WO2017175294A1 - Signal reception device and signal reception method - Google Patents

Signal reception device and signal reception method Download PDF

Info

Publication number
WO2017175294A1
WO2017175294A1 PCT/JP2016/061083 JP2016061083W WO2017175294A1 WO 2017175294 A1 WO2017175294 A1 WO 2017175294A1 JP 2016061083 W JP2016061083 W JP 2016061083W WO 2017175294 A1 WO2017175294 A1 WO 2017175294A1
Authority
WO
WIPO (PCT)
Prior art keywords
message
signal
unit
satellites
navigation message
Prior art date
Application number
PCT/JP2016/061083
Other languages
French (fr)
Japanese (ja)
Inventor
学 高木
元吉 克幸
和雅 鈴木
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2016553613A priority Critical patent/JPWO2017175294A1/en
Priority to PCT/JP2016/061083 priority patent/WO2017175294A1/en
Publication of WO2017175294A1 publication Critical patent/WO2017175294A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/35Constructional details or hardware or software details of the signal processing chain
    • G01S19/37Hardware or software details of the signal processing chain

Definitions

  • the present invention relates to a signal receiving apparatus and a signal receiving method for receiving a signal from a satellite.
  • GPS Global Positioning Systems
  • GNSS Global Navigation Satellite Systems
  • Applications are drawing attention. While these devices and applications are actively used in urban mobiles, it is well known that positioning accuracy is not achieved in urban areas due to the small number of visible satellites and poor satellite placement. . In order to obtain high positioning accuracy even in such an environment, it is necessary to correctly decode information for positioning calculation called navigation message included in GNSS signals broadcast from various satellites.
  • Patent Document 2 a part of the content of the navigation message to be received next is predicted using the navigation message received in advance, and the predicted navigation message and the navigation message received next are received.
  • Signals transmitted from GNSS satellites are characterized by a mixture of satellite-specific packets transmitted in a short cycle such as ephemeris and packets that can be received from multiple satellites transmitted in a long cycle called almanac. .
  • Patent Literature 1 and Patent Literature 2 are methods for accurately decoding the former ephemeris, and are suitable for decoding an ephemeris that is repeatedly broadcast for a certain period at short intervals.
  • synthesizing almanac which is a message broadcast in a longer cycle than ephemeris, with the same configuration, there is a problem that it takes a long time to improve positioning accuracy because it is broadcasted less frequently than ephemeris.
  • the present invention has been made to solve the above problems, and correctly receives a message contained in a signal broadcast from a satellite such as a GNSS satellite in a shorter time than the prior art regardless of the type of the message.
  • An object of the present invention is to realize a signal receiving apparatus capable of performing the above.
  • a signal receiving apparatus includes an antenna that receives signals from a plurality of satellites, an extraction unit that extracts a message included in the signal received by the antenna, a parameter identification unit that reads a parameter from the message, Based on the parameters read by the parameter identification unit, it is determined whether or not to synthesize messages included in signals from the plurality of satellites, and when it is determined to synthesize, a synthesis unit that synthesizes the messages, It is characterized by that.
  • a message can be correctly received within a predetermined time regardless of the type of message included in a signal broadcast from a satellite such as a GNSS satellite.
  • FIG. 3 is a diagram illustrating signal reception in the signal reception device 100 according to the first embodiment.
  • FIG. FIG. 3 shows a configuration of an L2C signal transmitted from a GNSS satellite according to the first embodiment.
  • FIG. The figure which shows the data format which the two GNSS satellites which concern on Embodiment 1 transmit.
  • FIG. 3 shows a configuration example of a signal receiving apparatus 100 according to the first embodiment.
  • 5 is a flowchart in the parameter identification unit 105 according to the first embodiment.
  • FIG. 5 is a flowchart in the synthesis processing unit 106 according to the first embodiment.
  • FIG. 4 is a diagram showing composition of navigation messages in the first embodiment.
  • FIG. 6 is a diagram illustrating a configuration example of a signal reception device 200 according to Embodiment 2.
  • FIG. Health confirmation processing according to the second embodiment. 10 is a flowchart in the synthesis processing unit 111 according to the second embodiment.
  • Embodiment 1 FIG. DESCRIPTION OF EMBODIMENTS
  • a navigation message which is a message broadcast from a plurality of GNSS satellites 1 as shown in FIG. 1
  • a positioning calculation is performed using the GNSS signal. It is applied to the satellite positioning system to obtain the result.
  • the present invention is not limited to the embodiments. In each figure, the same code
  • the GNSS positioning signal is modulated by a BPSK (Binary Phase Shift Keying) modulation method according to the bit value of the navigation message.
  • a GNSS receiver receives a GNSS positioning signal, demodulates it, acquires navigation messages, and uses them for positioning calculations.
  • the L1C / A signal which is one of the GPS signals, includes a navigation message called LNAV (Lateral Navigation).
  • the navigation message is binary and consists of an ephemeris and an almanac.
  • the navigation message is transmitted at 50 bps, and one bit is 20 ms.
  • the navigation message is composed of units called frames, and one frame is composed of five sets of subframes. Each subframe has a size of 300 bits.
  • subframes 1 to 3 include ephemeris, which is information unique to each satellite, and the same information is repeatedly transmitted for a certain period.
  • the subframes 4 and 5 include information common to all satellites called almanac. Since almanac has a huge amount of data, it is contained in pages 1 to 25 of subframes 4 and 5 separately.
  • Subframes are transmitted in order from 1, and when transmission of subframe 5 is completed, transmission of subframe 1 starts again. That is, the same information appears once every 30 seconds for ephemeris and once every 12 minutes and 30 seconds for almanac.
  • the GPS signal L2C signal includes a navigation message called CNAV (Civil Navigation).
  • the navigation message is composed of binary ephemeris and almanac.
  • CNAV which is a navigation message for the L2C signal, is 25 bps data, but is transmitted after convolutional coding at a coding rate of 1/2, so the symbol rate is 50 sps, and one symbol is 20 ms.
  • the CNAV navigation message is composed of units called messages, and has the structure shown in FIG. The message has a total size of 300 bits including 276 data bits and 24 check bits. This navigation message is transmitted in 6 seconds by L2C signal. The transmission pattern differs for each satellite and signal. The message is classified by 6 bits added to the PRN (Pseudo Random Noise) number (satellite number) of each frame called message type ID (Identification).
  • PRN Physical Random Noise
  • the E1 signal of the Galileo signal which is a kind of GNSS satellite, includes a navigation message called I / NAV.
  • the navigation message is binary and consists of ephemeris and almanac.
  • the symbol rate is 50 sps (symbol per second), and one symbol is 20 ms.
  • the I / NAV navigation message is composed of units called pages, and one page is further divided into two page parts. Each page part has a configuration shown in FIG. The page part has a size of 120 bits in total including data bits and 24 check bits. The feature is that the data bits straddle page part 1 and page part 2.
  • the structure (data format) of the navigation message varies depending on the type of satellite and the type of signal, the information included is ephemeris and almanac.
  • the signal formats and numerical values shown in FIGS. 2 to 4 are examples of the signal format to which the present invention is applied. The present invention is not limited to this signal format, and is applied to various signal formats. Can do.
  • the same information is included for a certain period of time if the data format is the same.
  • the GNSS satellite has a fixed data format order.
  • GNSS satellites are equipped with atomic clocks, and the timing of data set changes does not shift between satellites.
  • the present invention is based on the feature that the ephemeris and almanac, which are information of the navigation message, are based on the feature that the own satellite repeatedly broadcasts for a certain period of time, and a plurality of satellites broadcast the same information. It can be applied when demodulating navigation messages of GNSS signals broadcast from GNSS satellites such as GPS, QZSS (Quasi Zenith Satellite System), GLONASS (GLObal NAvigation Satellite System) and Galileo. Show.
  • GNSS satellites such as GPS, QZSS (Quasi Zenith Satellite System), GLONASS (GLObal NAvigation Satellite System) and Galileo. Show.
  • FIG. 6 is a diagram illustrating a configuration example of the GNSS signal receiving apparatus 100 according to the first embodiment of the present invention.
  • the signal receiving apparatus 100 includes an antenna 101 that receives GNSS signals from the GNSS satellite 1 and the GNSS satellite 2, and a navigation message that is a message included in the signal received by the antenna 101.
  • the parameter identification unit 105 Based on the parameters read by the parameter identification unit 105, the parameter identification unit 105 that reads parameters such as identification numbers representing the characteristics of the navigation message from the navigation message extracted by the extraction unit 120, It is determined whether or not to synthesize a message included in a signal from the satellite of the satellite, and when it is determined to synthesize, a synthesizer 121 that synthesizes the message, and a positioning calculator 108 that performs a positioning calculation using the synthesized navigation message And an output unit 109 for outputting a positioning calculation result.
  • parameters such as identification numbers representing the characteristics of the navigation message from the navigation message extracted by the extraction unit 120
  • the extraction unit 120 adjusts the gain for each received signal of each satellite, converts it into a baseband signal and performs AD (Analog-to-Digital) conversion, and each satellite.
  • Acquisition and tracking unit 103 for capturing and tracking the carrier and code phase of the GNSS signal, and demodulation for decoding the navigation messages of GNSS satellites 1 and 2 by performing frame synchronization and error correction based on the signal acquisition and tracking results
  • the unit 104 is provided.
  • the synthesizing unit 121 includes a synthesis processing unit 106 that synthesizes navigation messages that can be synthesized based on the identification number of the navigation message, and a storage unit 107 that stores the navigation message synthesized by the synthesis processing unit.
  • the GNSS signal received by the antenna 101 is output to the RF processing unit 102, and the reception signal converted into the baseband by the RF processing unit 102 is output to the signal acquisition / tracking unit 103 after receiving filter processing.
  • the signal acquisition / tracking unit 103 performs correlation processing on the received signal and the reference signal to acquire and track the carrier phase and the code phase, and obtains the tracking result (correlation processing result) from the demodulation unit 104 and the positioning calculation unit 108. Output to.
  • the demodulator 104 performs error correction on the tracking result using a Viterbi decoder, an LDPC (low-density parity-check code) decoder, etc., then searches for a preamble and performs subframe and page synchronization processing.
  • the received signal after synchronization is subjected to parity and CRC (Cyclic Redundancy Code) error detection, processed as a navigation message in accordance with a predetermined data format, and output to the parameter identifying unit 105.
  • the parameter identification unit 105 reads bits in the navigation message from the navigation message and determines an identification number that is a parameter for determining the data format (S71).
  • the identification number includes an index that can identify whether the data format is ephemeris or almanac.
  • the data set bit in the navigation message is read as a parameter (S72), and the data set is updated, that is, whether the navigation message has been updated since the last reception (S73).
  • the set flag is set to 0 (S74), and if there is an update, the data set flag is set to 1 (S75) and output to the synthesis processing unit 106.
  • the composition processing unit 106 confirms that the data set is the same and the navigation message is not updated (S81), and is stored in the storage unit 107 having the same identification number as the input navigation message. It is confirmed whether there is a navigation message (S82). Thereafter, in the case of a navigation message related to time information (S83), the time information of the stored navigation message is incremented (S84), and time adjustment is performed with the received navigation message. Thereafter, the received navigation message is synthesized with a navigation message of the same data format.
  • the synthesis method is switched depending on whether the data to be synthesized is ephemeris or almanac (S85).
  • the data to be synthesized is almanac
  • data of the same data format is synthesized regardless of the transmitted satellite (S86)
  • if it is ephemeris, the ephemeris transmitted from the same satellite is synthesized (S87).
  • the data is output to the storage unit 107 and the positioning calculation unit 108.
  • the navigation message is updated, the corresponding navigation message is deleted from the storage unit 107 (S88), data collection is started again, and the navigation message is saved (S89).
  • the storage unit 107 stores an almanac for each signal and transmitted satellite, and the ephemeris stores each signal.
  • the positioning calculation unit 108 calculates a pseudo distance and the like based on the correlation processing result of the signal acquisition / tracking unit 103 and the navigation message from the synthesis processing unit 106, and performs positioning calculation. Finally, the positioning unit outputs the positioning calculation result to the outside.
  • almanac is a packet that can be received from a plurality of satellites, instead of synthesizing the information of one satellite as in Patent Document 1 and Patent Document 2, it receives signals from a plurality of satellites, and The performance can be improved in a short time.
  • a subframe is output only when all of the errors-free words are gathered.
  • TTFF Time To First Fix
  • the initial fixing time TTFF: Time To First Fix
  • the reception quality can be improved by combining signals from a plurality of satellites, and the initial fixed time (TTFF: Time To First Fix) can be increased. Can be suppressed.
  • the operations of the parameter identification unit 105, the synthesis processing unit 106, and the storage unit 107 will be specifically described using an L1C / A signal that is one of GPS signals.
  • the GNSS signal receiver 101 receives navigation messages # 1 and # 2 from two GNSS satellites 1 as shown in FIG.
  • Navigation message # 1 is received in order from subframe 3
  • navigation message # 2 is received in order from subframe 1.
  • the storage unit 107 of the signal receiving apparatus 100 stores the ephemeris of navigation message # 2 and the almanac from pages 1 to 25, but the ephemeris of navigation message # 1 is not stored. It is assumed that the navigation message # 1 and the navigation message stored in the storage unit 107 have low received power, and an error bit exists in page 2 of subframe 4 of the navigation message.
  • the parameter identification unit 105 sequentially reads the satellite number and the subframe ID as parameters in units of subframes from the received navigation message # 1 and navigation message # 2. By reading the subframe ID, it can be determined which of the subframes 1-5 is applicable. Further, since the L1C / A signal restarts from subframe 1 at the beginning / end of the week, the subframe ID can be similarly determined using the Z count. In this example, satellite number 1 and subframe ID 3, satellite number 2 and subframe ID 1 are read. Next, the update of the data set is confirmed.
  • IODE Issue of Data, Ephemeris
  • LSB Least Significant Bit 8 bits of 10-bit IODC (Issue of Data, Clock) in the same data set
  • IODE and IODC are confirmed. By doing so, the identity of the data set can be determined.
  • the data set flag is set to “0”.
  • the synthesis processing unit 106 processes the navigation message received from each satellite. First, since both the navigation messages # 1 and # 2 have the data set flag “0”, it is confirmed whether the navigation message of the same data format is stored in the storage unit 107.
  • the storage unit 107 has the subframe ID 3 of the satellite 1 in it. Since it is not saved, the received navigation message # 1 is newly saved. Since the subframe ID1 of the navigation message # 2 is already stored in the storage unit 107, the synthesis process is started. In the navigation message of the L1C / A signal, since subframes 1 to 3 are information unique to the satellite, subframes 1 to 3 having the same satellite number are combined.
  • subframes 4 and 5 all the satellites broadcast the same information, so the navigation messages received from a plurality of satellites are combined. This is done each time a navigation message is received. Further, since the data set is updated from page 3 of subframe 4 of navigation message # 1 and subframe 2 of navigation message # 2, the data set flag becomes “1”, and the storage unit is cleared.
  • a circuit As shown in FIG. 11, in order to implement each function of the signal receiving apparatus 100 of the present invention with hardware, a circuit, a programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or A combination of these applies.
  • the various functions may be realized separately by different processing circuits, or may be realized together.
  • each function of the signal receiving device 100 is realized by software, it is described as a program and stored in a memory.
  • a part of each function of the signal receiving apparatus 100 may be realized by hardware and a part may be realized by software.
  • RF processing and signal acquisition / tracking may be implemented by a processing circuit, and demodulation and positioning calculation may be described as a program, stored in a memory, and operated by a CPU (Central Processing Unit).
  • CPU Central Processing Unit
  • the signal receiving apparatus 100 receives GNSS signals broadcast from a plurality of satellites, determines whether the received signal belongs to an ephemeris or an almanac, and switches the synthesis method.
  • the signal receiving apparatus 100 determines whether the received signal belongs to an ephemeris or an almanac, and switches the synthesis method.
  • the signal receiving apparatus 100 includes the antenna 101 that receives signals from the plurality of satellites 1, the extraction unit 120 that extracts messages included in the signals received by the antenna 101, When determining whether to combine messages included in signals from a plurality of satellites 1 based on the parameters read by the parameter identification unit 105 that reads parameters from the message and the parameter identification unit 105 And a combining unit 121 that combines the messages.
  • an appropriate combining method can be used according to the type of message, and a diversity effect based on time and the number of satellites can be obtained.
  • a message contained in a signal broadcast from a satellite such as a GNSS satellite can be correctly received within a predetermined time regardless of the type of message.
  • the signals from the plurality of satellites 1 are signals broadcast from the global navigation satellite system (GNSS), the message is a navigation message, and the combining unit A positioning calculation unit 108 that performs a positioning calculation using the message synthesized in 121 is provided.
  • GNSS global navigation satellite system
  • the combining unit A positioning calculation unit 108 that performs a positioning calculation using the message synthesized in 121 is provided.
  • the parameter read by the parameter identifying unit 105 includes an index indicating whether the navigation message is an ephemeris or an almanac.
  • the signal receiving apparatus 100 can recognize whether the received message is an ephemeris or an almanac, and can correctly receive the message by using an appropriate synthesis method according to the type of the message. it can.
  • the extraction unit 120 includes a tracking unit such as a signal capturing / tracking unit 103 that tracks signals from the plurality of satellites 1, and the positioning calculation unit 108 includes the tracking unit.
  • the positioning calculation is performed using the tracking result obtained in the above. With this configuration, it is possible to perform more accurate positioning calculation using the tracking result.
  • the parameter is an identification number representing a data format of the message.
  • the parameter identifying unit 105 determines whether there is an update of the data set of the message, and the synthesizing unit 121 performs the updating at the parameter identifying unit 105.
  • the storage unit 107 is provided for clearing a stored message used for synthesis.
  • Embodiment 2 a health check unit that determines the health status of the satellite is added to the configuration of the first embodiment, so that the synthesis method is switched based on the health status of the satellite. Describes how to prevent.
  • FIG. 12 is a diagram showing the configuration of the signal receiving apparatus 200 in this embodiment. The difference from the signal receiving apparatus 100 in FIG. 6 is that there is a health confirmation unit 110 that determines the health state of the satellite. Other components are the same as those in FIG.
  • the parameter identification unit 105 determines the data format of the navigation message and the identity of the data set is the same as in the first embodiment.
  • the status is notified by an item called SV (Space Vehicle) Health in the navigation message. ing. Therefore, as shown in FIG. 14, the health confirmation unit 110 reads bits in the navigation message to grasp the health state of each GNSS signal (S140).
  • the synthesis processing unit 111 performs the same processing until a data format that can be synthesized is called from the storage unit 107 as shown in FIG. 15, but the health state is based on the health information confirmed by the health confirmation unit 110 at the time of synthesis. It is determined whether or not it is good (S151, S154). If the health condition is good, the bits are synthesized as in the first embodiment (S152, S155), and the signal with poor health condition is weighted. Are switched to prevent the erroneous bit from being added to the synthesized navigation message (S153, S156). In this example, weighted synthesis is performed, but it may be possible to select a process in which navigation messages with poor health are not synthesized. Subsequent operations are the same as those in the first embodiment.
  • the signal receiving device 200 of the present invention the combined navigation by reading the SV Health included in the navigation message and switching the synthesis method such as weighted synthesis or not synthesis of the navigation message with poor health. Since it is configured to prevent erroneous bits from being added to the message, it is possible to realize the signal receiving device 200 that is resistant to transmission path fluctuations between the satellite and the receiver.
  • the signal receiving apparatus 200 includes the health confirmation unit 110 that determines the health states of the plurality of satellites 1, and the combining unit 122 confirms the health states of the satellites confirmed by the health confirmation unit 110. Based on the above, a method for combining messages included in signals from a plurality of satellites 1 is determined. With this configuration, it is possible to avoid the addition of erroneous bits to the synthesized navigation message, and it is possible to realize the signal receiving apparatus 200 that is resistant to transmission path fluctuations between the satellite and the receiver.
  • the present invention has been described by taking the case of the GNSS satellite as an example.
  • the present invention is not limited to the GNSS satellite and can be generally applied to signals from the satellite.
  • the present invention is not limited to this example, and can be applied to different types of messages.
  • GNSS satellite 100, 200: signal receiving device, 101: antenna, 102: RF processing unit, 103: signal acquisition / tracking unit, 104: demodulation unit, 105: parameter identification unit, 106: synthesis processing unit, 107: Storage unit, 108: positioning calculation unit, 109: output unit, 110: health confirmation unit, 111: synthesis processing unit, 120: extraction unit, 121, 122: synthesis unit

Abstract

A signal reception device according to the present invention is characterized by being provided with an antenna for receiving signals from a plurality of satellites, an extraction unit for extracting messages included in the signals received by the antenna, a parameter identification unit for reading parameters from the messages, and a combination unit for determining whether to combine the messages included in the signals from the plurality of satellites on the basis of the parameters read from the parameter identification unit and combining the messages if a determination is made to combine the messages. This configuration makes it possible to correctly receive messages included in signals broadcast from satellites such as GNSS satellites regardless of the types of the messages. In the present invention, using an appropriate combination method according to the types of messages included in signals broadcast from satellites makes it possible to correctly receive the messages within a fixed time regardless of the types of the messages.

Description

信号受信装置及び信号受信方法Signal receiving apparatus and signal receiving method
 この発明は、衛星から信号を受信する信号受信装置及び信号受信方法に関する。 The present invention relates to a signal receiving apparatus and a signal receiving method for receiving a signal from a satellite.
近年、GPS(Global Positioning Systems)を代表とする地球航法衛星システム(以下、GNSS: Global Navigation Satellite Systems)から放送されているGNSS信号を用いて測位演算を行い、その測位結果を利用する各種機器やアプリケーションが注目されている。これらの機器やアプリケーションは都市部移動体においても積極的に利用する動きがある一方で、可視衛星数の少なさや、衛星配置の悪さで都市部では測位精度が出ないことはよく知られている。このような環境においても高い測位精度を得るためには、各種衛星から放送されるGNSS信号に含まれる航法メッセージと呼ばれる測位演算用の情報を正しくデコードする必要がある。 In recent years, GPS (Global Positioning Systems) represents a global navigation satellite system (GNSS: Global Navigation Satellite Systems). Applications are drawing attention. While these devices and applications are actively used in urban mobiles, it is well known that positioning accuracy is not achieved in urban areas due to the small number of visible satellites and poor satellite placement. . In order to obtain high positioning accuracy even in such an environment, it is necessary to correctly decode information for positioning calculation called navigation message included in GNSS signals broadcast from various satellites.
そのため、受信レベルが低い環境下でも、これらの航法メッセージを精度よくデコードすることは重要な技術である。受信レベルが低い状況でも航法メッセージを得る方法として、航法メッセージをワードと呼ばれるさらに細かい単位で分割し、時間毎に選択受信を行い、全てのワードでエラーがないことを確認した後、航法メッセージをデコードする手法が提案されている。これは、航法メッセージの一部である、エフェメリスと呼ばれる自分の衛星の情報は一定期間繰り返し放送されるので、異なる時間に受信した信号でも航法メッセージの一部は同じになることを利用している。例えば、特許文献1を参照されたい。 Therefore, it is an important technique to accurately decode these navigation messages even in an environment where the reception level is low. As a method of obtaining a navigation message even in a situation where the reception level is low, the navigation message is divided into smaller units called words, selective reception is performed at each time, and after confirming that there are no errors in all words, the navigation message is displayed. A decoding method has been proposed. This is because the information of one's own satellite called ephemeris, which is part of the navigation message, is broadcast repeatedly for a certain period of time, so that the part of the navigation message is the same even for signals received at different times. . For example, see Patent Document 1.
また、例えば、特許文献2に開示されているように、先に受信した航法メッセージを用いて、次に受信する航法メッセージの内容を一部予測し、予測した航法メッセージと次に受信した航法メッセージを比較して組み合わせることで、GNSS受信機の受信レベルが低い場合でも、航法メッセージの誤りを検出し、かつ、航法メッセージを精度よくデコードする方法について提案されている。 Further, for example, as disclosed in Patent Document 2, a part of the content of the navigation message to be received next is predicted using the navigation message received in advance, and the predicted navigation message and the navigation message received next are received. By combining the above, a method for detecting an error in a navigation message and decoding the navigation message with high accuracy even when the reception level of the GNSS receiver is low has been proposed.
特許第5480906号公報.Japanese Patent No. 5480906. 特許第5398940号公報.Japanese Patent No. 5398940.
GNSS衛星から送信される信号は、エフェメリスのような短い周期で送信される衛星固有のパケットと、アルマナックと呼ばれる長い周期で送信され複数の衛星から受信できるパケットが混在している点に特徴を持つ。 Signals transmitted from GNSS satellites are characterized by a mixture of satellite-specific packets transmitted in a short cycle such as ephemeris and packets that can be received from multiple satellites transmitted in a long cycle called almanac. .
特許文献1や特許文献2に記載の方法は、前者のエフェメリスを精度よくデコードする手法であり、短い間隔で一定期間繰り返し放送されるエフェメリスのデコードには適した手法である。しかし、エフェメリスよりも長い周期で放送されるメッセージであるアルマナックを同じ構成で合成しようとすると、エフェメリスよりも放送される頻度が少ないため、測位精度が向上するまでの時間が長くかかる問題がある。 The methods described in Patent Literature 1 and Patent Literature 2 are methods for accurately decoding the former ephemeris, and are suitable for decoding an ephemeris that is repeatedly broadcast for a certain period at short intervals. However, when synthesizing almanac, which is a message broadcast in a longer cycle than ephemeris, with the same configuration, there is a problem that it takes a long time to improve positioning accuracy because it is broadcasted less frequently than ephemeris.
本発明は、上記の問題点を解決するためになされたものであって、GNSS衛星などの衛星から放送される信号に含まれるメッセージをメッセージの種類によらず従来技術よりも短い時間で正しく受信することができる信号受信装置を実現することを目的とする。 The present invention has been made to solve the above problems, and correctly receives a message contained in a signal broadcast from a satellite such as a GNSS satellite in a shorter time than the prior art regardless of the type of the message. An object of the present invention is to realize a signal receiving apparatus capable of performing the above.
 この発明に係る信号受信装置は、複数の衛星からの信号を受信するアンテナと、前記アンテナで受信された信号に含まれるメッセージを抽出する抽出部と、前記メッセージからパラメータを読み取るパラメータ識別部と、前記パラメータ識別部で読み取られたパラメータに基づき、前記複数の衛星からの信号に含まれるメッセージを合成するか否かを判定し、合成すると判定したとき、該メッセージを合成する合成部と、を備えたことを特徴とする。 A signal receiving apparatus according to the present invention includes an antenna that receives signals from a plurality of satellites, an extraction unit that extracts a message included in the signal received by the antenna, a parameter identification unit that reads a parameter from the message, Based on the parameters read by the parameter identification unit, it is determined whether or not to synthesize messages included in signals from the plurality of satellites, and when it is determined to synthesize, a synthesis unit that synthesizes the messages, It is characterized by that.
この発明にかかる信号受信装置によれば、GNSS衛星などの衛星から放送される信号に含まれるメッセージの種類によらず定められた時間内で正しくメッセージを受信できる。 According to the signal receiving apparatus according to the present invention, a message can be correctly received within a predetermined time regardless of the type of message included in a signal broadcast from a satellite such as a GNSS satellite.
実施の形態1に係る信号受信装置100での信号受信を示す図。FIG. 3 is a diagram illustrating signal reception in the signal reception device 100 according to the first embodiment. 実施の形態1に係るGNSS衛星から送信されるL1C/A信号の構成を示す図。The figure which shows the structure of the L1C / A signal transmitted from the GNSS satellite which concerns on Embodiment 1. FIG. 実施の形態1に係るGNSS衛星から送信されるL2C信号の構成を示す図。FIG. 3 shows a configuration of an L2C signal transmitted from a GNSS satellite according to the first embodiment. 実施の形態1に係るI/NAVの航法メッセージのページパートを示す図。The figure which shows the page part of the navigation message of I / NAV which concerns on Embodiment 1. FIG. 実施の形態1に係る2つのGNSS衛星の送信するデータフォーマットを示す図。The figure which shows the data format which the two GNSS satellites which concern on Embodiment 1 transmit. 実施の形態1に係る信号受信装置100の構成例を示す図。FIG. 3 shows a configuration example of a signal receiving apparatus 100 according to the first embodiment. 実施の形態1に係るパラメータ識別部105でのフローチャート。5 is a flowchart in the parameter identification unit 105 according to the first embodiment. 実施の形態1に係る合成処理部106でのフローチャート。5 is a flowchart in the synthesis processing unit 106 according to the first embodiment. 実施の形態1に係るGNSS信号受信器101が航法メッセージを受信する環境を示す図。The figure which shows the environment where the GNSS signal receiver 101 which concerns on Embodiment 1 receives a navigation message. 実施の形態1における航法メッセージの合成を示す図。FIG. 4 is a diagram showing composition of navigation messages in the first embodiment. 実施の形態1に係る信号受信装置100の各機能をハードウェアで実現する図。The figure which implement | achieves each function of the signal receiver 100 which concerns on Embodiment 1 with hardware. 実施の形態2に係る信号受信装置200の構成例を示す図。FIG. 6 is a diagram illustrating a configuration example of a signal reception device 200 according to Embodiment 2. 実施の形態2に係る航法メッセージ内のビット情報を示す図。The figure which shows the bit information in the navigation message which concerns on Embodiment 2. FIG. 実施の形態2に係るヘルス確認処理。Health confirmation processing according to the second embodiment. 実施の形態2に係る合成処理部111でのフローチャート。10 is a flowchart in the synthesis processing unit 111 according to the second embodiment.
 実施の形態1.
以下、本発明を適用した好適な実施の形態について図面に基づいて詳細に説明する。本実施の形態は、図1に示すような複数のGNSS衛星1から放送されるメッセージである航法メッセージをGNSS用の信号受信装置100で受信し、GNSS信号を用いて測位演算を行い、その測位結果を得る衛星測位システムに適用したものである。この実施の形態によりこの発明が限定されるものではない。各図において、同一符号は同一または相当部分を示す。
Embodiment 1 FIG.
DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments to which the present invention is applied will be described in detail based on the drawings. In this embodiment, a navigation message, which is a message broadcast from a plurality of GNSS satellites 1 as shown in FIG. 1, is received by a GNSS signal receiving apparatus 100, and a positioning calculation is performed using the GNSS signal. It is applied to the satellite positioning system to obtain the result. The present invention is not limited to the embodiments. In each figure, the same code | symbol shows the same or an equivalent part.
GNSS測位信号は、航法メッセージのビット値に応じてBPSK(Binary Phase Shift Keying)変調方式で変調されている。GNSS受信機は、GNSS測位信号を受信し、復調することで航法メッセージを取得して、測位演算に利用している。 The GNSS positioning signal is modulated by a BPSK (Binary Phase Shift Keying) modulation method according to the bit value of the navigation message. A GNSS receiver receives a GNSS positioning signal, demodulates it, acquires navigation messages, and uses them for positioning calculations.
GPS信号の一つであるL1C/A信号はLNAV(Lateral Navigation)と呼ばれる航法メッセージを含んでいる。航法メッセージは2進数で、エフェメリスとアルマナックにより構成される。航法メッセージは50bpsで送信されており、1ビットは20msである。航法メッセージはフレームという単位で構成され、1フレームは5組のサブフレームから構成される。サブフレームは、それぞれ300ビットのサイズを持つ。図2に示すように、サブフレーム1~3は各衛星固有の情報であるエフェメリス含んでおり、一定の期間同じ情報が繰り返し送信される。これに対して、サブフレーム4、5にはアルマナックと呼ばれる全衛星共通の情報が含まれる。アルマナックはデータ量が膨大なため、サブフレーム4、5のページ1~25に分けて収容されている。 The L1C / A signal, which is one of the GPS signals, includes a navigation message called LNAV (Lateral Navigation). The navigation message is binary and consists of an ephemeris and an almanac. The navigation message is transmitted at 50 bps, and one bit is 20 ms. The navigation message is composed of units called frames, and one frame is composed of five sets of subframes. Each subframe has a size of 300 bits. As shown in FIG. 2, subframes 1 to 3 include ephemeris, which is information unique to each satellite, and the same information is repeatedly transmitted for a certain period. On the other hand, the subframes 4 and 5 include information common to all satellites called almanac. Since almanac has a huge amount of data, it is contained in pages 1 to 25 of subframes 4 and 5 separately.
サブフレームは1から順に送信され、サブフレーム5を送信し終わると再びサブフレーム1の送信を開始する。つまり、エフェメリスは30秒に一回、アルマナックは12分30秒に一回同じ情報が出現する。 Subframes are transmitted in order from 1, and when transmission of subframe 5 is completed, transmission of subframe 1 starts again. That is, the same information appears once every 30 seconds for ephemeris and once every 12 minutes and 30 seconds for almanac.
また、同じくGPS信号のL2C信号はCNAV(Civil Navigation)と呼ばれる航法メッセージを含んでいる。LNAV同様に航法メッセージは2進数でエフェメリス、アルマナックにより構成される。L2C信号の航法メッセージであるCNAVは25bpsのデータであるが、符号化率1/2の畳み込み符号化がなされた後に送信されるため、シンボルレートは50spsとなり、1シンボルは20msである。CNAVの航法メッセージはメッセージという単位で構成され、図3に示す構成となっている。メッセージは276ビットのデータビットと24ビットの検査ビットの合計300ビットのサイズを持つ.この航法メッセージをL2C信号では6秒で送信している。送信パターンは衛星、信号毎に異なる。また、メッセージはメッセージタイプID(Identification)という各フレームのPRN(Pseudo Random Noise)番号(衛星番号)に続き付加されている6ビットによって分類される。 Similarly, the GPS signal L2C signal includes a navigation message called CNAV (Civil Navigation). Like LNAV, the navigation message is composed of binary ephemeris and almanac. CNAV, which is a navigation message for the L2C signal, is 25 bps data, but is transmitted after convolutional coding at a coding rate of 1/2, so the symbol rate is 50 sps, and one symbol is 20 ms. The CNAV navigation message is composed of units called messages, and has the structure shown in FIG. The message has a total size of 300 bits including 276 data bits and 24 check bits. This navigation message is transmitted in 6 seconds by L2C signal. The transmission pattern differs for each satellite and signal. The message is classified by 6 bits added to the PRN (Pseudo Random Noise) number (satellite number) of each frame called message type ID (Identification).
また、GNSS衛星の一種であるGalileo信号のE1信号はI/NAVと呼ばれる航法メッセージを含んでいる。LNAV, CNAV同様に航法メッセージは2進数で、エフェメリス、アルマナックにより構成される。CNAV同様に符号化率1/2の畳み込み符号化がなされた後送信されるため、シンボルレートは50sps (symbol per second)となり、1シンボルはそれぞれ20msである。I/NAVの航法メッセージはページという単位で構成され、1ページはさらに2つのページパートに分かれる。それぞれのページパートは図4に示す構成となっている。ページパートはデータビットと24ビットの検査ビットの合計120ビットのサイズを持つ。データビットがページパート1とページパート2に跨っているのが特徴である。 The E1 signal of the Galileo signal, which is a kind of GNSS satellite, includes a navigation message called I / NAV. Like LNAV and CNAV, the navigation message is binary and consists of ephemeris and almanac. As in CNAV, since transmission is performed after convolutional coding at a coding rate of 1/2, the symbol rate is 50 sps (symbol per second), and one symbol is 20 ms. The I / NAV navigation message is composed of units called pages, and one page is further divided into two page parts. Each page part has a configuration shown in FIG. The page part has a size of 120 bits in total including data bits and 24 check bits. The feature is that the data bits straddle page part 1 and page part 2.
このように衛星の種類や信号の種類によって、航法メッセージの構造(データフォーマット)は異なるものの、含まれる情報はエフェメリスとアルマナックである。なお、図2~4で示される信号フォーマット及び数値は本発明を適用する信号フォーマットの一例であり、本発明はこの信号フォーマットに限定されるものではなく、さまざまな信号フォーマットに対して適用することができる。 As described above, although the structure (data format) of the navigation message varies depending on the type of satellite and the type of signal, the information included is ephemeris and almanac. The signal formats and numerical values shown in FIGS. 2 to 4 are examples of the signal format to which the present invention is applied. The present invention is not limited to this signal format, and is applied to various signal formats. Can do.
また、航法メッセージの特徴として、データフォーマットが同じなら同じ情報が一定時間は含まれている点である。GNSS衛星は送信するデータフォーマットの順番が決まっていない点である。 Moreover, as a feature of the navigation message, the same information is included for a certain period of time if the data format is the same. The GNSS satellite has a fixed data format order.
図5に示すように2つのGNSS衛星の送信するデータフォーマットの順番が違っていたとしても、データフォーマットが同じなら同じ情報が含まれている。ただし、航法メッセージの更新があった場合、つまりデータセットと呼ばれる情報が変わった場合は同じデータフォーマットでも含まれる情報の内容が変わることがある。GNSS衛星には原子時計を搭載しており、データセットの変更タイミングが衛星間でずれることは無い。 As shown in FIG. 5, even if the order of the data formats transmitted by the two GNSS satellites is different, the same information is included if the data formats are the same. However, when the navigation message is updated, that is, when information called a data set is changed, the content of the information included in the same data format may change. GNSS satellites are equipped with atomic clocks, and the timing of data set changes does not shift between satellites.
本発明は、航法メッセージの情報であるエフェメリスやアルマナックが、自衛星が一定期間の間繰り返し放送することや、複数の衛星が同じ情報を放送するという特徴に基づいたものあるため、航法メッセージの構造に依存せず、GPS, QZSS(Quasi Zenith Satellite System), GLONASS(GLObal NAvigation Satellite System)やGalileoなどいずれかのGNSS衛星から放送されるGNSS信号の航法メッセージを復調する際に適用可能であることを示している。 The present invention is based on the feature that the ephemeris and almanac, which are information of the navigation message, are based on the feature that the own satellite repeatedly broadcasts for a certain period of time, and a plurality of satellites broadcast the same information. It can be applied when demodulating navigation messages of GNSS signals broadcast from GNSS satellites such as GPS, QZSS (Quasi Zenith Satellite System), GLONASS (GLObal NAvigation Satellite System) and Galileo. Show.
図6は、本発明の実施の形態1にかかるGNSS信号受信装置100の構成例を示す図である。図6に示すように、本実施の形態の信号受信装置100は、GNSS衛星1とGNSS衛星2のGNSS信号を受信するアンテナ101と、アンテナ101で受信された信号に含まれるメッセージである航法メッセージを抽出する抽出部120と、抽出部120で抽出された航法メッセージから航法メッセージの特徴を表す識別番号などのパラメータを読み取るパラメータ識別部105と、パラメータ識別部105で読み取られたパラメータに基づき、複数の衛星からの信号に含まれるメッセージを合成するか否かを判定し、合成すると判定したとき、該メッセージを合成する合成部121と、合成した航法メッセージを用いて測位演算を行う測位演算部108と、測位演算結果を出力する出力部109を備える。 FIG. 6 is a diagram illustrating a configuration example of the GNSS signal receiving apparatus 100 according to the first embodiment of the present invention. As shown in FIG. 6, the signal receiving apparatus 100 according to the present embodiment includes an antenna 101 that receives GNSS signals from the GNSS satellite 1 and the GNSS satellite 2, and a navigation message that is a message included in the signal received by the antenna 101. Based on the parameters read by the parameter identification unit 105, the parameter identification unit 105 that reads parameters such as identification numbers representing the characteristics of the navigation message from the navigation message extracted by the extraction unit 120, It is determined whether or not to synthesize a message included in a signal from the satellite of the satellite, and when it is determined to synthesize, a synthesizer 121 that synthesizes the message, and a positioning calculator 108 that performs a positioning calculation using the synthesized navigation message And an output unit 109 for outputting a positioning calculation result.
ここで、抽出部120は、それぞれの衛星の受信信号の毎にゲイン調整を行いベースバンド信号に変換してAD(Analog to Digital)変換を行うRF(Radio Frequency)処理部102と、それぞれの衛星のGNSS信号のキャリアとコード位相の捕捉と追尾を行う信号捕捉・追尾部103と、信号捕捉・追尾結果からフレームの同期や誤り訂正を行いGNSS衛星1,2の航法メッセージのデコードをそれぞれ行う復調部104を備える。合成部121は、航法メッセージの識別番号を基に合成可能な航法メッセージを合成する合成処理部106と、合成処理部で合成した航法メッセージを記憶しておく記憶部107を備える。 Here, the extraction unit 120 adjusts the gain for each received signal of each satellite, converts it into a baseband signal and performs AD (Analog-to-Digital) conversion, and each satellite. Acquisition and tracking unit 103 for capturing and tracking the carrier and code phase of the GNSS signal, and demodulation for decoding the navigation messages of GNSS satellites 1 and 2 by performing frame synchronization and error correction based on the signal acquisition and tracking results The unit 104 is provided. The synthesizing unit 121 includes a synthesis processing unit 106 that synthesizes navigation messages that can be synthesized based on the identification number of the navigation message, and a storage unit 107 that stores the navigation message synthesized by the synthesis processing unit.
なお、この例では、2つのGNSS衛星のGNSS信号を受信する構成の例を示したが、さらに受信する衛星数や信号の種類を増やした構成にしてもよい。 In this example, an example of a configuration for receiving GNSS signals of two GNSS satellites has been shown, but a configuration in which the number of received satellites and the types of signals are further increased may be used.
次に、動作について説明する。アンテナ101で受信されたGNSS信号はRF処理部102へ出力され、RF処理部102でベースバンドに変換された受信信号は、受信フィルタ処理を行った後、信号捕捉・追尾部103へ出力する。信号捕捉・追尾部103では、受信信号と、基準信号とを相関処理することで、キャリア位相およびコード位相を捕捉、追尾し、追尾結果(相関処理結果)を復調部104と測位演算部108とへ出力する。復調部104では、追尾結果をビタビデコーダやLDPC(low-density parity-check code)デコーダなどで誤り訂正を行った後、プリアンブルの検索を行い、サブフレームやページの同期処理を行う。同期後の受信信号は、パリティやCRC(Cyclic Redundancy Code)誤り検出を行い、所定のデータフォーマットに従って航法メッセージとして処理され、パラメータ識別部105へ出力する。パラメータ識別部105では図7に示すように航法メッセージから航法メッセージ内のビットを読み取り、データフォーマットを決定するパラメータである識別番号を判断する(S71)。ここで、識別番号は、そのデータフォーマットがエフェメリスとアルマナックのいずれであるかを識別することのできる指標を含む。また、同様に航法メッセージ内のデータセットのビットをパラメータとして読み取り(S72)、データセットに更新がある、つまり前回受信時から航法メッセージに更新があるか確認(S73)し、更新がない場合データセットフラグを0とし(S74)、更新があった場合データセットフラグを1とし(S75)、合成処理部106へ出力する。 Next, the operation will be described. The GNSS signal received by the antenna 101 is output to the RF processing unit 102, and the reception signal converted into the baseband by the RF processing unit 102 is output to the signal acquisition / tracking unit 103 after receiving filter processing. The signal acquisition / tracking unit 103 performs correlation processing on the received signal and the reference signal to acquire and track the carrier phase and the code phase, and obtains the tracking result (correlation processing result) from the demodulation unit 104 and the positioning calculation unit 108. Output to. The demodulator 104 performs error correction on the tracking result using a Viterbi decoder, an LDPC (low-density parity-check code) decoder, etc., then searches for a preamble and performs subframe and page synchronization processing. The received signal after synchronization is subjected to parity and CRC (Cyclic Redundancy Code) error detection, processed as a navigation message in accordance with a predetermined data format, and output to the parameter identifying unit 105. As shown in FIG. 7, the parameter identification unit 105 reads bits in the navigation message from the navigation message and determines an identification number that is a parameter for determining the data format (S71). Here, the identification number includes an index that can identify whether the data format is ephemeris or almanac. Similarly, the data set bit in the navigation message is read as a parameter (S72), and the data set is updated, that is, whether the navigation message has been updated since the last reception (S73). The set flag is set to 0 (S74), and if there is an update, the data set flag is set to 1 (S75) and output to the synthesis processing unit 106.
合成処理部106では、図8に示すように、データセットが同一であり航法メッセージの更新がないことを確認し(S81)、入力された航法メッセージと同じ識別番号をもつ記憶部107に蓄積されている航法メッセージが存在するか確認する(S82)。その後、時刻情報に関する航法メッセージの場合は(S83)、保存された航法メッセージの時刻情報をインクリメントし(S84)、受信した航法メッセージと時刻合わせを行う。その後、受信した航法メッセージを同データフォーマットの航法メッセージと合成する。ここで、合成するデータがエフェメリスかアルマナックかによって合成方法を切り替えている(S85)。合成するデータがアルマナックの場合は送信された衛星に関わらず同じデータフォーマットのデータを合成し(S86)、エフェメリスの場合は同じ衛星から送信されたエフェメリスどうしを合成する(S87)。その後、記憶部107と測位演算部108へ出力する。なお、航法メッセージに更新があった場合は記憶部107から該当する航法メッセージを削除し(S88)、再度データの収集を開始し、航法メッセージを保存する(S89)。なお、記憶部107では信号と送信された衛星ごとにアルマナックを、エフェメリスは信号毎に保存している。測位演算部108は、信号捕捉・追尾部103の相関処理結果と合成処理部106からの航法メッセージに基づいて、擬似距離等を算出し、測位演算を行う。最後に出力部9で測位演算結果を外部に出力する。 As shown in FIG. 8, the composition processing unit 106 confirms that the data set is the same and the navigation message is not updated (S81), and is stored in the storage unit 107 having the same identification number as the input navigation message. It is confirmed whether there is a navigation message (S82). Thereafter, in the case of a navigation message related to time information (S83), the time information of the stored navigation message is incremented (S84), and time adjustment is performed with the received navigation message. Thereafter, the received navigation message is synthesized with a navigation message of the same data format. Here, the synthesis method is switched depending on whether the data to be synthesized is ephemeris or almanac (S85). If the data to be synthesized is almanac, data of the same data format is synthesized regardless of the transmitted satellite (S86), and if it is ephemeris, the ephemeris transmitted from the same satellite is synthesized (S87). Thereafter, the data is output to the storage unit 107 and the positioning calculation unit 108. If the navigation message is updated, the corresponding navigation message is deleted from the storage unit 107 (S88), data collection is started again, and the navigation message is saved (S89). The storage unit 107 stores an almanac for each signal and transmitted satellite, and the ephemeris stores each signal. The positioning calculation unit 108 calculates a pseudo distance and the like based on the correlation processing result of the signal acquisition / tracking unit 103 and the navigation message from the synthesis processing unit 106, and performs positioning calculation. Finally, the positioning unit outputs the positioning calculation result to the outside.
上述の動作によると、アルマナックは複数の衛星から受信できるパケットのため、特許文献1や特許文献2のように1衛星の情報を合成するのではなく、複数の衛星の信号を受信し、衛星毎に合成することで、短時間で性能を向上させることができる。また、特許文献1に記載の従来技術では、誤りのないワードがすべてそろって初めてサブフレームが出力されるが、誤りの多い環境では、正しいワードが受信できず、一向にサブフレームを出力できないこととなり、初期定点化時間(TTFF: Time To First Fix)の増大を招く問題がある。これに対して、本実施の形態で示される発明では、複数の衛星からの信号を合成することで受信品質を向上することができ、初期定点化時間(TTFF: Time To First Fix)の増大を抑えることができる。 According to the above-described operation, since almanac is a packet that can be received from a plurality of satellites, instead of synthesizing the information of one satellite as in Patent Document 1 and Patent Document 2, it receives signals from a plurality of satellites, and The performance can be improved in a short time. In the prior art described in Patent Document 1, a subframe is output only when all of the errors-free words are gathered. However, in an environment with many errors, a correct word cannot be received and a subframe cannot be output in one direction. There is a problem in that the initial fixing time (TTFF: Time To First Fix) is increased. On the other hand, in the invention shown in this embodiment, the reception quality can be improved by combining signals from a plurality of satellites, and the initial fixed time (TTFF: Time To First Fix) can be increased. Can be suppressed.
次に、一例として、GPS信号の一つであるL1C/A信号を用いて具体的にパラメータ識別部105と、合成処理部106と、記憶部107の動作を説明する。図9のようにGNSS信号受信器101がGNSS衛星1の2機から航法メッセージ#1, #2を受信したとする。航法メッセージ#1はサブフレーム3から順に受信し、航法メッセージ#2はサブフレーム1から順に受信する。また、航法メッセージ#1の2度目のサブフレーム3でデータセットの更新があったものとする。信号受信装置100の記憶部107は航法メッセージ#2のエフェメリスと、アルマナックはページ1~25まですでに保存されているが、航法メッセージ#1のエフェメリスは保存されていない。なお、航法メッセージ#1と記憶部107に保存された航法メッセージは受信電力が低く、航法メッセージのサブフレーム4のページ2に誤りビットが存在するものとする。 Next, as an example, the operations of the parameter identification unit 105, the synthesis processing unit 106, and the storage unit 107 will be specifically described using an L1C / A signal that is one of GPS signals. Assume that the GNSS signal receiver 101 receives navigation messages # 1 and # 2 from two GNSS satellites 1 as shown in FIG. Navigation message # 1 is received in order from subframe 3, and navigation message # 2 is received in order from subframe 1. It is assumed that the data set is updated in the second subframe 3 of the navigation message # 1. The storage unit 107 of the signal receiving apparatus 100 stores the ephemeris of navigation message # 2 and the almanac from pages 1 to 25, but the ephemeris of navigation message # 1 is not stored. It is assumed that the navigation message # 1 and the navigation message stored in the storage unit 107 have low received power, and an error bit exists in page 2 of subframe 4 of the navigation message.
パラメータ識別部105ではまず、受信した航法メッセージ#1と航法メッセージ#2からそれぞれサブフレーム単位で衛星番号とサブフレームIDを順にパラメータとして読み取る。サブフレームIDを読み取ることで、サブフレーム1-5のいずれに該当するか判断可能である。また、L1C/A信号は週の始まり/終わりでサブフレーム1からリスタートするため、Zカウントを用いても同様にサブフレームIDは判別可能である。今回の例では、衛星番号1とサブフレームID3、衛星番号2とサブフレームID1を読み取る。次に、データセットの更新を確認する。サブフレーム1に含まれるIODE(Issue of Data, Ephemeris)は同データセットにおいては10ビットのIODC(Issue of Data, Clock)のLSB(Least Significant Bit)8ビットと同値のため、IODEとIODCを確認することでデータセットの同一性を判断できる。今回の例では、データセットには更新がないためデータセットフラグを”0”に設定する。 First, the parameter identification unit 105 sequentially reads the satellite number and the subframe ID as parameters in units of subframes from the received navigation message # 1 and navigation message # 2. By reading the subframe ID, it can be determined which of the subframes 1-5 is applicable. Further, since the L1C / A signal restarts from subframe 1 at the beginning / end of the week, the subframe ID can be similarly determined using the Z count. In this example, satellite number 1 and subframe ID 3, satellite number 2 and subframe ID 1 are read. Next, the update of the data set is confirmed. Since IODE (Issue of Data, Ephemeris) contained in subframe 1 is the same value as LSB (Least Significant Bit) 8 bits of 10-bit IODC (Issue of Data, Clock) in the same data set, IODE and IODC are confirmed. By doing so, the identity of the data set can be determined. In this example, since the data set is not updated, the data set flag is set to “0”.
合成処理部106では、それぞれの衛星から受信した航法メッセージを処理する。まず航法メッセージ#1,#2共に、データセットフラグは”0”のため、同データフォーマットの航法メッセージが記憶部107に保存されているか確認する、記憶部107には衛星1のサブフレームID3が保存されていないため、受信した航法メッセージ#1を新たに保存する。航法メッセージ#2のサブフレームID1はすでに記憶部107に保存されているため、合成処理を開始する。L1C/A信号の航法メッセージは、サブフレーム1~3は衛星固有の情報のため、同じ衛星番号のサブフレーム1~3を合成する。サブフレーム4、 5は全衛星が同じ情報を放送しているため、複数の衛星から受信した航法メッセージを合成する。これを、航法メッセージを受信するたびに行う。また、航法メッセージ#1のサブフレーム4のページ3、航法メッセージ#2のサブフレーム2からはデータセットの更新があるため、データセットフラグが”1”となり、保存部のクリアが行われる。 The synthesis processing unit 106 processes the navigation message received from each satellite. First, since both the navigation messages # 1 and # 2 have the data set flag “0”, it is confirmed whether the navigation message of the same data format is stored in the storage unit 107. The storage unit 107 has the subframe ID 3 of the satellite 1 in it. Since it is not saved, the received navigation message # 1 is newly saved. Since the subframe ID1 of the navigation message # 2 is already stored in the storage unit 107, the synthesis process is started. In the navigation message of the L1C / A signal, since subframes 1 to 3 are information unique to the satellite, subframes 1 to 3 having the same satellite number are combined. In subframes 4 and 5, all the satellites broadcast the same information, so the navigation messages received from a plurality of satellites are combined. This is done each time a navigation message is received. Further, since the data set is updated from page 3 of subframe 4 of navigation message # 1 and subframe 2 of navigation message # 2, the data set flag becomes “1”, and the storage unit is cleared.
このような処理を行うことで、図10に示すように、記憶部107と航法メッセージ#1の航法メッセージの中に誤りビットが存在していても航法メッセージ#2で受信した航法メッセージの結果を加算していくことで航法メッセージの尤度が高くなり、ビットの誤りを訂正することが可能である。 By performing such processing, as shown in FIG. 10, even if there is an error bit in the navigation message of the storage unit 107 and the navigation message # 1, the result of the navigation message received by the navigation message # 2 is obtained. By adding, the likelihood of the navigation message increases, and it is possible to correct bit errors.
図11に示すように、本発明の信号受信装置100の各機能をハードウェアで実現するには回路やプログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)やFPGA(Field-Programmable Gate Array)、またはこれらを組み合わせたものが該当する。各種機能を別々に異なる処理回路で実現することも、一つにまとめて実現してもよい。信号受信装置100の各機能をソフトウェアで実現する場合は、プログラムとして記述され、メモリに格納される。 As shown in FIG. 11, in order to implement each function of the signal receiving apparatus 100 of the present invention with hardware, a circuit, a programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or A combination of these applies. The various functions may be realized separately by different processing circuits, or may be realized together. When each function of the signal receiving device 100 is realized by software, it is described as a program and stored in a memory.
なお、信号受信装置100の各機能の一部をハードウェア、一部をソフトウェアで実現してもよい。例えば、RF処理、信号捕捉・追尾を処理回路で実装し、復調、測位演算をプログラムとして記述し、メモリに保存し、CPU(Central Processing Unit)で動作させてもよい。 A part of each function of the signal receiving apparatus 100 may be realized by hardware and a part may be realized by software. For example, RF processing and signal acquisition / tracking may be implemented by a processing circuit, and demodulation and positioning calculation may be described as a program, stored in a memory, and operated by a CPU (Central Processing Unit).
以上のように、本発明による信号受信装置100によれば、複数の衛星から放送されるGNSS信号を受信し、受信した信号がエフェメリスかアルマナックのどちらに属するのかを判断し,合成方法を切り替えることにより、時間と衛星数によるダイバーシチ効果を両方得ることが可能である。ダイバーシチ効果を得るということは、誤りの少ない航法メッセージを得ることに繋がり、その結果を用いた測位も安定して行えることを示しているため、測位精度を向上させるといった効果がある。 As described above, the signal receiving apparatus 100 according to the present invention receives GNSS signals broadcast from a plurality of satellites, determines whether the received signal belongs to an ephemeris or an almanac, and switches the synthesis method. Thus, it is possible to obtain both the diversity effect depending on the time and the number of satellites. Obtaining a diversity effect leads to obtaining a navigation message with few errors, and indicates that positioning using the result can be performed stably, and thus has an effect of improving positioning accuracy.
 このように、本実施の形態1に係る信号受信装置100は、複数の衛星1からの信号を受信するアンテナ101と、アンテナ101で受信された信号に含まれるメッセージを抽出する抽出部120と、前記メッセージからパラメータを読み取るパラメータ識別部105と、パラメータ識別部105で読み取られたパラメータに基づき、複数の衛星1からの信号に含まれるメッセージを合成するか否かを判定し、合成すると判定したとき、該メッセージを合成する合成部121と、を備えたことを特徴とする。この構成により、メッセージの種類に応じて適切な合成方法を用いることができ、時間と衛星数によるダイバーシチ効果を得ることができる。その結果、GNSS衛星などの衛星から放送される信号に含まれるメッセージをメッセージの種類によらず定められた時間内で正しくメッセージを受信することができる。 As described above, the signal receiving apparatus 100 according to the first embodiment includes the antenna 101 that receives signals from the plurality of satellites 1, the extraction unit 120 that extracts messages included in the signals received by the antenna 101, When determining whether to combine messages included in signals from a plurality of satellites 1 based on the parameters read by the parameter identification unit 105 that reads parameters from the message and the parameter identification unit 105 And a combining unit 121 that combines the messages. With this configuration, an appropriate combining method can be used according to the type of message, and a diversity effect based on time and the number of satellites can be obtained. As a result, a message contained in a signal broadcast from a satellite such as a GNSS satellite can be correctly received within a predetermined time regardless of the type of message.
 このように、本実施の形態1に係る信号受信装置100において、複数の衛星1からの信号は地球航法衛星システム(GNSS)から放送される信号であり、前記メッセージは航法メッセージであり、合成部121で合成されたメッセージを用いて測位演算を行う測位演算部108を備えたことを特徴とする。この構成により、GNSSから放送される信号に含まれるメッセージを正しく受信し、高精度な測位を行うことが可能となる。  Thus, in the signal receiving apparatus 100 according to the first embodiment, the signals from the plurality of satellites 1 are signals broadcast from the global navigation satellite system (GNSS), the message is a navigation message, and the combining unit A positioning calculation unit 108 that performs a positioning calculation using the message synthesized in 121 is provided. With this configuration, it is possible to correctly receive a message included in a signal broadcast from GNSS and perform highly accurate positioning. *
 また、本実施の形態1に係る信号受信装置100において、パラメータ識別部105で読み取られたパラメータは、前記航法メッセージがエフェメリスとアルマナックのいずれであるかを示す指標を含むことを特徴とする。この構成によって、信号受信装置100は受信したメッセージがエフェメリスとアルマナックのいずれであるか認識することができ、そのメッセージの種類に応じて適切な合成方法を用いることにより、正しくメッセージを受信することができる。 Further, in the signal receiving apparatus 100 according to the first embodiment, the parameter read by the parameter identifying unit 105 includes an index indicating whether the navigation message is an ephemeris or an almanac. With this configuration, the signal receiving apparatus 100 can recognize whether the received message is an ephemeris or an almanac, and can correctly receive the message by using an appropriate synthesis method according to the type of the message. it can.
 また、本実施の形態1に係る信号受信装置100において、抽出部120は複数の衛星1からの信号を追尾する信号捕捉・追尾部103などの追尾部を含み、測位演算部108はこの追尾部で得られた追尾結果を用いて測位演算を行うことを特徴とする。この構成により、追尾結果を用いてより高精度な測位演算を行うことが可能となる。 In the signal receiving apparatus 100 according to the first embodiment, the extraction unit 120 includes a tracking unit such as a signal capturing / tracking unit 103 that tracks signals from the plurality of satellites 1, and the positioning calculation unit 108 includes the tracking unit. The positioning calculation is performed using the tracking result obtained in the above. With this configuration, it is possible to perform more accurate positioning calculation using the tracking result.
 また、本実施の形態1に係る信号受信装置100において、前記パラメータは前記メッセージのデータフォーマットを表す識別番号であることを特徴とする。この構成により、
メッセージのデータフォーマットに応じて、合成部121での合成方法を変更することができ、メッセージに応じて適切なダイバーシチ効果を得ることができる。
Further, in the signal receiving apparatus 100 according to the first embodiment, the parameter is an identification number representing a data format of the message. With this configuration,
The combining method in the combining unit 121 can be changed according to the data format of the message, and an appropriate diversity effect can be obtained according to the message.
 また、本実施の形態1に係る信号受信装置100において、パラメータ識別部105は前記メッセージのデータセットの更新があるか否かを判定し、合成部121は、パラメータ識別部105で前記更新があると判定されたとき、合成に用いる保存中のメッセージをクリアする記憶部107を備えること特徴とする。この構成により、データセットの更新がある場合には、メッセージの合成を行わない構成となり、異なるデータセットの間で合成されることにより生じるデータの混合を回避することができる。 In the signal receiving apparatus 100 according to the first embodiment, the parameter identifying unit 105 determines whether there is an update of the data set of the message, and the synthesizing unit 121 performs the updating at the parameter identifying unit 105. When it is determined, the storage unit 107 is provided for clearing a stored message used for synthesis. With this configuration, when there is an update of a data set, the message is not combined, and data mixing caused by combining between different data sets can be avoided.
実施の形態2.
本実施の形態では、実施の形態1の構成に、衛星の健康状態を判断するヘルス確認部を加えることで、衛星の健康状態に基づき、合成方法を切り替え、合成した航法メッセージに誤りのあるビットが加算されることを防ぐ方法について記載する。
Embodiment 2. FIG.
In the present embodiment, a health check unit that determines the health status of the satellite is added to the configuration of the first embodiment, so that the synthesis method is switched based on the health status of the satellite. Describes how to prevent.
図12は、この実施の形態における信号受信装置200の構成を示す図であり、図6の信号受信装置100との違いは衛星の健康状態を判断するヘルス確認部110があることである。他の構成要素は図6の同じ番号のものと同様である。 FIG. 12 is a diagram showing the configuration of the signal receiving apparatus 200 in this embodiment. The difference from the signal receiving apparatus 100 in FIG. 6 is that there is a health confirmation unit 110 that determines the health state of the satellite. Other components are the same as those in FIG.
次に動作について説明する。パラメータ識別部105で航法メッセージのデータフォーマットと、データセットの同一性を判断するところまでは実施の形態1と同様である。図13に示すように、各GNSS衛星は位相ノイズや衛星の姿勢などが原因で出力レベルが下がった信号を放送する場合、航法メッセージのSV(Space Vehicle) Healthと呼ばれる項目でその状態を通知している。そのため、ヘルス確認部110では図14に示すように、各GNSS信号の健康状態を把握するために航法メッセージ内のビットを読み取る(S140)。 Next, the operation will be described. The process up to the point where the parameter identification unit 105 determines the data format of the navigation message and the identity of the data set is the same as in the first embodiment. As shown in FIG. 13, when each GNSS satellite broadcasts a signal whose output level has decreased due to phase noise, the attitude of the satellite, etc., the status is notified by an item called SV (Space Vehicle) Health in the navigation message. ing. Therefore, as shown in FIG. 14, the health confirmation unit 110 reads bits in the navigation message to grasp the health state of each GNSS signal (S140).
合成処理部111では、図15に示すように合成可能なデータフォーマットを記憶部107から呼び出すまでは同じ処理であるが、合成の際にヘルス確認部110で確認したヘルス情報に基づき、健康状態が良いか否かを判定し(S151、S154)、健康状態が良い場合は、実施の形態1のようにビット合成し(S152、S155)、健康状態が悪い信号は重み付き合成を行うなど合成方法を切り替えることで合成した航法メッセージに誤りのあるビットが加算されることを防ぐ(S153、S156)。なお、この例では重み付け合成を行っていたが、健康状態が悪い航法メッセージは合成しないという処理を選択できるようにしてもよい。以降の動作は実施の形態1と同様である。 The synthesis processing unit 111 performs the same processing until a data format that can be synthesized is called from the storage unit 107 as shown in FIG. 15, but the health state is based on the health information confirmed by the health confirmation unit 110 at the time of synthesis. It is determined whether or not it is good (S151, S154). If the health condition is good, the bits are synthesized as in the first embodiment (S152, S155), and the signal with poor health condition is weighted. Are switched to prevent the erroneous bit from being added to the synthesized navigation message (S153, S156). In this example, weighted synthesis is performed, but it may be possible to select a process in which navigation messages with poor health are not synthesized. Subsequent operations are the same as those in the first embodiment.
  以上のように本発明による信号受信装置200によれば、航法メッセージに含まれるSV Healthを読み取り、健康状態が悪い航法メッセージは重みづけ合成、合成しないなどの合成方法を切り替えることで、合成した航法メッセージに誤りのあるビットが加算されることを防ぐ構成したため、衛星と受信機間の伝送路変動に耐性を持つ、信号受信装置200を実現することが可能となる。 As described above, according to the signal receiving device 200 of the present invention, the combined navigation by reading the SV Health included in the navigation message and switching the synthesis method such as weighted synthesis or not synthesis of the navigation message with poor health. Since it is configured to prevent erroneous bits from being added to the message, it is possible to realize the signal receiving device 200 that is resistant to transmission path fluctuations between the satellite and the receiver.
 このように、本実施の形態2に係る信号受信装置200は、複数の衛星1の健康状態を判断するヘルス確認部110を備え、合成部122はヘルス確認部110で確認された衛星の健康状態に基づき、複数の衛星1からの信号に含まれるメッセージを合成する方法を決定することを特徴とする。この構成により、合成した航法メッセージに誤りのあるビットが加算されることを回避でき、衛星と受信機間の伝送路変動に耐性を持つ、信号受信装置200を実現することが可能となる。 As described above, the signal receiving apparatus 200 according to the second embodiment includes the health confirmation unit 110 that determines the health states of the plurality of satellites 1, and the combining unit 122 confirms the health states of the satellites confirmed by the health confirmation unit 110. Based on the above, a method for combining messages included in signals from a plurality of satellites 1 is determined. With this configuration, it is possible to avoid the addition of erroneous bits to the synthesized navigation message, and it is possible to realize the signal receiving apparatus 200 that is resistant to transmission path fluctuations between the satellite and the receiver.
 なお、実施の形態1、2では、GNSS衛星の場合を例として本発明を説明したが、本発明はGNSS衛星に限られるものではなく、衛星からの信号に対して一般的に適用できる。また、エフェメリスとアルマナックのデータを識別する例を取り上げたが、本発明は、この例に限られるものではなく、異なる種類のメッセージに対して適用可能である。 In the first and second embodiments, the present invention has been described by taking the case of the GNSS satellite as an example. However, the present invention is not limited to the GNSS satellite and can be generally applied to signals from the satellite. Further, although an example of identifying ephemeris and almanac data has been described, the present invention is not limited to this example, and can be applied to different types of messages.
1:GNSS衛星、100、200:信号受信装置、101:アンテナ、102:RF処理部、103:信号捕捉・追尾部、104:復調部、105:パラメータ識別部、106:合成処理部、107:記憶部、108:測位演算部、109:出力部、110:ヘルス確認部、111:合成処理部、120:抽出部、121、122:合成部 1: GNSS satellite, 100, 200: signal receiving device, 101: antenna, 102: RF processing unit, 103: signal acquisition / tracking unit, 104: demodulation unit, 105: parameter identification unit, 106: synthesis processing unit, 107: Storage unit, 108: positioning calculation unit, 109: output unit, 110: health confirmation unit, 111: synthesis processing unit, 120: extraction unit, 121, 122: synthesis unit

Claims (8)

  1.  複数の衛星から信号を受信するアンテナと、
    前記アンテナで受信された信号に含まれるメッセージを抽出する抽出部と、
    前記メッセージからパラメータを読み取るパラメータ識別部と、
    前記パラメータ識別部で読み取られたパラメータに基づき、前記複数の衛星からの信号に含まれるメッセージを合成するか否かを判定し、合成すると判定したとき、該メッセージを合成する合成部と、
    を備えたことを特徴とする信号受信装置。
    An antenna for receiving signals from multiple satellites;
    An extraction unit for extracting a message included in the signal received by the antenna;
    A parameter identification unit for reading parameters from the message;
    Based on the parameters read by the parameter identification unit, it is determined whether or not to synthesize messages included in signals from the plurality of satellites.
    A signal receiving apparatus comprising:
  2.  前記パラメータは前記メッセージのデータフォーマットを表す識別番号である
    ことを特徴とする請求項1に記載の信号受信装置。
    The signal receiving apparatus according to claim 1, wherein the parameter is an identification number representing a data format of the message.
  3.  前記信号は地球航法衛星システムから放送される信号であり、
    前記メッセージは航法メッセージであり、
    前記合成部で合成されたメッセージを用いて測位演算を行う測位演算部
    を備えたことを特徴とする請求項1または請求項2に記載の信号受信装置。
    The signal is a signal broadcast from the Earth Navigation Satellite System,
    The message is a navigation message;
    The signal receiving apparatus according to claim 1, further comprising a positioning calculation unit that performs a positioning calculation using the message combined by the combining unit.
  4.  前記パラメータは、前記航法メッセージがエフェメリスとアルマナックのいずれであるかを示す指標を含む
    ことを特徴とする請求項3に記載の信号受信装置。
    The signal reception apparatus according to claim 3, wherein the parameter includes an index indicating whether the navigation message is an ephemeris or an almanac.
  5.  前記抽出部は前記複数の衛星からの信号を追尾する追尾部を含み、
    前記測位演算部は前記追尾部で得られた追尾結果を用いて測位演算を行う
    ことを特徴とした請求項3または請求項4に記載の信号受信装置。
    The extraction unit includes a tracking unit that tracks signals from the plurality of satellites,
    The signal receiving apparatus according to claim 3 or 4, wherein the positioning calculation unit performs a positioning calculation using a tracking result obtained by the tracking unit.
  6.  前記パラメータ識別部は前記メッセージのデータセットの更新があるか否かを判断し、
    前記合成部は、前記パラメータ識別部で前記データセットの更新があると判定されたとき、合成に用いる保存メッセージをクリアする記憶部を備える
    こと特徴とする請求項1乃至5のいずれか1項に記載の信号受信装置。
    The parameter identification unit determines whether there is an update of the data set of the message,
    The said synthetic | combination part is provided with the memory | storage part which clears the preservation | save message used for a synthesis | combination, when it determines with the said parameter identification part having the update of the said data set. The signal receiving device described.
  7.  前記複数の衛星の健康状態を判断するヘルス確認部を備え、
    前記合成部は前記ヘルス確認部で確認された健康状態に基づき、前記複数の衛星からの信号に含まれるメッセージを合成する方法を決定する
    ことを特徴とする請求項1乃至6のいずれか1項に記載の信号受信装置。
    A health check unit for determining the health status of the plurality of satellites;
    The said synthesis | combination part determines the method to synthesize | combine the message contained in the signal from these satellites based on the health state confirmed by the said health confirmation part. A signal receiving apparatus according to claim 1.
  8.  複数の衛星から信号を受信するステップと、
    前記アンテナで受信された信号に含まれるメッセージを抽出する抽出ステップと、
    前記抽出ステップで抽出されたメッセージからパラメータを読み取る読取ステップと、
    前記読取ステップで読み取られたパラメータに基づき、前記複数の衛星からの信号に含まれるメッセージを合成するか否かを判定し、合成すると判定したとき、該メッセージを合成する合成ステップと、
    を備えたことを特徴とする信号受信方法。
    Receiving signals from a plurality of satellites;
    An extraction step of extracting a message included in the signal received by the antenna;
    A reading step of reading parameters from the message extracted in the extraction step;
    Based on the parameters read in the reading step, it is determined whether to synthesize messages included in signals from the plurality of satellites.
    A signal receiving method comprising:
PCT/JP2016/061083 2016-04-05 2016-04-05 Signal reception device and signal reception method WO2017175294A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016553613A JPWO2017175294A1 (en) 2016-04-05 2016-04-05 Signal receiving apparatus and signal receiving method
PCT/JP2016/061083 WO2017175294A1 (en) 2016-04-05 2016-04-05 Signal reception device and signal reception method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/061083 WO2017175294A1 (en) 2016-04-05 2016-04-05 Signal reception device and signal reception method

Publications (1)

Publication Number Publication Date
WO2017175294A1 true WO2017175294A1 (en) 2017-10-12

Family

ID=60000274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/061083 WO2017175294A1 (en) 2016-04-05 2016-04-05 Signal reception device and signal reception method

Country Status (2)

Country Link
JP (1) JPWO2017175294A1 (en)
WO (1) WO2017175294A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999057573A1 (en) * 1998-05-06 1999-11-11 Snaptrack, Inc. Method and apparatus for signal processing in a satellite positioning system
JP2001237744A (en) * 1999-12-09 2001-08-31 Nokia Mobile Phones Ltd Receiver synchronizing method, receiver and electronic device
JP2007506099A (en) * 2003-09-18 2007-03-15 サーフ テクノロジー インコーポレイテッド Partial almanac collection system
JP2015200593A (en) * 2014-04-09 2015-11-12 三菱電機株式会社 Count value acquisition apparatus and count value acquisition program

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011024679A1 (en) * 2009-08-31 2011-03-03 古野電気株式会社 Navigation message acquiring method, subframe producing method, navigation message acquiring program, gnss receiver apparatus, and mobile terminal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999057573A1 (en) * 1998-05-06 1999-11-11 Snaptrack, Inc. Method and apparatus for signal processing in a satellite positioning system
JP2001237744A (en) * 1999-12-09 2001-08-31 Nokia Mobile Phones Ltd Receiver synchronizing method, receiver and electronic device
JP2007506099A (en) * 2003-09-18 2007-03-15 サーフ テクノロジー インコーポレイテッド Partial almanac collection system
JP2015200593A (en) * 2014-04-09 2015-11-12 三菱電機株式会社 Count value acquisition apparatus and count value acquisition program

Also Published As

Publication number Publication date
JPWO2017175294A1 (en) 2018-04-19

Similar Documents

Publication Publication Date Title
TWI452323B (en) A method and system for calibrating a local gnss clock using non-gnss system clocks in a gnss enabled mobile device
US10574437B1 (en) Apparatus and method for synchronization of global navigation satellite system signal synchronization in a noisy environment
US9287921B2 (en) Method and apparatus for frame synchronization in a positioning system
US9854546B2 (en) GNSS radio signal for improved synchronization
US7924947B2 (en) Method and apparatus for decoding satellite navigation data from a satellite positioning system
JP6308406B1 (en) Positioning device, positioning method and program
US20060159055A1 (en) Transmission systems
JP2011052987A (en) Positioning data receiver, error correction device, and program
JP5480906B2 (en) Navigation message acquisition method, subframe creation method, navigation message acquisition program, GNSS receiver, and mobile terminal
WO2017175294A1 (en) Signal reception device and signal reception method
CN111512559B (en) Measurement of data streams including data and pilot channels
JPH11223669A (en) Gps receiver and z count extracting method therefor
US20220404510A1 (en) Method and apparatus for transmitting and receiving characteristic information of gnss subframe
JP6180522B2 (en) Positioning method for transmitting and receiving GNSS radio signals with improved navigation messages, and GNSS receiver and computer program used therefor
US11841444B2 (en) Resilient ephemeris decoding of GNSS satellite information
JP5849547B2 (en) Decoding method, decoding device, and electronic device
EP3511741B1 (en) Positioning receiver
JP2004037212A (en) Differential positioning system
US9014304B2 (en) Demodulation method, demodulation device, and electronic apparatus
WO2014156059A1 (en) Position measurement signal reception method and position measurement signal reception apparatus
US10327216B2 (en) Methods and devices for page synchronization of a communication signal
JP2007248094A (en) Data communication method, data communication system, data transmission station device, and data-receiving terminal device
JP2012145342A (en) Message data receiving method, message data receiving program, message data receiving device, gnss signal receiving method, gnss signal receiving program, gnss signal receiving device, and mobile terminal
Crosta et al. A simplified convolutional decoder for galileo os: performance evaluation with a galileo mass-market receiver in live scenario
CN111971938A (en) Adaptive detection function for statistical propagation channel estimation based on GNSS receiver

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016553613

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16897853

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16897853

Country of ref document: EP

Kind code of ref document: A1