共有する。ユーザ等はこの異常通知メッセージに反応して安全化指令を、衛星ネットワークを介して該当端末に通知することも可能にするため、安全化指令も衛星ネットワークで受け渡す。なお、各衛星は、異常通知メッセージの生成を反応条件として関連付けて登録されている反応動作を実行するようにすることも可能である。 That is, the satellites constituting the LEO satellite system 1 determine whether the management unit generates an abnormality notification message based on the huge amount of information (terminal status) collected every moment as in the above-described embodiment, while determining whether the abnormality notification message is generated. If it is generated, it is shared with other satellites. In response to the abnormality notification message, the user or the like can also send the safety command to the corresponding terminal via the satellite network. Each satellite can execute a reaction operation registered in association with generation of an abnormality notification message as a reaction condition.
 このように構成すれば、比較的シンプルなメッセージ交換のみの衛星コンステレーションを構築可能となり、全球的にみて遠隔監視下に更に多くの端末装置を置くことが可能になる。換言すれば、経済性を更に高められる。また、衛星コンステレーションを構築する期間の運用形態を本構成として、衛星数が増えた後にその通信許容容量に合わせてサービスを拡充するようにしてもよい。 With this configuration, it is possible to construct a relatively simple satellite constellation with only message exchange, and it is possible to place more terminal devices under remote monitoring from a global perspective. In other words, the economy can be further improved. Further, the operation form during the period for constructing the satellite constellation may be the present configuration, and after the number of satellites increases, the service may be expanded in accordance with the allowable communication capacity.
 また、上記した各種メッセージは、既存のインターネットプロトコルやSIPプロトコル(Session Initiation Protocol)などと同様に、標準化することが望ましい。標準化すれば、端末装置の開発自由度や、サービスの多様性が担保できる。また、SDN/NFVを採用することで、見守りサービスの多様性を担保できる。 Also, it is desirable to standardize the above-mentioned various messages in the same manner as the existing Internet protocol and SIP protocol (Session Initiation Protocol). If standardized, it is possible to secure the degree of freedom of terminal device development and the variety of services. In addition, by adopting SDN / NFV, the diversity of watching services can be guaranteed.
 なお、上記説明では、異常通知メッセージや安全化指令のみを衛星間ネットワークを通過させることを述べたが、衛星間通信ネットワークの能力次第では、異常通知メッセージや安全化指令のみを通過させるサービスと、各種メッセージを全て通過させるサービスを並立させてもよい。 In the above description, it is described that only the abnormality notification message and the safety instruction are allowed to pass through the inter-satellite network, but depending on the capability of the inter-satellite communication network, the service that allows only the abnormality notification message and the safety instruction to pass, Services that allow all the various messages to pass may be arranged side by side.
 また、サービス運行時間帯や監視制御のQoS(Quality of Service)要求が異なる多様な見守りユーザに対して衛星間通信ネットワークの状態に応じて、ベストエフォートで動的QoS制御/経路設定を実施するようにしてもよい。 In addition, dynamic QoS control / route setting is performed at best effort according to the state of the inter-satellite communication network for various watching users with different service operation times and QoS (Quality of Service) requirements for monitoring control. It may be.
[管理領域の引き継ぎ手法] 
 ここで、上記LEO衛星システムの衛星コンステレーションを構築する各衛星間で実行する幾つかの管理領域の引き継ぎ手法を説明する。図4の管理領域の引き継ぎ手法は、一台の衛星が一つの管理領域を受け持つ方式である。また、図5の管理領域の引き継ぎ手法は、一台の衛星が複数の管理領域を受け持つ方式である。
[Management area takeover method]
Here, a description will be given of a method of taking over several management areas executed between the respective satellites constructing the satellite constellation of the LEO satellite system. The management area takeover method of FIG. 4 is a system in which one satellite takes charge of one management area. 5 is a method in which a single satellite is responsible for a plurality of management areas.
[単一管理領域の衛星間受け渡し] 
 図4(a)は、LEO衛星システムの衛星コンステレーションの一部を成す3台の衛星を示している。また、図4(b)は、拡大した地表面を示している。 
 図4(a),(b)では、多数の領域に分割された極一部の地球上の領域群を可視的に記載している。この領域分割は一例であり、一般的には三角形以上の多角形もしくは円形を用いて地球上を全て埋めるように領域を割り当てる。本図では、説明の明瞭化のため、衛星コンステレーションを成す多くの衛星や地表面の多くの領域を省略する。 
 LEO衛星システム1を構成する各衛星(領域管理衛星10、後続衛星20、先行衛星30、省略された他の衛星群)は、通信可能範囲内で衛星-衛星間通信を実施できる。また、各衛星は、通信可能範囲内で地球側に存在する端末装置群との間で衛星-端末間通信を実施できる。また各衛星は、地球に存在する監視制御センターマネージャ局やデータセンタなどの施設(図示せず)と必要に応じて通信できる。また、既存の衛星システムとも通信できることが望ましい。
[Transfer between satellites in a single management area]
FIG. 4 (a) shows three satellites that form part of the satellite constellation of the LEO satellite system. FIG. 4B shows an enlarged ground surface.
4 (a) and 4 (b), a group of regions on the earth that are a part of the earth divided into a number of regions are visibly described. This area division is an example, and generally, areas are allocated so as to fill the entire earth using polygons or circles of triangles or more. In this figure, for the sake of clarity of explanation, many satellites constituting the satellite constellation and many areas on the ground surface are omitted.
Each satellite (the area management satellite 10, the succeeding satellite 20, the preceding satellite 30, and other omitted satellite groups) constituting the LEO satellite system 1 can perform satellite-satellite communication within the communicable range. Each satellite can perform satellite-terminal communication with a terminal device group existing on the earth side within the communicable range. Each satellite can communicate with facilities (not shown) such as a supervisory control center manager station and a data center existing on the earth as necessary. It is also desirable to be able to communicate with existing satellite systems.
 図4に示した例では、説明対象とするLEO衛星システム1内で衛星群が自律的に受け渡す領域を管理領域(領域A)と呼び、その領域Aに存在する端末装置群を端末装置群Aと呼び、領域Aを囲む他の領域を周囲領域と呼んで説明する。また、管理領域(領域A)を通過した衛星は次の領域(領域B)を担当する。この領域Bや他の領域も領域Aと同様にLEO衛星システム1内で衛星群が自律的に管理権限を変えながら管理される。 In the example shown in FIG. 4, an area in which the satellite group autonomously transfers within the LEO satellite system 1 to be explained is called a management area (area A), and a terminal apparatus group existing in the area A is a terminal apparatus group. In the following description, the area A is called and the other area surrounding the area A is called the surrounding area. The satellite that has passed through the management area (area A) is responsible for the next area (area B). Similarly to the area A, the area B and other areas are managed in the LEO satellite system 1 while autonomously changing the management authority of the satellite group.
 図4(b)に示した端末装置群は、IoT機器などの汎用製品を含み、また乗り物(自動車、航空機、船舶)や自動運転車、マルチコプターや飛行物体などのドローンを含んでいてもよい。なお、図4(b)や後述する同様の図では、端末装置の台数をデフォルメして記載する。これら端末装置群は、固定的に設置される装置や、モバイルされる装置、自律的に移動する装置、付随的に移動する装置などがある。なお、本LEO衛星システム1は、多くの通信方式に対応しており、各端末装置の種別について特に限定する必要がない。一般的には、これらの多くの端末装置は、現時点で若しくは近未来に高精度測位に対応する。高精度測位に対応した端末装置は、LEO衛星システム1に位置時刻情報を通知可能である。また、これらの多くの端末装置は、LEO衛星システム1経由の通知コマンドを受け付けて、このコマンドを実行できる。 The terminal device group shown in FIG. 4B includes general-purpose products such as IoT devices, and may include drones such as vehicles (automobiles, aircrafts, ships), autonomous vehicles, multicopters, and flying objects. . In FIG. 4B and a similar diagram to be described later, the number of terminal devices is described as being deformed. These terminal device groups include devices that are fixedly installed, devices that are moved, devices that move autonomously, and devices that move incidentally. Note that the present LEO satellite system 1 is compatible with many communication systems, and there is no need to specifically limit the type of each terminal device. In general, many of these terminal devices support high-precision positioning at the present time or in the near future. A terminal device that supports high-accuracy positioning can notify the LEO satellite system 1 of position time information. Further, many of these terminal devices can receive a notification command via the LEO satellite system 1 and execute this command.
 LEO衛星システム1の各衛星は、自己が受け持つ管理領域を管理権限に従って識別し、その管理領域に在る端末装置群のステータスを管理する。図4(a),(b)に示したタイミングでは、領域管理衛星10が領域Aの管理権限を発動させている。このため、領域管理衛星10は、自己が受け持つ管理領域Aに在る端末装置群Aの識別子(ID:identifier)と共にステータスを管理する。管理領域Aに在る新規の端末装置の確認やステータスの取得は、例えば既存のIoT機器の状態取得のように、衛星-端末間通信を用いた在圏確認や状態取得要求で行えばよい。また、端末装置側からの衛星ネットワークへの接続要求(例えば特定宛先へのファイルやメッセージ送信)を受け付けた際に、その時の領域管理衛星10が状態取得を行えばよい。また、後述するように周囲衛星から端末装置群Aのステータスを取得する。ステータスを例示すれば、各端末装置の位置情報や、各端末装置の電源状態や各種内部設定などのステートが挙げられる。端末装置の位置情報は、端末装置が測位した位置情報でもよいし、LEO衛星システム1側で特定した端末装置の位置情報、またその両方であってもよく、特に限定しない。なお、各衛星は、ステータスと共に各端末装置から他のデータ(例えばセンシング値や、画像データ)を自動的に収集したり、端末装置からのメッセージやパケットを宛先に転送することとしてもよい。 Each satellite of the LEO satellite system 1 identifies the management area that it manages according to the management authority, and manages the status of the terminal device group in the management area. At the timings shown in FIGS. 4A and 4B, the area management satellite 10 activates the management authority for the area A. For this reason, the area management satellite 10 manages the status together with the identifier (ID: identifier) of the terminal device group A in the management area A that it manages. The confirmation of the new terminal device in the management area A and the acquisition of the status may be performed by a location check using satellite-terminal communication or a status acquisition request, such as the status acquisition of an existing IoT device. Further, when a connection request to the satellite network from the terminal device side (for example, file or message transmission to a specific destination) is received, the area management satellite 10 at that time may acquire the state. In addition, as described later, the status of the terminal device group A is acquired from surrounding satellites. Examples of the status include position information of each terminal device, states such as a power supply state and various internal settings of each terminal device. The position information of the terminal device may be the position information measured by the terminal device, the position information of the terminal device specified on the LEO satellite system 1 side, or both, and is not particularly limited. Each satellite may automatically collect other data (for example, sensing values and image data) from each terminal device together with the status, or may forward a message or packet from the terminal device to the destination.
 図4(a),(b)中の領域管理衛星10は、現タイミングで領域Aを通信可能範囲に収めている。そして時間が経つと、領域管理衛星10は、領域Aを通信可能範囲に収められなくなる、若しくは通信効率が悪くなる。このため、本実施形態に係る各衛星は、管理領域(領域A)を通信可能圏に収める衛星(後続衛星20)に対して、管理領域を外れる際に、管理領域に存在する端末装置群Aのステータス(管理していたステータス)を衛星-衛星間通信で受け渡す。なお、衛星間で共有するステータスには、個々の衛星で管理中に生成した異常通知群を含んでも良い。また、管理中に異常通知を生成した端末装置の反応条件、反応動作、期待値等を、ステータスと共に後続衛星に通知する仕組みを設けるようにしてもよい。この仕組みによれば、異常通知が生成された端末装置(群)の反応条件等を後続衛星がより確実に保持することになる。なお、通信量に応じて、管理領域を外れる衛星(領域管理衛星10)は、地球局(図示せず)や周囲を飛行する衛星(図示せず)を介して後続衛星(後続衛星20)にステータス等を受け渡すこととしてもよい。またこの際、管理領域を外れる衛星(領域管理衛星10)は、端末装置群Aのステータスと共に、管理領域に在圏する端末装置群Aの各識別子を合わせて送信することが望ましい。また必要に応じて、管理領域を外れる衛星(領域管理衛星10)は、各端末装置の在圏時間やエラー頻度などを紐付けて後続衛星(後続衛星20)にその端末装置のステータスとして通知することとしてもよい。 The area management satellite 10 in FIGS. 4A and 4B has the area A within the communicable range at the current timing. Then, as time passes, the area management satellite 10 becomes unable to keep the area A within the communicable range or the communication efficiency deteriorates. For this reason, each satellite according to the present embodiment has the terminal device group A existing in the management area when the management area (area A) falls outside the management area with respect to the satellite (the subsequent satellite 20) within the communicable area. Status (managed status) is transferred by satellite-to-satellite communication. The status shared between the satellites may include an abnormality notification group generated during management by each satellite. In addition, a mechanism may be provided in which the reaction conditions, reaction operations, expected values, and the like of the terminal device that generated the abnormality notification during management are notified to the subsequent satellites along with the status. According to this mechanism, the succeeding satellite holds the reaction conditions and the like of the terminal device (group) in which the abnormality notification is generated more reliably. Depending on the amount of communication, a satellite (region management satellite 10) that is out of the management area passes to the following satellite (following satellite 20) via an earth station (not shown) or a satellite (not shown) flying around. The status etc. may be handed over. At this time, it is desirable that the satellite (region management satellite 10) out of the management area transmits the identifier of the terminal device group A existing in the management region together with the status of the terminal device group A. Further, if necessary, the satellite (region management satellite 10) out of the management area associates the time of stay of each terminal device, the error frequency, etc., and notifies the subsequent satellite (following satellite 20) as the status of the terminal device. It is good as well.
 管理領域(領域A)を引き継ぐ衛星(後続衛星20)は、先行する衛星(領域管理衛星10)から通信された端末装置群Aのステータス等を受け付けて保持し、管理領域(領域A)の管理を開始する範囲に入った際に、この領域(領域A)管理権限を発動する。管理権限の発動タイミングは、例えば、引継ぎ元と引継ぎ先のネゴシエーションに従って個々の衛星間で個別に実施してもよいし、所定時間間隔や切替空間座標などをLEO衛星システム内で予め定めて、そのルールに則って領域管理を交代するように、LEO衛星システムを運用すればよい。 The satellite (subsequent satellite 20) taking over the management area (area A) receives and holds the status of the terminal device group A communicated from the preceding satellite (area management satellite 10), and manages the management area (area A). This area (area A) management authority is activated when entering the range to start. For example, the management authority activation timing may be individually implemented between individual satellites in accordance with the negotiation of the takeover source and the takeover destination, and predetermined time intervals, switching space coordinates, and the like are determined in advance in the LEO satellite system. The LEO satellite system may be operated so that the area management is changed according to the rules.
 管理権限を引き継いだ衛星(後続衛星20)は、管理領域に存在する端末装置群Aのステータスを収集して管理する。この際に、先にこの領域を管理していた衛星(飛び去った領域管理衛星10)から事前にこの領域に存在している端末装置群Aのステータス等を受け付けていることによって、各種ステータスを最初から収集すること無しに、端末装置群Aのステータスを管理可能になる。また、管理領域を外れる衛星(領域管理衛星10)から管理領域に在圏する端末装置群Aの各識別子を受け付けていれば、端末の存在確認(在圏確認,生存確認)も省略できる。このため、個々の衛星が管理領域を変えた際に、その領域の端末装置群の確認及びステータス収集を最初から収集する方式に比べ、衛星-端末間通信の大幅な削減が実現できる。例えば、領域管理衛星10が全ての端末装置のステータスを定期的に監視するシステムであれば、衛星-端末間通信はステータスの差分のみを扱えば良くなる。他方、前述の方式では、衛星-端末間通信はステータス全てを扱う必要が生じる。この違いによって、本実施形態による端末装置群の管理方法は、個々の衛星が受け持てる端末装置の台数/空き通信帯域を、同規模の衛星を用いる前述の方式よりも飛躍的に増大させることが可能になる。また、端末装置群の管理方法では、各衛星は、通信部による設定情報等の共有により、各領域の担当前にその領域に在る端末装置状態に対する反応条件と反応動作を取得可能になっている。このため、本実施形態による端末装置群の管理方法は、領域の担当権限を発動した直後から、瞬間的な設定に係る大きな通信量を発生させることなしに、数多くの端末装置の監視及び遠隔操作環境を、切れ目なくサービスベンダーに提供できる。 The satellite (successor satellite 20) that has taken over the management authority collects and manages the status of the terminal device group A existing in the management area. At this time, the status of the terminal device group A existing in this area is received in advance from the satellite that has previously managed this area (the area management satellite 10 that has left). The status of the terminal device group A can be managed without collecting from the beginning. If each identifier of the terminal device group A located in the management area is received from a satellite outside the management area (area management satellite 10), the presence check (location check, survival check) of the terminal can be omitted. For this reason, when each satellite changes the management area, it is possible to realize a significant reduction in communication between the satellite and the terminal as compared with the method of collecting the terminal device group in the area and collecting the status from the beginning. For example, if the area management satellite 10 is a system that regularly monitors the status of all terminal devices, the satellite-terminal communication only needs to handle the status difference. On the other hand, in the above-described system, the satellite-terminal communication needs to handle all statuses. Due to this difference, the terminal device group management method according to the present embodiment can dramatically increase the number of terminal devices that each satellite can handle / the available communication bandwidth, compared to the above-described method using satellites of the same scale. It becomes possible. Also, in the terminal device group management method, each satellite can acquire reaction conditions and reaction actions for the state of the terminal device in each area before sharing each area by sharing setting information and the like by the communication unit. Yes. For this reason, the terminal device group management method according to the present embodiment enables the monitoring and remote operation of a large number of terminal devices without generating a large amount of communication related to the instantaneous setting immediately after activating the authority in charge of the area. The environment can be provided to service vendors seamlessly.
 また、管理部11は、管理領域を外れる際と 次に受け持つ管理領域に入る際とに、管理領域に存在する端末装置群Aのステータス(バンドル)等を衛星通信部12Aで周囲の衛星(図4の後続衛星20や先行衛星30)との間で受け渡す。この際、後続衛星20が管理領域を管理する間に後続衛星20の周囲を飛行する別の衛星を、後続衛星20のバックアップ衛星として利用することとしてもよい。また、管理部11は、他衛星から受け付ける端末装置群のステータスについて、自衛星が今後(この先所定期間内に)受け持つ管理領域に拡張することとしてもよい。 Further, the management unit 11 uses the satellite communication unit 12A to indicate the statuses (bundles) of the terminal device group A existing in the management area when it leaves the management area and enters the management area that is assigned to the secondary area. 4 and the succeeding satellites 20 and 30). At this time, another satellite that flies around the succeeding satellite 20 while the succeeding satellite 20 manages the management area may be used as a backup satellite of the succeeding satellite 20. Moreover, the management part 11 is good also as extending to the management area | region which a self-satellite will handle in the future (within a predetermined period ahead) about the status of the terminal device group received from another satellite.
 上記管理部11の構成による動作を時系列に沿って説明すれば次のようになる。 The operation according to the configuration of the management unit 11 will be described in chronological order as follows.
管理領域A到達前: 
 管理部11は、自衛星が次に受け持つ管理領域(領域A)を識別して、前の管理領域(領域A)の管理権限を有する衛星(先行衛星30)から、自衛星が領域Aの管理に入る前に、管理権限を有する衛星(先行衛星30)から通信された領域Aの端末装置群Aのステータス等を衛星通信部12Aで受け付けて保持する。
Before reaching management area A:
The management unit 11 identifies the next management area (area A) that the own satellite will handle, and the own satellite manages the area A from the satellite (preceding satellite 30) having the management authority of the previous management area (area A). Before entering, the satellite communication unit 12A receives and holds the status of the terminal device group A in the area A communicated from the satellite having the management authority (the preceding satellite 30).
管理領域Aの領域管理開始: 
 管理部11は、管理領域(領域A)に突入した後に管理権限を発動し、端末装置群Aのステータス管理(管理領域A管理)を、先に受け付けて保持した端末装置群Aのステータスを用いて開始する。
Start area management of management area A:
The management unit 11 activates the management authority after entering the management area (area A), and uses the status of the terminal apparatus group A that has previously received and held the status management (management area A management) of the terminal apparatus group A. And start.
 領域管理中、管理部11は、各端末装置のステータスの更新や、新たに領域Aに存在することと成った端末装置のステータス収集、領域Aに存在しないことと成った端末装置のステータス破棄、などを地表通信部12Bを介して実施すればよい。また、領域管理中、管理部11は、各々の端末装置状態に対する設定情報(反応条件と反応動作)を、通信部12を介して他の衛星と共有する。この他の衛星とは、後続衛星20と先行衛星30に限る必要は無く、通信圏内にある衛星と設定情報を適宜共有すればよい。また、領域管理中、管理部11は、個々の端末装置状態が反応条件に合致した場合に、該反応条件に対応付いた反応動作を実行して、多数の端末装置を管理する。 During the area management, the management unit 11 updates the status of each terminal apparatus, collects the status of the terminal apparatus that newly exists in the area A, discards the status of the terminal apparatus that does not exist in the area A, And the like may be performed via the ground communication unit 12B. Further, during area management, the management unit 11 shares setting information (reaction conditions and reaction operation) for each terminal device state with other satellites via the communication unit 12. Other satellites need not be limited to the following satellites 20 and the preceding satellites 30, and may share setting information with satellites in the communication range as appropriate. Further, during the area management, when each terminal device state matches the reaction condition, the management unit 11 executes a reaction operation corresponding to the reaction condition to manage a large number of terminal devices.
管理領域A離脱前: 
 管理部11は、自衛星が次に受け持つ周辺領域(領域B)を識別して、周辺領域(領域B)の前の管理権限を有する衛星(先行衛星30)から、自衛星が領域Bを管理する範囲内に入る前に、管理権限を有する衛星(先行衛星30)から通信された周辺領域(領域B)の端末装置群Bのステータス等を衛星通信部12Aで受け付けて保持する。この次の領域(領域B)に対応する動作と共に、後続衛星20に対して以下のように動作する。 
 管理部11は、管理領域を外れる前に、次にこの管理領域(領域A)を受け持つ衛星(後続衛星20)に向けて、少なくとも端末装置群Aの最小限のステータスを通信する。
Before leaving management area A:
The management unit 11 identifies the next peripheral area (area B) that the own satellite will handle, and the own satellite manages area B from the satellite having the management authority in front of the peripheral area (area B) (preceding satellite 30). Before entering the range, the satellite communication unit 12A receives and holds the status of the terminal device group B in the peripheral area (area B) communicated from the satellite having the management authority (preceding satellite 30). Along with the operation corresponding to the next region (region B), the following operation is performed for the following satellite 20.
Before leaving the management area, the management unit 11 communicates at least the minimum status of the terminal device group A to the satellite (subsequent satellite 20) that is responsible for this management area (area A).
管理領域A離脱後: 
 管理部11は、管理領域Aの管理権限を取り下げて、端末装置群のステータス管理を終了する。この際、管理部11は、次の管理領域Bの管理権限を発動し、管理領域Bの領域管理(端末装置群Bのステータス管理)を開始する。
After leaving management area A:
The management unit 11 withdraws the management authority of the management area A and ends the status management of the terminal device group. At this time, the management unit 11 activates management authority for the next management area B, and starts area management of the management area B (status management of the terminal device group B).
 以上のように各衛星に搭載された管理部11が自律的かつ協調して上記動作を実行することで、各衛星が端末装置群を受け持つ管理領域とその領域の管理権限を自律的に受け渡す メカニズム(衛星コンステレーション)が構築される。 As described above, the management unit 11 mounted on each satellite autonomously and cooperatively executes the above operation, so that each satellite autonomously transfers the management area in which each satellite is responsible for the terminal device group and the management authority of the area. A mechanism (satellite constellation) is established.
 例えば複数の衛星が独立的に管理領域を決めてIoT機器群の監視を行うLEO衛星システムの場合、複数の衛星から各IoT機器へ状態取得の要求が同一領域で重複して送信されたり、各IoT機器へ状態取得の要求が、管理衛星が切り替わるごとに必要になる。
この結果、領域内での通信帯域の逼迫や輻輳、IoT機器のバッテリロスなどの症状が生じる。
For example, in the case of an LEO satellite system in which a plurality of satellites independently determine a management area and monitor an IoT device group, status acquisition requests are repeatedly transmitted from the plurality of satellites to each IoT device in the same area. A request for status acquisition to the IoT device is required each time the management satellite is switched.
As a result, symptoms such as tight communication band in the area, congestion, and battery loss of IoT devices occur.
 一方、LEO衛星システム1は、これらのことを予防できる。この結果、本LEO衛星システム1は、多くの端末装置が存在する領域であっても、その地域内でのデータ損失や帯域の無駄遣いを抑止できる。このことによって、本LEO衛星システムは、その地域内でのデータ損失を生じさせずに同時的に管理可能な端末装置台数を増加させられる。 On the other hand, the LEO satellite system 1 can prevent these problems. As a result, the present LEO satellite system 1 can suppress data loss and wasted bandwidth in an area where many terminal devices exist. As a result, this LEO satellite system can increase the number of terminal devices that can be managed simultaneously without causing data loss in the region.
 このように、各衛星が端末装置を受け持つ管理領域及び端末装置の管理を衛星群が自律的に受け渡す、良好なLEO衛星システムを提供できる。 As described above, it is possible to provide a good LEO satellite system in which the satellite group autonomously transfers the management area in which each satellite is responsible for the terminal device and the management of the terminal device.
 なお、上記LEO衛星システムを端末装置側から説明した場合は次のようになる。個々の端末装置は、時々刻々と変化する自己の管理権限を有する管理衛星に、要求に応じて若しくは自発的に 端末識別子や各種ステータスを送信する。この送信した各種ステータスは、その時の管理衛星から後続の衛星に引き継がれて、LEO衛星システム内で管理される。このため、端末装置は、管理衛星が切り替わる毎に同じ情報をLEO衛星システムに通知することが低減若しくは不要になる。このことは、例えば個々のIoT機器などにとって、バッテリ問題や通信量の削減などに有益に働く。 Note that when the LEO satellite system is described from the terminal device side, it is as follows. Each terminal device transmits a terminal identifier and various statuses on demand or voluntarily to a management satellite having its own management authority that changes from moment to moment. The various statuses transmitted are transferred from the management satellite at that time to the succeeding satellites and managed in the LEO satellite system. For this reason, it is reduced or unnecessary for the terminal device to notify the LEO satellite system of the same information every time the management satellite is switched. This works beneficially for battery problems and communication volume reduction, for example, for individual IoT devices.
 次に、衛星コンステレーションを構築する各衛星間で実行する幾つかの管理領域の引き継ぎ手法を説明する。 Next, a description will be given of a method for taking over several management areas executed between the satellites constituting the satellite constellation.
[複数の管理領域の衛星間受け渡し]
 図5(a)及び図5(b)は、図4(a)及び図4(b)と同様に描いた図である。この一つの衛星が同時に複数の領域の管理権限を有する点で先の方式と異なる。図5(a)及び図5(b)では、領域管理衛星10は、領域A,領域B,領域Cの管理権限を設定し、設定した管理権限に対応する3つの管理領域を領域毎に管理する例を示している。
[Transfer between satellites in multiple management areas]
5 (a) and 5 (b) are drawings similar to FIGS. 4 (a) and 4 (b). This one satellite is different from the previous system in that it has the authority to manage a plurality of areas simultaneously. 5 (a) and 5 (b), the area management satellite 10 sets management authority for the areas A, B, and C, and manages three management areas corresponding to the set management authority for each area. An example is shown.
 LEO衛星システム1の各衛星は、自己が受け持つ1ないし複数の管理領域を管理権限に従って識別し、その管理領域に在る端末装置群のステータスを領域毎に管理する。また、衛星-衛星間通信で各領域に在圏する端末装置群のステータス等を先行衛星及び後続衛星との間で受け渡す。 Each satellite of the LEO satellite system 1 identifies one or a plurality of management areas managed by the LEO satellite system 1 according to the management authority, and manages the status of the terminal device group in the management area for each area. Also, the status of the terminal device group located in each area is transferred between the preceding satellite and the succeeding satellite by satellite-satellite communication.
 このメカニズムを有することで、LEO衛星システム1は、例えば単位面積当たりの端末装置が多く存在する領域では1つの衛星が一つの領域を管理し、他方で単位面積当たりの端末装置が少ない領域では1つの衛星が複数の領域を管理することが可能になる。また、各領域に割り当てるサービスレベル(サービス可用性や、通信速度)に応じて、領域分割することも可能になる。 By having this mechanism, the LEO satellite system 1 manages, for example, one region in a region where there are many terminal devices per unit area, and 1 in a region where there are few terminal devices per unit area. One satellite can manage multiple areas. In addition, it is possible to divide the area according to the service level (service availability and communication speed) assigned to each area.
 図6は、複数の領域を1つの衛星が担当する別の領域分割例を示している。 
 図6(a)では、領域管理衛星10は、領域B,領域C,領域Dの管理権限を設定し、設定した管理権限に対応する3つの管理領域を領域毎に管理する例を示している。例えば海洋を含む領域などは端末装置が少なく一衛星で数多くの領域を担当できる。また、都市部などは、他の領域に比べ端末装置が多く1台の衛星(必要に応じて複数台の衛星)が担当すればよい。 
 図6(b)では、領域管理衛星10は、領域B,領域Dの管理権限を設定し、設定した管理権限に対応する2つの管理領域を領域毎に管理する例を示している。このように物理的に間がある領域分割であってもよい。
FIG. 6 shows another area division example in which a plurality of areas are handled by one satellite.
FIG. 6A shows an example in which the area management satellite 10 sets management authority for the areas B, C, and D, and manages three management areas corresponding to the set management authority for each area. . For example, in areas including the ocean, there are few terminal devices, and a large number of areas can be handled by a single satellite. In urban areas and the like, there are more terminal devices than in other areas, and one satellite (a plurality of satellites as necessary) may be in charge.
FIG. 6B shows an example in which the area management satellite 10 sets management authority for the areas B and D, and manages two management areas corresponding to the set management authority for each area. As described above, the area division may be physically spaced.
 この一衛星に複数の領域を割り振ることが可能な領域分割手法を各衛星に実装することで、衛星間で端末装置のステータス等の情報を受け渡す回数や量を削減できる。また、この方式を用いることで、衛星間の処理負荷を衛星間で分散する最適化が図れるようになる。更に、例えば特定の衛星が故障した場合に、周囲衛星で領域管理を補完することが可能になる。 実 装 By implementing the area segmentation method that can allocate multiple areas to one satellite, each satellite can reduce the number and amount of information such as the status of the terminal device transferred between the satellites. Further, by using this method, it is possible to optimize the processing load between the satellites among the satellites. Furthermore, for example, when a specific satellite fails, it becomes possible to supplement area management with surrounding satellites.
 このように、各衛星が端末装置を受け持つ管理領域及び端末装置の管理を衛星群が自律的に受け渡す良好なLEO衛星システムを提供できる。且つ、LEO衛星システムによる、全球的な端末装置群の管理がより良好に維持できる。 Thus, it is possible to provide a good LEO satellite system in which the satellite group autonomously transfers the management of the terminal device and the management of the terminal device by each satellite. In addition, the management of the global terminal device group by the LEO satellite system can be better maintained.
[管理領域の管理権限の衛星間での受け渡し] 
 図7(a),(b)では、先の説明では省略していた別の軌道の一衛星を図示している。なお、端末装置群の管理やステータス共有等については説明を省略する。
[Transmission of management authority of management area between satellites]
FIGS. 7A and 7B show a satellite in another orbit that was omitted in the above description. Note that description of terminal device group management, status sharing, and the like is omitted.
 この方式では、先行衛星が後続衛星を特定する。図7(a)は、一つの衛星が一つの管理領域を管理する例を示し、図7(b)は、一つの衛星が同時に1ないし複数の領域の管理権限を有する例を示している。 In this method, the preceding satellite specifies the succeeding satellite. FIG. 7A shows an example in which one satellite manages one management area, and FIG. 7B shows an example in which one satellite has management authority for one or a plurality of areas at the same time.
 この方式では、各衛星(領域管理衛星10)は、各領域の管理権限を引き継ぐ衛星を管理権限の引継通知を用いて、該当衛星(後続衛星20)に伝達する。選定された衛星(後続衛星20)は、通知された管理権限の引継通知に基づいて、管理領域に入った際に、該当領域の管理権限を発動する。管理権限の引継通知は、領域毎の管理権限を識別できれば、複数の領域を一つのメッセージに纏めて通知してもよいし、領域毎に各々別のメッセージで通知してもよい。 In this method, each satellite (region management satellite 10) transmits the satellite that takes over the management authority of each region to the corresponding satellite (following satellite 20) using the management authority takeover notification. When the selected satellite (following satellite 20) enters the management area based on the notified management authority takeover notification, the management authority for the corresponding area is activated. As long as the management authority for each area can be identified, the management authority takeover notification may be performed by notifying a plurality of areas in one message, or may be notified by a separate message for each area.
 衛星コンステレーションに含まれる各衛星は、システム時刻、管理領域の位置情報、自己の軌道情報と共に、衛星コンステレーションに含まれる他の衛星の軌道情報を保持する。また、各衛星は、衛星毎の生死フラグやリソース量を含めて保持することとしてもよい。各種情報は、衛星コンステレーション全体を網羅するテーブル情報上で管理してもよいし、地域や軌道を限定したテーブル上で管理することとしてもよい。各衛星は、この保持した他の衛星の軌道情報を参照し、管理領域を管理することに より適した衛星を次の領域管理衛星として選定する。 Each satellite included in the satellite constellation holds the orbit information of other satellites included in the satellite constellation, together with the system time, management area position information, and own orbit information. In addition, each satellite may hold a life / death flag and a resource amount for each satellite. Various types of information may be managed on table information covering the entire satellite constellation, or may be managed on a table with limited regions and orbits. Each satellite refers to the orbit information of the other satellites held and selects a satellite more suitable for managing the management area as the next area management satellite.
 この引き継ぎ先衛星の選定処理手法は特に限定しないものの、例えば、後続衛星と成り得る衛星群の中から、通過する領域(管理領域)の中心や端末装置分布の重心、通信量分布の重心に一番近い一つの衛星を管理権限の引き継ぎ先の衛星(後続衛星20)として選定する手法が用いられる。 Although the method for selecting the takeover destination satellite is not particularly limited, for example, from among a group of satellites that can be subsequent satellites, the center of the passing area (management area), the center of gravity of the terminal device distribution, and the center of gravity of the traffic distribution are all the same. A method is used in which the closest satellite is selected as the satellite (successor satellite 20) to which management authority is transferred.
 また、領域管理衛星10は、周囲衛星に広く管理領域の引き継ぎ先を求めるシグナルを広告し、最初に応答した衛星に管理権限の引継通知を通知してもよい。また、領域管理衛星10は、周囲衛星に広く管理領域の引き継ぎ先を求めるシグナルを広告し、応答した複数の衛星の軌道を識別して、自己が管理権限を有する管理領域を次に管理する後続の衛星を選定し、管理権限の引継通知を通知してもよい。 Further, the area management satellite 10 may advertise a signal for requesting the takeover destination of the management area widely to surrounding satellites and notify the first responding satellite of the management authority takeover notification. In addition, the area management satellite 10 advertises a signal for requesting the takeover destination of the management area widely to surrounding satellites, identifies the orbits of the plurality of responding satellites, and subsequently manages the management area for which it has the management authority. May be selected and notification of management authority takeover may be sent.
 図面を用いて説明した場合、図7(a)の例では、領域管理衛星10は、周囲の衛星群の軌道を識別して、自己が管理権限を有する管理領域を次に管理する後続の衛星として 他の軌道を周回している衛星(図中の後続衛星20)を選定し、該当衛星に管理権限の引継通知を通知する。この例では、同一軌道を周回する衛星(図中の後続軌道衛星)よりも 他の軌道を周回している衛星(図中の後続衛星20)の方が、管理領域Aの管理に適すると判別された場合である。選定された後続衛星20は、通知された管理権限の引継通知に基づいて、端末装置群Aのステータスを予め領域管理衛星10から引き継ぎ、管理領域Aに入った際に、該当領域の管理権限を発動して、端末装置群Aの管理を実施する。 7, in the example of FIG. 7A, the area management satellite 10 identifies the orbits of surrounding satellite groups and subsequently manages the management area for which it has management authority. As a result, a satellite orbiting in another orbit (successor satellite 20 in the figure) is selected, and a notification of handover of management authority is notified to the corresponding satellite. In this example, it is determined that a satellite orbiting in another orbit (successor satellite 20 in the figure) is more suitable for management of the management area A than a satellite orbiting in the same orbit (successor satellite in the figure). This is the case. The selected succeeding satellite 20 takes over the status of the terminal device group A from the area management satellite 10 in advance based on the notified management authority takeover notification and enters the management area A, so that the management authority of the corresponding area is given. When activated, the terminal device group A is managed.
 図7(b)の例では、領域管理衛星10は、周囲の衛星の軌道を識別して、自己が管理権限を有する管理領域(領域A,領域B,領域C)を次に管理する後続の衛星を領域毎に選定し、2つの衛星(図中の後続衛星20-1,20-2)に管理権限の引継通知を通知する。選定された後続衛星20-1,20-2は各々、通知された管理権限の引継通知に基づいて、予め領域管理衛星10から担当領域の端末装置群のステータスを引き継ぎ、担当する管理領域に入った際に、該当領域の管理権限を各々発動する。 In the example of FIG. 7B, the area management satellite 10 identifies the orbits of the surrounding satellites, and subsequently manages the management areas (area A, area B, area C) for which it has management authority. The satellite is selected for each area, and the management authority handover notification is notified to the two satellites (successor satellites 20-1 and 20-2 in the figure). Each of the selected succeeding satellites 20-1 and 20-2 takes over the status of the terminal device group in the area in charge from the area management satellite 10 in advance based on the notification of takeover of the notified management authority and enters the management area in charge. The management authority for the corresponding area is activated.
 このように、LEO衛星システム内で、個々の衛星が自律的に、端末装置を受け持つ管理領域とその領域の管理権限を受け渡す仕組みを設けることとしてもよい。 Thus, in the LEO satellite system, it is also possible to provide a management area in which each satellite autonomously handles the terminal device and a mechanism for transferring the management authority of the area.
 なお、この管理権限を定める処理は、現時点で管理権限を有する各衛星が選定することに変えて、領域の管理権限を管理する管理衛星(図示せず)を持つ衛星コンステレーションを採用してもよい。この管理衛星としては、例えば既存の静止衛星や準天頂衛星を利用できる。この管理衛星は、管理対象とする各領域の上空を周回する各衛星の軌道を識別して、各管理領域を管理する衛星群をタイムラインに従って選定し、選定した管理権限の引継通知を該当衛星に通知すればよい。この衛星コンステレーションを採用した場合、領域管理衛星は後続衛星の選定(引き継ぎ処理)を実施する必要が無くなる。この結果、安価な構成で組み上げた衛星を衛星コンステレーション内に含めることができる。 The process for determining the management authority may be performed by adopting a satellite constellation having a management satellite (not shown) that manages the management authority of the area, instead of selecting each satellite having the management authority at present. Good. As this management satellite, for example, an existing geostationary satellite or quasi-zenith satellite can be used. This management satellite identifies the orbit of each satellite that orbits each area to be managed, selects a group of satellites that manage each management area according to the timeline, and notifies the selected satellite to take over management authority. Can be notified. When this satellite constellation is adopted, it is not necessary for the area management satellite to select the succeeding satellite (takeover processing). As a result, a satellite assembled with an inexpensive configuration can be included in the satellite constellation.
 また、管理衛星による管理権限の管理と、自律的な管理権限の受け渡しの両方を同時に使用することとしてもよい。この場合、最終的に 領域管理を行う衛星(後続衛星20)は、通知された管理権限の引継通知に基づいて、予め領域管理衛星10から担当領域の端末装置群のステータスを引き継ぎ、担当する管理領域に入った際に、該当領域の管理権限を発動すればよい。場合によっては、管理権限の引継通知を送出する衛星(管理衛星)と、担当領域の端末装置群のステータス等を送出する衛星(領域管理衛星10)とが異なることとなる。 Also, both management authority management by the management satellite and autonomous management authority delivery may be used simultaneously. In this case, the satellite (subsequent satellite 20) that finally performs dredging area management takes over the status of the terminal device group in the assigned area from the area management satellite 10 in advance based on the notified notification of management authority takeover, and is responsible for management. When entering an area, the management authority for the area may be activated. In some cases, a satellite (management satellite) that transmits a management authority takeover notification is different from a satellite (region management satellite 10) that transmits the status of the terminal device group in the assigned area.
 なお、衛星管理は、一つの軌道面に対して1衛星割り当てる方法や、軌道上の衛星全体を網羅するように例えば3台の静止衛星で管理する方法などを例示できる。 The satellite management can be exemplified by a method of assigning one satellite to one orbital plane, a method of managing by three geostationary satellites so as to cover all the satellites in the orbit, and the like.
 次に、管理部11(状態動作記憶部11A、状態変化検出部11B及び前回状態記憶部11C)に関連する動作を別の観点から図8を用いて説明する。 Next, operations related to the management unit 11 (the state operation storage unit 11A, the state change detection unit 11B, and the previous state storage unit 11C) will be described from another viewpoint with reference to FIG.
 図8は、衛星間の端末装置群のステータス等を引き継ぐ動作等を可視的に表した説明図である。なお、図8内には、端末装置の反応条件に関連する事項を幾つか記載する。図8のT1からT3は、本事例では自律飛行型のドローン,図8のT4からT7は斜面監視装置(IoT機器)、T8からT10は、気象観測装置(IoT機器)を想定する。 FIG. 8 is an explanatory diagram visibly showing the operation and the like of taking over the status of the terminal device group between the satellites. In FIG. 8, some items related to the reaction conditions of the terminal device are described. In FIG. 8, T1 to T3 are assumed to be autonomous flight type drones, T4 to T7 in FIG. 8 are assumed to be slope monitoring devices (IoT devices), and T8 to T10 are assumed to be weather observation devices (IoT devices).
 各衛星は、各々の端末装置状態に対する反応条件と反応動作を、通信部を介して共有して管理している。その結果として各衛星は、反応条件として保存された各領域の飛行禁止領域、禁止行為、位置関係、気象条件等を記憶している。そして、各管理領域でそれぞれの端末装置の反応条件に合致した対象(端末装置(群))が発生した際に、その状態変化を検出し、反応動作を実行する。 Each satellite manages and manages the reaction conditions and reaction behavior for each terminal device status via the communication unit. As a result, each satellite stores a flight prohibition area, a prohibited action, a positional relationship, a weather condition, etc. of each area stored as reaction conditions. Then, when an object (terminal device (group)) that matches the reaction condition of each terminal device occurs in each management area, the state change is detected and the reaction operation is executed.
 領域A1内では、あるサービスベンダーがドローン管理サービスを提供する。LEO衛星システム1の衛星Aでは、ドローンの異常状態の検出について、端末-衛星間通信で取得した端末装置の動作状態(ステータス)と位置情報(ステータス)を用いる。 In area A1, a service vendor provides a drone management service. The satellite A of the LEO satellite system 1 uses the operation state (status) and position information (status) of the terminal device acquired by the terminal-satellite communication for detecting the abnormal state of the drone.
 各衛星は順に、管理領域A1内に在る多数のドローンを(他の種別の管理端末装置と共に)管理する。この際、管理下の各ドローンを状態変化検出部11Bで個別管理若しくは群管理で監視する。 Each satellite sequentially manages a large number of drones (with other types of management terminal devices) in the management area A1. At this time, each drone under management is monitored by the state change detection unit 11B by individual management or group management.
 状態変化検出部11Bによるドローンの異常検出は、ドローンの動作状態(ステータス:電源余力,高度,速度,自律異常診断結果など)から直接的に判別したり、予め入力された飛行禁止領域及びドローンの飛行/巡航ルート情報と 現在の位置情報と比較して、正常運用できているか判別したりして、反応条件に基づいて実施する。 The drone abnormality detection by the state change detection unit 11B can be directly determined from the operation state of the drone (status: power reserve capacity, altitude, speed, autonomous abnormality diagnosis result, etc.), or the pre-input flight prohibited area and drone Compare flight / cruise route information with current location information to determine if it is operating normally, and implement based on reaction conditions.
 衛星の状態変化検出部11Bは、前回状態記憶部11Cを適宜参照しており、異常が生じた場合(反応条件で正常が異常や警告に切り替わった場合)、異常通知の生成及び報知(周囲衛星との共有と宛先への送信)と共に、状態動作記憶部11Aの反応動作を参照して、該当ドローンに速度調整,高度調整,転回(再ナビゲーション),緊急停止などの通信コマンドを安全化指令として衛星-端末間通信で通知する。この反応動作は、例えば速度調整や転回指示などの複数の通信コマンドによる数ステップの是正措置を踏んで異常の是正を図った後に、異常が改善しなければ最終的に緊急停止するような動作であってもよい。 The state change detection unit 11B of the satellite refers to the previous state storage unit 11C as appropriate, and when an abnormality occurs (when normal is switched to abnormality or warning under the reaction conditions), generation and notification of an abnormality notification (surrounding satellites) And communication to the corresponding drone, such as speed adjustment, altitude adjustment, turning (re-navigation), emergency stop, etc. as a safety command with reference to the reaction action of the state action storage unit 11A Notification via satellite-to-terminal communication. This reaction action is an action that, after correcting the abnormality by taking several steps of corrective actions by multiple communication commands such as speed adjustment and turn instruction, if the abnormality does not improve, it will eventually stop urgently. There may be.
 領域A2内では、あるサービスベンダーが斜面監視装置の群管理サービスを提供する。
この領域では、雪山や危険斜面の斜面監視装置群をLEO衛星システム1で管理する。もし斜面監視装置群の位置移動(崩壊)や位置関係が崩れたこと(前兆)を反応条件で検出した場合、異常通知の生成及び報知と共に、LEO衛星システム1の衛星Bは、反応動作に記載されているとおりに、近傍範囲にあるスマートフォンや防災無線(警報装置)、各種端末装置に警告を出力する通信コマンドを送出するように制御する。
In the area A2, a service vendor provides a slope management apparatus group management service.
In this area, the LEO satellite system 1 manages the slope monitoring device group for snowy mountains and dangerous slopes. If the position movement (collapse) of the slope monitoring device group or the positional relationship is broken (precursor) is detected in the reaction condition, the satellite B of the LEO satellite system 1 is described in the reaction operation together with the generation and notification of the abnormality notification. As is done, control is performed to send a communication command that outputs a warning to a smartphone, disaster prevention radio (alarm device), and various terminal devices in the vicinity.
 領域A3内では、あるサービスベンダーが気象観測装置による地域管理サービスを提供する。この領域では、例えば大気観測(PM2.5等)の気象観測装置群と空気清浄器(IoT機器)をLEO衛星システムで管理する。もし気象観測装置群の大気汚染物質濃度が反応条件に記録された異常値を検出した場合、LEO衛星システム1の衛星Cは、異常通知の生成及び報知と共に、反応動作に記載されているとおりに、特定範囲内の大気汚染物質濃度に基づいて、空気清浄器群を稼働させる通信コマンドを安全化指令として送出するように制御する。 In area A3, a service vendor provides a regional management service using a weather observation device. In this region, for example, a meteorological observation device group for atmospheric observation (PM2.5 or the like) and an air purifier (IoT device) are managed by the LEO satellite system. If the air pollutant concentration of the meteorological observation device group detects an abnormal value recorded in the reaction condition, the satellite C of the LEO satellite system 1 generates and reports the abnormality notification as described in the reaction operation. Based on the air pollutant concentration within a specific range, control is performed so that a communication command for operating the air purifier group is sent as a safety command.
 このように、各衛星が各々、自己が現在受け持つ管理領域に在る端末装置群からの衛星通信を判読して反応条件と反応動作に従って管理して、例えば、位置座標が予め定められた飛行ルートを外れたドローン等を検出した際に、ドローンに方向転換や所定動作を実行させる該当機種用通信コマンドを衛星から地球側に送信する。このことによって、例えば、地上側通信ネットワークと接続していない環境下でも端末装置の異常行動や状態変位に対応できる。 In this way, each satellite interprets the satellite communication from the terminal device group currently in its management area and manages it according to the reaction condition and reaction operation, for example, a flight route with predetermined position coordinates. When a drone or the like out of the range is detected, a communication command for the corresponding model that causes the drone to change direction or execute a predetermined operation is transmitted from the satellite to the earth side. Thus, for example, it is possible to cope with abnormal behavior and state displacement of the terminal device even in an environment not connected to the ground side communication network.
 すなわち、各衛星は、端末装置群のステータスに対する反応条件と該反応条件に合致した場合に該当端末装置に所定動作を実行させる通信コマンド等を予め保持することで、LEO衛星システムから多数の端末装置を同様の仕組みで管理可能になる。 That is, each satellite holds in advance a reaction condition for the status of the terminal device group and a communication command or the like that causes the corresponding terminal device to execute a predetermined operation when the reaction condition is met, so that a large number of terminal devices can be connected from the LEO satellite system. Can be managed by the same mechanism.
 このため、このLEO衛星システムは、端末装置台数の観点から低コストで多くの端末装置を管理可能になる。このため、例えば僻地や山岳地域、海洋上の端末装置であっても、上空の視界を確保している限り、ネットワークに接続できることと成る。 Therefore, this LEO satellite system can manage many terminal devices at low cost from the viewpoint of the number of terminal devices. For this reason, for example, even a remote terminal device, a mountainous region, or a terminal device on the ocean can be connected to the network as long as the sky field of view is secured.
 なお、上記サービス例は、端末装置としてドローン、斜面監視装置、気象観測装置を用いて説明したが、飛行機や車、スマートフォン、センサ端末などが混在した数多くある端末装置群を 複合的に組み合わせた仕組みで管理してもよい。また例えば、複数のサービスベンダーが提供する数多くのサービスを重畳して実施してもよい。このサービスでは、サービスプロバイダや、行政機関、サービス利用者などが反応条件と反応動作をサービスごとにLEO衛星システム内に適宜設定可能にLEO衛星システムを構築すればよい。 Although the above service example has been described using a drone, a slope monitoring device, and a weather observation device as a terminal device, a mechanism in which a large number of terminal device groups in which airplanes, cars, smartphones, sensor terminals, etc. are mixed are combined in a complex manner. You may manage with. Further, for example, a number of services provided by a plurality of service vendors may be superimposed and implemented. In this service, a LEO satellite system may be constructed so that a service provider, a government organization, a service user, and the like can appropriately set reaction conditions and reaction actions in the LEO satellite system for each service.
 以上説明したように、本発明によれば、多くの端末装置向けの全球的見守りインフラストラクチャを構築するLEO衛星システムを提供できる。この衛星コンステレーションを実現することで、LEO衛星システムによって管理可能な端末装置の台数を飛躍的に増加可能になる。換言すれば、全球的に数多くの端末装置を低コストで管理できる。また、様々なサービスを全球的に実現できるプラットフォームを提供できる。また、LEO衛星システムに上記したセキュリティ・プライバシープラットフォームを組み込むことで、高い安全性を具備したLEO衛星システムによる端末装置群の管理方法を提供できる。 
 すなわち、『経済性の確保』,『多様性の確保』及び『安全性の確保』を具備するグローバルな多岐にわたるソリューションの基となるプラットフォームを提供できる。
As described above, according to the present invention, it is possible to provide an LEO satellite system that constructs a global watching infrastructure for many terminal devices. By realizing this satellite constellation, the number of terminal devices that can be managed by the LEO satellite system can be dramatically increased. In other words, a large number of terminal devices can be managed globally at a low cost. In addition, it is possible to provide a platform that can realize various services globally. Further, by incorporating the above-described security / privacy platform into the LEO satellite system, it is possible to provide a terminal device group management method by the LEO satellite system having high safety.
In other words, it is possible to provide a platform that serves as a basis for a wide variety of global solutions that include “Ensuring economics”, “Ensuring diversity” and “Ensuring safety”.
 尚、個々の衛星の内部構成(制御機構,管理部)は、コンピュータシステムのハードウェアとソフトウェアの組み合わせを用いて実現すればよい。このコンピュータシステムは、所望形態に合わせた、1ないし複数のプロセッサーとメモリーを含む。また、コンピュータシステムの一部/全ての各部をハードウェアやファームウェア(例えば、1ないし複数のLSI:Large-Scale Integration,FPGA:Field Programmable Gate Array,電子素子の組み合わせ)で置換することとしてもよい。 In addition, what is necessary is just to implement | achieve the internal structure (control mechanism, management part) of each satellite using the combination of the hardware and software of a computer system. The computer system includes one or more processors and memory tailored to the desired form. Also, some / all of the computer system may be replaced with hardware or firmware (for example, one or more LSIs: Large-Scale Integration, FPGA: Field Programmable Gate Array, a combination of electronic elements).
 また、上記管理部を実現するプログラムは、記録媒体に非一時的に記録されて頒布されても良い。当該記録媒体に記録されたプログラムは、有線、無線、又は記録媒体そのものを介してメモリーに読込まれ、プロセッサー等を動作させる。 Further, the program that realizes the management unit may be recorded in a recording medium non-temporarily and distributed. The program recorded on the recording medium is read into the memory via wired, wireless, or the recording medium itself, and operates a processor or the like.
 尚、本明細書では、記録媒体には、類似するタームの記憶媒体やメモリー装置、ストレージ装置なども含むこととする。この記録媒体を例示すれば、オプティカルディスクや磁気ディスク、半導体メモリー装置、ハードディスク装置、テープメディアなどが挙げられる。また、記録媒体は、不揮発性であることが望ましい。また、記録媒体は、揮発性モジュール(例えばRAM:Random Access Memory)と不揮発性モジュール(例えばROM:Read Only Memory)の組み合わせを用いることとしてもよい。 In the present specification, the recording medium includes storage media, memory devices, storage devices, and the like having similar terms. Examples of this recording medium include an optical disk, a magnetic disk, a semiconductor memory device, a hard disk device, and a tape medium. The recording medium is desirably non-volatile. The recording medium may use a combination of a volatile module (for example, RAM: Random Access Memory) and a nonvolatile module (for example, ROM: Read Only Memory).
 なお、実施形態を例示して本発明を説明した。しかし、本発明の具体的な構成は前述の実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の変更があってもこの発明に含まれる。例えば、上述した実施形態の組み合わせや、手順の入れ替えなどの変更は本発明の趣旨および説明される機能を満たせば自由であり、上記説明が本発明を限定するものではない。 Note that the present invention has been described by exemplifying embodiments. However, the specific configuration of the present invention is not limited to the above-described embodiment, and modifications within a range not departing from the gist of the present invention are included in the present invention. For example, combinations of the above-described embodiments and changes such as replacement of procedures are free as long as they satisfy the gist of the present invention and the functions described, and the above description does not limit the present invention.
 また、上記の実施形態の一部又は全部は、以下のようにも記載されうる。尚、以下の付記は本発明をなんら限定するものではない。 In addition, a part or all of the above-described embodiment can be described as follows. Note that the following supplementary notes do not limit the present invention.
[付記]
 低高度軌道を周回する多数の衛星でコンステレーションを構成し、
 前記多数の衛星は各々、
 地球側に存在する多数の端末装置 及び 軌道側に存在する他の衛星と通信する通信部と、
 各々の端末装置状態に対する反応条件と反応動作を前記通信部を介して前記他の衛星と共有して管理すると共に、
 前記通信部を介して自己が現在受け持つ管理領域に在る端末装置群との間の通信を実行して、該管理領域に存在する端末装置群の位置情報を含むステータスを収集し、また、個々の端末装置状態が前記反応条件に合致した場合に、該反応条件に対応付いた反応動作を実行して、前記多数の端末装置を管理する
管理部を含み、
 前記多数の衛星は協調して、各管理領域を交代しながら地球側に存在する特定の端末装置及び/又は複数の端末装置群を全球的に見守る
ことを特徴とするLEO衛星システム。
[Appendix]
Constellation is composed of many satellites orbiting low altitude orbit,
Each of the multiple satellites is
A communication unit that communicates with many terminal devices existing on the earth side and other satellites existing on the orbit side;
While managing the reaction conditions and reaction behavior for each terminal device state with the other satellites via the communication unit,
Executes communication with the terminal device group existing in the management area currently handled by itself through the communication unit, collects status including the location information of the terminal device group existing in the management area, and individually A management unit that manages the plurality of terminal devices by executing a reaction operation corresponding to the reaction conditions when the terminal device state of the device matches the reaction conditions;
The LEO satellite system characterized in that the large number of satellites cooperate with each other to watch over a specific terminal device and / or a plurality of terminal device groups existing on the earth side while changing over each management area.
[付記]
 前記衛星各々は、前記通信部を用いる前記端末装置及び地球局との通信プロトコルにDTNプロトコルを使用することを特徴とする上記付記記載のLEO衛星システム。
[Appendix]
Each of the satellites uses a DTN protocol as a communication protocol with the terminal device and the earth station using the communication unit.
[付記]
 前記LEO衛星システムは、サービスを提供するサービスベンダーから 各衛星が管理する端末装置の 時々刻々の端末装置状態に対する反応条件と反応動作の設定を受け付けると共に、
 前記衛星各々は、前記通信部を介して、各サービスベンダーから受け付けられた 各衛星が管理する端末装置の 時々刻々の端末装置状態に対する反応条件と反応動作の設定を共有する
ことを特徴とする上記付記記載のLEO衛星システム。
[Appendix]
The LEO satellite system accepts reaction conditions and reaction operation settings for the terminal device status of the terminal device managed by each satellite from the service vendor that provides the service.
Each of the satellites shares a reaction condition and a setting of a reaction operation for the terminal device status of each terminal device managed by each satellite received from each service vendor via the communication unit. LEO satellite system described in the appendix.
[付記]
 前記衛星各々は、
 各々の端末装置群のステータスに対する反応条件と該反応条件に合致した場合に該当端末装置に所定動作を実行させる通信コマンドを保持し、
 自己が現在受け持つ管理領域に在る端末装置群からの衛星通信を判読して、個々の端末装置のステータスが前記反応条件に合致した場合に、前記反応条件に対応付いた通信コマンドを地球側に送信する
ことを特徴とする上記付記記載のLEO衛星システム。
[Appendix]
Each of the satellites
Holding a communication command for causing a corresponding terminal device to execute a predetermined action when the reaction condition for the status of each terminal device group and the reaction condition are met,
When satellite communications from a group of terminal devices in the management area that they are currently in charge of are read and the status of each terminal device matches the reaction conditions, communication commands corresponding to the reaction conditions are sent to the earth side. The LEO satellite system according to the above supplementary note, wherein the LEO satellite system transmits.
[付記]
 前記衛星各々は、各々の端末装置状態に対する反応条件として異常通知を生成し、前記通信部を介して生成した異常通知を前記他の衛星と共有することを特徴とする上記付記記載のLEO衛星システム。
[Appendix]
Each of the satellites generates an abnormality notification as a reaction condition with respect to each terminal device state, and shares the abnormality notification generated through the communication unit with the other satellites. .
[付記]
 前記衛星各々は、任意の反応条件に対する反応動作として、所定の/必要数の端末装置に向けたナビゲーション再計算/停止/方向転換/帰投等の中から少なくとも一つを含む通信コマンドである制御メッセージを、該当管理領域の管理権限を有する衛星から送信することを特徴とする上記付記記載のLEO衛星システム。
[Appendix]
Each of the satellites is a control message that is a communication command including at least one of navigation recalculation / stop / return / return to a predetermined / required number of terminal devices as a reaction operation for an arbitrary reaction condition. Is transmitted from a satellite having the authority to manage the corresponding management area.
[付記]
 前記LEO衛星システムは、監視制御センターマネージャ局を地上に具備し、
 前記監視制御センターマネージャ局は、通信ネットワークを介して、前記多数の衛星各々が保持する各々の端末装置状態に対する反応条件と反応動作の設定を受け付けて管理すると共に、コンステレーションを構成する各衛星に、設定された反応条件と反応動作を衛星ネットワークを介して設定する
ことを特徴とする上記付記記載のLEO衛星システム。
[Appendix]
The LEO satellite system has a supervisory control center manager station on the ground,
The supervisory control center manager station receives and manages the reaction conditions and reaction operation settings for each terminal device state held by each of the multiple satellites via a communication network, and manages each satellite constituting the constellation. The LEO satellite system according to the above supplementary note, wherein the set reaction condition and reaction operation are set through a satellite network.
[付記]
 前記LEO衛星システムは、監視制御センターマネージャ局を地上に具備し、
 前記衛星各々は、各々の端末装置状態に対する反応条件として異常通知を生成し、前記通信部を介して生成した異常通知を中継・通知して、前記監視制御センターマネージャ局に送信する
ことを特徴とする上記付記記載のLEO衛星システム。
[Appendix]
The LEO satellite system has a supervisory control center manager station on the ground,
Each of the satellites generates an abnormality notification as a reaction condition for each terminal device state, relays and notifies the abnormality notification generated via the communication unit, and transmits the notification to the supervisory control center manager station The LEO satellite system described in the above supplementary note.
[付記]
 前記LEO衛星システムは、監視制御センターマネージャ局を地上に具備し、
 前記監視制御センターマネージャ局は、通信ネットワークを介して、前記多数の衛星各々が保持する 時々刻々の各々の端末装置状態である位置情報の期待値を算出するサービス運行計画をユーザから受け付けて管理すると共に、コンステレーションを構成する各衛星に、設定されたサービス運行計画又はサービス運行計画から算出された位置情報の期待値を衛星ネットワークを介して設定する
ことを特徴とする上記付記記載のLEO衛星システム。
[Appendix]
The LEO satellite system has a supervisory control center manager station on the ground,
The supervisory control center manager station receives and manages a service operation plan for calculating an expected value of position information, which is a state of each terminal device held by each of the multiple satellites, via a communication network from a user. In addition, the LEO satellite system according to the above supplementary note, wherein a set service operation plan or an expected value of position information calculated from the service operation plan is set to each satellite constituting the constellation via a satellite network. .
[付記]
 前記多数の衛星は各々、前記通信部を介して自己が現在受け持つ管理領域に存在する端末装置群の位置情報を含むステータスを時々刻々と取得し、取得した位置情報が運行計画又は運行計画から算出された位置情報の期待値から外れた場合に、該当端末装置状態に対する反応条件として異常通知を生成して前記他の衛星及び/又は地球局に向けて放送すると共に、該当端末装置状態に向けて安全化指令を放送することを特徴とする上記付記記載のLEO衛星システム。
[Appendix]
Each of the multiple satellites obtains a status including the location information of the terminal device group existing in the management area currently managed by the self through the communication unit, and the obtained location information is calculated from the operation plan or the operation plan. If the position information is out of the expected value of the location information, an abnormality notification is generated as a reaction condition for the corresponding terminal device state and broadcast to the other satellites and / or earth stations, and toward the corresponding terminal device state. The LEO satellite system according to the above supplementary note, wherein a safety command is broadcast.
[付記]
 前記衛星は、前記通信部を、
 LEOに投入された際に地球側に存在する端末装置群と通信可能に構成されている地表通信部と、
 LEO投入された際に軌道側に存在する前記他の衛星と通信可能に構成されている衛星通信部と、
をSDR(Software Defined Radio)で構成すると共に、
 前記地表通信部及び前記衛星通信部は、複数の通信方式に対応しており、
 前記地表通信部は、前記端末装置各々が対応した通信方式で、管理領域に在る端末装置群との間の衛星通信を実行して、該管理領域に存在する端末装置群のステータスを収集し、
 前記衛星通信部は、複数種類ある前記他の衛星が対応した通信方式で管理領域の管理権限と 収集した端末装置群のステータスを、前記他の衛星に引継ぐ
ことを特徴とする上記付記記載のLEO衛星システム。
[Appendix]
The satellite transmits the communication unit,
A surface communication unit configured to be able to communicate with a group of terminal devices existing on the earth side when introduced into the LEO;
A satellite communication unit configured to be able to communicate with the other satellites present on the orbital side when LEO is introduced;
With SDR (Software Defined Radio)
The surface communication unit and the satellite communication unit support a plurality of communication methods,
The surface communication unit collects the status of the terminal device group existing in the management area by executing satellite communication with the terminal device group existing in the management area by a communication method supported by each of the terminal devices. ,
The LEO described in the above supplementary note, wherein the satellite communication unit takes over the management authority of the management area and the collected status of the terminal device group to the other satellites in a communication method supported by the other satellites of a plurality of types. Satellite system.
[付記]
 前記衛星各々は、自己が受け持つ管理領域を管理権限に従って識別し、各管理領域に在る端末装置群のステータスを個々の管理権限を有する衛星が管理すると共に、前記管理領域を外れる際に、後続の衛星に前記管理領域に存在する端末装置群のステータスを通信し、前記後続の衛星は、先行する衛星から通信された前記端末装置群のステータスを受け付けると共に、前記管理領域に入った際に、該後続の衛星が管理権限を発動して前記端末装置群のステータスを該管理領域で管理する
ことを特徴とする上記付記記載のLEO衛星システム。
[Appendix]
Each of the satellites identifies its own management area according to the management authority, and the status of the terminal device group in each management area is managed by the satellite having the individual management authority, and when the management area leaves the management area, The status of the terminal device group existing in the management area is communicated to the satellite of the following, and the subsequent satellite receives the status of the terminal apparatus group communicated from the preceding satellite and enters the management area, The LEO satellite system according to the above supplementary note, wherein the subsequent satellite activates management authority and manages the status of the terminal device group in the management area.
[付記]
 前記多数の衛星に含まれる第1の衛星は、自己が現在受け持つ管理領域を識別して、該管理領域に在る端末装置群との間の衛星通信を実行して 該管理領域に存在する端末装置群のステータスを管理すると共に、前記管理領域を外れる際に 後続の第2の衛星に 前記管理領域に存在する端末装置群のステータスを通信し、
 前記多数の衛星に含まれる前記第2の衛星は、自己が次に受け持つ管理領域を識別して、該管理領域に存在する端末装置群のステータスを前記第1の衛星からの衛星通信を介して受け付けて管理すると共に、前記管理領域に入った際に、自己が現在受け持つ管理領域を識別して、前記管理領域に在る端末装置群との間の衛星通信を実行して 該管理領域に存在する端末装置群のステータスを管理する
ことを特徴とする上記付記記載のLEO衛星システム。
[Appendix]
The first satellite included in the multiple satellites identifies a management area that the current satellite is currently in charge of, performs satellite communication with a terminal device group in the management area, and a terminal that exists in the management area Manages the status of the device group, and communicates the status of the terminal device group existing in the management region to the subsequent second satellite when leaving the management region,
The second satellite included in the multiple satellites identifies a management area that the next satellite is responsible for, and transmits a status of a terminal device group existing in the management area via satellite communication from the first satellite. Receive and manage, and when entering the management area, identify the management area that it currently handles, and perform satellite communication with terminal devices in the management area to exist in the management area The LEO satellite system as described in the above supplementary note, wherein the status of a terminal device group is managed.
[付記]
 前記多数の衛星は、管理領域毎の端末装置群のステータスを受け渡す際に、管理領域に在圏する端末装置群の識別子を合わせて送信することを特徴とする上記付記記載のLEO衛星システム。
[Appendix]
The LEO satellite system according to the above supplementary note, wherein the multiple satellites transmit together with the identifiers of the terminal device groups existing in the management area when transferring the status of the terminal device group for each management area.
[付記]
 前記多数の衛星は、管理領域毎の端末装置群のステータスを受け渡す際に、管理領域に在圏する端末装置群に対して生成した端末装置の異常通知及びその生成時刻を少なくとも送信し合うことを特徴とする上記付記記載のLEO衛星システム。
[Appendix]
When delivering the status of the terminal device group for each management area, the multiple satellites at least transmit the generated terminal device abnormality notification and the generation time thereof to the terminal device group located in the management area. The LEO satellite system as described in the above supplementary note.
[付記]
 前記多数の衛星は、管理領域毎の端末装置群のステータスを受け渡す際に、管理領域に在圏する端末装置群に対して送信した制御メッセージ及びその送信時刻を少なくとも送信し合うことを特徴とする上記付記記載のLEO衛星システム。
[Appendix]
The plurality of satellites transmit at least the control message transmitted to the terminal device group located in the management area and the transmission time thereof when delivering the status of the terminal device group for each management area. The LEO satellite system described in the above supplementary note.
[付記]
 前記多数の衛星は各々、1ないし複数の領域の管理権限を設定し、設定した管理権限に対応する1ないし複数の管理領域を領域毎に管理することを特徴とする上記付記記載のLEO衛星システム。
[Appendix]
The LEO satellite system according to the above remark, wherein each of the plurality of satellites sets management authority for one or a plurality of areas and manages one or a plurality of management areas corresponding to the set management authority for each area. .
[付記]
 前記多数の衛星は各々、衛星コンステレーションに含まれる他の衛星の軌道を識別して、自己が管理権限を有する管理領域を次に管理する後続の衛星を選定し、選定した該当衛星に管理権限の引継通知を通知し、
 選定された該当衛星は、通知された管理権限の引継通知に基づいて、前記管理領域に入った際に、該当領域の管理権限を発動する
ことを特徴とする上記付記記載のLEO衛星システム。
[Appendix]
Each of the multiple satellites identifies the orbits of the other satellites included in the satellite constellation, selects the subsequent satellite that will manage the management area for which it has the management authority, and manages the selected satellite. Notification of takeover of
The LEO satellite system according to the above supplementary note, wherein the selected corresponding satellite activates the management authority of the corresponding area when it enters the management area based on the notification of handover of the notified management authority.
[付記]
 前記LEO衛星システムは、1ないし複数の衛星の管理権限を管理する管理衛星を含み、
 前記管理衛星は、衛星コンステレーションに含まれる各衛星の軌道を識別して、各管理領域を管理する衛星群をタイムラインに従って選定し、選定した該当衛星に管理権限の引継通知を通知し、
 選定された衛星は、通知された管理権限の引継通知に基づいて、前記管理領域に入った際に、該当領域の管理権限を発動する
ことを特徴とする上記付記記載のLEO衛星システム。
[Appendix]
The LEO satellite system includes a management satellite that manages the management authority of one or more satellites,
The management satellite identifies the orbit of each satellite included in the satellite constellation, selects a satellite group that manages each management area according to the timeline, and notifies the selected satellite of the takeover notification of management authority,
The LEO satellite system according to the above supplementary note, wherein the selected satellite activates the management authority of the corresponding area when entering the management area based on the notification of the handover of the notified management authority.
[付記]
 前記管理衛星は静止衛星及び/又は準天頂衛星であり、
 前記管理衛星は、衛星コンステレーションに含まれる各衛星の軌道を識別して、各管理領域を管理する衛星群をタイムラインに従って選定し、選定した該当衛星に管理権限の引継通知を通知し、
 選定された衛星は、通知された管理権限の引継通知に基づいて、前記管理領域に入った際に、該当領域の管理権限を発動する
ことを特徴とする上記付記記載のLEO衛星システム。
[Appendix]
The management satellite is a geostationary satellite and / or a quasi-zenith satellite,
The management satellite identifies the orbit of each satellite included in the satellite constellation, selects a satellite group that manages each management area according to the timeline, and notifies the selected satellite of the takeover notification of management authority,
The LEO satellite system according to the above supplementary note, wherein the selected satellite activates the management authority of the corresponding area when entering the management area based on the notification of the handover of the notified management authority.
[付記]
 前記管理衛星は静止衛星及び/又は準天頂衛星であり、
 前記管理衛星は、前記多数の衛星各々が保持する各々の端末装置状態に対する反応条件と反応動作の設定を管理すると共に、コンステレーションを構成する各衛星に、設定された反応条件と反応動作を衛星ネットワークを介して設定する
ことを特徴とする上記付記記載のLEO衛星システム。
[Appendix]
The management satellite is a geostationary satellite and / or a quasi-zenith satellite,
The management satellite manages reaction conditions and reaction operation settings for each terminal device state held by each of the multiple satellites, and sets the reaction conditions and reaction operations set for each satellite constituting the constellation. The LEO satellite system according to the above supplementary note, which is set through a network.
[付記]
 LEO衛星システムは、前記端末装置として、IoT機器の管理を行うことを特徴とする請求項上記付記記載のLEO衛星システム。
[Appendix]
The LEO satellite system according to the above supplementary note, wherein the LEO satellite system manages IoT devices as the terminal device.
[付記]
 LEO衛星システムは、前記端末装置としてドローンを管理して、ドローンの位置座標が予め定められた飛行ルートを外れた際 又は飛行禁止領域に進入した際に、該ドローンにナビゲーション再計算/停止/方向転換の少なくとも一つを通知する通信コマンドを、該当管理領域の管理権限を有する衛星から送信することを特徴とする上記付記記載のLEO衛星システム。
[Appendix]
The LEO satellite system manages the drone as the terminal device, and when the position coordinate of the drone deviates from the predetermined flight route or enters the no-fly region, navigation recalculation / stop / direction to the drone The LEO satellite system according to the above supplementary note, wherein a communication command notifying at least one of the conversions is transmitted from a satellite having the management authority of the corresponding management area.
[付記]
 LEO衛星システムは、前記端末装置として自動運転車を管理して、自動運転車の位置座標が予め定められた走行ルートを外れた際に、該自動運転車及び/又は周囲の乗り物にナビゲーション再計算/停止/方向転換/警告の少なくとも一つを通知する通信コマンドを、該当管理領域の管理権限を有する衛星から送信することを特徴とする上記付記記載のLEO衛星システム。
[Appendix]
The LEO satellite system manages an autonomous driving vehicle as the terminal device, and recalculates navigation to the autonomous driving vehicle and / or surrounding vehicles when the position coordinates of the autonomous driving vehicle deviate from a predetermined travel route. The LEO satellite system as described in the above supplementary note, wherein a communication command for notifying at least one of / stop / direction change / warning is transmitted from a satellite having management authority in the corresponding management area.
[付記]
 低高度軌道の周回軌道に配置された状態で、地球側に存在する多数の端末装置 及び 軌道側に存在する他の衛星と通信するように構成された通信部と、
 各々の端末装置状態に対する反応条件と反応動作を前記通信部を介して前記他の衛星と共有して管理すると共に、
 前記通信部を介して自己が現在受け持つ管理領域に在る端末装置群との間の通信を実行して、該管理領域に存在する端末装置群の位置情報を含むステータスを収集し、また、個々の端末装置状態が前記反応条件に合致した場合に、該反応条件に対応付いた反応動作を実
行して、前記多数の端末装置を管理する
ように構成された管理部を含む
ことを特徴とするLEO衛星。
[Appendix]
A communication unit configured to communicate with a large number of terminal devices existing on the earth side and other satellites existing on the orbit side in a state of being arranged in the low-altitude orbit.
While managing the reaction conditions and reaction behavior for each terminal device state with the other satellites via the communication unit,
Executes communication with the terminal device group existing in the management area currently handled by itself through the communication unit, collects status including the location information of the terminal device group existing in the management area, and individually And a management unit configured to manage the multiple terminal devices by executing a reaction operation corresponding to the reaction conditions when the terminal device state of the terminal device matches the reaction conditions. LEO satellite.
[付記]
 該LEO衛星は、前記通信部を用いる前記端末装置及び地球局との通信プロトコルにDTNプロトコルを使用するように構成されたことを特徴とする上記付記記載のLEO衛星。
[Appendix]
The LEO satellite according to the above supplementary note, wherein the LEO satellite is configured to use a DTN protocol as a communication protocol with the terminal device and the earth station using the communication unit.
[付記]
 該LEO衛星は、前記通信部を介して、各サービスベンダーから受け付けられた 各衛星が管理する端末装置の 時々刻々の端末装置状態に対する反応条件と反応動作の設定を前記他の衛星との間で共有するように構成されていることを特徴とする上記付記記載のLEO衛星。
[Appendix]
The LEO satellite sets a reaction condition and a reaction operation setting for the terminal device status of each terminal device managed by each satellite received from each service vendor via the communication unit between the other satellites. The LEO satellite described in the above supplementary note, which is configured to be shared.
[付記]
 該LEO衛星は、
 各々の端末装置群のステータスに対する反応条件と該反応条件に合致した場合に該当端末装置に所定動作を実行させる通信コマンドを保持し、
 自己が現在受け持つ管理領域に在る端末装置群からの衛星通信を判読して、個々の端末装置のステータスが前記反応条件に合致した場合に、前記反応条件に対応付いた通信コマンドを地球側に送信する
ことを特徴とする上記付記記載のLEO衛星。
[Appendix]
The LEO satellite
Holding a communication command for causing a corresponding terminal device to execute a predetermined action when the reaction condition for the status of each terminal device group and the reaction condition are met,
When satellite communications from a group of terminal devices in the management area that they are currently in charge of are read and the status of each terminal device matches the reaction conditions, communication commands corresponding to the reaction conditions are sent to the earth side. The LEO satellite as described in the above supplementary note, which is transmitted.
[付記]
 該LEO衛星は、各々の端末装置状態に対する反応条件として異常通知を生成し、前記通信部を介して生成した異常通知を前記他の衛星との間で共有するように構成されていることを特徴とする上記付記記載のLEO衛星。
[Appendix]
The LEO satellite is configured to generate an abnormality notification as a reaction condition for each terminal device state and share the abnormality notification generated via the communication unit with the other satellites. The LEO satellite described in the above supplementary note.
[付記]
 該LEO衛星は、任意の反応条件に対する反応動作として、所定の/必要数の端末装置に向けたナビゲーション再計算/停止/方向転換/帰投等の中から少なくとも一つを含む通信コマンドである制御メッセージを、送信するように構成されていることを特徴とする上記付記記載のLEO衛星。
[Appendix]
The LEO satellite is a control message that is a communication command including at least one of navigation recalculation / stop / return / return to a predetermined / required number of terminal devices as a reaction operation for an arbitrary reaction condition. The LEO satellite according to the above supplementary note, wherein the LEO satellite is configured to transmit
[付記]
 前記多数の衛星各々が保持する各々の端末装置状態に対する反応条件と反応動作の設定を受け付けて管理する監視制御センターマネージャ局から、衛星ネットワークを介して、設定された反応条件と反応動作の設定を受け付けることを特徴とする上記付記記載のLEO衛星。
[Appendix]
From the supervisory control center manager station that receives and manages the setting of reaction conditions and reaction operations for each terminal device state held by each of the multiple satellites, the set reaction conditions and reaction operations are set via the satellite network. The LEO satellite described in the above supplementary note, which is received.
[付記]
 該LEO衛星は、各々の端末装置状態に対する反応条件として異常通知を生成し、前記通信部を介して生成した異常通知を、監視制御センターマネージャ局に、衛星ネットワークを介して、送信することを特徴とする上記付記記載のLEO衛星。
[Appendix]
The LEO satellite generates an abnormality notification as a reaction condition for each terminal device state, and transmits the abnormality notification generated via the communication unit to the supervisory control center manager station via the satellite network. The LEO satellite described in the above supplementary note.
[付記]
 該LEO衛星は、設定されたサービス運行計画又はサービス運行計画から算出された位置情報の期待値を、衛星ネットワークを介して、監視制御センターマネージャ局から、設定されることを特徴とする上記付記記載のLEO衛星。
[Appendix]
The LEO satellite is set with the service operation plan that has been set or the expected value of the position information calculated from the service operation plan from the supervisory control center manager station via the satellite network. LEO satellite.
[付記]
 該LEO衛星は、前記通信部を介して自己が現在受け持つ管理領域に存在する端末装置群の位置情報を含むステータスを時々刻々と取得し、取得した位置情報が運行計画又は運行計画から算出された位置情報の期待値から外れた場合に、該当端末装置状態に対する反応条件として異常通知を生成して前記他の衛星及び/又は地球局に向けて放送すると共に、該当端末装置状態に向けて安全化指令を放送することを特徴とする上記付記記載のLEO衛星。
[Appendix]
The LEO satellite acquires the status including the location information of the terminal device group existing in the management area that the LEO satellite currently handles via the communication unit from moment to moment, and the obtained location information is calculated from the operation plan or the operation plan. When the position information deviates from the expected value, an abnormality notification is generated as a reaction condition for the corresponding terminal device state and broadcast to the other satellites and / or earth stations, and safety is achieved for the corresponding terminal device state. The LEO satellite as described in the above supplementary note, which broadcasts a command.
[付記]
 該LEO衛星は、前記通信部を、
 LEOに投入された際に地球側に存在する端末装置群と通信可能に構成されている地表通信部と、
 LEO投入された際に軌道側に存在する前記他の衛星と通信可能に構成されている衛星通信部と、
をSDR(Software Defined Radio)で構成すると共に、
 前記地表通信部及び前記衛星通信部は、複数の通信方式に対応しており、
 前記地表通信部は、前記端末装置各々が対応した通信方式で、管理領域に在る端末装置群との間の衛星通信を実行して、該管理領域に存在する端末装置群のステータスを収集し、
 前記衛星通信部は、複数種類ある前記他の衛星が対応した通信方式で管理領域の管理権限と 収集した端末装置群のステータスを、前記他の衛星に引継ぐ
ことを特徴とする上記付記記載のLEO衛星。
[Appendix]
The LEO satellite transmits the communication unit to
A surface communication unit configured to be able to communicate with a group of terminal devices existing on the earth side when introduced into the LEO;
A satellite communication unit configured to be able to communicate with the other satellites present on the orbital side when LEO is introduced;
With SDR (Software Defined Radio)
The surface communication unit and the satellite communication unit support a plurality of communication methods,
The surface communication unit collects the status of the terminal device group existing in the management area by executing satellite communication with the terminal device group existing in the management area by a communication method supported by each of the terminal devices. ,
The LEO described in the above supplementary note, wherein the satellite communication unit takes over the management authority of the management area and the collected status of the terminal device group to the other satellites in a communication method supported by the other satellites of a plurality of types. satellite.
[付記]
 該LEO衛星は、自己が受け持つ管理領域を管理権限に従って識別し、各管理領域に在る端末装置群のステータスを個々の管理権限を有する衛星が管理すると共に、前記管理領域を外れる際に、後続の衛星に前記管理領域に存在する端末装置群のステータスを通信し、
 また、該LEO衛星は、先行する衛星から通信された前記端末装置群のステータスを受け付けると共に、管理領域に入った際に、管理権限を発動して前記端末装置群のステータスを該管理領域で管理する
ことを特徴とする上記付記記載のLEO衛星。
[Appendix]
The LEO satellite identifies its own management area according to the management authority, and the status of the terminal device group in each management area is managed by the satellite having the individual management authority. Communicate the status of the terminal device group existing in the management area to the satellite of
In addition, the LEO satellite receives the status of the terminal device group communicated from the preceding satellite, and when entering the management area, activates the management authority to manage the status of the terminal device group in the management area. The LEO satellite described in the above supplementary note.
[付記]
 該LEO衛星は、自己が現在受け持つ管理領域を識別して、該管理領域に在る端末装置群との間の衛星通信を実行して 該管理領域に存在する端末装置群のステータスを管理すると共に、前記管理領域を外れる際に 後続の衛星に 前記管理領域に存在する端末装置群のステータスを通信する
ことを特徴とする上記付記記載のLEO衛星。
[Appendix]
The LEO satellite identifies the management area that the LEO satellite currently handles, performs satellite communication with the terminal apparatus group in the management area, manages the status of the terminal apparatus group in the management area, and The LEO satellite as described in the above supplementary note, wherein when the control area is out of the management area, the status of the terminal device group existing in the management area is communicated to a subsequent satellite.
[付記]
 該LEO衛星は、管理領域毎の端末装置群のステータスを受け渡す際に、管理領域に在圏する端末装置群の識別子を合わせて送信することを特徴とする上記付記記載のLEO衛星。
[Appendix]
The LEO satellite according to the above supplementary note, wherein when the status of the terminal device group for each management area is transferred, the LEO satellite also transmits an identifier of the terminal apparatus group existing in the management area.
[付記]
 該LEO衛星は、管理領域毎の端末装置群のステータスを受け渡す際に、管理領域に在圏する端末装置群に対して生成した端末装置の異常通知及びその生成時刻を少なくとも送信し合うことを特徴とする上記付記記載のLEO衛星。
[Appendix]
When delivering the status of the terminal device group for each management area, the LEO satellite transmits at least the generated terminal device abnormality notification and the generation time to the terminal device group located in the management area. The LEO satellite described in the above supplementary note.
[付記]
 該LEO衛星は、管理領域毎の端末装置群のステータスを受け渡す際に、管理領域に在圏する端末装置群に対して送信した制御メッセージ及びその送信時刻を少なくとも送信し合うことを特徴とする上記付記記載のLEO衛星。
[Appendix]
The LEO satellite transmits at least a control message transmitted to a terminal device group located in the management area and its transmission time when delivering the status of the terminal device group for each management area. The LEO satellite described in the above supplementary notes.
[付記]
 該LEO衛星は、1ないし複数の領域の管理権限を設定し、設定した管理権限に対応する1ないし複数の管理領域を領域毎に管理することを特徴とする上記付記記載のLEO衛星。
[Appendix]
The LEO satellite according to the above supplementary note, wherein the LEO satellite sets management authority for one or more areas and manages one or more management areas corresponding to the set management authority for each area.
[付記]
 該LEO衛星は、衛星コンステレーションに含まれる他の衛星の軌道を識別して、自己が管理権限を有する管理領域を次に管理する後続の衛星を選定し、選定した該当衛星に管理権限の引継通知を通知することを特徴とする上記付記記載のLEO衛星。
[Appendix]
The LEO satellite identifies the orbits of other satellites included in the satellite constellation, selects the subsequent satellite that will manage the management area for which it has the management authority, and takes over the management authority to the selected satellite. The LEO satellite as described in the above supplementary note, which notifies a notification.
[付記]
 該LEO衛星は、前記端末装置として、IoT機器の管理を行うことを特徴とする請求項上記付記記載のLEO衛星。
[Appendix]
The LEO satellite according to the above supplementary note, wherein the LEO satellite manages an IoT device as the terminal device.
[付記]
 低高度軌道を周回する多数の衛星でコンステレーションを構成するLEO衛星システムによる端末装置群の管理方法であって、
 前記多数の衛星は各々、地球側に存在する多数の端末装置 及び 軌道側に存在する他の衛星と通信する通信部と、他の衛星との協調動作を受け持つ管理部を含み、
 前記多数の衛星は各々、各々の端末装置状態に対する反応条件と反応動作を、前記通信部を介して前記他の衛星と共有して管理し、
 且つ、
 前記多数の衛星は各々、前記通信部を介して自己が現在受け持つ管理領域に在る端末装置群との間の通信を実行して、該管理領域に存在する端末装置群の位置情報を含むステータスを収集し、また、個々の端末装置状態が前記反応条件に合致した場合に、該反応条件に対応付いた反応動作を実行して、前記多数の端末装置を管理する
ことを特徴とする方法。
[Appendix]
A terminal device group management method by an LEO satellite system in which a constellation is composed of a large number of satellites orbiting in a low altitude orbit,
Each of the plurality of satellites includes a plurality of terminal devices existing on the earth side, a communication unit communicating with other satellites existing on the orbit side, and a management unit responsible for cooperative operation with the other satellites,
Each of the multiple satellites manages reaction conditions and reaction operations for each terminal device state in common with the other satellites via the communication unit, and
and,
Each of the multiple satellites performs communication with a terminal device group existing in a management area that the satellite currently has via the communication unit, and includes status information of the terminal device group existing in the management area And when a state of each terminal device matches the reaction condition, a reaction operation corresponding to the reaction condition is executed to manage the multiple terminal devices.
[付記]
 前記衛星各々は、前記通信部を用いる前記端末装置及び地球局との通信プロトコルにDTNプロトコルを使用することを特徴とする上記付記記載の端末装置群の管理方法。
[Appendix]
Each of the satellites uses a DTN protocol as a communication protocol with the terminal device and the earth station using the communication unit.
[付記]
 前記LEO衛星システムは、サービスを提供するサービスベンダーから 各衛星が管理する端末装置の 時々刻々の端末装置状態に対する反応条件と反応動作の設定を受け付けると共に、
 前記衛星各々は、前記通信部を介して、各サービスベンダーから受け付けられた 各衛星が管理する端末装置の 時々刻々の端末装置状態に対する反応条件と反応動作の設定を共有する
ことを特徴とする上記付記記載の端末装置群の管理方法。
[Appendix]
The LEO satellite system accepts reaction conditions and reaction operation settings for the terminal device status of the terminal device managed by each satellite from the service vendor that provides the service.
Each of the satellites shares a reaction condition and a setting of a reaction operation for the terminal device status of each terminal device managed by each satellite received from each service vendor via the communication unit. A management method of the terminal device group described in the appendix.
[付記]
 前記衛星各々は、
 各々の端末装置群のステータスに対する反応条件と該反応条件に合致した場合に該当端末装置に所定動作を実行させる通信コマンドを保持し、
 自己が現在受け持つ管理領域に在る端末装置群からの衛星通信を判読して、個々の端末装置のステータスが前記反応条件に合致した場合に、前記反応条件に対応付いた通信コマンドを地球側に送信する
ことを特徴とする上記付記記載の端末装置群の管理方法。
[Appendix]
Each of the satellites
Holding a communication command for causing a corresponding terminal device to execute a predetermined action when the reaction condition for the status of each terminal device group and the reaction condition are met,
When satellite communications from a group of terminal devices in the management area that they are currently in charge of are read and the status of each terminal device matches the reaction conditions, communication commands corresponding to the reaction conditions are sent to the earth side. The terminal device group management method according to the above supplementary note, characterized in that transmission is performed.
[付記]
 前記衛星各々は、各々の端末装置状態に対する反応条件として異常通知を生成し、前記通信部を介して生成した異常通知を前記他の衛星と共有することを特徴とする上記付記記載の端末装置群の管理方法。
[Appendix]
Each of the satellites generates an abnormality notification as a reaction condition for each terminal device state, and shares the abnormality notification generated via the communication unit with the other satellites. Management method.
[付記]
 前記衛星各々は、任意の反応条件に対する反応動作として、所定の/必要数の端末装置に向けたナビゲーション再計算/停止/方向転換/帰投等の中から少なくとも一つを含む通信コマンドである制御メッセージを、該当管理領域の管理権限を有する衛星から送信することを特徴とする上記付記記載の端末装置群の管理方法。
[Appendix]
Each of the satellites is a control message that is a communication command including at least one of navigation recalculation / stop / return / return to a predetermined / required number of terminal devices as a reaction operation for an arbitrary reaction condition. Is transmitted from a satellite having the authority to manage the corresponding management area.
[付記]
 前記LEO衛星システムは、監視制御センターマネージャ局を地上に具備し、
 前記監視制御センターマネージャ局は、通信ネットワークを介して、前記多数の衛星各々が保持する各々の端末装置状態に対する反応条件と反応動作の設定を受け付けて管理すると共に、コンステレーションを構成する各衛星に、設定された反応条件と反応動作を衛星ネットワークを介して設定する
ことを特徴とする上記付記記載の端末装置群の管理方法。
[Appendix]
The LEO satellite system has a supervisory control center manager station on the ground,
The supervisory control center manager station receives and manages the reaction conditions and reaction operation settings for each terminal device state held by each of the multiple satellites via a communication network, and manages each satellite constituting the constellation. The terminal device group management method according to the above supplementary note, wherein the set reaction condition and reaction operation are set via a satellite network.
[付記]
 前記LEO衛星システムは、監視制御センターマネージャ局を地上に具備し、
 前記衛星各々は、各々の端末装置状態に対する反応条件として異常通知を生成し、前記通信部を介して生成した異常通知を中継・通知して、前記監視制御センターマネージャ局に送信する
ことを特徴とする上記付記記載の端末装置群の管理方法。
[Appendix]
The LEO satellite system has a supervisory control center manager station on the ground,
Each of the satellites generates an abnormality notification as a reaction condition for each terminal device state, relays and notifies the abnormality notification generated via the communication unit, and transmits the notification to the supervisory control center manager station The terminal device group management method described in the above supplementary note.
[付記]
 前記LEO衛星システムは、監視制御センターマネージャ局を地上に具備し、
 前記監視制御センターマネージャ局は、通信ネットワークを介して、前記多数の衛星各々が保持する 時々刻々の各々の端末装置状態である位置情報の期待値を算出するサービス運行計画をユーザから受け付けて管理すると共に、コンステレーションを構成する各衛星に、設定されたサービス運行計画又はサービス運行計画から算出された位置情報の期待値を衛星ネットワークを介して設定する
ことを特徴とする上記付記記載の端末装置群の管理方法。
[Appendix]
The LEO satellite system has a supervisory control center manager station on the ground,
The supervisory control center manager station receives and manages a service operation plan for calculating an expected value of position information, which is a state of each terminal device held by each of the multiple satellites, via a communication network from a user. A terminal device group as set forth in the above supplementary note, wherein a set service operation plan or an expected value of position information calculated from the service operation plan is set for each satellite constituting the constellation via a satellite network. Management method.
[付記]
 前記多数の衛星は各々、前記通信部を介して自己が現在受け持つ管理領域に存在する端末装置群の位置情報を含むステータスを時々刻々と取得し、取得した位置情報が運行計画又は運行計画から算出された位置情報の期待値から外れた場合に、該当端末装置状態に対する反応条件として異常通知を生成して前記他の衛星及び/又は地球局に向けて放送すると共に、該当端末装置状態に向けて安全化指令を放送することを特徴とする上記付記記載の端末装置群の管理方法。
[Appendix]
Each of the multiple satellites obtains a status including the location information of the terminal device group existing in the management area currently managed by the self through the communication unit, and the obtained location information is calculated from the operation plan or the operation plan. If the position information is out of the expected value of the location information, an abnormality notification is generated as a reaction condition for the corresponding terminal device state and broadcast to the other satellites and / or earth stations, and toward the corresponding terminal device state. The terminal device group management method described in the above supplementary note, wherein a safety command is broadcast.
[付記]
 前記衛星は、前記通信部を、
 LEOに投入された際に地球側に存在する端末装置群と通信可能に構成されている地表通信部と、
 LEO投入された際に軌道側に存在する前記他の衛星と通信可能に構成されている衛星通信部と、
をSDR(Software Defined Radio)で構成すると共に、
 前記地表通信部及び前記衛星通信部は、複数の通信方式に対応しており、
 前記地表通信部は、前記端末装置各々が対応した通信方式で、管理領域に在る端末装置群との間の衛星通信を実行して、該管理領域に存在する端末装置群のステータスを収集し、
 前記衛星通信部は、複数種類ある前記他の衛星が対応した通信方式で管理領域の管理権限と 収集した端末装置群のステータスを、前記他の衛星に引継ぐ
ことを特徴とする上記付記記載の端末装置群の管理方法。
[Appendix]
The satellite transmits the communication unit,
A surface communication unit configured to be able to communicate with a group of terminal devices existing on the earth side when introduced into the LEO;
A satellite communication unit configured to be able to communicate with the other satellites present on the orbital side when LEO is introduced;
With SDR (Software Defined Radio)
The surface communication unit and the satellite communication unit support a plurality of communication methods,
The surface communication unit collects the status of the terminal device group existing in the management area by executing satellite communication with the terminal device group existing in the management area by a communication method supported by each of the terminal devices. ,
The terminal according to the above supplementary note, wherein the satellite communication unit takes over the management authority of the management area and the collected status of the terminal device group to the other satellites by a communication method supported by the other satellites of a plurality of types. Device group management method.
[付記]
 前記衛星各々は、自己が受け持つ管理領域を管理権限に従って識別し、各管理領域に在る端末装置群のステータスを個々の管理権限を有する衛星が管理すると共に、前記管理領域を外れる際に、後続の衛星に前記管理領域に存在する端末装置群のステータスを通信し、前記後続の衛星は、先行する衛星から通信された前記端末装置群のステータスを受け付けると共に、前記管理領域に入った際に、該後続の衛星が管理権限を発動して前記端末装置群のステータスを該管理領域で管理する
ことを特徴とする上記付記記載の端末装置群の管理方法。
[Appendix]
Each of the satellites identifies its own management area according to the management authority, and the status of the terminal device group in each management area is managed by the satellite having the individual management authority, and when the management area leaves the management area, The status of the terminal device group existing in the management area is communicated to the satellite of the following, and the subsequent satellite receives the status of the terminal apparatus group communicated from the preceding satellite and enters the management area, The terminal device group management method as described in the above supplementary note, wherein the subsequent satellite activates a management authority and manages the status of the terminal device group in the management area.
[付記]
 前記多数の衛星に含まれる第1の衛星は、自己が現在受け持つ管理領域を識別して、該管理領域に在る端末装置群との間の衛星通信を実行して 該管理領域に存在する端末装置群のステータスを管理すると共に、前記管理領域を外れる際に 後続の第2の衛星に 前記管理領域に存在する端末装置群のステータスを通信し、
 前記多数の衛星に含まれる前記第2の衛星は、自己が次に受け持つ管理領域を識別して、該管理領域に存在する端末装置群のステータスを前記第1の衛星からの衛星通信を介して受け付けて管理すると共に、前記管理領域に入った際に、自己が現在受け持つ管理領域を識別して、前記管理領域に在る端末装置群との間の衛星通信を実行して 該管理領域に存在する端末装置群のステータスを管理する
ことを特徴とする上記付記記載の端末装置群の管理方法。
[Appendix]
The first satellite included in the multiple satellites identifies a management area that the current satellite is currently in charge of, performs satellite communication with a terminal device group in the management area, and a terminal that exists in the management area Manages the status of the device group, and communicates the status of the terminal device group existing in the management region to the subsequent second satellite when leaving the management region,
The second satellite included in the multiple satellites identifies a management area that the next satellite is responsible for, and transmits a status of a terminal device group existing in the management area via satellite communication from the first satellite. Receive and manage, and when entering the management area, identify the management area that it currently handles, and perform satellite communication with terminal devices in the management area to exist in the management area The terminal device group management method according to the above supplementary note, wherein the status of the terminal device group is managed.
[付記]
 前記多数の衛星は、管理領域毎の端末装置群のステータスを受け渡す際に、管理領域に在圏する端末装置群の識別子を合わせて送信することを特徴とする上記付記記載の端末装置群の管理方法。
[Appendix]
The plurality of satellites transmit together with identifiers of terminal device groups located in the management area when transferring the status of the terminal device group for each management area. Management method.
[付記]
 前記多数の衛星は、管理領域毎の端末装置群のステータスを受け渡す際に、管理領域に在圏する端末装置群に対して生成した端末装置の異常通知及びその生成時刻を少なくとも送信し合うことを特徴とする上記付記記載の端末装置群の管理方法。
[Appendix]
When delivering the status of the terminal device group for each management area, the multiple satellites at least transmit the generated terminal device abnormality notification and the generation time thereof to the terminal device group located in the management area. A method for managing a terminal device group as set forth in the above supplementary note.
[付記]
 前記多数の衛星は、管理領域毎の端末装置群のステータスを受け渡す際に、管理領域に在圏する端末装置群に対して送信した制御メッセージ及びその送信時刻を少なくとも送信し合うことを特徴とする上記付記記載の端末装置群の管理方法。
[Appendix]
The plurality of satellites transmit at least the control message transmitted to the terminal device group located in the management area and the transmission time thereof when delivering the status of the terminal device group for each management area. The terminal device group management method described in the above supplementary note.
[付記]
 前記多数の衛星は各々、1ないし複数の領域の管理権限を設定し、設定した管理権限に対応する1ないし複数の管理領域を領域毎に管理することを特徴とする上記付記記載の端末装置群の管理方法。
[Appendix]
Each of the plurality of satellites sets management authority for one or more areas, and manages one or more management areas corresponding to the set management authority for each area. Management method.
[付記]
 前記多数の衛星は各々、衛星コンステレーションに含まれる他の衛星の軌道を識別して、自己が管理権限を有する管理領域を次に管理する後続の衛星を選定し、選定した該当衛星に管理権限の引継通知を通知し、
 選定された該当衛星は、通知された管理権限の引継通知に基づいて、前記管理領域に入った際に、該当領域の管理権限を発動する
ことを特徴とする上記付記記載の端末装置群の管理方法。
[Appendix]
Each of the multiple satellites identifies the orbits of the other satellites included in the satellite constellation, selects the subsequent satellite that will manage the management area for which it has the management authority, and manages the selected satellite. Notification of takeover of
The selected corresponding satellite activates the management authority of the corresponding area when entering the management area based on the notified notification of the handover of the management authority. Method.
[付記]
 前記LEO衛星システムは、1ないし複数の衛星の管理権限を管理する管理衛星を含み、
 前記管理衛星は、衛星コンステレーションに含まれる各衛星の軌道を識別して、各管理領域を管理する衛星群をタイムラインに従って選定し、選定した該当衛星に管理権限の引継通知を通知し、
 選定された衛星は、通知された管理権限の引継通知に基づいて、前記管理領域に入った際に、該当領域の管理権限を発動する
ことを特徴とする上記付記記載の端末装置群の管理方法。
[Appendix]
The LEO satellite system includes a management satellite that manages the management authority of one or more satellites,
The management satellite identifies the orbit of each satellite included in the satellite constellation, selects a satellite group that manages each management area according to the timeline, and notifies the selected satellite of the takeover notification of management authority,
The selected satellite activates the management authority of the corresponding area when it enters the management area based on the notified management authority takeover notification. .
[付記]
 前記管理衛星は静止衛星及び/又は準天頂衛星であり、
 前記管理衛星は、衛星コンステレーションに含まれる各衛星の軌道を識別して、各管理領域を管理する衛星群をタイムラインに従って選定し、選定した該当衛星に管理権限の引継通知を通知し、
 選定された衛星は、通知された管理権限の引継通知に基づいて、前記管理領域に入った際に、該当領域の管理権限を発動する
ことを特徴とする上記付記記載の端末装置群の管理方法。
[Appendix]
The management satellite is a geostationary satellite and / or a quasi-zenith satellite,
The management satellite identifies the orbit of each satellite included in the satellite constellation, selects a satellite group that manages each management area according to the timeline, and notifies the selected satellite of the takeover notification of management authority,
The selected satellite activates the management authority of the corresponding area when it enters the management area based on the notified management authority takeover notification. .
[付記]
 前記管理衛星は静止衛星及び/又は準天頂衛星であり、
 前記管理衛星は、前記多数の衛星各々が保持する各々の端末装置状態に対する反応条件と反応動作の設定を管理すると共に、コンステレーションを構成する各衛星に、設定された反応条件と反応動作を、衛星ネットワークを介して設定する
ことを特徴とする上記付記記載の端末装置群の管理方法。
[Appendix]
The management satellite is a geostationary satellite and / or a quasi-zenith satellite,
The management satellite manages reaction conditions and reaction operation settings for each terminal device state held by each of the multiple satellites, and sets the reaction conditions and reaction operations set for each satellite constituting the constellation. The terminal device group management method described in the above supplementary note, which is set via a satellite network.
[付記]
 LEO衛星システムは、前記端末装置として、IoT機器の管理を行うことを特徴とする請求項上記付記記載の端末装置群の管理方法。
[Appendix]
The LEO satellite system manages an IoT device as the terminal device, and manages the terminal device group according to the above supplementary note.
[付記]
 LEO衛星システムは、前記端末装置としてドローンを管理して、ドローンの位置座標が予め定められた飛行ルートを外れた際 又は飛行禁止領域に進入した際に、該ドローンにナビゲーション再計算/停止/方向転換の少なくとも一つを通知する通信コマンドを、該当管理領域の管理権限を有する衛星から送信することを特徴とする上記付記記載の端末装置群の管理方法。
[Appendix]
The LEO satellite system manages the drone as the terminal device, and when the position coordinate of the drone deviates from the predetermined flight route or enters the no-fly region, navigation recalculation / stop / direction to the drone The terminal device group management method as described in the above supplementary note, wherein a communication command notifying at least one of the conversions is transmitted from a satellite having management authority for the corresponding management area.
[付記]
 LEO衛星システムは、前記端末装置として自動運転車を管理して、自動運転車の位置座標が予め定められた走行ルートを外れた際に、該自動運転車及び/又は周囲の乗り物にナビゲーション再計算/停止/方向転換/警告の少なくとも一つを通知する通信コマンドを、該当管理領域の管理権限を有する衛星から送信することを特徴とする上記付記記載の端末装置群の管理方法。
[Appendix]
The LEO satellite system manages an autonomous driving vehicle as the terminal device, and recalculates navigation to the autonomous driving vehicle and / or surrounding vehicles when the position coordinates of the autonomous driving vehicle deviate from a predetermined travel route. The terminal device group management method as described in the above supplementary note, wherein a communication command notifying at least one of / stop / direction change / warning is transmitted from a satellite having the management authority of the corresponding management area.
 この出願は、2016年4月6日に出願された日本出願特願2016-076297を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2016-076297 filed on Apr. 6, 2016, the entire disclosure of which is incorporated herein.
1    LEO衛星システム
10   衛星(領域管理衛星)
11   管理部
11A  条件動作記憶部
11B  状態変化検出部
11C  前回状態記憶部
12   通信部
12A  衛星通信部
12B  地表通信部
20   衛星(後続衛星)
30   衛星(先行衛星)
1 LEO Satellite System 10 Satellite (Regional Management Satellite)
11 management unit 11A condition operation storage unit 11B state change detection unit 11C previous state storage unit 12 communication unit 12A satellite communication unit 12B surface communication unit 20 satellite (following satellite)
30 satellites (leading satellites)

Claims (26)

  1.  低高度軌道を周回する多数の衛星でコンステレーションを構成し、
     前記多数の衛星は各々、
     地球側に存在する多数の端末装置 及び 軌道側に存在する他の衛星と通信する通信手段と、
     各々の端末装置状態に対する反応条件と反応動作を前記通信手段を介して前記他の衛星と共有して管理すると共に、
     前記通信手段を介して自己が現在受け持つ管理領域に在る端末装置群との間の通信を実行して、該管理領域に存在する端末装置群の位置情報を含むステータスを収集し、また、個々の端末装置状態が前記反応条件に合致した場合に、該反応条件に対応付いた反応動作を実行して、前記多数の端末装置を管理する
    管理手段を含み、
     前記多数の衛星は協調して、各管理領域を交代しながら地球側に存在する特定の端末装置及び/又は複数の端末装置群を全球的に見守る
    ことを特徴とするLEO衛星システム。
    Constellation is composed of many satellites orbiting low altitude orbit,
    Each of the multiple satellites is
    A communication means for communicating with a number of terminal devices existing on the earth side and other satellites existing on the orbit side;
    While managing the reaction condition and reaction operation for each terminal device state in common with the other satellites via the communication means,
    Executes communication with the terminal device group existing in the management area currently undertaken by the self through the communication means, collects the status including the position information of the terminal device group existing in the management area, A management means for managing the plurality of terminal devices by executing a reaction operation corresponding to the reaction conditions when the terminal device state matches the reaction conditions;
    The LEO satellite system characterized in that the large number of satellites cooperate with each other to watch over a specific terminal device and / or a plurality of terminal device groups existing on the earth side while changing over each management area.
  2.  前記衛星各々は、前記通信手段を用いる前記端末装置及び地球局との通信プロトコルにDTNプロトコルを使用することを特徴とする請求項1記載のLEO衛星システム。 2. The LEO satellite system according to claim 1, wherein each of the satellites uses a DTN protocol as a communication protocol with the terminal device and the earth station using the communication means.
  3.  前記LEO衛星システムは、サービスを提供するサービスベンダーから 各衛星が管理する端末装置の 時々刻々の端末装置状態に対する反応条件と反応動作の設定を受け付けると共に、
     前記衛星各々は、前記通信部を介して、各サービスベンダーから受け付けられた 各衛星が管理する端末装置の 時々刻々の端末装置状態に対する反応条件と反応動作の設定を共有する
    ことを特徴とする請求項1又は2に記載のLEO衛星システム。
    The LEO satellite system accepts reaction conditions and reaction operation settings for the terminal device status of the terminal device managed by each satellite from the service vendor that provides the service.
    Each of the satellites shares a reaction condition and a reaction operation setting for the terminal device status of each terminal device managed by each satellite received from each service vendor via the communication unit. Item 3. The LEO satellite system according to Item 1 or 2.
  4.  前記衛星各々は、
     各々の端末装置群のステータスに対する反応条件と該反応条件に合致した場合に該当端末装置に所定動作を実行させる通信コマンドを保持し、
     自己が現在受け持つ管理領域に在る端末装置群からの衛星通信を判読して、個々の端末装置のステータスが前記反応条件に合致した場合に、前記反応条件に対応付いた通信コマンドを地球側に送信する
    ことを特徴とする請求項1から3の何れか一項に記載のLEO衛星システム。
    Each of the satellites
    Holding a communication command for causing a corresponding terminal device to execute a predetermined action when the reaction condition for the status of each terminal device group and the reaction condition are met,
    When satellite communications from a group of terminal devices in the management area that they are currently in charge of are read and the status of each terminal device matches the reaction conditions, communication commands corresponding to the reaction conditions are sent to the earth side. The LEO satellite system according to any one of claims 1 to 3, wherein the LEO satellite system transmits the LEO satellite system.
  5.  前記衛星各々は、各々の端末装置状態に対する反応条件として異常通知を生成し、前記通信部を介して生成した異常通知を前記他の衛星と共有することを特徴とする請求項1から4の何れか一項に記載のLEO衛星システム。 5. The satellite according to claim 1, wherein each of the satellites generates an abnormality notification as a reaction condition for each terminal device state, and shares the abnormality notification generated through the communication unit with the other satellite. The LEO satellite system according to claim 1.
  6.  前記衛星各々は、任意の反応条件に対する反応動作として、所定の/必要数の端末装置に向けたナビゲーション再計算/停止/方向転換/帰投等の中から少なくとも一つを含む通信コマンドである制御メッセージを、該当管理領域の管理権限を有する衛星から送信することを特徴とする請求項1から5の何れか一項に記載のLEO衛星システム。 Each of the satellites is a control message that is a communication command including at least one of navigation recalculation / stop / return / return to a predetermined / required number of terminal devices as a reaction operation for an arbitrary reaction condition. The LEO satellite system according to any one of claims 1 to 5, wherein the LEO satellite system is transmitted from a satellite having the management authority of the corresponding management area.
  7.  前記LEO衛星システムは、監視制御センターマネージャ局を地上に具備し、
     前記監視制御センターマネージャ局は、通信ネットワークを介して、前記多数の衛星各々が保持する各々の端末装置状態に対する反応条件と反応動作の設定を受け付けて管理すると共に、コンステレーションを構成する各衛星に、設定された反応条件と反応動作を衛星ネットワークを介して設定する
    ことを特徴とする請求項1から6の何れか一項に記載のLEO衛星システム。
    The LEO satellite system has a supervisory control center manager station on the ground,
    The supervisory control center manager station receives and manages the reaction conditions and reaction operation settings for each terminal device state held by each of the multiple satellites via a communication network, and manages each satellite constituting the constellation. The LEO satellite system according to any one of claims 1 to 6, wherein the set reaction condition and reaction operation are set via a satellite network.
  8.  前記LEO衛星システムは、監視制御センターマネージャ局を地上に具備し、
     前記衛星各々は、各々の端末装置状態に対する反応条件として異常通知を生成し、前記通信部を介して生成した異常通知を中継・通知して、前記監視制御センターマネージャ局に送信する
    ことを特徴とする請求項1から7の何れか一項に記載のLEO衛星システム。
    The LEO satellite system has a supervisory control center manager station on the ground,
    Each of the satellites generates an abnormality notification as a reaction condition for each terminal device state, relays and notifies the abnormality notification generated via the communication unit, and transmits the notification to the supervisory control center manager station The LEO satellite system according to any one of claims 1 to 7.
  9.  前記LEO衛星システムは、監視制御センターマネージャ局を地上に具備し、
     前記監視制御センターマネージャ局は、通信ネットワークを介して、前記多数の衛星各々が保持する 時々刻々の各々の端末装置状態である位置情報の期待値を算出するサービス運行計画をユーザから受け付けて管理すると共に、コンステレーションを構成する各衛星に、設定されたサービス運行計画又はサービス運行計画から算出された位置情報の期待値を衛星ネットワークを介して設定する
    ことを特徴とする請求項1から8の何れか一項に記載のLEO衛星システム。
    The LEO satellite system has a supervisory control center manager station on the ground,
    The supervisory control center manager station receives and manages a service operation plan for calculating an expected value of position information, which is a state of each terminal device held by each of the multiple satellites, via a communication network from a user. And setting an expected value of the position information calculated from the set service operation plan or the service operation plan to each satellite constituting the constellation via the satellite network. The LEO satellite system according to claim 1.
  10.  前記多数の衛星は各々、前記通信部を介して自己が現在受け持つ管理領域に存在する端末装置群の位置情報を含むステータスを時々刻々と取得し、取得した位置情報が運行計画又は運行計画から算出された位置情報の期待値から外れた場合に、該当端末装置状態に対する反応条件として異常通知を生成して前記他の衛星及び/又は地球局に向けて放送すると共に、該当端末装置状態に向けて安全化指令を放送することを特徴とする請求項1から9の何れか一項に記載のLEO衛星システム。 Each of the multiple satellites obtains a status including the location information of the terminal device group existing in the management area currently managed by the self through the communication unit, and the obtained location information is calculated from the operation plan or the operation plan. If the position information is out of the expected value of the location information, an abnormality notification is generated as a reaction condition for the corresponding terminal device state and broadcast to the other satellites and / or earth stations, and toward the corresponding terminal device state. The LEO satellite system according to any one of claims 1 to 9, wherein a safety command is broadcast.
  11.  前記衛星は、前記通信手段を、
     LEOに投入された際に地球側に存在する端末装置群と通信可能に構成されている地表通信手段と、
     LEO投入された際に軌道側に存在する前記他の衛星と通信可能に構成されている衛星通信手段と、
    をSDR(Software Defined Radio)で構成すると共に、
     前記地表通信手段及び前記衛星通信手段は、複数の通信方式に対応しており、
     前記地表通信手段は、前記端末装置各々が対応した通信方式で、管理領域に在る端末装置群との間の衛星通信を実行して、該管理領域に存在する端末装置群のステータスを収集し、
     前記衛星通信手段は、複数種類ある前記他の衛星が対応した通信方式で管理領域の管理権限と 収集した端末装置群のステータスを、前記他の衛星に引継ぐ
    ことを特徴とする請求項1から10の何れか一項に記載のLEO衛星システム。
    The satellite transmits the communication means,
    Surface communication means configured to be able to communicate with a group of terminal devices existing on the earth side when put into LEO;
    Satellite communication means configured to be able to communicate with the other satellites present on the orbital side when LEO is introduced;
    With SDR (Software Defined Radio)
    The surface communication means and the satellite communication means correspond to a plurality of communication methods,
    The surface communication means collects the status of the terminal device group existing in the management area by executing satellite communication with the terminal device group existing in the management area by a communication method supported by each of the terminal devices. ,
    11. The satellite communication means takes over the management authority of the management area and the collected status of the terminal device group to the other satellites in a communication method supported by the other satellites of a plurality of types. The LEO satellite system according to any one of the above.
  12.  前記衛星各々は、自己が受け持つ管理領域を管理権限に従って識別し、各管理領域に在る端末装置群のステータスを個々の管理権限を有する衛星が管理すると共に、前記管理領域を外れる際に、後続の衛星に前記管理領域に存在する端末装置群のステータスを通信し、前記後続の衛星は、先行する衛星から通信された前記端末装置群のステータスを受け付けると共に、前記管理領域に入った際に、該後続の衛星が管理権限を発動して前記端末装置群のステータスを該管理領域で管理する
    ことを特徴とする請求項1から11の何れか一項に記載のLEO衛星システム。
    Each of the satellites identifies its own management area according to the management authority, and the status of the terminal device group in each management area is managed by the satellite having the individual management authority, and when the management area leaves the management area, The status of the terminal device group existing in the management area is communicated to the satellite of the following, and the subsequent satellite receives the status of the terminal apparatus group communicated from the preceding satellite and enters the management area, The LEO satellite system according to any one of claims 1 to 11, wherein the subsequent satellite activates management authority to manage the status of the terminal device group in the management area.
  13.  前記多数の衛星に含まれる第1の衛星は、自己が現在受け持つ管理領域を識別して、該管理領域に在る端末装置群との間の衛星通信を実行して 該管理領域に存在する端末装置群のステータスを管理すると共に、前記管理領域を外れる際に 後続の第2の衛星に 前記管理領域に存在する端末装置群のステータスを通信し、
     前記多数の衛星に含まれる前記第2の衛星は、自己が次に受け持つ管理領域を識別して、該管理領域に存在する端末装置群のステータスを前記第1の衛星からの衛星通信を介して受け付けて管理すると共に、前記管理領域に入った際に、自己が現在受け持つ管理領域を識別して、前記管理領域に在る端末装置群との間の衛星通信を実行して 該管理領域に存在する端末装置群のステータスを管理する
    ことを特徴とする請求項1から12の何れか一項に記載のLEO衛星システム。
    The first satellite included in the multiple satellites identifies a management area that the current satellite is currently in charge of, performs satellite communication with a terminal device group in the management area, and a terminal that exists in the management area Manages the status of the device group, and communicates the status of the terminal device group existing in the management region to the subsequent second satellite when leaving the management region,
    The second satellite included in the multiple satellites identifies a management area that the next satellite is responsible for, and transmits a status of a terminal device group existing in the management area via satellite communication from the first satellite. Receive and manage, and when entering the management area, identify the management area that it currently handles, and perform satellite communication with terminal devices in the management area to exist in the management area The LEO satellite system according to any one of claims 1 to 12, wherein a status of a terminal device group to be managed is managed.
  14.  前記多数の衛星は、管理領域毎の端末装置群のステータスを受け渡す際に、管理領域に在圏する端末装置群の識別子を合わせて送信することを特徴とする請求項1から13の何れか一項に記載のLEO衛星システム。 14. The device according to claim 1, wherein the plurality of satellites transmit the identifiers of the terminal device groups existing in the management area together when transferring the status of the terminal device group for each management area. The LEO satellite system according to one item.
  15.  前記多数の衛星は、管理領域毎の端末装置群のステータスを受け渡す際に、管理領域に在圏する端末装置群に対して生成した端末装置の異常通知及びその生成時刻を少なくとも送信し合うことを特徴とする請求項1から14の何れか一項に記載のLEO衛星システム。 When delivering the status of the terminal device group for each management area, the multiple satellites at least transmit the generated terminal device abnormality notification and the generation time thereof to the terminal device group located in the management area. The LEO satellite system according to any one of claims 1 to 14, wherein
  16.  前記多数の衛星は、管理領域毎の端末装置群のステータスを受け渡す際に、管理領域に在圏する端末装置群に対して送信した制御メッセージ及びその送信時刻を少なくとも送信し合うことを特徴とする請求項1から15の何れか一項に記載のLEO衛星システム。 The plurality of satellites transmit at least the control message transmitted to the terminal device group located in the management area and the transmission time thereof when delivering the status of the terminal device group for each management area. The LEO satellite system according to any one of claims 1 to 15.
  17.  前記多数の衛星は各々、1ないし複数の領域の管理権限を設定し、設定した管理権限に対応する1ないし複数の管理領域を領域毎に管理することを特徴とする請求項1から16の何れか一項に記載のLEO衛星システム。 17. The system according to claim 1, wherein each of the plurality of satellites sets management authority for one or more areas, and manages one or more management areas corresponding to the set management authority for each area. The LEO satellite system according to claim 1.
  18.  前記多数の衛星は各々、衛星コンステレーションに含まれる他の衛星の軌道を識別して、自己が管理権限を有する管理領域を次に管理する後続の衛星を選定し、選定した該当衛星に管理権限の引継通知を通知し、
     選定された該当衛星は、通知された管理権限の引継通知に基づいて、前記管理領域に入った際に、該当領域の管理権限を発動する
    ことを特徴とする請求項1から17の何れか一項に記載のLEO衛星システム。
    Each of the multiple satellites identifies the orbits of the other satellites included in the satellite constellation, selects the subsequent satellite that will manage the management area for which it has the management authority, and manages the selected satellite. Notification of takeover of
    The selected corresponding satellite activates the management authority of the corresponding area when entering the management area, based on the notified notification of the handover of the management authority. The LEO satellite system according to item.
  19.  前記LEO衛星システムは、1ないし複数の衛星の管理権限を管理する管理衛星を含み、
     前記管理衛星は、衛星コンステレーションに含まれる各衛星の軌道を識別して、各管理領域を管理する衛星群をタイムラインに従って選定し、選定した該当衛星に管理権限の引継通知を通知し、
     選定された衛星は、通知された管理権限の引継通知に基づいて、前記管理領域に入った際に、該当領域の管理権限を発動する
    ことを特徴とする請求項1から18の何れか一項に記載のLEO衛星システム。
    The LEO satellite system includes a management satellite that manages the management authority of one or more satellites,
    The management satellite identifies the orbit of each satellite included in the satellite constellation, selects a satellite group that manages each management area according to the timeline, and notifies the selected satellite of the takeover notification of management authority,
    The selected satellite activates the management authority of the corresponding area when it enters the management area based on the notification of handover of the notified management authority. The LEO satellite system described in 1.
  20.  前記管理衛星は静止衛星及び/又は準天頂衛星であり、
     前記管理衛星は、衛星コンステレーションに含まれる各衛星の軌道を識別して、各管理領域を管理する衛星群をタイムラインに従って選定し、選定した該当衛星に管理権限の引継通知を通知し、
     選定された衛星は、通知された管理権限の引継通知に基づいて、前記管理領域に入った際に、該当領域の管理権限を発動する
    ことを特徴とする請求項19に記載のLEO衛星システム。
    The management satellite is a geostationary satellite and / or a quasi-zenith satellite,
    The management satellite identifies the orbit of each satellite included in the satellite constellation, selects a satellite group that manages each management area according to the timeline, and notifies the selected satellite of the takeover notification of management authority,
    20. The LEO satellite system according to claim 19, wherein when the selected satellite enters the management area based on the notified management authority takeover notice, the management authority of the corresponding area is activated.
  21.  前記管理衛星は静止衛星及び/又は準天頂衛星であり、
     前記管理衛星は、前記多数の衛星各々が保持する各々の端末装置状態に対する反応条件と反応動作の設定を管理すると共に、コンステレーションを構成する各衛星に、設定された反応条件と反応動作を衛星ネットワークを介して設定する
    ことを特徴とする請求項19記載のLEO衛星システム。
    The management satellite is a geostationary satellite and / or a quasi-zenith satellite,
    The management satellite manages reaction conditions and reaction operation settings for each terminal device state held by each of the multiple satellites, and sets the reaction conditions and reaction operations set for each satellite constituting the constellation. 20. The LEO satellite system according to claim 19, wherein the LEO satellite system is set via a network.
  22.  LEO衛星システムは、前記端末装置として、IoT機器の管理を行うことを特徴とする請求項1から21の何れか一項に記載のLEO衛星システム。 The LEO satellite system according to any one of claims 1 to 21, wherein the LEO satellite system manages an IoT device as the terminal device.
  23.  LEO衛星システムは、前記端末装置としてドローンを管理して、ドローンの位置座標が予め定められた飛行ルートを外れた際 又は飛行禁止領域に進入した際に、該ドローンにナビゲーション再計算/停止/方向転換の少なくとも一つを通知する通信コマンドを、該当管理領域の管理権限を有する衛星から送信することを特徴とする請求項1から22の何れか一項に記載のLEO衛星システム。 The LEO satellite system manages the drone as the terminal device, and when the position coordinates of the drone deviate from the predetermined flight route or enters the no-fly region, navigation recalculation / stop / direction to the drone The LEO satellite system according to any one of claims 1 to 22, wherein a communication command notifying at least one of the conversions is transmitted from a satellite having management authority for the corresponding management area.
  24.  LEO衛星システムは、前記端末装置として自動運転車を管理して、自動運転車の位置座標が予め定められた走行ルートを外れた際に、該自動運転車及び/又は周囲の乗り物にナビゲーション再計算/停止/方向転換/警告の少なくとも一つを通知する通信コマンドを、該当管理領域の管理権限を有する衛星から送信することを特徴とする請求項1から23の何れか一項に記載のLEO衛星システム。 The LEO satellite system manages an autonomous driving vehicle as the terminal device, and recalculates navigation to the autonomous driving vehicle and / or surrounding vehicles when the position coordinates of the autonomous driving vehicle deviate from a predetermined travel route. The LEO satellite according to any one of claims 1 to 23, wherein a communication command for notifying at least one of / stop / direction change / warning is transmitted from a satellite having management authority of the corresponding management area. system.
  25.  低高度軌道の周回軌道に配置された状態で、地球側に存在する多数の端末装置 及び 軌道側に存在する他の衛星と通信するように構成された通信手段と、
     各々の端末装置状態に対する反応条件と反応動作を前記通信部を介して前記他の衛星と共有して管理すると共に、
     前記通信部を介して自己が現在受け持つ管理領域に在る端末装置群との間の通信を実行して、該管理領域に存在する端末装置群の位置情報を含むステータスを収集し、また、個々の端末装置状態が前記反応条件に合致した場合に、該反応条件に対応付いた反応動作を実
    行して、前記多数の端末装置を管理する
    ように構成された管理手段を含む
    ことを特徴とするLEO衛星。
    A communication means configured to communicate with a number of terminal devices existing on the earth side and other satellites existing on the orbit side in a state of being arranged in a low-orbit orbit.
    While managing the reaction conditions and reaction behavior for each terminal device state with the other satellites via the communication unit,
    Executes communication with the terminal device group existing in the management area currently handled by itself through the communication unit, collects status including the location information of the terminal device group existing in the management area, and individually And a management unit configured to manage the plurality of terminal devices by executing a reaction operation corresponding to the reaction conditions when the terminal device state of the terminal device matches the reaction conditions. LEO satellite.
  26.  低高度軌道を周回する多数の衛星でコンステレーションを構成するLEO衛星システムによる端末装置群の管理方法であって、
     前記多数の衛星は各々、地球側に存在する多数の端末装置 及び 軌道側に存在する他の衛星と通信する通信部と、他の衛星との協調動作を受け持つ管理部を含み、
     前記多数の衛星は各々、各々の端末装置状態に対する反応条件と反応動作を、前記通信部を介して前記他の衛星と共有して管理し、
     且つ、
     前記多数の衛星は各々、前記通信部を介して自己が現在受け持つ管理領域に在る端末装置群との間の通信を実行して、該管理領域に存在する端末装置群の位置情報を含むステータスを収集し、また、個々の端末装置状態が前記反応条件に合致した場合に、該反応条件に対応付いた反応動作を実行して、前記多数の端末装置を管理する
    ことを特徴とする方法。
    A terminal device group management method by an LEO satellite system in which a constellation is composed of a large number of satellites orbiting in a low altitude orbit,
    Each of the plurality of satellites includes a plurality of terminal devices existing on the earth side, a communication unit communicating with other satellites existing on the orbit side, and a management unit responsible for cooperative operation with the other satellites,
    Each of the multiple satellites manages reaction conditions and reaction operations for each terminal device state in common with the other satellites via the communication unit, and
    and,
    Each of the multiple satellites performs communication with a terminal device group existing in a management area that the satellite currently has via the communication unit, and includes status information of the terminal device group existing in the management area And when a state of each terminal device matches the reaction condition, a reaction operation corresponding to the reaction condition is executed to manage the multiple terminal devices.
PCT/JP2017/013891 2016-04-06 2017-04-03 Leo satellite system WO2017175696A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018510585A JPWO2017175696A1 (en) 2016-04-06 2017-04-03 LEO satellite system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-076297 2016-04-06
JP2016076297 2016-04-06

Publications (1)

Publication Number Publication Date
WO2017175696A1 true WO2017175696A1 (en) 2017-10-12

Family

ID=60001164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/013891 WO2017175696A1 (en) 2016-04-06 2017-04-03 Leo satellite system

Country Status (2)

Country Link
JP (1) JPWO2017175696A1 (en)
WO (1) WO2017175696A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110505357A (en) * 2019-09-06 2019-11-26 上海航天测控通信研究所 A kind of management method of aerospace VOIP voice terminal
WO2020153172A1 (en) * 2019-01-22 2020-07-30 株式会社Nttドコモ Information processing device
CN111628812A (en) * 2019-02-28 2020-09-04 上海连尚网络科技有限公司 Satellite constellation system
CN112183929A (en) * 2018-11-07 2021-01-05 长沙天仪空间科技研究院有限公司 Imaging system of remote sensing satellite
CN113179123A (en) * 2018-11-07 2021-07-27 长沙天仪空间科技研究院有限公司 Satellite resource coordination system
JPWO2021230167A1 (en) * 2020-05-12 2021-11-18
WO2022064755A1 (en) * 2020-09-28 2022-03-31 三菱電機株式会社 Satellite information transmission system, communication satellite, ground facility, and satellite communication system
WO2022249832A1 (en) 2021-05-27 2022-12-01 三菱電機株式会社 Communication satellite, satellite constellation, inter-satellite communication method, artificial satellite, and ground facility
US20230109635A1 (en) * 2020-05-01 2023-04-06 Intel Corporation Satellite 5g terrestrial and non-terrestrial network interference exclusion zones
KR102574492B1 (en) * 2022-06-27 2023-09-06 (주)컨텍 Cloud-based satellite information reception processing device and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001025050A (en) * 1999-07-08 2001-01-26 Nec Corp Handover processing method, system therefor and recording medium recording handover processing program
JP2008137439A (en) * 2006-11-30 2008-06-19 Mitsubishi Electric Corp Monitor satellite
US20140218242A1 (en) * 2013-02-01 2014-08-07 NanoSatisfi Inc. Computerized nano-satellite platform for large ocean vessel tracking
US20160037434A1 (en) * 2014-08-03 2016-02-04 Hughes Network Systems, Llc Centralized ground-based route determination and traffic engineering for software defined satellite communications networks

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001025050A (en) * 1999-07-08 2001-01-26 Nec Corp Handover processing method, system therefor and recording medium recording handover processing program
JP2008137439A (en) * 2006-11-30 2008-06-19 Mitsubishi Electric Corp Monitor satellite
US20140218242A1 (en) * 2013-02-01 2014-08-07 NanoSatisfi Inc. Computerized nano-satellite platform for large ocean vessel tracking
US20160037434A1 (en) * 2014-08-03 2016-02-04 Hughes Network Systems, Llc Centralized ground-based route determination and traffic engineering for software defined satellite communications networks

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113179123B (en) * 2018-11-07 2022-10-04 长沙天仪空间科技研究院有限公司 Satellite resource coordination system
CN112183929B (en) * 2018-11-07 2024-04-26 长沙天仪空间科技研究院有限公司 Imaging system of remote sensing satellite
CN112183929A (en) * 2018-11-07 2021-01-05 长沙天仪空间科技研究院有限公司 Imaging system of remote sensing satellite
CN113179123A (en) * 2018-11-07 2021-07-27 长沙天仪空间科技研究院有限公司 Satellite resource coordination system
CN113242082A (en) * 2018-11-07 2021-08-10 长沙天仪空间科技研究院有限公司 Satellite data interaction system
WO2020153172A1 (en) * 2019-01-22 2020-07-30 株式会社Nttドコモ Information processing device
JP7164633B2 (en) 2019-01-22 2022-11-01 株式会社Nttドコモ Information processing equipment
JPWO2020153172A1 (en) * 2019-01-22 2021-10-14 株式会社Nttドコモ Information processing device
CN111628812B (en) * 2019-02-28 2022-03-04 上海连尚网络科技有限公司 Satellite constellation system
CN111628812A (en) * 2019-02-28 2020-09-04 上海连尚网络科技有限公司 Satellite constellation system
CN110505357A (en) * 2019-09-06 2019-11-26 上海航天测控通信研究所 A kind of management method of aerospace VOIP voice terminal
CN110505357B (en) * 2019-09-06 2021-04-02 上海航天测控通信研究所 Management method of aerospace VOIP voice terminal
US20230109635A1 (en) * 2020-05-01 2023-04-06 Intel Corporation Satellite 5g terrestrial and non-terrestrial network interference exclusion zones
WO2021230167A1 (en) * 2020-05-12 2021-11-18 三菱電機株式会社 Space traffic management system, space traffic management device, space traffic management method, collision avoidance assistance operations device, satellite constellation operations device, megaconstellation operations device, space object operations device, space situational awareness operations device, and oadr
JPWO2021230167A1 (en) * 2020-05-12 2021-11-18
JP7233609B2 (en) 2020-05-12 2023-03-06 三菱電機株式会社 Space traffic management system, space traffic management device, space traffic management method, collision avoidance support business device, satellite constellation business device, mega constellation business device, space object business device, space situational awareness business device, and OADR
WO2022064755A1 (en) * 2020-09-28 2022-03-31 三菱電機株式会社 Satellite information transmission system, communication satellite, ground facility, and satellite communication system
WO2022064720A1 (en) * 2020-09-28 2022-03-31 三菱電機株式会社 Satellite information transmission system, communication satellite, ground equipment, and satellite communication system
JP7422889B2 (en) 2020-09-28 2024-01-26 三菱電機株式会社 Satellite information transmission systems, communication satellites, ground equipment and satellite communication systems
WO2022249832A1 (en) 2021-05-27 2022-12-01 三菱電機株式会社 Communication satellite, satellite constellation, inter-satellite communication method, artificial satellite, and ground facility
KR102574492B1 (en) * 2022-06-27 2023-09-06 (주)컨텍 Cloud-based satellite information reception processing device and method

Also Published As

Publication number Publication date
JPWO2017175696A1 (en) 2019-03-28

Similar Documents

Publication Publication Date Title
WO2017175696A1 (en) Leo satellite system
US11449049B2 (en) Flight management system for UAVs
US11252533B2 (en) UAV supported vehicle-to-vehicle communication
US20070060045A1 (en) System and technique for situational awareness
JP5988608B2 (en) Alternate communication for aircraft
US8693947B2 (en) Extensible high bandwidth global space communication network
US7511635B2 (en) Automatic method for transmitting monitoring alarms from an aircraft to the ground
US20140355476A1 (en) Systems and methods for mesh network deployment
US20180037336A1 (en) Method for creating a constellation of electronic devices for providing optical or radio-frequency operations on a predetermined geographical area, and a system of such a constellation of electronic devices
Berioli et al. Aerospace communications for emergency applications
JP7174661B2 (en) Communication management device, communication management system, communication management method, and communication management program
JP2019047262A (en) LEO communication terminal, LEO communication service system, program for LEO communication terminal, and LEO communication terminal power saving control method
Murtaza et al. Air traffic surveillance using IP-based space information network
US20160365918A1 (en) Communication station, satellite communication system, ground station, channel control device, and satellite communication method
JP2018165869A (en) Control system and control method
KR102569425B1 (en) Architecture for defining group messaging
Košuda et al. MAVLink messaging protocol as potential candidate for the UTM communication
Ilcev et al. Inmarsat GEO GMSC System
Caicedo Spectrum management issues for the operation of commercial services with uavs
JP7347516B2 (en) Control device, first mobile terminal, method, program, and recording medium
Haynes Technology candidates for air-to-air and air-to-ground data exchange
Ilčev et al. Integrations into the GADSS Network
Ilcev et al. Global Mobile Satellite Distress System (GMSDS)
Kerczewski Spectrum Research for Aviation Final Report
CN116363907A (en) System and method for remote driver communication via ground-based communication gateway device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018510585

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17779074

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17779074

Country of ref document: EP

Kind code of ref document: A1