WO2017173619A1 - 激光器件驱动电流补偿方法及相关装置、组件和系统 - Google Patents

激光器件驱动电流补偿方法及相关装置、组件和系统 Download PDF

Info

Publication number
WO2017173619A1
WO2017173619A1 PCT/CN2016/078668 CN2016078668W WO2017173619A1 WO 2017173619 A1 WO2017173619 A1 WO 2017173619A1 CN 2016078668 W CN2016078668 W CN 2016078668W WO 2017173619 A1 WO2017173619 A1 WO 2017173619A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser device
temperature
current
bias current
modulation current
Prior art date
Application number
PCT/CN2016/078668
Other languages
English (en)
French (fr)
Inventor
熊宇
凌魏
陈昊天
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2016/078668 priority Critical patent/WO2017173619A1/zh
Publication of WO2017173619A1 publication Critical patent/WO2017173619A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters

Definitions

  • the present invention relates to the field of optical communications, and in particular, to a laser device driving current compensation method, a laser device driving current compensation device, an optical transceiver assembly, and a passive optical network system.
  • the method cannot completely cover the BOSA device with discrete temperature characteristics, and the driving current compensation effect is poor, which causes the large fluctuation of the average optical power and the extinction ratio during the use of the BOSA device, which is not conducive to improving the stability and reliability of the optical communication.
  • embodiments of the present invention provide a laser device driving current compensation method, a laser device driving current compensation device, an optical transceiver assembly, and a passive optical network system to The temperature characteristic of the device realizes the compensation of the driving current, ensuring that the laser device maintains a stable average optical power and extinction ratio during use, and improves the stability and reliability of the optical communication.
  • a first aspect of the embodiments of the present invention provides a laser device driving current compensation method, including:
  • the driving current compensation is performed on the laser device by using a bias current single closed-loop compensation method
  • the laser current is compensated by the bias current and the modulation current double closed loop compensation.
  • the temperature characteristics of the laser device are obtained, and the driving current compensation is performed in different manners according to different temperature characteristics, wherein the bias current is
  • the laser device with the reduced operating temperature is compensated by a bias current single closed-loop compensation method, and the bias current and the modulation current double closed-loop compensation are used for the laser device whose bias current increases with the decrease of the operating temperature.
  • the method is compensated, so that the problem that the driving current compensation cannot achieve the expected effect due to the difference of the temperature characteristics of the laser device can be effectively avoided, and the driving current compensation can ensure the stable average optical power and extinction ratio of the laser device during the working process.
  • the driving current compensation of the laser device by using a bias current single closed-loop compensation manner includes:
  • the modulation current supplied to the laser device by the driver chip is adjusted to be equal to the first target modulation current.
  • a hardware closed loop of bias current compensation is formed between the photodetection diode and the driving chip, so that the average optical power variation of the laser device can be tracked in real time, and the reference voltage and the feedback voltage of the photodetecting diode are combined to adjust the driving in real time.
  • the chip provides a bias current to the laser device to achieve hardware closed-loop compensation of the average optical power; at the same time, since the bias current is reduced with respect to the operating temperature, the modulation current is compensated. It is directly realized by querying the first preset temperature lookup table, so that the compensation of the modulation current can be realized by the temperature lookup table synchronization on the basis of the bias current hardware single closed loop compensation.
  • the driving the laser device by using a bias current and a modulation current double closed loop compensation manner Current compensation including:
  • the modulation current supplied to the laser device by the driver chip is adjusted to be equal to the second target modulation current.
  • the photo-sensing diode and the driving chip form a hardware closed loop of bias current compensation, thereby realizing hardware closed-loop compensation of the bias current, and on the other hand, querying the second preset temperature look-up table according to the operating temperature or according to the operating temperature And a reference modulation current supplied to the laser device by the driving chip at a normal temperature and a normal temperature, acquiring a second target modulation current corresponding to the current operating temperature, thereby implementing software closed-loop compensation of the modulation current, wherein the second preset temperature
  • the look-up table is tested by changing the working temperature of the laser device with a certain amount of bias current increasing with the decrease of the operating temperature, thereby ensuring that the modulation current compensation mode is consistent with the temperature characteristics of the laser device. It is beneficial to improve the stability of the average optical power and extinction ratio during the working process of the laser device.
  • the reference modulation current provided by the driving chip to the laser device according to a normal temperature temperature is acquired and acquired
  • the second target modulation current corresponding to the working temperature includes:
  • a second target modulation current corresponding to the operating temperature is calculated based on the temperature difference and the reference modulation current.
  • the modulation current is used to realize the closed-loop compensation of the modulation current by software in the closed-loop compensation of the bias current hardware, without changing the hardware structure of the driving chip, which is beneficial to improving the temperature characteristic as the bias current decreases with the operating temperature.
  • the calculating, by the temperature difference and the reference modulation current, a second target modulation corresponding to the operating temperature is:
  • Imod2 Imod1+a(T2-T1); wherein a is an empirical parameter, T1 is a normal temperature, T2 is an operating temperature, and Imod1 is a reference modulation current supplied by the driving chip to the laser device at a normal temperature.
  • a second aspect of the embodiments of the present invention provides a laser device driving current compensation device, including:
  • a monitoring module for obtaining an operating temperature during operation of the laser device and a bias current supplied to the laser device by the driving chip
  • a first compensation module configured to perform driving current compensation on the laser device by using a bias current single closed-loop compensation method when the monitoring module detects that the bias current decreases as the operating temperature decreases;
  • a second compensation module configured to: when the monitoring module detects that the bias current increases with a decrease in the operating temperature, use a bias current and a modulation current double closed loop compensation manner to drive current to the laser device make up.
  • the monitoring module Monitoring, by the monitoring module, a law that a bias current supplied by the driving chip to the laser device changes with a working temperature, acquiring a temperature characteristic of the laser device, and performing driving current compensation according to different temperature characteristics in different manners, wherein
  • the laser device whose bias current decreases with the decrease of the operating temperature is compensated by the first compensation module by using a bias current single closed-loop compensation method, and the laser device is increased for the bias current to decrease with the operating temperature.
  • the second compensation module uses the bias current and the modulation current double closed-loop compensation method to compensate, so that the problem that the driving current compensation cannot achieve the expected effect due to the difference in the temperature characteristics of the laser device can be effectively avoided, and the problem is ensured.
  • the drive current compensation ensures that the laser device has a stable average optical power and extinction ratio during operation.
  • the first compensation module includes:
  • a feedback voltage acquisition unit configured to acquire a feedback voltage of the photodetection diode in the laser device, and perform differential operation between the feedback voltage and the preset reference voltage to obtain a differential input voltage
  • a bias current adjustment unit configured to adjust a bias current provided by the driving chip to the laser device according to the differential input voltage; wherein the bias current is positively correlated with the differential input voltage;
  • a temperature table searching unit configured to query a first preset temperature lookup table according to the working temperature, and acquire a first target modulation current corresponding to the working temperature
  • a modulation current adjustment unit for adjusting a modulation current supplied to the laser device by the driving chip to be equal to the first target modulation current.
  • a hardware closed loop of bias current compensation is formed between the photodetection diode and the driving chip, so that the average optical power variation of the laser device can be tracked in real time, and the reference voltage and the feedback voltage of the photodetecting diode are combined to adjust the driving in real time.
  • the chip provides a bias current to the laser device to achieve hardware closed-loop compensation of the average optical power; at the same time, since the bias current is reduced with respect to the operating temperature, the modulation current is compensated. It is directly realized by querying the first preset temperature lookup table, so that the compensation of the modulation current can be realized by the temperature lookup table synchronization on the basis of the bias current hardware single closed loop compensation.
  • the second compensation module includes:
  • a feedback voltage acquisition unit configured to acquire a feedback voltage of the photodetection diode in the laser device, and perform differential operation between the feedback voltage and the preset reference voltage to obtain a differential input voltage
  • a bias current adjustment unit configured to adjust a bias current provided by the driving chip to the laser device according to the differential input voltage; wherein the bias current is positively correlated with the differential input voltage;
  • a modulation current acquisition unit querying a second preset temperature lookup table according to the operating temperature, and acquiring a second target modulation current corresponding to the working temperature;
  • a modulation current adjustment unit for adjusting a modulation current supplied to the laser device by the driving chip to be equal to the first target modulation current.
  • the photo-sensing diode and the driving chip form a hardware closed loop of bias current compensation, thereby realizing hardware closed-loop compensation of the bias current, and on the other hand, querying the second preset temperature look-up table according to the operating temperature or according to the operating temperature And a reference modulation current supplied to the laser device by the driving chip at a normal temperature and a normal temperature, acquiring a second target modulation current corresponding to the current operating temperature, thereby implementing software closed-loop compensation of the modulation current, wherein the second preset temperature
  • the look-up table is tested by changing the working temperature of the laser device with a certain amount of bias current increasing with the decrease of the operating temperature, thereby ensuring that the modulation current compensation mode is consistent with the temperature characteristics of the laser device. It is beneficial to improve the stability of the average optical power and extinction ratio during the working process of the laser device.
  • the modulating current acquiring unit includes:
  • a temperature difference calculation subunit configured to compare the operating temperature with a normal temperature, and obtain a temperature difference between the working temperature and the normal temperature
  • a current calculation subunit configured to calculate a second target modulation current corresponding to the operating temperature according to the temperature difference and the reference modulation current.
  • the empirical parameters of the characteristic laser device are calculated by software to obtain the second target modulation current corresponding to the current working temperature, so that the closed-loop compensation of the modulation current can be realized by software on the basis of the closed-loop compensation of the bias current hardware, without changing the driving chip.
  • the hardware structure is advantageous for improving the temperature characteristic as the average optical power and the extinction ratio stability of the laser device during operation in which the bias current increases as the operating temperature decreases.
  • the calculating, by the temperature difference and the reference modulation current, a second target modulation corresponding to the working temperature is:
  • Imod2 Imod1+a(T2-T1); wherein a is an empirical parameter, T1 is a normal temperature, T2 is an operating temperature, and Imod1 is a reference modulation current supplied by the driving chip to the laser device at a normal temperature.
  • a third aspect of the embodiments of the present invention provides an optical transceiver assembly, including a driving chip, a laser device, and a temperature sensor.
  • the driving chip is electrically connected to the laser device, and is configured to provide a bias current and a modulation to the laser device.
  • Current is electrically connected to the laser device, and is configured to provide a bias current and a modulation to the laser device.
  • the temperature sensor is electrically connected to the driving chip for acquiring an operating temperature during operation of the laser device, and feeding back the operating temperature to the driving chip;
  • the driving chip is further configured to monitor a law of the bias current changing with the operating temperature
  • the driving current compensation is performed on the laser device by using a bias current single closed-loop compensation method
  • the laser current is compensated by the bias current and the modulation current double closed loop compensation.
  • the optical transceiver component obtains the temperature characteristic of the laser device by monitoring the law that the bias current supplied from the driving chip to the laser device changes with the operating temperature, and further uses different methods to perform driving current compensation according to different temperature characteristics, wherein
  • the laser device whose bias current decreases with the decrease of the operating temperature is compensated by a bias current single closed-loop compensation method, and the bias current is used for the laser device whose bias current increases with the decrease of the operating temperature.
  • the modulation current double closed-loop compensation method compensates, so that the problem that the drive current compensation cannot achieve the expected effect due to the difference of the temperature characteristics of the laser device can be effectively avoided, and the driving current compensation can ensure the stable average light of the laser device during the working process. Power and extinction ratio.
  • the optical transceiver component further includes a memory electrically connected to the driving chip, configured to store a reference voltage and a first preset temperature lookup table.
  • the laser device includes a photo-sensing diode for monitoring an average optical power of the laser device, providing a feedback voltage according to the change in the average optical power; and detecting that the bias current decreases with the operating temperature When reduced, the driver chip is also used to:
  • the modulation current supplied to the laser device by the driver chip is adjusted to be equal to the first target modulation current.
  • a hardware closed loop of bias current compensation is formed between the photodetection diode and the driving chip, so that the average optical power variation of the laser device can be tracked in real time, and the reference voltage and the feedback voltage of the photodetecting diode are combined to adjust the driving in real time.
  • the chip provides a bias current to the laser device to achieve hardware closed-loop compensation of the average optical power; at the same time, since the bias current is reduced with respect to the operating temperature, the modulation current is compensated. It is directly realized by querying the first preset temperature lookup table, so that the compensation of the modulation current can be realized by the temperature lookup table synchronization on the basis of the bias current hardware single closed loop compensation.
  • the memory is further configured to store a second preset temperature lookup table and a normal temperature when the laser device is debugged
  • the driving chip provides a reference modulation current to the laser device at a temperature and a normal temperature; and when the bias current is detected to rise as the operating temperature decreases, the driving chip is further configured to:
  • the modulation current supplied to the laser device by the driver chip is adjusted to be equal to the second target modulation current.
  • a hardware closed loop of the bias current compensation is formed by the photo-electrical monitoring diode and the driving chip, thereby realizing a closed-loop hardware compensation of the bias current, and on the other hand, based on the closed-loop compensation of the bias current hardware, the query is performed according to the operating temperature.
  • the second preset temperature look-up table is obtained by testing a certain number of bias currents of the laser device that is increased with the decrease of the operating temperature under a changing operating temperature, thereby ensuring a modulation current compensation mode and
  • the temperature characteristics of the laser device are consistent, which is beneficial to improve the stability of the average optical power and extinction ratio during the operation of the laser device.
  • the driving chip is further configured to:
  • a second target modulation current corresponding to the operating temperature is calculated based on the temperature difference and the reference modulation current.
  • the empirical parameters of the characteristic laser device are calculated by software to obtain the second target modulation current corresponding to the current working temperature, so that the closed-loop compensation of the modulation current is realized by software on the basis of the closed-loop hardware compensation of the bias current, compared with the hardware double
  • the manner of closed-loop current compensation can also effectively reduce the power consumption of the optical transceiver assembly and control the volume of the optical transceiver assembly.
  • the memory is further configured to store an empirical parameter, where the calculating is based on the temperature difference and the reference modulation current
  • the formula of the second target modulation current corresponding to the operating temperature is:
  • Imod2 Imod1+a(T2-T1); wherein a is an empirical parameter, T1 is a normal temperature, T2 is an operating temperature, and Imod1 is a reference modulation current supplied by the driving chip to the laser device at a normal temperature.
  • a fourth aspect of the embodiments of the present invention provides a passive optical network system, including: an optical line terminal, an optical distribution network, and an optical network unit, where the optical line terminal is connected to the optical network unit by using the optical distribution network,
  • the optical line terminal includes the optical transceiver component according to any one of the third aspect, the first possible implementation manner of the third aspect, the fourth possible implementation manner of the third aspect, and/or
  • the optical network unit includes any one of the third aspect of the embodiment of the present invention, the first possible implementation manner of the third aspect, and the fourth possible implementation manner of the third aspect.
  • the optical transceiver assembly of the formula
  • the passive optical network system applies the optical transceiver component in the optical line terminal and/or the optical network unit, and the optical transceiver component monitors a bias current supplied to the laser device by the driver chip
  • the law of the operating temperature changes, obtains the temperature characteristics of the laser device, and then uses different methods to perform driving current compensation according to different temperature characteristics, wherein the bias current is reduced for the laser device whose bias current decreases with the decrease of the operating temperature.
  • the single closed-loop compensation method compensates, and the laser device with the bias current increased with the decrease of the operating temperature is compensated by the bias current and the modulation current double closed-loop compensation method, thereby effectively avoiding the difference in temperature characteristics of the laser device.
  • the problem that the driving current compensation cannot achieve the expected effect ensures that the driving current compensation can ensure the stable average optical power and extinction ratio of the laser device during operation.
  • FIG. 1 is a schematic flow chart of a laser device driving current compensation method according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram showing the relationship between the modulation current of the laser device and the temperature change in the method shown in FIG. 1;
  • FIG. 3 is a schematic structural diagram of a laser device driving current compensation device according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural view of a first compensation module of the driving current compensation device shown in FIG. 3;
  • FIG. 5 is a schematic structural view of a second compensation module of the driving current compensation device shown in FIG. 3;
  • FIG. 6 is a schematic structural diagram of a modulation current acquisition unit of the second compensation module shown in FIG. 5;
  • FIG. 7 is a schematic structural diagram of an optical transceiver assembly according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a passive optical network system according to an embodiment of the present invention.
  • BOSA Bi-Directional Optical Sub-Assembly
  • the main parameters affecting the performance of BOSA include the average optical power and extinction ratio, and the average optical power and extinction ratio are respectively
  • the bias current and modulation current of the BOSA driver chip are small. The larger the bias current is, the larger the average optical power is. When the average optical power is fixed, the larger the modulation current, the larger the extinction ratio.
  • the performance of BOSA is also related to its operating temperature, it is also necessary to consider the temperature characteristics of BOSA. When the driver chip provides a fixed bias current and modulation current, if the operating temperature decreases, the average optical power and extinction ratio increase.
  • both the average optical power and the extinction ratio decrease. Therefore, in order to ensure the stability of the performance of BOSA during operation, it is necessary to adjust the bias current and modulation current provided by the driver chip to BOSA according to the change of working temperature, that is, the driving current of BOSA needs to be compensated to maintain the BOSA during operation. Stable average optical power and extinction ratio.
  • a laser device driving current compensation method includes at least the following steps:
  • Step S11 acquiring an operating temperature during operation of the laser device and a bias current supplied to the laser device by the driving chip;
  • Step S12 monitoring the law that the bias current changes with the operating temperature; wherein the law of the bias current changing with the working temperature refers to: in the process of gradually decreasing or gradually increasing the working temperature a tendency of the bias current to rise and fall, for example, the bias current decreases as the operating temperature decreases, or the bias current increases as the operating temperature decreases;
  • Step S13 when it is detected that the bias current decreases as the operating temperature decreases, the driving current compensation is performed on the laser device by using a bias current single closed-loop compensation method;
  • Step S14 When it is detected that the bias current increases as the operating temperature decreases, the driving current compensation is performed on the laser device by using a bias current and a modulation current double closed loop compensation manner.
  • the laser device is BOSA.
  • the bias current and modulation current provided by the driver chip are kept constant, the average optical power and extinction ratio of BOSA gradually decrease as the operating temperature increases, in order to maintain the BOSA average.
  • the bias current needs to be increased by the driving chip to compensate the average optical power, and the modulation current is increased to compensate the extinction ratio.
  • the bias current and modulation current supplied by the driver chip to the BOSA should gradually increase as the operating temperature increases, as shown by curve A in FIG.
  • the driving current compensation of the laser device by using a bias current single closed-loop compensation method can stabilize the average optical power of the BOSA.
  • the bias current single closed loop compensation The formula is a single closed-loop control of the BOSA transmit power through the automatic power control (APC) circuit hardware circuit of the driver chip.
  • the extinction ratio of the BOSA can be stabilized by searching the preset temperature lookup table according to the working temperature to obtain the corresponding target modulation current, and adjusting the modulation current supplied from the driving chip to the BOSA to the target modulation current.
  • the average optical power and extinction ratio of BOSA decrease with the increase of working temperature, but the average optical power and extinction ratio of some abnormal BOSA will increase first with the increase of temperature. After continuing to rise to a certain critical point, its average optical power and extinction ratio gradually return to normal, that is, decrease with increasing temperature.
  • the bias current and modulation current supplied by the driver chip to BOSA should first decrease with the increase of working temperature, and then work when the temperature reaches the critical point. The temperature rises and gradually increases, as shown by curve B in FIG.
  • the average power compensation for the BOSA can still be achieved by the APC control circuit of the driver chip, however, if the BOSA extinction ratio is compensated, if it continues
  • the same preset temperature look-up table as in the conventional case is used to obtain the corresponding target modulation current. Since the target modulation current in the preset temperature lookup table in the conventional case varies with the operating temperature and the abnormal situation, it may result in failure.
  • the correct extinction ratio compensation is realized, so that the extinction ratio of the BOSA cannot be stabilized. Therefore, the driving current compensation of the laser device needs to be performed by using a bias current and a modulation current double closed loop compensation method.
  • the compensation of the modulation current needs to be implemented by using a preset temperature lookup table corresponding to an abnormal situation, or according to an empirical parameter of a certain number of abnormal BOSAs, according to a reference modulation current provided by the driving chip to the BOSA at a normal temperature, obtained by mathematical operation corresponding to The target modulation current for the current operating temperature. It can be understood that, in the abnormal case under normal circumstances, since the bias current supplied from the driving chip to the BOSA and the modulation current vary with the operating temperature, only the modulation current is illustrated in FIG. 2 as an example.
  • the driving current compensation is performed on the laser device by using a bias current single closed loop compensation method, including:
  • the modulation current supplied to the laser device by the driver chip is adjusted to be equal to the first target modulation current.
  • the laser device includes a photo-sensing diode for monitoring a laser diode back-to-optical power, converting the optical signal into a feedback voltage through a photoelectric conversion circuit, and further performing a difference operation between the feedback voltage and a preset reference voltage. And obtaining a differential input voltage; adjusting a bias current supplied to the laser device by the driving chip according to the differential input voltage.
  • the preset reference voltage is an operating voltage of the laser device.
  • the process of adjusting a bias current supplied by the driving chip to the laser device according to the differential input voltage is: if the differential input voltage is increased, indicating a feedback voltage obtained from the photo-electrical monitoring diode Decrease, that is, the average optical power of the laser device is reduced.
  • the first preset temperature lookup table is a modulation current temperature lookup table corresponding to a normal BOSA, which can pass a certain number of BOSA devices to ensure that the average optical power and the extinction ratio are stable. The working temperature was varied and tested.
  • the driving current compensation is performed on the laser device by using a bias current and a modulation current double closed loop compensation manner, including:
  • the modulation current supplied to the laser device by the driver chip is adjusted to be equal to the second target modulation current.
  • the modulation current of abnormal BOSA changes with the working temperature, it first decreases first with the increase of working temperature. When the temperature reaches the critical point, it gradually increases with the increase of working temperature. Therefore, when it is detected that the bias current increases with the decrease of the operating temperature, it indicates that the currently running BOSA is abnormal BOSA, so the modulation current temperature lookup table corresponding to the normal BOSA cannot be used to realize the compensation of the debugging current. .
  • the mapping relationship between the modulation current of the abnormal BOSA and the change of the operating temperature is obtained by testing a certain number of abnormal BOSAs, and then the second preset temperature lookup table is generated according to the mapping relationship, thereby being monitored.
  • the second target modulation current of the abnormal BOSA at the operating temperature is obtained by searching the second preset temperature lookup table according to the operating temperature, thereby realizing Compensation for the modulation current.
  • the second target modulation current corresponding to the operating temperature may be acquired according to a reference modulation current supplied from the driving chip to the laser device at a normal temperature.
  • the obtaining, by the driving chip, the reference modulation current supplied to the laser device according to the normal temperature, and acquiring the second target modulation current corresponding to the working temperature includes:
  • a second target modulation current corresponding to the operating temperature is calculated based on the temperature difference and the reference modulation current.
  • the empirical parameter is obtained by testing a certain number of abnormal BOSAs.
  • the variation of the modulation current of the abnormal BOSA with the working temperature is obtained by testing a certain number of abnormal BOSAs at the changing operating temperature, and the abnormal BOSA is recorded.
  • the reference modulation current required to achieve a stable extinction ratio is obtained according to the variation law of the abnormal BOSA modulation current with the operating temperature.
  • a mapping relationship between the required modulation current and the reference modulation current is presented by the empirical parameter a.
  • a laser device driving current compensation device 30 including:
  • a monitoring module 31 configured to acquire an operating temperature during operation of the laser device and a bias current supplied to the laser device by the driving chip;
  • a first compensation module 33 configured to perform driving current compensation on the laser device by using a bias current single closed-loop compensation method when the monitoring module detects that the bias current decreases as the operating temperature decreases;
  • a second compensation module 35 configured to drive the laser device by using a bias current and a modulation current double closed loop compensation mode when the monitoring module detects that the bias current increases as the operating temperature decreases. Current compensation.
  • the first compensation module 33 includes:
  • the feedback voltage acquisition unit 331 is configured to acquire a feedback voltage of the photodetection diode in the laser device, and perform differential operation between the feedback voltage and the preset reference voltage to obtain a differential input voltage.
  • a bias current adjustment unit 333 configured to adjust a bias current provided by the driving chip to the laser device according to the differential input voltage; wherein the bias current is positively correlated with the differential input voltage;
  • the temperature table searching unit 335 is configured to query the first preset temperature lookup table according to the working temperature, and acquire a first target modulation current corresponding to the working temperature;
  • the modulation current adjustment unit 337 adjusts a modulation current supplied to the laser device by the driving chip to be equal to the first target modulation current.
  • the second compensation module 35 includes:
  • the feedback voltage acquisition unit 351 is configured to acquire a feedback voltage of the photodetection diode in the laser device, and perform differential operation between the feedback voltage and the preset reference voltage to obtain a differential input voltage;
  • a bias current adjustment unit 353 configured to adjust a bias current provided by the driving chip to the laser device according to the differential input voltage; wherein the bias current is positively correlated with the differential input voltage;
  • the modulation current acquisition unit 355 queries the second preset temperature lookup table according to the operating temperature to obtain Taking a second target modulation current corresponding to the operating temperature; or
  • a modulation current adjustment unit 357 is configured to adjust a modulation current supplied to the laser device by the driving chip to be equal to the first target modulation current.
  • the second compensation module 35 may also include only the modulation current acquisition unit 355, and the functions of the feedback voltage acquisition unit 351, the bias current adjustment unit 353, and the modulation current adjustment unit 357 may be separately multiplexed.
  • the feedback voltage acquisition unit 331, the bias current adjustment unit 333, and the modulation current adjustment unit 337 of the first compensation module 33 are implemented.
  • the modulation current acquisition unit 355 includes:
  • a temperature difference calculation sub-unit 3551 configured to compare the operating temperature with a normal temperature, and obtain a temperature difference between the operating temperature and the normal temperature;
  • the current calculation sub-unit 3553 is configured to calculate a second target modulation current corresponding to the operating temperature according to the temperature difference and the reference modulation current.
  • Imod2 Imod1+a(T2-T1); wherein a is an empirical parameter, T1 is a normal temperature, T2 is an operating temperature, and Imod1 is a reference modulation current supplied by the driving chip to the laser device at a normal temperature.
  • an optical transceiver assembly 70 is further provided, including a driving chip 71, a laser device 73 and a temperature sensor 75.
  • the driving chip 71 is electrically connected to the laser device 73. Providing a bias current and a modulation current to the laser device 73;
  • the temperature sensor 75 is electrically connected to the driving chip 71 for acquiring the operating temperature of the laser device 73 during operation, and feeding back the operating temperature to the driving chip 71;
  • the driving chip 71 is further configured to monitor a law of the bias current changing with the operating temperature
  • driving current compensation is performed on the laser device 73 by using a bias current single closed loop compensation method
  • the laser current is compensated by the bias current and the modulation current double closed loop compensation.
  • the optical transceiver component 70 further includes a memory 77 electrically connected to the driving chip 71 for storing a reference voltage and a first preset temperature lookup table.
  • the laser device 73 includes a photo-electrical monitoring diode 731 for Monitoring the average optical power of the laser device 73, providing a feedback voltage according to the change of the average optical power; when the bias current is detected to decrease as the operating temperature decreases, the driving chip 71 is further used to:
  • the modulation current supplied to the laser device 73 by the driving chip 71 is adjusted to be equal to the first target modulation current.
  • the memory 77 is further configured to store a second preset temperature lookup table, a normal temperature at the time of debugging of the laser device 73, and a reference modulation current supplied by the driving chip 71 to the laser device 73 at a normal temperature;
  • the driving chip 71 is further configured to:
  • the modulation current supplied to the laser device 73 by the driving chip 71 is adjusted to be equal to the second target modulation current.
  • the driving chip 71 is further configured to:
  • a second target modulation current corresponding to the operating temperature is calculated based on the temperature difference and the reference modulation current.
  • the memory 77 is further configured to store an empirical parameter, and the formula for calculating a second target modulation current corresponding to the working temperature according to the temperature difference and the reference modulation current is:
  • Imod2 Imod1+a(T2-T1); wherein a is an empirical parameter, T1 is a normal temperature, T2 is an operating temperature, and Imod1 is a reference modulation current supplied by the driving chip to the laser device at a normal temperature.
  • a Passive Optical Network (PON) system 100 for applying the optical transceiver component 70 of the embodiment of FIG. 7 including at least one optical line terminal.
  • OLT Optical Line Terminal
  • ODN optical distribution network
  • ONU optical network unit
  • the OLT is connected to the ONU through the ODN.
  • the OLT includes an optical transceiver assembly 70 as described in the embodiment of FIG. 7, and/or the ONU includes an optical transceiver assembly 70 as described in the embodiment of FIG.
  • the direction from the OLT to the ONU is defined as a downlink direction, and the direction from the ONU to the OLT is defined as an uplink direction.
  • the OLT broadcasts downlink data to the multiple ONUs by using a time division multiplexing (TDM) mode, and each ONU receives only data carrying its own identifier; and in the uplink direction, the multiple ONUs
  • TDM time division multiplexing
  • the OLT is in communication with the OLT by means of time division multiple access (TDMA), and each ONU sends uplink data strictly according to the time slot allocated by the OLT.
  • TDMA time division multiple access
  • the downlink optical signal sent by the OLT is a continuous optical signal
  • the uplink optical signal sent by the ONU is a burst optical signal.
  • the passive optical network system 100 may not require any active devices to implement the OLT and a communication network system for data distribution between the ONUs, for example, in a specific embodiment, data distribution between the OLT and the ONU may be through a passive optical device (such as a splitter) in the ODN. achieve.
  • a passive optical device such as a splitter
  • the passive optical network system 100 may be an Asynchronous Transfer Mode Passive Optical Network (ATM PON) system or a Broadband Passive Optical Network (BPON) system defined by the ITU-T G.983 standard, ITU-T G.984 Standard defined Gigabit Passive Optical Network (GPON) system, Ethernet Passive Optical Network (EPON) as defined by the IEEE 802.3ah standard, or next-generation passive optical network (NGA PON, such as XGPON or 10G EPON, etc.).
  • ATM PON Asynchronous Transfer Mode Passive Optical Network
  • BPON Broadband Passive Optical Network
  • GPON Gigabit Passive Optical Network
  • EPON Ethernet Passive Optical Network
  • NGA PON next-generation passive optical network
  • the OLT is typically located at a Central Office (CO) that can uniformly manage the plurality of ONUs and transfer data between the ONUs and an upper layer network.
  • the OLT may serve as a medium between the ONU and the upper layer network (such as the Internet, a Public Switched Telephone Network (PSTN), and forward data received from the upper layer network to the The ONU, and the data received from the ONU are forwarded to the upper layer network.
  • the specific structural configuration of the OLT may vary depending on the specific type of the passive optical network 100, for example, in an embodiment.
  • the OLT may include a transmitter and a receiver, the transmitter is configured to send a downlink continuous optical signal to the ONU, and the receiver is configured to receive an uplink burst optical signal from the ONU, where The downlink optical signal and the upstream optical signal may be transmitted through the optical distribution network.
  • the ONUs may be distributed in a user-side location (such as a customer premises).
  • the ONU may be a network device for communicating with the OLT and a user, in particular, the ONU may serve as a medium between the OLT and the user, for example, the ONU may be from the Data received by the OLT is forwarded to the user, and data received from the user is forwarded to the OLT.
  • OLT optical network terminal
  • the ODN may be a data distribution system that may include optical fibers, optical couplers, optical splitters, and/or other devices.
  • the optical fiber, optical coupler, optical splitter, and/or other device may be a passive optical device, in particular, the optical fiber, optical coupler, optical splitter, and/or other device may be Distributing data signals between the OLT and the ONU is a device that does not require power support Pieces.
  • the optical splitter can be connected to the OLT through a trunk optical fiber, and connected to the multiple ONUs through multiple branch optical fibers, thereby implementing the OLT.
  • a point-to-multipoint connection with the ONU may be a data distribution system that may include optical fibers, optical couplers, optical splitters, and/or other devices.
  • the optical fiber, optical coupler, optical splitter, and/or other device may be a passive optical device, in particular, the optical fiber, optical coupler, optical splitter, and/or other device may be Distributing data signals between the OLT and the ONU is
  • the ODN may also include one or more processing devices, such as optical amplifiers or relay devices.
  • the ODN may specifically extend from the OLT to the plurality of ONUs, but may also be configured in any other point-to-multipoint structure.
  • the driving current compensation of the laser device by using a bias current single closed-loop compensation method is implemented by an automatic power control circuit hardware circuit of the driving chip, and the bias current is used.
  • Modulation current double closed-loop compensation method for driving current compensation of the laser device the compensation of the bias current can be driven by the automatic power control circuit hardware of the driving chip, and the compensation of the modulation current can be realized by software programming, so that it can be changed without change
  • the method of adjusting the driving current compensation according to the temperature characteristics of the laser device is realized, that is, when the laser device is a laser device with normal temperature characteristics, the average power compensation is realized by a single closed loop of the hardware, and the normal laser is passed.
  • the corresponding modulation current temperature look-up table realizes the compensation of the extinction ratio; when the laser device is a laser device with abnormal temperature characteristics, the hardware and software double closed loop method is used to realize the compensation of the average optical power and the extinction ratio, thereby effectively preventing Due to the temperature characteristics of the laser device Different result can not be achieved properly compensated extinction ratio problems, ensure that the laser device is always kept stable in the course of the average optical power and extinction ratio, to enhance the stability and reliability of optical communication.
  • the hardware plus software double closed loop compensation method provided by the embodiment of the present invention can reduce the power consumption of the optical transceiver component and can effectively reduce the volume of the optical transceiver component, compared to the method of using the hardware double closed loop for driving current compensation.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

一种激光器件(73)驱动电流补偿方法,包括:获取激光器件(73)运行过程中的工作温度和驱动芯片(71)提供给所述激光器件(73)的偏置电流;当监测到所述偏置电流随所述工作温度的降低而降低时,采用偏置电流单闭环补偿方式对所述激光器件(73)进行驱动电流补偿;当监测到所述偏置电流随所述工作温度的降低而升高时,采用偏置电流和调制电流双闭环补偿方式对所述激光器件(73)进行驱动电流补偿。一种激光器件(73)驱动电流补偿装置、一种光收发组件(70)及一种无源光网络系统(100)。

Description

激光器件驱动电流补偿方法及相关装置、组件和系统 技术领域
本发明涉及光通信领域,尤其涉及一种激光器件驱动电流补偿方法、一种激光器件驱动电流补偿装置、一种光收发组件及一种无源光网络系统。
背景技术
随着光通信技术的发展,“光进铜退”已经成为宽带接入发展趋势。目前,光网络终端(Optical Network Terminal,ONT)的核心激光器件:双向光组件(Bi-Directional Optical Sub-Assembly,BOSA)的生产,已经从早期由美国、日本厂家为主,转变为由美国、日本、中国台湾、中国大陆厂家并行生产的格局。由于生产过程中工艺上的差异,导致不同厂商生产的BOSA器件之间存在温度一致性差异,从而使得在BOSA器件的驱动过程中,采用传统的单闭环驱动芯片加温度查找表进行驱动电流补偿的方式不能完全覆盖温度特性离散的BOSA器件,驱动电流补偿效果较差,进而造成BOSA器件在使用过程中出现平均光功率和消光比的较大波动,不利于提升光通信的稳定性和可靠性。
发明内容
鉴于现有技术中存储在的问题,本发明实施例提供一种激光器件驱动电流补偿方法、一种激光器件驱动电流补偿装置、一种光收发组件及一种无源光网络系统,以根据激光器件的本身的温度特性实现驱动电流的补偿,确保激光器件在使用过程中始终保持稳定的平均光功率和消光比,提升光通信的稳定性和可靠性。
本发明实施例第一方面提供一种激光器件驱动电流补偿方法,包括:
获取激光器件运行过程中的工作温度和驱动芯片提供给所述激光器件的偏置电流;
监测所述偏置电流随所述工作温度变化的规律;
当监测到所述偏置电流随所述工作温度的降低而降低时,采用偏置电流单闭环补偿方式对所述激光器件进行驱动电流补偿;
当监测到所述偏置电流随所述工作温度的降低而升高时,采用偏置电流和调制电流双闭环补偿方式对所述激光器件进行驱动电流补偿。
通过监测驱动芯片提供给所述激光器件的偏置电流随工作温度变化的规律,获取激光器件的温度特性,进而根据不同的温度特性采用不同的方式进行驱动电流补偿,其中,对于偏置电流随所述工作温度的降低而降低的激光器件采用偏置电流单闭环补偿方式进行补偿,对于偏置电流随所述工作温度的降低而升高的激光器件则采用偏置电流和调制电流双闭环补偿方式进行补偿,从而可以有效避免因激光器件温度特性的差异而导致驱动电流补偿无法达到预期效果的问题,确保经过驱动电流补偿可以保证激光器件在工作过程中具有稳定的平均光功率和消光比。
结合第一方面,在第一方面的第一种可能的实现方式中,所述采用偏置电流单闭环补偿方式对所述激光器件进行驱动电流补偿,包括:
获取激光器件中光电监控二极管的反馈电压,并将所述反馈电压与预设基准电压进行差分运算,得到差分输入电压;
根据所述差分输入电压,调整所述驱动芯片提供给所述激光器件的偏置电流;其中,所述偏置电流与所述差分输入电压正相关;
根据所述工作温度查询第一预设温度查找表,获取与所述工作温度对应的第一目标调制电流;
将所述驱动芯片提供给所述激光器件的调制电流调整至与所述第一目标调制电流相等。
通过所述光电监控二极管与所述驱动芯片之间形成偏置电流补偿的硬件闭环,从而可以实时跟踪激光器件的平均光功率的变化,并结合基准电压与光电监控二极管的反馈电压,实时调节驱动芯片提供给所述激光器件的偏置电流,从而实现平均光功率的硬件闭环补偿;同时,由于是针对的偏置电流随所述工作温度的降低而降低的激光器件,因此,调制电流的补偿直接通过查询第一预设温度查找表的方式实现,从而可以在偏置电流硬件单闭环补偿的基础上,通过温度查找表同步实现调制电流的补偿。
结合第一方面或第一方面第一种可能的实现方式,在第一方面的第二种可能的实现方式中,所述采用偏置电流和调制电流双闭环补偿方式对所述激光器件进行驱动电流补偿,包括:
获取激光器件中光电监控二极管的反馈电压,并将所述反馈电压与预设基准电压进行差分运算,得到差分输入电压;
根据所述差分输入电压,调整所述驱动芯片提供给所述激光器件的偏置电流;其中,所述偏置电流与所述差分输入电压正相关;
根据所述工作温度查询第二预设温度查找表,获取与所述工作温度对应的第二目标调制电流;或者,
根据常温温度下所述驱动芯片提供给所述激光器件的基准调制电流,获取与所述工作温度对应的第二目标调制电流;
将所述驱动芯片提供给所述激光器件的调制电流调整至与所述第二目标调制电流相等。
一方面通过所述光电监控二极管和所述驱动芯片形成偏置电流补偿的硬件闭环,从而实现偏置电流的硬件闭环补偿,另一方面根据工作温度查询第二预设温度查找表或者根据工作温度、常温温度及常温温度下驱动芯片提供给所述激光器件的基准调制电流,获取与当前工作温度对应的第二目标调制电流,从而实现调制电流的软件闭环补偿,其中所述第二预设温度查找表通过对一定数量的偏置电流随所述工作温度的降低而升高的激光器件的在变化工作温度的条件下进行测试得到,从而可以保证调制电流补偿方式与激光器件的温度特性相一致,有利于提升激光器件工作过程中平均光功率和消光比的稳定性。
结合第一方面第二种可能的实现方式,在第一方面的第三种可能的实现方式中,所述根据常温温度下所述驱动芯片提供给所述激光器件的基准调制电流,获取与所述工作温度对应的第二目标调制电流,包括:
将所述工作温度与常温温度进行比较,获取所述工作温度与所述常温温度之间的温差;
根据所述温差和所述基准调制电流计算与所述工作温度对应的第二目标调制电流。
对于温度特性为偏置电流随所述工作温度的降低而升高的激光器件的调 制电流的补偿,通过参考常温下驱动芯片提供给所述激光器件的基准调制电流,并结合一定数量的相同温度特性的激光器件的经验参数,通过软件计算得到与当前工作温度对应的第二目标调制电流,从而在偏置电流硬件闭环补偿的基础上通过软件的方式实现调制电流的闭环补偿,无需更改驱动芯片的硬件结构,有利于提升温度特性为偏置电流随所述工作温度的降低而升高的激光器件在工作过程中的平均光功率和消光比的稳定性。
结合第一方面第三种可能的实现方式,在第一方面的第四种可能的实现方式中,所述根据所述温差和所述基准调制电流计算与所述工作温度对应的第二目标调制电流的公式为:
Imod2=Imod1+a(T2-T1);其中,a为经验参数,T1为常温温度,T2为工作温度,Imod1为常温温度下所述驱动芯片提供给所述激光器件的基准调制电流。
本发明实施例第二方面提供一种激光器件驱动电流补偿装置,包括:
监测模块,用于获取激光器件运行过程中的工作温度和驱动芯片提供给所述激光器件的偏置电流;并
监测所述偏置电流随所述工作温度变化的规律;
第一补偿模块,用于在所述监测模块监测到所述偏置电流随所述工作温度的降低而降低时,采用偏置电流单闭环补偿方式对所述激光器件进行驱动电流补偿;
第二补偿模块,用于在所述监测模块监测到所述偏置电流随所述工作温度的降低而升高时,采用偏置电流和调制电流双闭环补偿方式对所述激光器件进行驱动电流补偿。
通过所述监测模块监测驱动芯片提供给所述激光器件的偏置电流随工作温度变化的规律,获取激光器件的温度特性,进而根据不同的温度特性采用不同的方式进行驱动电流补偿,其中,对于偏置电流随所述工作温度的降低而降低的激光器件通过所述第一补偿模块采用偏置电流单闭环补偿方式进行补偿,对于偏置电流随所述工作温度的降低而升高的激光器件则通过所述第二补偿模块采用偏置电流和调制电流双闭环补偿方式进行补偿,从而可以有效避免因激光器件温度特性的差异而导致驱动电流补偿无法达到预期效果的问题,确保 经过驱动电流补偿可以保证激光器件在工作过程中具有稳定的平均光功率和消光比。
结合第二方面,在第二方面的第一种可能的实现方式中,所述第一补偿模块包括:
反馈电压获取单元,用于获取激光器件中光电监控二极管的反馈电压,并将所述反馈电压与预设基准电压进行差分运算,得到差分输入电压;
偏置电流调节单元,用于根据所述差分输入电压,调整所述驱动芯片提供给所述激光器件的偏置电流;其中,所述偏置电流与所述差分输入电压正相关;
温度表查找单元,用于根据所述工作温度查询第一预设温度查找表,获取与所述工作温度对应的第一目标调制电流;
调制电流调节单元,用于将所述驱动芯片提供给所述激光器件的调制电流调整至与所述第一目标调制电流相等。
通过所述光电监控二极管与所述驱动芯片之间形成偏置电流补偿的硬件闭环,从而可以实时跟踪激光器件的平均光功率的变化,并结合基准电压与光电监控二极管的反馈电压,实时调节驱动芯片提供给所述激光器件的偏置电流,从而实现平均光功率的硬件闭环补偿;同时,由于是针对的偏置电流随所述工作温度的降低而降低的激光器件,因此,调制电流的补偿直接通过查询第一预设温度查找表的方式实现,从而可以在偏置电流硬件单闭环补偿的基础上,通过温度查找表同步实现调制电流的补偿。
结合第二方面或第二方面第一种可能的实现方式,在第二方面的第二种可能的实现方式中,所述第二补偿模块包括:
反馈电压获取单元,用于获取激光器件中光电监控二极管的反馈电压,并将所述反馈电压与预设基准电压进行差分运算,得到差分输入电压;
偏置电流调节单元,用于根据所述差分输入电压,调整所述驱动芯片提供给所述激光器件的偏置电流;其中,所述偏置电流与所述差分输入电压正相关;
调制电流获取单元,根据所述工作温度查询第二预设温度查找表,获取与所述工作温度对应的第二目标调制电流;或者,
根据常温温度下所述驱动芯片提供给所述激光器件的基准调制电流,获取与所述工作温度对应的第二目标调制电流;
调制电流调节单元,用于将所述驱动芯片提供给所述激光器件的调制电流调整至与所述第一目标调制电流相等。
一方面通过所述光电监控二极管和所述驱动芯片形成偏置电流补偿的硬件闭环,从而实现偏置电流的硬件闭环补偿,另一方面根据工作温度查询第二预设温度查找表或者根据工作温度、常温温度及常温温度下驱动芯片提供给所述激光器件的基准调制电流,获取与当前工作温度对应的第二目标调制电流,从而实现调制电流的软件闭环补偿,其中所述第二预设温度查找表通过对一定数量的偏置电流随所述工作温度的降低而升高的激光器件的在变化工作温度的条件下进行测试得到,从而可以保证调制电流补偿方式与激光器件的温度特性相一致,有利于提升激光器件工作过程中平均光功率和消光比的稳定性。
结合第二方面第二种可能的实现方式,在第二方面的第三种可能的实现方式中,所述调制电流获取单元包括:
温差计算子单元,用于将所述工作温度与常温温度进行比较,获取所述工作温度与所述常温温度之间的温差;
电流计算子单元,用于根据所述温差和所述基准调制电流计算与所述工作温度对应的第二目标调制电流。
对于温度特性为偏置电流随所述工作温度的降低而升高的激光器件的调制电流的补偿,通过参考常温下驱动芯片提供给所述激光器件的基准调制电流,并结合一定数量的相同温度特性的激光器件的经验参数,通过软件计算得到与当前工作温度对应的第二目标调制电流,从而在偏置电流硬件闭环补偿的基础上通过软件的方式实现调制电流的闭环补偿,无需更改驱动芯片的硬件结构,有利于提升温度特性为偏置电流随所述工作温度的降低而升高的激光器件在工作过程中的平均光功率和消光比的稳定性。
结合第二方面第三种可能的实现方式,在第二方面的第四种可能的实现方式中,所述根据所述温差和所述基准调制电流计算与所述工作温度对应的第二目标调制电流的公式为:
Imod2=Imod1+a(T2-T1);其中,a为经验参数,T1为常温温度,T2为工作温度,Imod1为常温温度下所述驱动芯片提供给所述激光器件的基准调制电流。
本发明实施例第三方面提供一种光收发组件,包括驱动芯片,激光器件及温度传感器,所述驱动芯片与所述激光器件电性连接,用于给所述激光器件提供偏置电流及调制电流;
所述温度传感器与所述驱动芯片电性连接,用于获取所述激光器件运行过程中的工作温度,并将所述工作温度反馈给所述驱动芯片;
所述驱动芯片,还用于监测所述偏置电流随所述工作温度变化的规律;以及
当监测到所述偏置电流随所述工作温度的降低而降低时,采用偏置电流单闭环补偿方式对所述激光器件进行驱动电流补偿;以及
当监测到所述偏置电流随所述工作温度的降低而升高时,采用偏置电流和调制电流双闭环补偿方式对所述激光器件进行驱动电流补偿。
所述光收发组件通过监测驱动芯片提供给所述激光器件的偏置电流随工作温度变化的规律,获取激光器件的温度特性,进而根据不同的温度特性采用不同的方式进行驱动电流补偿,其中,对于偏置电流随所述工作温度的降低而降低的激光器件采用偏置电流单闭环补偿方式进行补偿,对于偏置电流随所述工作温度的降低而升高的激光器件则采用偏置电流和调制电流双闭环补偿方式进行补偿,从而可以有效避免因激光器件温度特性的差异而导致驱动电流补偿无法达到预期效果的问题,确保经过驱动电流补偿可以保证激光器件在工作过程中具有稳定的平均光功率和消光比。
结合第三方面,在第三方面的第一种可能的实现方式中,所述光收发组件还包括与所述驱动芯片电性连接的存储器,用于存储基准电压及第一预设温度查找表;所述激光器件包括光电监控二极管,用于监控所述激光器件的平均光功率,根据所述平均光功率的变化提供反馈电压;当监测到所述偏置电流随所述工作温度的降低而降低时,所述驱动芯片,还用于:
获取激光器件中光电监控二极管的反馈电压,并将所述反馈电压与预设基准电压进行差分运算,得到差分输入电压;
根据所述差分输入电压,调整所述驱动芯片提供给所述激光器件的偏置电流;其中,所述偏置电流与所述差分输入电压正相关;
根据所述工作温度查询第一预设温度查找表,获取与所述工作温度对应的 第一目标调制电流;
将所述驱动芯片提供给所述激光器件的调制电流调整至与所述第一目标调制电流相等。
通过所述光电监控二极管与所述驱动芯片之间形成偏置电流补偿的硬件闭环,从而可以实时跟踪激光器件的平均光功率的变化,并结合基准电压与光电监控二极管的反馈电压,实时调节驱动芯片提供给所述激光器件的偏置电流,从而实现平均光功率的硬件闭环补偿;同时,由于是针对的偏置电流随所述工作温度的降低而降低的激光器件,因此,调制电流的补偿直接通过查询第一预设温度查找表的方式实现,从而可以在偏置电流硬件单闭环补偿的基础上,通过温度查找表同步实现调制电流的补偿。
结合第三方面第一种可能的实现方式,在第三方面的第二种可能的实现方式中,所述存储器,还用于存储第二预设温度查找表、所述激光器件调试时的常温温度及常温温度下所述驱动芯片提供给所述激光器件的基准调制电流;当监测到所述偏置电流随所述工作温度的降低而升高时,所述驱动芯片,还用于:
获取激光器件中光电监控二极管的反馈电压,并将所述反馈电压与预设基准电压进行差分运算,得到差分输入电压;
根据所述差分输入电压,调整所述驱动芯片提供给所述激光器件的偏置电流;其中,所述偏置电流与所述差分输入电压正相关;
根据所述工作温度查询第二预设温度查找表,获取与所述工作温度对应的第二目标调制电流;或者,
根据常温温度下所述驱动芯片提供给所述激光器件的基准调制电流,获取与所述工作温度对应的第二目标调制电流;
将所述驱动芯片提供给所述激光器件的调制电流调整至与所述第二目标调制电流相等。
一方面通过所述光电监控二极管和所述驱动芯片形成偏置电流补偿的硬件闭环,从而实现偏置电流的硬件闭环补偿,另一方面在偏置电流硬件闭环补偿的基础之上根据工作温度查询第二预设温度查找表或者根据工作温度、常温温度及常温温度下驱动芯片提供给所述激光器件的基准调制电流,获取与当前工作温度对应的第二目标调制电流,从而实现调制电流的软件闭环补偿,其中 所述第二预设温度查找表通过对一定数量的偏置电流随所述工作温度的降低而升高的激光器件的在变化工作温度的条件下进行测试得到,从而可以保证调制电流补偿方式与激光器件的温度特性相一致,有利于提升激光器件工作过程中平均光功率和消光比的稳定性。
结合第三方面第二种可能的实现方式,在第三方面的第三种可能的实现方式中,所述驱动芯片,还用于:
将所述工作温度与常温温度进行比较,获取所述工作温度与所述常温温度之间的温差;
根据所述温差和所述基准调制电流计算与所述工作温度对应的第二目标调制电流。
对于温度特性为偏置电流随所述工作温度的降低而升高的激光器件的调制电流的补偿,通过参考常温下驱动芯片提供给所述激光器件的基准调制电流,并结合一定数量的相同温度特性的激光器件的经验参数,通过软件计算得到与当前工作温度对应的第二目标调制电流,从而在偏置电流硬件闭环补偿的基础上通过软件的方式实现调制电流的闭环补偿,相对于硬件双闭环电流补偿的方式,还可以有效降低所述光收发组件的功耗,并控制所述光收发组件的体积。
结合第三方面第三种可能的实现方式,在第三方面的第四种可能的实现方式中,所述存储器,还用于存储经验参数,所述根据所述温差和所述基准调制电流计算与所述工作温度对应的第二目标调制电流的公式为:
Imod2=Imod1+a(T2-T1);其中,a为经验参数,T1为常温温度,T2为工作温度,Imod1为常温温度下所述驱动芯片提供给所述激光器件的基准调制电流。
本发明实施例第四方面提供一种无源光网络系统,包括:光线路终端、光分配网络和光网络单元,所述光线路终端通过所述光分配网络与所述光网络单元连接,所述光线路终端包括如本发明实施例第三方面、第三方面第一种可能的实现方式至第三方面第四种可能的实现方式中任意一种实现方式所述的光收发组件,和/或,所述光网络单元包括如本发明实施例第三方面、第三方面第一种可能的实现方式至第三方面第四种可能的实现方式中任意一种实现方 式所述的光收发组件。
所述无源光网络系统通过在所述光线路终端和/或所述光网络单元中应用所述光收发组件,所述光收发组件通过监测驱动芯片提供给所述激光器件的偏置电流随工作温度变化的规律,获取激光器件的温度特性,进而根据不同的温度特性采用不同的方式进行驱动电流补偿,其中,对于偏置电流随所述工作温度的降低而降低的激光器件采用偏置电流单闭环补偿方式进行补偿,对于偏置电流随所述工作温度的降低而升高的激光器件则采用偏置电流和调制电流双闭环补偿方式进行补偿,从而可以有效避免因激光器件温度特性的差异而导致驱动电流补偿无法达到预期效果的问题,确保经过驱动电流补偿可以保证激光器件在工作过程中具有稳定的平均光功率和消光比。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍。
图1是本发明实施例提供的激光器件驱动电流补偿方法的流程示意图;
图2是图1所示方法中激光器件的调制电流随温度变化的关系示意图;
图3是本发明实施例提供的激光器件驱动电流补偿装置的结构示意图;
图4是图3所示驱动电流补偿装置的第一补偿模块的结构示意图;
图5是图3所示驱动电流补偿装置的第二补偿模块的结构示意图;
图6是图5所示第二补偿模块的调制电流获取单元的结构示意图;
图7是本发明实施例提供的光收发组件的结构示意图;
图8是本发明实施例提供的无源光网络系统的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行描述。
双向光组件(Bi-Directional Optical Sub-Assembly,BOSA)作为光通信中的核心激光器件,其整体性能直接关系到光通信系统的稳定性及可靠性。影响BOSA性能的主要参数包括平均光功率和消光比,平均光功率和消光比分别由 BOSA的驱动芯片提供的偏置电流和调制电流的小小决定,偏置电流越大,平均光功率就越大;平均光功率固定时,调制电流越大,消光比就越大。此外,由于BOSA的性能还与其工作温度有关,故还需考虑BOSA的温度特性,当驱动芯片提供固定的偏置电流和调制电流时,若工作温度降低,则平均光功率和消光比均升高,若工作温度升高,则平均光功率和消光比均降低。因此,为保证BOSA运行过程中性能的稳定,需要根据工作温度的变化实时调整驱动芯片提供给BOSA的偏置电流及调制电流,即需要对BOSA的驱动电流进行补偿,以维持BOSA在运行过程中稳定的平均光功率和消光比。
请参阅图1,在本发明一个实施例中,提供一种激光器件驱动电流补偿方法,所述方法至少包括如下步骤:
步骤S11:获取激光器件运行过程中的工作温度和驱动芯片提供给所述激光器件的偏置电流;
步骤S12:监测所述偏置电流随所述工作温度变化的规律;其中,所述偏置电流随所述工作温度变化的规律是指:在所述工作温度逐渐降低或逐渐升高的过程中,所述偏置电流的升降变化趋势,例如所述偏置电流随所述工作温度的降低而降低,或所述偏置电流随所述工作温度的降低而升高等;
步骤S13:当监测到所述偏置电流随所述工作温度的降低而降低时,采用偏置电流单闭环补偿方式对所述激光器件进行驱动电流补偿;
步骤S14:当监测到所述偏置电流随所述工作温度的降低而升高时,采用偏置电流和调制电流双闭环补偿方式对所述激光器件进行驱动电流补偿。
在本实施例中,所述激光器件为BOSA。根据BOSA的温度特性,在正常情况下,若保持驱动芯片提供的偏置电流和调制电流大小不变,随着工作温度的升高,BOSA的平均光功率和消光比逐渐降低,为保持BOSA平均光功率和消光比的稳定不变,则在工作温度升高时,需要通过驱动芯片增大偏置电流以实现对平均光功率进行补偿,同时增大调制电流以实现对消光比的补偿。在这种情况下,驱动芯片提供给BOSA的偏置电流及调制电流应随工作温度的升高而逐渐升高,如图2中曲线A所示。因此,当监测到所述偏置电流随所述工作温度的降低而降低时,采用偏置电流单闭环补偿方式对所述激光器件进行驱动电流补偿即可稳定BOSA的平均光功率。其中,偏置电流单闭环补偿方 式即为通过驱动芯片的自动功率控制(Automatic Power Control,APC)电路硬件电路实现BOSA发射功率的单闭环控制。同时,通过根据工作温度查找预设温度查找表获取对应的目标调制电流,并将驱动芯片提供给BOSA的调制电流调整为所述目标调制电流即可稳定BOSA的消光比。
然而,由于BOSA生产工艺上的差异,导致不同的批次的BOSA在温度特性上可能存在较大差异。例如,正常情况下BOSA的平均光功率和消光比随工作温度的升高而降低,但存在部分异常BOSA的平均光功率和消光比随着温度的升高会出现先升高的异常,当温度继续升高到某一临界点之后,其平均光功率和消光比逐渐回归正常,即随着温度的升高而降低。在这种情况下,为稳定BOSA的平均光功率和消光比,驱动芯片提供给BOSA的偏置电流及调制电流应随工作温度的升高而先降低,当温度到达临界点时,再随工作温度的升高而逐渐升高,如图2中曲线B所示。因此,当监测到所述偏置电流随所述工作温度的降低而升高时,对BOSA的平均功率补偿依然可以通过驱动芯片的APC控制电路实现,然而,对于BOSA消光比的补偿,如果继续采用与常规情况下相同的预设温度查找表来获取对应的目标调制电流,由于常规情况下的预设温度查找表中的目标调制电流随工作温度的变化规律与异常情况不同,则会导致无法实现正确的消光比补偿,从而无法稳定BOSA的消光比,故需要采用偏置电流和调制电流双闭环补偿方式对所述激光器件进行驱动电流补偿。其中,调制电流的补偿需要采用与异常情况相对应的预设温度查找表实现,或者根据一定数量异常BOSA的经验参数,根据常温下驱动芯片提供给BOSA的基准调制电流,通过数学运算获取对应于当前工作温度的目标调制电流。可以理解,无论正常情况下还时异常情况下,由于驱动芯片提供给BOSA的偏置电流与调制电流随工作温度变化的规律相同,因此,图2中仅以调制电流为例进行图示说明。
所述采用偏置电流单闭环补偿方式对所述激光器件进行驱动电流补偿,包括:
获取激光器件中光电监控二极管的反馈电压,并将所述反馈电压与预设基准电压进行差分运算,得到差分输入电压;
根据所述差分输入电压,调整所述驱动芯片提供给所述激光器件的偏置电 流;其中,所述偏置电流与所述差分输入电压正相关;
根据所述工作温度查询第一预设温度查找表,获取与所述工作温度对应的第一目标调制电流;
将所述驱动芯片提供给所述激光器件的调制电流调整至与所述第一目标调制电流相等。
具体地,所述激光器件包括光电监控二极管,用于监测激光二极管背向光光功率,通过光电转换电路将光信号转化为反馈电压,进而通过将所述反馈电压与预设基准电压进行差分运算,得到差分输入电压;根据所述差分输入电压,调整所述驱动芯片提供给所述激光器件的偏置电流。其中,所述预设基准电压即为所述激光器件的工作电压。所述根据所述差分输入电压,调整所述驱动芯片提供给所述激光器件的偏置电流的过程为:若所述差分输入电压增大,则表示从所述光电监控二极管获取到的反馈电压减小,即激光器件的平均光功率减小,此时,为稳定激光器件的平均光功率,则需要根据所述查分输入电压的增大而增大驱动芯片提供给所述激光器件的偏置电流,从而增大激光器件的平均光功率。在本实施例中,所述第一预设温度查找表为正常BOSA对应的调制电流温度查找表,其可通过一定数量的BOSA器件在保证平均光功率和消光比稳定不变的情况下,通过变化工作温度进行测试得到。
所述采用偏置电流和调制电流双闭环补偿方式对所述激光器件进行驱动电流补偿,包括:
获取激光器件中光电监控二极管的反馈电压,并将所述反馈电压与预设基准电压进行差分运算,得到差分输入电压;
根据所述差分输入电压,调整所述驱动芯片提供给所述激光器件的偏置电流;其中,所述偏置电流与所述差分输入电压正相关;
根据所述工作温度查询第二预设温度查找表,获取与所述工作温度对应的第二目标调制电流;或者,
根据常温温度下所述驱动芯片提供给所述激光器件的基准调制电流,获取与所述工作温度对应的第二目标调制电流;
将所述驱动芯片提供给所述激光器件的调制电流调整至与所述第二目标调制电流相等。
由于异常BOSA的调制电流随工作温度变化的规律相似,均为先随工作温度的升高而先降低,当温度到达临界点时,再随工作温度的升高而逐渐升高。因此,当监测到所述偏置电流随所述工作温度的降低而升高时,表明当前运行的BOSA为异常BOSA,故不能继续采用正常BOSA对应的调制电流温度查找表来实现调试电流的补偿。在本实施例中,通过对一定数量的异常BOSA进行测试获取异常BOSA的调制电流随工作温度变化的映射关系,进而根据该映射关系生成所述第二预设温度查找表,从而可在监测到所述偏置电流随所述工作温度的降低而升高时,通过根据工作温度查找所述第二预设温度查找表来获取异常BOSA在所述工作温度下的第二目标调制电流,从而实现对调制电流的补偿。可选地,还可以根据常温温度下所述驱动芯片提供给所述激光器件的基准调制电流,获取与所述工作温度对应的第二目标调制电流。
具体地,所述根据常温温度下所述驱动芯片提供给所述激光器件的基准调制电流,获取与所述工作温度对应的第二目标调制电流,包括:
将所述工作温度与常温温度进行比较,获取所述工作温度与所述常温温度之间的温差;
根据所述温差和所述基准调制电流计算与所述工作温度对应的第二目标调制电流。
其中,所述根据所述温差和所述基准调制电流计算与所述工作温度对应的第二目标调制电流的公式为:Imod2=Imod1+a(T2-T1);其中,a为经验参数,T1为常温温度,T2为工作温度,Imod1为常温温度下所述驱动芯片提供给所述激光器件的基准调制电流,即在常温温度下,保持所述激光器件具有稳定的消光比所需要的调制电流。在本实施例中,所述经验参数通过对一定数量的异常BOSA进行测试得到。具体地,在保证平均光功率和消光比稳定不变的情况下,通过对一定数量的异常BOSA在变化工作温度下进行测试,获取异常BOSA的调制电流随工作温度的变化规律,并记录异常BOSA在常温温度下为达到稳定消光比所需要的基准调制电流,进而根据所述异常BOSA的调制电流随工作温度的变化规律,获取异常BOSA在随着工作温度的变化过程中,为达到稳定消光比所需要的调制电流与所述基准调制电流之间的映射关系。可以理解,在本实施例中,所述为达到稳定消光比所需要的调制电流与所述基准 调制电流之间的映射关系通过所述经验参数a呈现。
请参阅图3,在本发明一个实施例中,还提供一种激光器件驱动电流补偿装置30,包括:
监测模块31,用于获取激光器件运行过程中的工作温度和驱动芯片提供给所述激光器件的偏置电流;并
监测所述偏置电流随所述工作温度变化的规律;
第一补偿模块33,用于在所述监测模块监测到所述偏置电流随所述工作温度的降低而降低时,采用偏置电流单闭环补偿方式对所述激光器件进行驱动电流补偿;
第二补偿模块35,用于在所述监测模块监测到所述偏置电流随所述工作温度的降低而升高时,采用偏置电流和调制电流双闭环补偿方式对所述激光器件进行驱动电流补偿。
请参阅图4,所述第一补偿模块33包括:
反馈电压获取单元331,用于获取激光器件中光电监控二极管的反馈电压,并将所述反馈电压与预设基准电压进行差分运算,得到差分输入电压;
偏置电流调节单元333,用于根据所述差分输入电压,调整所述驱动芯片提供给所述激光器件的偏置电流;其中,所述偏置电流与所述差分输入电压正相关;
温度表查找单元335,用于根据所述工作温度查询第一预设温度查找表,获取与所述工作温度对应的第一目标调制电流;
调制电流调节单元337,用于将所述驱动芯片提供给所述激光器件的调制电流调整至与所述第一目标调制电流相等。
请参阅图5,所述第二补偿模块35包括:
反馈电压获取单元351,用于获取激光器件中光电监控二极管的反馈电压,并将所述反馈电压与预设基准电压进行差分运算,得到差分输入电压;
偏置电流调节单元353,用于根据所述差分输入电压,调整所述驱动芯片提供给所述激光器件的偏置电流;其中,所述偏置电流与所述差分输入电压正相关;
调制电流获取单元355,根据所述工作温度查询第二预设温度查找表,获 取与所述工作温度对应的第二目标调制电流;或者,
根据常温温度下所述驱动芯片提供给所述激光器件的基准调制电流,获取与所述工作温度对应的第二目标调制电流;
调制电流调节单元357,用于将所述驱动芯片提供给所述激光器件的调制电流调整至与所述第一目标调制电流相等。
可以理解,所述第二补偿模块35也可以仅包括所述调制电流获取单元355,而所述反馈电压获取单元351、偏置电流调节单元353及调制电流调节单元357的功能可通过分别复用所述第一补偿模块33的反馈电压获取单元331、偏置电流调节单元333及调制电流调节单元337实现。
请参阅图6,所述调制电流获取单元355包括:
温差计算子单元3551,用于将所述工作温度与常温温度进行比较,获取所述工作温度与所述常温温度之间的温差;
电流计算子单元3553,用于根据所述温差和所述基准调制电流计算与所述工作温度对应的第二目标调制电流。
其中,所述根据所述温差和所述基准调制电流计算与所述工作温度对应的第二目标调制电流的公式为:
Imod2=Imod1+a(T2-T1);其中,a为经验参数,T1为常温温度,T2为工作温度,Imod1为常温温度下所述驱动芯片提供给所述激光器件的基准调制电流。
可以理解,本实施例中所述激光器件驱动电流补偿装置30的各组成模块及单元的功能及其具体实现还可以参照图1所示方法实施例中的相关描述,此处不再赘述。
请参阅图7,在本发明一个实施例中,还提供一种光收发组件70,包括驱动芯片71,激光器件73及温度传感器75,所述驱动芯片71与所述激光器件73电性连接,用于给所述激光器件73提供偏置电流及调制电流;
所述温度传感器75与所述驱动芯片71电性连接,用于获取所述激光器件73运行过程中的工作温度,并将所述工作温度反馈给所述驱动芯片71;
所述驱动芯片71,还用于监测所述偏置电流随所述工作温度变化的规律;以及
当监测到所述偏置电流随所述工作温度的降低而降低时,采用偏置电流单闭环补偿方式对所述激光器件73进行驱动电流补偿;以及
当监测到所述偏置电流随所述工作温度的降低而升高时,采用偏置电流和调制电流双闭环补偿方式对所述激光器件73进行驱动电流补偿。
其中,所述光收发组件70还包括与所述驱动芯片71电性连接的存储器77,用于存储基准电压及第一预设温度查找表;所述激光器件73包括光电监控二极管731,用于监控所述激光器件73的平均光功率,根据所述平均光功率的变化提供反馈电压;当监测到所述偏置电流随所述工作温度的降低而降低时,所述驱动芯片71,还用于:
获取激光器件73中光电监控二极管731的反馈电压,并将所述反馈电压与预设基准电压进行差分运算,得到差分输入电压;
根据所述差分输入电压,调整所述驱动芯片71提供给所述激光器件73的偏置电流;其中,所述偏置电流与所述差分输入电压正相关;
根据所述工作温度查询第一预设温度查找表,获取与所述工作温度对应的第一目标调制电流;
将所述驱动芯片71提供给所述激光器件73的调制电流调整至与所述第一目标调制电流相等。
其中,所述存储器77,还用于存储第二预设温度查找表、所述激光器件73调试时的常温温度及常温温度下所述驱动芯片71提供给所述激光器件73的基准调制电流;当监测到所述偏置电流随所述工作温度的降低而升高时,所述驱动芯片71,还用于:
获取激光器件73中光电监控二极管731的反馈电压,并将所述反馈电压与预设基准电压进行差分运算,得到差分输入电压;
根据所述差分输入电压,调整所述驱动芯片71提供给所述激光器件73的偏置电流;其中,所述偏置电流与所述差分输入电压正相关;
根据所述工作温度查询第二预设温度查找表,获取与所述工作温度对应的第二目标调制电流;或者,
根据常温温度下所述驱动芯片71提供给所述激光器件73的基准调制电流,获取与所述工作温度对应的第二目标调制电流;
将所述驱动芯片71提供给所述激光器件73的调制电流调整至与所述第二目标调制电流相等。
其中,所述驱动芯片71,还用于:
将所述工作温度与常温温度进行比较,获取所述工作温度与所述常温温度之间的温差;
根据所述温差和所述基准调制电流计算与所述工作温度对应的第二目标调制电流。
其中,所述存储器77,还用于存储经验参数,所述根据所述温差和所述基准调制电流计算与所述工作温度对应的第二目标调制电流的公式为:
Imod2=Imod1+a(T2-T1);其中,a为经验参数,T1为常温温度,T2为工作温度,Imod1为常温温度下所述驱动芯片提供给所述激光器件的基准调制电流。
可以理解,本实施例中所述光收发组件70的各组成部分的功能及其具体实现还可以参照图1所示方法实施例中的相关描述,此处不再赘述。
请参阅图8,在本发明一个实施例中,还提供一种应用图7实施例所述的光收发组件70的无源光网络(Passive Optical Network,PON)系统100,包括至少一个光线路终端(Optical Line Terminal,OLT)110、一个光分配网络(Optical Distribution Network,ODN)120和多个光网络单元(Optical Network Unit,ONU)130,所述OLT通过所述ODN与所述ONU连接,所述OLT包括如图7实施例所述的光收发组件70,和/或,所述ONU包括如图7实施例所述的光收发组件70。
其中,从所述OLT到所述ONU的方向定义为下行方向,而从所述ONU到所述OLT的方向定义为上行方向。在下行方向,所述OLT采用时分复用(Time Division Multiplexing,TDM)方式将下行数据广播给所述多个ONU,各个ONU只接收携带自身标识的数据;而在上行方向,所述多个ONU采用时分多址TDMA的方式与所述OLT进行通信,每个ONU严格按照所述OLT分配的时隙发送上行数据。采用上述机制,所述OLT发送的下行光信号为连续光信号;而所述ONU发送的上行光信号为突发光信号。
所述无源光网络系统100可以是不需要任何有源器件来实现所述OLT与 所述ONU之间的数据分发的通信网络系统,比如,在具体实施例中,所述OLT与所述ONU之间的数据分发可以通过所述ODN中的无源光器件(比如分光器)来实现。并且,所述无源光网络系统100可以为ITU-T G.983标准定义的异步传输模式无源光网络(ATM PON)系统或宽带无源光网络(BPON)系统、ITU-T G.984标准定义的吉比特无源光网络(GPON)系统、IEEE 802.3ah标准定义的以太网无源光网络(EPON)、或者下一代无源光网络(NGA PON,比如XGPON或10G EPON等)。上述标准定义的各种无源光网络系统的全部内容通过引用结合在本申请文件中。
所述OLT通常位于中心局(Central Office,CO),其可以统一管理所述多个ONU,并在所述ONU与上层网络之间传输数据。具体来说,该OLT可以充当所述ONU与所述上层网络(比如因特网、公共交换电话网络(Public Switched Telephone Network,PSTN)之间的媒介,将从所述上层网络接收到的数据转发到所述ONU,以及将从所述ONU接收到的数据转发到所述上层网络。所述OLT的具体结构配置可能会因所述无源光网络100的具体类型而异,比如,在一种实施例中,所述OLT可以包括发射机和接收机,所述发射机用于向所述ONU发送下行连续光信号,所述接收机用于接收来自所述ONU的上行突发光信号,其中所述下行光信号和上行光信号可通过所述光分配网络进行传输。
所述ONU可以分布式地设置在用户侧位置(比如用户驻地)。所述ONU可以为用于与所述OLT和用户进行通信的网络设备,具体而言,所述ONU可以充当所述OLT与所述用户之间的媒介,例如,所述ONU可以将从所述OLT接收到的数据转发到所述用户,以及将从所述用户接收到的数据转发到所述OLT。可以理解,所述ONU的结构与光网络终端(Optical Network Terminal,ONT)相近,因此在本申请文件提供的方案中,光网络单元和光网络终端之间可以互换。
所述ODN可以是一个数据分发系统,其可以包括光纤、光耦合器、分光器和/或其他设备。在一个实施例中,所述光纤、光耦合器、分光器和/或其他设备可以是无源光器件,具体来说,所述光纤、光耦合器、分光器和/或其他设备可以是在所述OLT和所述ONU之间分发数据信号是不需要电源支持的器 件。具体地,以光分路器(Splitter)为例,所述光分路器可以通过主干光纤连接到所述OLT,并分别通过多个分支光纤连接到所述多个ONU,从而实现所述OLT和所述ONU之间的点到多点连接。另外,在其他实施例中,该ODN还可以包括一个或多个处理设备,例如,光放大器或者中继设备(Relay device)。另外,所述ODN具体可以从所述OLT延伸到所述多个ONU,但也可以配置成其他任何点到多点的结构。
在所述激光器件驱动电流补偿方法中,所述采用偏置电流单闭环补偿方式对所述激光器件进行驱动电流补偿通过驱动芯片的自动功率控制电路硬件电路实现,而所述采用偏置电流和调制电流双闭环补偿方式对所述激光器件进行驱动电流补偿中,偏置电流的补偿可通过驱动芯片的自动功率控制电路硬件,而调制电流的补偿则可通过软件编程实现,从而可以在不改变驱动芯片硬件结构的情况下,实现根据激光器件的温度特性来调节驱动电流补偿的方式,即当激光器件为正常温度特性的激光器件时,则采用硬件单闭环实现平均功率补偿,并通过正常激光器件对应的调制电流温度查找表实现消光比的补偿;而当激光器件为异常温度特性的激光器件时,则采用硬件加软件双闭环的方式实现平均光功率和消光比的补偿,从而可以有效防止因激光器件温度特性的差异而导致无法正常实现消光比补偿的问题,确保激光器件在使用过程中始终保持稳定的平均光功率和消光比,提升光通信的稳定性和可靠性。此外,相对于采用硬件双闭环进行驱动电流补偿的方式,本发明实施例所提供的硬件加软件双闭环的补偿方式还能降低光收发组件的功耗,并可以有效缩减光收发组件的体积。
以上所揭露的仅为本发明的较佳实施例而已,当然不能以此来限定本发明之权利范围,本领域普通技术人员可以理解实现上述实施例的全部或部分流程,并依本发明权利要求所作的等同变化,仍属于发明所涵盖的范围。

Claims (13)

  1. 一种激光器件驱动电流补偿方法,其特征在于,包括:
    获取激光器件运行过程中的工作温度和驱动芯片提供给所述激光器件的偏置电流;
    当监测到所述偏置电流随所述工作温度的降低而降低时,采用偏置电流单闭环补偿方式对所述激光器件进行驱动电流补偿;
    当监测到所述偏置电流随所述工作温度的降低而升高时,采用偏置电流和调制电流双闭环补偿方式对所述激光器件进行驱动电流补偿。
  2. 如权利要求1所述的方法,其特征在于,所述采用偏置电流单闭环补偿方式对所述激光器件进行驱动电流补偿,包括:
    获取激光器件中光电监控二极管的反馈电压,并将所述反馈电压与预设基准电压进行差分运算,得到差分输入电压;
    根据所述差分输入电压,调整所述驱动芯片提供给所述激光器件的偏置电流;其中,所述偏置电流与所述差分输入电压正相关;
    根据所述工作温度查询第一预设温度查找表,获取与所述工作温度对应的第一目标调制电流;
    将所述驱动芯片提供给所述激光器件的调制电流调整至与所述第一目标调制电流相等。
  3. 如权利要求1或2所述的方法,其特征在于,所述采用偏置电流和调制电流双闭环补偿方式对所述激光器件进行驱动电流补偿,包括:
    获取激光器件中光电监控二极管的反馈电压,并将所述反馈电压与预设基准电压进行差分运算,得到差分输入电压;
    根据所述差分输入电压,调整所述驱动芯片提供给所述激光器件的偏置电流;其中,所述偏置电流与所述差分输入电压正相关;
    根据所述工作温度查询第二预设温度查找表,获取与所述工作温度对应的第二目标调制电流;或者,
    根据常温温度下所述驱动芯片提供给所述激光器件的基准调制电流,获取与所述工作温度对应的第二目标调制电流;
    将所述驱动芯片提供给所述激光器件的调制电流调整至与所述第二目标调制电流相等。
  4. 如权利要求3所述的方法,其特征在于,所述根据常温温度下所述驱动芯片提供给所述激光器件的基准调制电流,获取与所述工作温度对应的第二目标调制电流,包括:
    将所述工作温度与常温温度进行比较,获取所述工作温度与所述常温温度之间的温差;
    根据所述温差和所述基准调制电流计算与所述工作温度对应的第二目标调制电流。
  5. 一种激光器件驱动电流补偿装置,其特征在于,包括:
    监测模块,用于获取激光器件运行过程中的工作温度和驱动芯片提供给所述激光器件的偏置电流;
    第一补偿模块,用于在所述监测模块监测到所述偏置电流随所述工作温度的降低而降低时,采用偏置电流单闭环补偿方式对所述激光器件进行驱动电流补偿;
    第二补偿模块,用于在所述监测模块监测到所述偏置电流随所述工作温度的降低而升高时,采用偏置电流和调制电流双闭环补偿方式对所述激光器件进行驱动电流补偿。
  6. 如权利要求5所述的装置,其特征在于,所述第一补偿模块包括:
    反馈电压获取单元,用于获取激光器件中光电监控二极管的反馈电压,并将所述反馈电压与预设基准电压进行差分运算,得到差分输入电压;
    偏置电流调节单元,用于根据所述差分输入电压,调整所述驱动芯片提供给所述激光器件的偏置电流;其中,所述偏置电流与所述差分输入电压正相关;
    温度表查找单元,用于根据所述工作温度查询第一预设温度查找表,获取 与所述工作温度对应的第一目标调制电流;
    调制电流调节单元,用于将所述驱动芯片提供给所述激光器件的调制电流调整至与所述第一目标调制电流相等。
  7. 如权利要求5或6所述的装置,其特征在于,所述第二补偿模块包括:
    反馈电压获取单元,用于获取激光器件中光电监控二极管的反馈电压,并将所述反馈电压与预设基准电压进行差分运算,得到差分输入电压;
    偏置电流调节单元,用于根据所述差分输入电压,调整所述驱动芯片提供给所述激光器件的偏置电流;其中,所述偏置电流与所述差分输入电压正相关;
    调制电流获取单元,根据所述工作温度查询第二预设温度查找表,获取与所述工作温度对应的第二目标调制电流;或者,
    根据常温温度下所述驱动芯片提供给所述激光器件的基准调制电流,获取与所述工作温度对应的第二目标调制电流;
    调制电流调节单元,用于将所述驱动芯片提供给所述激光器件的调制电流调整至与所述第一目标调制电流相等。
  8. 如权利要求7所述的装置,其特征在于,所述调制电流获取单元包括:
    温差计算子单元,用于将所述工作温度与常温温度进行比较,获取所述工作温度与所述常温温度之间的温差;
    电流计算子单元,用于根据所述温差和所述基准调制电流计算与所述工作温度对应的第二目标调制电流。
  9. 一种光收发组件,其特征在于,包括驱动芯片,激光器件及温度传感器,所述驱动芯片与所述激光器件电性连接,用于给所述激光器件提供偏置电流及调制电流;
    所述温度传感器与所述驱动芯片电性连接,用于获取所述激光器件运行过程中的工作温度,并将所述工作温度反馈给所述驱动芯片;
    所述驱动芯片,还用于当监测到所述偏置电流随所述工作温度的降低而降低时,采用偏置电流单闭环补偿方式对所述激光器件进行驱动电流补偿;以及
    当监测到所述偏置电流随所述工作温度的降低而升高时,采用偏置电流和调制电流双闭环补偿方式对所述激光器件进行驱动电流补偿。
  10. 如权利要求9所述的光收发组件,其特征在于,所述光收发组件还包括与所述驱动芯片电性连接的存储器,用于存储基准电压及第一预设温度查找表;所述激光器件包括光电监控二极管,用于监控所述激光器件的平均光功率,根据所述平均光功率的变化提供反馈电压;当监测到所述偏置电流随所述工作温度的降低而降低时,所述驱动芯片,还用于:
    获取激光器件中光电监控二极管的反馈电压,并将所述反馈电压与预设基准电压进行差分运算,得到差分输入电压;
    根据所述差分输入电压,调整所述驱动芯片提供给所述激光器件的偏置电流;其中,所述偏置电流与所述差分输入电压正相关;
    根据所述工作温度查询第一预设温度查找表,获取与所述工作温度对应的第一目标调制电流;
    将所述驱动芯片提供给所述激光器件的调制电流调整至与所述第一目标调制电流相等。
  11. 如权利要求10所述的光收发组件,其特征在于,所述存储器,还用于存储第二预设温度查找表、所述激光器件调试时的常温温度及常温温度下所述驱动芯片提供给所述激光器件的基准调制电流;当监测到所述偏置电流随所述工作温度的降低而升高时,所述驱动芯片,还用于:
    获取激光器件中光电监控二极管的反馈电压,并将所述反馈电压与预设基准电压进行差分运算,得到差分输入电压;
    根据所述差分输入电压,调整所述驱动芯片提供给所述激光器件的偏置电流;其中,所述偏置电流与所述差分输入电压正相关;
    根据所述工作温度查询第二预设温度查找表,获取与所述工作温度对应的第二目标调制电流;或者,
    根据常温温度下所述驱动芯片提供给所述激光器件的基准调制电流,获取与所述工作温度对应的第二目标调制电流;
    将所述驱动芯片提供给所述激光器件的调制电流调整至与所述第二目标调制电流相等。
  12. 如权利要求11所述的光收发组件,其特征在于,所述驱动芯片,还用于:
    将所述工作温度与常温温度进行比较,获取所述工作温度与所述常温温度之间的温差;
    根据所述温差和所述基准调制电流计算与所述工作温度对应的第二目标调制电流。
  13. 一种无源光网络系统,包括:光线路终端、光分配网络和光网络单元,所述光线路终端通过所述光分配网络与所述光网络单元连接,其特征在于,所述光线路终端包括如权利要求9-12任意一项所述的光收发组件,和/或,所述光网络单元包括如权利要求9-12任意一项所述的光收发组件。
PCT/CN2016/078668 2016-04-07 2016-04-07 激光器件驱动电流补偿方法及相关装置、组件和系统 WO2017173619A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/078668 WO2017173619A1 (zh) 2016-04-07 2016-04-07 激光器件驱动电流补偿方法及相关装置、组件和系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/078668 WO2017173619A1 (zh) 2016-04-07 2016-04-07 激光器件驱动电流补偿方法及相关装置、组件和系统

Publications (1)

Publication Number Publication Date
WO2017173619A1 true WO2017173619A1 (zh) 2017-10-12

Family

ID=60000827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/078668 WO2017173619A1 (zh) 2016-04-07 2016-04-07 激光器件驱动电流补偿方法及相关装置、组件和系统

Country Status (1)

Country Link
WO (1) WO2017173619A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111953422A (zh) * 2020-08-17 2020-11-17 西安微电子技术研究所 一种并行光发射电路
CN115986548A (zh) * 2023-03-16 2023-04-18 四川中久大光科技有限公司 一种温度补偿的激光器输出功率自动实时校准装置和方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002067466A2 (en) * 2001-02-15 2002-08-29 Corning Incorporated Automatic dark current compensation
CN1726278A (zh) * 2002-12-16 2006-01-25 英特尔公司 激光驱动电路和系统
CN101453270A (zh) * 2007-12-04 2009-06-10 无锡江南计算技术研究所 激光驱动器及其温度补偿电路
CN103066492A (zh) * 2012-12-14 2013-04-24 青岛镭创光电技术有限公司 激光器宽温电路
CN103956651A (zh) * 2013-08-08 2014-07-30 威盛电子股份有限公司 具有温度补偿的激光驱动电路和激光驱动方法
CN104579458A (zh) * 2014-12-30 2015-04-29 上海贝岭股份有限公司 光功率补偿方法及电路

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002067466A2 (en) * 2001-02-15 2002-08-29 Corning Incorporated Automatic dark current compensation
CN1726278A (zh) * 2002-12-16 2006-01-25 英特尔公司 激光驱动电路和系统
CN101453270A (zh) * 2007-12-04 2009-06-10 无锡江南计算技术研究所 激光驱动器及其温度补偿电路
CN103066492A (zh) * 2012-12-14 2013-04-24 青岛镭创光电技术有限公司 激光器宽温电路
CN103956651A (zh) * 2013-08-08 2014-07-30 威盛电子股份有限公司 具有温度补偿的激光驱动电路和激光驱动方法
CN104579458A (zh) * 2014-12-30 2015-04-29 上海贝岭股份有限公司 光功率补偿方法及电路

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111953422A (zh) * 2020-08-17 2020-11-17 西安微电子技术研究所 一种并行光发射电路
CN115986548A (zh) * 2023-03-16 2023-04-18 四川中久大光科技有限公司 一种温度补偿的激光器输出功率自动实时校准装置和方法

Similar Documents

Publication Publication Date Title
US9281899B2 (en) Wavelength stabilizer for TWDM-PON burst mode DBR laser
CA2722400C (en) Method and apparatus for controlling the optical output power from a burst mode laser
US8543001B2 (en) Cascaded injection locking of fabry-perot laser for wave division multiplexing passive optical networks
US8649681B2 (en) Methods and devices for wavelength alignment in WDM-PON
US8861954B2 (en) Burst-mode receiver equipped with optical amplifier, method for controlling optical amplifier, and system
CN110192358B (zh) 无源光网络系统、光组件及其匹配阻抗调整方法
US9077476B2 (en) Self-characterization tunable optical receiver
CN103891066B (zh) 可调谐光网络单元
US11876564B2 (en) System and methods for coherent burst reception
US20140029635A1 (en) Laser power control using bias and modulation current feedback
TW201301786A (zh) 光功率控制方法和裝置
CN100440756C (zh) 一种无源光网络及其数据通信的方法
WO2013091190A1 (zh) 可调光收发器、无源光网络系统及设备
WO2017173619A1 (zh) 激光器件驱动电流补偿方法及相关装置、组件和系统
US11218221B2 (en) Transmitter optical subassembly, optical component, optical module, and passive optical network system
WO2019226306A1 (en) Burst mode laser driving circuit
US20150381305A1 (en) Self-calibrating tunable laser for optical network
US8644708B2 (en) Coupled seed light injection for wavelength division multiplexing passive optical networks
WO2017045360A1 (zh) 无源光网络的光网络单元及其光模块
WO2019109252A1 (zh) Pon系统中的数据发送和接收方法、网络设备及系统
WO2015184593A1 (zh) 发射机和用于发射光信号的方法
Pachnicke et al. Centralized, pilot-tone-based wavelength-locking for WDMPON with 1 GbE data rate
KR100609702B1 (ko) 광 네트워크 터미널 및 이를 구비한 파장분할다중 기반 광가입자망

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16897553

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16897553

Country of ref document: EP

Kind code of ref document: A1