WO2017174839A1 - Method for obtaining magnesium hydroxide from saline effluent - Google Patents

Method for obtaining magnesium hydroxide from saline effluent Download PDF

Info

Publication number
WO2017174839A1
WO2017174839A1 PCT/ES2017/070095 ES2017070095W WO2017174839A1 WO 2017174839 A1 WO2017174839 A1 WO 2017174839A1 ES 2017070095 W ES2017070095 W ES 2017070095W WO 2017174839 A1 WO2017174839 A1 WO 2017174839A1
Authority
WO
WIPO (PCT)
Prior art keywords
obtaining
stage
effluent
stream
reactor
Prior art date
Application number
PCT/ES2017/070095
Other languages
Spanish (es)
French (fr)
Inventor
Hicham El Bakouri
Abel Riaza Frutos
Jose Morillo Aguado
Jose Usero Garcia
Original Assignee
Abengoa Water, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abengoa Water, S.L. filed Critical Abengoa Water, S.L.
Publication of WO2017174839A1 publication Critical patent/WO2017174839A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/14Magnesium hydroxide
    • C01F5/22Magnesium hydroxide from magnesium compounds with alkali hydroxides or alkaline- earth oxides or hydroxides

Definitions

  • the present invention relates to a process for obtaining magnesium hydroxide (Mg (OH) 2) from saline effluents.
  • the invention is part of the technical sector of water treatment, more specifically in the treatment of effluents of high salt content.
  • MgO Magnesia
  • Mg (OH) 2 Magnesia (MgO), magnesium oxide that can be obtained from the calcination of Mg (OH) 2, has an important international import and export market.
  • Mg (OH) 2 is used primarily for water treatment in the chemical, pharmaceutical and medical industries. It is also used in the construction sector and in rubber processing.
  • MgO is mainly carried out in two ways; the first from mining extraction, with higher daily costs that make it necessary to access magnesites whose MgO content exceeds 40%, and the second from high-salinity stream water, mainly seawater, which It has now become the most competitive alternative with the previous one.
  • the process to obtain MgO from seawater was carried out for the first time in the United Kingdom in 1937 and, from 1942, its use was extended in the USA in order to meet the needs of refractory brick of MgO associated with the steel industry.
  • Patent document with publication number US4229423 describes a method of production of Mg (OH) 2.
  • Mg (OH) 2 is obtained from an effluent by means of a first stage of CO2 removal by acidification and a second stage of precipitation of Mg (OH) 2 with excess of calcined dolomite or calcium oxide (CaO), to subsequently separate the Mg (OH) 2 from the brine; part of the Mg (OH) 2 is used as nucleation particles or "seed" of this second stage, and the rest of Mg (OH) 2 is reacted with more brine.
  • this process includes a stage of filtration and final washing in order to eliminate residual boron.
  • Patent document with publication number US2595314 describes a process for the production of Mg (OH) 2 from seawater precipitating it with lime or calcined dolomite.
  • Mg (OH) 2 precipitates in the presence of seed crystals that must be present in at least an amount of 300% of the amount of Mg (OH) 2 that precipitates in the reaction zone, or must be in a ratio of 3: 1 to 10: 1 if high purity is required in the Mg (OH) 2 crystals.
  • the calcined dolomite is added with particle size between 20 and 200 meshes (75-850 ⁇ ). Particles between 48 and 100 meshes (150-350 ⁇ ) favor sedimentation of the precipitate. Therefore, in this document it is necessary to use dolomite with a specific grain size to obtain an adequate production of Mg (OH) 2.
  • the process of the invention presents a stage for the removal of carbonates (CO3 2 " ) from the saline effluent using an acid and a desorption stage and subsequent stages of precipitation of Mg (OH) 2. Therefore a first aspect of the The present invention relates to a process for obtaining Mg (OH) 2 from saline effluents comprising the steps of: a) acidifying a saline effluent with an acidic stream at a pH between 3 and 5, obtaining an acidified stream;
  • step b) perform a desorption of the carbon dioxide (CO2 from carbonates) present in the acidified stream obtained in step a), said acidified stream passing through a filler material;
  • step c) passing the effluent obtained in step b) through a bed of calcined dolomite until reaching a pH between 9 and 10;
  • step d) precipitate Mg (OH) 2 from the effluent obtained in step c) by adding a base until a pH of 1.01 to 11.5 is reached;
  • step b) of desorption the acidified stream obtained in step a) is contacted with a filler material.
  • the landfill must have a high surface area to improve CO2 transfer.
  • the acidified stream obtained in step a) is contacted in a countercurrent with a gaseous stream through a filler material. More preferably, the gas stream is an air stream.
  • the effluent from stage b) is contacted with a bed of calcined dolomite until a pH range between 9 and 10 is reached.
  • an absorption stage b1) would take place in which the gaseous stream charged with CO2 obtained in b) is brought into contact with an alkaline solution preferably NaOH, obtaining sodium carbonate (Na2COs) .
  • stage d The precipitation of stage d) maximizes production and minimizes impurities.
  • saline effluents are effluents with a high concentration of salts, in particular residual effluents from desalination plants and saline effluents with high calcium content, greater than 500 mg / l, and sulfates, greater than 1000 mg / l.
  • the process optionally comprises a first stage a1), of carbonation prior to stage a), where calcium is removed so as to reduce the joint precipitation of the calcium carbonate (CaCOs) and calcium sulfate (CaS0 4 ) with Mg (OH) 2 .
  • the described method comprises an optional stage aO) prior to stage a1) of carbonation, for the elimination or reduction of the sulfate content.
  • the described method may additionally comprise a final step e1) of purification of the precipitate.
  • Figure 1 shows a schematic of the process of the invention.
  • Figure 2 shows a scheme of a preferred embodiment of the process of the invention.
  • the first aspect of the invention is a process for obtaining Mg (OH) 2 from saline effluents comprising the steps of:
  • step b) perform a desorption of carbon dioxide (4) (CO2 from carbonates) present in the acidified stream obtained in step a), said acidified stream passing through a filler material;
  • step c) passing the effluent (5) obtained in step b) through a bed of calcined dolomite until reaching a pH between 9 and 10;
  • step d) precipitate the Mg (OH) 2 from the effluent (6) obtained in step c) by adding a base (7) until a pH of 1.01 to 11.5 is reached;
  • the acidification step a) is preferably carried out with an inorganic acid (2) and in particular with hydrochloric acid (HCI).
  • stage b) of desorption is carried out in a tower where the acidified current (3) of stage a) is preferably introduced through the top of the tower through a arrester and distributed evenly. on the filling material, while the gas stream (10) is preferably introduced from the bottom.
  • the gas stream (10) is an air stream.
  • the effluent (5) obtained in step b), leaves the tower from the bottom; the stream of CO2-charged air (1 1) exits from the top.
  • the filling material is preferably formed by plastic parts that have a high surface to volume ratio.
  • stage b1) in which the stream of CO2-laden air (1 1) obtained in b) is contacted in countercurrent with an alkaline solution (23), preferably NaOH, obtaining Na2CÜ3 (12).
  • alkaline solution preferably NaOH
  • the particle size of the calcined dolomite used in step c) is larger than 20 mm. This particle size improves the hydration of MgO, which leads to an increase in the purity of the Mg (OH) 2 obtained. More preferably, the particle size of the calcined dolomite is in the range between 20 mm and 40 mm.
  • step d) is carried out in a two-zone reactor (13), followed by a two-zone flocculation chamber (14). More preferably in the event that step d) is carried out in a two-zone reactor (13) followed by a two-zone flocculation chamber (14), the two-zone reactor (13) and the two-zone flocculation chamber (14) are purged and between 25% and 30% of each purge is recirculated, the purge that starts from the two-zone reactor (15) and the purge that starts from the flocculation chamber (16), is recirculated to the two-zone reactor (13). It has been found that recirculation rates greater than 30% increase the impurity content in the product. On the other hand, a recirculation rate of less than 25% results in a decrease in the amount of product as the reaction yield decreases.
  • said precipitate (9) is subjected to a step e1) of purification of the precipitate in which it is washed with acidified fresh water (17), subsequently reprecipitated with a base and it filters.
  • a base is soda, lime or calcined dolomite.
  • the method optionally comprises a first carbonation stage a1) prior to stage a) where calcium is removed so that it is possible to reduce the joint precipitation of the CaCC> 3 and CaSCU with the Mg (OH) 2 .
  • This carbonation stage a1) is carried out in three alternative ways. - NaaCC is added to excess saline effluent in a reactor.
  • the advantage associated with this stage is that it is possible to precipitate at least 90% of the calcium present in the effluent, without the need to raise the pH with a base and without losing magnesium in the effluent or;
  • the pH is raised to a pH between 9 and 10.5 preferably 9.5 with NaOH and together Na2CÜ3 is added in a reactor.
  • the advantage associated with this stage is to achieve the precipitation of at least 97% of the calcium present in the effluent or;
  • the pH is raised with Ca (OH) 2 or with CaO at least between 9 and 10.5 and Na2CÜ3 is added in a reactor, in this way the precipitation of 97% of the calcium present in the effluent is also achieved.
  • CaO is added so that the temperature of the solution is increased which favors the formation of insoluble carbonates.
  • This optional carbonation stage a1) is carried out in a reactor for a hydraulic retention time between 10 minutes and 30 minutes. Particularly during a hydraulic retention time of 15 minutes.
  • stage a1) of carbonation two NaOH and Na2C03 reagents are used; or Na2CÜ3 with Ca (OH) 2 or CaO
  • the stage is carried out in two series reaction equipment, in the first of rapid mixing where the Na2C03 is added, and in the second the NaOH is added, Ca (OH ) 2nd CaO.
  • the Na2CÜ3 used in carbonation stage a1) prior to stage a) where calcium is removed is Na2CÜ3 obtained in absorption stage b1).
  • the Na2CÜ3 obtained in stage b1) is recirculated to the reactor of stage a1) thus reducing CO2 emissions, obtaining a more environmentally friendly process.
  • the described method comprises a step aO), of elimination or reduction of the sulfate content, initial prior to step a1) of carbonation for the elimination or reduction of sulfate content.
  • the saline effluent (1) Ca (OH) 2 (18) is added, until a pH between 9.5 and 10.5 is reached, preferably 10 and then calcium chloride (CaC) (19) is added.
  • CaC (19) is added in a concentration that allows the CaSCU solubility limit to be exceeded by at least 50%.
  • the process comprises a step aO), of elimination or reduction of the sulphate content, prior to step a1) where Ca (OH) 2 effluent is added until a pH between 9.5 and 10.5 and CaC and the effluent obtained is conducted to step a1).
  • step b1 shows a preferred embodiment where the saline effluent without sulfates (20) but with a high calcium content is carbonated by raising the pH with Ca (OH) 2 (21) and adding Na2CÜ3 (12) obtained in step b1).
  • the saline effluent without sulfates and without calcium (22) is acidified in step a) and the process continues.
  • Example 1 The process carried out in a pilot plant with the effluent of a reverse osmosis seawater desalination plant with the composition indicated in Table 1 is described below.
  • Table 1 Composition of residual effluent from seawater desalination plant.
  • the first stage of the process consisted in the removal of calcium from the effluent through a carbonation process.
  • a dose of Na2CÜ3 of 2 kg / m 3 of treated effluent was added, a reaction time of 15 minutes was maintained and at a later stage of decantation the solid phase was separated.
  • the analysis of the treated effluent revealed the removal of 90% of calcium, without significantly affecting the magnesium content of the brine (see table 2).
  • Tests were also carried out by adjusting the pH in the reaction stage with NaOH or Ca (OH) 2, obtaining good results in relation to the removal of calcium (see tables 3 and 4).
  • the treated effluent was transferred to a reactor to acidify it to pH 3.5 with inorganic acids (0.36 kg of H 2 S04 or 0.22 kg of HCI was needed to acidify each m 3 of effluent).
  • desorption was performed with air to recover the C0 2
  • this gas stream is led to an absorption tower wherein contacted countercurrently with a stream of NaOH, obtaining a solution close to saturation Na 2 C0 3 (200 g / L).
  • Na 2 C0 3 that is recirculated to the reactor of stage a1) of carbonation, thus having an environmentally friendly process in relation to the emissions of C0 2 .
  • the acidified brine stream was transported to a downflow filter type bed formed of 20 mm grain size calcined dolomite particles.
  • the process was developed by gravity with a speed of 50 L / min / m 2 to achieve an optimal residence time and that the effluent pH was between 9.0 and 10.0.
  • the resulting effluent was transported to the bizone reactor in which calcined dolomite was added in the form of a slurry by adjusting the pH in a range between 1.1 and 11.5.
  • the bizone reactor supernatant was transported to the bizone flocculator with a residence time of another 15 minutes.
  • the bottom of the reactor and the flocculator are purged to prevent impurities from accumulating in both.
  • 30% of the purge current of the bizone reactor and 30% of the bizone flocculator is returned to the reactor thus improving the reaction process and the reaction yield, by increasing the depletion of the reagent.
  • the supernatant of the flocculator is taken to a decanter, the decanted stream is conducted to a thickener, and the thickened product is washed and filtered to obtain a solid composed mainly of Mg (OH) 2, with a purity of this compound of 87.2 % (acidification with H2SO4) and 90% (acidification with HCI).
  • the precipitate was calcined at 1,100 ° C to obtain a product with the composition indicated in Table 5.
  • the first stage of the process consisted of acidification to pH 3.5 with inorganic acid (0.36 kg of H2SO4 or 0.22 kg of HCI is needed to acidify each m 3 of effluent). Stripping was performed with air to remove CO2.
  • a countercurrent flow of the brine was contacted acidified and air in a column through a filler material.
  • the filling supplies a high surface area to improve the transfer of CO2 from the liquid phase to the gas phase.
  • the acidified brine stream was introduced from the top of the tower by a diffuser and distributed evenly over the landfill, while the air stream is introduced through the bottom.
  • the brine stream leaves the column from the bottom and the gas stream from the top.
  • the filler material used in this case was formed by plastic parts (raschig rings).
  • the acidified brine stream was transferred to a downflow filter type bed formed of 20 mm grain size calcined dolomite particles.
  • the process was developed by gravity with a speed of 50 L / min / m 2 to achieve an optimal residence time and increase the pH of the effluent between 9.0 and 10.0.
  • the resulting effluent was transported to the bizone reactor in which the reagent was added in the form of a slurry by adjusting the pH in a range between 1.0 and 11.5.
  • the bizone reactor supernatant was transported to the bizone flocculator with a residence time of another 15 minutes.
  • the bottom of the reactor and the flocculator are purged to prevent impurities from accumulating in both.
  • 30% of the purge current of the bizone reactor and 30% of the bizone flocculator is returned to the reactor thus improving the reaction process and the reaction yield, by increasing the depletion of the reagent.
  • superior recirculation causes an increase in product impurities.
  • a lower recirculation produces a decrease in the amount of product to decrease the yield of the reaction.
  • the flocculator supernatant was taken to a decanter, the decanted stream was led to a thickener, and the thickened product was washed and filtered to obtain a solid composed mainly of Mg (OH) 2, with a purity of this compound of 84.9 % (acidification with H2SO4) and

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Removal Of Specific Substances (AREA)
  • Treating Waste Gases (AREA)

Abstract

The invention relates to a method for obtaining magnesium hydroxide from saline effluent, comprising an acidification and desorption step for the elimination of carbon species, and alkalinisation and basification steps for the purpose of precipitating the magnesium hydroxide.

Description

PROCEDIMIENTO DE OBTENCIÓN DE HIDRÓXIDO DE MAGNESIO A PARTIR PROCEDURE FOR OBTAINING MAGNESIUM HYDROXIDE FROM
DE EFLUENTES SALINOS OF EFFLUENT SALINOS
DESCRIPCIÓN DESCRIPTION
La presente invención se refiere a un procedimiento de obtención de hidróxido de magnesio (Mg(OH)2) a partir de efluentes salinos. The present invention relates to a process for obtaining magnesium hydroxide (Mg (OH) 2) from saline effluents.
La invención se enmarca en el sector técnico de tratamiento de agua, más concretamente en el tratamiento de efluentes de alto contenido en sales. The invention is part of the technical sector of water treatment, more specifically in the treatment of effluents of high salt content.
Antecedentes de la invención Background of the invention
La magnesia (MgO), óxido de magnesio que se puede obtener a partir de la calcinación del Mg(OH)2, tiene un importante mercado de importación y exportación a nivel internacional. El Mg(OH)2 se utiliza, fundamentalmente, para el tratamiento de agua, en la industria química, farmacéutica y medicina. También se emplea en el sector de la construcción y en el procesado de caucho. Magnesia (MgO), magnesium oxide that can be obtained from the calcination of Mg (OH) 2, has an important international import and export market. Mg (OH) 2 is used primarily for water treatment in the chemical, pharmaceutical and medical industries. It is also used in the construction sector and in rubber processing.
Actualmente la producción de MgO se realiza principalmente mediante dos vías; la primera a partir de la extracción minera, de costes cada día más elevados que hacen necesario acceder a magnesitas cuyo contenido de MgO supere el 40%, y la segunda a partir de agua de corrientes de elevada salinidad, fundamentalmente agua de mar, la cual se ha convertido actualmente en la alternativa más competitiva con la anterior. El proceso para obtener MgO a partir de agua de mar se llevó a cabo por primera vez en el Reino Unido en 1937 y, a partir de 1942, en los EE.UU se extendió su uso con el fin de cubrir las necesidades de ladrillo refractario de MgO asociado a la industria del acero. Currently, the production of MgO is mainly carried out in two ways; the first from mining extraction, with higher daily costs that make it necessary to access magnesites whose MgO content exceeds 40%, and the second from high-salinity stream water, mainly seawater, which It has now become the most competitive alternative with the previous one. The process to obtain MgO from seawater was carried out for the first time in the United Kingdom in 1937 and, from 1942, its use was extended in the USA in order to meet the needs of refractory brick of MgO associated with the steel industry.
En general, los documentos de patente relacionados con esta técnica se centran en el desarrollo de equipos o en la optimización del proceso con el objetivo de obtener una mejor calidad de sales de magnesio. A continuación se describen los documentos de patente más importantes en este contexto. El documento de patente con número de publicación US4229423 describe un método de producción de Mg(OH)2. En dicho procedimiento se obtiene Mg(OH)2 a partir de un efluente mediante una primera etapa de eliminación del CO2 por acidificación y una segunda etapa de precipitación del Mg(OH)2 con exceso de dolomita calcinada u óxido de calcio (CaO), para posteriormente separar el Mg(OH)2 de la salmuera; parte del Mg(OH)2 se utiliza como partículas de nucleación o "semilla" de esta segunda etapa, y el resto de Mg(OH)2 se hace reaccionar con más salmuera. De este modo se obtiene Mg(OH)2 con baja cantidad de boro y de CaO. Finalmente este proceso contempla una etapa de filtración y lavado final con objeto de eliminar el boro residual. In general, patent documents related to this technique focus on equipment development or process optimization in order to obtain a better quality of magnesium salts. The most important patent documents in this context are described below. Patent document with publication number US4229423 describes a method of production of Mg (OH) 2. In this procedure, Mg (OH) 2 is obtained from an effluent by means of a first stage of CO2 removal by acidification and a second stage of precipitation of Mg (OH) 2 with excess of calcined dolomite or calcium oxide (CaO), to subsequently separate the Mg (OH) 2 from the brine; part of the Mg (OH) 2 is used as nucleation particles or "seed" of this second stage, and the rest of Mg (OH) 2 is reacted with more brine. In this way, Mg (OH) 2 is obtained with a low amount of boron and CaO. Finally, this process includes a stage of filtration and final washing in order to eliminate residual boron.
El documento de patente con número de publicación US1505202, referido a la recuperación de compuestos de magnesio a partir de salmueras, describe la precipitación del Mg(OH)2 mediante la adición de hidróxido de calcio (Ca(OH)2). En este documento el efluente se trata con Ca(OH)2 tras una filtración y eliminación delThe patent document with publication number US1505202, referring to the recovery of magnesium compounds from brines, describes the precipitation of Mg (OH) 2 by the addition of calcium hydroxide (Ca (OH) 2). In this document the effluent is treated with Ca (OH) 2 after filtration and removal of
CO2 mediante acidificación. CO2 by acidification.
El documento de patente con número de publicación US2595314 describe un proceso para la producción de Mg(OH)2 a partir de agua de mar precipitándolo con cal o dolomita calcinada. En el proceso se recircula una porción de la suspensión del espesador que está en serie con el reactor. El Mg(OH)2 precipita en presencia de cristales de siembra que deben estar presentes en al menos, una cantidad del 300% de la cantidad de Mg(OH)2 que precipita en la zona de reacción, o debe estar en una relación de 3:1 a 10: 1 si se requiere conseguir una elevada pureza en los cristales de Mg(OH)2. La dolomita calcinada se añade con tamaño de partícula entre 20 y 200 mallas (75-850 μηι). Las partículas de entre 48 y 100 mallas (150-350 μηι) favorece la sedimentación del precipitado. Por lo tanto, en el presente documento es necesario utilizar dolomita con un tamaño de grano específico para obtener una producción adecuada de Mg(OH)2. Patent document with publication number US2595314 describes a process for the production of Mg (OH) 2 from seawater precipitating it with lime or calcined dolomite. In the process, a portion of the thickener suspension that is in series with the reactor is recycled. Mg (OH) 2 precipitates in the presence of seed crystals that must be present in at least an amount of 300% of the amount of Mg (OH) 2 that precipitates in the reaction zone, or must be in a ratio of 3: 1 to 10: 1 if high purity is required in the Mg (OH) 2 crystals. The calcined dolomite is added with particle size between 20 and 200 meshes (75-850 μηι). Particles between 48 and 100 meshes (150-350 μηι) favor sedimentation of the precipitate. Therefore, in this document it is necessary to use dolomite with a specific grain size to obtain an adequate production of Mg (OH) 2.
Como se divulga en el estado de la técnica, se han desarrollado muchos procedimientos para la obtención de sales de magnesio a partir de efluentes salinos pero a día de hoy se necesitan procedimientos que mejoren la pureza de Mg(OH)2 obtenido especialmente si el efluente salino tiene una alta concentración de iones calcio (Ca2+) y sulfatos (S04 2")- As disclosed in the state of the art, many procedures have been developed for obtaining magnesium salts from saline effluents but today, procedures that improve the purity of Mg (OH) 2 obtained especially if the effluent are needed saline has a high ion concentration calcium (Ca 2+ ) and sulfates (S0 4 2 " ) -
Descripción de la invención Para resolver el problema descrito en el estado de la técnica, que hace necesario mejorar la pureza de Mg(OH)2 obtenido a partir de efluentes salinos con alta concentración de Ca2+ y S04 2", se ha desarrollado un procedimiento de obtención de Mg(OH)2 a partir de efluentes salinos, donde el Mg(OH)2 obtenido presenta una alta pureza. Description of the invention To solve the problem described in the state of the art, which makes it necessary to improve the purity of Mg (OH) 2 obtained from saline effluents with high concentration of Ca 2+ and S0 4 2 " , it has been developed a process for obtaining Mg (OH) 2 from saline effluents, where the Mg (OH) 2 obtained has a high purity.
El procedimiento de la invención presenta una etapa de eliminación de los carbonatos (CO32") del efluente salino utilizando un ácido y una etapa de desorción y unas etapas posteriores de precipitación del Mg(OH)2. Por lo tanto un primer aspecto de la presente invención se refiere a un procedimiento de obtención de Mg(OH)2 a partir de efluentes salinos que comprende las etapas de: a) acidificar un efluente salino con una corriente ácida a un pH comprendido entre 3 y 5 obteniéndose una corriente acidificada; The process of the invention presents a stage for the removal of carbonates (CO3 2 " ) from the saline effluent using an acid and a desorption stage and subsequent stages of precipitation of Mg (OH) 2. Therefore a first aspect of the The present invention relates to a process for obtaining Mg (OH) 2 from saline effluents comprising the steps of: a) acidifying a saline effluent with an acidic stream at a pH between 3 and 5, obtaining an acidified stream;
b) realizar una desorción del dióxido de carbono (CO2 procedente de los carbonatos) presente en la corriente acidificada obtenida en la etapa a), pasando dicha corriente acidificada a través de un material de relleno; b) perform a desorption of the carbon dioxide (CO2 from carbonates) present in the acidified stream obtained in step a), said acidified stream passing through a filler material;
c) pasar el efluente obtenido en la etapa b) por un lecho de dolomita calcinada hasta alcanzar un pH comprendido entre 9 y 10; c) passing the effluent obtained in step b) through a bed of calcined dolomite until reaching a pH between 9 and 10;
d) precipitar el Mg(OH)2 a partir del efluente obtenido en la etapa c) mediante la adición de una base hasta alcanzar un pH de 1 1 ,0 a 11 ,5; d) precipitate Mg (OH) 2 from the effluent obtained in step c) by adding a base until a pH of 1.01 to 11.5 is reached;
e) decantar el precipitado de Mg(OH)2 a partir de la solución obtenida en d). e) decant the precipitate of Mg (OH) 2 from the solution obtained in d).
En la etapa b) de desorción se pone en contacto la corriente acidificada obtenida en la etapa a) con un material de relleno. El relleno debe presentar una elevada área superficial para mejorar la transferencia del CO2. De manera preferente en la etapa b) de desorción se pone en contacto en contracorriente la corriente acidificada obtenida en la etapa a) con una corriente gaseosa a través de un material de relleno. De manera más preferente la corriente gaseosa se trata de una corriente de aire. Como se ha mencionado el efluente proveniente de la etapa b) se pone en contacto con un lecho de dolomita calcinada hasta alcanzar un rango de pH entre 9 y 10. In step b) of desorption, the acidified stream obtained in step a) is contacted with a filler material. The landfill must have a high surface area to improve CO2 transfer. Preferably in step b) of desorption, the acidified stream obtained in step a) is contacted in a countercurrent with a gaseous stream through a filler material. More preferably, the gas stream is an air stream. As mentioned, the effluent from stage b) is contacted with a bed of calcined dolomite until a pH range between 9 and 10 is reached.
De manera opcional tras la etapa b) de desorción tendría lugar una etapa b1) de absorción en la cual se pone en contacto la corriente gaseosa cargada de CO2 obtenida en b) en contracorriente con una solución alcalina preferentemente NaOH, obteniéndose carbonato sódico (Na2COs). Optionally after stage b) of desorption an absorption stage b1) would take place in which the gaseous stream charged with CO2 obtained in b) is brought into contact with an alkaline solution preferably NaOH, obtaining sodium carbonate (Na2COs) .
La precipitación de la etapa d) maximiza la producción y minimiza las impurezas. The precipitation of stage d) maximizes production and minimizes impurities.
En la presente invención los efluentes salinos son efluentes con alta concentración en sales, en particular efluentes residuales de plantas desaladoras y efluentes salinos con alto contenido en calcio, superior a 500 mg/l, y sulfatos, superior a 1000 mg/l. Particularmente efluentes provenientes de procesos de depuración de aguas donde se utilizan membranas de osmosis inversa. In the present invention saline effluents are effluents with a high concentration of salts, in particular residual effluents from desalination plants and saline effluents with high calcium content, greater than 500 mg / l, and sulfates, greater than 1000 mg / l. Particularly effluents from water purification processes where reverse osmosis membranes are used.
En el caso de que el efluente tenga un alto contenido en calcio, el procedimiento comprende de forma opcional una primera etapa a1), de carbonatación anterior a la etapa a), donde se elimina el calcio de manera que se consigue reducir la precipitación conjunta del carbonato cálcico (CaCOs) y sulfato cálcico (CaS04) con el Mg(OH)2. In the event that the effluent has a high calcium content, the process optionally comprises a first stage a1), of carbonation prior to stage a), where calcium is removed so as to reduce the joint precipitation of the calcium carbonate (CaCOs) and calcium sulfate (CaS0 4 ) with Mg (OH) 2 .
En el caso de que el efluente salino tenga un alto contenido en sulfatos, el método descrito comprende una etapa aO) opcional previa a la etapa a1) de carbonatación, para la eliminación o reducción del contenido en sulfatos. In the event that the saline effluent has a high sulfate content, the described method comprises an optional stage aO) prior to stage a1) of carbonation, for the elimination or reduction of the sulfate content.
Así mismo, el método descrito puede comprender adicionalmente una etapa e1) final de purificación del precipitado. Likewise, the described method may additionally comprise a final step e1) of purification of the precipitate.
Breve descripción de los dibujos Brief description of the drawings
Para mejor comprensión de cuanto se ha expuesto, se acompañan unos dibujos en los que, esquemáticamente y tan sólo a título de ejemplo no limitativo, se representa un caso práctico de realización. La figura 1 muestra un esquema del procedimiento de la invención. For a better understanding of how much has been exposed, some drawings are attached in which, schematically and only by way of non-limiting example, a practical case of realization is represented. Figure 1 shows a schematic of the process of the invention.
La figura 2 muestra un esquema de una materialización preferida del procedimiento de la invención. Figure 2 shows a scheme of a preferred embodiment of the process of the invention.
Descripción de una realización preferida Description of a preferred embodiment
Como se ha dicho el primer aspecto de la invención es un procedimiento de obtención de Mg(OH)2 a partir de efluentes salinos que comprende las etapas de: As said, the first aspect of the invention is a process for obtaining Mg (OH) 2 from saline effluents comprising the steps of:
a) acidificar un efluente salino (1) con una corriente ácida (2) a un pH comprendido entre 3 y 5 obteniéndose una corriente acidificada (3); a) acidifying a saline effluent (1) with an acidic stream (2) at a pH between 3 and 5 obtaining an acidified stream (3);
b) realizar una desorción del dióxido de carbono (4) (CO2 procedente de los carbonatos) presente en la corriente acidificada obtenida en la etapa a), pasando dicha corriente acidificada a través de un material de relleno; b) perform a desorption of carbon dioxide (4) (CO2 from carbonates) present in the acidified stream obtained in step a), said acidified stream passing through a filler material;
c) pasar el efluente (5) obtenido en la etapa b) por un lecho de dolomita calcinada hasta alcanzar un pH comprendido entre 9 y 10; c) passing the effluent (5) obtained in step b) through a bed of calcined dolomite until reaching a pH between 9 and 10;
d) precipitar el Mg(OH)2 a partir del efluente (6) obtenido en la etapa c) mediante la adición de una base (7) hasta alcanzar un pH de 1 1 ,0 a 11 ,5; d) precipitate the Mg (OH) 2 from the effluent (6) obtained in step c) by adding a base (7) until a pH of 1.01 to 11.5 is reached;
e) decantar el precipitado (9) de Mg(OH)2 a partir de la solución (8) obtenida en d). e) decanting the precipitate (9) of Mg (OH) 2 from the solution (8) obtained in d).
La etapa a) de acidificación se realiza preferentemente con un ácido inorgánico (2) y de manera particular con ácido clorhídrico (HCI). En una materialización preferente la etapa b) de desorción se realiza en una torre donde la corriente acidificada (3) de la etapa a) se introduce de forma preferente por la parte superior de la torre a través de un descargador y se distribuye de manera uniforme sobre el material de relleno, mientras la corriente gaseosa (10) se introduce preferentemente por la parte inferior. En una realización preferente, la corriente gaseosa (10) se trata de una corriente de aire. El efluente (5) obtenido en la etapa b), sale de la torre por la parte inferior; la corriente de aire cargada de CO2 (1 1) sale por la parte superior. El material de relleno está formado preferentemente por piezas de plástico que tienen una relación superficie a volumen elevada. De manera opcional tras la etapa b) de desorción hay con una etapa b1) de absorción en la cual se pone en contacto la corriente de aire cargada de CO2 (1 1) obtenida en b) en contracorriente con una solución alcalina (23), preferentemente NaOH, obteniéndose Na2CÜ3 (12). The acidification step a) is preferably carried out with an inorganic acid (2) and in particular with hydrochloric acid (HCI). In a preferred embodiment, stage b) of desorption is carried out in a tower where the acidified current (3) of stage a) is preferably introduced through the top of the tower through a arrester and distributed evenly. on the filling material, while the gas stream (10) is preferably introduced from the bottom. In a preferred embodiment, the gas stream (10) is an air stream. The effluent (5) obtained in step b), leaves the tower from the bottom; the stream of CO2-charged air (1 1) exits from the top. The filling material is preferably formed by plastic parts that have a high surface to volume ratio. Optionally after stage b) of desorption there is an absorption stage b1) in which the stream of CO2-laden air (1 1) obtained in b) is contacted in countercurrent with an alkaline solution (23), preferably NaOH, obtaining Na2CÜ3 (12).
De manera preferente el tamaño de partícula de la dolomita calcinada utilizada en la etapa c) es mayor de 20 mm. Este tamaño de partícula mejora la hidratación del MgO, lo que conduce a un aumento de la pureza del Mg(OH)2 obtenido. De manera más preferente el tamaño de partícula de la dolomita calcinada se encuentra en el rango comprendido entre 20 mm y 40 mm. Preferably, the particle size of the calcined dolomite used in step c) is larger than 20 mm. This particle size improves the hydration of MgO, which leads to an increase in the purity of the Mg (OH) 2 obtained. More preferably, the particle size of the calcined dolomite is in the range between 20 mm and 40 mm.
De manera preferente la basificación de la etapa d) se realiza con dolomita calcinada (7). Preferentemente la etapa d) se lleva a cabo en un reactor bizona (13), seguido de una cámara de floculación bizona (14). Más preferentemente en el caso de que la etapa d) se lleve a cabo en un reactor bizona (13) seguido de una cámara de floculación bizona (14), se purga el reactor bizona (13) y la cámara de floculación (14) bizona y se recircula entre el 25% y el 30% de cada purga, la purga que parte del reactor bizona (15) y la purga que parte de la cámara de floculación (16), se recircula al reactor bizona (13). Se ha comprobado que tasas de recirculación superiores al 30% aumentan el contenido de impurezas en el producto. Por otra parte una tasa de recirculación inferior al 25%, produce una disminución en la cantidad de producto al disminuir el rendimiento de la reacción. Preferably the basification of step d) is performed with calcined dolomite (7). Preferably step d) is carried out in a two-zone reactor (13), followed by a two-zone flocculation chamber (14). More preferably in the event that step d) is carried out in a two-zone reactor (13) followed by a two-zone flocculation chamber (14), the two-zone reactor (13) and the two-zone flocculation chamber (14) are purged and between 25% and 30% of each purge is recirculated, the purge that starts from the two-zone reactor (15) and the purge that starts from the flocculation chamber (16), is recirculated to the two-zone reactor (13). It has been found that recirculation rates greater than 30% increase the impurity content in the product. On the other hand, a recirculation rate of less than 25% results in a decrease in the amount of product as the reaction yield decreases.
En una realización preferente, una vez decantado el Mg(OH)2, dicho precipitado (9) se somete a una etapa e1) de purificación del precipitado en la cual se lava con agua dulce acidificada (17), posteriormente se reprecipita con una base y se filtra. Preferentemente la base es sosa, cal o dolomita calcinada. In a preferred embodiment, once the Mg (OH) 2 is decanted, said precipitate (9) is subjected to a step e1) of purification of the precipitate in which it is washed with acidified fresh water (17), subsequently reprecipitated with a base and it filters. Preferably the base is soda, lime or calcined dolomite.
En otra realización preferente, en el caso de que el efluente salino tenga un alto contenido en calcio, el procedimiento comprende de forma opcional una primera etapa a1) de carbonatación anterior a la etapa a) donde se elimina el calcio de manera que se consigue reducir la precipitación conjunta del CaCC>3 y CaSCU con el Mg(OH)2. In another preferred embodiment, in the event that the saline effluent has a high calcium content, the method optionally comprises a first carbonation stage a1) prior to stage a) where calcium is removed so that it is possible to reduce the joint precipitation of the CaCC> 3 and CaSCU with the Mg (OH) 2 .
Esta etapa a1) de carbonatacion se realiza de tres maneras alternativas. - al efluente salino se le añade NaaCC en exceso en un reactor. La ventaja asociada a esta etapa es que se consigue precipitar al menos el 90% del calcio presente en el efluente, sin necesidad de elevar el pH con una base y sin perder magnesio en el efluente o; This carbonation stage a1) is carried out in three alternative ways. - NaaCC is added to excess saline effluent in a reactor. The advantage associated with this stage is that it is possible to precipitate at least 90% of the calcium present in the effluent, without the need to raise the pH with a base and without losing magnesium in the effluent or;
- se eleva el pH a un pH comprendido entre 9 y 10,5 preferentemente 9,5 con NaOH y de forma conjunta se añade Na2CÜ3 en un reactor. La ventaja asociada a esta etapa es conseguir la precipitación de al menos el 97% del calcio presente en el efluente o; - the pH is raised to a pH between 9 and 10.5 preferably 9.5 with NaOH and together Na2CÜ3 is added in a reactor. The advantage associated with this stage is to achieve the precipitation of at least 97% of the calcium present in the effluent or;
- se eleva el pH con Ca(OH)2 o con CaO al menos entre 9 y 10,5 y se añade Na2CÜ3 en un reactor, de esta manera también se consigue la precipitación del 97% del calcio presente en el efluente. Preferentemente se adiciona CaO de manera que se incrementa la temperatura de la solución lo que favorece la formación de carbonatos insolubles. - the pH is raised with Ca (OH) 2 or with CaO at least between 9 and 10.5 and Na2CÜ3 is added in a reactor, in this way the precipitation of 97% of the calcium present in the effluent is also achieved. Preferably CaO is added so that the temperature of the solution is increased which favors the formation of insoluble carbonates.
Esta etapa opcional a1) de carbonatacion se lleva a cabo en un reactor durante un tiempo de retención hidráulico comprendido entre 10 minutos y 30 minutos. Particularmente durante un tiempo de retención hidráulico de 15 minutos. This optional carbonation stage a1) is carried out in a reactor for a hydraulic retention time between 10 minutes and 30 minutes. Particularly during a hydraulic retention time of 15 minutes.
En el caso de que en esta etapa a1) de carbonatacion se utilicen dos reactivos NaOH y Na2C03; o bien Na2CÜ3 con Ca(OH)2 o CaO, la etapa se lleva a cabo en dos equipos de reacción en serie, en el primero de mezcla rápida donde se añade el Na2C03, y en el segundo se añade el NaOH, Ca(OH)2 o CaO. In the event that at this stage a1) of carbonation two NaOH and Na2C03 reagents are used; or Na2CÜ3 with Ca (OH) 2 or CaO, the stage is carried out in two series reaction equipment, in the first of rapid mixing where the Na2C03 is added, and in the second the NaOH is added, Ca (OH ) 2nd CaO.
De manera preferente, el Na2CÜ3 utilizado en la etapa a1) de carbonatacion anterior a la etapa a) donde se elimina el calcio, es el Na2CÜ3 obtenido en la etapa b1) de absorción. El Na2CÜ3 obtenido en la etapa b1) se recircula al reactor de la etapa a1) reduciendo así las emisiones de CO2, obteniéndose un proceso más respetuoso con el medioambiente.  Preferably, the Na2CÜ3 used in carbonation stage a1) prior to stage a) where calcium is removed, is Na2CÜ3 obtained in absorption stage b1). The Na2CÜ3 obtained in stage b1) is recirculated to the reactor of stage a1) thus reducing CO2 emissions, obtaining a more environmentally friendly process.
En otra realización preferente mostrada en la FIG. 2, en el caso de que el efluente salino (1) tenga un alto contenido de sulfatos, el método descrito comprende una etapa aO), de eliminación o reducción del contenido en sulfatos, inicial previa a la etapa a1) de carbonatación para la eliminación o reducción del contenido en sulfatos. En este caso se adiciona al efluente salino (1) Ca(OH)2 (18), hasta alcanzar un pH comprendido entre 9,5 y 10,5 preferentemente 10 y posteriormente se añade cloruro cálcico (CaC ) (19). El CaC (19) se adiciona en una concentración que permita sobrepasar al menos un 50% el límite de solubilidad de CaSCU. Esta precipitación en forma de cristales es muy lenta, por lo que para evitar sobresaturaciones y precipitaciones posteriores, la reacción debe efectuarse en presencia de una gran concentración de partículas de nucleación. Por lo tanto es necesario mantener una concentración elevada de CaSCU. Posteriormente el efluente salino sin sulfatos (20) se conduce a la etapa a1) de carbonatación, en el que se elimina el calcio descrito anteriormente. Por lo tanto en una realización preferente el procedimiento comprende una etapa aO), de eliminación o reducción del contenido en sulfatos, previa a la etapa a1) donde se adiciona al efluente Ca(OH)2 hasta alcanzar un pH comprendido entre 9,5 y 10,5 y CaC y el efluente obtenido se conduce a la etapa a1). En la FIG. 2 se muestra una realización preferente donde el efluente salino sin sulfatos (20) pero con un alto contenido en calcio se carbonata elevando el pH con Ca(OH)2 (21) y se añadiendo Na2CÜ3 (12) obtenida en la etapa b1). El efluente salino sin sulfatos y sin calcio (22) se acidifica en la etapa a) y continúa el procedimiento. In another preferred embodiment shown in FIG. 2, in the event that the saline effluent (1) has a high sulfate content, the described method comprises a step aO), of elimination or reduction of the sulfate content, initial prior to step a1) of carbonation for the elimination or reduction of sulfate content. In this case, the saline effluent (1) Ca (OH) 2 (18) is added, until a pH between 9.5 and 10.5 is reached, preferably 10 and then calcium chloride (CaC) (19) is added. CaC (19) is added in a concentration that allows the CaSCU solubility limit to be exceeded by at least 50%. This precipitation in the form of crystals is very slow, so to avoid subsequent supersaturation and precipitation, the reaction must be carried out in the presence of a large concentration of nucleation particles. Therefore it is necessary to maintain a high concentration of CaSCU. Subsequently, the sulfate-free saline effluent (20) is conducted to carbonation stage a1), in which the calcium described above is removed. Therefore, in a preferred embodiment, the process comprises a step aO), of elimination or reduction of the sulphate content, prior to step a1) where Ca (OH) 2 effluent is added until a pH between 9.5 and 10.5 and CaC and the effluent obtained is conducted to step a1). In FIG. 2 shows a preferred embodiment where the saline effluent without sulfates (20) but with a high calcium content is carbonated by raising the pH with Ca (OH) 2 (21) and adding Na2CÜ3 (12) obtained in step b1). The saline effluent without sulfates and without calcium (22) is acidified in step a) and the process continues.
EJEMPLOS Ejemplo 1 Se describe a continuación el proceso llevado a cabo en una planta piloto con el efluente de una planta desaladora de agua de mar de osmosis inversa con la composición indicada en la tabla 1. EXAMPLES Example 1 The process carried out in a pilot plant with the effluent of a reverse osmosis seawater desalination plant with the composition indicated in Table 1 is described below.
Parámetros Valor Parameters Value
Conductividad (mS/cm) 73  Conductivity (mS / cm) 73
PH 7,9  PH 7.9
Sólidos disueltos (mg/L) 54,6  Dissolved solids (mg / L) 54.6
Calcio (mgCa27L) 960 Magnesio (mgMg27L) 2, 1 Calcium (mgCa 2 7L) 960 Magnesium (mgMg 2 7L) 2, 1
Sodio (mgNa7L) 15,3  Sodium (mgNa7L) 15.3
Cloruros (mgCIVL) 28,7  Chlorides (mgCIVL) 28.7
Sulfatos (mgS04 27L) 4,6 Sulfates (mgS0 4 2 7L) 4.6
Litio (mgLi/L) 0,6  Lithium (mgLi / L) 0.6
Potasio (mg/L) 720  Potassium (mg / L) 720
Carbonatos (mgCOsCa/L) n.d.  Carbonates (mgCOsCa / L) n.d.
Alcalinidad (mgC03Ca/L) 445 Alkalinity (mgC0 3 Ca / L) 445
Tabla 1. Composición del efluente residual procedente de planta desaladora de agua de mar. La primera etapa del proceso consistió en la eliminación del calcio del efluente mediante un proceso de carbonatación. Para ello se añadió una dosis de Na2CÜ3 de 2 kg/m3 de efluente tratado, se mantuvo un tiempo de reacción de 15 minutos y en una etapa posterior de decantación se separó la fase sólida. El análisis del efluente tratado puso de manifiesto la eliminación del 90% del calcio, sin afectar de forma significativa al contenido de magnesio de la salmuera (ver tabla 2). También se realizaron ensayos ajusfando el pH en la etapa de reacción con NaOH o Ca(OH)2, obteniéndose buenos resultados en relación a la eliminación de calcio (ver tablas 3 y 4). Table 1. Composition of residual effluent from seawater desalination plant. The first stage of the process consisted in the removal of calcium from the effluent through a carbonation process. For this, a dose of Na2CÜ3 of 2 kg / m 3 of treated effluent was added, a reaction time of 15 minutes was maintained and at a later stage of decantation the solid phase was separated. The analysis of the treated effluent revealed the removal of 90% of calcium, without significantly affecting the magnesium content of the brine (see table 2). Tests were also carried out by adjusting the pH in the reaction stage with NaOH or Ca (OH) 2, obtaining good results in relation to the removal of calcium (see tables 3 and 4).
Figure imgf000010_0001
Figure imgf000010_0001
Tabla 2. Efluente tratado con Na2CÜ3. Na2C03 NaOH Ca Mg Table 2. Effluent treated with Na2CÜ3. Na 2 C0 3 NaOH Ca Mg
PH % Ca %Mg  PH% Ca% Mg
(kg/m3) (kg/m) (kg/m3) (kg/m3) (kg / m 3 ) (kg / m) (kg / m 3 ) (kg / m 3 )
final eliminado eliminado añadido añadido final final  final deleted removed added added final final
2,5 80 9,0 30,9 96,8 1989 2,0 2.5 80 9.0 30.9 96.8 1989 2.0
3,0 40 9,0 24,7 97,4 2022 0,4 3.0 40 9.0 24.7 97.4 2022 0.4
Tabla 3. Tratamiento a pH 9 con MaOH.  Table 3. Treatment at pH 9 with MaOH.
Na2C03 Ca(OH)2 Ca Mg Na 2 C0 3 Ca (OH) 2 Ca Mg
PH % Ca %Mg  PH% Ca% Mg
(kg/m3) (kg/m3) (kg/m3) (kg/m3) (kg / m 3 ) (kg / m 3 ) (kg / m 3 ) (kg / m 3 )
final eliminado eliminado añadido añadido final final  final deleted removed added added final final
2,5 367 9,5 33,2 96,5 2004 1 ,3 2.5 367 9.5 33.2 96.5 2004 1, 3
3,0 367 9,6 27,9 97, 1 1989 2,03.0 367 9.6 27.9 97, 1 1989 2.0
3,5 367 9,6 14,5 98,5 2003 1 ,33.5 367 9.6 14.5 98.5 2003 1, 3
Tabla 4. Tratamien to a pH 9,5 con Ca(0 H)2 y Na2C03 Table 4. Treatment at pH 9.5 with Ca (0 H) 2 and Na 2 C0 3
A continuación, el efluente tratado se trasladó a un reactor para acidificarlo hasta pH 3,5 con ácidos inorgánicos (se necesitó 0,36 kg de H2S04 o bien 0,22 kg de HCI para acidificar cada m3 de efluente). Posteriormente, se realizó una desorción (stripping) con aire para recuperar el C02, esta corriente gaseosa se condujo a una torre de absorción en la que se puso en contacto en contracorriente con una corriente de NaOH, obteniendo una solución cercana a la saturación de Na2C03 (200 g/L). De esta forma se consigue recuperar el Na2C03 que se recircula al reactor de la etapa a1) de carbonatación, teniendo así un proceso respetuoso con el medioambiente en relación a las emisiones de C02. Next, the treated effluent was transferred to a reactor to acidify it to pH 3.5 with inorganic acids (0.36 kg of H 2 S04 or 0.22 kg of HCI was needed to acidify each m 3 of effluent). Subsequently, desorption (stripping) was performed with air to recover the C0 2, this gas stream is led to an absorption tower wherein contacted countercurrently with a stream of NaOH, obtaining a solution close to saturation Na 2 C0 3 (200 g / L). In this way it is possible to recover the Na 2 C0 3 that is recirculated to the reactor of stage a1) of carbonation, thus having an environmentally friendly process in relation to the emissions of C0 2 .
La corriente de salmuera acidificada se transportó a un lecho tipo filtro de flujo descendente formado por partículas de dolomita calcinada de tamaño de grano de 20 mm. El proceso se desarrolló por gravedad con una velocidad de 50 L/min/m2 para conseguir un tiempo de residencia óptimo y que el pH del efluente estuviera entre 9,0 y 10,0. The acidified brine stream was transported to a downflow filter type bed formed of 20 mm grain size calcined dolomite particles. The process was developed by gravity with a speed of 50 L / min / m 2 to achieve an optimal residence time and that the effluent pH was between 9.0 and 10.0.
El efluente resultante se transportó al reactor bizona en el que se añadió dolomita calcinada en forma de lechada ajusfando el pH en un intervalo entre 1 1 ,0 y 11 ,5. El sobrenadante del reactor bizona se transportó al floculador bizona con un tiempo de residencia de otros 15 minutos. El fondo del reactor y el floculador se purgan para evitar que se acumulen impurezas en ambos. Un 30% de la corriente de purga del reactor bizona y un 30% del floculador bizona se devuelve al reactor mejorando así el proceso de reacción y el rendimiento de reacción, al incrementar el agotamiento del reactivo. El sobrenadante del floculador se lleva a un decantador, la corriente decantada se conduce a un espesador, y el producto espesado se lava y se filtra obteniendo un sólido compuesto principalmente por Mg(OH)2, con una pureza de este compuesto del 87,2% (acidificación con H2SO4) y 90% (acidificación con HCI). El precipitado se calcinó a 1.100°C obteniendo un producto con la composición indicada en la tabla 5. The resulting effluent was transported to the bizone reactor in which calcined dolomite was added in the form of a slurry by adjusting the pH in a range between 1.1 and 11.5. The bizone reactor supernatant was transported to the bizone flocculator with a residence time of another 15 minutes. The bottom of the reactor and the flocculator are purged to prevent impurities from accumulating in both. 30% of the purge current of the bizone reactor and 30% of the bizone flocculator is returned to the reactor thus improving the reaction process and the reaction yield, by increasing the depletion of the reagent. The supernatant of the flocculator is taken to a decanter, the decanted stream is conducted to a thickener, and the thickened product is washed and filtered to obtain a solid composed mainly of Mg (OH) 2, with a purity of this compound of 87.2 % (acidification with H2SO4) and 90% (acidification with HCI). The precipitate was calcined at 1,100 ° C to obtain a product with the composition indicated in Table 5.
Figure imgf000012_0001
Ejemplo 2
Figure imgf000012_0001
Example 2
Se describe a continuación el proceso llevado a cabo en una planta piloto con el efluente de una planta desaladora de agua de mar de osmosis inversa con la composición indicada en la tabla 1. The process carried out in a pilot plant with the effluent of a reverse osmosis seawater desalination plant with the composition indicated in Table 1 is described below.
La primera etapa del proceso consistió en la acidificación hasta pH 3,5 con ácido inorgánico (se necesita 0,36 kg de H2SO4 o bien 0,22 kg de HCI para acidificar cada m3 de efluente). Se realizó una desorción (stripping) con aire para eliminar el CO2. En este proceso se puso en contacto un flujo en contracorriente de la salmuera acidificada y aire en una columna a través de un material de relleno. El relleno suministra una elevada área superficial para mejorar la transferencia del CO2 desde la fase líquida a la fase gas. Se introdujo la corriente de salmuera acidificada desde la parte superior de la torre mediante un difusor y se distribuyó de manera uniforme sobre el relleno, mientras la corriente de aire se introduce por la parte inferior. La corriente de salmuera sale de la columna por la parte inferior y la corriente gaseosa por la parte superior. El material de relleno utilizado en este caso estuvo formado por piezas de plástico (anillos raschig). La corriente de salmuera acidificada se trasvasó a un lecho tipo filtro de flujo descendente formado por partículas de dolomita calcinada de tamaño de grano de 20 mm. El proceso se desarrolló por gravedad con una velocidad de 50 L/min/m2 para conseguir un tiempo de residencia óptimo y conseguir aumentar el pH del efluente entre 9,0 y 10,0. The first stage of the process consisted of acidification to pH 3.5 with inorganic acid (0.36 kg of H2SO4 or 0.22 kg of HCI is needed to acidify each m 3 of effluent). Stripping was performed with air to remove CO2. In this process, a countercurrent flow of the brine was contacted acidified and air in a column through a filler material. The filling supplies a high surface area to improve the transfer of CO2 from the liquid phase to the gas phase. The acidified brine stream was introduced from the top of the tower by a diffuser and distributed evenly over the landfill, while the air stream is introduced through the bottom. The brine stream leaves the column from the bottom and the gas stream from the top. The filler material used in this case was formed by plastic parts (raschig rings). The acidified brine stream was transferred to a downflow filter type bed formed of 20 mm grain size calcined dolomite particles. The process was developed by gravity with a speed of 50 L / min / m 2 to achieve an optimal residence time and increase the pH of the effluent between 9.0 and 10.0.
El efluente resultante se transportó al reactor bizona en el que se añadió el reactivo en forma de lechada ajusfando el pH en un intervalo entre 1 1 ,0 y 11 ,5. The resulting effluent was transported to the bizone reactor in which the reagent was added in the form of a slurry by adjusting the pH in a range between 1.0 and 11.5.
El sobrenadante del reactor bizona se transportó al floculador bizona con un tiempo de residencia de otros 15 minutos. El fondo del reactor y del floculador se purgan para evitar que se acumulen impurezas en ambos. Un 30% de la corriente de purga del reactor bizona y un 30% del floculador bizona se devuelve al reactor mejorando así el proceso de reacción y el rendimiento de reacción, al incrementar el agotamiento del reactivo. En los experimentos realizados se ha podido comprobar que una recirculación superior provoca un incremento de las impurezas del producto. Por otra parte una recirculación inferior, produce una disminución en la cantidad de producto al disminuir el rendimiento de la reacción. El sobrenadante del floculador se llevó a un decantador, la corriente decantada se condujo a un espesador, y el producto espesado se lavó y se filtró obteniendo un sólido compuesto principalmente por Mg(OH)2, con una pureza de este compuesto del 84,9% (acidificación con H2SO4) yThe bizone reactor supernatant was transported to the bizone flocculator with a residence time of another 15 minutes. The bottom of the reactor and the flocculator are purged to prevent impurities from accumulating in both. 30% of the purge current of the bizone reactor and 30% of the bizone flocculator is returned to the reactor thus improving the reaction process and the reaction yield, by increasing the depletion of the reagent. In the experiments carried out, it has been found that superior recirculation causes an increase in product impurities. On the other hand a lower recirculation, produces a decrease in the amount of product to decrease the yield of the reaction. The flocculator supernatant was taken to a decanter, the decanted stream was led to a thickener, and the thickened product was washed and filtered to obtain a solid composed mainly of Mg (OH) 2, with a purity of this compound of 84.9 % (acidification with H2SO4) and
88,2% (acidificación con HCI). El precipitado se calcinó a 1.100°C obteniendo un producto con la composición indicada en la tabla 6.
Figure imgf000014_0001
88.2% (acidification with HCI). The precipitate was calcined at 1,100 ° C to obtain a product with the composition indicated in Table 6.
Figure imgf000014_0001
Tabla 6. Composición de la magnesita calcinada obtenida (%).  Table 6. Composition of the calcined magnesite obtained (%).

Claims

REIVINDICACIONES
1. Procedimiento de obtención Mg(OH)2 a partir de efluentes salinos que comprende las etapas de: 1. Procedure for obtaining Mg (OH) 2 from saline effluents comprising the steps of:
a) acidificar un efluente salino con una corriente ácida a un pH comprendido entre 3 y 5 obteniéndose una corriente acidificada; a) acidify a saline effluent with an acidic stream at a pH between 3 and 5 obtaining an acidified stream;
b) realizar una desorción del dióxido de carbono (CO2 procedente de los carbonatos) presente en la corriente acidificada obtenida en la etapa a), pasando dicha corriente acidificada a través de un material de relleno; b) perform a desorption of the carbon dioxide (CO2 from carbonates) present in the acidified stream obtained in step a), said acidified stream passing through a filler material;
c) pasar el efluente obtenido en la etapa b) por un lecho de dolomita calcinada hasta alcanzar un pH comprendido entre 9 y 10; c) passing the effluent obtained in step b) through a bed of calcined dolomite until reaching a pH between 9 and 10;
d) precipitar el Mg(OH)2 a partir del efluente obtenido en la etapa c) mediante la adición de una base hasta alcanzar un pH de 11 ,0 a 11 ,5; d) precipitate Mg (OH) 2 from the effluent obtained in step c) by adding a base until a pH of 11.0 to 11.5 is reached;
e) decantar el precipitado de Mg(OH)2 a partir de la solución obtenida en d). e) decant the precipitate of Mg (OH) 2 from the solution obtained in d).
2. Procedimiento de obtención de Mg(OH)2 según la reivindicación 1 donde la etapa a) de acidificación se realiza con un ácido inorgánico. 2. Procedure for obtaining Mg (OH) 2 according to claim 1 wherein the acidification step a) is carried out with an inorganic acid.
3. Procedimiento de obtención de Mg(OH)2 según las reivindicaciones 1-2 donde en la etapa b) se pone en contacto la corriente acidificada obtenida en la etapa a) con una corriente gaseosa. 3. Method for obtaining Mg (OH) 2 according to claims 1-2 wherein in step b) the acidified stream obtained in step a) is contacted with a gaseous stream.
4. Procedimiento de obtención de Mg(OH)2 según la reivindicación 3 donde la etapa b) de desorción se realiza en una torre donde la corriente acidificada de la etapa a) es introducida por la parte superior de la torre y se distribuye de manera uniforme sobre un material de relleno, y la corriente gaseosa se introduce por la parte inferior de la torre, la corriente acidificada de la etapa a) deja la torre por la parte inferior y la corriente gaseosa cargada de CO2 por la parte superior. 4. Method for obtaining Mg (OH) 2 according to claim 3 wherein stage b) of desorption is carried out in a tower where the acidified current of stage a) is introduced by the top of the tower and is distributed in a manner even on a filling material, and the gaseous stream is introduced through the bottom of the tower, the acidified stream from step a) leaves the tower on the bottom and the gaseous stream loaded with CO2 from the top.
5. Procedimiento de obtención de Mg(OH)2 según las reivindicaciones 1-4 donde el material de relleno está formado por piezas de plástico. 5. Method of obtaining Mg (OH) 2 according to claims 1-4 wherein the filler material is formed by plastic parts.
6. Procedimiento de obtención de Mg(OH)2 según las reivindicaciones 1-5 donde tras la etapa b) de desorción hay una etapa b1) de absorción en la cual se pone en contacto la corriente gaseosa cargada de CO2 obtenida en b) en contracorriente con una solución alcalina. 6. Method for obtaining Mg (OH) 2 according to claims 1-5, where after stage b) of desorption there is an absorption stage b1) in which it is placed in contact the gaseous stream charged with CO2 obtained in b) in countercurrent with an alkaline solution.
7. Procedimiento de obtención de Mg(OH)2 según la reivindicación 6 donde la solución alcalina a emplear es una solución de NaOH, para obtener Na2CÜ3.  7. Method for obtaining Mg (OH) 2 according to claim 6 wherein the alkaline solution to be used is a NaOH solution, to obtain Na2CÜ3.
8. Procedimiento de obtención de Mg(OH)2 según las reivindicaciones 1-7 donde la corriente gaseosa de la etapa b) es aire. 8. Method of obtaining Mg (OH) 2 according to claims 1-7 wherein the gas stream of step b) is air.
9. Procedimiento de obtención de Mg(OH)2 según las reivindicaciones 1-8 donde el tamaño de partícula de la dolomita calcinada utilizada en el lecho de la etapa c) es mayor de 20 mm. 9. Method of obtaining Mg (OH) 2 according to claims 1-8 wherein the particle size of the calcined dolomite used in the bed of step c) is greater than 20 mm.
10. Procedimiento de obtención de Mg(OH)2 según reivindicación 9 caracterizada porque el tamaño de partícula se encuentra entre 20 mm y 40 mm. 10. Method of obtaining Mg (OH) 2 according to claim 9 characterized in that the particle size is between 20 mm and 40 mm.
1 1. Procedimiento de obtención de Mg(OH)2 según reivindicaciones 1-10 donde la etapa d) se lleva a cabo en un reactor bizona seguido de una cámara de floculación bizona. 1 1. Procedure for obtaining Mg (OH) 2 according to claims 1-10 wherein step d) is carried out in a two-zone reactor followed by a two-zone flocculation chamber.
12. Procedimiento de obtención de Mg(OH)2 según reivindicación 11 donde se purga el reactor bizona y la cámara de floculación bizona y se recircula entre el 25% y el 30% de cada purga a la cámara de reacción. 12. Method of obtaining Mg (OH) 2 according to claim 11 wherein the bizone reactor and the bizone flocculation chamber are purged and between 25% and 30% of each purge is recycled to the reaction chamber.
13. Procedimiento de obtención de Mg(OH)2 según las reivindicaciones 1-12, donde previamente a la etapa a) hay una etapa a1) de carbonatacion, donde se adiciona en un reactor al efluente salino Na2CÜ3 en exceso. 13. Method for obtaining Mg (OH) 2 according to claims 1-12, where prior to step a) there is a carbonation stage a1), where excess Na2CÜ3 saline effluent is added in a reactor.
14. Procedimiento de obtención de Mg(OH)2 según las reivindicaciones 1-12, donde previamente a la etapa a) hay una etapa a1) de carbonatacion, donde se adiciona en un reactor al efluente salino NaOH junto a Na2CÜ3, hasta un pH comprendido entre 9 y 10,5. 14. Method for obtaining Mg (OH) 2 according to claims 1-12, where prior to stage a) there is a stage a1) of carbonation, where NaOH saline effluent is added in a reactor together with Na2CÜ3, up to a pH between 9 and 10.5.
15. Procedimiento de obtención de Mg(OH)2 según las reivindicaciones 1-12, donde previamente a la etapa a) hay una etapa a1) de carbonatacion, donde se adiciona en un reactor al efluente salino Ca(OH)2 o CaO, hasta obtener un pH comprendido entre 9 y 10,5 y se adiciona Na2CÜ3. 15. Procedure for obtaining Mg (OH) 2 according to claims 1-12, where prior to stage a) there is a stage a1) of carbonation, where it is added in a reactor to the Ca (OH) 2 or CaO saline effluent, until a pH between 9 and 10.5 is obtained and Na2CÜ3 is added.
16. Procedimiento de obtención de Mg(OH)2 según reivindicaciones 13-15 donde el Na2CÜ3 utilizado en la etapa a1) proviene del Na2CÜ3 obtenido en la etapa b1) de absorción. 16. Method of obtaining Mg (OH) 2 according to claims 13-15 wherein the Na2CÜ3 used in step a1) comes from the Na2CÜ3 obtained in step b1) of absorption.
17. Procedimiento de obtención de Mg(OH)2 según las reivindicaciones 13-16 donde el tiempo de retención hidráulico en el reactor está comprendido entre 10 minutos y 30 minutos. 17. Method for obtaining Mg (OH) 2 according to claims 13-16 wherein the hydraulic retention time in the reactor is between 10 minutes and 30 minutes.
18. Procedimiento de obtención de Mg(OH)2 según las reivindicaciones 13-16 que comprende una etapa aO), de eliminación o reducción del contenido en sulfatos, previa a la etapa a1) donde se adiciona al efluente Ca(OH)2 hasta alcanzar un pH comprendido entre 9,5 y 10,5 y CaC y el efluente obtenido se conduce a la etapa a1). 18. Method of obtaining Mg (OH) 2 according to claims 13-16 comprising a step aO), of elimination or reduction of the sulfate content, prior to step a1) where Ca (OH) 2 effluent is added up to reaching a pH between 9.5 and 10.5 and CaC and the effluent obtained is conducted to step a1).
PCT/ES2017/070095 2016-04-05 2017-02-22 Method for obtaining magnesium hydroxide from saline effluent WO2017174839A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201630410A ES2641269B1 (en) 2016-04-05 2016-04-05 Procedure for obtaining magnesium hydroxide from saline effluents
ESP201630410 2016-04-05

Publications (1)

Publication Number Publication Date
WO2017174839A1 true WO2017174839A1 (en) 2017-10-12

Family

ID=60000540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2017/070095 WO2017174839A1 (en) 2016-04-05 2017-02-22 Method for obtaining magnesium hydroxide from saline effluent

Country Status (2)

Country Link
ES (1) ES2641269B1 (en)
WO (1) WO2017174839A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2595314A (en) * 1948-10-19 1952-05-06 Kaiser Aluminium Chem Corp Process for producing magnesium hydroxide
US3970528A (en) * 1974-10-23 1976-07-20 Bayer Aktiengesellschaft Process for the purification of electrolysis brine
US20110195017A1 (en) * 2008-09-05 2011-08-11 Servicios Administrativos Penoles S.A. De C.V. Process for the production of high purity magnesium hydroxide

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2595314A (en) * 1948-10-19 1952-05-06 Kaiser Aluminium Chem Corp Process for producing magnesium hydroxide
US3970528A (en) * 1974-10-23 1976-07-20 Bayer Aktiengesellschaft Process for the purification of electrolysis brine
US20110195017A1 (en) * 2008-09-05 2011-08-11 Servicios Administrativos Penoles S.A. De C.V. Process for the production of high purity magnesium hydroxide

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BHATTI, A. S. ET AL.: "Magnesia from seawater: a review", CLAY MINER. CLAY MINER, vol. 19, no. 5, 1 January 1984 (1984-01-01), pages 865, XP001149650, Retrieved from the Internet <URL:http://www.minersoc.org/pages/Archive-CM/Volume_19/19-5-865.pdf> [retrieved on 20170519] *

Also Published As

Publication number Publication date
ES2641269B1 (en) 2018-09-06
ES2641269A1 (en) 2017-11-08

Similar Documents

Publication Publication Date Title
US11396452B2 (en) Method for preparing lithium concentrate from lithium-bearing natural brines and processing thereof into lithium chloride or lithium carbonate
KR102545219B1 (en) Method for treating lithium-containing materials containing HCl sparge
ES2625298T3 (en) Process for producing sodium carbonate and / or sodium bicarbonate from a metalliferous mineral comprising sodium bicarbonate
CN102432044B (en) Method for extracting ultrahigh-purity lithium carbonate from salt lake brine with high magnesium-lithium ratio
US20150152523A1 (en) Processing of lithium containing material
ES2503571T3 (en) Removal of impurities from waste solids in the production of soda ash, sodium bicarbonate and / or other derivatives
ES2886608T3 (en) Method for producing a concentrated aqueous solution of sodium hydroxide and for treating a purge of soda ash
ES2584602T3 (en) Process for the preparation of an aqueous solution comprising at least one alkaline earth metal hydrogen carbonate and its use
Mattila et al. Production of precipitated calcium carbonate from steel converter slag and other calcium-containing industrial wastes and residues
ES2898071T3 (en) Production of a concentrate containing scandium and subsequent extraction of high purity scandium oxide from it
US11542219B2 (en) Processes producing alkali hydroxides, alkali carbonates, alkali bicarbonates, and/or alkaline earth sulfates
US8906117B2 (en) Process for the combined regeneration of soluble salts contained in a residue of an industrial process
KR20070099669A (en) Process for the production of magnesium oxide
CA2736379C (en) Process for the production of high purity magnesium hydroxide
US20160244348A1 (en) A method for treating alkaline brines
BR112018001304B1 (en) EFFLUENT TREATMENT PROCESS - PH REFINING FOR SULFATE REMOVAL
ES2367627T3 (en) METHOD FOR PRODUCING AN ALKALINE METAL HYDROXIDE.
WO2013092754A1 (en) Process for the joint production of sodium carbonate and sodium bicarbonate
ES2641269B1 (en) Procedure for obtaining magnesium hydroxide from saline effluents
BR112018001300B1 (en) IMPROVED EFFLUENT TREATMENT PROCESS FOR SULFATE REMOVAL
KR20200108063A (en) Method for producing high-purity batterite-type and calcite-type calcium carbonate using indirect carbonation of seawater
KR101238890B1 (en) Production method of lithium carbonate from brines
WO2022241219A1 (en) Processes producing alkali hydroxides, alkali carbonates, alkali bicarbonates, and/or alkaline earth sulfates
JP2011162403A (en) Method for concentrating aqueous calcium chloride solution
WO2023220380A1 (en) Processes producing alkali hydroxides, alkali carbonates, alkali bicarbonates and/or alkaline earth sulfates

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17778715

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17778715

Country of ref document: EP

Kind code of ref document: A1