WO2017173587A1 - 移动协同通信方法及装置 - Google Patents

移动协同通信方法及装置 Download PDF

Info

Publication number
WO2017173587A1
WO2017173587A1 PCT/CN2016/078505 CN2016078505W WO2017173587A1 WO 2017173587 A1 WO2017173587 A1 WO 2017173587A1 CN 2016078505 W CN2016078505 W CN 2016078505W WO 2017173587 A1 WO2017173587 A1 WO 2017173587A1
Authority
WO
WIPO (PCT)
Prior art keywords
ugw
application
cgw
address
umc unit
Prior art date
Application number
PCT/CN2016/078505
Other languages
English (en)
French (fr)
Inventor
徐长春
王岩
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2018552163A priority Critical patent/JP6650535B2/ja
Priority to PCT/CN2016/078505 priority patent/WO2017173587A1/zh
Priority to CN201680084264.7A priority patent/CN108886679B/zh
Priority to EP16897522.5A priority patent/EP3432619B1/en
Priority to BR112018070401-6A priority patent/BR112018070401B1/pt
Publication of WO2017173587A1 publication Critical patent/WO2017173587A1/zh
Priority to US16/149,535 priority patent/US10728829B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/023Services making use of location information using mutual or relative location information between multiple location based services [LBS] targets or of distance thresholds
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/34Modification of an existing route
    • H04W40/38Modification of an existing route adapting due to varying relative distances between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0803Configuration setting
    • H04L41/0823Configuration setting characterised by the purposes of a change of settings, e.g. optimising configuration for enhancing reliability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W60/00Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration
    • H04W60/04Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration using triggered events

Definitions

  • the present invention relates to mobile communication technologies, and in particular, to a mobile cooperative communication method and apparatus.
  • the data center (DC) is gradually moved down in the mobile network, distributed to the edge of the mobile network, and the nearest user equipment (User Equipment, UE) Providing services to shorten the network transmission delay.
  • DC data center
  • UE User Equipment
  • CDN Content Delivery Network
  • MEC Mobile-Edge Computing
  • edge application An application running at the edge of the network for providing application service support to the UE may be referred to as an edge application.
  • edge applications may migrate between DCs. This is because, for example, edge applications follow UE mobility to provide optimal services for UEs; second, resource adjustments within DC plans, such as resource preemption, Balance load and energy saving.
  • the mobile network of mobile operators mainly adopts a centralized gateway architecture, and the gateway is deployed in a higher position, such as a provincial central office room. After the edge application sinks to the edge of the network, in order to optimize routing and shorten transmission delay, the gateway moves down to become an inevitable choice.
  • the downward movement of the gateway means a distributed deployment of the gateway in the mobile network. Gateway downshifting and distributed deployment are another trend in mobile networks.
  • the architecture based on the distributed gateway is an enhanced network architecture proposed on the traditional network architecture based on the control function of the network function control/user (C/U).
  • C/U separation refers to decoupling the control plane function and user plane function of the gateway, and the enhanced network structure includes a Control Plane Gateway (CGW) and a User Plane Gateway (UGW).
  • CGW Control Plane Gateway
  • UGW User Plane Gateway
  • the separation of Control Plane function and User Plane function is one of the technologies to implement distributed gateway.
  • CU separation realizes user plane programming, network function and routing can be dynamically adjusted. Can improve the flexibility of the mobile network.
  • the network architecture based on CU separation includes a Control Plane Gateway (CGW) and a User Plane Gateway (UGW), wherein the CGW can be integrated on the mobile control plane (Moblie).
  • Control Plane, MCP Control Plane, MCP).
  • the MCP sends the forwarding rule to the UGW through the centralized CGW.
  • UE mobile and edge application mobile will result in location change, mobile network faces mobile events of UE mobile and edge application mobile, while the prior art only focuses on the mobility of endpoint devices in their respective management domains, lacking the movement of two objects. The linkage and coordination of sexual events makes it difficult to guide the routing configuration or update between the two objects.
  • the embodiment of the invention provides a mobile cooperative communication method and device to implement routing configuration between a UE and an application.
  • an embodiment of the present invention provides a mobile cooperative communication method, where the method includes: a unified mobile coordinated UMC unit receives application mobile event information of an application, where the application is located at a network edge and is used to provide an application service for a user equipment UE; The UMC unit receives UE mobile event information of the UE; the UMC unit determines a path between the UE and the application according to the application mobile event information and the UE mobile event information. In the embodiment of the present invention, the UMC unit can determine the path between the UE and the application according to the application mobile event information of the application and the UE mobile event information of the UE, thereby implementing routing configuration between the UE and the application.
  • the UE mobile event information is UE attach event information
  • the UE attach event information includes an IP address of the UE and location information of the UE currently accessing the base station
  • the UMC unit according to the application mobile event information and the UE mobile event information, Determining a path between the UE and the application, comprising: determining, by the UMC unit, a first mapping relationship between the IP address of the UE and the port of the first user plane gateway UGW allocated for the UE, and the IP address of the application and the application access a second mapping relationship between the ports of the second UGW, where the first UGW and the second UGW are the same UGW or different UGWs; the UMC unit determines the UE and the application according to the first mapping relationship and the second mapping relationship. path of.
  • the application mobile event information is an application open event information, where the application open event information includes an identifier of the application, an IP address of the application, and location information of the application
  • the method further includes: the UMC unit assigning the port of the second UGW and the second UGW to the application according to a network topology of the mobile communication network and location information of the application; the UMC unit Sending a first request message to the control plane gateway CGW, The first request message is used to access the application to the second UGW; the UMC unit sends a first access rule to a cloud controller, where the first access rule is used for the cloud control The device determines the path applied to the second UGW.
  • the UMC unit before the UMC unit receives the UE attach event information, the UMC unit further includes: the UMC unit receives the application mobile event information of the application by using the cloud controller, where the application mobile event information is an application open event information, and the application open event information includes The application identifier, the application IP address, and the application location, where the application location may be an IP address of the edge cloud server egress gateway or a geographic coordinate of the edge cloud server; the UMC unit allocates the second UGW and accesses the second UGW according to the application location.
  • the UMC unit records the mapping relationship between the application IP address and the port on the second UGW that is accessed; the UMC unit sends an access rule for the application to access the second UGW to the cloud controller, and is used by the cloud controller according to the access.
  • the rule establishes a path to be applied to the second UGW; the UMC unit sends a first request message to the control plane gateway CGW to configure an access port policy applied to the second UGW, and the CGW sends the first request message to the second UGW according to the first request message.
  • a first configuration message configured by the second UGW to configure an access port policy applied to the second UGW according to the first configuration message, to apply the Into the second UGW.
  • the UMC unit receives the application mobile event information of the application, including: the UMC unit receives the application open event information by using the cloud controller; and the UMC unit receives the Before the application opens the event information, the method further includes: the UMC unit sending an open request message to the cloud controller, where the open request message is used to request to start the application, so that the cloud controller is to the edge
  • the cloud server sends an open command, where the open command is used to instruct the edge cloud server to enable the application.
  • the method further includes: the UMC unit receiving a first advertisement message sent by the CGW, where the first advertisement message is used by Notifying the user plane service packet of the UE, wherein the first advertisement message carries flow characteristic information of the user plane service packet; the UMC unit determines the user plane service according to the flow characteristic information The message is a message related to the new service, and a service context corresponding to the UE and the application is established; the UMC unit determines the UE and the location according to the first mapping relationship and the second mapping relationship Determining the path between the applications, the UMC unit determining, according to the first mapping relationship, the second mapping relationship, and flow characteristic information of the user plane service packet, that the UE and the application are in the The path on the exchange plane of the UGW.
  • the method further includes: the UMC unit sending a first update request message to the CGW, where An update request message carries a path between the UE and the application, so that the CGW sends a user plane to the first UGW and the second UGW according to a path between the UE and the application.
  • a packet forwarding rule is configured to connect an access port of the UE on the first UGW to a path between the access port of the second UGW.
  • the method further includes: the UMC unit receiving the application mobile event information sent by the cloud controller, where the application mobile event information carries an IP address of the application and The UMC unit allocates a third UGW and a port that accesses the third UGW according to the IP address of the application and the new location information of the application; the UMC Sending, by the unit, the second access rule that the application accesses the third UGW to the cloud controller, where the second access rule is used by the cloud controller to configure the application to the third UGW a path, where the cloud controller further deletes a path of the application on the second UGW; the UMC unit sends a second request message to the CGW, where the second request message is used to send the application Access to the third UGW.
  • the UE attach event information is information received by the CGW, where the CGW is connected to the UMC unit through a second interface, and the CGW is also connected to the MME, the UMC The unit is connected to the cloud controller through a first interface; or the functional unit of the UMC unit is integrated with the functional unit of the CGW, and the functional unit of the UMC unit passes through the first interface and the cloud controller Connected, the functional unit of the CGW is connected to the MME through an s11 interface; the UMC unit determines a first mapping relationship between an IP address of the UE and a first user plane gateway UGW port allocated to the UE, The UMC unit sends an IP address of the UE and an IP address of a base station that the UE accesses to the CGW, so that the CGW allocates a first UGW to the UE and accesses the first a UGW unit, the UMC unit receives a notification message that is sent by the CGW to allocate a port on the first UGW to the
  • the method further includes: the UMC unit receiving the CGW Transmitting UE location mobility event information, wherein the UE location mobility event information carries an IP address of the UE and an IP address of the target base station; the UMC unit re-relies according to the IP address of the UE and the IP address of the target base station The UE allocates a fourth UGW; the UMC unit sends a gateway reselection request message to the CGW, where the gateway reselection request message carries an IP address of the fourth UGW, so that the CGW will The UE accesses the target base station, and establishes a GTP tunnel between the target base station and the fourth UGW; the UMC unit receives a gateway reselection completion message of the UE sent by the CGW; the UMC unit Updating a mapping relationship between the IP address of the UE and the UGW; the UMC unit re-determining the path of the UE and the application on the UGW exchange plane according to the established service context corresponding to
  • the UE attach event information is information received by the MME, where the MME is connected to the UMC unit through a third interface, and the UMC unit is connected to the CGW through a second interface.
  • the UMC unit is connected to the cloud controller through a first interface; or the functional unit of the UMC unit is integrated with the functional unit of the MME, and the UMC unit functional unit passes the first interface and the a cloud controller is connected, the functional unit of the MME is connected to the CGW through an s11 interface; or the MME functional unit and the CGW functional unit are integrated on the MCP, and the UMC unit is integrated on the MCP;
  • the UMC unit determines The first mapping relationship between the IP address of the UE and the port on the first user plane gateway UGW allocated to the UE, including: determining, by the UMC unit, the first UGW and the accessing the UE a port of the UGW, the port information of the first UGW allocated by the UMC unit to the UE is sent to the MME, so that the MME
  • the method further includes: receiving, by the UMC unit, UE location mobility event information sent by the MME, where the UE location mobility event information carries an IP address of the UE and a target base station An IP address; the UMC unit re-allocates a fourth UGW to the UE according to an IP address of a target base station of the UE and a service context related to the UE; the UMC unit sends a gateway reselection request message to the MME The IP address of the fourth UGW is carried in the gateway reselection request message, so that the MME accesses the UE to the target base station, and establishes the target base station and the fourth UGW through the CGW.
  • the UMC unit receives a gateway reselection completion message of the UE sent by the MME; the UMC unit updates a mapping relationship between an IP address of the UE and the fourth UGW; The UMC unit re-determines the path of the UE and the application on the UGW exchange plane according to the established service context corresponding to the UE; the UMC unit sends a third update request for updating the user plane path to the CGW.
  • the third update request message carries the path of the re-determined UE and the application on the UGW exchange plane, so that the CGW re-determines the UE and the application on the UGW exchange plane.
  • the path is converted into a user plane packet forwarding rule, to connect the access port of the UE on the fourth UGW to the path of the UGW access port where the application is located, and delete the UE in the first UGW.
  • the path from the access port to the UGW access port where the application is located.
  • the UMC unit receives the UE attach event information, including: the UMC unit receives a first session setup request message sent by an MME, where the MME communicates with the UMC unit through an S11 interface. Connected, the UMC unit is connected to the cloud controller through the first interface, and the UMC unit is connected to the CGW through the second interface; the UMC unit acquires the attach event information of the UE according to the first session establishment request message.
  • the UMC unit determines a first mapping relationship between the IP address of the UE and the first user plane gateway UGW port allocated to the UE, including: the UMC unit according to the IP address of the base station accessed by the UE An address, where the UE is allocated a first UGW and a port that accesses the first UGW.
  • the method further includes: receiving, by the UMC unit, a second session establishment request message sent by the MME, where the second session establishment request message is that the MME receives from the UE
  • the UE base station handover request message of the source base station is sent to the UMC unit;
  • the UMC unit parses the location movement event information of the UE according to the second session establishment request message, where the UE location location event information is Carrying the IP address of the UE and An IP address of the target base station;
  • the UMC unit re-allocating a fourth UGW to the UE according to the IP address of the UE and the IP address of the target base station;
  • the UMC unit sends a third session establishment request message to the CGW, where
  • the third session establishment request message carries the IP of the fourth UGW, so that the CGW accesses the UE to the target base station, and establishes a GTP between the target base station and the fourth UGW.
  • a UMC unit receives a UE bearer modification response message sent by the CGW; the UMC unit determines, according to the UE bearer modification response message, that the UE and the fourth UGW reselection are completed; the UMC unit is updated. a mapping relationship between the IP address of the UE and the fourth UGW; the UMC unit re-determines the UE and the application on the UGW exchange plane according to the established service context corresponding to the UE The UMC unit sends a fourth update request message for updating the user plane path to the CGW, where the fourth update request message carries the re-determined UE and the application on the UGW exchange plane.
  • the CGW converts the re-determined path of the UE and the application on the UGW switching plane into a user plane packet forwarding rule, to connect the access port of the UE on the fourth UGW to the application.
  • the UGW accesses the path of the port, and deletes the path of the UE's access port on the first UGW to the UGW access port where the application is located.
  • the UMC unit before the receiving, by the UMC unit, the UE attach event information, the UMC unit receives application access event information from the CGW, where the application access event information is the CGW according to the CGW.
  • the application access event information is the CGW according to the CGW.
  • the UMC unit determines, according to the flow identification information, that the user plane service packet is a packet related to a new service, and establishes a service context corresponding to the UE and the application; the UMC Determining, by the unit, the path between the UE and the application according to the first mapping relationship and the second mapping relationship, including: the UMC unit according to the first mapping relationship, the second mapping Flow characteristics of the system and the user plane traffic information packet and determining that the UE is in the path of the exchange surface UGW the application.
  • the method further includes: the UMC unit receiving the CGW The application mobile event information that is sent, wherein the application mobile event information is that the CGW receives an undefined forwarding rule sent by the third UGW, and the data packet from the application determines the location migration of the application according to a preset rule.
  • the application mobile event information carries an IP address of the application and a port IP of a third UGW that receives the application data packet;
  • the UMC unit receives the application according to the IP address of the application The port IP of the third UGW of the data packet determines that the application is moved;
  • the UMC unit updates the mapping relationship between the IP address of the application and the port on the UGW;
  • the UMC unit is based on the IP address of the application. a third mapping relationship between the port on the third UGW and a first mapping relationship between the IP address of the UE and the first UGW, and determining a path between the UE and the application.
  • an embodiment of the present invention provides a mobile cooperative communication device having a function of implementing the behavior of a UMC unit in the above method example.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the structure of the mobile collaborative communication device includes a processing module and a communication module, the processing module being configured to support the UMC unit to perform a corresponding function in the above method.
  • the communication module is used to support communication between the UMC unit and other devices.
  • the UMC unit may also include a storage unit for coupling with the processing module that holds the necessary program instructions and data for the UMC unit.
  • the processing module can be a processor
  • the communication module can be a transceiver
  • the storage unit can be a memory.
  • an embodiment of the present invention provides an MME, where the MME can implement the function of the MME in the foregoing method example.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • an embodiment of the present invention provides a UGW capable of implementing the function of UGW behavior in the foregoing method example.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • an embodiment of the present invention provides a CGW, which can implement the function of CGW behavior in the foregoing method example.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • an embodiment of the present invention provides a communication system, where the system includes the mobile cooperative communication device of the foregoing aspect, and the system may further include a solution provided by the embodiment of the present invention.
  • Other devices that interact with the communication device such as at least one of the MME, UGW, and CGW described above.
  • an embodiment of the present invention provides a computer storage medium for storing computer software instructions for use in the mobile cooperative communication device, including a program designed to perform the above aspects.
  • the embodiment of the present invention provides a mobile cooperative communication method and device, which selects an appropriate UGW for the UE and the edge application according to the mobile event of the UE and the edge application, and re-plans the configuration of the forwarding path between the UE and the edge application, thereby implementing Optimal routing configuration between the UE and the edge application.
  • FIG. 1 is a schematic diagram of a possible system architecture provided by an embodiment of the present invention
  • Figure 2 is a schematic view showing a connection structure of a UMC unit
  • FIG. 3 is a schematic flowchart of a mobile cooperative communication method according to an embodiment of the present invention.
  • FIG. 4 is a schematic flowchart diagram of another mobile cooperative communication method according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a possible system architecture provided by an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of an application scenario of a UE and an edge application accessing an initial setup service according to an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram of communication between a UE and an edge application accessing an initial setup service according to an embodiment of the present invention
  • FIG. 8 is a schematic diagram of communication of a method for parsing an edge application that a UE needs to access according to an embodiment of the present invention
  • FIG. 9 is a schematic diagram of communication of another method for parsing an edge application that a UE needs to access according to an embodiment of the present invention.
  • FIG. 10 is a diagram showing an application scenario of cooperative communication in which only a UE moves after a UE is connected to an edge application according to an embodiment of the present invention
  • FIG. 11 is a schematic diagram of communication of cooperative communication in which only a UE moves after a UE is connected to an edge application according to an embodiment of the present invention
  • FIG. 12 is a diagram showing an application scenario of cooperative communication between a UE and an edge application after UE mobility according to an embodiment of the present invention
  • FIG. 13 is a schematic diagram of a cooperative communication scenario in which only an edge application moves after a UE is connected to an edge application according to an embodiment of the present invention
  • FIG. 14 is a schematic diagram of communication of cooperative communication in which only the edge application moves after the UE is connected to the edge application according to the embodiment of the present invention
  • FIG. 15 is a diagram showing a target scene of cooperative communication between a UE and an edge application after the edge application is moved according to an embodiment of the present invention
  • FIG. 16 is a diagram showing an application scenario of coordinated communication followed by a UE mobile edge application after a UE is connected to an edge application according to an embodiment of the present invention
  • FIG. 17 is a schematic diagram of communication of cooperative communication followed by a UE mobile edge application according to an embodiment of the present invention.
  • FIG. 18 is a schematic diagram showing the effect of coordinated communication followed by a UE mobile edge application according to an embodiment of the present invention.
  • FIG. 19 is a diagram showing another possible system architecture provided by an embodiment of the present invention.
  • FIG. 20 is a schematic diagram of communication between another UE and an edge application accessing an initial setup service according to an embodiment of the present invention
  • FIG. 21 is a schematic diagram of communication of cooperative communication in which only UE moves after the UE is connected to the edge application according to an embodiment of the present invention
  • FIG. 22 is a schematic diagram of communication of another type of cooperative communication followed by a UE mobile edge application after an edge connection by an UE according to an embodiment of the present invention
  • FIG. 23 is a schematic diagram of still another possible system architecture provided by an embodiment of the present invention.
  • FIG. 24 is a schematic diagram of communication of another UE and an edge application access initial establishment service according to Embodiment 5 of the present invention.
  • FIG. 25 is a schematic diagram of communication of cooperative communication in which only UE moves after a UE is connected to an edge application according to an embodiment of the present invention
  • FIG. 26 is a schematic diagram of communication of a cooperative communication followed by a UE mobile edge application after the UE is connected to the edge according to an embodiment of the present invention
  • FIG. 27 is a schematic diagram of still another possible system architecture provided by an embodiment of the present invention.
  • FIG. 28 is a schematic diagram of communication of another UE and an edge application accessing an initial setup service according to an embodiment of the present invention
  • FIG. 29 is a diagram showing a cooperative communication scenario in which only the edge application moves after the UE is connected to the edge application according to the embodiment of the present invention.
  • FIG. 30 is a diagram showing a possible system architecture provided by an embodiment of the present invention.
  • FIG. 31 is a schematic diagram of still another possible system architecture provided by an embodiment of the present invention.
  • FIG. 32 is a schematic diagram of still another possible system architecture provided by an embodiment of the present invention.
  • FIG. 33A is a schematic diagram showing a possible structure of a UMC unit involved in the above embodiment
  • Fig. 33B shows another possible structural diagram of the UMC unit involved in the above embodiment.
  • the network architecture and the service scenario described in the embodiments of the present invention are used to more clearly illustrate the technical solutions of the embodiments of the present invention, and do not constitute a limitation of the technical solutions provided by the embodiments of the present invention.
  • the technical solutions provided by the embodiments of the present invention are equally applicable to similar technical problems.
  • FIG. 1 is a schematic diagram of a possible system architecture provided by an embodiment of the present invention.
  • a unified switching plane is built based on the UGW.
  • the UGW is used as the unified switching plane between the UE and the edge application.
  • the UE and the edge application are finally connected to the UGW and connected through the switching plane built by the UGW.
  • E2E end-to-end
  • UGW User Data Network
  • VLAN Virtual Local Area Network
  • VxLAN Virtual Extensible Local Area Network
  • FIG. 2 shows a connection structure diagram of a UMC unit.
  • the UMC unit is connected to the MCP and the cloud control management center (also referred to as a Cloud Controller, cloud controller).
  • the cloud control management center also referred to as a Cloud Controller, cloud controller.
  • the UMC unit can acquire the location change event (including attachment, movement, separation, etc.) of the UE and the user plane service connection establishment event from the MCP in real time; on the other hand, it can be real-time (from the Cloud Controller) Get location change events for the edge app (including app open, migrate, close, etc.). Based on this, the UMC unit can coordinate and manage the mobility of the two objects from a global perspective in a scenario where the UE and the edge application are two mobile objects moving independently, in the case that the IP addresses of the UE and the edge application remain unchanged.
  • the specific implementation process includes: instructing the MCP to re-select the appropriate UGW; instructing the MCP to update the packet forwarding rule on the UGW to ensure service continuity between the UE and the edge application;
  • the controller moves the edge application to the appropriate edge cloud server, or requests the Cloud Controller to enable the corresponding edge application; instructs the Cloud Controller to connect the edge application to the specified UGW.
  • the services undertaken by the UMC unit mainly include: (1) selecting an appropriate UGW for the UE and the edge application according to the topology, the service connection, and the configured cooperation policy, and establishing or updating the IP address between the UE/edge application and the UGW. (2) Establish or update a packet forwarding rule between the access port of the UE on the UGW to the access port of the edge application.
  • one edge application may serve the terminal at the same time, that is, the connection between the terminal and the edge application is many-to-many.
  • the UMC unit needs to know the current active service connection of the UE and the location of the edge application with which the service connection occurs in order to correctly select the UGW.
  • the UMC unit needs to acquire the user plane service connection through the MCP, establish a service connection context, and need to perceive the UE to disconnect from the UGW. Piece, or application close event, delete the corresponding business connection context.
  • the present invention proposes to use the physical port of the UGW as the location identifier of the UE and the edge application.
  • the UMC unit selects an appropriate UGW for the UE and the edge application based on the network topology, the active service connection, and the collaboration policy.
  • the mapping between the IP address and the UGW is re-established, and the packet forwarding rule between the access port of the UE on the UGW and the access port of the edge application is refreshed.
  • the collaborative process is to analyze all the affected service flows based on the topology relationship between the base station, the UGW, and the edge cloud.
  • the collaboration policy is based on the collaboration policy (such as the shortest priority of the path, the shortest priority, and the priority of the service flow. It can follow the user movement, etc.), from the perspective of E2E path optimization, select the appropriate UGW (port) for the UE and the edge application, and re-plan the path between the UE and the edge application (such as the forwarding path).
  • the coordinated manner of the UMC unit may include:
  • the mobile collaborative communication method of the present invention is applicable to a communication scenario in which an edge application sinks, a distributed deployment to a mobile network edge, a mobile gateway sinks, and a distributed deployment.
  • the UMC unit receives application application event information of the application and/or UE mobile event information of the UE, where the application is located at the edge of the network and is used to provide an application service for the UE; and according to the application mobile event information and the UE mobile event information To determine the path between the UE and the edge application path.
  • the above UMC unit can be deployed on the control plane of the mobile communication network.
  • the mobile event of the application may include an event of opening, migrating, and the like of the application, and the UMC unit obtains the mobile event information of the application by using the MCP, such as the CGW and the cloud controller; the mobile event of the UE may include an event such as attachment and migration of the UE, and the UMC unit.
  • the UE mobile event information of the UE is obtained by the MCP, such as the CGW and the MME.
  • the above application may be an edge application.
  • an application is an edge application as an example.
  • FIG. 3 is a schematic flowchart of a mobile cooperative communication method according to an embodiment of the present invention, where the method includes the following processes:
  • the UMC unit receives the application mobile event information of the edge application, where the edge application is an edge application requested by the user equipment UE;
  • the UMC unit receives the UE mobile event information of the UE
  • the UMC unit determines a forwarding path between the UE and the edge application according to the application mobility event information and the UE mobility event information.
  • the order of execution of the S101 portion and the S102 portion is not limited, and the scheme of the embodiment of the present invention may include at least one of the S101 portion and the S102 portion and the S103 portion.
  • the UMC unit can determine the forwarding path between the UE and the edge application according to the application mobile event information of the edge application and the UE mobile event information of the UE, thereby implementing an optimal route between the UE and the edge application. Configuration.
  • FIG. 4 is a schematic flowchart of another mobile cooperative communication method according to an embodiment of the present invention. For the same or similar content as the method shown in FIG. 3, reference may be made to the detailed description related to FIG. 3, and details are not described herein.
  • the method shown in Figure 4 includes:
  • the UMC unit receives application movement event information of the edge application
  • the application mobile event information is used to enable event information for the application
  • the application open event information includes an identifier of the edge application, an IP address of the edge application, and location information of the edge application.
  • the method further includes: the UMC unit sending an open request message to the cloud controller, where the open request message is used to request to enable the opening
  • the edge application is configured to enable the cloud controller to send an open command to the edge cloud server, where the open command is used to instruct the edge cloud server to enable the edge application.
  • the UMC unit receives the UE attach event information of the UE, where the UE attaches something
  • the piece of information carries the IP address of the UE and the location information of the UE accessing the base station;
  • the UE attach event information here is the foregoing UE mobile event information, and the location information of the UE accessing the base station may be an IP address, a cell identifier, a coordinate position, and the like of the base station.
  • the UMC unit determines a first mapping relationship between the IP address of the UE and the port of the first UGW allocated for the UE, and between the IP address of the edge application and the port of the second UGW accessed by the edge application. Second mapping relationship;
  • the first UGW and the second UGW are the same UGW or different UGWs; the UMC unit may also record the first mapping relationship and the second mapping relationship.
  • the determining the second mapping relationship includes: the UMC acquiring the subscription information of the UE, where the subscription information carries the edge application identifier of the UE subscription; the UMC is determined according to the edge application identifier of the UE subscription Whether the edge application requested by the UE has accessed the second UGW; or the UMC acquires the user plane service packet of the UE, where the user plane service packet carries the edge requested by the UE. And determining, by the UMC, whether the edge application requested by the UE has accessed the second UGW according to the edge application identifier that the UE requests to access.
  • the method further includes: the UMC unit assigning the second to the edge application according to the network topology of the mobile communication network and the location information of the edge application. a UGW and a second UGW port; the UMC unit sends a first request message to the control plane gateway CGW, where the first request message is used to connect the edge application to the second UGW; the UMC unit sends the first access rule to the cloud controller. The first access rule is used by the cloud controller to determine a forwarding path applied by the edge to the second UGW.
  • the step of accessing the edge application to the second UGW may be performed between the S201 part and the S203 part, or may be, in S203, the UMC unit determines the IP address of the UE and the UE is allocated. After the first mapping relationship between the ports of the first UGW, the second mapping relationship between the IP address of the edge application and the port of the second UGW accessed by the edge application is performed before.
  • the UMC unit determines a forwarding path between the UE and the edge application according to the first mapping relationship and the second mapping relationship.
  • the method further includes: receiving, by the UMC unit, a first advertisement message sent by the CGW, where the first advertisement message is used to notify a user plane service packet of the UE Arriving, wherein the first notification message carries the user plane service a flow characteristic information of the packet; the UMC unit determines, according to the flow characteristic information, that the user plane service packet is a packet related to a new service, and establishes a service context corresponding to the UE and the edge application; Then, the S204 includes: the UMC unit determines, according to the first mapping relationship, the second mapping relationship, and the flow characteristic information of the user plane service packet, an exchange plane between the UE and the edge application in the UGW. The forwarding path on.
  • the UMC unit sends a first update request message to the CGW, where the first update request message carries a forwarding path between the UE and the edge application, so that The CGW sends a user plane packet forwarding rule to the first UGW and the second UGW according to the forwarding path between the UE and the edge application, to connect the UE to the first UGW.
  • the ingress port applies a forwarding path between the access ports of the second UGW to the edge.
  • the UMC unit may be based on the first mapping relationship between the IP address of the UE and the first UGW, and the second mapping relationship between the IP address of the edge application and the second UGW. Configure the optimal packet forwarding path between UE and edge applications.
  • the UMC unit may acquire the attachment event information of the UE through the CGW or the MME, and the following may be different according to the difference of the UE attachment event information object to the UMC unit, whether the edge application requested by the UE has been opened after receiving the UE attachment event information, and the like.
  • the solution of the embodiment of the present invention is described in more detail.
  • FIG. 5 is a schematic diagram of a possible system architecture provided by an embodiment of the present invention.
  • the UMC unit is connected to the CGW through a second interface (also referred to as an if2 interface), and the UMC unit is connected to the cloud controller through a first interface (also referred to as an if1 interface), and the MME is connected to the CGW, and There is no connection between UMC units.
  • the functions implemented by the UMC unit through the if1 interface include:
  • the UMC unit learns the migration event information of the edge application from the cloud controller, where the migration event information of the edge application includes the migration status of the edge application (such as edge application start migration, migration completion, etc.), and the source edge server location of the edge application.
  • the target edge cloud server location may be a geographic location coordinate, or may be an export IP address of the edge cloud server in the mobile network.
  • the UMC unit learns the working state change of the edge application from the cloud controller, wherein the working state of the edge cloud includes shutdown, normal operation, and the like.
  • the UMC unit sends an edge application mobile request message to the cloud controller, where the edge application mobile request message carries the edge application identifier and the location identifier of the target edge cloud server after the edge application is moved, where the edge cloud server location may be
  • the geographic location coordinates may also be the export IP address of the edge cloud server in the mobile network.
  • the UMC unit initiates a forwarding rule update request message to the cloud controller.
  • the functions implemented by the f2 interface include:
  • the CGW advertises the user plane data flow information to the UMC unit, where the user plane data flow information includes the service flow identifier of the UE, such as a quintuple (the source IP address, the destination IP address, the source port number of the UGW, and the destination port). Number and upper protocol type) or complete user plane message.
  • the service flow identifier of the UE such as a quintuple (the source IP address, the destination IP address, the source port number of the UGW, and the destination port). Number and upper protocol type) or complete user plane message.
  • the UMC unit learns the mobile event information of the UE from the CGW, where the mobile event information of the UE includes a mobile event type (such as attach, split, handover, service request, etc.), a current access base station IP, and a source access base station IP.
  • a mobile event type such as attach, split, handover, service request, etc.
  • a current access base station IP such as attach, split, handover, service request, etc.
  • a source access base station IP such as attach, split, handover, service request, etc.
  • the UMC unit initiates a gateway UGW reselection request message to the CGW, and may carry the recommended UGW.
  • the UMC unit initiates a user plane connection change request message to the CGW through if2, and the user plane connection change request message carries new routing information.
  • FIG. 6 is a diagram showing an application scenario of a UE and an edge application accessing an initial setup service according to an embodiment of the present invention.
  • a VM Virtual Machine
  • the edge cloud may be a data center deployed to the edge of the mobile network.
  • both the UE and the edge application are connected to the UGW1, and the forwarding path is that the data between the UE, the UGW1, and the edge application interact with each other.
  • FIG. 7 is a schematic diagram of communication between a UE and an edge application accessing an initial setup service according to an embodiment of the present invention.
  • the method shown in Fig. 7 can be applied to the scene shown in Fig. 6.
  • the mobile network can automatically establish a service connection to the edge application for the UE.
  • the process for the UE and the edge application to access the mobile network includes:
  • the UMC unit receives an application start event message of the edge application sent by the cloud controller.
  • the cloud controller After the edge application is initialized, the cloud controller advertises an application start event message to the UMC unit, where the application start event message carries the identifier of the edge application, the IP address, and the location identifier of the edge cloud server where the edge application is located.
  • the UMC selects a UGW on the edge application according to the principle of proximity (such as a port of UGW1 in FIG. 5), and applies the edge as an edge on the mobile switching plane. Access location.
  • the UMC unit records the mapping between the IP address of the edge application and the port on UGW1.
  • the UMC unit sends an access rule for the edge application to access the UGW1 to the cloud controller.
  • the cloud controller configures the edge cloud server network egress forwarding rule to establish a forwarding path of the edge application from the edge cloud server to the UGW1, where the forwarding path may be an IP route, an Ethernet switch, a tunnel, or the like.
  • the UMC unit sends a request message to the CGW requesting to configure an access port policy applied by the edge to the corresponding port of UGW1.
  • the CGW sends a configuration message to the UGW1, and configures an access port policy (such as IP routing, Ethernet switching, and tunneling) applied to the UGW1 to connect the edge application to the UGW1.
  • an access port policy such as IP routing, Ethernet switching, and tunneling
  • the UE attaches to the mobile network, and after the MME completes the RRC establishment, authentication, NAS security, and location update procedures, the MME sends a session creation request message to the CGW.
  • the CGW parses the attachment event of the UE, advertises the mobile (attach) event to the UMC unit, and carries the IP address of the eNB accessed by the UE.
  • the UMC unit determines the UGW allocated for the UE, and sends the selected UGW information to the CGW.
  • the CGW may allocate the UGW to the UE, and the CGW sends the information of the UGW allocated to the UE to the UMC unit.
  • the UMC unit records the mapping relationship between the IP address of the UE and the UGW.
  • the UGW allocated to the UE is a port on UGW1, and the UMC unit records the mapping relationship between the IP address of the UE and the port on UGW1.
  • the CGW sends a GTP tunnel rule to the UGW1, and the UGW1 creates a GTP tunnel with the CGW.
  • the CGW sends a session establishment response message to the MME.
  • the MME sends an Attach Accept message to the eNB to initiate a context establishment request.
  • the eNB After receiving the message, the eNB reconfigures the RRC.
  • the mobile network After receiving the message, the eNB reconfigures the RRC.
  • the mobile network performs AS security, carries the update process, and completes the UE attach procedure.
  • the UE initiates a data connection request, and the data packet arrives at UGW1. Since the UGW1 does not have a corresponding forwarding rule, the user plane data stream incoming message is advertised to the CGW, where the user plane data stream incoming message carries the complete user plane message.
  • the CGW parses the incoming message of the user plane data stream, it determines that the new service is connected, and advertises the user plane service connection establishment event to the UMC unit, and carries the service identifier information, such as the source and destination IP addresses, the port number, and the upper layer protocol type. Wait.
  • the UMC unit sends the calculated forwarding path to the CGW, requesting the CGW to update the user plane forwarding path.
  • the CGW converts the user plane forwarding path into a user plane packet forwarding rule, and sends the packet to the corresponding UGW.
  • the UGW configures a forwarding rule to clear the forwarding path from the access port of the UE to the access port of the edge application.
  • the UMC unit can automatically load the application server for the UE by using the scheme shown in FIG. 8 or FIG. 9.
  • FIG. 8 is a schematic diagram of communication of a method for parsing an edge application that a UE needs to access according to an embodiment of the present invention. As shown in FIG. 8 , the method parses an application that the UE needs to access on the control plane, for example, through APN resolution, and the specific processes include:
  • the MME sends a session creation request message to the CGW.
  • the CGW parses the attachment event to the UE, advertises the mobile (attach) event to the UMC unit, and carries the IP address of the eNB accessed by the UE.
  • the UMC unit determines the UGW allocated for the UE, and the UMC unit records the mapping relationship between the IP address of the UE and the UGW.
  • the UMC unit sends the selected UGW information to the CGW.
  • the UMC unit determines the application requirements of the UE, such as according to the APN information of the UE.
  • the UMC unit sends a request message to the cloud controller to open the corresponding edge application.
  • the request message carries the application identifier of the edge application requested to be opened, the specification, the location identifier of the edge cloud server where the request is located, and the like.
  • the cloud controller creates an edge application of the corresponding specification according to the request message of the open edge application sent by the UMC unit, and sends an edge application open command to the edge cloud server.
  • the edge cloud server allocates resources and starts application services.
  • the CGW sends a GTP tunnel rule to the UGW1, and the UGW1 creates a GTP tunnel with the CGW.
  • the CGW sends a session establishment response message to the MME.
  • the MME sends an Attach Accept message to the eNB to initiate a context establishment request. After receiving the message, the eNB reconfigures the RRC. The mobile network performs AS security, carries the update process, and completes the UE attach procedure.
  • the edge cloud server sends an edge application open complete message to the cloud controller.
  • the cloud controller notifies the UMC unit of an application opening event, and carries information such as an application identifier, an IP address, and an (edge cloud) location identifier.
  • the UMC unit allocates a UGW1 connection port for the edge application, and records the mapping relationship between the IP of the edge application and the UGW1 port.
  • the UMC unit sends an access rule for the edge application to access the UGW1 to the cloud controller.
  • the cloud controller configures the edge cloud server network egress forwarding rule to establish a forwarding path of the edge application from the edge cloud server to the UGW1, where the forwarding path may be an IP route, an Ethernet switch, a tunnel, or the like.
  • the UMC unit sends a request message to the CGW requesting to configure an access port policy applied by the edge to the corresponding port of UGW1.
  • the CGW sends a configuration message to the UGW1, and configures an access port policy (such as IP routing, Ethernet switching, and tunneling) applied to the UGW1 to connect the edge application to the UGW1.
  • an access port policy such as IP routing, Ethernet switching, and tunneling
  • FIG. 9 shows another method for parsing an edge application that a UE needs to access according to an embodiment of the present invention.
  • the communication diagram of the law the user application packet sent by the UE can be obtained to obtain the edge application information that the UE needs to access, such as the DNS message initiated by the UE to obtain the access requirement of the UE.
  • the method shown in Figure 9 includes:
  • S501 is the same as the S401 part.
  • the MME sends a session establishment request message to the CGW.
  • the S503 is the same as the S402 part, and details are not described herein.
  • the UMC unit determines the UGW allocated for the UE, and sends the selected UGW information to the CGW.
  • the CGW may allocate the UGW to the UE, and the CGW sends the information of the UGW allocated to the UE to the UMC unit.
  • the UMC unit records the mapping relationship between the IP address of the UE and the UGW.
  • the UMC unit records the mapping relationship between the IP address of the UE and the port on UGW1.
  • the CGW sends a GTP tunnel rule to the UGW1, and the UGW1 creates a GTP tunnel with the CGW.
  • the CGW sends a session establishment response message to the MME.
  • the MME sends an Attach Accept message to the eNB, and initiates a context establishment request message.
  • the eNB after receiving the context establishment request message, the eNB reconfigures the RRC.
  • the mobile network performs AS security, carries the update process, and completes the UE attach procedure.
  • the UE initiates a data connection request, and the data packet arrives at UGW1. Since the UGW1 does not have a corresponding forwarding rule, the user plane data stream incoming message is advertised to the CGW, where the user plane data stream incoming message carries the complete user plane message.
  • the CGW parses the incoming message of the user plane data stream, it determines that the new service is connected, and notifies the UMC unit of the user plane service connection establishment event, and carries the complete user plane message.
  • the UMC unit parses the user plane message sent by the UE, and determines the edge application that the UE needs to access, such as determining the edge application that the UE needs to access according to the domain name information in the message payload.
  • the UMC unit sends a request message to the cloud controller to open the corresponding edge application.
  • the request message carries the application identifier of the edge application requested to be opened, the specification, the location identifier of the edge cloud server where the request is located, and the like.
  • the cloud controller opens the corresponding edge according to the request sent by the UMC unit.
  • the request message is used to create an edge application of the corresponding edge on the corresponding edge cloud server, and the edge application open command is sent to the edge cloud server, and the edge cloud server allocates resources according to the edge application open command to start the application service.
  • the parts S515 to S516 are the same as or similar to the parts of S411 to S412 in FIG. 8. For details, refer to the detailed description in FIG. 8, and details are not described herein again.
  • Step S517 The UMC unit records the mapping relationship between the IP address of the edge application and the UGW, and establishes a service connection context.
  • the UMC unit finds the path of the new service source and destination IP address from the mapping between the IP address of the previously created UE and the UGW, and calculates a path from the access port of the UE to the access port of the edge application. .
  • the parts S518-S521 are the same as or similar to the parts S414-S417 in FIG. 8. For details, refer to the detailed description in FIG. 8, and details are not described herein again.
  • the UMC unit sends the calculated path of the access port of the UE to the access port of the edge application to the CGW, requesting the CGW to update the user plane forwarding path.
  • the CGW translates the user plane forwarding path into a user plane packet forwarding rule and delivers it to the corresponding UGW.
  • the UGW configures a forwarding rule to clear the forwarding path from the access port of the UE to the access port of the edge application.
  • the application scenario of the method further includes that only the UE has moved, only the edge application has moved, or the UE has moved, and the edge application also moves.
  • the method further includes:
  • the edge application migration event information that is sent by the cloud controller, where the edge application migration event information carries an IP address of the edge application and the edge application new location information;
  • the UMC allocates a third UGW and a port that accesses the third UGW to the edge application according to the IP address of the edge application and the new location information of the edge application;
  • the UMC records a mapping relationship between an IP address of the edge application and a port on the third UGW;
  • the method further includes:
  • the UMC receives the UE location mobility event information sent by the CGW or the MME, where the UE location mobility event information carries the IP address of the UE and the IP address of the target base station;
  • the UMC re-allocates the fourth UGW to the UE according to the IP address of the UE and the IP address of the target base station;
  • the UMC Transmitting, by the UMC, a gateway reselection request message to the CGW or the MME, where the gateway reselection request message carries an identifier IP of the fourth UGW, where the CGW accesses the UE to the target base station. And establishing a GTP tunnel between the target base station and the fourth UGW;
  • the UMC updates a mapping relationship between an IP address of the UE and the fourth UGW;
  • the UMC sends an update request message for updating the user plane forwarding path to the CGW, where the update request message carries the re-determined forwarding path of the UE and the edge application on the UGW switching plane, where
  • the CGW converts the re-determined forwarding path of the UE and the edge application on the UGW switching plane into a user plane packet forwarding rule, and sends the user plane packet forwarding rule to the fourth UGW and And the UGW configured for the edge application to allocate the corresponding packet forwarding rule for the UGW and the edge application to be connected to the UE on the fourth UGW.
  • the forwarding path of the access port to the UGW access port where the edge application is located; the CGW also deletes the forwarding of the access port of the UE on the first UGW to the UGW access port where the edge application is located path.
  • FIG. 10 is a diagram showing an application scenario of cooperative communication in which only a UE moves after a UE is connected to an edge application according to an embodiment of the present invention.
  • the forwarding path between the UE and the edge application is a path between the UE, the UGW1, the UGW2, and the edge application.
  • the forwarding path between the previously configured UE and the edge application may be a non-optimal path.
  • the UMC unit may re-allocate the UGW gateway to the UE according to the moved position of the UE, and recalculate the UE to the edge.
  • the forwarding path between the applications ensures that the forwarding path between the UE and the edge application is the optimal forwarding path.
  • FIG. 11 is a schematic diagram of communication of collaborative communication in which only a UE moves after a UE is connected to an edge application according to an embodiment of the present invention. As shown in FIG. 11, the specific process of the method includes:
  • the UE measures the signal strength of the different cells, and reports the measurement result to the source eNB.
  • the source eNB determines to perform the cell handover according to the signal strength of each cell reported by the UE.
  • the source eNB initiates a cell handover request message of the UE to the MME.
  • the MME initiates a setup session request message to the CGW, requesting the CGW to reselect UGW3 for the UE.
  • the CGW sends an advertisement message of the UE mobility to the UMC unit, where the advertisement message carries the location mobility event information of the UE, such as the IP address of the UE, the IP address of the target access eNB, and the like.
  • the UMC unit reselects the appropriate UGW for the UE according to the network topology, the UE service connection situation, and the collaboration policy.
  • the UMC unit initiates a gateway UGW reselection request message to the CGW, carrying the IP of the UGW3.
  • the CGW initiates a GTP tunnel establishment rule to the UGW3, and establishes a GTP tunnel from the target eNB to the target UGW3.
  • the CGW sends a session establishment response message to the MME.
  • the MME initiates a Handover request message to the target eNB, carrying the IP address of the UGW3 and the TEIP.
  • the target eNB establishes a GTP bearer with UGW3 and returns a Handover request acknowledgement message to the MME.
  • the MME initiates an indirect data forwarding tunnel establishment procedure, and establishes a Source eNB ⁇ ->UGW1 ⁇ ->UGW2 ⁇ ->Target eNB data forwarding tunnel, and forwards the downlink user data buffered by the source eNB to the target eNB.
  • the MME sends a UE handover command to the source eNB.
  • the source eNB sends a handover command to the UE.
  • the UE disconnects the RRC connection with the source eNB, and establishes an RRC connection with the target eNB, and sends a handover confirmation message to the target eNB.
  • the target eNB sends a radio handover announcement message to the MME.
  • the MME initiates a GTP tunnel update procedure, updates the tunnel forwarding rule on the UGW3, and establishes a GTP tunnel with the target eNB.
  • the CGW informs the UMC unit that the UGW reselection is completed.
  • the UMC unit updates the mapping relationship between the IP of the UE and the UGW, finds the service connection context related to the UE from the service connection record, and recalculates the forwarding path on the UGW exchange plane.
  • the UMC unit sends the new path to the CGW, requesting the CGW to update the packet forwarding rule on the UGW.
  • CGW updates the forwarding rule on UGW, establishes a forwarding path from UGW3 to UGW2, and deletes the forwarding path of UGW1 to UGW2.
  • the MME performs a TAU procedure, deletes the bearer between the Source eNB and the UGW1, and deletes the indirect forwarding tunnel.
  • FIG. 12 is a schematic diagram of an application scenario for cooperative communication between a UE and an edge application after UE mobility according to an embodiment of the present invention.
  • the UE is re-enabled by the mobile cooperative communication method.
  • the UGW is allocated, and the forwarding path between the UE and the edge application is recalculated to ensure that the forwarding path between the UE and the edge application maintains an optimal state, optimizes the end-to-end service connection, and maintains service continuity.
  • FIG. 13 is a schematic diagram of a collaborative communication scenario in which only an edge application moves after a UE is connected to an edge application according to an embodiment of the present invention.
  • the forwarding path between the UE and the edge application is UE, UGW3, UGW2, and edge applications.
  • the forwarding path between the previously configured UE and the edge application may be
  • the UMC unit can re-allocate the UGW for the edge application according to the moved location of the edge application, and recalculate the forwarding path between the UE and the edge application, ensuring that the forwarding path between the UE and the edge application is the most Excellent forwarding path.
  • FIG. 14 is a schematic diagram of communication of collaborative communication in which only the edge application is moved after the UE is connected to the edge application according to the embodiment of the present invention. As shown in FIG. 14, the specific process of the method includes:
  • the cloud controller advertises the edge application mobile event to the UMC unit, and the notification message carries the edge application.
  • the UMC unit after determining the edge application mobility, the UMC unit performs mobile collaboration, reselects the UGW access port for the edge application, and allocates an access policy.
  • section S703 the UMC unit sends an access rule to the cloud controller.
  • the cloud controller configures the edge cloud network egress forwarding rule to establish a forwarding path from the edge cloud to the UGW3, and the path may be IP, Ethernet, tunnel, or the like.
  • the UMC unit configures the access port policy of the corresponding port of UGW3 to the requesting CGW, and the forwarding rules on UGW2 and UGW3.
  • the CGW sends the configuration to the UGW3, configures the access port policy (IP routing, Ethernet switching, tunnel, etc.), connects the application to UGW3, and updates the packet forwarding rules on UGW2 and UGW3.
  • the access port policy IP routing, Ethernet switching, tunnel, etc.
  • FIG. 15 is a schematic diagram of a target scenario for cooperative communication between a UE and an edge application after the edge application is moved according to an embodiment of the present invention.
  • the edge application is re-allocated by the mobile cooperative communication method.
  • the new UGW is used to re-calculate the forwarding path between the UE and the edge application, and the forwarding path between the UE and the edge application is maintained in an optimal state.
  • the mobile network can be implemented by using the method of the embodiment of the present invention. Real-time access to migration events of edge applications, automatically adjust user plane forwarding rules, and maintain business continuity.
  • FIG. 16 is a diagram showing an application scenario of cooperative communication followed by a UE mobile edge application after a UE is connected to an edge application according to an embodiment of the present invention. It can be seen from FIG. 16 that before the UE moves, the forwarding path between the UE and the edge application is the UE, the UGW1, and the edge application. After the UE moves, the forwarding path between the previously configured UE and the edge application may be non-optimal. Path, at this time, the UMC unit triggers the following migration of the edge application according to the mobile situation of the UE, and ensures that the forwarding path between the UE and the edge application is an optimal forwarding path.
  • FIG. 17 is a schematic diagram of communication of cooperative communication followed by a UE mobile edge application according to an embodiment of the present invention. As shown in FIG. 17, the process includes:
  • S801 to S804 are the same as S601 to S604 and will not be described again.
  • the UMC unit acquires the UE mobile event, performs mobile coordination, and the specific UMC unit reselects the UGW for the UE (such as UGW2 in FIG. 17), and determines that after the UE handover is completed,
  • the edge application selects the edge cloud server close to UGW2.
  • S806 to S820 are edge application switching procedures, which are the same as the S606 to S620.
  • the UE is switched from UGW1 to UGW2.
  • CGW updates the forwarding rules on UGW1 and UGW2.
  • the UMC unit determines that the UE mobile handover is complete, and sends an edge application mobility request message to the cloud controller, where the edge application mobility request message carries the edge application IP address and the location information of the target cloud server.
  • the edge application migrates from the source edge cloud server to the target edge cloud server.
  • the cloud controller advertises the edge application mobile event, carrying the IP address of the edge application and the target location information.
  • the UMC unit records the correspondence between the IP address of the edge application and the UGW, and establishes a service connection context, and calculates a path from the access port of the UE to the access port of the edge application.
  • the UMC unit sends an access rule to the cloud controller.
  • the cloud controller configures the edge cloud network egress forwarding rule to establish a forwarding path from the edge cloud to the UGW1, and the path may be an IP route, an Ethernet switch, or a tunnel.
  • the UMC unit requests the CGW to configure the access port policy of the corresponding port of the UGW2, and the forwarding rule.
  • the CGW sends the configuration to the UGW2, configures the access port policy (IP routing, Ethernet switching, tunnel, etc.), connects the application to the UGW2, and configures the access port from the UE to the edge application.
  • the forwarding path of the access port is the S829 part: the CGW sends the configuration to the UGW2, configures the access port policy (IP routing, Ethernet switching, tunnel, etc.), connects the application to the UGW2, and configures the access port from the UE to the edge application.
  • the forwarding path of the access port IP routing, Ethernet switching, tunnel, etc.
  • FIG. 18 is a schematic diagram showing the effect of coordinated communication followed by a UE mobile edge application according to an embodiment of the present invention.
  • the UMC unit switches the UGW for the UE, and triggers the migration of the edge application, and moves the edge application to the location closest to the UE, so that the edge application can move following the UE movement.
  • the method of the embodiment of the present invention adds a new network element mobility coordination UMC unit to the mobile network control plane, establishes a signaling connection with the CGW and the cloud computing management center cloud controller, and senses the UE and the real-time in real time. Applying the movement events of two objects, the mobility of the two endpoints of the service flow is coordinated, ensuring that the service connection is not interrupted during the movement.
  • the method of the embodiment of the present invention implements moving in an edge application, and the gateway sinks in a scenario, in a On the network element, the mobile events of the edge application and the UE are co-processed.
  • the mobile core network can only manage the movement of the UE.
  • the cloud management center can only manage the migration of applications and virtual machines, and cannot manage two types at the same time. Insufficient object movement events.
  • the service can be ensured without interruption when the IP address of the UE and the edge application are unchanged, and the E2E forwarding path optimization can be completed as needed to ensure minimum delay.
  • FIG. 19 is a schematic diagram of another possible system architecture provided by an embodiment of the present invention.
  • the UMC unit is connected to the CGW through an if2 interface, and the UMC unit passes the if1 interface and the cloud controller (cloud controller).
  • the UMC unit is connected to the MME through a third interface (which may also be referred to as an if3 interface), and the MME is connected to the CGW.
  • a third interface which may also be referred to as an if3 interface
  • the MME is connected to the CGW.
  • the same or similar content as the system architecture shown in FIG. 5 can be referred to the detailed description of FIG. 5, and details are not described herein.
  • the functions implemented by the if3 interface include:
  • the UMC unit learns the mobile event information of the UE from the MME, where the mobile event information of the UE UE includes a mobile event type (such as attach, split, handover, service request, etc.), a current access base station IP, and a source access base station IP.
  • a mobile event type such as attach, split, handover, service request, etc.
  • a current access base station IP such as attach, split, handover, service request, etc.
  • a source access base station IP such as attach, split, handover, service request, etc.
  • the UMC unit initiates a gateway UGW reselection request message to the MME, and may carry the recommended UGW.
  • FIG. 20 is a schematic diagram of communication between another UE and an edge application accessing an initial setup service according to an embodiment of the present invention.
  • the method shown in FIG. 20 can be performed in the scenario shown in FIG. 6.
  • the method shown in FIG. 20 is similar to the method shown in FIG. 7. Except that the S307-S308 part shown in FIG. 7 is changed to the S907 part, other processes are initially established with the UE and the edge application access shown in FIG.
  • the collaborative communication process is the same and will not be described again.
  • the S907 part is: the UE attaches to the mobile network, and after the MME completes the RRC establishment and establishment, the authentication, the NAS security, and the location update process, the MME notifies the UMC unit of the mobile (attachment) event, and carries the IP address of the eNB accessed by the UE. .
  • the edge application requested by the UE has been started in advance. If the edge application applied by the UE is not loaded when the UE is attached, the UMC unit can automatically adopt the method shown in FIG. 8 and FIG.
  • the specific implementation process differs from the flow shown in FIG. 8 and FIG. 9 only in that the attachment event of the UE is notified by the MME to the UMC unit, instead of being advertised by the CGW, and other processes are the processes shown in FIG. 8 and FIG. The same, no longer repeat them.
  • FIG. 21 is a schematic diagram of communication of cooperative communication in which only UE moves with an edge application after the UE is connected according to an embodiment of the present invention, and the method shown in FIG. 21 can be in the scenario shown in FIG.
  • the method shown in FIG. 21 is similar to the method shown in FIG. 11. Except for the following changes based on the method shown in FIG. 11, the other portions are the same as those in FIG. 11, and will not be described again. Among them, these changes include:
  • S603 and S604 in FIG. 11 are changed to S1003: the MME sends an announcement message of the UE mobility event to the UMC unit, where the advertisement message carries the location mobility event information of the UE, such as the IP address of the UE, the target access eNB IP address, and the like.
  • S606 in FIG. 11 is changed to S1005: the UMC unit initiates a gateway UGW reselection request message to the MME, and carries the IP of UGW3.
  • Step S1006 is added on the basis of FIG. 11: the MME sends a setup session request message to the CGW.
  • S618 in FIG. 11 is changed to S1008: the MME sends a UGW reselection completion message to the UMC unit.
  • the method for the mobile cooperative communication in which only the edge application is moved after the UE is connected to the edge application may refer to the method shown in FIG. 14 and will not be described again.
  • FIG. 22 is a schematic diagram of communication of another type of cooperative communication followed by a UE mobile edge application after an edge connection by an UE according to an embodiment of the present invention.
  • the method shown in FIG. 22 is similar to the method shown in FIG. 17, except for the following changes, other contents may refer to the detailed description of FIG. 17, and details are not described herein again.
  • S803 and S804 are changed to S1103: the MME sends a mobile event notification message to the UMC unit, and carries the IP address of the UE, the IP address of the eNB that the target accesses, and the like.
  • S806 in the communication flow shown in FIG. 17 is changed to S1105 in this embodiment: the UMC unit initiates a gateway UGW reselection request message to the MME, and carries the IP of the selected UGW.
  • S1106 is added on the basis of FIG. 17: the MME sends a create session request message to the CGW.
  • the indirect data forwarding tunnel creation, the eNB handover, the eNB handover, the radio bearer creation, and the GTP bearer update procedure correspond to steps S810 to S817 in FIG.
  • the MME sends a UGW reselection complete message to the UMC unit.
  • S1112 to S1122 correspond to S819 to S829 in FIG. 17, respectively, and will not be described again.
  • the method of the embodiment adds a new network element to the control plane of the mobile network.
  • the mobility coordination UMC unit establishes a signaling connection with the MME, the CGW, and the cloud computing management center cloud controller, determines the mobile event of the UE and the application object in real time, and coordinates the mobility of the two endpoints of the service flow to ensure that the service connection is not There is no interruption during the move.
  • FIG. 23 is a schematic diagram of still another possible system architecture provided by the embodiment of the present invention.
  • the UMC unit is located between the MME and the CGW, and the UMC unit is connected to the MME through the S11 interface, and the S11 interface is extended.
  • the interface if2 interface is connected to the CGW.
  • the UMC unit is connected to the cloud controller (cloud controller) through the if1 interface.
  • the UMC unit resolves the mobile event of the UE through the S11 interface, and determines whether the UGW needs to be reselected and which UGW is selected. mobile.
  • the same or similar content as the system architecture shown in FIG. 5 or FIG. 19 can be referred to the detailed description of FIG. 5 or FIG. 19, and details are not described herein.
  • FIG. 24 is a schematic diagram of communication of another UE and an edge application access initial setup service according to Embodiment 5 of the present invention.
  • the cooperative communication method of the UE and the edge application accessing the initial establishment service shown in FIG. 24 can be performed in the scenario shown in FIG. 6, and the process shown in FIG. 24 includes:
  • S1201 to S1206 are the same as S301 to S306 in Fig. 7 .
  • the MME sends a create session request message to the UMC unit through the S11 interface.
  • the UMC unit parses the received create session request message, determines the attach event of the UE, and selects the UGW for the UE.
  • the UMC unit sends a create session request message to the CGW, where the message carries the IP address of the UGW allocated for the UE.
  • the CGW sends a GTP tunnel rule to the UGW1, and the UGW1 creates a GTP tunnel with the CGW.
  • the CGW sends a create session response message to the UMC unit.
  • the UMC unit records the mapping relationship between the IP address of the UE and the UGW1 port according to the Create Session Response message.
  • the UMC unit sends a create session response message to the MME.
  • S1214 to S1219 correspond to S313 to S318 in FIG. 7, respectively, and will not be described again.
  • the edge application requested by the UE has been started in advance. If the edge application of the UE is not loaded when the UE is attached, the UMC unit may be separately shown in FIG. 8 and FIG. 9 in the third embodiment.
  • the method automatically records the edge application for the UE, and the specific process is as shown in Figure 8. The process is the same as that shown in Figure 9, and will not be described again.
  • FIG. 25 is a schematic diagram of communication of cooperative communication in which only UE moves after the UE is connected to the edge application according to the embodiment of the present invention.
  • the method shown in FIG. 25 can be performed in the scenario shown in FIG.
  • the method shown in FIG. 25 is similar to the method shown in FIG. 21, and the difference from the method shown in FIG. 21 includes:
  • the MME sends a session establishment request message to the UMC unit through the S11 interface.
  • the UMC unit parses the received session establishment request message, determines the mobile event of the UE, performs mobile coordination, and reselects the UGW for the UE.
  • the UMC unit sends a session establishment request message to the CGW, carrying the IP address of the UGW selected for the UE again.
  • the CGW returns a bearer modification response message to the UMC unit.
  • the UMC unit parses the bearer modification response message, determines that the UGW reselection is completed, updates the mapping relationship between the IP address of the UE and the UGW, and recalculates the forwarding path of the UGW access port of the UE from the access port to the edge application. .
  • the cooperative communication method in the scenario where only the edge application is moved after the UE is connected to the edge application is the same as that in the third embodiment, and is not described again.
  • FIG. 26 is a schematic diagram of communication of a cooperative communication followed by a UE mobile edge application after the UE is connected to the edge according to the embodiment of the present invention.
  • the method shown in FIG. 25 is similar to the method shown in FIG. 21. Compared with the flow shown in FIG. 22, the difference includes:
  • the MME sends a session establishment request message to the UMC unit through the S11 interface.
  • the UMC unit parses the received session establishment request message, determines the mobile event of the UE, performs mobile coordination, reselects the UGW for the UE, and determines the target location of the edge application movement.
  • the UMC unit sends a session establishment request message to the CGW, carrying the IP address of the UGW selected for the UE again.
  • the CGW returns a bearer modification response message to the UMC unit.
  • the UMC unit parses the bearer modification response message, determines that the UGW reselection is completed, updates the mapping relationship between the IP address of the UE and the UGW, and recalculates the forwarding path of the UGW access port of the UE from the access port to the edge application. .
  • the solution of the embodiment of the present invention adds a new network element mobility coordination UMC unit to the mobile network control plane, establishes a signaling connection with the CGW and the cloud computing management center cloud controller, and determines the UE in real time.
  • the ability to manage the migration of applications and virtual machines does not manage the lack of mobile events for both objects.
  • the invention can ensure that the service is not interrupted if the IP address is unchanged.
  • the E2E forwarding path optimization can also be completed as needed to ensure minimal delay.
  • FIG. 27 shows still another possible system architecture diagram provided by the embodiment of the present invention.
  • the UMC unit is connected to the CGW through the if2 interface, which is different from the third embodiment in that the UMC unit cannot pass.
  • the control plane obtains the location information of the edge application and cannot initiate the edge application movement.
  • the UMC unit can determine the location change of the edge application by using the packet sent by the edge application to update the forwarding rule on the UGW to maintain service continuity.
  • FIG. 27 the same or similar to the system architecture shown in FIG. 5, FIG. 19 or FIG. 23 can be referred to the detailed description of FIG. 5, FIG. 19 or FIG. 23, and details are not described herein.
  • the functions implemented by the UMC unit through the if2 interface include:
  • the GWC advertises the user plane data stream information to the UMC unit, where the user plane data stream information includes the service stream identifier of the UE, such as a quintuple (the source IP address, the destination IP address, the source port number of the UGW, and the destination port of the UE). Number and upper protocol type) or complete user plane message.
  • the service stream identifier of the UE such as a quintuple (the source IP address, the destination IP address, the source port number of the UGW, and the destination port of the UE). Number and upper protocol type) or complete user plane message.
  • the UMC unit learns the mobile event information of the UE from the CGW, where the mobile event information of the UE UE includes a mobile event type (such as attach, split, handover, service request, etc.), a current access base station IP, and a source access base station IP.
  • a mobile event type such as attach, split, handover, service request, etc.
  • a current access base station IP such as attach, split, handover, service request, etc.
  • a source access base station IP such as attach, split, handover, service request, etc.
  • the UMC unit initiates a gateway UGW reselection request message to the CGW, and may carry the recommended UGW.
  • the UMC unit initiates a user plane connection change request message to the CGW through if2, and the user plane connection change request message carries new routing information.
  • the CGW advertises the migration event of the edge application to the UMC unit, and mainly relates to the location change of the edge application.
  • the specific parameters include: the IP address of the edge application, and the IP on the UGW that receives the packet from the edge application.
  • FIG. 28 shows another UE and edge application access initial establishment service provided by an embodiment of the present invention. Schematic diagram of communication. The method shown in Figure 28 can be executed in the scenario shown in Figure 6, and specifically includes:
  • the UGW1 after receiving the data packet from the edge application that does not define the forwarding rule, the UGW1 sends a notification message to the CGW that the edge application data stream arrives.
  • the UE when the CGW determines the new edge application access based on the preset rule, the UE sends an advertisement message of the edge application access to the UMC unit, where the advertisement message carries the IP address of the edge application and the port IP of the UGW receiving the data stream. .
  • the UMC unit records the mapping relationship between the IP address of the edge application and the UGW.
  • FIG. 29 is a diagram showing a collaborative communication scenario in which only the edge application moves after the UE is connected to the edge application according to the embodiment of the present invention. As shown in FIG. 29, the processing of the method includes:
  • the edge application is migrated from the source edge cloud server to the target edge cloud server, and the edge application is successfully opened on the target edge cloud server, and the data message is sent to the UGW, which may be data or ARP being interacted with the UE.
  • the UGW receives the data packet of the undefined forwarding rule, and sends a notification message to the CGW that the edge application data stream arrives.
  • the CGW when the CGW determines that the edge application location changes based on the preset rule, the CGW sends an advertisement message of the edge application mobile to the UMC unit, where the advertisement message carries the IP address of the edge application and the port IP of the UGW that receives the data stream.
  • the performing the mobile collaboration includes: updating the mapping relationship between the IP address of the edge application and the UGW, and recalculating the forwarding path of the UE access location to the edge application access location.
  • the solution of the embodiment of the present invention is different from the prior art in that a new network element mobility coordination UMC unit is added to the mobile network control plane, and a signaling connection is established with the CGW to determine the movement of the UE and the application object in real time.
  • the event, the mobility of the two endpoints of the coordinated service flow ensures that the service connection is not interrupted during the movement process, and the method of the embodiment co-processes the mobile events of the application and the UE two objects on one network element, and changes the traditional network.
  • the mobile core network can only manage the movement of the UE.
  • the cloud management center can only manage the migration of applications and virtual machines, and cannot manage the shortage of mobile events of the two objects at the same time.
  • the invention can ensure that the service is not interrupted if the IP address is unchanged.
  • the E2E forwarding path optimization can also be completed as needed to ensure minimal delay.
  • FIG. 30 shows a possible system architecture diagram provided by an embodiment of the present invention, and FIG. Compared with the system structure, in Fig. 30, the UMC unit is integrated with the CGW.
  • the mobile cooperative communication method supported in the system structure diagram shown in FIG. 30 is similar to the scheme shown in FIG. 5 to FIG. 18, and reference may be made to the detailed description of FIG. 5 to FIG. 18, and details are not described herein again.
  • FIG. 31 is a schematic diagram of still another possible system architecture provided by the embodiment of the present invention.
  • the UMC unit and the MME are integrated, and the mobile collaboration and UGW selection functions are completed.
  • An interface exists between the MME and the cloud controller, and the mobile event information, the application mobile instruction, and the like are interactively applied.
  • the interface between the MME and the CGW is extended by S11 (increasing the if2 interface function in the architecture shown in Figure 19).
  • the signaling flow refers to the scheme shown in FIG. 20 to FIG. 22, in which the if3 interface message is not visible, and the if2 interface information is merged with the S11 interface.
  • FIG. 32 is a schematic diagram of still another possible system architecture provided by the embodiment of the present invention. As shown in FIG. 32, the MME and the CGW are integrated into an MCP, and the UMC unit function is integrated, and only the if1 with the cloud controller is externally provided. Let the flow refer to the scheme shown in FIGS. 20 to 22.
  • the method of the embodiment of the invention solves the problem of route optimization and service continuity caused by dual mobility of the UE and the edge application in the future mobile network sinking to the mobile network edge and the gateway distribution scenario.
  • a cooperative function network element UMC unit real-time sensing and cooperative processing of two mobile events, UE mobile and edge application mobile, fills in the lack of end-to-end mobility management functions in the scenario, and extends the gateway reselection function. It can support independent or simultaneous movement of UE and edge applications, increasing the flexibility of the network.
  • each network element such as a CGW, UGW, and UMC unit, etc.
  • each network element such as a CGW, UGW, and UMC unit, etc.
  • each network element includes hardware structures and/or software modules corresponding to each function.
  • the present invention can be implemented in a combination of hardware or hardware and computer software in combination with the elements and algorithm steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods for implementing the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present invention.
  • the embodiments of the present invention may divide the function modules of the MME, the CGW, the UGW, the UMC unit, and the like according to the foregoing method.
  • each function module may be divided according to each function, or two or more functions may be integrated into one.
  • Processing module The above integrated modules can be used It can be implemented in the form of hardware, or it can be implemented in the form of software function modules. It should be noted that the division of the module in the embodiment of the present invention is schematic, and is only a logical function division, and the actual implementation may have another division manner.
  • FIG. 33A shows a possible structural diagram of the UMC unit involved in the above embodiment.
  • the UMC unit 1000 includes a processing module 1002 and a communication module 1003.
  • the processing module 1002 is configured to perform control management on the action of the UMC unit 1000.
  • the processing module 1002 is configured to support the UMC unit 1000 to perform the mobile cooperative communication method in FIG. 3, the mobile cooperative communication method in FIG. 4, and the UE in FIG.
  • the communication process of the edge application accessing the initial establishment service, the communication process of the method for parsing the edge application that the UE needs to access in FIG. 8 and FIG. 9 , and the UE in FIG.
  • the communication process the communication process of the cooperative communication of the edge application moving only after the UE is connected to the edge application in FIG. 14, the communication process of the cooperative communication followed by the UE mobile edge application in FIG. 17, the UE and the edge application in FIG.
  • the communication process of initially establishing a service the communication process of the cooperative communication in which only the UE moves after the UE is connected to the edge application in FIG. 21, and the communication communication performed by the UE mobile edge application after the UE is connected to the edge in FIG. 22
  • the process, the UE and the edge application in FIG. 24 access the communication process of initially establishing the service, and the communication process of the cooperative communication in which only the UE moves after the UE is connected to the edge application in FIG. 25, FIG.
  • the communication module 1003 is configured to support communication between the UMC unit 1000 and other network entities, such as communication with UGW, MME, CGW, cloud controller, and the like.
  • the UMC unit 1000 may further include a storage module 1001 for storing program codes and data of the UMC unit.
  • the processing module 1002 may be a processor or a controller, for example, a central processing unit (CPU), a general-purpose processor, a digital signal processor (DSP), and an application specific integrated circuit (Application). -Specific Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA) or other programmable logic device, transistor logic device, hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the communication module 1003 can It is a transceiver, transceiver circuit or communication interface.
  • the storage module 1001 may be a memory.
  • the UMC unit When the processing module 1002 is a processor, the communication module 1003 is a transceiver, and the storage module 1001 is a memory, the UMC unit according to the embodiment of the present invention may be the UMC unit shown in FIG. 33B, and FIG. 33B shows the above embodiment. Another possible structural diagram of the UMC unit involved.
  • the UMC unit 1010 includes a processor 1012, a transceiver 1013, and a memory 1011.
  • UMC unit 1010 may also include a bus 1014.
  • the transceiver 1013, the processor 1012, and the memory 1011 may be connected to each other through a bus 1014.
  • the bus 1014 may be a Peripheral Component Interconnect (PCI) bus or an Extended Industry Standard Architecture (abbreviated). EISA) bus and so on.
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the bus 1014 can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Fig. 33B, but it does not mean that there is only one bus or one type of bus.
  • the embodiments of the present invention further provide devices that can implement the MME, the CGW, and the UGW in the foregoing method examples, and the devices can perform the functions corresponding to the MME, the CGW, and the UGW involved in the foregoing methods. These devices have a structure similar to that shown in FIG. 33A or FIG. 33B and will not be described again herein.
  • the steps of a method or algorithm described in connection with the present disclosure may be implemented in a hardware, or may be implemented by a processor executing software instructions.
  • the software instructions may be composed of corresponding software modules, which may be stored in a random access memory (RAM), a flash memory, a read only memory (ROM), an erasable programmable read only memory ( Erasable Programmable ROM (EPROM), electrically erasable programmable read only memory (EEPROM), registers, hard disk, removable hard disk, compact disk read only (CD-ROM) or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor to enable the processor to read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and the storage medium can be located in an ASIC. Additionally, the ASIC can be located in a core network interface device.
  • the processor and the storage medium may also exist as discrete components in the core network interface device.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a general purpose or special purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明涉及移动通信技术,尤其涉及一种移动协同通信方法及装置。该方法中,统一移动协同UMC单元接收应用的应用移动事件信息,其中,该应用位于网络边缘并用于为用户设备UE提供应用服务;UMC单元接收UE的UE移动事件信息;UMC单元根据应用移动事件信息和UE移动事件信息,确定UE与应用之间的路径。本发明实施例能够实现UE和边缘应用之间的路由配置。

Description

移动协同通信方法及装置 技术领域
本发明涉及移动通信技术,尤其涉及一种移动协同通信方法及装置。
背景技术
在未来5G超低时延(如1毫秒)需求下,数据中心(Data Center,DC)在移动网络中的位置逐渐下移,分布式部署到移动网络边缘,就近为用户设备(User Equipment,UE)提供服务,从而达到缩短网络传输时延的目的。例如,内容分发网络(Content Delivery Network,CDN)、移动边缘计算(Mobile-Edge Computing,MEC)均是基于这种思想提出的降低传输时延的解决方案。
运行在网络边缘用于为UE提供应用服务支持的应用可以称为边缘应用。DC下沉分布式部署后,边缘应用可能在DC间迁移,这是因为:其一,边缘应用跟随UE移动,为UE提供最优服务;其二,DC计划内的资源调整,如资源抢占、平衡负载及节能等。
当前移动运营商的移动网络主要采用集中网关架构,网关部署在较高的位置,如省市中心机房中。边缘应用下沉到网络边缘后,为了优化路由、缩短传输时延,网关下移成为必然的选择。网关下移意味着网关在移动网络中的分布式部署。网关下移和分布式部署是移动网络的另一个趋势。
随着网络架构的演进,基于分布式网关的架构是基于网络功能的控制/用户(Control/User,C/U)分离的思路在传统的网络架构上提出的一种增强网络架构。C/U分离是指将网关的控制面功能和用户面功能解耦,而这种增强网络结构包括控制面网关(Control Plane Gateway,CGW)和用户面网关(User Plane Gateway,UGW)
控制面(Control Plane)功能与用户面(User Plane)功能的分离(简称为CU分离)技术是实现分布式网关的技术之一,CU分离实现了用户面可编程,网络功能和路由可动态调整,能够提升移动网络的灵活性。基于CU分离的网路架构中包括控制面网关(Control Plane Gateway,CGW)和用户面网关(User Plane Gateway,UGW),其中,CGW可以融合在移动控制面(Moblie  Control Plane,MCP)中。MCP通过集中的CGW向UGW下发转发规则。
DC下沉,网关下移和分布化后,UE和边缘应用之间的业务连接发生在移动网络内部。UE移动和边缘应用移动会导致位置改变,移动网络面临着UE移动和边缘应用移动的移动事件,而现有技术都只关注各自管理域里的端点设备的移动性,缺乏对两种对象的移动性事件的联动和协同,从而难以指导这两种对象之间的路由配置或更新。
发明内容
本发明实施例提供了一种移动协同通信方法及装置,以实现UE和应用之间的路由配置。
一方面,本发明实施例提供了一种移动协同通信方法,该方法包括:统一移动协同UMC单元接收应用的应用移动事件信息,其中,该应用位于网络边缘并用于为用户设备UE提供应用服务;UMC单元接收UE的UE移动事件信息;UMC单元根据应用移动事件信息和UE移动事件信息,确定UE与应用之间的路径。本发明实施例中,UMC单元能够根据应用的应用移动事件信息和UE的UE移动事件信息,确定UE和应用之间的路径,从而实现UE和应用之间的路由配置。
在一种可能的设计中,UE移动事件信息为UE附着事件信息,UE附着事件信息包括UE的IP地址及UE当前接入基站的位置信息;UMC单元根据应用移动事件信息和UE移动事件信息,确定UE与应用之间的路径,包括:UMC单元确定UE的IP地址与为UE分配的第一用户面网关UGW的端口之间的第一映射关系,以及应用的IP地址与应用所接入的第二UGW的端口之间的第二映射关系,其中,第一UGW与第二UGW为相同的UGW或不同的UGW;UMC单元根据第一映射关系和第二映射关系,确定UE与应用之间的路径。
在一种可能的设计中,所述应用移动事件信息为应用开启事件信息,所述应用开启事件信息包括所述应用的标识、所述应用的IP地址和所述应用的位置信息,所述方法还包括:所述UMC单元根据所述移动通信网络的网络拓扑结构和所述应用的位置信息,为所述应用分配所述第二UGW和所述第二UGW的所述端口;所述UMC单元向控制面网关CGW发送第一请求消息, 所述第一请求消息用于将所述应用接入到所述第二UGW上;所述UMC单元向云控制器发送第一接入规则,所述第一接入规则用于所述云控制器确定所述应用到所述第二UGW的路径。
在一种可能的设计中,UMC单元接收UE附着事件信息之前还包括:UMC单元通过云控制器接收应用的应用移动事件信息,其中应用移动事件信息为应用开启事件信息,应用开启事件信息中包括应用标识、应用IP地址及应用位置,其中应用位置可以是边缘云服务器出口网关的IP地址或者边缘云服务器的地理坐标;UMC单元根据应用位置,为应用分配第二UGW以及接入第二UGW的端口;UMC单元记录应用IP地址与接入的第二UGW上的端口之间的映射关系;UMC单元向云控制器发送应用接入第二UGW的接入规则,用于云控制器根据接入规则建立应用到第二UGW的路径;UMC单元向控制面网关CGW发送配置应用在第二UGW上的接入端口策略的第一请求消息,用于CGW根据第一请求消息向第二UGW下发第一配置消息,用于第二UGW根据第一配置消息配置应用在第二UGW上的接入端口策略,以将应用接入到第二UGW上。
在一种可能的设计中,UMC单元接收应用的应用移动事件信息,包括:所述UMC单元通过所述云控制器接收所述应用开启事件信息;所述UMC单元通过所述云控制器接收所述应用开启事件信息之前,所述方法还包括:所述UMC单元向所述云控制器发送开启请求消息,所述开启请求消息用于请求开启所述应用,以使得所述云控制器向边缘云服务器发送开启命令,所述开启命令用于指示所述边缘云服务器开启所述应用。
在一种可能的设计中,所述UMC单元确定所述第一映射关系之后,所述方法还包括:所述UMC单元接收所述CGW发送的第一通告消息,所述第一通告消息用于通知所述UE的用户面业务报文到来,其中,所述第一通告消息中携带所述用户面业务报文的流特性信息;所述UMC单元根据所述流特性信息确定所述用户面业务报文为与新业务相关的报文,并建立对应于所述UE和所述应用的业务上下文;所述UMC单元根据所述第一映射关系和所述第二映射关系确定所述UE与所述应用之间的路径,包括:所述UMC单元根据所述第一映射关系、所述第二映射关系和所述用户面业务报文的流特性信息确定所述UE与所述应用在所述UGW的交换面上的路径。
在一种可能的设计中,所述UMC单元确定所述UE与所述应用之间的路径之后,所述方法还包括:所述UMC单元向所述CGW发送第一更新请求消息,所述第一更新请求消息中携带所述UE与所述应用之间的路径,以使得所述CGW根据所述UE与所述应用之间的路径向所述第一UGW和所述第二UGW发送用户面报文转发规则,以连通所述UE在所述第一UGW上的接入端口到所述应用在所述第二UGW的接入端口之间的路径。
在一种可能的设计中,所述方法还包括:所述UMC单元接收所述云控制器发送的所述应用移动事件信息,其中,所述应用移动事件信息中携带所述应用的IP地址和所述应用新的位置信息;所述UMC单元根据所述应用的IP地址和所述应用新的位置信息,为所述应用分配第三UGW以及接入所述第三UGW的端口;所述UMC单元向所述云控制器发送所述应用接入所述第三UGW的第二接入规则,所述第二接入规则用于所述云控制器配置所述应用到所述第三UGW的路径,还用于所述云控制器删除所述应用在所述第二UGW上的路径;所述UMC单元向所述CGW发送第二请求消息,所述第二请求消息用于将所述应用接入到所述第三UGW上。
在一种可能的设计中,所述UE附着事件信息为通过所述CGW接收的信息,其中,所述CGW通过第二接口与所述UMC单元连接,所述CGW还与MME连接,所述UMC单元通过第一接口与所述云控制器连接;或者,所述UMC单元的功能单元与所述CGW的功能单元集成为一体,所述UMC单元的功能单元通过第一接口与所述云控制器连接,所述CGW的功能单元通过s11接口与所述MME连接;所述UMC单元确定所述UE的IP地址与为所述UE分配的第一用户面网关UGW端口之间的第一映射关系,包括:所述UMC单元将所述UE的IP地址以及所述UE接入的基站的IP地址发送给所述CGW,以使得所述CGW为所述UE分配第一UGW以及接入所述第一UGW的端口;所述UMC单元接收所述CGW发送的为所述UE分配第一UGW上的端口的通知消息;或者,所述UMC单元确定为所述UE分配第一UGW以及接入所述第一UGW的端口;所述UMC单元将为所述UE分配的所述第一UGW上的端口信息送给所述CGW,以使得所述CGW建立所述第一UGW对所述UE的承载。
在一种可能的设计中,所述方法还包括:所述UMC单元接收所述CGW 发送的UE位置移动事件信息,其中所述UE位置移动事件信息中携带所述UE的IP地址以及目标基站的IP地址;所述UMC单元根据所述UE的IP地址以及目标基站的IP地址重新为所述UE分配第四UGW;所述UMC单元向所述CGW发送网关重选请求消息,其中所述网关重选请求消息中携带所述第四UGW的IP地址,以使得所述CGW将所述UE接入所述目标基站,并建立所述目标基站与所述第四UGW之间的GTP隧道;所述UMC单元接收所述CGW发送的所述UE的网关重选完成消息;所述UMC单元更新所述UE的IP地址与UGW之间的映射关系;所述UMC单元根据已经建立的与所述UE对应的业务上下文,重新确定所述UE与所述应用在UGW交换面上的路径;所述UMC单元向所述CGW发送更新用户面路径的第二更新请求消息,其中所述第二更新请求消息中携带所述重新确定的所述UE与所述应用在UGW交换面上的路径,以使得所述CGW将重新确定的所述UE与所述应用在UGW交换面上的路径转换为用户面报文转发规则,以连通所述UE在所述第四UGW上的接入端口到所述应用所在的UGW接入端口的路径;并删除所述UE在所述第一UGW上的接入端口到所述应用所在的UGW接入端口的路径。
在一种可能的设计中,所述UE附着事件信息为通过MME接收的信息,其中,所述MME通过第三接口与所述UMC单元连接,所述UMC单元通过第二接口与所述CGW连接,所述UMC单元通过第一接口与所述云控制器连接;或者,所述UMC单元的功能单元与所述MME的功能单元集成为一体,所述UMC单元功能单元通过第一接口与所述云控制器连接,所述MME的功能单元通过s11接口与所述CGW连接;或者,MCP上集成MME功能单元与CGW功能单元,所述UMC单元集成在所述MCP上;所述UMC单元确定所述UE的IP地址与为所述UE分配的第一用户面网关UGW上的端口之间的第一映射关系,包括:所述UMC单元确定为所述UE分配第一UGW以及接入所述第一UGW的端口;所述UMC单元为所述UE分配的所述第一UGW上的端口信息发送给所述MME,以使得所述MME向所述CGW发送会话建立请求,所述会话建立请求用于所述CGW建立所述第一UGW对所述UE的承载;或者,所述UMC单元接收的所述MME发送的所述UE附着事件信息中携带所述MME为所述UE分配的第一UGW的端口消息。
在一种可能的设计中,所述方法还包括:所述UMC单元接收所述MME发送的UE位置移动事件信息,其中所述UE位置移动事件信息中携带所述UE的IP地址以及目标基站的IP地址;所述UMC单元根据所述UE的目标基站的IP地址以及与所述UE相关的业务上下文重新为所述UE分配第四UGW;所述UMC单元向所述MME发送网关重选请求消息,其中所述网关重选请求消息中携带所述第四UGW的IP,以使得所述MME将所述UE接入所述目标基站,并通过CGW建立所述目标基站与所述第四UGW之间的GTP隧道;所述UMC单元接收所述MME发送的所述UE的网关重选完成消息;所述UMC单元更新所述UE的IP地址与所述第四UGW之间的映射关系;所述UMC单元根据已经建立的与所述UE对应的业务上下文,重新确定所述UE与所述应用在UGW交换面上的路径;所述UMC单元向所述CGW发送更新用户面路径的第三更新请求消息,其中所述第三更新请求消息中携带所述重新确定的所述UE与所述应用在UGW交换面上的路径,以使得所述CGW将重新确定的所述UE与所述应用在UGW交换面上的路径转换为用户面报文转发规则,以连通所述UE在所述第四UGW上的接入端口到所述应用所在的UGW接入端口的路径,并删除所述UE在所述第一UGW上的接入端口到所述应用所在的UGW接入端口的路径。
在一种可能的设计中,所述UMC单元接收所述UE附着事件信息,包括:所述UMC单元接收MME发送的第一会话建立请求消息,其中,所述MME通过S11接口与所述UMC单元连接,所述UMC单元通过第一接口与云控制器连接,所述UMC单元通过第二接口与CGW连接;所述UMC单元根据所述第一会话建立请求消息,获取所述UE的附着事件信息;所述UMC单元确定所述UE的IP地址与为所述UE分配的第一用户面网关UGW端口之间的第一映射关系,包括:所述UMC单元根据所述UE接入的基站的IP地址,为所述UE分配第一UGW以及接入所述第一UGW的端口。
在一种可能的设计中,所述方法还包括:所述UMC单元接收所述MME发送的第二会话建立请求消息,其中所述第二会话建立请求消息是所述MME接收来自所述UE的源基站的UE基站切换请求消息后向所述UMC单元发送的;所述UMC单元根据所述第二会话建立请求消息,解析所述UE的位置移动事件信息,其中所述UE位置移动事件信息中携带所述UE的IP地址以及 目标基站的IP地址;所述UMC单元根据所述UE的IP地址以及目标基站的IP地址重新为所述UE分配第四UGW;所述UMC单元向所述CGW发送第三会话建立请求消息,其中所述第三会话建立请求消息中携带所述第四UGW的IP,以使得所述CGW将所述UE接入所述目标基站,并建立所述目标基站与所述第四UGW之间的GTP隧道;所述UMC单元接收所述CGW发送的UE承载修改响应消息;所述UMC单元根据所述UE承载修改响应消息,确定所述UE与所述第四UGW重选完成;所述UMC单元更新所述UE的IP地址与所述第四UGW之间的映射关系;所述UMC单元根据已经建立的与所述UE对应的业务上下文,重新确定所述UE与所述应用在UGW交换面上的路径;所述UMC单元向所述CGW发送更新用户面路径的第四更新请求消息,其中所述第四更新请求消息中携带所述重新确定的所述UE与所述应用在UGW交换面上的路径,以使得所述CGW将重新确定的所述UE与所述应用在UGW交换面上的路径转换为用户面报文转发规则,以连通所述UE在所述第四UGW上的接入端口到所述应用所在的UGW接入端口的路径,并删除所述UE在所述第一UGW上的接入端口到所述应用所在的UGW接入端口的路径。
在一种可能的设计中,所述UMC单元接收所述UE附着事件信息之前还包括:所述UMC单元接收来自CGW的应用接入事件信息,其中所述应用接入事件信息是所述CGW根据来自第二UGW的应用用户面数据得到的,应用接入事件信息中携带所述应用的IP地址以及所述第二UGW的端口IP;所述UMC单元接收所述UE附着事件信息之后,所述UMC单元接收所述CGW发送的第二通告消息,所述第二通告消息用于通知所述UE的用户面业务报文到来,其中,所述第二通告消息中携带所述用户面业务报文的流标识信息;所述UMC单元根据所述流标识信息确定所述用户面业务报文为与新业务相关的报文,并建立对应于所述UE和所述应用的业务上下文;所述UMC单元根据所述第一映射关系和所述第二映射关系确定所述UE与所述应用之间的路径,包括:所述UMC单元根据所述第一映射关系、所述第二映射关系和所述用户面业务报文的流特性信息确定所述UE与所述应用在所述UGW的交换面上的路径。
在一种可能的设计中,所述方法还包括:所述UMC单元接收所述CGW 发送的所述应用移动事件信息,其中所述应用移动事件信息是所述CGW接收第三UGW发送的未定义转发规则的,来自应用的数据报文并按预设规则确定所述应用发生位置迁移后发送的,所述应用移动事件信息中携带所述应用的IP地址及接收所述应用数据报文的第三UGW的端口IP;所述UMC单元根据所述应用的IP地址及接收所述应用数据报文的第三UGW的端口IP确定所述应用发生位置移动;所述UMC单元更新所述应用的IP地址与UGW上的端口的映射关系;所述UMC单元根据所述应用的IP地址与所述第三UGW上的端口的第三映射关系以及所述UE的IP地址与所述第一UGW之间的第一映射关系,重新确定所述UE与所述应用之间的路径。
另一方面,本发明实施例提供一种移动协同通信装置,该移动协同通信装置具有实现上述方法示例中UMC单元行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的设计中,移动协同通信装置的结构中包括处理模块和通信模块,所述处理模块被配置为支持UMC单元执行上述方法中相应的功能。所述通信模块用于支持UMC单元与其他设备之间的通信。所述UMC单元还可以包括存储单元,所述存储单元用于与处理模块耦合,其保存UMC单元必要的程序指令和数据。作为示例,处理模块可以为处理器,通信模块可以为收发器,存储单元可以为存储器。
又一方面,本发明实施例提供一种MME,该MME能够实现上述方法示例中MME行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
又一方面,本发明实施例提供一种UGW,该UGW能够实现上述方法示例中UGW行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
又一方面,本发明实施例提供一种CGW,该CGW能够实现上述方法示例中CGW行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
再一方面,本发明实施例提供了一种通信系统,该系统包括上述方面的移动协同通信装置,该系统还可以包括本发明实施例提供的方案中与移动协 同通信装置进行交互的其他设备,例如上述的MME、UGW、CGW中的至少一种。
再一方面,本发明实施例提供了一种计算机存储介质,用于储存为上述移动协同通信装置所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
本发明实施例提供一种移动协同通信方法及装置,根据UE和边缘应用的移动事件,为UE和边缘应用选择合适的UGW上的,重新规划配置UE和边缘应用之间的转发路径,从而实现UE和边缘应用之间的最佳路由配置。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1示出了本发明实施例提供的一种可能的系统架构图;
图2示出了UMC单元的一种连接结构示意图;
图3为本发明一实施例提供的移动协同通信方法的流程示意图;
图4示出了本发明实施例提供的另一种移动协同通信方法的流程示意图;
图5示出了本发明实施例提供的一种可能的系统架构图;
图6示出了本发明实施例提供的一种UE和边缘应用接入初始建立业务的应用场景图;
图7示出了本发明实施例提供的一种UE和边缘应用接入初始建立业务的通信示意图;
图8示出了本发明实施例提供的一种解析UE需访问的边缘应用的方法的通信示意图;
图9示出了本发明实施例提供的另一种解析UE需访问的边缘应用的方法的通信示意图;
图10示出了本发明实施例提供的一种UE与边缘应用连接后仅有UE移动的协同通信的应用场景图;
图11示出了本发明实施例提供的UE与边缘应用连接后仅有UE移动的协同通信的通信示意图;
图12示出了本发明实施例提供的一种UE移动后UE与边缘应用之间协同通信的应用场景图;
图13示出了本发明实施例提供的一种UE与边缘应用连接后仅有边缘应用移动的协同通信场景图;
图14示出了本发明实施例提供的UE与边缘应用连接后仅有边缘应用移动的协同通信的通信示意图;
图15示出了本发明实施例边缘应用移动后UE与边缘应用之间协同通信的目标场景图;
图16示出了本发明实施例提供的UE与边缘应用连接后UE移动边缘应用跟随的协同通信的应用场景图;
图17示出了本发明实施例提供的一种UE移动边缘应用跟随的协同通信的通信示意图;
图18示出了本发明实施例提供的UE移动边缘应用跟随的协同通信的效果示意图;
图19示出了本发明实施例提供的另一种可能的系统架构图;
图20示出了本发明实施例提供的另一种UE和边缘应用接入初始建立业务的通信示意图;
图21示出了本发明实施例提供的另一种UE与边缘应用连接后仅有UE移动的协同通信的通信示意图;
图22示出了本发明实施例提供的另一种UE与边缘连接后UE移动边缘应用跟随的一种协同通信的通信示意图;
图23示出了本发明实施例提供的又一种可能的系统架构图;
图24示出了本发明实施例五提供的又一种UE和边缘应用接入初始建立业务的通信示意图;
图25示出了本发明实施例提供的又一种UE与边缘应用连接后仅有UE移动的协同通信的通信示意图;
图26示出了本发明实施例提供的又一种UE与边缘连接后UE移动边缘应用跟随的一种协同通信的通信示意图;
图27示出了本发明实施例提供的又一种可能的系统架构图;
图28示出了本发明实施例提供的又一种UE和边缘应用接入初始建立业务的通信示意图;
图29示出了本发明实施例提供的又一种UE与边缘应用连接后仅有边缘应用移动的协同通信场景图;
图30示出了本发明实施例提供的有一种可能的系统架构图;
图31示出了本发明实施例提供的又一种可能的系统架构图;
图32示出了本发明实施例提供的又一种可能的系统架构图;
图33A示出了上述实施例中所涉及的UMC单元的一种可能的结构示意图;
图33B示出了上述实施例中所涉及的UMC单元的另一种可能的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行描述。
本发明实施例描述的网络架构以及业务场景是为了更加清楚的说明本发明实施例的技术方案,并不构成对于本发明实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本发明实施例提供的技术方案对于类似的技术问题,同样适用。
在边缘应用下沉、网关分布化部署的场景下,为了实现对UE和边缘应用移动事件的联动和协同,指导端到端路由/转发路径的更新,本发明在移动核心网CU分离的架构基础上,提出了一种移动协同通信方法及装置,其中图1示出了本发明实施例提供的一种可能的系统架构图。图1所示的系统架构中基于UGW构建统一交换平面,其中,UGW作为UE和边缘应用间的统一交换平面,UE和边缘应用最终都接入到UGW上,并通过UGW构建的交换平面连接起来。可见,UE到边缘应用之间的端到端(End to End,E2E)业务连接可以分为三个部分:
(1)UE到UGW的移动接入,如UE以GTP(GPRS Tunnelling Protocol,GPRS隧道协议)方式接入到UGW,其中GPRS的英文全拼为General Packet  Radio System,中文名称为通用分组无线系统。
(2)边缘应用到UGW的接入,如边缘应用以IP(Internet Protocol,互联网协议)或VLAN(Virtual Local Area Network,虚拟局域网)或VxLAN(Virtual extensible Local Area Network,虚拟可扩展局域网)等隧道方式接入到UGW。
(3)UGW上UE的逻辑端口到边缘应用的逻辑端口之间的报文转发路径。
而上述三部分业务主要是由UMC(Unified Mobility Coordinator,统一移动协同)单元实现,该UMC单元部署在移动网络的控制层面。图2示出了UMC单元的一种连接结构示意图,从图2可以看出,UMC单元连接MCP和云控制管理中心(又可以称为Cloud Controller,云控制器)。
如图2所示,UMC单元一方面能够实时从MCP处获取UE的位置变化事件(包括附着、移动、分离等事件)和用户面业务连接建立事件;另一方面能够实时(从Cloud Controller处)获取边缘应用的位置变化事件(包括应用开启、迁移、关闭等)。基于此,UMC单元能够在UE和边缘应用两种移动对象独立移动的场景下,从全局的角度协同和管理这两种对象的移动性,在UE和边缘应用的IP地址保持不变的情况下,确保UE与边缘应用之间的业务连续性,具体实现过程包括:指示MCP重新选择合适的UGW;指示MCP更新UGW上的报文转发规则,确保UE和边缘应用间的业务连续性;指示Cloud Controller将边缘应用移动到合适的边缘云服务器,或请求Cloud Controller开启相应的边缘应用;指示Cloud Controller将边缘应用接入到指定的UGW等。作为示例,UMC单元所承担的业务主要包括(1)根据拓扑、业务连接情况和配置的协同策略,为UE和边缘应用选择合适的UGW,建立或更新UE/边缘应用的IP地址与UGW之间的映射关系;(2)建立或更新UGW上UE的接入端口到边缘应用的接入端口之间的报文转发规则。
考虑到一个UE可能同时访问多个边缘应用,一个边缘应用可能同时为终端提供服务,即终端和边缘应用之间的连接是多对多的。UE移动后,UMC单元为了正确地选择UGW,需要知道UE当前活动的业务连接,及与其发生业务连接的边缘应用的位置。在本发明中,UMC单元需要通过MCP获取用户面业务连接,建立业务连接上下文,需要感知UE断开与UGW的连接事 件、或应用关闭事件,删除对应的业务连接上下文。
本发明提出将UGW的物理端口作为UE和边缘应用的位置标识,UE、边缘应用移动后,UMC单元基于网络拓扑、活动的业务连接和协同策略,为UE、边缘应用选择合适的UGW上的,重新建立IP地址与UGW之间的映射关系,并刷新UGW上UE的接入端口到边缘应用的接入端口之间的报文转发规则。
其中,本发明实施例中涉及到的协同的触发条件包括:
(1)UE附着、分离;
(2)UE移动;
(3)边缘应用移动;
而协同过程是指:基于基站、UGW、边缘云之间的拓扑关系,分析所有受影响的业务流,基于协同策略(如路径最短优先,时延最短优先,区分业务流的优先级,应用是否可跟随用户移动等),从E2E路径优化的角度,为UE和边缘应用选择合适的UGW(端口),重新规划UE和边缘应用之间的路径(例如转发路径)。UMC单元的协同方式可以包括:
(1)指示MCP将UE接入到新的UGW上,更新UE的IP地址与UGW的映射关系。
(2)指示云控制器将边缘应用移动到合适的边缘云服务器,或在指定的位置开启边缘应用。
(3)指示云控制器将边缘应用接入到指定的UGW,更新边缘应用的IP地址与UGW的映射关系。
(4)指示CGW更新UGW上的转发路径,将UE的位置与边缘应用的位置连接起来。
下面将基于上面所述的本发明涉及的共性方面,对本发明实施例进一步详细说明。需要指出的是本发明的移动协同通信方法适用于边缘应用下沉、分布化部署到移动网络边缘、移动网关下沉和分布化部署的通信场景。
本发明的一个实施例提供一种移动协同通信方法,和基于这个方法的装置及系统。在该方法中,UMC单元接收应用的应用移动事件信息和/或UE的UE移动事件信息,其中,该应用位于网络边缘并用于为UE提供应用服务;并根据应用移动事件信息和UE移动事件信息,确定UE与边缘应用之间的路 径。上述UMC单元可以部署在移动通信网络的控制面。其中,应用的移动事件可以包括应用的开启、迁移等事件,UMC单元通过MCP,如CGW、云控制器获取应用的移动事件信息;UE的移动事件可以包括UE的附着、迁移等事件,UMC单元通过MCP,如CGW、MME获取UE的UE移动事件信息。作为示例,上述应用可以为边缘应用,下面,以应用为边缘应用为例进行说明。例如,图3为本发明一实施例提供的移动协同通信方法的流程示意图,该方法包括如下流程:
在S101部分:UMC单元接收边缘应用的应用移动事件信息,该边缘应用为用户设备UE所请求访问的边缘应用;
在S102部分:UMC单元接收UE的UE移动事件信息;
在S103部分:UMC单元根据应用移动事件信息和UE移动事件信息,确定UE与所述边缘应用之间的转发路径。
其中,S101部分和S102部分的执行顺序不受限定,且本发明实施例的方案可以包括S101部分和S102部分中的至少一个部分和S103部分。
本发明实施例的方案中,UMC单元能够根据边缘应用的应用移动事件信息和UE的UE移动事件信息,确定UE和边缘应用之间的转发路径,从而实现UE和边缘应用之间的最佳路由配置。
下面将结合更多的附图,对本发明的实施例做进一步说明。
图4示出了本发明实施例提供的另一种移动协同通信方法的流程示意图,其中,与图3所示方法相同或相似的内容可以参考与图3有关的详细描述,此处不作赘述。图4所示的方法包括:
在S201部分:UMC单元接收边缘应用的应用移动事件信息;
可选地,应用移动事件信息为应用开启事件信息,应用开启事件信息包括边缘应用的标识、边缘应用的IP地址和边缘应用的位置信息。
进一步地,UMC单元通过云控制器接收所述应用开启事件信息之前,所述方法还包括:所述UMC单元向所述云控制器发送开启请求消息,所述开启请求消息用于请求开启所述边缘应用,以使得所述云控制器向边缘云服务器发送开启命令,所述开启命令用于指示所述边缘云服务器开启所述边缘应用。
在S202部分:UMC单元接收UE的UE附着事件信息,其中UE附着事 件信息中携带UE的IP地址以及UE接入基站的位置信息;
其中,这里的UE附着事件信息即为上述的UE移动事件信息,UE接入基站的位置信息可以是基站的IP地址、小区标识及坐标位置等。
在S203部分:UMC单元确定UE的IP地址与为UE分配的第一UGW的端口之间的第一映射关系,以及边缘应用的IP地址与边缘应用所接入的第二UGW的端口之间的第二映射关系;
其中,第一UGW与第二UGW为相同的UGW或不同的UGW;UMC单元还可以记录该第一映射关系和第二映射关系。其中,确定第二映射关系包括:所述UMC获取所述UE的签约信息,其中,所述签约信息中携带所述UE签约的边缘应用标识;所述UMC根据所述UE签约的边缘应用标识确定所述UE所请求访问的边缘应用是否已经接入第二UGW;或者,所述UMC获取所述UE的用户面业务报文,所述用户面业务报文中携带所述UE所请求访问的边缘应用标识;所述UMC根据所述UE所请求访问的边缘应用标识确定所述UE所请求访问的边缘应用是否已经接入第二UGW。
当确定UE所请求访问的边缘应用未接入第二UGW时,则该方法还包括:UMC单元根据移动通信网络的网络拓扑结构和所述边缘应用的位置信息,为边缘应用分配所述第二UGW和第二UGW的端口;UMC单元向控制面网关CGW发送第一请求消息,第一请求消息用于将边缘应用接入到第二UGW上;UMC单元向云控制器发送第一接入规则,第一接入规则用于云控制器确定边缘应用到第二UGW的转发路径。
需要说明的是,上述将边缘应用接入到第二UGW上的步骤,可以在S201部分和在S203部分之间执行,或者也可以是在S203部分UMC单元确定UE的IP地址与为UE分配的第一UGW的端口之间的第一映射关系之后,边缘应用的IP地址与边缘应用所接入的第二UGW的端口之间的第二映射关系之前执行。
在S204部分:UMC单元根据第一映射关系和第二映射关系,确定UE与边缘应用之间的转发路径。
其中,UMC单元确定第一映射关系之后,所述方法还包括:所述UMC单元接收所述CGW发送的第一通告消息,所述第一通告消息用于通知所述UE的用户面业务报文到来,其中,所述第一通告消息中携带所述用户面业务 报文的流特性信息;所述UMC单元根据所述流特性信息确定所述用户面业务报文为与新业务相关的报文,并建立对应于所述UE和所述边缘应用的业务上下文;则S204包括:所述UMC单元根据所述第一映射关系、所述第二映射关系和所述用户面业务报文的流特性信息确定所述UE与所述边缘应用在所述UGW的交换面上的转发路径。
可选地,S204之后还包括:所述UMC单元向所述CGW发送第一更新请求消息,所述第一更新请求消息中携带所述UE与所述边缘应用之间的转发路径,以使得所述CGW根据所述UE与所述边缘应用之间的转发路径向所述第一UGW和所述第二UGW发送用户面报文转发规则,以连通所述UE在所述第一UGW上的接入端口到所述边缘应用在所述第二UGW的接入端口之间的转发路径。
本发明实施例中,在UE附着接入后,UMC单元可以根据UE的IP地址与第一UGW之间的第一映射关系、边缘应用的IP地址与第二UGW之间的第二映射关系,为UE到边缘应用之间配置最佳报文转发路径。
本发明中UMC单元可以通过CGW或者MME获取UE的附着事件信息,下面将根据向UMC单元上报UE附着事件信息对象的不同、接收UE附着事件信息后UE所请求边缘应用是否已经开启等不同情况,对本发明实施例的方案进行更为详细的说明。
图5示出了本发明实施例提供的一种可能的系统架构图。如图5所示,UMC单元通过第二接口(也可以称为if2接口)与CGW连接,UMC单元通过第一接口(也可以称为if1接口)与云控制器连接,MME与CGW连接,与UMC单元之间没有连接关系。
结合图5所示,UMC单元通过if1接口实现的功能包括:
(1)UMC单元从云控制器获知边缘应用的迁移事件信息,其中,边缘应用的迁移事件信息包括边缘应用的迁移状态(如边缘应用开始迁移、迁移完成等)、边缘应用的源边缘服务器位置、目标边缘云服务器位置,具体的,边缘云服务器位置可以是地理位置坐标,也可以是边缘云服务器在移动网络中的出口IP地址。
(2)UMC单元从云控制器获知边缘应用的工作状态变化,其中,边缘云的工作状态包括关闭、正常工作等。
(3)UMC单元向云控制器发起边缘应用移动请求消息,其中在边缘应用移动请求消息中携带边缘应用标识、边缘应用移动后的目标边缘云服务器的位置标识,其中,边缘云服务器位置可以是地理位置坐标,也可以是边缘云服务器在移动网络中的出口IP地址。
(4)UMC单元向云控制器发起转发规则更新请求消息。
结合图5所示,f2接口实现的功能包括:
(1)CGW向UMC单元通告用户面数据流信息,其中用户面数据流信息包括UE的业务流标识,如五元组(UE的源IP地址、目的IP地址、UGW的源端口号、目的端口号及上层协议类型)或完整的用户面报文。
(2)UMC单元从CGW获知UE的移动事件信息,其中UE的移动事件信息中包括移动事件类型(如附着、分离、切换、服务请求等)、当前接入基站IP,源接入基站IP。
(3)UMC单元向CGW发起网关UGW重选请求消息,可以携带推荐的UGW。
(4)UMC单元通过if2向CGW发起用户面连接变更请求消息,用户面连接变更请求消息中携带新的路由信息。
图6示出了本发明实施例提供的一种UE和边缘应用接入初始建立业务的应用场景图。如图6所示,移动网络部署的边缘云中的硬件设备中部署VM(Virtual Machine,虚拟机),VM上运行边缘应用,其中,边缘云可以是部署到移动网络边缘的数据中心,如图6所示,UE和边缘应用均接入到UGW1上,转发路径为UE、UGW1及边缘应用之间数据相互交互。
图7示出了本发明实施例提供的一种UE和边缘应用接入初始建立业务的通信示意图。图7所示的方法可以应用于图6所示的场景。移动网络中引入UMC单元后,移动网络可自动为UE建立到边缘应用的业务连接,如图7所示,UE和边缘应用接入移动网络的过程包括:
在S301部分:UMC单元接收云控制器发送的边缘应用的应用开启事件消息。
边缘应用初始化后,云控制器向UMC单元通告应用开启事件消息,应用开启事件消息中携带边缘应用的标识、IP地址以及边缘应用所位于的边缘云服务器的位置标识等信息。
在S302部分:UMC单元根据移动网络的网络拓扑结构和边缘应用的位置,按照就近原则为边缘应用选择一个UGW上的(如图5中的UGW1的某端口),作为边缘应用在移动交换平面上的接入位置。UMC单元记录边缘应用的IP地址和UGW1上的端口的映射关系。
在S303部分:UMC单元向云控制器下发边缘应用接入UGW1的接入规则。
在S304部分:云控制器配置边缘云服务器网络出口转发规则,建立边缘应用从边缘云服务器到UGW1的转发路径,其中该转发路径可以是IP路由、以太网交换、隧道等。
在S305部分:UMC单元向CGW发送请求配置边缘应用在UGW1相应端口的接入端口策略的请求消息。
在S306部分:CGW向UGW1下发配置消息,配置边缘应用在UGW1上的接入端口策略(如IP路由、以太网交换、隧道等多种方式),将边缘应用接入到UGW1。
在S307部分:UE附着移动网络,MME完成RRC建立、鉴权、NAS安全、位置更新流程后,MME向CGW发送会话创建请求消息。
在S308部分:CGW收到会话创建请求消息后,解析到UE的附着事件,向UMC单元通告移动(附着)事件,携带UE接入的eNB的IP地址等。
在S309部分:UMC单元确定为UE分配的UGW,并将选择的UGW信息发送给CGW。
另外,除UMC单元为UE分配UGW的此种方式外,还可以是CGW为UE分配UGW,CGW将为UE分配的UGW的信息发送给UMC单元。
在S310部分:UMC单元记录UE的IP地址与UGW上的的映射关系。
例如为UE分配的UGW为UGW1上的端口,则UMC单元记录UE的IP地址与UGW1上端口的映射关系。
在S311部分:CGW向UGW1下发GTP隧道规则,UGW1创建与CGW之间的GTP隧道。
在S312部分:CGW向MME发送会话建立响应消息。
在S313部分:MME向eNB发送附着接受(Attach accept)消息,发起上下文建立请求。
eNB收到消息后,重新配置RRC。移动网络执行AS安全,承载更新流程,完成UE附着流程。
在S314部分:UE发起数据连接请求,数据报文到达UGW1,由于UGW1没有相应转发规则,向CGW通告用户面数据流到来消息,其中,用户面数据流到来消息中携带完整的用户面报文。
在S315部分:CGW解析用户面数据流到来消息后,确定是新业务连接后,向UMC单元通告用户面业务连接建立事件,携带业务标识信息,如源、目的IP地址,端口号,上层协议类型等。
在S316部分:UMC单元确定有新业务连接后,建立业务连接上下文。从之前创建的IP与UGW上的映射关系中找到新业务的源、目的IP地址所对应的UGW上的,计算一条从UE的接入端口到边缘应用的接入端口的路径。
在S317部分:UMC单元将计算的转发路径下发给CGW,请求CGW更新用户面转发路径。
在S318部分:CGW将用户面转发路径转换成用户面报文转发规则,下发到相应UGW上。UGW配置转发规则,打通从UE的接入端口到边缘应用的接入端口的转发路径。
上述流程中,UE想要访问的应用已经提前启动。如果UE附着时,需要访问的应用并未加载,UMC单元可通过图8或图9所示的方案自动为UE加载应用服务器。
图8示出了本发明实施例提供的一种解析UE需访问的边缘应用的方法的通信示意图。如图8所示,本方法在控制面解析UE需要访问的应用,如通过APN解析,具体流程包括:
在S401部分:UE附着移动网络,MME完成RRC建立、鉴权、NAS安全、位置更新流程后,MME向CGW发送会话创建请求消息。
在S402部分:CGW收到会话创建请求消息后,解析到UE的附着事件,向UMC单元通告移动(附着)事件,携带UE接入的eNB的IP地址等。
在S403部分:UMC单元确定为UE分配的UGW,UMC单元记录UE的IP地址与UGW上的的映射关系。
在S404部分:UMC单元将选择的UGW信息发送给CGW。
在S405部分:UMC单元确定UE的应用需求,如根据UE的APN信息。
在S406部分:UMC单元向云控制器发送请求开启相应边缘应用的请求消息,具体的,该请求消息中携带请求开启的边缘应用的应用标识,规格,所位于的边缘云服务器的位置标识等。
在S407部分:云控制器根据UMC单元发送的开启边缘应用的请求消息,创建相应规格的边缘应用,并向边缘云服务器下发边缘应用开启命令。边缘云服务器分配资源,开启应用服务。
在S408部分:CGW向UGW1下发GTP隧道规则,UGW1创建与CGW之间的GTP隧道。
在S409部分:CGW向MME发送会话建立响应消息。
在S410部分:MME向eNB发送附着接受(Attach accept)消息,发起上下文建立请求。eNB收到消息后,重新配置RRC。移动网络执行AS安全,承载更新流程,完成UE附着流程。
在S411部分:边缘云服务器向云控制器发送边缘应用开启完成消息。
在S412部分:云控制器向UMC单元通告应用开启事件,携带应用的标识、IP地址、(边缘云)位置标识等信息。
在S413部分:UMC单元为边缘应用分配UGW1连接端口,并记录边缘应用的IP与UGW1端口的映射关系。
在S414部分:UMC单元向云控制器下发边缘应用接入UGW1的接入规则。
在S415部分:云控制器配置边缘云服务器网络出口转发规则,建立边缘应用从边缘云服务器到UGW1的转发路径,其中该转发路径可以是IP路由、以太网交换、隧道等。
在S416部分:UMC单元向CGW发送请求配置边缘应用在UGW1相应端口的接入端口策略的请求消息。
在S417部分:CGW向UGW1下发配置消息,配置边缘应用在UGW1上的接入端口策略(如IP路由、以太网交换、隧道等多种方式),将边缘应用接入到UGW1。
当UE发起数据连接请求时,UE与边缘应建立转发路径的方式与上述方式相同,不再赘述。
图9示出了本发明实施例提供的另一种解析UE需访问的边缘应用的方 法的通信示意图。图9所示的方法中,可以通过解析UE发出的用户面报文,获取UE所需访问的边缘应用信息,如解析UE发起的DNS消息获取UE的访问需求。图9所示的方法包括:
S501与S401部分相同,在S502部分:MME向CGW发送会话建立请求消息;S503与S402部分相同,此处不再赘述。
在S504部分:UMC单元确定为UE分配的UGW,并将选择的UGW信息发送给CGW。
另外,除UMC单元为UE分配UGW的此种方式外,还可以是CGW为UE分配UGW,CGW将为UE分配的UGW的信息发送给UMC单元。
在S505部分:UMC单元记录UE的IP地址与UGW上的的映射关系。
如为UE分配的UGW为UGW1上的端口,则UMC单元记录UE的IP地址与UGW1上端口的映射关系。
在S506部分:CGW向UGW1下发GTP隧道规则,UGW1创建与CGW之间的GTP隧道。
在S507部分:CGW向MME发送会话建立响应消息。
在S508部分:MME向eNB发送附着接受(Attach accept)消息,发起上下文建立请求消息。
在S509部分:eNB收到上下文建立请求消息后,重新配置RRC。移动网络执行AS安全,承载更新流程,完成UE附着流程。
在S510部分:UE发起数据连接请求,数据报文到达UGW1,由于UGW1没有相应转发规则,向CGW通告用户面数据流到来消息,其中,用户面数据流到来消息中携带完整的用户面报文。
在S511部分:CGW解析用户面数据流到来消息后,确定是新业务连接后,向UMC单元通告用户面业务连接建立事件,携带完整的用户面报文。
在S512部分:UMC单元解析UE发出的用户面报文,确定UE需要访问的边缘应用,如根据报文净荷里的域名信息确定UE需要访问的边缘应用。
在S513部分:UMC单元向云控制器发送请求开启相应边缘应用的请求消息,具体的,该请求消息中携带请求开启的边缘应用的应用标识,规格,所位于的边缘云服务器的位置标识等。
在S514部分:云控制器根据UMC单元发送过来的请求开启相应边缘应 用的请求消息,在对应的边缘云服务器上创建相应规格的边缘应用,并向边缘云服务器下发边缘应用开启命令,边缘云服务器根据边缘应用开启命令分配资源,开启应用服务。
S515~S516部分与图8中的S411~S412部分相同或类似,可参考图8中的详细描述,此处不再赘述。
步骤S517:UMC单元记录边缘应用的IP地址与UGW上的的映射关系,并建立业务连接上下文。
UMC单元从之前创建的UE的IP地址与UGW上的映射关系中找到新业务的源、目的IP地址所对应的UGW上的,计算一条从UE的接入端口到边缘应用的接入端口的路径。
S518~S521部分与图8中的S414~S417部分相同或类似,可参考图8中的详细描述,此处不再赘述。
进一步,UMC单元还将计算的UE的接入端口到边缘应用的接入端口的路径下发给CGW,请求CGW更新用户面转发路径。CGW将用户面转发路径转换成用户面报文转发规则,下发到相应有UGW上。UGW配置转发规则,打通从UE的接入端口到边缘应用的接入端口的转发路径。
在UE与边缘应用连接之后,该方法的应用场景还包括仅UE发生了移动、仅边缘应用发生了移动,或者UE发生了移动,并且边缘应用也发生了移动。
当边缘应用发生了移动,则该方法还包括:
所述UMC接收到所述云控制器发送的所述边缘应用迁移事件信息,其中,所述边缘应用迁移事件信息中携带所述边缘应用的IP地址和所述边缘应用新的位置信息;
所述UMC根据所述边缘应用的IP地址和所述边缘应用新的位置信息,为所述边缘应用分配第三UGW以及接入所述第三UGW的端口;
所述UMC记录所述边缘应用的IP地址与所述第三UGW上的端口之间的映射关系;
所述UMC向所述云控制器发送所述边缘应用接入所述第三UGW的接入规则,用于所述云控制器配置所述边缘应用到所述第三UGW的转发路径,还用于所述云控制器删除所述边缘应用在所述第二UGW上的转发路径;
所述UMC向所述CGW发送请求配置所述边缘应用在所述第三UGW上 的接入端口策略的请求消息,用于所述CGW根据所述第四请求消息向所述第三UGW下发配置消息,用于所述第三UGW根据所述配置消息配置所述边缘应用在所述第三UGW上的接入端口策略,以将所述边缘应用接入到所述第三UGW上;所述CGW还根据所述请求消息更新所述第二UGW及所述第三UGW对所述UE报文的用户面转发规则。
当UE发生了移动,则该方法还包括:
所述UMC接收到所述CGW或者MME发送的UE位置移动事件信息,其中所述UE位置移动事件信息中携带所述UE的IP地址以及目标基站的IP地址;
所述UMC根据所述UE的IP地址以及目标基站的IP地址重新为所述UE分配第四UGW;
所述UMC向所述CGW或者MME发送网关重选请求消息,其中所述网关重选请求消息中携带所述第四UGW的标识IP,用于所述CGW将所述UE接入所述目标基站,并建立所述目标基站与所述第四UGW之间的GTP隧道;
所述UMC接收所述CGW发送的所述UE的网关重选完成消息;
所述UMC更新所述UE的IP地址与所述第四UGW之间的映射关系;
所述UMC根据已经建立的与所述UE对应的业务上下文,重新确定所述UE与所述边缘应用在UGW交换面上的转发路径;
所述UMC向所述CGW发送更新用户面转发路径的更新请求消息,其中所述更新请求消息中携带所述重新确定的所述UE与所述边缘应用在UGW交换面上的转发路径,用于所述CGW将重新确定的所述UE与所述边缘应用在UGW交换面上的转发路径转换为用户面报文转发规则,并将该用户面报文转发规则发送给所述第四UGW及为所述边缘应用分配的所述UGW上,用于所述第四UGW及为所述边缘应用分配的所述UGW配置相应的报文转发规则,以连通所述UE在所述第四UGW上的接入端口到所述边缘应用所在的UGW接入端口的转发路径;所述CGW还删除所述UE在所述第一UGW上的接入端口到所述边缘应用所在的UGW接入端口的转发路径。
图10示出了本发明实施例提供的一种UE与边缘应用连接后仅有UE移动的协同通信的应用场景图。从图10可以看出,UE与边缘应用连接后,UE与边缘应用之间的转发路径为UE、UGW1、UGW2及边缘应用之间的路径, 当UE位置发生变化后,之前配置的UE与边缘应用之间的转发路径可能为非最佳路径,此时UMC单元可以根据UE移动后的位置重新为UE分配UGW网关,并重新计算UE到边缘应用之间的转发路径,确保UE与边缘应用之间的转发路径为最优转发路径。
图11示出了本发明实施例提供的UE与边缘应用连接后仅有UE移动的协同通信的通信示意图,如图11所示,该方法的具体流程包括:
在S601部分:UE测量不同小区信号强度,并将测量结果上报源eNB,源eNB根据UE上报的各小区信号强度确定执行小区切换。
在S602部分:源eNB向MME发起UE的小区切换请求消息。
在S603部分:MME向CGW发起建立会话请求消息,请求CGW为UE重新选择UGW3。
在S604部分:CGW向UMC单元发送UE移动的通告消息,其中该通告消息中携带UE的位置移动事件信息,如UE的IP地址,目标接入eNB IP地址等。
在S605部分:UMC单元获取到UE的移动事件后,执行移动协同。
例如,UMC单元根据网络拓扑、UE业务连接情况和协同策略,为UE重新选择合适的UGW。
在S606部分:UMC单元向CGW发起网关UGW重选请求消息,携带UGW3的IP。
在S607部分:CGW向UGW3发起GTP隧道建立规则,建立从目标eNB到目标UGW3之间的GTP隧道。
在S608部分:CGW向MME发送会话建立响应消息。
在S609a部分:MME向目标eNB发起切换(Handover)请求消息,携带UGW3的IP地址和TEIP。
在S609b部分:目标eNB建立与UGW3之间的GTP承载,并向MME回复切换(Handover)请求确认消息。
在S610部分:MME发起间接数据转发隧道建立流程,建立Source eNB<->UGW1 <->UGW2 <->Target eNB数据转发隧道,将源eNB缓存的下行用户数据转交到目标eNB。
在S611部分:MME向源eNB发送UE切换命令。
在S612部分:源eNB向UE发送切换命令。
在S613部分:UE断开与源eNB的RRC连接,并与目标eNB建立RRC连接,向目标eNB发送切换确认消息。
在S614部分:目标eNB向MME发送无线切换通告消息。
在S615-S617部分:MME发起GTP隧道更新流程,更新UGW3上的隧道转发规则,建立与目标eNB之间的GTP隧道。
在S618部分:CGW向UMC单元通告UGW重选完成。
在S619部分:UMC单元更新UE的IP与UGW上的映射关系,从业务连接记录中找出与UE相关的业务连接上下文,重新为其计算UGW交换面上的转发路径。
在S620部分:UMC单元将新的路径发送CGW,请求CGW更新UGW上的报文转发规则。
在S621部分:CGW更新UGW上的转发规则,建立从UGW3到UGW2的转发路径,删除UGW1到UGW2的转发路径。
在S622部分:MME执行TAU流程,删除Source eNB和UGW1之间承载,删除间接转发隧道。
图12示出了本发明实施例提供的一种UE移动后UE与边缘应用之间协同通信的应用场景图,从图12可以看出,UE移动后通过上述的移动协同通信方法,重新为UE分配UGW,并重新计算UE与边缘应用之间的转发路径,确保UE与边缘应用之间之间的转发路径保持最佳状态,优化端到端业务连接,并保持业务连续性。
图13示出了本发明实施例提供的一种UE与边缘应用连接后仅有边缘应用移动的协同通信场景图。从图13可以看出,边缘应用移动前,UE与边缘应用之间的转发路径为UE、UGW3、UGW2及边缘应用,当边缘应用移动后,之前配置的UE与边缘应用之间的转发路径可能为非最佳路径,此时UMC单元可以根据边缘应用移动后的位置重新为边缘应用分配UGW,并重新计算UE到边缘应用之间的转发路径,确保UE与边缘应用之间的转发路径为最优转发路径。
图14示出了本发明实施例提供的UE与边缘应用连接后仅有边缘应用移动的协同通信的通信示意图,如图14所示,该方法的具体流程包括:
在S701部分:边缘应用从源边缘云服务器(具体可为源VM)迁移到目标边缘云服务器(对应目标VM)后,云控制器向UMC单元通告边缘应用移动事件,通告消息中携带边缘应用的IP地址和边缘应用的新位置信息。
在S702部分:UMC单元确定边缘应用移动后,执行移动协同,为边缘应用重新选择UGW接入端口,并分配接入策略。
在S703部分:UMC单元向云控制器发送接入规则。
在S704部分:云控制器配置边缘云网络出口转发规则,建立应用从边缘云到UGW3的转发路径,路径可以是IP、以太网、隧道等。
在S705部分:UMC单元向请求CGW配置UGW3相应端口的接入端口策略,和UGW2和UGW3上的转发规则。
在S706部分:CGW向UGW3下发配置,配置接入端口策略(IP路由、以太网交换、隧道等多种方式),将应用接入到UGW3,并更新UGW2和UGW3上的报文转发规则。
图15示出了本发明实施例边缘应用移动后UE与边缘应用之间协同通信的目标场景图,从图15可以看出,边缘应用移动后通过上述的移动协同通信方法,重新为边缘应用分配新的UGW,并重新计算UE与边缘应用之间的转发路径,确保UE与边缘应用之间的转发路径保持最佳状态,可见,通过本发明实施例方法,在引入UMC单元后,移动网络可实时获取边缘应用的迁移事件,自动调整用户面转发规则,保持业务连续性。
图16示出了本发明实施例提供的UE与边缘应用连接后UE移动边缘应用跟随的协同通信的应用场景图。从图16可以看出,UE移动前,UE与边缘应用之间的转发路径为UE、UGW1及边缘应用,当UE移动后,之前配置的UE与边缘应用之间的转发路径可能为非最佳路径,此时UMC单元根据UE的移动情况触发边缘应用的跟随迁移,确保UE与边缘应用之间的转发路径为最优转发路径。
图17示出了本发明实施例提供的一种UE移动边缘应用跟随的协同通信的通信示意图,如图17所示,流程包括:
S801~S804与S601~S604相同,不再赘述。
在S805部分:UMC单元获取UE移动事件,执行移动协同,具体的UMC单元为UE重选UGW(如图17中的UGW2),并确定在UE切换完成后为 边缘应用选择靠近UGW2的边缘云服务器。
S806~S820为边缘应用切换过程,与S606~S620执行方法相同,本发明实施例中将UE从UGW1切换到UGW2上。
在S821部分:CGW更新UGW1及UGW2上的转发规则。
在S822部分:UMC单元确定UE移动切换完成,向云控制器发送边缘应用移动请求消息,其中,边缘应用移动请求消息中携带边缘应用IP地址,目标云服务器的位置信息。
在S823部分:边缘应用从源边缘云服务器迁移到目标边缘云服务器。
在S824部分:云控制器通告边缘应用移动事件,携带边缘应用的IP地址及目标位置信息。
在S825部分:UMC单元记录边缘应用的IP地址和UGW上的对应关系,并建立业务连接上下文,计算一条从UE的接入端口到边缘应用的接入端口的路径。
在S826部分:UMC单元向云控制器下发接入规则。
在S827部分:云控制器配置边缘云网络出口转发规则,建立应用从边缘云到UGW1的转发路径,路径可以是IP路由、以太网交换、隧道等。
在S828部分:UMC单元请求CGW配置UGW2相应端口的接入端口策略,和转发规则。
在S829部分:CGW向UGW2下发配置,配置接入端口策略(IP路由、以太网交换、隧道等多种方式),将应用接入到UGW2,并配置从UE的接入端口到边缘应用的接入端口的转发路径。
图18示出了本发明实施例提供的UE移动边缘应用跟随的协同通信的效果示意图。从图18可以看出,UE移动到新的位置后,UMC单元为UE切换UGW,并触发边缘应用的迁移,将边缘应用移动到离UE最近的位置,使得边缘应用可以跟随UE移动而移动,优化业务连接。
与现有技术相比,本发明实施例方法在移动网络控制面增加了一种新的网元移动性协同UMC单元,与CGW和云计算管理中心云控制器建立信令连接,实时感知UE和应用两种对象的移动事件,协同业务流的两个端点的移动性,确保业务连接不移动过程中不中断。
本发明实施例方法,实现了在边缘应用下移,网关下沉场景下,在一个 网元上协同处理边缘应用和UE两种对象的移动事件,改变了传统网络中,移动核心网只能管理UE的移动,云管理中心只能管理应用和虚拟机的迁移,无法同时管理两种对象的移动事件的不足。本发明实施例可以在UE与边缘应用的IP地址不变的情况下确保业务不中断,还可以按需完成E2E转发路径优化,确保时延最小。
图19示出了本发明实施例提供的另一种可能的系统架构图,从图19可以看出,UMC单元通过if2接口与CGW连接,UMC单元通过if1接口与云控制器(云控制器)连接,UMC单元通过第三接口(也可以称为if3接口)与MME连接,MME与CGW连接。图19所示的系统架构中,与图5所示的系统架构相同或类似的内容可以参考有关图5的详细描述,此处不作赘述。
如图19所示,if3接口实现的功能包括:
(1)UMC单元从MME获知UE的移动事件信息,其中UEUE的移动事件信息中包括移动事件类型(如附着、分离、切换、服务请求等)、当前接入基站IP,源接入基站IP。
(2)UMC单元向MME发起网关UGW重选请求消息,可以携带推荐的UGW。
图20示出了本发明实施例提供的另一种UE和边缘应用接入初始建立业务的通信示意图。图20所示的方法可以在图6所示的场景下执行。图20所示的方法中与图7所示的方法类似,除将图7所示的S307~S308部分变更为S907部分外,其它流程同图7所示的UE和边缘应用接入初始建立业务的协同通信流程相同,不再赘述。其中,S907部分为:UE附着移动网络,MME完成RRC建与立、鉴权、NAS安全、位置更新流程后,MME向UMC单元通告移动(附着)事件,携带UE接入的eNB的IP地址等。
图20所示的方法中,UE所请求访问的边缘应用已经提前启动,若UE附着时,UE所请求访问的边缘应用并未加载,UMC单元可以采用图8和图9分别示出的方法自动为UE记载边缘应用,具体执行过程与图8和图9所示流程的区别仅在于UE的附着事件由MME通告UMC单元,而不是由CGW通告,其它流程均与图8和图9所示流程相同,不再赘述。
图21示出了本发明实施例提供的另一种UE与边缘应用连接后仅有UE移动的协同通信的通信示意图,图21所示的方法在可以在图10所示的场景 下执行,图21所示的方法与图11所示的方法类似,除在图11所示的方法的基础上做以下变更外,其他部分与图11中的描述相同,不再赘述。其中,这些变更包括:
图11中的S603及S604变更为S1003:MME向UMC单元发送UE移动事件的通告消息,其中该通告消息中携带UE的位置移动事件信息,如UE的IP地址,目标接入eNB IP地址等。
图11中的S606变更为S1005:UMC单元向MME发起网关UGW重选请求消息,携带UGW3的IP。
在图11的基础上增加步骤S1006:MME向CGW发送建立会话请求消息。
图11中的S618变更为S1008:MME向UMC单元发送UGW重选完成消息。
在应用图10所示的场景时,UE与边缘应用连接后仅有边缘应用移动的移动协同通信的方法可以参考图14所示的方法,不再赘述。
图22示出了本发明实施例提供的另一种UE与边缘连接后UE移动边缘应用跟随的一种协同通信的通信示意图。图22所示的方法与图17所示的方法类似,除做以下变更外,其他内容可以参考图17有关的详细描述,不再赘述。
与图17所示的通信流程相比,这些变更包括:
S803及S804在本实施例中变更为S1103:MME向UMC单元发送移动事件通告消息,携带UE的IP地址,目标接入的eNB的IP地址等。
图17所示的通信流程中的S806在本实施例中变更为S1105:UMC单元向MME发起网关UGW重选请求消息,携带所选择的UGW的IP。
在图17的基础上增加S1106:MME向CGW发送创建会话请求消息。
图17中的S808变更为S1108:CGW向MME发送创建会话响应消息。
在S1110部分:间接数据转发隧道创建、eNB切换、eNB切换,无线承载创建、GTP承载更新流程,与图17中的步骤S810~S817对应。
在S1111部分:MME向UMC单元发送UGW重选完成消息。
S1112~S1122分别与图17中的S819~S829一一对应,不再赘述。
本实施例方法与现有技术相比,在移动网络控制面增加了一种新的网元 移动性协同UMC单元,与MME、CGW和云计算管理中心云控制器建立信令连接,实时确定UE和应用两种对象的移动事件,协同业务流的两个端点的移动性,确保业务连接不移动过程中不中断。
图23示出了本发明实施例提供的又一种可能的系统架构图,从图23可以看出,UMC单元位于MME和CGW之间,UMC单元通过S11接口与MME连接,通过S11接口的扩展接口if2接口与CGW连接,UMC单元通过if1接口与云控制器(云控制器)连接,UMC单元通过S11接口解析UE的移动事件,决策是否需要重选UGW和选择哪个UGW,决策是否需要发起应用移动。图23所示的系统架构中,与图5或图19所示的系统架构相同或类似的内容可以参考有关图5或图19的详细描述,此处不作赘述。
图24示出了本发明实施例五提供的又一种UE和边缘应用接入初始建立业务的通信示意图。
图24所示的UE和边缘应用接入初始建立业务的协同通信方法可以在图6所示的场景下执行,如图24所示的流程包括:
S1201~S1206与图7中的S301~S306相同。
在S1207部分:MME通过S11接口向UMC单元发送创建会话请求消息。
在S1208部分:UMC单元解析接收的创建会话请求消息,确定UE的附着事件,并为UE选择UGW。
在S1209部分:UMC单元向CGW发送创建会话请求消息,其中该消息中携带为UE分配的UGW的IP地址。
在S1210部分:CGW向UGW1下发GTP隧道规则,UGW1创建与CGW之间的GTP隧道。
在S1211部分:CGW向UMC单元发送创建会话响应消息。
在S1212部分:UMC单元根据创建会话响应消息,记录UE的IP地址与UGW1端口的映射关系。
在S1213部分:UMC单元向MME发送创建会话响应消息。
S1214~S1219分别与图7中的S313~S318一一对应,不再赘述。
图24所示的方法中,UE所请求访问的边缘应用已经提前启动,若UE附着时,UE所请求访问的边缘应用并未加载,UMC单元可以采用实施例三中图8和图9分别示出的方法自动为UE记载边缘应用,具体流程均与图8 和图9所示流程相同,不再赘述。
图25示出了本发明实施例提供的又一种UE与边缘应用连接后仅有UE移动的协同通信的通信示意图,图25所示的方法可以在图10所示的场景下执行。图25所示的方法与图21所示的方法类似,与图21所示的方法的区别部分包括:
在S1303部分:MME通过S11接口向UMC单元发送会话建立请求消息。
在S1304部分:UMC单元解析接收的会话建立请求消息,确定UE的移动事件,执行移动协同,为UE重新选择UGW。
在S1305部分:UMC单元向CGW发送会话建立请求消息,携带重新为UE选择的UGW的IP地址。
在S1318部分:CGW向UMC单元返回承载修改响应消息。
在S1319部分:UMC单元通过解析承载修改响应消息,确定UGW重选完成,更新UE的IP地址与UGW上的的映射关系,重新计算UE的接入端口到边缘应用的UGW接入端口的转发路径。
图25中的其它流程步骤与图21中的相同,不再赘述。
本实施例中,当UE与边缘应用连接后在仅有边缘应用移动的场景下的协同通信方法与实施例三中的相同不再赘述。
图26示出了本发明实施例提供的又一种UE与边缘连接后UE移动边缘应用跟随的一种协同通信的通信示意图。图25所示的方法与图21所示的方法类似,与图22所示的流程相比,区别部分包括:
在S1403部分:MME通过S11接口向UMC单元发送会话建立请求消息。
在S1404部分:UMC单元解析接收的会话建立请求消息,确定UE的移动事件,执行移动协同,为UE重新选择UGW,并确定边缘应用移动的目标位置。
在S1405部分:UMC单元向CGW发送会话建立请求消息,携带重新为UE选择的UGW的IP地址。
在S1418部分:CGW向UMC单元返回承载修改响应消息。
在S1419部分:UMC单元通过解析承载修改响应消息,确定UGW重选完成,更新UE的IP地址与UGW上的的映射关系,重新计算UE的接入端口到边缘应用的UGW接入端口的转发路径。
图26所示的步骤与图22中的其它步骤相同,不再赘述。
本发明实施例的方案与现有技术相比,在移动网络控制面增加了一种新的网元移动性协同UMC单元,与CGW和云计算管理中心云控制器建立信令连接,实时确定UE和应用两种对象的移动事件,协同业务流的两个端点的移动性,确保业务连接不移动过程中不中断,改变了传统网络中,移动核心网只能管理UE的移动,云管理中心只能管理应用和虚拟机的迁移,无法同时管理两种对象的移动事件的不足。本发明可以在IP地址不变的情况下确保业务不中断。还可以按需完成E2E转发路径优化,确保时延最小。
图27示出了本发明实施例提供的又一种可能的系统架构图,从图27可以看出,UMC单元通过if2接口与CGW连接,与实施例三的不同之处在于,UMC单元无法通过控制面获取边缘应用的位置信息,也不能发起边缘应用移动。在这种场景下,UMC单元可通过边缘应用发出的报文,确定边缘应用的位置变化,来更新UGW上的转发规则,保持业务连续性。图27所示的系统架构中,与图5、图19或图23所示的系统架构相同或类似的内容可以参考有关图5、图19或图23的详细描述,此处不作赘述。
如图27所示,UMC单元通过if2接口实现的功能包括:
(1)GWC向UMC单元通告用户面数据流信息,其中用户面数据流信息包括UE的业务流标识,如五元组(UE的源IP地址、目的IP地址、UGW的源端口号、目的端口号及上层协议类型)或完整的用户面报文。
(2)UMC单元从CGW获知UE的移动事件信息,其中UEUE的移动事件信息中包括移动事件类型(如附着、分离、切换、服务请求等)、当前接入基站IP,源接入基站IP。
(3)UMC单元向CGW发起网关UGW重选请求消息,可以携带推荐的UGW。
(4)UMC单元通过if2向CGW发起用户面连接变更请求消息,用户面连接变更请求消息中携带新的路由信息。
(5)CGW向UMC单元通告边缘应用的迁移事件,主要涉及边缘应用的位置改变,具体参数包括:边缘应用的IP地址,收到来自边缘应用的报文的UGW上的IP。
图28示出了本发明实施例提供的又一种UE和边缘应用接入初始建立业 务的通信示意图。图28所示的方法可以在图6所示的场景下执行,具体包括:
在S1501部分:UGW1接收未定义转发规则的来自边缘应用的数据报文后,向CGW发送边缘应用数据流到来的通知消息。
在S1502部分:CGW基于预设规则判断新的边缘应用接入时,向UMC单元发送边缘应用接入的通告消息,其中该通告消息中携带边缘应用的IP地址和接收数据流的UGW的端口IP。
在S1503部分:UMC单元记录边缘应用的IP地址与UGW的映射关系。
本实施例中的其它步骤与图7中的步骤相同,不再赘述。
图29示出了本发明实施例提供的又一种UE与边缘应用连接后仅有边缘应用移动的协同通信场景图。如图29所示,该方法的处理过程包括:
在S1601部分:边缘应用从源边缘云服务器迁移到目标边缘云服务器,且边缘应用在目标边缘云服务器上开启成功后,主动向UGW发出数据报文,可以是正在与UE交互的数据或ARP。
在S1602部分:UGW接收未定义转发规则的数据报文,向CGW发送边缘应用数据流到来的通知消息。
在S1603部分:CGW基于预设规则判断边缘应用位置发生改变时,向UMC单元发送边缘应用移动的通告消息,其中该通告消息中携带边缘应用的IP地址和接收数据流的UGW的端口IP。
在S1604部分:UMC单元确定边缘应用的迁移事件后,执行移动协同包括:更新边缘应用的IP地址与UGW的映射关系,重新计算UE接入位置到边缘应用接入位置的转发路径。
本发明实施例的方案与现有技术的区别之处在于移动网络控制面增加了一种新的网元移动性协同UMC单元,与CGW建立信令连接,实时确定UE和应用两种对象的移动事件,协同业务流的两个端点的移动性,确保业务连接不移动过程中不中断,本实施例方法在一个网元上协同处理了应用和UE两种对象的移动事件,改变了传统网络中,移动核心网只能管理UE的移动,云管理中心只能管理应用和虚拟机的迁移,无法同时管理两种对象的移动事件的不足。本发明可以在IP地址不变的情况下确保业务不中断。还可以按需完成E2E转发路径优化,确保时延最小。
图30示出了本发明实施例提供的有一种可能的系统架构图,与图5所示 的系统结构相比,图30中,UMC单元与CGW合为一体。
图30所示系统结构图中所支持的移动协同通信方法与图5至图18所示的方案类似,可以参考有关图5至图18的详细描述,不再赘述。
图31示出了本发明实施例提供的又一种可能的系统架构图,与图19所示的系统结构相比,图31中,UMC单元与MME合为一体,完成移动协同、UGW选择功能。MME与云控制器之间存在接口,交互应用移动事件信息、应用移动指令等。MME与CGW之间接口采用S11扩展(增加图19所示架构中的if2接口功能)。
信令流程参考图20至图22所示的方案,其中if3接口消息不可见,if2接口信息与S11接口合并。
图32示出了本发明实施例提供的又一种可能的系统架构图,如图32所示,MME和CGW合一为MCP,并集成UMC单元功能,对外只有与云控制器的if1,信令流程参考图20至图22所示的方案。
本发明实施例方法解决了未来移动网络中应用下沉到移动网络边缘、网关分布化场景下,UE和边缘应用双重移动性导致的路由优化和业务连续性问题。通过增加一个协同功能网元UMC单元,实时感知并协同处理UE移动和边缘应用移动两种移动事件,填补了该场景下端到端移动性管理功能的缺失,扩展了网关重选功能。可以支持UE和边缘应用的独立或同时移动,增加了网络的灵活性。
上述主要从各个网元之间交互的角度对本发明实施例的方案进行了介绍。可以理解的是,各个网元,例如CGW、UGW和UMC单元等为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本发明能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
本发明实施例可以根据上述方法示例对MME、CGW、UGW和UMC单元等进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可 以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本发明实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用集成的模块的情况下,图33A示出了上述实施例中所涉及的UMC单元的一种可能的结构示意图。UMC单元1000包括:处理模块1002和通信模块1003。处理模块1002用于对UMC单元1000的动作进行控制管理,例如,处理模块1002用于支持UMC单元1000执行图3中的移动协同通信方法,图4中的移动协同通信方法,图7中的UE和边缘应用接入初始建立业务的通信过程,图8和图9中的解析UE需访问的边缘应用的方法的通信过程,图11中的UE与边缘应用连接后仅有UE移动的协同通信的通信过程,图14中的UE与边缘应用连接后仅有边缘应用移动的协同通信的通信过程,图17中的UE移动边缘应用跟随的协同通信的通信过程,图20中的UE和边缘应用接入初始建立业务的通信过程,图21中的UE与边缘应用连接后仅有UE移动的协同通信的通信过程,图22中的UE与边缘连接后UE移动边缘应用跟随的一种协同通信的通信过程,图24中的UE和边缘应用接入初始建立业务的通信过程,图25中的UE与边缘应用连接后仅有UE移动的协同通信的通信过程,图26中的UE与边缘连接后UE移动边缘应用跟随的一种协同通信的通信过程,图28中的UE和边缘应用接入初始建立业务的通信过程,和/或用于本文所描述的技术的其它过程。通信模块1003用于支持UMC单元1000与其他网络实体的通信,例如与UGW、MME、CGW、云控制器等之间的通信。UMC单元1000还可以包括存储模块1001,用于存储UMC单元的程序代码和数据。
其中,处理模块1002可以是处理器或控制器,例如可以是中央处理器(Central Processing Unit,简称CPU),通用处理器,数字信号处理器(Digital Signal Processor,简称DSP),专用集成电路(Application-Specific Integrated Circuit,简称ASIC),现场可编程门阵列(Field Programmable Gate Array,简称FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信模块1003可以 是收发器、收发电路或通信接口等。存储模块1001可以是存储器。
当处理模块1002为处理器,通信模块1003为收发器,存储模块1001为存储器时,本发明实施例所涉及的UMC单元可以为图33B所示的UMC单元,图33B示出了上述实施例中所涉及的UMC单元的另一种可能的结构示意图。
参阅图33B所示,该UMC单元1010包括:处理器1012、收发器1013、存储器1011。可选地,UMC单元1010还可以包括总线1014。其中,收发器1013、处理器1012以及存储器1011可以通过总线1014相互连接;总线1014可以是外设部件互连标准(Peripheral Component Interconnect,简称PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,简称EISA)总线等。所述总线1014可以分为地址总线、数据总线、控制总线等。为便于表示,图33B中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
本发明实施例还分别提供能够实现上述方法示例中MME、CGW、UGW的装置,这些装置能执行上述方法中所涉及的MME、CGW、UGW分别对应的功能。这些装置具有与图33A或图33B所示的结构类似的结构,本文不再赘述。
结合本发明公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(Random Access Memory,RAM)、闪存、只读存储器(Read Only Memory,ROM)、可擦除可编程只读存储器(Erasable Programmable ROM,EPROM)、电可擦可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于核心网接口设备中。当然,处理器和存储介质也可以作为分立组件存在于核心网接口设备中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本发明所 描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本发明的保护范围之内。

Claims (30)

  1. 一种移动协同通信方法,其特征在于,包括:
    统一移动协同UMC单元接收应用的应用移动事件信息,其中,所述应用位于网络边缘并用于为用户设备UE提供应用服务;
    所述UMC单元接收所述UE的UE移动事件信息;
    所述UMC单元根据所述应用移动事件信息和所述UE移动事件信息,确定所述UE与所述应用之间的路径。
  2. 根据权利要求1所述的方法,其特征在于,所述应用移动事件信息包含所述应用的IP地址,所述UE移动事件信息为UE附着事件信息,所述UE附着事件信息包括所述UE的IP地址;
    所述UMC单元根据所述应用移动事件信息和所述UE移动事件信息,确定所述UE与所述应用之间的路径,包括:
    所述UMC单元确定所述UE的IP地址与为所述UE分配的第一用户面网关UGW的端口之间的第一映射关系,以及所述应用的IP地址与所述应用所接入的第二UGW的端口之间的第二映射关系,其中,所述第一UGW与所述第二UGW为相同的UGW或不同的UGW;
    所述UMC单元根据所述第一映射关系和所述第二映射关系,确定所述UE与所述应用之间的路径。
  3. 根据权利要求2所述的方法,其特征在于,所述应用移动事件信息为应用开启事件信息,所述应用开启事件信息包括所述应用的标识、所述应用的IP地址和所述应用的位置信息,所述方法还包括:
    所述UMC单元根据所述应用的位置信息,为所述应用分配所述第二UGW和所述第二UGW的所述端口;
    所述UMC单元向控制面网关CGW发送第一请求消息,所述第一请求消息用于将所述应用接入到所述第二UGW上;
    所述UMC单元向云控制器发送第一接入规则,所述第一接入规则用于所述云控制器确定所述应用到所述第二UGW的路径。
  4. 根据权利要求3所述的方法,其特征在于,
    所述UMC单元接收所述应用的应用移动事件信息,包括:
    所述UMC单元接收所述云控制器发送的所述应用开启事件信息;
    所述UMC单元接收所述云控制器发送的所述应用开启事件信息之前,所述方法还包括:
    所述UMC单元向所述云控制器发送开启请求消息,所述开启请求消息用于请求开启所述应用,以使得所述云控制器向边缘云服务器发送开启命令,所述开启命令用于指示所述边缘云服务器开启所述应用。
  5. 根据权利要求2~4中任一项所述的方法,其特征在于,所述UMC单元确定所述第一映射关系之后,所述方法还包括:
    所述UMC单元接收所述CGW发送的第一通告消息,所述第一通告消息用于通知所述UE的用户面业务报文到来,其中,所述第一通告消息中携带所述用户面业务报文的流特性信息;
    所述UMC单元根据所述第一映射关系和所述第二映射关系确定所述UE与所述应用之间的路径,包括:
    所述UMC单元根据所述第一映射关系、所述第二映射关系和所述用户面业务报文的流特性信息确定所述UE与所述应用在所述UGW的交换面上的路径。
  6. 根据权利要求2至5中任一项所述的方法,其特征在于,所述UMC单元确定所述UE与所述应用之间的路径之后,所述方法还包括:
    所述UMC单元向所述CGW发送第一更新请求消息,所述第一更新请求消息中携带所述UE与所述应用之间的路径,以使得所述CGW根据所述UE与所述应用之间的路径向所述第一UGW和所述第二UGW发送用户面报文转发规则,以连通所述UE在所述第一UGW上的接入端口到所述应用在所述第二UGW的接入端口之间的路径。
  7. 根据权利要求2~6中任一项所述的方法,其特征在于,所述方法还包括:
    所述UMC单元接收所述云控制器发送的所述应用移动事件信息,其中,所述应用移动事件信息中携带所述应用的IP地址和所述应用的新的位置信息;
    所述UMC单元根据所述应用的IP地址和所述应用新的位置信息,为所述应用分配第三UGW以及接入所述第三UGW的端口;
    所述UMC单元向所述云控制器发送所述应用接入所述第三UGW的第二 接入规则,所述第二接入规则用于所述云控制器配置所述应用到所述第三UGW的路径,还用于所述云控制器删除所述应用在所述第二UGW上的路径;
    所述UMC单元向所述CGW发送第二请求消息,所述第二请求消息用于将所述应用接入到所述第三UGW上。
  8. 根据权利要求2~7中任一项所述的方法,其特征在于,所述UE附着事件信息为通过所述CGW接收的信息且所述UE附着事件信息还包括所述UE接入的基站的IP地址,其中,所述CGW通过第二接口与所述UMC单元连接,所述CGW还与MME连接,所述UMC单元通过第一接口与所述云控制器连接;或者,所述UMC单元的功能单元与所述CGW的功能单元集成为一体,所述UMC单元的功能单元通过第一接口与所述云控制器连接,所述CGW的功能单元通过s11接口与所述MME连接;
    所述UMC单元确定所述UE的IP地址与为所述UE分配的第一用户面网关UGW端口之间的第一映射关系,包括:
    所述UMC单元将所述UE的IP地址以及所述UE接入的基站的IP地址发送给所述CGW,以使得所述CGW为所述UE分配第一UGW以及接入所述第一UGW的端口;
    所述UMC单元接收所述CGW发送的为所述UE分配第一UGW上的端口的通知消息;
    或者,
    所述UMC单元确定为所述UE分配第一UGW以及接入所述第一UGW的端口;
    所述UMC单元将为所述UE分配的所述第一UGW上的端口信息送给所述CGW,以使得所述CGW建立所述第一UGW对所述UE的承载。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    所述UMC单元接收所述CGW发送的UE位置移动事件信息,其中所述UE位置移动事件信息中携带所述UE的IP地址以及目标基站的IP地址;
    所述UMC单元根据所述UE的IP地址以及目标基站的IP地址重新为所述UE分配第四UGW;
    所述UMC单元向所述CGW发送网关重选请求消息,其中所述网关重选请求消息中携带所述第四UGW的IP地址,以使得所述CGW将所述UE接 入所述目标基站,并建立所述目标基站与所述第四UGW之间的GTP隧道;
    所述UMC单元接收所述CGW发送的所述UE的网关重选完成消息;
    所述UMC单元更新所述UE的IP地址与UGW之间的映射关系;
    所述UMC单元根据已经建立的与所述UE对应的业务上下文,重新确定所述UE与所述应用在UGW交换面上的路径;
    所述UMC单元向所述CGW发送更新用户面路径的第二更新请求消息,其中所述第二更新请求消息中携带所述重新确定的所述UE与所述应用在UGW交换面上的路径,以使得所述CGW将重新确定的所述UE与所述应用在UGW交换面上的路径转换为用户面报文转发规则,以连通所述UE在所述第四UGW上的接入端口到所述应用所在的UGW接入端口的路径,并删除所述UE在所述第一UGW上的接入端口到所述应用所在的UGW接入端口的路径。
  10. 根据权利要求2~7中任一项所述的方法,其特征在于,所述UE附着事件信息为通过MME接收的信息,其中,所述MME通过第三接口与所述UMC单元连接,所述UMC单元通过第二接口与所述CGW连接,所述UMC单元通过第一接口与所述云控制器连接;或者,所述UMC单元的功能单元与所述MME的功能单元集成为一体,所述UMC单元功能单元通过第一接口与所述云控制器连接,所述MME的功能单元通过s11接口与所述CGW连接;或者,MCP上集成MME功能单元与CGW功能单元,所述UMC单元集成在所述MCP上;
    所述UMC单元确定所述UE的IP地址与为所述UE分配的第一用户面网关UGW上的端口之间的第一映射关系,包括:
    所述UMC单元确定为所述UE分配第一UGW以及接入所述第一UGW的端口;
    所述UMC单元将为所述UE分配的所述第一UGW上的端口信息发送给所述MME,以使得所述MME向所述CGW发送会话建立请求,所述会话建立请求用于所述CGW建立所述第一UGW对所述UE的承载;
    或者,
    所述UMC单元接收所述MME发送的所述UE附着事件信息中携带所述MME为所述UE分配的第一UGW的端口消息。
  11. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    所述UMC单元接收所述MME发送的UE位置移动事件信息,其中所述UE位置移动事件信息中携带所述UE的IP地址以及目标基站的IP地址;
    所述UMC单元根据所述UE的目标基站的IP地址以及与所述UE相关的业务上下文重新为所述UE分配第四UGW;
    所述UMC单元向所述MME发送网关重选请求消息,其中所述网关重选请求消息中携带所述第四UGW的IP,以使得所述MME将所述UE接入所述目标基站,并通过CGW建立所述目标基站与所述第四UGW之间的GTP隧道;
    所述UMC单元接收所述MME发送的所述UE的网关重选完成消息;
    所述UMC单元更新所述UE的IP地址与所述第四UGW之间的映射关系;
    所述UMC单元根据已经建立的与所述UE对应的业务上下文,重新确定所述UE与所述应用在UGW交换面上的路径;
    所述UMC单元向所述CGW发送更新用户面路径的第三更新请求消息,其中所述第三更新请求消息中携带所述重新确定的所述UE与所述应用在UGW交换面上的路径,以使得所述CGW将重新确定的所述UE与所述应用在UGW交换面上的路径转换为用户面报文转发规则,以连通所述UE在所述第四UGW上的接入端口到所述应用所在的UGW接入端口的路径,并删除所述UE在所述第一UGW上的接入端口到所述应用所在的UGW接入端口的路径。
  12. 根据权利要求2~7中任一项所述的方法,其特征在于,所述UMC单元接收所述UE附着事件信息,包括:
    所述UMC单元接收MME发送的第一会话建立请求消息,其中,所述MME通过S11接口与所述UMC单元连接,所述UMC单元通过第一接口与云控制器连接,所述UMC单元通过第二接口与CGW连接;
    所述UMC单元根据所述第一会话建立请求消息,获取所述UE的附着事件信息;
    所述UMC单元确定所述UE的IP地址与为所述UE分配的第一用户面网关UGW端口之间的第一映射关系,包括:
    所述UMC单元根据所述UE接入的基站的IP地址,为所述UE分配第一UGW以及接入所述第一UGW的端口。
  13. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    所述UMC单元接收所述MME发送的第二会话建立请求消息,其中所述第二会话建立请求消息是所述MME接收来自所述UE的源基站的UE基站切换请求消息后向所述UMC单元发送的;
    所述UMC单元根据所述第二会话建立请求消息,解析所述UE的位置移动事件信息,其中所述UE位置移动事件信息中携带所述UE的IP地址以及目标基站的IP地址;
    所述UMC单元根据所述UE的IP地址以及目标基站的IP地址重新为所述UE分配第四UGW;
    所述UMC单元向所述CGW发送第三会话建立请求消息,其中所述第三会话建立请求消息中携带所述第四UGW的IP,以使得所述CGW将所述UE接入所述目标基站,并建立所述目标基站与所述第四UGW之间的GTP隧道;
    所述UMC单元接收所述CGW发送的UE承载修改响应消息;
    所述UMC单元根据所述UE承载修改响应消息,确定所述UE与所述第四UGW重选完成;
    所述UMC单元更新所述UE的IP地址与所述第四UGW之间的映射关系;
    所述UMC单元根据已经建立的与所述UE对应的业务上下文,重新确定所述UE与所述应用在UGW交换面上的路径;
    所述UMC单元向所述CGW发送更新用户面路径的第四更新请求消息,其中所述第四更新请求消息中携带所述重新确定的所述UE与所述应用在UGW交换面上的路径,以使得所述CGW将重新确定的所述UE与所述应用在UGW交换面上的路径转换为用户面报文转发规则,以连通所述UE在所述第四UGW上的接入端口到所述应用所在的UGW接入端口的路径,并删除所述UE在所述第一UGW上的接入端口到所述应用所在的UGW接入端口的路径。
  14. 根据权利要求2所述的方法,其特征在于,所述UMC单元接收所述UE附着事件信息之前还包括:
    所述UMC单元接收CGW发送的应用接入事件信息,其中所述应用接入事件信息是所述CGW根据来自第二UGW的应用用户面数据得到的,应用接入事件信息中携带所述应用的IP地址以及所述第二UGW的端口IP;
    所述UMC单元接收所述UE附着事件信息之后,所述UMC单元接收所述CGW发送的第二通告消息,所述第二通告消息用于通知所述UE的用户面业务报文到来,其中,所述第二通告消息中携带所述用户面业务报文的流标识信息;
    所述UMC单元根据所述流标识信息确定所述用户面业务报文为与新业务相关的报文,并建立对应于所述UE和所述应用的业务上下文;
    所述UMC单元根据所述第一映射关系和所述第二映射关系确定所述UE与所述应用之间的路径,包括:
    所述UMC单元根据所述第一映射关系、所述第二映射关系和所述用户面业务报文的流特性信息确定所述UE与所述应用在所述UGW的交换面上的路径。
  15. 根据权利要求14所述的方法,其特征在于,所述方法还包括:
    所述UMC单元接收所述CGW发送的所述应用移动事件信息,其中所述应用移动事件信息是所述CGW接收第三UGW发送的未定义转发规则的,来自应用的数据报文并按预设规则确定所述应用发生位置迁移后发送的,所述应用移动事件信息中携带所述应用的IP地址及接收所述应用数据报文的第三UGW的端口IP;
    所述UMC单元根据所述应用的IP地址及接收所述应用数据报文的第三UGW的端口IP确定所述应用发生位置移动;
    所述UMC单元更新所述应用的IP地址与UGW上的端口的映射关系;
    所述UMC单元根据所述应用的IP地址与所述第三UGW上的端口的第三映射关系以及所述UE的IP地址与所述第一UGW之间的第一映射关系,重新确定所述UE与所述应用之间的路径。
  16. 一种移动协同通信装置,其特征在于,包括:处理模块和通信模块,
    所述处理模块用于通过所述通信模块接收应用的应用移动事件信息,其中,所述应用位于网络边缘并用于为用户设备UE提供应用服务;以及用于通过所述通信模块单元接收所述UE的UE移动事件信息;以及用于根据所述 应用移动事件信息和所述UE移动事件信息,确定所述UE与所述应用之间的路径。
  17. 根据权利要求16所述的装置,其特征在于,所述应用移动事件信息包含所述应用的IP地址,所述UE移动事件信息为UE附着事件信息,所述UE附着事件信息包括所述UE的IP地址,所述处理模块具体用于确定所述UE的IP地址与为所述UE分配的第一用户面网关UGW的端口之间的第一映射关系,以及所述应用的IP地址与所述应用所接入的第二UGW的端口之间的第二映射关系,其中,所述第一UGW与所述第二UGW为相同的UGW或不同的UGW;以及根据所述第一映射关系和所述第二映射关系,确定所述UE与所述应用之间的路径。
  18. 根据权利要求17所述的装置,其特征在于,所述应用移动事件信息为应用开启事件信息,所述应用开启事件信息包括所述应用的标识、所述应用的IP地址和所述应用的位置信息,所述处理模块还用于根据所述应用的位置信息,为所述应用分配所述第二UGW和所述第二UGW的所述端口;以及用于通过所述通信模块向控制面网关CGW发送第一请求消息,所述第一请求消息用于将所述应用接入到所述第二UGW上;以及用于通过所述通信模块向云控制器发送第一接入规则,所述第一接入规则用于所述云控制器确定所述应用到所述第二UGW的路径。
  19. 根据权利要求18所述的装置,其特征在于,所述处理模块具体用于通过所述通信模块接收所述云控制器发送的所述应用开启事件信息;所述处理模块还用于通过所述通信模块向所述云控制器发送开启请求消息,所述开启请求消息用于请求开启所述应用,以使得所述云控制器向边缘云服务器发送开启命令,所述开启命令用于指示所述边缘云服务器开启所述应用。
  20. 根据权利要求17~19中任一项所述的装置,其特征在于,所述处理模块还用于通过所述通信模块接收所述CGW发送的第一通告消息,所述第一通告消息用于通知所述UE的用户面业务报文到来,其中,所述第一通告消息中携带所述用户面业务报文的流特性信息;所述处理模块具体用于根据所述第一映射关系、所述第二映射关系和所述用户面业务报文的流特性信息确定所述UE与所述应用在所述UGW的交换面上的路径。
  21. 根据权利要求17~20中任一项所述的装置,其特征在于,所述处理 模块还用于通过所述通信模块向所述CGW发送第一更新请求消息,所述第一更新请求消息中携带所述UE与所述应用之间的路径,以使得所述CGW根据所述UE与所述应用之间的路径向所述第一UGW和所述第二UGW发送用户面报文转发规则,以连通所述UE在所述第一UGW上的接入端口到所述应用在所述第二UGW的接入端口之间的路径。
  22. 根据权利要求17~21中任一项所述的装置,其特征在于,所述处理模块还用于通过所述通信模块接收所述云控制器发送的所述应用移动事件信息,其中,所述应用移动事件信息中携带所述应用的IP地址和所述应用的新的位置信息;以及用于根据所述应用的IP地址和所述应用新的位置信息,为所述应用分配第三UGW以及接入所述第三UGW的端口;以及用于通过所述通信模块向所述云控制器发送所述应用接入所述第三UGW的第二接入规则,所述第二接入规则用于所述云控制器配置所述应用到所述第三UGW的路径,还用于所述云控制器删除所述应用在所述第二UGW上的路径;以及用于通过所述通信模块向所述CGW发送第二请求消息,所述第二请求消息用于将所述应用接入到所述第三UGW上。
  23. 根据权利要求17~22中任一项所述的装置,其特征在于,所述UE附着事件信息为通过所述CGW接收的信息且所述UE附着事件信息还包括所述UE接入的基站的IP地址,其中,所述CGW通过第二接口与所述装置连接,所述CGW还与MME连接,所述装置通过第一接口与所述云控制器连接;或者,所述装置的功能单元与所述CGW的功能单元集成为一体,所述装置的功能单元通过第一接口与所述云控制器连接,所述CGW的功能单元通过s11接口与所述MME连接;所述处理模块具体用于通过所述通信模块将所述UE的IP地址以及所述UE接入的基站的IP地址发送给所述CGW,以使得所述CGW为所述UE分配第一UGW以及接入所述第一UGW的端口;以及接收所述CGW发送的为所述UE分配第一UGW上的端口的通知消息;或者,所述处理模块具体用于确定为所述UE分配第一UGW以及接入所述第一UGW的端口;以及通过所述通信模块将为所述UE分配的所述第一UGW上的端口信息送给所述CGW,以使得所述CGW建立所述第一UGW对所述UE的承载。
  24. 根据权利要求23所述的装置,其特征在于,所述处理模块还用于通 过所述通信模块接收所述CGW发送的UE位置移动事件信息,其中所述UE位置移动事件信息中携带所述UE的IP地址以及目标基站的IP地址;以及用于根据所述UE的IP地址以及目标基站的IP地址重新为所述UE分配第四UGW;以及用于通过所述通信模块向所述CGW发送网关重选请求消息,其中所述网关重选请求消息中携带所述第四UGW的IP地址,以使得所述CGW将所述UE接入所述目标基站,并建立所述目标基站与所述第四UGW之间的GTP隧道;以及用于通过所述通信模块接收所述CGW发送的所述UE的网关重选完成消息;以及用于更新所述UE的IP地址与UGW之间的映射关系;以及用于根据已经建立的与所述UE对应的业务上下文,重新确定所述UE与所述应用在UGW交换面上的路径;以及用于通过所述通信模块向所述CGW发送更新用户面路径的第二更新请求消息,其中所述第二更新请求消息中携带所述重新确定的所述UE与所述应用在UGW交换面上的路径,以使得所述CGW将重新确定的所述UE与所述应用在UGW交换面上的路径转换为用户面报文转发规则,以连通所述UE在所述第四UGW上的接入端口到所述应用所在的UGW接入端口的路径,并删除所述UE在所述第一UGW上的接入端口到所述应用所在的UGW接入端口的路径。
  25. 根据权利要求17~22中任一项所述的装置,其特征在于,所述UE附着事件信息为通过MME接收的信息,其中,所述MME通过第三接口与所述装置连接,所述装置通过第二接口与所述CGW连接,所述装置通过第一接口与所述云控制器连接;或者,所述装置的功能单元与所述MME的功能单元集成为一体,所述装置功能单元通过第一接口与所述云控制器连接,所述MME的功能单元通过s11接口与所述CGW连接;或者,MCP上集成MME功能单元与CGW功能单元,所述装置集成在所述MCP上;所述处理模块具体用于确定为所述UE分配第一UGW以及接入所述第一UGW的端口;以及通过所述通信模块将为所述UE分配的所述第一UGW上的端口信息发送给所述MME,以使得所述MME向所述CGW发送会话建立请求,所述会话建立请求用于所述CGW建立所述第一UGW对所述UE的承载;或者,所述处理模块具体用于通过所述通信模块接收所述MME发送的所述UE附着事件信息中携带所述MME为所述UE分配的第一UGW的端口消息。
  26. 根据权利要求25所述的装置,其特征在于,所述处理模块还用于通 过所述通信模块接收所述MME发送的UE位置移动事件信息,其中所述UE位置移动事件信息中携带所述UE的IP地址以及目标基站的IP地址;以及用于根据所述UE的目标基站的IP地址以及与所述UE相关的业务上下文重新为所述UE分配第四UGW;以及用于通过所述通信模块向所述MME发送网关重选请求消息,其中所述网关重选请求消息中携带所述第四UGW的IP,以使得所述MME将所述UE接入所述目标基站,并通过CGW建立所述目标基站与所述第四UGW之间的GTP隧道;以及用于通过所述通信模块接收所述MME发送的所述UE的网关重选完成消息;以及用于更新所述UE的IP地址与所述第四UGW之间的映射关系;以及用于根据已经建立的与所述UE对应的业务上下文,重新确定所述UE与所述应用在UGW交换面上的路径;以及用于通过所述通信模块向所述CGW发送更新用户面路径的第三更新请求消息,其中所述第三更新请求消息中携带所述重新确定的所述UE与所述应用在UGW交换面上的路径,以使得所述CGW将重新确定的所述UE与所述应用在UGW交换面上的路径转换为用户面报文转发规则,以连通所述UE在所述第四UGW上的接入端口到所述应用所在的UGW接入端口的路径,并删除所述UE在所述第一UGW上的接入端口到所述应用所在的UGW接入端口的路径。
  27. 根据权利要求17~22中任一项所述的装置,其特征在于,所述处理模块具体用于通过所述通信模块接收MME发送的第一会话建立请求消息,其中,所述MME通过S11接口与所述装置连接,所述装置通过第一接口与云控制器连接,所述装置通过第二接口与CGW连接;以及根据所述第一会话建立请求消息,获取所述UE的附着事件信息;以及根据所述UE接入的基站的IP地址,为所述UE分配第一UGW以及接入所述第一UGW的端口。
  28. 根据权利要求27所述的装置,其特征在于,所述处理模块还用于通过所述通信模块接收所述MME发送的第二会话建立请求消息,其中所述第二会话建立请求消息是所述MME接收来自所述UE的源基站的UE基站切换请求消息后向所述装置发送的;以及用于根据所述第二会话建立请求消息,解析所述UE的位置移动事件信息,其中所述UE位置移动事件信息中携带所述UE的IP地址以及目标基站的IP地址;以及用于根据所述UE的IP地址以及目标基站的IP地址重新为所述UE分配第四UGW;以及用于通过所述 通信模块向所述CGW发送第三会话建立请求消息,其中所述第三会话建立请求消息中携带所述第四UGW的IP,以使得所述CGW将所述UE接入所述目标基站,并建立所述目标基站与所述第四UGW之间的GTP隧道;以及用于通过所述通信模块接收所述CGW发送的UE承载修改响应消息;以及用于根据所述UE承载修改响应消息,确定所述UE与所述第四UGW重选完成;以及用于更新所述UE的IP地址与所述第四UGW之间的映射关系;以及用于根据已经建立的与所述UE对应的业务上下文,重新确定所述UE与所述应用在UGW交换面上的路径;以及用于通过所述通信模块向所述CGW发送更新用户面路径的第四更新请求消息,其中所述第四更新请求消息中携带所述重新确定的所述UE与所述应用在UGW交换面上的路径,以使得所述CGW将重新确定的所述UE与所述应用在UGW交换面上的路径转换为用户面报文转发规则,以连通所述UE在所述第四UGW上的接入端口到所述应用所在的UGW接入端口的路径,并删除所述UE在所述第一UGW上的接入端口到所述应用所在的UGW接入端口的路径。
  29. 根据权利要求17所述的装置,其特征在于,所述处理模块还用于通过所述通信模块CGW发送的应用接入事件信息,其中所述应用接入事件信息是所述CGW根据来自第二UGW的应用用户面数据得到的,应用接入事件信息中携带所述应用的IP地址以及所述第二UGW的端口IP;以及用于通过所述通信模块接收所述CGW发送的第二通告消息,所述第二通告消息用于通知所述UE的用户面业务报文到来,其中,所述第二通告消息中携带所述用户面业务报文的流标识信息;以及用于根据所述流标识信息确定所述用户面业务报文为与新业务相关的报文,并建立对应于所述UE和所述应用的业务上下文;以及具体用于根据所述第一映射关系、所述第二映射关系和所述用户面业务报文的流特性信息确定所述UE与所述应用在所述UGW的交换面上的路径。
  30. 根据权利要求29所述的装置,其特征在于,所述处理模块还用于通过所述通信模块接收所述CGW发送的所述应用移动事件信息,其中所述应用移动事件信息是所述CGW接收第三UGW发送的未定义转发规则的,来自应用的数据报文并按预设规则确定所述应用发生位置迁移后发送的,所述应用移动事件信息中携带所述应用的IP地址及接收所述应用数据报文的第三 UGW的端口IP;以及用于根据所述应用的IP地址及接收所述应用数据报文的第三UGW的端口IP确定所述应用发生位置移动;以及用于更新所述应用的IP地址与UGW上的端口的映射关系;以及用于根据所述应用的IP地址与所述第三UGW上的端口的第三映射关系以及所述UE的IP地址与所述第一UGW之间的第一映射关系,重新确定所述UE与所述应用之间的路径。
PCT/CN2016/078505 2016-04-05 2016-04-05 移动协同通信方法及装置 WO2017173587A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2018552163A JP6650535B2 (ja) 2016-04-05 2016-04-05 モバイル協働型コミュニケーション方法及び装置
PCT/CN2016/078505 WO2017173587A1 (zh) 2016-04-05 2016-04-05 移动协同通信方法及装置
CN201680084264.7A CN108886679B (zh) 2016-04-05 2016-04-05 移动协同通信方法及装置
EP16897522.5A EP3432619B1 (en) 2016-04-05 2016-04-05 Mobile collaborative communication method and device
BR112018070401-6A BR112018070401B1 (pt) 2016-04-05 Método e aparelho de comunicação colaborativa móvel, e meio legível por computador
US16/149,535 US10728829B2 (en) 2016-04-05 2018-10-02 Mobile collaborative communication method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/078505 WO2017173587A1 (zh) 2016-04-05 2016-04-05 移动协同通信方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/149,535 Continuation US10728829B2 (en) 2016-04-05 2018-10-02 Mobile collaborative communication method and apparatus

Publications (1)

Publication Number Publication Date
WO2017173587A1 true WO2017173587A1 (zh) 2017-10-12

Family

ID=60000817

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/078505 WO2017173587A1 (zh) 2016-04-05 2016-04-05 移动协同通信方法及装置

Country Status (5)

Country Link
US (1) US10728829B2 (zh)
EP (1) EP3432619B1 (zh)
JP (1) JP6650535B2 (zh)
CN (1) CN108886679B (zh)
WO (1) WO2017173587A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019140017A1 (en) * 2018-01-10 2019-07-18 Cisco Technology, Inc. Mobile edge computing: method to maintain reachability of apps moving between fog and cloud, using duplicate eids
WO2020067361A1 (ja) * 2018-09-26 2020-04-02 ソフトバンク株式会社 システム、制御プレーン機器、ユーザプレーン機器、及びプログラム
WO2022052521A1 (zh) * 2020-09-14 2022-03-17 华为技术有限公司 通信的方法和装置

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018035864A1 (zh) * 2016-08-26 2018-03-01 华为技术有限公司 一种网络管理方法和控制器
CN109691147B (zh) * 2016-08-30 2022-05-31 索尼移动通讯有限公司 移动边缘计算服务的重新定位
CN106993067B (zh) * 2017-03-16 2020-07-21 华为技术有限公司 路由下发方法及设备
EP3878201A4 (en) * 2018-11-05 2022-08-03 Parallel Wireless, Inc. LOCALLY GENERATED TEIDE FOR HIGH CORE AVAILABILITY
US10887799B2 (en) * 2019-01-10 2021-01-05 Cisco Technology, Inc. SRv6 user-plane-based triggering methods and apparatus for session or flow migration in mobile networks
US10798617B1 (en) 2019-01-23 2020-10-06 Cisco Technology, Inc. Providing low latency traffic segregation for mobile edge computing network environments
US10880368B2 (en) * 2019-01-29 2020-12-29 Cisco Technology, Inc. Identifying edge clouds within networks
US11690128B2 (en) 2019-03-11 2023-06-27 Fujitsu Limited Digital representations of physical intelligent moving objects
CN110198307B (zh) * 2019-05-10 2021-05-18 深圳市腾讯计算机系统有限公司 一种移动边缘计算节点的选择方法、装置及系统
CN112153555B (zh) * 2019-06-28 2023-07-21 中兴通讯股份有限公司 媒体服务在区域间的切换方法、服务器、系统及存储介质
JP7390148B2 (ja) * 2019-09-30 2023-12-01 パナソニックホールディングス株式会社 ネットワーク制御装置、ネットワーク制御システム、及びネットワーク制御方法
CN113133061A (zh) * 2019-12-30 2021-07-16 中兴通讯股份有限公司 选择业务规则的方法和装置、决策业务规则的方法和装置
WO2022032547A1 (zh) * 2020-08-12 2022-02-17 华为技术有限公司 一种应用迁移的方法和装置
JP7500754B2 (ja) 2020-10-29 2024-06-17 パナソニックホールディングス株式会社 ネットワーク制御装置、ネットワーク制御システム、ネットワーク制御方法、及び無線ネットワークシステム構築方法
US20220255858A1 (en) * 2021-02-05 2022-08-11 Jio Platforms Limited System and method of intelligent edge routing
US20220408353A1 (en) * 2021-06-18 2022-12-22 Commscope Technologies Llc User plane function selection and hosting for real-time applications
CN115604222B (zh) * 2021-06-28 2024-08-23 中国电信股份有限公司 移动网络边缘应用访问授权方法、系统以及介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014117376A1 (zh) * 2013-01-31 2014-08-07 华为技术有限公司 可定制的移动宽带网络系统和定制移动宽带网络的方法
CN104185209A (zh) * 2013-05-24 2014-12-03 中兴通讯股份有限公司 一种小蜂窝基站接入系统及其实现网络接入的方法
US20150110095A1 (en) * 2012-06-29 2015-04-23 Huawei Technologies Co., Ltd. Gateway system, device and communication method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4180279B2 (ja) 2002-01-11 2008-11-12 Kddi株式会社 名前解決を用いたルーティング方法およびそのシステム
CN101645797B (zh) 2009-08-25 2011-04-13 华为技术有限公司 自动保护倒换方法、设备和系统
KR20140068261A (ko) 2009-12-04 2014-06-05 인터디지탈 패튼 홀딩스, 인크 하이브리드 네트워크에서 통합 게이트웨이에 대한 확장형 로컬 ip 액세스
US9167438B2 (en) 2012-08-31 2015-10-20 International Business Machines Corporation Mobility detection for edge applications in wireless communication networks
CN104684044B (zh) * 2013-11-29 2019-04-16 中兴通讯股份有限公司 一种路径建立的方法、控制器及移动性管理实体
KR101816799B1 (ko) 2014-03-27 2018-01-11 노키아 솔루션스 앤드 네트웍스 오와이 5세대 모바일 네트워크들에서의 온디맨드 네트워크 서비스
KR102258016B1 (ko) 2014-06-11 2021-05-28 콘비다 와이어리스, 엘엘씨 로컬 콘텐츠 리다이렉션을 위한 매핑 서비스
WO2017129742A1 (en) * 2016-01-27 2017-08-03 Nokia Solutions And Networks Oy Method and apparatus for implementing mobile edge application session connectivity and mobility

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150110095A1 (en) * 2012-06-29 2015-04-23 Huawei Technologies Co., Ltd. Gateway system, device and communication method
WO2014117376A1 (zh) * 2013-01-31 2014-08-07 华为技术有限公司 可定制的移动宽带网络系统和定制移动宽带网络的方法
CN104185209A (zh) * 2013-05-24 2014-12-03 中兴通讯股份有限公司 一种小蜂窝基站接入系统及其实现网络接入的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CATTONI, A.F. ET AL.: "Mobile Low Latency Services in 5G", 2015 IEEE 81ST VEHICULAR TECHNOLOGY CONFERENCE (VTC SPRING, 14 May 2015 (2015-05-14), XP033167451 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019140017A1 (en) * 2018-01-10 2019-07-18 Cisco Technology, Inc. Mobile edge computing: method to maintain reachability of apps moving between fog and cloud, using duplicate eids
US10715633B2 (en) 2018-01-10 2020-07-14 Cisco Technology, Inc. Maintaining reachability of apps moving between fog and cloud using duplicate endpoint identifiers
WO2020067361A1 (ja) * 2018-09-26 2020-04-02 ソフトバンク株式会社 システム、制御プレーン機器、ユーザプレーン機器、及びプログラム
CN112715035A (zh) * 2018-09-26 2021-04-27 软银股份有限公司 系统、控制平面设备、用户平面设备以及程序
JPWO2020067361A1 (ja) * 2018-09-26 2021-09-02 ソフトバンク株式会社 システム、制御プレーン機器、ユーザプレーン機器、及びプログラム
JP7254093B2 (ja) 2018-09-26 2023-04-07 ソフトバンク株式会社 システム、制御プレーン機器、ユーザプレーン機器、及びプログラム
CN112715035B (zh) * 2018-09-26 2024-04-16 软银股份有限公司 系统、控制平面设备、用户平面设备以及程序
US12096493B2 (en) 2018-09-26 2024-09-17 Softbank Corp. System, control plane device, user plane device and computer readable storage medium
WO2022052521A1 (zh) * 2020-09-14 2022-03-17 华为技术有限公司 通信的方法和装置

Also Published As

Publication number Publication date
EP3432619A4 (en) 2019-01-23
CN108886679A (zh) 2018-11-23
JP6650535B2 (ja) 2020-02-19
CN108886679B (zh) 2020-07-07
US10728829B2 (en) 2020-07-28
JP2019511177A (ja) 2019-04-18
EP3432619B1 (en) 2020-12-09
BR112018070401A2 (pt) 2019-02-05
US20190037474A1 (en) 2019-01-31
EP3432619A1 (en) 2019-01-23

Similar Documents

Publication Publication Date Title
WO2017173587A1 (zh) 移动协同通信方法及装置
CN112153098B (zh) 一种应用迁移方法及装置
CN111247832B (zh) Pdn和pdu会话类型映射和能力发现
KR102088721B1 (ko) SDN 기반 LTE Network 구조 및 동작 방안
CN109151929B (zh) 网络系统的切换处理方法、装置及系统、存储介质
KR101753505B1 (ko) 네트워크 노드 기능에 접속하기 위한 클라이언트 디바이스를 제1 게이트웨이로부터 제2 게이트웨이로의 리디렉팅
US11284312B2 (en) User equipment and communication control method performed by user equipment
WO2017000866A1 (zh) 一种节点间数据传输的方法、网关节点及节点
CN106664551B (zh) 一种ip地址分配的方法和装置
JP2013502121A (ja) (e)NodeBに対するローカルIP接続性をサポートするシステムおよび方法
US10447603B2 (en) Control signaling transmission method and device
EP3110187A1 (en) Method for selecting shunt gateway and controller
EP3091783B1 (en) Handover control method, device, and wireless communications network
CN106471787B (zh) 获取对在移动通信系统中使用邻近服务的授权
EP3017617B1 (en) Method and apparatus for optimizing data route in mobile communication system
JP6050720B2 (ja) コアネットワークにおけるゲートウェイのセッション情報を移行させるシステム及び方法
JP2015035729A (ja) 通信システム及び通信方式
WO2016090923A1 (zh) Lipa/sipto连接的建立方法和装置
KR102180407B1 (ko) 링크 계층 라우팅을 이용하는 네트워크 장치 및 방법
EP3637817B1 (en) Communication method
CN111836402A (zh) 一种数据传输方法及装置
BR112018070401B1 (pt) Método e aparelho de comunicação colaborativa móvel, e meio legível por computador
WO2023130858A1 (zh) 通信系统、方法、装置及存储介质
EP4395262A1 (en) Bgp signaling for access network-user plane function
KR101627805B1 (ko) 제어와 데이터 처리 기능이 분리된 epc 게이트웨이 시스템에서의 eps 베어러 자원 할당 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018552163

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016897522

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018070401

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2016897522

Country of ref document: EP

Effective date: 20181014

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16897522

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112018070401

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20181003