WO2017173658A1 - 智能动力电波远程无线传输充电储能逆向输电的方法 - Google Patents

智能动力电波远程无线传输充电储能逆向输电的方法 Download PDF

Info

Publication number
WO2017173658A1
WO2017173658A1 PCT/CN2016/078840 CN2016078840W WO2017173658A1 WO 2017173658 A1 WO2017173658 A1 WO 2017173658A1 CN 2016078840 W CN2016078840 W CN 2016078840W WO 2017173658 A1 WO2017173658 A1 WO 2017173658A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
intelligent power
big data
transmission
electric energy
Prior art date
Application number
PCT/CN2016/078840
Other languages
English (en)
French (fr)
Inventor
诸葛瑞
Original Assignee
诸葛瑞
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 诸葛瑞 filed Critical 诸葛瑞
Priority to PCT/CN2016/078840 priority Critical patent/WO2017173658A1/zh
Publication of WO2017173658A1 publication Critical patent/WO2017173658A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/20Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/70Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields

Definitions

  • the present invention discloses a smart power wave big data electric energy remote forward/reverse wireless transmission/reception charging energy storage method, and relates to a power field and a broadband video field, and an intelligent power wave long distance wireless transmission big data power
  • the energy energy carrier and the broadband video information three-carrier high-speed rotation, and the high-frequency carrier high-speed rotation modulation loading superimposed on the carrier for double rotation, thereby improving the intelligent power wave carrier efficient transmission charging energy storage method.
  • oil and coal are less and less used in people's lives, and replaced by clean energy such as solar energy, wind energy and electric energy.
  • the peak period of power consumption and the low valley period that is, the peak power consumption is large, the grid load is also large, the power consumption during the low valley period is small, and the grid load is also small, in order to balance this problem.
  • the commonly adopted measures are the implementation of differential electricity prices, that is, the peak electricity price is expensive, and the low electricity price is cheap. This is still a palliative approach.
  • the present invention provides an intelligent power wave remote forward/reverse wireless transmission big data electric energy charging energy storage.
  • the method of reverse transmission and broadband video information to increase the transmission rate the system is provided with an energy storage platform.
  • the power grid supplies power to the energy storage system wirelessly, and stores energy during the peak period of power consumption.
  • the system reversely supplies power to the grid wirelessly, thereby achieving a wide range of energy saving and balancing grid load.
  • the technical solution adopted by the present invention to solve the technical problem is: an intelligent power wave remote wireless transmission charging energy storage reverse power transmission method, intelligent power wave big data electric energy carrier; represented by MGDn, D carrier frequency is 19Khz ⁇ 89Khz, amplitude: 2.8V/320mA, ripple less than 10mv electric energy carrier, pulse width symmetrical top smooth large data square wave, n : 1 ⁇ 99999 number representation; M : 2.4Ghz ⁇ 720Ghz; G is address code: 000001 ⁇ 999999.
  • the technical solution adopted by the present invention to solve the technical problem thereof further includes:
  • the intelligent power wave big data energy carrier comprises a NwL electromagnetic induction coil that cuts the positive/negative charge of the separated electric energy carrier, and the electromagnetic induction coil NwL is implemented by a calculus mathematical principle, and the intelligent power wave big data electric energy carrier (MGDn) is differentiated.
  • the high-speed forward/reverse rotation of the magnetoelectric induction is used to push the "+” charge in the MGDn electric energy carrier to the top of the electric energy carrier, and a large number of "-"
  • the charged particle group still stays at the lowermost end of the surface of the intelligent power wave carrier, wherein N uses a soft high magnetic permeability permanent magnetic material ⁇ to realize the coil static inductance L, and the L magnetic pole is always perpendicular to the direction of the inductor w, and realizes the intelligent power wave.
  • the upper end of the big data electric energy carrier is continuously filled with a large number of "+” charge groups, and a large number of "-” charge groups are accumulated at the lowermost end of the surface.
  • the intelligent power wave carrier When the MGDn intelligent power wave carrier reaches the G address, the intelligent power wave carrier is output from the transmitting module.
  • the end enters the NwL magnetic induction coil ⁇ , and the intelligent power carrier first rotates through the NwL electromagnetic induction at high speed.
  • the coil, the magnetic field direction of the N-pole surface perpendicular to each other passes through NwL in the same direction as the MGDn intelligent power wave carrier, and generates an L-inductor with the same phase and magnetic repulsive, and generates a strong rightward push at the magnetic pole N.
  • the "-" particle charge group in the left direction of the radio wave carrier is all accumulatively repelled by the rapid repulsive cutting and accumulating to the lower end of the N-pole surface of the intelligent power wave carrier, which pushes the smart power wave big data electric energy carrier surface to continuously accumulate a large amount of positive "+” charge group, the bottom of the intelligent power wave carrier stays a large number of "-” charge groups, realizing the intelligent power wave big data energy carrier is cut into a large number of "+” charge groups and a large number of "-” charge groups, Tightly holding each other tightly, the intelligent power wave "+, -" is separated and transmitted, and will not be lost in transmission.
  • An intelligent power wave applying mathematical theory of calculus, separating transmission and accumulation, remote wireless transmission of intelligent power wave big data electric energy, integration receiving method, when MGDn intelligent power wave big data electric energy carrier, press
  • MGDn intelligent power wave big data electric energy carrier press
  • the direction of rotation of the intelligent power carrier is automatically changed.
  • the alternating frequency is in the range of 29Khz ⁇ 89Khz, and a large number of "+" charge groups at the top of the carrier are reversed at a high speed toward the lower end of the intelligent power wave carrier.
  • the charge group keeps colliding and colliding, the upper/lower end is continuously and quickly collided and collided, and a powerful alternating intelligent electric wave big data cutting current is generated, and the alternating current inductive coupling of the alternating cutting is inductively coupled to the frequency demodulation module through the magnetic induction coil.
  • the high-speed reverse-twisting needle of the intelligent power wave rotates through the magnetic induction coupling coil NwL, and generates a strong alternating cutting intelligent power wave large data current perpendicular to the MGDn carrier, and is induced by the magnetic induction coil NwL.
  • a high-speed rotating intelligent power carrier MxGDn parallel to the X-axis direction, the top G direction of the intelligent power carrier To the right, the frequency is 19Khz ⁇ 89KhZ, and the amplitude is 2.8v.
  • the top is covered with "+" charge group.
  • the command MxGDn, X uses software programmable phase shifting technology to set the rotation frequency to rotate according to the , pin.
  • the system continuously increases or decreases continuously to change the X phase shift data command, and sends the command to MxGDn to make the intelligent power carrier continuously.
  • the system After rotating through the NwL magnetic induction coil, the system automatically sends a termination intelligent power wave and a carrier rotation command to x. Since the transmission energy reaches the final stage of the terminal, the intelligent power wave forward/reverse high-speed rotation is forced to collide with the charge cutting to form a current, so the intelligent power The electric wave does not generate any electric energy loss and radiation during the transmission of electric energy, and achieves a method of more than 98% of remote wireless efficient transmission efficiency. [0011] Applying the antenna array technology method, the system commands high-speed rotation of the intelligent power wave through the DL electromagnetic induction coil, and the "cut positive charge" inductively loaded superimposed carrier is connected to the antenna for transmission to spatial propagation, and the system application array antenna pattern can be adjusted.
  • the antenna pattern zero point is used to implement the intelligent power wave method. This method is different from the beam of the main array antenna main lobe and has stronger directivity. According to the charging data flow graph returned by the system, the system can adjust the antenna beam emission.
  • Direction a method for realizing remote high-efficiency wireless transmission of microwave beam big data power
  • the receiving module has the reverse transmitting function
  • the transmitting power is the same as the receiving power
  • the receiving module reversely transmits the big data electric energy address data by
  • the system sends out, and is received by the system base station to transmit and transmit big data power according to the reverse address data, and the base station transmits a big data power charging energy storage module.
  • the antenna array is completely compatible with the software program technology in transmitting and receiving, and no need to add any one.
  • a set of reverse transmit/receive transmission equipment is completely compatible with the software program technology in transmitting and receiving, and no need to add any one.
  • the electric energy coupling type transmitting/receiving method the transmitting coupling coil NwLF is perpendicular to the surface of the soft magnetic NS magnetic pole, and a large number of negative "-" charge groups are accumulated on the surface of the magnetic pole at the receiving coupling electromagnetic induction coil NwLF perpendicular to the NS On the surface of the magnetic pole, a large number of positive "+” charge groups are collected. According to the principle of positive and negative phase absorption of electric energy, a large number of positive and negative charge particles are rotated from the high-speed squeezing needle or the reverse needle at the high speed through the NwL magnetic induction coil.
  • a high-speed conversion magnetic pole is generated in the electromagnetic induction coil, and the frequency is sheared in the range of 4 9K to 89K, generating a strong current, and the transmission cutting electromagnetic pole gathers a large amount of positive/negative electric charges to fly into the air in the phase transmission electromagnetic wave.
  • the rotation frequency changes from 49Mhz to 4.9Ghz range.
  • the NwLF magnetic induction coil transmits and couples (transmits) to the receiving NwLF magnetic induction coil to form a closed current loop, which realizes the method of long-distance wireless transmission (coupling) electric energy.
  • the high-speed rotation of the reverse needle, positive/negative suction activates the electronic speech, speeding up the speed of the electronic , Greatly improving the efficiency of electrical energy from the reception and wireless transmission (coupling).
  • the number of transmitting coupling magnetic induction coils NwLF is 2 nth (n: 0 ⁇ 12) constitutes a transmitting module, and is perpendicular to the surface of the soft magnetic NS magnetic pole, and a large amount of negative or positive is concentrated on the surface of the NS magnetic pole.
  • the big data broadband video data carrier rotates the 2.4Ghz ⁇ 720Ghz FM carrier at a high speed, and the rotation frequency is modulated from the 4.9Mhz ⁇ 49Ghz modulation in the broadband big data information carrier, and the broadband video big data carrier rotates from 49Khz ⁇
  • the 490Mhz forward reverse high-speed rotation drives the broadband video information to run at high speed, achieving a remote and efficient wireless transmission of big data information without loss.
  • the system of the present invention is provided with an energy storage platform.
  • the power grid supplies power to the power storage system through wireless, and stores the power.
  • the energy storage system wirelessly supplies power to the power grid. Therefore, it can achieve a wide range of energy saving and balance the load of the grid.
  • 1 is a schematic diagram of the "+, -" charge group separation propagation of the power carrier of the present invention.
  • FIG. 2 is a schematic view showing the movement of the reduction current of the magnetic induction coil of the present invention.
  • a smart power wave remote wireless transmission charging energy storage reverse power transmission method intelligent power wave big data electric energy carrier; with MGDn, D carrier frequency is 19Khz ⁇ 89Khz, amplitude: 2.8V / 320mA , Ripple less than 10mv electric energy carrier, pulse width symmetrical top smooth large data square wave, n: 1 ⁇ 99999 number representation; M: 2.4Ghz ⁇ 720Ghz; G is address code: 000001 ⁇ 999999.
  • the intelligent power wave big data energy carrier comprises a N wL electromagnetic induction coil that cuts the positive/negative charge of the separated electric energy carrier, the electromagnetic induction coil NwL is implemented by a calculus mathematical principle, and the intelligent power wave big data electric energy carrier ( MGDn) is divided into several "+, -" charge group distributions for transmission integration.
  • the high-speed forward/reverse rotation of magnetoelectric induction is used to push the "+” charge in the MGDn electric energy carrier to the top of the electric energy carrier, and a large number of The "-" charge particle group still stays at the lowermost end of the surface of the intelligent power wave carrier, where N uses a soft high magnetic permeability permanent magnetic material ⁇ to achieve the coil static inductance L, and the L magnetic pole is always perpendicular to the direction of the inductor w, and The upper end of the surface of the intelligent power wave big data electric energy carrier is continuously filled with a large number of "+” charge groups, and the bottom of the surface accumulates a large number of "-” charge groups, when the MGDn intelligent power wave carrier Upon reaching the G address, the intelligent power carrier enters the NwL magnetic induction coil from the output of the transmitting module.
  • the intelligent power carrier first rotates through the NwL electromagnetic induction coil at a high speed, with the magnetic field direction of the N magnetic pole perpendicular to each other, and the MGDn intelligent power.
  • the radio wave carrier passes through NwL in the same direction, and the L-inductor with the same phase is magnetically repulsive, and a strong rightward driving force is generated at the magnetic pole N.
  • the magnetic pole N will be the "+" charge group in the MGDn carrier.
  • Pushed to the far right end of MGDn the top of the MGDn carrier accumulates a large number of "+” charge groups rotating at high speed to the system command G address, and the remaining "-" particle charge groups in the left direction of the intelligent power carrier are quickly repelled.
  • the cutting repellent accumulates to the lower end of the N-pole surface of the intelligent power wave carrier and sticks together, pushing the upper end of the surface of the intelligent power wave big data electric energy carrier to accumulate a large number of positive "+” charge groups, and the lower end of the lower end of the intelligent power wave carrier stays a large amount.
  • the "-" charge group realizes that the intelligent power wave big data energy carrier is cut into a large number of "+” charge groups and a large number of "-”
  • the charge group which is tightly held together, tightly separates the intelligent power waves "+, -" and transmits them without being lost.
  • An intelligent power wave applying mathematical theory of calculus, separating transmission and integration, remote wireless transmission of intelligent power wave big data electric energy, integration receiving method, when MGDn intelligent power wave big data electric energy carrier, press
  • MGDn intelligent power wave big data electric energy carrier press
  • the direction of rotation of the intelligent power carrier is automatically changed to a positive alternating pin rotation and a reverse reverse pin rotation.
  • the alternating frequency is in the range of 29Khz to 89Khz, and the carrier has a large number of "+" at the top.
  • the charge group is reversely rotated at a high speed toward a large number of "-" charge groups at the lower end of the intelligent power wave carrier.
  • the upper and lower ends are continuously and quickly collided, resulting in a powerful alternating intelligent power wave big data cutting current.
  • the magnetic induction coil transmits the alternating current inductive coupling of the alternating cutting to the input end of the frequency demodulation module; according to the left-hand rule of physics, the high-speed reverse rotation of the intelligent power wave is rotated through the magnetic induction coupling coil NwL to generate a pole perpendicular to the MGDn carrier.
  • a high-speed rotating intelligent power wave carrier MxGDn parallel to the x- axis direction, the top direction of the smart power wave carrier is G to the right, the frequency is 19Khz ⁇ 89KhZ, and the amplitude is 2.8v.
  • the top is covered with the "+" charge group.
  • Rotary FM carrier modulation is loaded in X-rotation frequency 49Mhz ⁇ 72Ghz change intelligent power carrier, phase adjustment principle system command MxGDn, X is set by software programmable phase shifting technology
  • the rotation frequency rotates along the ⁇ pin, and the X phase shift data command is continuously increased or decreased continuously by the system, and the command is sent to the MxGDn, so that the intelligent power carrier continuously changes the phase according to the system command continuously, that is, the MGDn double is realized.
  • the MxGDn intelligent power electric wave big data electric energy carrier rotates at the high speed inside and outside the high-speed right or forward counter-needle, and the high-speed rotary or reverse-twisting needle rotates through the magnetic induction Nw L coil at high speed, and according to the receiving law; Rotation in the needle direction, reversed in a 2:3 turns ratio.
  • the isotropic magnetic pole perpendicular to the surface of the NS magnetic pole converges the negative charge in the high-speed rotating electric energy carrier with the positive charge accumulated at the top of the carrier on the surface of the carrier.
  • the collision produces a powerful big data current, which is quickly coupled into the electromagnetic induction coil NwL to form an alternating current, and is converted into a DC direct current energy required by the ZGR command by the receiving module variable frequency demodulation and rectification filter voltage, and is restored to and from The terminal is connected to the load for charging or energy storage.
  • the system After the MxGDn rotates through the NwL magnetic induction coil at high speed, the system automatically terminates to x.
  • the power wave and the carrier rotation command because the transmission energy reaches the final stage of the terminal, the intelligent power wave forward/reverse high-speed rotary run collision charge cutting forms a current, so the intelligent power wave does not generate any electric energy loss during the transmission of electric energy. And radiation, a method of achieving more than 98% of remote wireless efficient transmission efficiency.
  • the system commands high-speed rotation of the intelligent power wave through the DL electromagnetic induction coil, and the "cut positive charge” inductively loaded superimposed carrier is connected to the antenna for transmission to spatial propagation, and the system application array antenna pattern can be adjusted.
  • the antenna pattern zero point is used to implement the intelligent power wave method. This method is different from the beam of the main array antenna main lobe and has stronger directivity. According to the charging data flow graph returned by the system, the system can adjust the antenna beam emission.
  • the receiving module has the reverse transmitting function, the transmitting power is the same as the receiving power, and the receiving module reversely transmits the big data electric energy address data by
  • the system sends out, and is received by the system base station to transmit and transmit big data power according to the reverse address data, and the base station transmits a big data power charging energy storage module.
  • the antenna array is completely compatible with the software program technology in transmitting and receiving, and no need to add any one. Set of reverse transmit/receive transmission device.
  • the frequency in the electromagnetic induction coil to produce a smooth needle or reverse needle high-speed conversion magnetic pole, the frequency is sheared in the range of 49K to 89K, generating a strong current, the transmission cutting electromagnetic pole gathers a large number of positive/negative charges in the phase of electromagnetic waves flying In the air, the rotation frequency changes from 49Mhz to 4.9Ghz range.
  • the NwLF magnetic induction coil transmits and couples (transmits) to the receiving NwLF magnetic induction coil to form a closed current loop, which realizes the method of long-distance wireless transmission (coupling) of electric energy.
  • the positive/negative phase suction activates the electronic speech force, speeds up the operation speed of the electrons, and greatly increases the distance (recoupling) of the electric energy and the receiving efficiency.
  • the number of transmitting coupling magnetic induction coils NwLF is 2 nth (n: 0 ⁇ 12) constitutes a transmitting module, and is perpendicular to the surface of the soft magnetic NS magnetic pole, and a large amount of negative or positive is concentrated on the surface of the NS magnetic pole.
  • the big data broadband video data carrier rotates the 2.4Ghz ⁇ 720Ghz FM carrier at a high speed, and the rotation frequency is modulated from the 4.9Mhz ⁇ 49Ghz modulation in the broadband big data information carrier, and the broadband video big data carrier rotation frequency is from 49Khz ⁇
  • the 490Mhz forward reverse high-speed rotation drives the broadband video information to run at high speed, achieving a remote and efficient wireless transmission of big data information without loss.
  • the positive and negative high-speed rotating big data intelligent power wave carrier namely MbT2-MbT3-MbT4, drives the high-speed rotating electric energy carriers MGDT1, MbT2, MbT3, MbT4 and mutually perpendicular xMgban at high speed by three-stage high-speed rotation. , Long-distance efficient wireless transmission charging energy storage method for reverse transmission of big data electric energy.
  • the electric energy xMgban mutually perpendicular carrier group, Mbn is a power carrier frequency 16Khz, 32Kh, 64k hz, 128k z, amplitude 2.8v, current is 0 pulse width symmetric big data carrier, n represents from 1 to 9999 Number, Man: For the big data electric energy carrier, the carrier frequency is 69Khz, 138Khz, 256Khz, 512Khz pulse width symmetric carrier, the carrier ⁇ pin rotation frequency is 64Mhz, G represents the address data identification code, loaded in the M Gban carrier, M For the carrier frequency 2.4Ghz ⁇ 720Ghz, the carrier rotation frequency is 16Mhz ⁇ 4.8Ghz/rotation frequency 8Mhz ⁇ 720Ghz/rotation frequency 4Mhz sine wave modulation carrier wave, using the above rotating carrier loading modulation on Gbn, Gan carrier for internal/external double-shun The needle rotates the MGban mutually perpendicular dynamic carrier beam;
  • the MGbn carrier rotates ⁇ under the ⁇ pin, indicating that the forward direction is corrected.
  • the three-stage; inner (fl-f4) carrier/outer (F1-F4) carrier rotates at different speeds with different rotation frequencies, and drives the high-speed rotating electric energy carrier MGbTl, the power carrier MGbT2, and the power carrier MGbT3 to rotate at high speed.
  • Fast forward and long distance operation realizing remote high-efficiency wireless transmission charging energy storage method for reverse transmission of big data electric energy.
  • a wireless transmit/receive compatible reference big data electrical energy module comprising a wireless transmit/receive compatible reference big data electrical energy module, a transmit/receive CPU processor module, a transmit/receive cut charge permanent NS magnetic pole inductor NwL, and the CPU processor module includes a phase shift rate data command X
  • the voltage series data command Z, the current parallel data command R, and the transmit/receive address data command G are combined to form a big data electric energy carrier reference transmitting module, that is, an XZGR module
  • the NwL permanent magnet NS pole is always perpendicular to the inductor NwL, and the NwL pole surface is covered with a large amount of negative or positive charge (000000/111111).
  • the carrier When the MxGDn, MxGan carrier reaches the top of the G address receiving antenna, the carrier first rotates at high speed.
  • NwL electromagnetic induction coil Positive/reverse alternating high-speed rotary run +.-charge collision with each other to cut the charge induction coupling into the electromagnetic induction coil to form a current, and through the receiving module frequency conversion demodulation rectification filter voltage regulator to meet the requirements of ZGR DC DC power supply, delivered to the terminal to connect the load charging or energy storage, the same xMGDn, xMGan after high-speed rotation through the NwL magnetic induction coil, the system automatically sends a termination wave and carrier rotation command to X.
  • the present invention is a smart power wave big data electric energy remote wireless transmission/reception charging energy storage method, the method uses a positive and negative high-speed rotating FM microwave carrier beam, namely MGbTl-T-4, where M is 2.4Ghz ⁇ 720G
  • the hz standard FM carrier, Mgan is a 49Khz big data electric energy carrier, which comprises a wireless transmitting/receiving compatible reference big data electric energy module, a transmitting/receiving CPU processor module, and a transmitting/receiving compatible antenna array technical control module.
  • the CPU processor module includes a combination of a phase shift rate data command X, a voltage serial data command Z, a current parallel data command R, and a transmit/receive address data command G to become a big data electric energy carrier reference transmitting power.
  • Board ie ZGRX.
  • the rotating big data electric energy that is, the MGan microwave carrier group is combined by a group of mutually perpendicular microwave carrier groups MGan.bTl-T4, and the MGbTl-T4 is a high-speed rotation around the X-axis direction.
  • Microwave beam carrier group, frequency is Tl: 4Khz, T2: 8Khz, T3: 16Khz, T4 : 32Khz, large-wave wave dynamic carrier combination with amplitude 2.8 V symmetric high-speed rotation, power rotation frequency of each stage carrier: Tl: 4Mh z, T2: 8Mhz, T3: 16Mhz, T4: 32Mhz, the four-stage carrier frequency is 2.4Ghz ⁇ 720Ghz.
  • the system command MGbTl-T4 rotates around the X axis.
  • the software programmable phase shift technology has set the rotation frequency 16Mhz ⁇ 2.4Ghz.
  • the system B continuously increases or decreases continuously to change X.
  • Phase shift data command, and send instructions to the MXGbTl-4 power carrier to make the microwave beam power carrier Continuously follow the system B command to change the phase, that is, the MGbTl-4 high-speed rotation pushes the MGan big data electric energy carrier rotating right-front or the reverse-needle to run to the right front.
  • the series voltage Z is a standard 2.8v big data power carrier, the frequency is 49KHz, the parallel current R data is 50-200mA/time big data power standard carrier D, the transmission/reception address code G For 9 digits, each different data represents a different transmit/receive address data code, and the high-speed rotating MGbTl-4 carrier bundle is composed of each set of vertically independent big data electric energy carriers, wherein the MGLan carrier is a cistern or a reverse The needle is alternately transformed, the transformation frequency is 49k z, and the electric energy carrier is rotated at a high speed perpendicular to the earth NS magnetic pole to generate 49k z big data electromagnetic energy, and the MGLan carrier is provided with transmission and reception address Gn data and GPS positioning signal data.
  • the MGbTl-4 carrier has an amplitude of 2.8V, the phase is -90 degrees with the MGan carrier, and the delay is (1/F1) s.
  • the F1 is the MGbTl-4 dynamic carrier frequency of 4Khz ⁇ 32 khz
  • the MGbTl-T4 carrier In the left direction of the MGan carrier, parallel to the X axis, perpendicular to the left side of the MGan, the four axes are rotated to drive the MGan to the right front.
  • the MGan is 2.8v amplitude and surrounds the Y axis.
  • the anti-high-speed rotating alternating electromagnetic field carrier, MGan cross-frequency conversion rate is 49k z
  • MGbTl-T4 rotation frequency is affected by the transmission medium resistance, and is monitored by system A, and system B automatically adjusts the MGbTl-T4 rotation push connection.
  • the number of connections from T1 to T4 pushes the actual number to be adjusted by the system B.
  • the M GbTl-T4 high-speed ⁇ pin rotates to the right (right), and the MGbTl rotates in the direction of the ⁇ or the reverse ⁇ , Controlled by system B, the MGbT1 is -90 degrees in the left direction of the Y axis of the MGan, and perpendicular to each other, the MGbTl-4 rotation frequency, and the charging efficiency data returned by the system B according to the MGan received by the terminal, ⁇ Automatically adjust the rotation direction of the MGbTl-4 carrier's ⁇ b or reverse ,, MGbTl-T4 reverse ⁇ pin rotation direction function; Adjust MGbTl-4 forward right direction, so that remote transmission MGbTl-4 by system B transmission G command GPS positioning, MGbTl-4 transmission in the direction of the shortest distance of the receiving command address, to maximize transmission efficiency, GPRS general packet technology applied to big data power wireless transmission In the MGan microwave beam, the big data electric energy packet is packaged and the fast wireless transmission receives
  • the receiving board automatically transmits the received data command according to the destination address according to the related G destination address data of the packet intelligent power carrier received. Grouping, phase reset, demodulation and rectification to DC3.0v DC, according to the received data, the restored electric energy is superimposed on the corresponding G address command data terminal load, and the received charging and energy storage data is wirelessly transmitted back to the system A platform through the sensor. .
  • the present invention is compatible with the application of reverse transmission and reception, and has the function of transmitting and receiving on the same electric board.
  • the controlled system receives the G (g) address command, or transmits the Y (y) address command, and applies the 49D system APP software to realize the two-way function of transmitting and receiving electric energy remote wireless transmission and charging energy storage of each charging board, which is already Very convenient and mature technology can be completed by the same MCU chip programming.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Near-Field Transmission Systems (AREA)

Abstract

一种智能动力电波远程无线传输充电储能逆向输电的方法,智能动力电波应用于电力领域大数据电能源远距离传输、电能量载体正/反向高速旋转,以及高频调频载波高速旋转加载叠加于智能动力电波大数据电能量载体以及宽带大数据信息载体中,正/反向双重旋转,并应用微积分数学理论,正负电荷高速正反分离/挤兑碰撞产生强大电流还原积合采集大数据电能量的方法以及提高宽带视频网速上行/下行速率,以及提高大数据能量载体高效无线传输充电储能逆向输电效率。

Description

智能动力电波远程无线传输充电储能逆向输电的方法 技术领域
[0001] 本发明公幵一种智能动力电波大数据电能源远程正 /逆向无线传输 /接收充电储 能的方法, 本发明涉及电力领域以及宽带视频领域, 智能动力电波远距离无线 传输大数据电能源能量载体以及宽带视频信息三载体高速旋转, 以及高频载波 高速旋转调制加载叠加于载体中双重旋转, 提高智能动力电波载体高效传输充 电储能方法。
背景技术
[0002] 随着石油、 煤炭等资源的日渐枯竭, 以及人们对环保的进一步认识, 石油、 煤 炭等在人们生活中的应用越来越少, 取而代之的是太阳能、 风能、 电能等清洁 能源。
[0003] 以汽车为例, 目前, 各大汽车生产厂商都争相研究电动能源汽车, 但是, 其面 临一个巨大的问题, 就是电动汽车充电难的问题。
[0004] 加之目前的电力系统中, 有用电高峰期和低谷期, 即高峰期用电量大, 电网负 荷也大, 低谷期用电量小, 电网负荷也小, 为了平衡这一问题, 普遍采用的措 施为实行差异电价, 即高峰期电价贵, 低谷期电价便宜, 这仍然是一个治标不 治本的做法。
技术问题
[0005] 针对上述提到的现有技术中的用电高峰期和低谷期对电网负荷的要求不同的缺 点, 本发明提供一种智能动力电波远程正 /逆向无线传输大数据电能量充电储能 逆向输电以及宽带视屏信息提高传输速率的方法, 其系统设立有储能平台, 在 用电低谷期吋, 电网通过无线方式给储电能系统供电, 进行电能存储, 当用电 高峰期吋, 储能系统通过无线方式给电网逆向供电, 从而可实现大范围节能以 及平衡电网负荷的目的。
问题的解决方案
技术解决方案 [0006] 本发明解决其技术问题采用的技术方案是: 一种智能动力电波远程无线传输充 电储能逆向输电的方法, 智能动力电波大数据电能量载体; 用 MGDn表示, D载 体频率为 19Khz〜89Khz, 幅值: 2.8V/320mA, 纹波小于 10mv电能量载体, 脉宽 对称顶部光滑的大数据方波, n: 1〜99999数表示; M: 2.4Ghz〜720Ghz; G为 地址码: 000001〜999999。
[0007] 本发明解决其技术问题采用的技术方案进一步还包括:
[0008] 智能动力电波大数据能量载体包含有切割分离电能量载体正 /负电荷的 NwL电 磁感应线圈, 电磁感应线圈 NwL应用微积分数学原理实现, 智能动力电波大数 据电能量载体 (MGDn) 微分为数个 "+, -"电荷群分幵进行传输积合, 应用磁电 感应高速正 /反向旋转将 MGDn电能量载体中 "+"电荷推向电能量载体最顶端, 而 大量的 "-"电荷粒子群仍停留在智能动力电波载体表面最下端, 其中 N采用软性高 导磁率永久磁性体材枓实现线圈静态电感量 L, L磁极始终垂直于电感线圈 w方向 , 并实现在智能动力电波大数据电能量载体表面上端源源不断的布满聚积着大 量" +"电荷群, 表面最下端聚积大量 "-"电荷群, 当 MGDn智能动力电波载体到达 G地址, 智能动力电波载体从发射模块输出端进入 NwL磁感应线圈吋, 智能动力 电波载体首先顺吋针高速旋转穿过 NwL电磁感应线圈, 与相互垂直的 N磁极表面 磁场方向, 与 MGDn智能动力电波载体同方向穿过 NwL, 产生出同相位极强的 L 电感同磁性相斥, 在磁极 N产生出极强的向右的推动力, 磁极 N将 MGDn载体中 的" +"电荷群全被推到 MGDn最右方顶端, 使 MGDn载体顶端聚积着大量的" +"电 荷群高速旋转向系统指令 G地址运行, 剩余在智能动力电波载体左方向的 "-"粒子 电荷群全部被快速相斥切割排斥聚积到智能动力电波载体 N极表面下端粘在一起 , 推动着智能动力电波大数据电能量载体表面上端源源不断地聚积大量正 "+"电 荷群, 智能动力电波载体最下端停留大量的" -"电荷群, 实现了智能动力电波大 数据能量载体被切割微分为大量的 "+"电荷群以及大量的" -"电荷群, 相互紧紧地 抱团粘得紧紧地使智能动力电波 "+, -"分离幵传输, 不会在传输中丢掉。
[0009] 一种智能动力电波, 应用微积分的数学理论, 分离传输积合, 远程无线传输智 能动力电波大数据电能量, 积合接收的方法, 当 MGDn智能动力电波大数据电能 量载体, 按 G地址到达 G接收天线顶端吋, 智能动力电波载体旋转方向自动改变 为正向顺吋针旋转和反向逆吋针旋转快速交替变换, 交替频率为 29Khz〜89Khz 范围、 载体顶端大量的" +"电荷群被高速逆向旋转朝向智能动力电波载体下端大 量的" -"电荷群不停的挤兑碰撞, 上 /下端不断地快速的挤兑碰撞, 产生出强大的 交变智能动力电波大数据切割电流, 通过磁感应线圈将交变切割的电流变化感 应偶合传输到变频解调模块输入端; 根据物理学左手定律, 在智能动力电波高 速逆吋针旋转穿过磁感应偶合线圈 NwL, 与 MGDn载体相垂直方向产生极强的交 变切割智能动力电波大数据电流, 通过磁感应线圈 NwL感应到接收模块解调整 流滤波, 还原无线传输大于 98%的效率的 DC直流电源输送到终端所需负载供电 一种高速旋转智能动力电波载体 MxGDn, 与 X轴方向平行, 智能动力电波载体 顶部 G方向朝右, 频率为 19Khz〜89KhZ, 幅值为 2.8v顶部布满着" +"电荷群的智 能动力电波 2.8v大数据载体, MxGDn应用旋转式载波 xMn, M载波频率为 2.4Ghz 〜720Ghz旋转式调频载波调制加载于 X旋转频率 49Mhz〜72Ghz变化智能动力电 波载体中, 应用相位调整原理系统指令 MxGDn, X采用软件可编程移相技术设定 旋转频率顺吋针旋转, 由系统不断地连续增加或减少来改变 X移相数据指令, 并 实吋发送指令到 MxGDn, 使智能动力电波载体连续不停地按照系统指令改变相 位, 即实现 MGDn双级内外高速旋转着右前方顺吋针或逆吋针旋转的 MxGDn智 能动力电波大数据电能量载体, 快速顺吋针或者逆吋针高速旋转穿过磁感应 Nw L线圈, 而按接收定律; 逆吋针方向旋转, 按 2:3匝数比例反向在垂直于 N-S磁极 表面极强的同性磁极将高速旋转电能量载体中的负电荷与载体顶部聚集的正电 荷同性相斥在载体表面极速吸合相碰撞产生强大的大数据电流, 快速偶合到电 磁感应线圈 NwL中形成一股交变电流, 并经接收模块变频解调整流滤波稳压转 变为符合 ZGR指令所需 DC直流电能量, 还原输送到与终端连接负载充电或储能 , 同吋 MxGDn在高速旋转穿过 NwL磁感应线圈之后, 系统自动向 x发出终止智能 动力电波以及载体旋转指令, 由于传输能量在到达终端的最后阶段, 智能动力 电波正 /反高速旋转挤兑碰撞电荷切割形成电流, 因此智能动力电波在传输电能 量过程中不产生任何的电能量损耗及辐射, 达到大于 98%以上远程无线高效传输 效率的方法。 [0011] 应用天线阵列技术方法, 由系统指令高速旋转智能动力电波穿过 DL电磁感应 线圈, "切割正电荷"感应加载叠加载体连接到天线发射到空间传播, 系统应用阵 列天线图赋形可调整天线方向图零点来实现智能动力电波方法, 该方法有别于 传统的阵列天线主瓣的波束, 具有更强方向性, 根据系统返馈回来的充电数据 流量图, 系统可实吋调整天线束发射方向, 对实现远程高效率无线传输微波束 大数据电能不可少的方法, 所述的接收模块同吋具备逆向发射功能, 发射功率 大小与接收功率相同, 接收模块逆向发射大数据电能量地址数据由系统发出, 并由系统基站接收后按逆向的地址数据发射传输大数据电能, 基站发射大数据 电能充电储能模块, 天线阵列在发射与接收中使用软件程序技术完全兼容, 不 需要再增加任何一套逆向发射 /接收传输设备。
[0012] 电能量偶合式发射 /接收方法; 发射偶合式线圈 NwLF垂直于软性磁体 N-S磁极 的表面, 在磁极表面聚集着大量的负 "-"电荷群在接收偶合电磁感应线圈 NwLF垂 直于 N-S磁极表面, 聚集着大量的正" +"电荷群, 根据电能量正负相吸的原理技 术, 大量的正负电荷粒子从发射端高速顺吋针或者逆吋针高速旋转穿过 NwL磁 感应线圈, 在电磁感应线圈中产生顺吋针旋或者逆吋针高速变换磁极, 频率在 4 9K至 89K范围切变, 产生强大电流, 传输切割电磁极聚集大量正 /负电荷在相传 电磁波飞向空气中, 旋转频率从 49Mhz〜4.9Ghz范围变化由 NwLF磁感应线圈发 射耦合 (传输) 到接收 NwLF磁感应线圈中, 形成闭合电流回路, 实现了远距离 无线传输 (耦合) 电能量的方法, 同吋由于顺吋针或者逆吋针高速旋转, 正 /负 相吸激活了电子话力, 加快了电子的运行速率, 大大提高了电能量无线传输 ( 耦合) 的距离以及接收效率。
[0013] 发射偶合磁感应线圈数量 NwLF为 2的 n次方 (n: 0〜12) 组成发射模块, 并垂 直于软性磁 N-S磁极的表面, 同吋在 N-S磁极表面聚集着大量的负或者正电荷群 (000000/111111) 数据表示。
[0014] 应用数码识别地址 G组合多个 NwLF发射模块多个磁感应线圈对应多个接收磁 感应线圈组合模块, 应用数码识别数据, 一对一按 G地址耦合传输接收, 通过充 电座显示屏触摸, 手动自行随意设定每台接收模块充电吋间长短数据 (电压及 电流) 同吋显示在屏幕上, 并采用储值卡形式收取充电费用。 [0015] 所述的大数据宽带视频数据载体, 将 2.4Ghz〜720Ghz调频载波高速旋转, 旋转 频率从 4.9Mhz〜49Ghz调制加载于宽带大数据信息载体中, 宽带视频大数据载体 旋转频率从 49Khz〜490Mhz正向逆向高速旋转带动着宽带视频信息高速往前运 行, 达到远程高效无线传输大数据信息无损耗的方法。
发明的有益效果
有益效果
[0016] 本发明系统设立有储能平台, 在用电低谷期吋, 电网通过无线方式给储电能系 统供电, 进行电能存储, 当用电高峰期吋, 储能系统通过无线方式给电网逆向 供电, 从而可实现大范围节能以及平衡电网负荷的目的。
对附图的简要说明
附图说明
[0017] 图 1为本发明动力载体" +、 -"电荷群分离传播示意图。
[0018] 图 2为本发明磁感应线圈积合还原电流运动示意图。
实施该发明的最佳实施例
本发明的最佳实施方式
[0019] [0017]一种智能动力电波远程无线传输充电储能逆向输电的方法, 智能动力电 波大数据电能量载体; 用 MGDn表示, D载体频率为 19Khz〜89Khz, 幅值: 2.8V /320mA, 纹波小于 10mv电能量载体, 脉宽对称顶部光滑的大数据方波, n: 1〜 99999数表示; M: 2.4Ghz〜720Ghz; G为地址码: 000001〜999999。
[0020] 其中, 智能动力电波大数据能量载体包含有切割分离电能量载体正 /负电荷的 N wL电磁感应线圈, 电磁感应线圈 NwL应用微积分数学原理实现, 智能动力电波 大数据电能量载体 (MGDn) 微分为数个 "+, -"电荷群分幵进行传输积合, 应用 磁电感应高速正 /反向旋转将 MGDn电能量载体中 "+"电荷推向电能量载体最顶端 , 而大量的" -"电荷粒子群仍停留在智能动力电波载体表面最下端, 其中 N采用软 性高导磁率永久磁性体材枓实现线圈静态电感量 L, L磁极始终垂直于电感线圈 w 方向, 并实现在智能动力电波大数据电能量载体表面上端源源不断的布满聚积 着大量 "+"电荷群, 表面最下端聚积大量 "-"电荷群, 当 MGDn智能动力电波载体 到达 G地址, 智能动力电波载体从发射模块输出端进入 NwL磁感应线圈吋, 智能 动力电波载体首先顺吋针高速旋转穿过 NwL电磁感应线圈, 与相互垂直的 N磁极 表面磁场方向, 与 MGDn智能动力电波载体同方向穿过 NwL, 产生出同相位极强 的 L电感同磁性相斥, 在磁极 N产生出极强的向右的推动力, 磁极 N将 MGDn载体 中的" +"电荷群全被推到 MGDn最右方顶端, 使 MGDn载体顶端聚积着大量的" +" 电荷群高速旋转向系统指令 G地址运行, 剩余在智能动力电波载体左方向的 "-"粒 子电荷群全部被快速相斥切割排斥聚积到智能动力电波载体 N极表面下端粘在一 起, 推动着智能动力电波大数据电能量载体表面上端源源不断地聚积大量正" +" 电荷群, 智能动力电波载体下端最下端停留大量的 "-"电荷群, 实现了智能动力 电波大数据能量载体被切割微分为大量的 "+"电荷群以及大量的" -"电荷群, 相互 紧紧地抱团粘得紧紧地使智能动力电波 "+, -"分离幵传输, 不会再传输中丢掉。
[0021] 一种智能动力电波, 应用微积分的数学理论, 分离传输积合, 远程无线传输智 能动力电波大数据电能量, 积合接收的方法, 当 MGDn智能动力电波大数据电能 量载体, 按 G地址到达 G接收天线顶端吋, 智能动力电波载体旋转方向自动改变 为正向顺吋针旋转和反向逆吋针旋转快速交替变换, 交替频率为 29Khz〜89Khz 范围、 载体顶端大量的" +"电荷群被高速逆向旋转朝向智能动力电波载体下端大 量的" -"电荷群不停的挤兑碰撞, 上 /下端不断地快速的挤兑碰撞, 产生出强大的 交变智能动力电波大数据切割电流, 通过磁感应线圈将交变切割的电流变化感 应偶合传输到变频解调模块输入端; 根据物理学左手定律, 在智能动力电波高 速逆吋针旋转穿过磁感应偶合线圈 NwL, 与 MGDn载体相垂直方向产生极强的交 变切割智能动力电波大数据电流, 通过磁感应线圈 NwL感应到接收模块解调整 流滤波, 还原无线传输大于 98%的效率的 DC直流电源输送到终端所需负载供电
[0022] 一种高速旋转智能动力电波载体 MxGDn, 与 x轴方向平行, 智能动力电波载体 顶部 G方向朝右, 频率为 19Khz〜89KhZ, 幅值为 2.8v顶部布满着" +"电荷群的智 能动力电波 2.8v大数据载体, MxGDn应用旋转式载波 xMn, M载波频率为 2.4Ghz 〜720Ghz旋转式调频载波调制加载于 X旋转频率 49Mhz〜72Ghz变化智能动力电 波载体中, 应用相位调整原理系统指令 MxGDn, X采用软件可编程移相技术设定 旋转频率顺吋针旋转, 由系统不断地连续增加或减少来改变 X移相数据指令, 并 实吋发送指令到 MxGDn, 使智能动力电波载体连续不停地按照系统指令改变相 位, 即实现 MGDn双级内外高速旋转着右前方顺吋针或逆吋针旋转的 MxGDn智 能动力电波大数据电能量载体, 快速顺吋针或者逆吋针高速旋转穿过磁感应 Nw L线圈, 而按接收定律; 逆吋针方向旋转, 按 2:3匝数比例反向在垂直于 N-S磁极 表面极强的同性磁极将高速旋转电能量载体中的负电荷与载体顶部聚集的正电 荷同性相斥在载体表面极速吸合相碰撞产生强大的大数据电流, 快速偶合到电 磁感应线圈 NwL中形成一股交变电流, 并经接收模块变频解调整流滤波稳压转 变为符合 ZGR指令所需 DC直流电能量, 还原输送到与终端连接负载充电或储能 , 同吋 MxGDn在高速旋转穿过 NwL磁感应线圈之后, 系统自动向 x发出终止智能 动力电波以及载体旋转指令, 由于传输能量在到达终端的最后阶段, 智能动力 电波正 /反高速旋转挤兑碰撞电荷切割形成电流, 因此智能动力电波在传输电能 量过程中不产生任何的电能量损耗及辐射, 达到大于 98%以上远程无线高效传输 效率的方法。
[0023] 应用天线阵列技术方法, 由系统指令高速旋转智能动力电波穿过 DL电磁感应 线圈, "切割正电荷"感应加载叠加载体连接到天线发射到空间传播, 系统应用阵 列天线图赋形可调整天线方向图零点来实现智能动力电波方法, 该方法有别于 传统的阵列天线主瓣的波束, 具有更强方向性, 根据系统返馈回来的充电数据 流量图, 系统可实吋调整天线束发射方向, 对实现远程高效率无线传输微波束 大数据电能不可少的方法, 所述的接收模块同吋具备逆向发射功能, 发射功率 大小与接收功率相同, 接收模块逆向发射大数据电能量地址数据由系统发出, 并由系统基站接收后按逆向的地址数据发射传输大数据电能, 基站发射大数据 电能充电储能模块, 天线阵列在发射与接收中使用软件程序技术完全兼容, 不 需要再增加任何一套逆向发射 /接收传输设备。
[0024] 电能量偶合式发射 /接收方法; 发射偶合式线圈 NwLF垂直于软性磁体 N-S磁极 的表面, 在磁极表面聚集着大量的负 "-"电荷群在接收偶合电磁感应线圈 NwLF垂 直于 N-S磁极表面, 聚集着大量的正" +"电荷群, 根据电能量正负相吸的原理技 术, 大量的正负电荷粒子从发射端高速顺吋针或者逆吋针高速旋转穿过 NwL磁 感应线圈, 在电磁感应线圈中产生顺吋针旋或者逆吋针高速变换磁极, 频率在 4 9K至 89K范围切变, 产生强大电流, 传输切割电磁极聚集大量正 /负电荷在相传 电磁波飞向空气中, 旋转频率从 49Mhz〜4.9Ghz范围变化由 NwLF磁感应线圈发 射耦合 (传输) 到接收 NwLF磁感应线圈中, 形成闭合电流回路, 实现了远距离 无线传输 (耦合) 电能量的方法, 同吋由于顺吋针或者逆吋针高速旋转, 正 /负 相吸激活了电子话力, 加快了电子的运行速率, 大大提高了电能量无线传输 ( 耦合) 的距离以及接收效率。
[0025] 发射偶合磁感应线圈数量 NwLF为 2的 n次方 (n: 0〜12) 组成发射模块, 并垂 直于软性磁 N-S磁极的表面, 同吋在 N-S磁极表面聚集着大量的负或者正电荷群 (000000/111111) 数据表示。
[0026] 应用数码识别地址 G组合多个 NwLF发射模块多个磁感应线圈对应多个接收磁 感应线圈组合模块, 应用数码识别数据, 一对一按 G地址耦合传输接收, 通过充 电座显示屏触摸, 手动自行随意设定每台接收模块充电吋间长短数据 (电压及 电流) 同吋显示在屏幕上, 并采用储值卡形式收取充电费用。
[0027] 所述的大数据宽带视频数据载体, 将 2.4Ghz〜720Ghz调频载波高速旋转, 旋转 频率从 4.9Mhz〜49Ghz调制加载于宽带大数据信息载体中, 宽带视频大数据载体 旋转频率从 49Khz〜490Mhz正向逆向高速旋转带动着宽带视频信息高速往前运 行, 达到远程高效无线传输大数据信息无损耗的方法。
[0028] 一种智能动力电波远程高效无线传输充电储能逆向输电的方法, 正反高速旋转 大数据智能动力电波大数据能量载体 (xDn) 与 X轴方向平行, 顶部 G方向朝右 , 频率为 19Khz, 幅值为 2.8v, 带布满着" +"或者" -"电荷的大数据电能量载体, X Dn应用旋转式载波 xMn, M为 2.4Ghz〜5.8Ghz旋转式正弦载波, x为旋转频率 19 Mhz〜918Mhz变化, 应用相位调整原理系统指令 xMn, x采用软件可编程移相技 术设定旋转频率顺吋针旋转, 由系统不断地连续增加或减少来改变 X移相数据指 令, 并实吋发送指令到 xMn和 xDn, 使微波束载体连续不停地按照系统指令改变 相位, 即实现 MGD高速旋转着右前方顺吋针或逆吋针旋转的 MxGDn大数据电能 量载体快速向右前方运行; 旋转频率越高, 载体向右前方运行速率越快, 反之 穿透率就越低。 [0029] 正反高速旋转大数据智能动力电波载体, 即 MbT2-MbT3-MbT4, 分三级高速旋 转逐级推动着高速旋转的电能量载体 MGDTl , MbT2、 MbT3、 MbT4以及相互垂 直的 xMgban高速运行, 远距离高效无线传输充电储能逆向传输大数据电能源的 方法。
[0030] 电能量 xMgban相互垂直载体群, Mbn: 为动力载体频率 16Khz、 32Kh、 64k hz 、 128k z, 幅值为 2.8v, 电流为 0的脉宽对称大数据载体, n表示从 1〜9999数, Man: 为大数据电能量载体, 载体频率为 69Khz、 138Khz、 256Khz、 512Khz脉 宽对称载体, 载体顺吋针旋转频率为 64Mhz, G表示地址数据识别码, 加载在 M Gban载体中, M为载波频率 2.4Ghz〜720Ghz, 载体旋转频率 16Mhz〜4.8Ghz/旋 转频率 8Mhz〜720Ghz/旋转频率 4Mhz的正弦波调制载体波, 用以上旋转载波加 载调制于 Gbn、 Gan载体为内 /外双重顺吋针转旋 MGban相互垂直的动力载体束; MGbn与 Mgan相互垂直 90度, MGbn垂直于 Mgan左方向, 顺吋针旋转频率为 MTb l-64Mhz, MTb2-128Mhz, MTb3-256Mhz, MTb4〜512Mhz分四级旋转, 逐级推 动着 Mgan向 X轴右方向快速向前运行。
[0031] MGbn载体逆吋针旋转吋, 表示校正前行方向, 顺吋针旋转频率越高 Mgan载体 向右前方运行速率越快, 反之穿透率就越低, 即 MbT2-MbT3-MbT4, 分三级; 内 (fl-f4) 载波 /外 (F1-F4) 载体分别应用不同的旋转频率高速旋转着, 逐级推 动着高速旋转的电能量载体 MGbTl、 动力载体 MGbT2、 动力载体 MGbT3高速旋 转着向前远距离快速运行, 实现远程高效无线传输充电储能逆向传输大数据电 能源的方法。
[0032] 应用高效率的软磁性材料切割电能量、 正负相吸定律异步合成原理技术, 实现 大数据电能远程高效无线传输 /接收大数据电能量充电储能逆向传输电能的方法 , 并且电能量载体为无线带正、 负电荷旋转式分离抱团传输, 空气中不产生任 何电流, 没有损耗, 辐射为零。
[0033] 包括无线发射 /接收兼容基准大数据电能量模块、 发射 /接收 CPU处理器模块、 发射 /接收切割电荷永久 N-S磁极电感线圈 NwL, 所述的 CPU处理器模块包含移相 速率数据指令 X、 电压串联数据指令 Z、 电流并联数据指令 R和发射 /接收地址数 据指令 G等功能组合成为大数据电能量载体基准发射模块, 即 XZGR模块, 所述 NwL永久磁体 N-S磁极始终垂直于电感线圈 NwL, 在 NwL磁极表面布满聚集大量 的负或正电荷 (000000/111111) 表示, 当 MxGDn, MxGan载体到达 G地址接收 天线顶部后, 载体首先高速旋转穿过 NwL电磁感应线圈, 正 /反交变高速旋转挤 兑 +.-电荷相互碰撞切割电荷感应偶合到电磁感线圈中形成电流, 并经接收模块 变频解调整流滤波稳压转变为符合 ZGR指令所需 DC直流电源, 输送到与终端连 接负载充电或储能, 同吋 xMGDn, xMGan在高速旋转穿过 NwL磁感应线圈之后 , 系统自动向 X发出终止电波以及载体旋转指令。
[0034] 本发明为智能动力电波大数据电能源远程无线传输 /接收充电储能的方法, 该 方法采用正反高速旋转的调频微波载体束即 MGbTl-T-4, 其中 M为 2.4Ghz~720G hz标准调频载波, Mgan为 49Khz大数据电能量载体, 其中包括无线发射 /接收兼 容基准大数据电能量模块、 发射 /接收 CPU处理器模块、 发射 /接收兼容天线阵列 技术控制模块组成。
[0035] 所述的 CPU处理器模块, 包含移相速率数据指令 X、 电压串联数据指令 Z、 电 流并联数据指令 R和发射 /接收地址数据指令 G等功能组合成为大数据电能量载体 基准发射电板, 即 ZGRX。
[0036] 所述的旋转式大数据电能量, 即 MGan微波载体群由一组组相互垂直的微波载 体群 MGan.bTl-T4相组合, MGbTl-T4是围绕 X轴方向正反高速旋转的四级微波 束载体群, 频率由 Tl : 4Khz、 T2: 8Khz、 T3: 16Khz、 T4: 32Khz, 幅值为 2.8 V对称高速旋转的大数据波动力载体组合, 每级载体的动力旋转频率: Tl : 4Mh z、 T2: 8Mhz、 T3: 16Mhz、 T4: 32Mhz, 四级载波频率均为 2.4Ghz~720Ghz变 化。
[0037] 围绕着 Y轴旋转电能量载体群, 即 MGan幅值为 2.8V大数据电能量载体, 频率恒 定为 49k z, 载波频率为 2.4Ghz~7.2Ghz变化, 旋转频率在 16Mhz〜4Mhz变化, 围绕着 X轴旋转微波束载体称为动力载体, 幅值为 2.8V, 用 MGbTl-MbT4表示: MGbTl-4的四级载体频率分别为 Tl : 4k z.、 T2: 8Khz、 T3: 16Khz、 T4: 32k z ; 方法一: 应用相位调整原理系统指令 MGbTl-T4围绕 X轴旋转, 采用软件可编 程移相技术已设定旋转频率 16Mhz~2.4Ghz, 由系统 B不断地连续增加或减少来改 变 X移相数据指令, 并实吋发送指令到 MXGbTl-4动力载体, 使微波束动力载体 连续不停地按照系统 B指令改变相位, 即实现 MGbTl-4高速旋转推动着右前方顺 吋针或逆吋针旋转的 MGan大数据电能量载体快速向右前方运行。
[0038] 所述的串联电压 Z为标准的 2.8v大数据电源载体, 频率为 49KHz, 并联电流 R数 据为 50-200mA/次的大数据电源标准载体 D, 所述的传输 /接收地址码 G为 9个数字 表示, 每一个不同数据表示不同发射 /接收地址数据码, 高速旋转 MGbTl-4载体 束由每组相互垂直独立的大数据电能量载体组成, 其中 MGLan载体为顺吋针或 逆吋针交替变换, 变换频率在 49k z, 垂直于地球 N-S磁极高速旋转切割电能量 载体, 产生出 49k z的大数据电磁能量, 并且 MGLan载体设置有传输与接收地址 Gn数据以及 GPS定位信号数据, 所述的 MGbTl-4载体幅值为 2.8V、 相位与所述 的 MGan载体相位为 -90度, 延迟 (1/F1) s, F1为 MGbTl-4动力载体频率 4Khz~32 khz, MGbTl-T4载体在 MGan载体左方向, 平行 X轴, 垂直于 MGan左方分四级旋 转着推动 MGan向右前方快速运行, 所述的 MGan为 2.8v幅值, 围绕着 Y轴正反高 速旋转的交变电磁场载体, MGan交变频率为 49k z, MGbTl-T4旋转频率受传输 介质阻力影响, 而由系统 A实吋监测, 由系统 B实吋自动调整 MGbTl-T4旋转的 推动连接的数量, 从 T1到 T4连接推动实际数量由系统 B实吋监测调整, 所述的 M GbTl-T4高速顺吋针旋转向 (右) 前行的, MGbTl旋转方向顺吋针或者逆吋针 , 受控于系统 B, 所述的 MGbTl为 -90度相位在 MGan的 Y轴左方向, 并相互垂直 , MGbTl-4旋转频率, 由系统 B根据终端接收到的 MGan反馈回的充电效率数据 , 实吋自动调整 MGbTl-4载体的顺吋针或者逆吋针的旋转方向, MGbTl-T4逆吋 针旋转的方向功能为; 调整 MGbTl-4前行向右传输方向, 使远程传输 MGbTl-4 按系统 B传输 G指令 GPS定位, MGbTl-4按接收指令地址最短距离的直线方向传 输, 使传输效率达到最大化, 将 GPRS通用分组技术应用于大数据电源无线传输 MGan微波束中, 实现大数据电能量分组打包快速无线传输接收大数据电源, 所 述的接收板根据传输接收到的分组智能动力电波载体的相关 G目的地址数据, 按 目的地址传输接收数据指令自动分组, 相位复位, 解调整流为 DC3.0v直流电, 按接收数据还原电能量叠加到相应 G地址指令数据终端负载中, 并通过传感器将 接收到的电量充电储能数据无线回传到系统 A平台。
[0039] 本发明应用逆向发射与接收兼容, 在同一块电板上, 同吋具有发射与接收功能 、 并受控系统接收 G (g) 地址指令、 或者是发射 Y (y) 地址指令, 应用 49D系 统 APP软件实现每块充电板发射与接收电能量远程无线传输充电储能的双向功能 、 已经是非常方便的成熟技术, 可用同一块单片机芯片内编程序完成, 仅需改 变接收地址 G为 (Y) 及 g为 (y) 、 以及 Mb、 MD或者 Ma、 ME的高速旋转方向 , 接收板功能; 在接收板输入端接入一个含永久磁极的磁性线圈, 采用目前偶 合式技术软磁高导磁率的磁体材料, 顺吋针或者逆吋针旋转 【MG (Y) En, Mg
(y) an】 切割磁极、 还原远程无线传输电能量, 向并联在输出终端地址 G (Y) 及 g (y) 负载电池充电, 当系统指令 【MG (Y) En、 Mg (y) an】 逆向高速旋 转吋, 切割电能量输出、 向 Y (y) 新地址发射 /接收, 当 MGD (Y) 及 Mg (y) a 到达 Y (y) 地址接收线圈前, 解调后, 不需整流直接通过永久 (软磁材枓) 线 圈, 还原大数据电能量、 再通过整流电路转化为 DC直流电、 并向 49D系统指令 G
(Y) 及 g (y) 终端负载充电。

Claims

权利要求书
[权利要求 1] 一种智能动力电波远程无线传输充电储能逆向输电的方法, 其特征在 于: 智能动力电波大数据电能量载体; 用 MGDn表示, D载体频率为 1 9Khz〜89Khz, 幅值: 2.8V/320mA, 纹波小于 10mv电能量载体, 脉 宽对称顶部光滑的大数据方波, n: 1〜99999数表示; M: 2.4Ghz〜7 20Ghz; G为地址码: 000001〜999999。
[权利要求 2] 根据权利要求 1所述的智能动力电波远程无线传输充电储能逆向输电 的方法, 其特征在于: 智能动力电波大数据能量载体包含有切割分离 电能量载体正 /负电荷的 NwL电磁感应线圈, 电磁感应线圈 NwL应用 微积分数学原理实现, 智能动力电波大数据电能量载体 (MGDn) 微 分为数个 "+, -"电荷群分幵进行传输积合, 应用磁电感应高速正 /反向 旋转将 MGDn电能量载体中 "+"电荷推向电能量载体最顶端, 而大量 的" -"电荷粒子群仍停留在智能动力电波载体表面最下端, 其中 N采用 软性高导磁率永久磁性体材枓实现线圈静态电感量 L, L磁极始终垂 直于电感线圈 w方向, 并实现在智能动力电波大数据电能量载体表面 上端源源不断的布满聚积着大量" +"电荷群, 表面最下端聚积大量 "-" 电荷群, 当 MGDn智能动力电波载体到达 G地址, 智能动力电波载体 从发射模块输出端进入 NwL磁感应线圈吋, 智能动力电波载体首先顺 吋针高速旋转穿过 NwL电磁感应线圈, 与相互垂直的 N磁极表面磁场 方向, 与 MGDn智能动力电波载体同方向穿过 NwL, 产生出同相位极 强的 L电感同磁性相斥, 在磁极 N产生出极强的向右的推动力, 磁极 N 将 MGDn载体中的" +"电荷群全被推到 MGDn最右方顶端, 使 MGDn载 体顶端聚积着大量的" +"电荷群高速旋转向系统指令 G地址运行, 剩 余在智能动力电波载体左方向的" -"粒子电荷群全部被快速相斥切割 排斥聚积到智能动力电波载体 N极表面下端粘在一起, 推动着智能动 力电波大数据电能量载体表面上端源源不断地聚积大量正" +"电荷群 , 智能动力电波载体最下端停留大量的" -"电荷群, 实现了智能动力 电波大数据能量载体被切割微分为大量的" +"电荷群以及大量的" -"电 荷群, 相互紧紧地抱团粘得紧紧地使智能动力电波 "+, -"分离幵传输 , 不会再传输中丢掉。
[权利要求 3] 根据权利要求 2所述的智能动力电波远程无线传输充电储能逆向输电 的方法, 其特征在于: 一种智能动力电波, 应用微积分的数学理论, 分离传输积合, 远程无线传输智能动力电波大数据电能量, 积合接收 的方法, 当 MGDn智能动力电波大数据电能量载体, 按 G地址到达 G 接收天线顶端吋, 智能动力电波载体旋转方向自动改变为正向顺吋针 旋转和反向逆吋针旋转快速交替变换, 交替频率为 29Khz〜89Khz范 围、 载体顶端大量的" +"电荷群被高速逆向旋转朝向智能动力电波载 体下端大量的" -"电荷群不停的挤兑碰撞, 上 /下端不断地快速的挤兑 碰撞, 产生出强大的交变智能动力电波大数据切割电流, 通过磁感应 线圈将交变切割的电流变化感应偶合传输到变频解调模块输入端; 根 据物理学左手定律, 在智能动力电波高速逆吋针旋转穿过磁感应偶合 线圈 NwL, 与 MGDn载体相垂直方向产生极强的交变切割智能动力电 波大数据电流, 通过磁感应线圈 NwL感应到接收模块解调整流滤波, 还原无线传输大于 98%的效率的 DC直流电源输送到终端所需负载供 电。
[权利要求 4] 根据权利要求 3所述的智能动力电波远程无线传输充电储能逆向输电 的方法, 其特征在于: 一种高速旋转智能动力电波载体 MxGDn, 与 X 轴方向平行, 智能动力电波载体顶部 G方向朝右, 频率为 19Khz〜89 KhZ, 幅值为 2.8v顶部布满着" +"电荷群的智能动力电波 2.8v大数据载 体, MxGDn应用旋转式载波 xMn, M载波频率为 2.4Ghz〜720Ghz旋 转式调频载波调制加载于 X旋转频率 49Mhz〜72Ghz变化智能动力电波 载体中, 应用相位调整原理系统指令 MxGDn, X采用软件可编程移相 技术设定旋转频率顺吋针旋转, 由系统不断地连续增加或减少来改变 X移相数据指令, 并实吋发送指令到 MxGDn, 使智能动力电波载体连 续不停地按照系统指令改变相位, 即实现 MGDn双级内外高速旋转着 右前方顺吋针或逆吋针旋转的 MxGDn智能动力电波大数据电能量载 体, 快速顺吋针或者逆吋针高速旋转穿过磁感应 NwL线圈, 而按接收 定律; 逆吋针方向旋转, 按 2·· 3匝数比例反向在垂直于 N-S磁极表面 极强的同性磁极将高速旋转电能量载体中的负电荷与载体顶部聚集的 正电荷同性相斥在载体表面极速吸合相碰撞产生强大的大数据电流, 快速偶合到电磁感应线圈 NwL中形成一股交变电流, 并经接收模块变 频解调整流滤波稳压转变为符合 ZGR指令所需 DC直流电能量, 还原 输送到与终端连接负载充电或储能, 同吋 MxGDn在高速旋转穿过 Nw L磁感应线圈之后, 系统自动向 X发出终止智能动力电波以及载体旋 转指令, 由于传输能量在到达终端的最后阶段, 智能动力电波正 /反 高速旋转挤兑碰撞电荷切割形成电流, 因此智能动力电波在传输电能 量过程中不产生任何的电能量损耗及辐射, 达到大于 98%以上远程无 线高效传输效率的方法。
[权利要求 5] 根据权利要求 4所述的智能动力电波远程无线传输充电储能逆向输电 的方法, 其特征在于: 应用天线阵列技术方法, 由系统指令高速旋转 智能动力电波穿过 DL电磁感应线圈, "切割正电荷 "感应加载叠加载 体连接到天线发射到空间传播, 系统应用阵列天线图赋形可调整天线 方向图零点来实现智能动力电波方法, 该方法有别于传统的阵列天线 主瓣的波束, 具有更强方向性, 根据系统返馈回来的充电数据流量图 , 系统可实吋调整天线束发射方向, 对实现远程高效率无线传输微波 束大数据电能不可少的方法, 所述的接收模块同吋具备逆向发射功能 , 发射功率大小与接收功率相同, 接收模块逆向发射大数据电能量地 址数据由系统发出, 并由系统基站接收后按逆向的地址数据发射传输 大数据电能, 基站发射大数据电能充电储能模块, 天线阵列在发射与 接收中使用软件程序技术完全兼容, 不需要再增加任何一套逆向发射 /接收传输设备。
[权利要求 6] 根据权利要求 5所述的智能动力电波远程无线传输充电储能逆向输电 的方法, 其特征在于: 电能量偶合式发射 /接收方法; 发射偶合式线 圈 NwLF垂直于软性磁体 N-S磁极的表面, 在磁极表面聚集着大量的 负" -"电荷群在接收偶合电磁感应线圈 NwLF垂直于 N-S磁极表面, 聚 集着大量的正 "+"电荷群, 根据电能量正负相吸的原理技术, 大量的 正负电荷粒子从发射端高速顺吋针或者逆吋针高速旋转穿过 NwL磁感 应线圈, 在电磁感应线圈中产生顺吋针旋或者逆吋针高速变换磁极, 频率在 49K至 89K范围切变, 产生强大电流, 传输切割电磁极聚集大 量正 /负电荷在相传电磁波飞向空气中, 旋转频率从 49Mhz〜4.9Ghz范 围变化由 NwLF磁感应线圈发射耦合 (传输) 到接收 NwLF磁感应线 圈中, 形成闭合电流回路, 实现了远距离无线传输 (耦合) 电能量的 方法, 同吋由于顺吋针或者逆吋针高速旋转, 正 /负相吸激活了电子 话力, 加快了电子的运行速率, 大大提高了电能量无线传输 (耦合) 的距离以及接收效率。
[权利要求 7] 根据权利要求 6所述的智能动力电波远程无线传输充电储能逆向输电 的方法, 其特征在于: 发射偶合磁感应线圈数量 NwLF为 2的 n次方 ( n: 0〜12) 组成发射模块, 并垂直于软性磁 N-S磁极的表面, 同吋在 N-S磁极表面聚集着大量的负或者正电荷群 (000000/111111) 数据表 示。
[权利要求 8] 根据权利要求 6所述的智能动力电波远程无线传输充电储能逆向输电 的方法, 其特征在于: 应用数码识别地址 G组合多个 NwLF发射模块 多个磁感应线圈对应多个接收磁感应线圈组合模块, 应用数码识别数 据, 一对一按 G地址耦合传输接收, 通过充电座显示屏触摸, 手动自 行随意设定每台接收模块充电吋间长短数据 (电压及电流) 同吋显示 在屏幕上, 并采用储值卡形式收取充电费用。
[权利要求 9] 根据权利要求 1所述的智能动力电波远程无线传输充电储能逆向输电 的方法, 其特征在于: 所述的大数据宽带视频数据载体, 将 2.4Ghz〜 720Ghz调频载波高速旋转, 旋转频率从 4.9Mhz〜49Ghz调制加载于宽 带大数据信息载体中, 宽带视频大数据载体旋转频率从 49Khz〜490M hz正向逆向高速旋转带动着宽带视频信息高速往前运行, 达到远程高 效无线传输大数据信息无损耗的方法。
PCT/CN2016/078840 2016-04-08 2016-04-08 智能动力电波远程无线传输充电储能逆向输电的方法 WO2017173658A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/078840 WO2017173658A1 (zh) 2016-04-08 2016-04-08 智能动力电波远程无线传输充电储能逆向输电的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/078840 WO2017173658A1 (zh) 2016-04-08 2016-04-08 智能动力电波远程无线传输充电储能逆向输电的方法

Publications (1)

Publication Number Publication Date
WO2017173658A1 true WO2017173658A1 (zh) 2017-10-12

Family

ID=60000225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/078840 WO2017173658A1 (zh) 2016-04-08 2016-04-08 智能动力电波远程无线传输充电储能逆向输电的方法

Country Status (1)

Country Link
WO (1) WO2017173658A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103299512A (zh) * 2011-11-29 2013-09-11 松下电器产业株式会社 无线电力输送装置
CN103287283A (zh) * 2013-05-29 2013-09-11 长安大学 一种远程无线输电式增程电动汽车
CN105305644A (zh) * 2015-07-06 2016-02-03 上海交通大学 一种可控制输电范围的远距无线输电装置
CN105680579A (zh) * 2016-04-08 2016-06-15 诸葛瑞 智能动力电波远程无线传输充电储能逆向输电的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103299512A (zh) * 2011-11-29 2013-09-11 松下电器产业株式会社 无线电力输送装置
CN103287283A (zh) * 2013-05-29 2013-09-11 长安大学 一种远程无线输电式增程电动汽车
CN105305644A (zh) * 2015-07-06 2016-02-03 上海交通大学 一种可控制输电范围的远距无线输电装置
CN105680579A (zh) * 2016-04-08 2016-06-15 诸葛瑞 智能动力电波远程无线传输充电储能逆向输电的方法

Similar Documents

Publication Publication Date Title
CN104578345B (zh) 基于cll谐振变换的电磁共振式无线充电装置及控制方法
CN103986245B (zh) 基于双层双向螺旋线圈的无线电能传输系统及方法
Wang et al. Design of wireless power transfer device for UAV
US10181755B2 (en) Wireless power supply apparatus
CN106100151B (zh) 一种用于电磁超表面环境射频能量收集的整流器
CN103856149B (zh) 一种一体化混合环境能量收集装置
CN107612159B (zh) 一种兼具pwm控制和调频控制的单发射对四接收线圈电动汽车静态无线供电系统
US20160006270A1 (en) Wireless power transmission apparatus
CN204721105U (zh) 插入中继线圈的不对称的无线输电系统
CN102916680B (zh) 一种基于磁开关的重复频率的倍压方波发生器
CN108808883A (zh) 一种无线充电系统中的新型接收装置
CN106410983A (zh) 一种基于平面倒f天线的射频能量采集系统
CN107394901A (zh) 抑制频率分裂的无线电能传输线圈设计方法
Rakhymbay et al. A simulation study on four different compensation topologies in EV wireless charging
CN204012949U (zh) 基于双层双向螺旋线圈的无线电能传输系统
CN106054261A (zh) 时间域大电流航空电磁发射装置
CN107508388A (zh) 磁耦合共振高效电能传输线圈设计方法
CN112737137B (zh) 能量与信号均为单电容耦合的分离式并行传输系统
CN107546867B (zh) 磁耦合高效率电能传输并联线圈设计方法
CN106253497A (zh) 一种基于特斯拉线圈的微型无线电能传输系统
CN203840065U (zh) 电动观光车电磁共振式无线电能传输系统
WO2017173658A1 (zh) 智能动力电波远程无线传输充电储能逆向输电的方法
CN105680579A (zh) 智能动力电波远程无线传输充电储能逆向输电的方法
CN107069993A (zh) 基于无线接收的电能转换装置
CN109190288A (zh) 基于谐振式无线电能传输的谐振器仿真系统及仿真方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16897592

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11/03/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16897592

Country of ref document: EP

Kind code of ref document: A1