WO2017171458A1 - Rubber composition for tire tread - Google Patents

Rubber composition for tire tread Download PDF

Info

Publication number
WO2017171458A1
WO2017171458A1 PCT/KR2017/003532 KR2017003532W WO2017171458A1 WO 2017171458 A1 WO2017171458 A1 WO 2017171458A1 KR 2017003532 W KR2017003532 W KR 2017003532W WO 2017171458 A1 WO2017171458 A1 WO 2017171458A1
Authority
WO
WIPO (PCT)
Prior art keywords
silane
rubber composition
group
rubber
weight
Prior art date
Application number
PCT/KR2017/003532
Other languages
French (fr)
Korean (ko)
Inventor
황재경
이제민
박준효
공원석
Original Assignee
코오롱인더스트리 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170039166A external-priority patent/KR101995924B1/en
Application filed by 코오롱인더스트리 주식회사 filed Critical 코오롱인더스트리 주식회사
Publication of WO2017171458A1 publication Critical patent/WO2017171458A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/442Block-or graft-polymers containing polysiloxane sequences containing vinyl polymer sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/02Polysilicates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Definitions

  • the present invention relates to a rubber composition for tire treads that can satisfy both grip force and rotational resistance at the same time.
  • the tire supports the load of the vehicle, mitigates the impact generated on the road, and delivers the power and braking power of the car engine to the road to maintain the movement of the car.
  • the tire energy consumption efficiency rating system measures the rolling resistance (friction force) and wet road braking force of tire products to improve energy consumption efficiency (fuel efficiency) in the vehicle driving stage. It is a scheme to encourage consumers to choose high-efficiency tires, just as they select energy-efficient electric refrigerators.
  • the tire energy consumption efficiency rating is classified into two types of fuel efficiency (efficiency) and safety.
  • efficiency fuel efficiency
  • safety safety. The lower the rolling resistance of the tire, the better the fuel efficiency, and the higher the braking force of the wet road, the higher the safety. .
  • Fuel efficiency is measured based on rolling resistance (RR) and refers to resistance generated while a round object such as a tire moves in a straight line at a constant speed in a plane.
  • RR rolling resistance
  • Wet Grip wet road braking force refers to the braking performance, the tire performance related to safety, and as the information on the accident of the vehicle is frequently encountered, the awareness of safety increases, which shows much interest in the braking performance of the vehicle. have.
  • the rubber composition of the tire tread is made of rubber, fillers and other additives, by changing their composition to adjust the physical properties required for the tire, that is, rotational resistance, durability, grip force and the like.
  • Rubber which is the main material of the tire tread rubber composition, deforms and recovers to its original state after a certain time. This is due to its elasticity, which is a property of rubber. Deterioration should be minimized.
  • Republic of Korea Patent No. 10-0227566 proposed that the use of carbon black and silica as a reinforcing material can significantly lower the rotational resistance
  • Republic of Korea Patent No. 10-1572106 to further lower the rotational resistance
  • silane A method of using vinyltris (2-methoxyethoxy) silane as a compound has been proposed.
  • Korean Laid-Open Patent No. 2016-0002044 discloses excellent grip performance under high-speed conditions by using a master batch containing styrene-butadiene rubber and pellet type plant resins such as sesame resin, sunflower resin, and coconut resin. And a composition showing wear resistance.
  • the grip force is a technique that allows the tire surface to closely adhere to the road surface, and it is advantageous if the tire elasticity is excellent.
  • the rolling resistance is advantageous as the adhesion to the road surface is lower, so that the rolling resistance and the grip force of the tire are opposite to each other. That is, tires with low rolling resistance may be advantageous in fuel efficiency but may have poor adhesion to the road when the road is wet.
  • Korean Patent Publication No. 2015-0024701 and US Patent No. 8,637,606 apply modified terpene phenolic resins having a high softening point together with silica, thereby improving the compatibility of phenols with synthetic rubbers. It is disclosed that the grip performance on a wet road surface can be improved by reducing the fluidity of the sheet without deteriorating the rolling resistance performance.
  • the Republic of Korea Patent No. 10-1591276 Tg is -50 to -40 °C
  • the pattern viscosity is 60 to 80 °C, including 20 to 50 parts by weight of epoxidized natural rubber having an epoxidation degree of 5 to 50 mol%, tires It has been proposed a rubber composition which can improve the wet road braking force of and can improve the durability performance with low rotational resistance performance or fuel economy performance without deterioration of abrasion resistance performance.
  • the present inventors pay attention to the properties of carbon black, silica and silane coupling agents used to improve physical properties in the rubber composition for tire tread, inorganic materials such as silica by using a material having high compatibility with Multidisciplinary research was carried out under the idea of increasing the dispersibility of.
  • an object of the present invention is to improve the grip force and at the same time lower the rising width of the rolling resistance known to the opposite physical properties, low fuel efficiency high performance tire tread that can satisfy the two properties of the grip force and rotation resistance required as a tire at the same time It is to provide a rubber composition.
  • the present invention provides a rubber composition for tire treads, comprising a silane-modified petroleum resin copolymerized with a petroleum resin monomer, and a silane compound represented by the following formula (1):
  • the petroleum resin monomer is characterized in that the olefin monomer having at least one ethylenically unsaturated group selected from mixed C5 fraction, mixed C9 fraction and dicyclopentadiene obtained from naphtha cracking.
  • the rubber composition for the tire tread is characterized in that it comprises a raw rubber, carbon black, silica, a silane coupling agent, a vulcanizing agent, and a vulcanization accelerator together with the silane-modified petroleum resin.
  • the rubber composition for tire treads according to the present invention improves the grip force (wet / dry) of the tire, lowers the rising width of the rotational resistance according to the improvement of the grip force, and simultaneously satisfies the two physical properties of the grip force and the rotational resistance required as a tire Low fuel efficiency, high performance tires can enhance product competitiveness.
  • the present invention improves the dry / wet grip of a tire and at the same time lowers the rise of rotational resistance, which is known to be the opposite of the physical properties, to satisfy the two properties of the tire and the grip force required as a tire. It provides a rubber composition for.
  • the grip force referred to herein includes both wet grip force and dry grip force.
  • the wet grip force refers to the grip force on the road surface wetted by snow or rain water
  • the dry grip force refers to the grip force on a general road surface state.
  • Good grip means that the tire and the road have high adhesion, which means good braking when cornering or stopping.
  • the rolling resistance refers to the ratio of the rolling resistance to the load applied to the tire, and in the present invention, the excellent rolling resistance characteristic means that the energy loss between the tire itself or the tire and the road surface is small or the rising width of the rolling resistance is high when the vehicle is driven. It means less.
  • the grip force and the rotational resistance are opposite to each other.
  • the rotational resistance is also increased to increase fuel economy.
  • the rubber composition for tire treads according to the present invention must satisfy the contradictory aspect of improving the fuel efficiency by reducing the rotational resistance while securing the braking property by increasing the grip force.
  • Rubber compositions used in tire treads include raw rubbers, reinforcing agents, silane coupling agents, vulcanizing agents, and vulcanizing accelerators, wherein silica is used together with carbon black as a reinforcing agent to increase rotational resistance and silane coupling to increase grip.
  • Use ring agent At this time, the rotational resistance and the grip force increase only when the silica and the silane coupling agent are uniformly mixed.
  • the carbon black, the silica and the silane coupling agent have inorganic properties, and Si (for the silica and the silane coupling agent)
  • Si for the silica and the silane coupling agent
  • the silane-modified petroleum resin proposed in the present invention means that the petroleum resin monomer and the silane compound are prepared by copolymerizing with each other.
  • the repeating unit composed of the petroleum resin monomer increases the hysteresis of the rubber composition for tire treads (energy loss per number of repeated deformations of the tire), thereby converting and absorbing external energy generated during tire braking into thermal energy to increase the grip force of the tire.
  • the repeating unit composed of the silane-based compound exhibits high compatibility with carbon black, silica, and a silane coupling agent, an inorganic filler used as a reinforcing agent in the rubber tread rubber composition due to the presence of Si, It is possible to secure the effect of increasing the dispersibility and lowering the rolling resistance obtained by the use of the above composition.
  • the petroleum resin monomer used in the production of the silane-modified petroleum resin proposed in the present invention is derived from naphtha cracking and includes at least one ethylenically unsaturated functional group which is a polymerizable functional group in a molecular structure.
  • the petroleum resin monomer may be a mixed C5 to C12 fraction, or a diolefin in a liquid phase, which may be put to practical use.
  • the mixed C5 fraction, a mixed C9 fraction, or a diolefin may be used.
  • Mixed C5 fractions include 1-pentene, 2-methyl-2-butene n-pentane, propadiene, dicyclopentadiene, piperylene, isoprene, cyclopentene, 1,3-pentadiene, and the like.
  • the petroleum resin monomers include diolefins, more preferably dicyclopentadiene.
  • the silane monomer copolymerized with such a petroleum resin monomer includes an ethylenically unsaturated functional group which is a polymerizable functional group in a molecular structure, and is preferably represented by the following Chemical Formula 1:
  • R 1 is hydrogen or methyl group
  • R 2 to R 4 are the same as or different from each other, hydrogen, C1 to C20 alkyl group, C3 to C12 cycloalkyl group, C1 to C12 alkoxy group, C2 to C12 An acyloxy group, a C6 to C30 aryloxy group, a C5 to C30 araloxy group, or a C1 to C20 amine group,
  • n is an integer from 1 to 12,
  • x and y are 0 or 1).
  • R 1 is hydrogen or a methyl group
  • R 2 to R 4 are the same as or different from each other, an alkyl group of C1 to C6, or an alkoxy group of C1 to C6, n is an integer of 1 to 6, x and y is 0 or 1.
  • Alkyl as used herein means a linear or branched saturated monovalent hydrocarbon moiety of 1 to 20, preferably 1 to 10, more preferably 1 to 6 carbon atoms.
  • the alkyl group may be further substituted by the following substituents as well as unsubstituted.
  • alkyl groups include methyl, ethyl, propyl, 2-propyl, n-butyl, iso-butyl, tert-butyl, pentyl, hexyl, dodecyl, and the like, and additionally substituted with halogen, fluoromethyl, difluoro Chloromethyl, trifluoromethyl, chloromethyl, dichloromethyl, trichloromethyl, iodomethyl, bromomethyl and the like.
  • cycloalkyl refers to a saturated or unsaturated non-aromatic monovalent monocyclic, bicyclic or tricyclic hydrocarbon moiety of 3 to 12 ring carbons, further defined by the following substituents. Can be substituted. For example, cyclopropyl, cyclobutyl, cyclopentyl, cyclopentenyl, cyclohexyl, cyclohexenyl, cycloheptyl, cyclooctyl, decahydronaphthalenyl, adamantyl, norbornyl (ie, bicyclo [2,2, 1] hept-5-enyl) etc. are mentioned.
  • alkoxy means a linear or branched saturated monovalent hydrocarbon moiety of 1 to 12, preferably 1 to 10, more preferably 1 to 6 carbon atoms.
  • the alkoxy group may be further substituted by the following substituents as well as unsubstituted.
  • Examples of the alkoxy group are methoxy, ethoxy, propoxy, isopropoxy, butoxy, pentoxy, ethoxy, dodecoxy and the like, and when substituted with halogen, fluoromethoxy, difluoromethoxy, tri Fluoromethoxy, chloromethoxy, dichloromethoxy, trichloromethoxy, iodomethoxy, bromomethoxy and the like.
  • acyloxy is a linear or branched hydrocarbon of 1 to 12, preferably 1 to 10 carbon atoms, such as acetoxy, ethanoloxy, propanoloxy, butanoloxy, pentanoloxy, Hexanoloxy, 2,2-dimethylpropanoloxy, 3,3-dimethylbutanoloxy and the like. These may be further substituted by certain substituents described below.
  • aryloxy includes the case where oxygen is contained in a monocyclic aryl group or a polycyclic aryl group.
  • An aryl group means an aromatic ring.
  • the "amine group” is not particularly limited in number of carbon atoms, but is preferably 1 to 30. Specific examples of the amine group include methylamine group, dimethylamine group, ethylamine group, diethylamine group, phenylamine group, naphthylamine group, biphenylamine group, anthracenylamine group, and 9-methyl-anthracenylamine group. , Diphenylamine group, phenylnaphthylamine group, ditolylamine group, phenyltolylamine group, triphenylamine group and the like, but are not limited thereto.
  • the substituted hydrogen is a halogen atom, a hydroxyl group, a carboxyl group, a cyano group, a nitro group, an amino group, a thio group, a methylthio group, an alkoxy group, a nitrile group, an aldehyde group, an epoxy group, an ether group, an ester group, an ester group , Carbonyl group, acetal group, ketone group, alkyl group, perfluoroalkyl group, cycloalkyl group, heterocycloalkyl group, allyl group, benzyl group, aryl group, heteroaryl group, derivatives thereof and combinations thereof Means replaced by one.
  • the silane-based compound of formula 1 is vinyltrimethylsilane, vinyltrimethoxysilane, vinyltriethoxysilane, triacetoxyvinylsilane, triphenylvinylsilane, tris (2-methoxyethoxy) vinylsilane, 3 -(Trimethoxysilyl) propyl methacrylate, ⁇ - (meth) acryloxypropyl trimethoxysilane and mixtures thereof, and one selected from the group consisting of vinyltrimethoxysilane. .
  • Silane-modified petroleum resins according to the present invention are prepared by copolymerization of petroleum resin monomers and silane compounds as described above. The copolymerization proceeds by addition reaction between the petroleum resin monomer and the double bond present in the silane compound.
  • the copolymerization may be used in various ways, it is not particularly limited in the present invention.
  • thermal polymerization, photopolymerization, ion polymerization, and radiation polymerization can be performed, and thermal polymerization can be preferably used.
  • the thermal polymerization is carried out by adding a petroleum resin monomer and a silane compound to the reactor, and then reacted for 0.5 to 10 hours, preferably 1 to 3 hours by applying heat of 150 to 300 °C, if necessary, can be applied pressure have.
  • Pressure application is carried out by mounting a separate pressure application device or by thermal polymerization in an autoclave. At this time, the pressure is carried out in the range of 20 to 25bar.
  • the range of reaction temperature, time and pressure during thermal polymerization is an optimal parameter for obtaining a petroleum resin that can satisfy both rotational resistance and grip force when applied to a rubber tread rubber composition.
  • the range of the reaction temperature, time and pressure is out of the range, an unreacted substance is present in the final product or the molecular weight of the petroleum resin is lowered.
  • due to side reactions or excessive increase in molecular weight when thermal polymerization is performed under excessive conditions it is not easy to secure satisfactory physical properties when applied to the rubber composition for tire tread of the final product.
  • the content ratio used in thermal polymerization of the petroleum resin monomer and the silane compound should be considered, and they are used in 50 to 95% by weight and 5 to 50% by weight, respectively.
  • the silane-based compound is involved in the softening point and degree of polymerization of the final silane-modified petroleum resin, and these properties decrease as the content thereof increases. Therefore, the silane-based compound is used in the above-mentioned range, preferably 10 to 25% by weight, more preferably 10 to 20% by weight.
  • the petroleum resin monomer and the silane-based compound have high reactivity, thereby eliminating the use of a thermal polymerization initiator during thermal polymerization, and a reaction solvent may be used if necessary.
  • Non-polymerizable solvents may be used as propane, butane, pentane, hexane, octane, decane, dodecane, cyclopentane, methylcyclopentane, cyclohexane, methylcyclohexane, benzene, toluene, xylene, dichloro Methane, chloroethane, dichloroethane, chlorobenzene and the like are used, preferably benzene, xylene, toluene, cyclohexane or a mixed solvent thereof can be used.
  • the reaction solvent may be used by diluting the final concentration of the reactant to 30 to 70% by weight.
  • the petroleum resin obtained after thermal polymerization is subjected to a general post-treatment process, for example, degassing and concentration to remove unreacted substances, side reaction products and the like to obtain a silane-modified resin to be prepared in the present invention.
  • a general post-treatment process for example, degassing and concentration to remove unreacted substances, side reaction products and the like to obtain a silane-modified resin to be prepared in the present invention.
  • the degassing process is a process for separating solid silane-modified petroleum resin, unreacted substances and side reaction products (eg oligomers) at high temperature and, if necessary, under high pressure.
  • the degassing process is directly related to the yield and softening point of the petroleum resin, and the higher the degassing temperature, the lower the yield and softening point.
  • the degassing process should be carried out under the condition that the yield and softening point do not decrease.
  • the present invention is carried out for 1 to 15 minutes in the temperature range of 200 to 280 °C, preferably 230 to 270 °C. If degassing is carried out at a temperature below the above, the purity of the silane-modified petroleum resin is lowered as mentioned above. On the contrary, if the degassing is carried out at the above temperature, the yield and the softening point are decreased, so Since adhesive force and cohesion force) fall, it uses suitably within the said range.
  • the silane-modified petroleum resin prepared through the above steps is a resin having a softening point of 70 to 150 ° C., preferably 90 to 130 ° C., measured according to STM E28, and a number average molecular weight (Mn) of 500 to 5000. resin having a range of g / mol.
  • the softening point and the molecular weight is a parameter that directly affects the grip force and the rolling resistance, and the high softening point and the molecular weight means that the hardness after curing is increased, which means that the rolling resistance may be lowered.
  • the softening point and low molecular weight means that the resin has flexibility, which means that the adhesion to the road surface may be increased and thus the grip force may be increased. In the present invention, it is possible to secure the optimum effect when having the above range.
  • the silane-modified petroleum resin according to the present invention has a proton content of silanes determined by 1 H-NMR of at least 1.7%, a proton content of silanes of at least 7%, and is analyzed by X-ray fluorescence spectroscopy. It is resin which Si weight fraction which is the weight ratio which a silicon (Si) element occupies among all the obtained elements is at least 0.3 wt%.
  • the silane-modified petroleum resin according to the present invention is a copolymer of an olefin-based compound represented by dicyclopentadiene and a silane-based compound, and includes a silane compound together with the adhesiveness of a conventional petroleum resin for tire treads.
  • the compatibility with the carbon black, silica, and silane coupling agents used in the rubber composition can be enhanced to further increase the tire physical properties (particularly, rotational resistance and grip force).
  • Such silane-modified petroleum resin is used in 1 to 30 parts by weight, preferably 5 to 15 parts by weight based on 100 parts by weight of the raw rubber. If the content is less than the above range, the effect of improving the rotational resistance and the grip force cannot be expected simultaneously. On the contrary, if the content exceeds the above range, the workability and the processability of reducing the viscosity of the rubber composition have to be redesigned to reduce the viscosity of the rubber composition. It may be lowered, which may cause deterioration of physical properties such as tensile strength and hardness of the final manufactured tire, so it is suitably used within the above range.
  • the rubber composition for tire treads was prepared including the composition described above, and the grip force and rotational resistance thereof were measured.
  • the grip force is involved in the brake braking property and is indicated by a loss factor (Tan ⁇ ) measured at a frequency of 10 to 100 Hz, 0 ° C, and 25 ° C by a dynamic viscoelastic test, and the larger the loss factor, the better the brake braking property is.
  • the excellent dry grip property means that the loss coefficient (Tan ⁇ ) measured at a frequency of 10 to 100 Hz and around 25 ° C. by the dynamic viscoelastic test of the rubber composition is large. By the dynamic viscoelastic test, the loss coefficient (Tan ⁇ ) measured at a frequency of 10 to 100 Hz and around 0 ° C is large.
  • Rotational resistance is shown by the loss coefficient (Tan delta) measured by the dynamic viscoelastic test of the rubber composition for tire treads about 10-100 Hz, 70 degreeC, and a smaller said loss coefficient improves rolling resistance characteristic.
  • the excellent rotational resistance characteristic means that the loss coefficient (Tan ⁇ ) measured at a frequency of 10 to 100 Hz and around 70 ° C by a dynamic viscoelastic test of the rubber composition for automobile tread is small.
  • the four measured values, Tg, Tan ⁇ (0 ° C.), Tan ⁇ (25 ° C.) and Tan ⁇ (70 ° C.) are moving in the same trend.
  • the rotational resistance (R / R, Tan ⁇ 70 ° C.) or wet grip force (Tan ⁇ 0 ° C.) should be improved while Tg is maintained at the same or similar level.
  • the direction in which the rotational resistance is lowered and the wet grip force is higher is preferable.
  • the rotational resistance and the wet grip force are complementary to each other, it is not easy to improve both of these properties. Therefore, it is most ideal to increase the wet grip force while the rotational resistance is substantially maintained or at least deteriorated.
  • the rubber composition for tire treads according to the present invention includes raw rubber, reinforcing agent, silane coupling agent, vulcanizing agent, and vulcanization accelerator as essential compositions in addition to the silane-modified petroleum resin.
  • the raw material rubber is not particularly limited as long as it has an olefinic double bond (carbon-carbon double bond), and natural rubber, synthetic rubber, or a mixture thereof can be used.
  • the raw rubber may be natural rubber, butadiene rubber, nitrile rubber, silicone rubber, isoprene rubber, styrene-butadiene rubber (SBR), isoprene-butadiene rubber, styrene-isoprene-butadiene rubber, acrylonitrile-butadiene rubber ( NBR), ethylene-propylene-diene rubber, halogenated butyl rubber, halogenated isoprene rubber, halogenated isobutylene copolymer, chloroprene rubber, butyl rubber and halogenated isobutylene-p-methylstyrene rubber It is preferable.
  • carbon black and silica are used as the reinforcing agent.
  • Carbon black obtains effects such as improvement of abrasion resistance, improvement of rotational resistance characteristics, prevention of cracking and cracking (ultraviolet rays deterioration) by ultraviolet rays.
  • the carbon black usable in the present invention is not particularly limited, and any carbon black may be used as long as it is commonly used in the field of tire treads.
  • carbon black such as farnes black, acetylene black, thermal black, channel black and graphite may be used.
  • physical properties such as particle diameter, pore volume, specific surface area, etc.
  • carbon black are not particularly limited, and various carbon blacks used in the rubber industry, for example, SAF, ISAF, HAF, FEF, GPF, SRF (all of which are abbreviations for carbon black classified in the ASTM specification D-1765-82a of the United States) and the like can be suitably used.
  • Such carbon black is preferably contained 5 to 50 parts by weight, preferably 50 to 65 parts by weight based on 100 parts by weight of the raw rubber.
  • the carbon black is an essential element for rubber compounding as a reinforcing filler. If the content is less than the above range, the effect of reinforcing is inferior. On the contrary, if the carbon black exceeds the above range, dispersion is difficult.
  • silica can be used without particular limitation what is used as a rubber reinforcing agent in the tire tread field, for example, dry method white carbon, wet method white carbon, synthetic silicate-based white carbon, colloidal silica, precipitated silica and the like.
  • the specific surface area of silica does not have a restriction
  • Such silica is preferably included in 30 to 80 parts by weight, preferably 50 to 65 parts by weight based on 100 parts by weight of the raw rubber. If the content is less than the above range, the rotational resistance is high and the fuel efficiency is lowered. On the contrary, if the content exceeds the above range, the grip force may be lowered. Therefore, it is suitably used within the above range.
  • the reinforcing agent in addition to the carbon black and silica, powders of minerals such as clay and talc, carbonates such as magnesium carbonate and calcium carbonate, alumina hydrates such as aluminum hydroxide and the like can be used.
  • Silane coupling agents are used to compound the silica.
  • silane coupling agent examples include vinyltrichlorosilane, vinyltriethoxysilane, vinyltris ( ⁇ -methoxy-ethoxy) silane, ⁇ - (3,4-epoxycyclohexyl) -ethyltrimethoxysilane, 3 -Chloropropyltrimethoxysilane, 3-chloropropyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, bis (3- (triethoxysilyl) propyl) disulfide , Bis (3-triethoxysilylpropyl) trisulfide, bis (3- (triethoxysilyl) propyl) tetrasulfide, bis (2-triethoxysilylethyl) tetrasulfide, bis (3-trimethoxysilyl Propyl) tetrasulfide, bis
  • the use amount of the silane coupling agent depends on the content of silica, and preferably 5 to 20 parts by weight based on 100 parts by weight of the raw rubber. If the content is less than the above range, it is difficult to uniformly mix silica, which may lower the physical properties of the tire tread. On the contrary, if the content exceeds the above range, the gelation of rubber may occur during the production of the tire tread. Use it appropriately.
  • the crosslinking agent can be used without particular limitation what is normally used for crosslinking of the rubber, and can be appropriately selected according to the rubber component and the isobutylene polymer.
  • a crosslinking agent For example, sulfur crosslinking agents, such as a sulfur, a morpholine disulfide, and an alkylphenol disulfide; Cyclohexanone peroxide, methyl acetoacetate peroxide, tert-butylperoxy isobutylate, tert-butylperoxybenzoate, benzoyl peroxide, lauroyl peroxide, dicumyl peroxide, di-tert-butyl peroxide And organic peroxide crosslinking agents such as 1,3-bis (tert-butylperoxyisopropyl) benzene and the like.
  • the crosslinking agent is used in an amount of 0.1 to 5 parts by weight based on 100 parts by weight of the raw rubber, and if the content is less than the above range, the crosslinking is insufficient, making it difficult to manufacture tires having desired physical properties (eg wear resistance), and vice versa. In this case, too, due to excessive crosslinking, the physical properties of the tire (eg, elasticity) are lowered, so it is appropriately used within the above range.
  • the rubber composition for automobile treads according to the present invention together with the crosslinking agent includes a vulcanization accelerator and a vulcanization aid. It does not specifically limit as a vulcanization accelerator and a vulcanization adjuvant, According to the rubber component, isobutylene-type polymer, and crosslinking agent which a rubber composition contains, it can select suitably and can use.
  • vulcanization represents the bridge
  • Thiuram type accelerators such as tetramethyl thiuram monosulfide, tetramethyl thiuram disulfide, and tetraethyl thiuram disulfide
  • Thiazole type accelerators such as 2-mercaptobenzothiazole and dibenzothiazyl disulfide
  • Sulfenamide-based accelerators such as N-cyclohexyl-2-benzothiazylsulfenamide and N-oxydiethylene-2-benzothiazolylsulfenamide
  • Guanidine-based accelerators such as diphenylguanidine and diorthotriguanidine
  • aldehyde-amine accelerators such as n-butylaldehyde-aniline condensate and butylaldehyde-monobutylamine condensate
  • Aldehyde-ammonia-based accelerators such as hexamethylenetetramine
  • the content of such a vulcanization accelerator is preferably used in an amount of 0.1 to 10 parts by weight based on 100 parts by weight of the raw rubber, in view of improving physical properties.
  • the vulcanization aid examples include metal oxides such as zinc oxide (zinc) and magnesium oxide; Metal hydroxides such as calcium hydroxide; Metal carbonates such as zinc carbonate and basic zinc carbonate; Fatty acids such as stearic acid and oleic acid; Aliphatic metal salts such as zinc stearate and magnesium stearate; Amines such as din-butylamine and dicyclohexylamine; Ethylene dimethacrylate, diallyl phthalate, N, N-m-phenylenedimaleimide, triallyl isocyanurate, trimethylolpropane trimethacrylate, and the like.
  • blending these vulcanization adjuvant you may use individually by 1 type or may use it in combination of 2 or more type.
  • the content of such vulcanization aid is preferably used in an amount of 0.1 to 10 parts by weight based on 100 parts by weight of the raw rubber, in view of improving physical properties.
  • the rubber composition according to the present invention may also be used as one or two or more of various additives used in the field of the rubber industry, for example, an anti-aging agent, a vulcanization retardant, an annealing agent, a process oil, a plasticizer, etc. You may contain it. It is preferable that the compounding quantity of these additives is 0.1-10 weight part with respect to 100 weight part of rubber components.
  • the rubber composition for automobile treads comprising the composition as described above is made into a tire by a known method.
  • the rubber composition according to the present invention can be prepared by kneading each of the above components using a kneading machine such as a plastomill, a Banbury mixer, a roll, an internal mixer, or the like.
  • a kneading machine such as a plastomill, a Banbury mixer, a roll, an internal mixer, or the like.
  • the rubber composition produced by the above method can be used as a material constituting a tread portion (and a cap portion including the tread portion) in contact with the road surface.
  • an uncrosslinked molded body for a tire is produced by extrusion processing in accordance with the shape of the tire (specifically, the shape of the tread) in which the rubber composition is to be formed, and molding in a conventional manner on a tire molding machine.
  • a tire tread can be manufactured by heat-pressing this uncrosslinked molded object for tires in a vulcanizer, for example, and a tire tread and other parts can be manufactured, and a target tire can be manufactured.
  • the tires thus produced are excellent in mechanical properties (elasticity, wear resistance, hardness, tensile strength, modulus, etc.) to be used as tires.
  • the grip (wet / dry) is high, driving stability and brake braking of the vehicle is excellent, and the rotational resistance is low, it is possible to implement a low fuel consumption of the vehicle.
  • the rubber composition of this invention is suitable as a rubber composition for obtaining the tread of tires, such as a low fuel consumption tire and a high performance tire.
  • the reaction time was measured and reacted for 1 hour (in the reaction conditions, the reactor internal pressure was 20 to 25 bar).
  • the reaction was completed, it was cooled to room temperature. After cooling to 30 ° C. or lower, the internal pressure was depressurized, and the reactor was opened to obtain a polymer.
  • the polymer contained a solvent and an unreacted material in addition to the polymerized material, the polymer was removed. Specifically, the total amount of the polymer was put in a 1 L glass four-neck kettle, and vacuum was obtained at room temperature. The degree of vacuum was maintained at 10 torr, and when the vacuum was caught, the temperature was raised to 240 ° C with stirring. When the temperature reached 240 ° C., the concentration time began to be measured and maintained for 10 minutes. When the concentration was completed, the vacuum was released in that state to recover the molten resin powder therein.
  • a silane-modified petroleum resin was prepared in the same manner as in Preparation Example 1, except that degassing was performed at 260 ° C.
  • a silane-modified petroleum resin was prepared in the same manner as in Preparation Example 2 except that degassing was performed for 20 minutes.
  • Example 1 to 3 Comparative example 1 and 2: tires Tread Rubber composition
  • a rubber composition for tire treads was prepared using the silane or terpene phenol-modified petroleum resin prepared above.
  • a tire tread rubber composition was prepared in the composition of Table 2 below, and rubber specimens were prepared for physical property measurement.
  • Comparative Example 1 means a composition (Blank) not using a silane-modified petroleum resin
  • Comparative Example 2 means a composition using a petroleum resin prepared according to US Patent No. 8,637,606.
  • the rubber compositions of Examples 1 to 3 showed the same mechanical properties (modulus, tensile strength, elongation, hardness, etc.) compared to Comparative Examples 1 and 2.
  • Rheometer results measured with rubber rheometers, are parameters related to the rate of cure and the behavior of the rubber composition during process application, and are related to processability in tire manufacturing. At this time, if the value (T min , T max ) is too high or low, it is not easy to apply to the existing process, which means that a new process design is required.
  • T min , T max , Ts2 corch time
  • Tc2 time to 2% curing
  • Tc90 time to 90% curing
  • Abrasion resistance is a wear resistance by contact, which is a value that is considered when using a rubber product such as a tire in a dynamic state, and the rubber composition of Examples 1 to 3 exhibits a loss of about 4.7% or less. It can be seen that excellent.
  • the silane-modified petroleum resin proposed in the present invention can satisfactorily satisfy the physical properties required as a tire without affecting the workability even when added during the manufacture of a tire.
  • the loss coefficient (Tan ⁇ ) and glass transition temperature (Tg) related to grip force and rolling resistance were measured at 11 Hz by using Dynamic Mechanical Analysis (Model: TA-DMA Q800). 1 is shown. At this time, higher values of Tan ⁇ @ 0 ° C and Tan ⁇ @ 25 ° C mean better grip force, and lower values of Tan ⁇ @ 70 ° C mean better rotation resistance.
  • the numerical values of Tan ⁇ associated with the rotational resistance and the grip force presented in Table 4 are reliable data as a result of comparing the Tg values.
  • the peak value of Tan ⁇ is related to Tg.
  • the Tg value should be compared at almost the same level. It can be seen that the compositions of Examples and Comparative Examples have a Tg value in a nearly similar range.
  • the rubber composition for tire treads including the silane-modified petroleum resin according to the present invention secures an effect of simultaneously satisfying grip force and rotational resistance.
  • the rubber composition for tire treads according to the present invention is preferably applicable to the production of tire products with low fuel efficiency and high performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Tires In General (AREA)

Abstract

The present invention relates to a rubber composition for a tire tread, capable of simultaneously satisfying both grip force (wet/dry) and rotational resistance characteristics by using a silane-modified petroleum resin produced from copolymerization of a petroleum resin-based monomer and a silane-based compound.

Description

타이어 트레드용 고무 조성물Rubber composition for tire tread
본 출원은 2016년 3월 31일자 한국 특허 출원 제10-2016-0039458호 및 2017년 3월 28일자 한국 특허 출원 제10-2017-0039166호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함한다.This application claims the benefit of priority based on Korean Patent Application No. 10-2016-0039458 dated March 31, 2016 and Korean Patent Application No. 10-2017-0039166 dated March 28, 2017. All content disclosed in the literature is included as part of this specification.
본 발명은 그립력과 회전 저항을 동시에 만족시킬 수 있는 타이어 트레드용 고무 조성물에 관한 것이다. The present invention relates to a rubber composition for tire treads that can satisfy both grip force and rotational resistance at the same time.
타이어는 차량의 하중을 지지하고, 노면에서 발생되는 충격을 완화함과 동시에 자동차 엔진의 동력, 제동력 등을 노면에 전달하여 자동차의 운동을 유지하는 역할을 한다. 차량용 타이어가 만족시켜야 할 요구 특성은 여러 가지가 있으며, 내구성, 내마모성, 회전 저항, 연비, 조종안정성, 승차감, 제동성, 진동, 소음 등을 들 수 있다. The tire supports the load of the vehicle, mitigates the impact generated on the road, and delivers the power and braking power of the car engine to the road to maintain the movement of the car. There are a number of characteristics required for a vehicle tire to satisfy, such as durability, wear resistance, rolling resistance, fuel economy, steering stability, ride comfort, braking, vibration, noise, and the like.
최근 차량이 고급화되고 안전에 대한 요구사항이 높아짐에 따라 다양한 노면 및 기후에서 최적의 성능을 유지할 수 있는 고성능 타이어 개발이 요구되고 있다. 이러한 요구에 부합하여 타이어 에너지 소비 효율 등급제가 도입되었다.Recently, as vehicles are advanced and safety requirements are increased, high performance tires are required to maintain optimal performance on various road surfaces and climates. To meet these demands, tire energy consumption efficiency ratings have been introduced.
타이어 에너지 소비 효율 등급제는 차량 운행 단계에서의 에너지 소비 효율(연비) 개선을 위하여 타이어 제품의 회전 저항(마찰력)과 젖은 노면 제동력을 측정하여, 이를 1등급부터 5등급까지 등급화하여 제품에 표시함으로써 소비자가 에너지 효율이 높은 전기 냉장고를 선택하듯이 고효율 타이어를 선택하도록 유도하기 위한 제도이다. The tire energy consumption efficiency rating system measures the rolling resistance (friction force) and wet road braking force of tire products to improve energy consumption efficiency (fuel efficiency) in the vehicle driving stage. It is a scheme to encourage consumers to choose high-efficiency tires, just as they select energy-efficient electric refrigerators.
타이어 에너지 소비 효율 표시는 연비(효율)와 안전의 2가지 성능을 등급화하여 표시하는데, 타이어의 회전 저항이 낮을수록 연비 성능은 우수하며, 젖은 노면의 제동력이 높을수록 안전성이 우수한 것으로 평가하고 있다.The tire energy consumption efficiency rating is classified into two types of fuel efficiency (efficiency) and safety. The lower the rolling resistance of the tire, the better the fuel efficiency, and the higher the braking force of the wet road, the higher the safety. .
연비 효율은 회전 저항(RR, Rolling Resistance)을 기준으로 측정하며, 타이어와 같은 둥근 물체가 평면에서 일정한 속도의 직선으로 운동하는 동안 발생하는 저항을 의미한다. 또한, 젖은 노면 제동력(Wet Grip)은 브레이킹 성능을 의미하여, 안전성에 관련된 타이어 성능으로, 차량의 사고에 대한 정보를 자주 접하게 됨에 따라 안전에 대한 인식이 높아져 차량의 제동성능에 대해 많은 관심을 보이고 있다. Fuel efficiency is measured based on rolling resistance (RR) and refers to resistance generated while a round object such as a tire moves in a straight line at a constant speed in a plane. In addition, wet road braking force (Wet Grip) refers to the braking performance, the tire performance related to safety, and as the information on the accident of the vehicle is frequently encountered, the awareness of safety increases, which shows much interest in the braking performance of the vehicle. have.
한편, 타이어 트레드의 고무 조성물은 고무, 충전제 및 기타 첨가제로 이루어지며, 이들의 조성을 변화시켜 타이어로서 요구되는 물성, 즉, 회전 저항, 내구성, 그립력 등을 조절하고 있다.On the other hand, the rubber composition of the tire tread is made of rubber, fillers and other additives, by changing their composition to adjust the physical properties required for the tire, that is, rotational resistance, durability, grip force and the like.
타이어 트레드 고무 조성물의 주재료인 고무는 변형되었다가 일정시간이 지나면 원상태로 회복되는데 이것은 고무가 가지고 있는 성질인 '탄성' 때문이다 타이어의 회전 저항을 줄이기 위해서는 주행 중 발생하는 타이어의 변형과 열로 인한 탄성 저하가 최소화되어야 한다. 이에, 대한민국 등록특허 제10-0227566호에서는 보강재로서 카본 블랙과 실리카를 혼합 사용할 경우 회전 저항을 획기적으로 낮출 수 있음을 제시하였고, 대한민국 등록특허 제10-1572106에서는 상기 회전 저항을 더욱 낮추기 위해, 실란 화합물로 비닐트리스(2-메톡시에톡시)실란(vinyltris(2-methoxyethoxy)silane)을 사용하는 방법을 제안하고 있다.Rubber, which is the main material of the tire tread rubber composition, deforms and recovers to its original state after a certain time. This is due to its elasticity, which is a property of rubber. Deterioration should be minimized. Thus, the Republic of Korea Patent No. 10-0227566 proposed that the use of carbon black and silica as a reinforcing material can significantly lower the rotational resistance, Republic of Korea Patent No. 10-1572106 to further lower the rotational resistance, silane A method of using vinyltris (2-methoxyethoxy) silane as a compound has been proposed.
그립력 향상과 관련하여, 대한민국 공개특허 제2016-0002044호에서는 스티렌-부타디엔 고무에, 세서미 수지, 선플라워 수지, 코코넛 수지 등의 펠렛형 식물계 수지를 첨가한 마스터 배치를 사용함으로써 고속 조건하에서 우수한 그립 성능과 내마모 성능을 나타내는 조성물을 제시하고 있다. Regarding the improvement of the grip force, Korean Laid-Open Patent No. 2016-0002044 discloses excellent grip performance under high-speed conditions by using a master batch containing styrene-butadiene rubber and pellet type plant resins such as sesame resin, sunflower resin, and coconut resin. And a composition showing wear resistance.
이미 언급한 바와 같이 그립력은 타이어 표면이 노면에 잘 밀착되도록 하는 기술로서, 타이어의 탄성이 가능하면 우수한 것이 유리하다. 그러나 회전 저항과 함께 고려할 경우 회전 저항은 노면에 대한 밀착력이 낮을수록 유리하여 타이어의 회전 저항과 그립력은 서로 상반되는 특성을 갖는다. 즉, 회전 저항이 낮은 타이어는 연비 효율성에서는 유리하나 도로가 젖어 있을 때 도로와의 밀착성이 약할 수 있다.As already mentioned, the grip force is a technique that allows the tire surface to closely adhere to the road surface, and it is advantageous if the tire elasticity is excellent. However, when considering the rolling resistance, the rolling resistance is advantageous as the adhesion to the road surface is lower, so that the rolling resistance and the grip force of the tire are opposite to each other. That is, tires with low rolling resistance may be advantageous in fuel efficiency but may have poor adhesion to the road when the road is wet.
이에 최근 타이어 개발은 회전 저항을 높이거나 그립력을 높이는 일차원적인 방식에서 벗어나 이 둘을 동시에 조절하고자 하는 방식으로 진행되고 있다.Recently, tire development is progressing in a way to adjust the two at the same time out of the one-dimensional way to increase the rolling resistance or increase the grip force.
일례로, 대한민국 공개특허 제2015-0024701호 및 미국등록특허 제8,637,606호는 실리카와 함께 고연화점을 갖는 개질된 테르펜 페놀 수지를 적용함으로서, 페놀(Phenol)이 합성고무와의 상용성을 높여주어 수지의 유동성을 감소시켜 회전 저항 성능의 저하없이 젖은 노면에서의 그립 성능을 향상시킬 수 있다고 개시하고 있다.For example, Korean Patent Publication No. 2015-0024701 and US Patent No. 8,637,606 apply modified terpene phenolic resins having a high softening point together with silica, thereby improving the compatibility of phenols with synthetic rubbers. It is disclosed that the grip performance on a wet road surface can be improved by reducing the fluidity of the sheet without deteriorating the rolling resistance performance.
또한, 대한민국 등록특허 제10-1591276호는 Tg가 -50 내지 -40℃이고, 무늬점도 60 내지 80℃이며, 에폭시화도가 5 내지 50mol%인 에폭시화 천연고무 20 내지 50 중량부를 포함하여, 타이어의 젖은 노면 제동력을 개선시킬 수 있고, 또 내마모 성능의 저하 없이 저회전 저항 성능 또는 연비 성능과 함께 내구 성능을 균형있게 향상시킬 수 있는 고무 조성물을 제시하였다.In addition, the Republic of Korea Patent No. 10-1591276 Tg is -50 to -40 ℃, the pattern viscosity is 60 to 80 ℃, including 20 to 50 parts by weight of epoxidized natural rubber having an epoxidation degree of 5 to 50 mol%, tires It has been proposed a rubber composition which can improve the wet road braking force of and can improve the durability performance with low rotational resistance performance or fuel economy performance without deterioration of abrasion resistance performance.
이러한 다양한 시도에도 불구하고, 타이어의 회전 저항과 그립력을 동시에 만족스러운 수치를 갖는 기술이 요원하다. Despite these various attempts, there is a need for a technique that has a satisfactory value of both the rolling resistance and the grip force of the tire.
[선행기술문헌][Preceding technical literature]
[특허문헌][Patent Documents]
대한민국 등록특허 제10-0227566호(1999.08.04), 타이어 트레드용 고무 조성물Republic of Korea Patent No. 10-0227566 (1999.08.04), rubber tread rubber composition
대한민국 등록특허 제10-1572106호(2015.11.20), 타이어 트레드용 고무 조성물 및 이를 이용하여 제조한 타이어Republic of Korea Patent No. 10-1572106 (2015.11.20), rubber tread rubber composition and a tire manufactured using the same
대한민국 공개특허 제10-2016-0002044호(2016.01.07), 타이어 트레드용 고무 조성물 및 이를 이용하여 제조한 타이어Republic of Korea Patent Publication No. 10-2016-0002044 (January 07, 2016), the rubber composition for tire treads and tires manufactured using the same
대한민국 공개특허 제10-2015-0024701호(2015.03.09), 타이어용 트레드용 고무 조성물Republic of Korea Patent Publication No. 10-2015-0024701 (2015.03.09), rubber tread rubber composition
미국등록특허 제8,637,606호(2014.01.28), Tires and tread formed from phenol-aromatic-terpene resin8,637,606 (January 28, 2014), Tires and tread formed from phenol-aromatic-terpene resin
대한민국 등록특허 제10-1591276호(2016.01.28), 타이어 트레드용 고무 조성물 및 이를 이용하여 제조한 타이어 Republic of Korea Patent No. 10-1591276 (January 28, 2016), rubber tread rubber composition and a tire manufactured using the same
상기한 문제를 해결하고자, 본 발명자들은 타이어 트레드용 고무 조성물에서 물성 향상을 위해 사용하는 카본블랙, 실리카와 실란 커플링제의 특성에 착안하여, 이와 상용성이 높은 물질을 사용함으로써 실리카와 같은 무기계 물질의 분산성을 높일 경우 상용성을 높일 수 있다는 아이디어 하에 다각적인 연구를 수행하였다.In order to solve the above problems, the present inventors pay attention to the properties of carbon black, silica and silane coupling agents used to improve physical properties in the rubber composition for tire tread, inorganic materials such as silica by using a material having high compatibility with Multidisciplinary research was carried out under the idea of increasing the dispersibility of.
그 결과, 첨가제로서 단순 석유수지가 아닌 실란으로 개질된 석유수지를 사용할 경우 상용성을 높여 타이어 트레드로서 가져야 할 기본적인 물성뿐만 아니라 그립력 및 회전 저항 모두 개선 효과를 확보하여 저연비 고성능 타이어의 제작을 가능함을 확인하였다.As a result, when petroleum resin modified with silane is used as an additive instead of a simple petroleum resin, it is possible to manufacture low-fuel, high-performance tires by improving the compatibility as well as improving the grip properties and rotational resistance as well as the basic physical properties of a tire tread. Confirmed.
이에, 본 발명의 목적은 그립력을 향상시킴과 동시에, 이와 상반되는 물성으로 알려진 회전 저항의 상승폭을 낮춰, 타이어로서 요구되는 그립력과 회전 저항의 두 가지 물성을 동시에 만족시킬 수 있는 저연비 고성능 타이어 트레드용 고무 조성물을 제공하는데 있다. Accordingly, an object of the present invention is to improve the grip force and at the same time lower the rising width of the rolling resistance known to the opposite physical properties, low fuel efficiency high performance tire tread that can satisfy the two properties of the grip force and rotation resistance required as a tire at the same time It is to provide a rubber composition.
상기 목적을 달성하기 위해, 본 발명은 석유수지계 단량체, 및 하기 화학식 1로 표시되는 실란계 화합물이 공중합된 실란 변성 석유수지를 포함하는 것을 특징으로 하는 타이어 트레드용 고무 조성물을 제공한다: In order to achieve the above object, the present invention provides a rubber composition for tire treads, comprising a silane-modified petroleum resin copolymerized with a petroleum resin monomer, and a silane compound represented by the following formula (1):
[화학식 1][Formula 1]
CH2=C(R1)-(COO)x(CnH2n)ySi(R2)(R3)(R4)CH 2 = C (R 1 )-(COO) x (C n H 2n ) y Si (R 2 ) (R 3 ) (R 4 )
(상기 화학식 1에서, R1 내지 R4, n, x 및 y는 명세서 내 설명한 바와 같다.)(In Formula 1, R 1 to R 4 , n, x and y are as described in the specification.)
이때 상기 석유수지계 단량체는 나프타 크래킹으로부터 얻어진 혼합 C5 유분, 혼합 C9 유분 및 디사이클로펜타디엔 중에서 선택된 적어도 하나 이상의 에틸렌성 불포화기를 갖는 올레핀류 단량체인 것을 특징으로 한다.At this time, the petroleum resin monomer is characterized in that the olefin monomer having at least one ethylenically unsaturated group selected from mixed C5 fraction, mixed C9 fraction and dicyclopentadiene obtained from naphtha cracking.
또한, 상기 타이어 트레드용 고무 조성물은 실란 변성 석유수지와 함께 원료 고무, 카본블랙, 실리카, 실란 커플링제, 가황제, 및 가황촉진제를 포함하는 것을 특징으로 한다. In addition, the rubber composition for the tire tread is characterized in that it comprises a raw rubber, carbon black, silica, a silane coupling agent, a vulcanizing agent, and a vulcanization accelerator together with the silane-modified petroleum resin.
본 발명에 따른 타이어 트레드용 고무 조성물은 타이어의 그립력(wet/dry)을 향상시키고, 상기 그립력 향상에 따른 회전 저항의 상승폭을 낮춰, 타이어로서 요구되는 그립력과 회전 저항의 두 가지 물성을 동시에 만족시켜 저연비 고성능 타이어로서 제품 경쟁력을 높일 수 있다. The rubber composition for tire treads according to the present invention improves the grip force (wet / dry) of the tire, lowers the rising width of the rotational resistance according to the improvement of the grip force, and simultaneously satisfies the two physical properties of the grip force and the rotational resistance required as a tire Low fuel efficiency, high performance tires can enhance product competitiveness.
본 발명은 타이어의 그립력(dry/wet grip)을 향상시킴과 동시에, 이와 상반되는 물성으로 알려진 회전 저항의 상승폭을 낮춰, 타이어로서 요구되는 그립력과 회전 저항의 두 가지 물성을 만족시킬 수 있는 타이어 트레드용 고무 조성물을 제공한다.The present invention improves the dry / wet grip of a tire and at the same time lowers the rise of rotational resistance, which is known to be the opposite of the physical properties, to satisfy the two properties of the tire and the grip force required as a tire. It provides a rubber composition for.
본 명세서에서 언급하는 그립력은 Wet 그립력 및 Dry 그립력 모두를 포함한다. 이때 Wet 그립력은 눈이나 빗물에 의해 젖어있는 노면 상태에서의 그립력을 말하며, Dry 그립력은 일반 노면 상태에서의 그립력을 말한다. 그립력이 우수하다는 것은 타이어와 노면의 부착력이 높아 코너링이나 정차시 제동성이 좋은 것을 의미한다. The grip force referred to herein includes both wet grip force and dry grip force. At this time, the wet grip force refers to the grip force on the road surface wetted by snow or rain water, and the dry grip force refers to the grip force on a general road surface state. Good grip means that the tire and the road have high adhesion, which means good braking when cornering or stopping.
회전 저항은 타이어에 걸리는 하중에 대한 회전 저항의 비를 의미하며, 본 발명에서 회전 저항 특성이 우수하다는 것은 자동차 주행시 타이어 자체 또는 타이어와 노면 사이에서의 에너지 손실이 적거나, 회전 저항의 상승 폭이 적은 것을 의미한다.The rolling resistance refers to the ratio of the rolling resistance to the load applied to the tire, and in the present invention, the excellent rolling resistance characteristic means that the energy loss between the tire itself or the tire and the road surface is small or the rising width of the rolling resistance is high when the vehicle is driven. It means less.
그립력과 회전 저항은 서로 상반되는 것으로, 그립력이 높아지면 회전 저항 또한 높아져 연비가 증가하는 문제가 있다. 이처럼 본 발명에서 제시하는 타이어 트레드용 고무 조성물은 그립력을 높여 제동성을 확보하면서 회전 저항을 줄여 연비를 향상시켜야 하는 모순적인 면을 만족시켜야 한다.The grip force and the rotational resistance are opposite to each other. When the grip force is increased, the rotational resistance is also increased to increase fuel economy. As described above, the rubber composition for tire treads according to the present invention must satisfy the contradictory aspect of improving the fuel efficiency by reducing the rotational resistance while securing the braking property by increasing the grip force.
타이어 트레드에 사용되는 고무 조성물은 원료 고무, 보강제, 실란 커플링제, 가황제, 및 가황촉진제를 포함하고, 이때 보강제로서 카본블랙과 함께 회전 저항을 높이기 위해 실리카를 사용하며, 그립력을 높이기 위해 실란 커플링제를 사용한다. 이때 실리카와 실란 커플링제의 균일한 혼합이 이루어져야만 회전 저항과 그립력이 높아지는데, 본 발명에서는 상기 카본블랙, 실리카와 실란 커플링제가 무기 특성을 갖고, Si(실리카, 실란 커플링제의 경우)를 갖는 점을 고려하여 이와 상용성이 높은 조성, 즉, 실란 변성 석유수지를 사용함으로써 그립력은 높이고, 이에 따른 회전 저항의 상승은 낮춰 그립력과 회전 저항 특성을 동시에 만족시킨다.Rubber compositions used in tire treads include raw rubbers, reinforcing agents, silane coupling agents, vulcanizing agents, and vulcanizing accelerators, wherein silica is used together with carbon black as a reinforcing agent to increase rotational resistance and silane coupling to increase grip. Use ring agent. At this time, the rotational resistance and the grip force increase only when the silica and the silane coupling agent are uniformly mixed. In the present invention, the carbon black, the silica and the silane coupling agent have inorganic properties, and Si (for the silica and the silane coupling agent) In consideration of having a high compatibility, that is, by using a silane-modified petroleum resin, the grip force is increased, thereby increasing the rotational resistance, thereby satisfying the grip force and the rotational resistance characteristics at the same time.
구체적으로, 본 발명에서 제시하는 실란 변성 석유수지는 석유수지계 단량체와 및 실란계 화합물이 서로 공중합하여 제조된 것을 의미한다. Specifically, the silane-modified petroleum resin proposed in the present invention means that the petroleum resin monomer and the silane compound are prepared by copolymerizing with each other.
상기 석유수지계 단량체로 구성되는 반복단위는 타이어 트레드용 고무 조성물의 히스테리시스(타이어의 반복 변형 회수당 에너지 손실)를 높여 타이어 제동시 발생하는 외부 에너지를 열에너지로 변환시켜 흡수함으로써 타이어의 그립력을 높인다. The repeating unit composed of the petroleum resin monomer increases the hysteresis of the rubber composition for tire treads (energy loss per number of repeated deformations of the tire), thereby converting and absorbing external energy generated during tire braking into thermal energy to increase the grip force of the tire.
또한, 실란계 화합물로 구성되는 반복단위는 Si의 존재로 인해 타이어 트레드용 고무 조성물에서 보강제로 사용하는 무기계 충진제인 카본블랙, 실리카와 실란 커플링제와의 높은 상용성을 나타내, 고무 조성물 내 이들의 분산성을 높여 상기 조성의 사용에 의해 얻어지는 회전 저항을 낮추는 효과를 확보할 수 있다.In addition, the repeating unit composed of the silane-based compound exhibits high compatibility with carbon black, silica, and a silane coupling agent, an inorganic filler used as a reinforcing agent in the rubber tread rubber composition due to the presence of Si, It is possible to secure the effect of increasing the dispersibility and lowering the rolling resistance obtained by the use of the above composition.
보다 구체적으로, 본 발명에서 제시하는 실란 변성 석유수지 제조에 사용하는 석유수지 단량체는 구체적으로, 나프타 크래킹으로부터 유래된 것으로 분자 구조 내 중합 가능한 관능기인 에틸렌 불포화성 관능기를 하나 이상 포함한다. 바람직하기로, 상기 석유수지 단량체는 실용화가 가능한 액상의 혼합 C5 내지 C12 유분, 또는 디올레핀이 가능하며, 바람직하기로 혼합 C5 유분, 혼합 C9 유분, 또는 디올레핀이 가능하다.More specifically, the petroleum resin monomer used in the production of the silane-modified petroleum resin proposed in the present invention, specifically, is derived from naphtha cracking and includes at least one ethylenically unsaturated functional group which is a polymerizable functional group in a molecular structure. Preferably, the petroleum resin monomer may be a mixed C5 to C12 fraction, or a diolefin in a liquid phase, which may be put to practical use. Preferably, the mixed C5 fraction, a mixed C9 fraction, or a diolefin may be used.
혼합 C5 유분은 1-펜텐, 2-메틸-2-부텐 n-펜탄, 프로파디엔, 디사이클로펜타디엔, 피페릴렌, 이소프렌, 사이클로펜텐, 1,3-펜타디엔 등을 포함하고, 혼합 C9 유분은 스티렌, 비닐톨루엔, 인덴(Indene), 알파메틸스티렌 및 벤젠/톨루엔/자이렌(BTX) 등을 포함하며, 디올레핀은 프로파디엔, 디사이클로펜타디엔, 피페릴렌, 이소프렌, 사이클로펜텐, 1,3-펜타디엔 등을 포함한다. 바람직하기로, 석유수지 단량체로 디올레핀, 더욱 바람직하기로는 디사이클로펜타디엔을 포함한다. Mixed C5 fractions include 1-pentene, 2-methyl-2-butene n-pentane, propadiene, dicyclopentadiene, piperylene, isoprene, cyclopentene, 1,3-pentadiene, and the like. Silver styrene, vinyltoluene, indene, alphamethylstyrene and benzene / toluene / xylene (BTX) and the like; diolefins are propadiene, dicyclopentadiene, piperylene, isoprene, cyclopentene, 1 , 3-pentadiene and the like. Preferably, the petroleum resin monomers include diolefins, more preferably dicyclopentadiene.
이러한 석유수지 단량체와 공중합되는 실란 단량체는 분자 구조 내 중합 가능한 관능기인 에틸렌 불포화성 관능기를 포함하는 것으로, 바람직하기로 하기 화학식 1로 표시된다:The silane monomer copolymerized with such a petroleum resin monomer includes an ethylenically unsaturated functional group which is a polymerizable functional group in a molecular structure, and is preferably represented by the following Chemical Formula 1:
[화학식 1][Formula 1]
CH2=C(R1)-(COO)x(CnH2n)ySi(R2)(R3)(R4)CH 2 = C (R 1 )-(COO) x (C n H 2n ) y Si (R 2 ) (R 3 ) (R 4 )
(상기 화학식 1에서, R1은 수소 또는 메틸기이고, R2 내지 R4는 서로 같거나 다르며, 수소, C1 내지 C20의 알킬기, C3 내지 C12의 사이클로알킬기, C1 내지 C12의 알콕시기, C2 내지 C12의 아실옥시기, C6 내지 C30의 아릴옥시기, C5 내지 C30의 아랄옥시기, 또는 C1 내지 C20의 아민기이고, (In Formula 1, R 1 is hydrogen or methyl group, R 2 to R 4 are the same as or different from each other, hydrogen, C1 to C20 alkyl group, C3 to C12 cycloalkyl group, C1 to C12 alkoxy group, C2 to C12 An acyloxy group, a C6 to C30 aryloxy group, a C5 to C30 araloxy group, or a C1 to C20 amine group,
n는 1 내지 12의 정수이고, n is an integer from 1 to 12,
x 및 y는 0 또는 1이다.)x and y are 0 or 1).
바람직하기로, 상기 R1은 수소 또는 메틸기이고, R2 내지 R4는 서로 같거나 다르며, C1 내지 C6의 알킬기, 또는 C1 내지 C6의 알콕시기이고, n은 1 내지 6의 정수이고, x 및 y는 0 또는 1이다.Preferably, R 1 is hydrogen or a methyl group, R 2 to R 4 are the same as or different from each other, an alkyl group of C1 to C6, or an alkoxy group of C1 to C6, n is an integer of 1 to 6, x and y is 0 or 1.
본 명세서에서 언급하는 "알킬"은 1 내지 20개, 바람직하게는 1 내지 10개, 보다 바람직하게는 1 내지 6개의 탄소 원자의 선형 또는 분지형 포화 1가 탄화수소 부위를 의미한다. 알킬기는 비치환된 것뿐 아니라 후술하는 일정한 치환기에 의해 더욱 치환될 수 있다. 알킬기의 예로서 메틸, 에틸, 프로필, 2-프로필, n-부틸, 이소-부틸, tert-부틸, 펜틸, 헥실, 도데실, 등을 포함하고, 추가적으로 할로겐으로 치환될 경우 플루오로메틸, 디플루오로메틸, 트리플루오로메틸, 클로로메틸, 디클로로메틸, 트리클로로메틸, 요오도메틸, 브로모메틸 등을 들 수 있다."Alkyl" as used herein means a linear or branched saturated monovalent hydrocarbon moiety of 1 to 20, preferably 1 to 10, more preferably 1 to 6 carbon atoms. The alkyl group may be further substituted by the following substituents as well as unsubstituted. Examples of alkyl groups include methyl, ethyl, propyl, 2-propyl, n-butyl, iso-butyl, tert-butyl, pentyl, hexyl, dodecyl, and the like, and additionally substituted with halogen, fluoromethyl, difluoro Chloromethyl, trifluoromethyl, chloromethyl, dichloromethyl, trichloromethyl, iodomethyl, bromomethyl and the like.
본 명세서에서 언급하는 "사이클로알킬"은 3 내지 12개의 고리 탄소의 포화된 또는 불포화된 비방향족 1가 모노사이클릭, 바이사이클릭 또는 트리사이클릭 탄화수소 부위를 의미하며, 후술하는 일정한 치환기에 의해 더욱 치환될 수 있다. 예컨대, 사이클로프로필, 사이클로부틸, 사이클로펜틸, 사이클로펜테닐, 사이클로헥실, 사이클로헥세닐, 사이클로헵틸, 사이클로옥틸, 데카하이드로나프탈레닐, 아다만틸, 노르보닐 (즉, 바이사이클로[2,2,1]헵트-5-에닐) 등을 들 수 있다. As used herein, "cycloalkyl" refers to a saturated or unsaturated non-aromatic monovalent monocyclic, bicyclic or tricyclic hydrocarbon moiety of 3 to 12 ring carbons, further defined by the following substituents. Can be substituted. For example, cyclopropyl, cyclobutyl, cyclopentyl, cyclopentenyl, cyclohexyl, cyclohexenyl, cycloheptyl, cyclooctyl, decahydronaphthalenyl, adamantyl, norbornyl (ie, bicyclo [2,2, 1] hept-5-enyl) etc. are mentioned.
본 명세서에서 언급하는 "알콕시"는 1 내지 12개, 바람직하게는 1 내지 10개, 보다 바람직하게는 1 내지 6개의 탄소 원자의 선형 또는 분지형 포화 1가 탄화수소 부위를 의미한다. 알콕기는 비치환된 것뿐 아니라 후술하는 일정한 치환기에 의해 더욱 치환될 수 있다. 알콕시기의 예로서 메톡시, 에톡시, 프로폭시, 이소프로폭시, 부톡시, 펜톡시, 헤톡시, 도덱시 등이 가능하고, 추가적으로 할로겐으로 치환될 경우 플루오로메톡시, 디플루오로메톡시, 트리플루오로메톡시, 클로로메톡시, 디클로로메톡시, 트리클로로메톡시, 요오도메톡시, 브로모메톡시 등을 들 수 있다.As used herein, "alkoxy" means a linear or branched saturated monovalent hydrocarbon moiety of 1 to 12, preferably 1 to 10, more preferably 1 to 6 carbon atoms. The alkoxy group may be further substituted by the following substituents as well as unsubstituted. Examples of the alkoxy group are methoxy, ethoxy, propoxy, isopropoxy, butoxy, pentoxy, ethoxy, dodecoxy and the like, and when substituted with halogen, fluoromethoxy, difluoromethoxy, tri Fluoromethoxy, chloromethoxy, dichloromethoxy, trichloromethoxy, iodomethoxy, bromomethoxy and the like.
본 명세서에서 언급하는 "아실옥시"는 1 내지 12개, 바람직하기로는 1 내지 10개의 탄소 원자의 선형 또는 분지형의 탄화 수소로 아세톡시, 에타놀옥시, 프로파놀옥시, 부탄올옥시, 펜타놀옥시, 헥사놀옥시, 2,2-디메틸프로파놀옥시, 3,3-디메틸부탄올옥시 등을 들 수 있다. 이들은 후술하는 일정한 치환기에 의해 더욱 치환될 수 있다.As used herein, "acyloxy" is a linear or branched hydrocarbon of 1 to 12, preferably 1 to 10 carbon atoms, such as acetoxy, ethanoloxy, propanoloxy, butanoloxy, pentanoloxy, Hexanoloxy, 2,2-dimethylpropanoloxy, 3,3-dimethylbutanoloxy and the like. These may be further substituted by certain substituents described below.
본 명세서에서 언급하는 "아릴옥시"는 단환식 아릴기 또는 다환식 아릴기 내에 산소가 포함되는 경우를 포함한다. 이때 아릴기는 방향족 고리를 의미한다. 구체적으로 아릴옥시기로는 페녹시, p-토릴옥시, m-토릴옥시, 3,5-디메틸-페녹시, 2,4,6-트리메틸페녹시, p-tert-부틸페녹시, 3-비페닐옥시, 4-비페닐옥시, 1-나프틸옥시, 2-나프틸옥시, 4-메틸-1-나프틸옥시, 5-메틸-2-나프틸옥시, 1-안트릴옥시, 2-안트릴옥시, 9-안트릴옥시, 1-페난트릴옥시, 3-페난트릴옥시, 9-페난트릴옥시 등이 있으나, 이에 한정되지 않는다As used herein, "aryloxy" includes the case where oxygen is contained in a monocyclic aryl group or a polycyclic aryl group. An aryl group means an aromatic ring. Specifically, as the aryloxy group, phenoxy, p-tolyloxy, m-tolyloxy, 3,5-dimethyl-phenoxy, 2,4,6-trimethylphenoxy, p-tert-butylphenoxy, 3-biphenyl Oxy, 4-biphenyloxy, 1-naphthyloxy, 2-naphthyloxy, 4-methyl-1-naphthyloxy, 5-methyl-2-naphthyloxy, 1-anthryloxy, 2-anthryl Oxy, 9-anthryloxy, 1-phenanthryloxy, 3-phenanthryloxy, 9-phenanthryloxy, and the like, but are not limited thereto.
본 명세서에서 언급하는 "아민기"는 탄소수는 특별히 한정되지 않으나, 1 내지 30인 것이 바람직하다. 아민기의 구체적인 예로는 메틸아민기, 디메틸아민기, 에틸아민기, 디에틸아민기, 페닐아민기, 나프틸아민기, 비페닐아민기, 안트라세닐아민기, 9-메틸-안트라세닐아민기, 디페닐아민기, 페닐나프틸아민기, 디톨릴아민기, 페닐톨릴아민기, 트리페닐아민기 등이 있으나, 이들에만 한정되는 것은 아니다.As used herein, the "amine group" is not particularly limited in number of carbon atoms, but is preferably 1 to 30. Specific examples of the amine group include methylamine group, dimethylamine group, ethylamine group, diethylamine group, phenylamine group, naphthylamine group, biphenylamine group, anthracenylamine group, and 9-methyl-anthracenylamine group. , Diphenylamine group, phenylnaphthylamine group, ditolylamine group, phenyltolylamine group, triphenylamine group and the like, but are not limited thereto.
본 명세서에서 모든 화합물 또는 치환기는 특별한 언급이 없는 한 치환되거나 비치환된 것일 수 있다. 여기서, 치환된이란 수소가 할로겐 원자, 하이드록시기, 카르복실기, 시아노기, 니트로기, 아미노기, 싸이오기, 메틸싸이오기, 알콕시기, 나이트릴기, 알데하이드기, 에폭시기, 에테르기, 에스테르기, 에스테르기, 카르보닐기, 아세탈기, 케톤기, 알킬기, 퍼플루오로알킬기, 사이클로알킬기, 헤테로사이클로알킬기, 알릴기, 벤질기, 아릴기, 헤테로아릴기, 이들의 유도체 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나로 대체된 것을 의미한다.All compounds or substituents herein may be substituted or unsubstituted unless otherwise specified. Herein, the substituted hydrogen is a halogen atom, a hydroxyl group, a carboxyl group, a cyano group, a nitro group, an amino group, a thio group, a methylthio group, an alkoxy group, a nitrile group, an aldehyde group, an epoxy group, an ether group, an ester group, an ester group , Carbonyl group, acetal group, ketone group, alkyl group, perfluoroalkyl group, cycloalkyl group, heterocycloalkyl group, allyl group, benzyl group, aryl group, heteroaryl group, derivatives thereof and combinations thereof Means replaced by one.
구체적으로, 화학식 1의 실란계 화합물은 비닐트리메틸실란, 비닐트리메톡시실란, 비닐트리에톡시실란, 트리아세톡시비닐실란, 트리페닐비닐실란, 트리스(2-메톡시에톡시)비닐실란, 3-(트리메톡시실릴)프로필 메타크릴레이트, γ-(메트)아크릴옥시프로필 트리메톡시실란 및 이들의 혼합물로 이루어진 군에서 선택된 1종을 포함하고, 바람직하기로는 비닐트리메톡시실란을 포함한다.Specifically, the silane-based compound of formula 1 is vinyltrimethylsilane, vinyltrimethoxysilane, vinyltriethoxysilane, triacetoxyvinylsilane, triphenylvinylsilane, tris (2-methoxyethoxy) vinylsilane, 3 -(Trimethoxysilyl) propyl methacrylate, γ- (meth) acryloxypropyl trimethoxysilane and mixtures thereof, and one selected from the group consisting of vinyltrimethoxysilane. .
본 발명에 따른 실란 변성 석유수지는 전술한 바의 석유수지 단량체와 실란계 화합물의 공중합에 의해 제조된다. 이때 공중합은 석유수지 단량체와 실란계 화합물 내 존재하는 이중 결합 간의 부가 반응으로 진행된다.Silane-modified petroleum resins according to the present invention are prepared by copolymerization of petroleum resin monomers and silane compounds as described above. The copolymerization proceeds by addition reaction between the petroleum resin monomer and the double bond present in the silane compound.
상기 공중합은 다양한 방법이 사용될 수 있으며, 본 발명에서 특별히 한정하지 않는다. 일례로, 열중합, 광중합, 이온중합, 방사선 중합 방식이 가능하고, 바람직하기로는 열중합 방식을 사용할 수 있다.The copolymerization may be used in various ways, it is not particularly limited in the present invention. For example, thermal polymerization, photopolymerization, ion polymerization, and radiation polymerization can be performed, and thermal polymerization can be preferably used.
상기 열중합은 석유수지 단량체와 실란계 화합물을 반응기에 투입 후, 150 내지 300℃의 열을 가해 0.5 내지 10시간, 바람직하기로 1 내지 3시간 동안 반응시켜 이루어지며, 필요한 경우 압력을 인가할 수 있다. 압력 인가는 별도의 압력 인가 장치를 장착하거나, 열중합을 오토클레이브 내에서 수행한다. 이때 압력은 20 내지 25bar의 범위 내에서 수행한다.The thermal polymerization is carried out by adding a petroleum resin monomer and a silane compound to the reactor, and then reacted for 0.5 to 10 hours, preferably 1 to 3 hours by applying heat of 150 to 300 ℃, if necessary, can be applied pressure have. Pressure application is carried out by mounting a separate pressure application device or by thermal polymerization in an autoclave. At this time, the pressure is carried out in the range of 20 to 25bar.
이러한 열중합시 반응 온도, 시간 및 압력의 범위는 타이어 트레드용 고무 조성물에 적용 시 회전 저항과 그립력을 동시에 만족시킬 수 있는 석유수지를 얻기 위한 최적의 파라미터이다. 상기 반응 온도, 시간 및 압력의 범위가 상기 범위를 벗어날 경우 최종 생성물 내에 미반응 물질이 존재하거나, 석유수지의 분자량이 낮아지는 등의 문제가 발생한다. 또한, 과도한 조건에서 열중합을 수행할 경우 부반응이 일어나거나 분자량의 과도한 증가 등으로 인해, 최종 생성된 생성물의 타이어 트레드용 고무 조성물로 적용시 만족스러운 물성 확보가 용이하지 않다.The range of reaction temperature, time and pressure during thermal polymerization is an optimal parameter for obtaining a petroleum resin that can satisfy both rotational resistance and grip force when applied to a rubber tread rubber composition. When the range of the reaction temperature, time and pressure is out of the range, an unreacted substance is present in the final product or the molecular weight of the petroleum resin is lowered. In addition, due to side reactions or excessive increase in molecular weight when thermal polymerization is performed under excessive conditions, it is not easy to secure satisfactory physical properties when applied to the rubber composition for tire tread of the final product.
상기 열중합시 조건과 함께, 석유수지 단량체와 실란계 화합물의 열중합시 사용하는 함량비가 고려되어야 하며, 이들은 각각 50 내지 95 중량%와 5 내지 50 중량%로 사용한다. 상기 실란계 화합물은 최종 얻어지는 실란 변성 석유수지의 연화점 및 중합도에 관여하며, 그 함량이 증가할수록 이들 물성이 저하된다. 따라서, 실란계 화합물은 상기 제시한 범위에서 사용하고, 바람직하기로 10 내지 25 중량%, 더욱 바람직하기로 10 내지 20 중량%로 사용한다.Along with the thermal polymerization conditions, the content ratio used in thermal polymerization of the petroleum resin monomer and the silane compound should be considered, and they are used in 50 to 95% by weight and 5 to 50% by weight, respectively. The silane-based compound is involved in the softening point and degree of polymerization of the final silane-modified petroleum resin, and these properties decrease as the content thereof increases. Therefore, the silane-based compound is used in the above-mentioned range, preferably 10 to 25% by weight, more preferably 10 to 20% by weight.
특히, 본 석유수지 단량체와 실란계 화합물은 반응성이 높아 열중합시 열중합 개시제의 사용을 배제할 수 있으며, 필요한 경우 반응 용매를 사용할 수 있다.In particular, the petroleum resin monomer and the silane-based compound have high reactivity, thereby eliminating the use of a thermal polymerization initiator during thermal polymerization, and a reaction solvent may be used if necessary.
사용 가능한 반응 용매로는 비중합성 용매를 사용하며, 프로판, 부탄, 펜탄, 헥산, 옥탄, 데칸, 도데칸, 사이클로펜탄, 메틸사이클로펜탄, 사이클로헥산, 메틸사이클로헥산, 벤젠, 톨루엔, 자이렌, 디클로로메탄, 클로로에탄, 디클로로에탄, 클로로벤젠 등이 사용되며, 바람직하기로 벤젠, 자이렌, 톨루엔, 사이클로헥산 또는 이들의 혼합 용매가 사용될 수 있다. 이때 반응 용매는 반응물의 최종 농도가 30 내지 70 중량%가 되도록 희석하여 사용할 수 있다.Non-polymerizable solvents may be used as propane, butane, pentane, hexane, octane, decane, dodecane, cyclopentane, methylcyclopentane, cyclohexane, methylcyclohexane, benzene, toluene, xylene, dichloro Methane, chloroethane, dichloroethane, chlorobenzene and the like are used, preferably benzene, xylene, toluene, cyclohexane or a mixed solvent thereof can be used. At this time, the reaction solvent may be used by diluting the final concentration of the reactant to 30 to 70% by weight.
열중합 후 얻어진 석유수지는 통상의 후처리 공정, 일례로 탈기 및 농축 공정을 거쳐 미반응 물질, 부반응 생성물 등을 제거하여 본 발명에서 제조하고자 하는 실란 변성 수지를 얻는다.The petroleum resin obtained after thermal polymerization is subjected to a general post-treatment process, for example, degassing and concentration to remove unreacted substances, side reaction products and the like to obtain a silane-modified resin to be prepared in the present invention.
탈기 공정은 고상의 실란 변성 석유수지와 미반응 물질과 부반응 생성물(예, 올리고머)를 분리하기 위한 공정으로 고온에서 수행하고, 필요한 경우 고압 하에서 수행한다.The degassing process is a process for separating solid silane-modified petroleum resin, unreacted substances and side reaction products (eg oligomers) at high temperature and, if necessary, under high pressure.
상기 탈기 공정은 석유수지의 수율 및 연화점과 직접적인 관련이 있으며, 탈기 온도가 높을수록 수율 및 연화점은 감소하는 경향을 보인다. 그러나 너무 낮을 경우 미반응 물질 및 부반응 생성물의 제거가 어려우므로 실란 변성 석유수지의 순도가 크게 저하된다. 따라서, 수율 및 연화점이 감소하지 않는 조건에서 탈기 공정을 수행하여야 한다.The degassing process is directly related to the yield and softening point of the petroleum resin, and the higher the degassing temperature, the lower the yield and softening point. However, when too low, the purity of the silane-modified petroleum resin is greatly reduced because it is difficult to remove unreacted substances and side reaction products. Therefore, the degassing process should be carried out under the condition that the yield and softening point do not decrease.
바람직하기로, 본 발명에서는 200 내지 280℃, 바람직하기로 230 내지 270℃의 온도 범위에서 1분 내지 15분 동안 수행한다. 만약 탈기를 상기 미만의 온도에서 수행하게 되면 상기 언급한 바와 같이 실란 변성 석유수지의 순도가 낮아지고, 이와 반대로 상기 온도 이상에서 수행하면, 수율 및 연화점이 감소하여 최종 얻어지는 석유수지의 물성(즉, 접착력, 응집력)이 저하되므로, 상기 범위 내에서 적절히 사용한다.Preferably, the present invention is carried out for 1 to 15 minutes in the temperature range of 200 to 280 ℃, preferably 230 to 270 ℃. If degassing is carried out at a temperature below the above, the purity of the silane-modified petroleum resin is lowered as mentioned above. On the contrary, if the degassing is carried out at the above temperature, the yield and the softening point are decreased, so Since adhesive force and cohesion force) fall, it uses suitably within the said range.
상기한 단계를 거쳐 제조된 실란 변성 석유수지는 STM E28에 의거하여 측정하여 얻어진 연화점이 70 내지 150℃, 바람직하기로 90 내지 130℃ 범위에 있는 수지이고, 수평균분자량(Mn)이 500 내지 5000 g/mol의 범위를 갖는 수지이다. 특히, 연화점 및 분자량은 그립력과 회전 저항에 직접적인 영향을 주는 파라미터로서, 연화점 및 분자량이 높다는 것은 경화 후 경도가 높아지는 것을 의미하며, 이로 인해 회전 저항은 낮아질 수 있음을 의미한다. 또한, 연화점 및 분자량이 낮음은 수지가 유연성을 가짐을 의미하며, 이로 인해 노면에 대한 밀착력이 높아져 그립력이 높아질 수 있음을 의미한다. 본 발명에서는 상기 범위를 가질 경우 최적의 효과를 확보할 수 있다.The silane-modified petroleum resin prepared through the above steps is a resin having a softening point of 70 to 150 ° C., preferably 90 to 130 ° C., measured according to STM E28, and a number average molecular weight (Mn) of 500 to 5000. resin having a range of g / mol. In particular, the softening point and the molecular weight is a parameter that directly affects the grip force and the rolling resistance, and the high softening point and the molecular weight means that the hardness after curing is increased, which means that the rolling resistance may be lowered. In addition, the softening point and low molecular weight means that the resin has flexibility, which means that the adhesion to the road surface may be increased and thus the grip force may be increased. In the present invention, it is possible to secure the optimum effect when having the above range.
또한, 본 발명에 따른 실란 변성 석유수지는 1H-NMR에 의해 결정되는 실란류의 프로톤 함량이 적어도 1.7%이고, 실란류의 프로톤 함량이 적어도 7%이고, X선 형광분석기에 의한 분석을 통해 얻어진 전체 원소 중 실리콘(Si) 원소가 차지하는 중량비율인 Si 중량 분율이 적어도 0.3 wt%인 수지이다. In addition, the silane-modified petroleum resin according to the present invention has a proton content of silanes determined by 1 H-NMR of at least 1.7%, a proton content of silanes of at least 7%, and is analyzed by X-ray fluorescence spectroscopy. It is resin which Si weight fraction which is the weight ratio which a silicon (Si) element occupies among all the obtained elements is at least 0.3 wt%.
전술된 바와 같이, 본 발명에 따른 실란 변성 석유수지는 디사이클로펜타디엔으로 대표되는 올레핀계 화합물과 실란계 화합물을 공중합한 것으로, 종래 석유수지가 갖는 점접착성과 함께 실란 화합물을 포함함으로써 타이어 트레드용 고무 조성물 내 사용하는 카본블랙, 실리카 및 실란 커플링제와의 상용성을 높여 타이어의 물성(특히, 회전 저항과 그립력)을 더욱 높일 수 있다.As described above, the silane-modified petroleum resin according to the present invention is a copolymer of an olefin-based compound represented by dicyclopentadiene and a silane-based compound, and includes a silane compound together with the adhesiveness of a conventional petroleum resin for tire treads. The compatibility with the carbon black, silica, and silane coupling agents used in the rubber composition can be enhanced to further increase the tire physical properties (particularly, rotational resistance and grip force).
이러한 실란 변성 석유수지는 원료 고무 100 중량부에 대하여 1 내지 30 중량부, 바람직하기로 5 내지 15 중량부로 사용한다. 만약, 그 함량이 상기 범위 미만이면 회전 저항과 그립력의 동시 향상 효과를 기대할 수 없고, 이와 반대로 상기 범위를 초과할 경우 고무 조성물의 점도를 낮춰 공정 조건을 재설계해야 하는 번거로움과 더불어, 가공성이 저하되어 최종 제조된 타이어의 인장강도 및 경도와 같은 물성 저하를 야기할 수 있으므로, 상기 범위 내에서 적절히 사용한다.Such silane-modified petroleum resin is used in 1 to 30 parts by weight, preferably 5 to 15 parts by weight based on 100 parts by weight of the raw rubber. If the content is less than the above range, the effect of improving the rotational resistance and the grip force cannot be expected simultaneously. On the contrary, if the content exceeds the above range, the workability and the processability of reducing the viscosity of the rubber composition have to be redesigned to reduce the viscosity of the rubber composition. It may be lowered, which may cause deterioration of physical properties such as tensile strength and hardness of the final manufactured tire, so it is suitably used within the above range.
본 발명의 바람직한 실험예 3에서는 상기한 조성을 포함하여 타이어 트레드용 고무 조성물을 제조하고 이에 대한 그립력과 회전 저항을 측정하였다.In Experimental Example 3 of the present invention, the rubber composition for tire treads was prepared including the composition described above, and the grip force and rotational resistance thereof were measured.
그립력은 브레이크 제동성에 관여하며, 동적 점탄성 시험에 의해 주파수 10 내지 100Hz, 0℃, 25℃ 부근에서 측정되는 손실 계수(Tan δ)에 의해 나타나고, 당해 손실 계수가 클수록 브레이크 제동성은 양호해진다. dry 그립성이 우수하다는 의미는 고무 조성물의 동적 점탄성 시험에 의해 주파수 10 내지 100Hz, 25℃ 부근에서 측정되는 손실 계수(Tan δ)가 큰 것을 의미하며, wet 그립성이 우수하다는 의미는 고무 조성물의 동적 점탄성 시험에 의해 주파수 10 내지 100Hz, 0℃ 부근에서 측정되는 손실 계수(Tan δ)가 큰 것을 의미한다.The grip force is involved in the brake braking property and is indicated by a loss factor (Tan δ) measured at a frequency of 10 to 100 Hz, 0 ° C, and 25 ° C by a dynamic viscoelastic test, and the larger the loss factor, the better the brake braking property is. The excellent dry grip property means that the loss coefficient (Tan δ) measured at a frequency of 10 to 100 Hz and around 25 ° C. by the dynamic viscoelastic test of the rubber composition is large. By the dynamic viscoelastic test, the loss coefficient (Tan δ) measured at a frequency of 10 to 100 Hz and around 0 ° C is large.
회전 저항은 타이어 트레드용 고무 조성물의 동적 점탄성 시험에 의해 주파수 10 내지 100Hz, 70℃ 부근에서 측정되는 손실 계수(Tan δ)에 의해 나타나고, 당해 손실 계수가 작을수록 구름 저항 특성은 양호해진다. 회전 저항 특성이 우수하는 의미는 자동차 트레드용 고무 조성물의 동적 점탄성 시험에 의해 주파수 10 내지 100Hz, 70℃ 부근에서 측정되는 손실 계수(Tan δ)가 작은 것을 의미한다.Rotational resistance is shown by the loss coefficient (Tan delta) measured by the dynamic viscoelastic test of the rubber composition for tire treads about 10-100 Hz, 70 degreeC, and a smaller said loss coefficient improves rolling resistance characteristic. The excellent rotational resistance characteristic means that the loss coefficient (Tan δ) measured at a frequency of 10 to 100 Hz and around 70 ° C by a dynamic viscoelastic test of the rubber composition for automobile tread is small.
상기 4가지 측정값 즉, Tg, Tan δ(0℃) 수치, Tan δ(25℃) 수치 및 Tan δ(70℃) 수치는 같은 경향으로 움직이는 값이다. 바람직하기로 Tg가 동일 또는 유사 수준으로 유지된 상태에서 회전 저항(R/R, Tan δ 70℃) 또는 wet 그립력(Tan δ 0℃)이 향상되어야 한다. 이상적으로는 회전 저항은 낮아지고, wet 그립력은 높아지는 방향이 바람직하다. 그러나, 회전 저항과 wet 그립력은 서로 상보적인 관계에 있으므로, 이 두 물성을 모두 향상시키기란 용이하지 않다. 이에, 실질적으로 회전 저항은 유지되거나 최소한으로 나빠지면서 Wet 그립력을 올리는 것이 가장 이상적이라고 할 수 있다.The four measured values, Tg, Tan δ (0 ° C.), Tan δ (25 ° C.) and Tan δ (70 ° C.) are moving in the same trend. Preferably the rotational resistance (R / R, Tan δ 70 ° C.) or wet grip force (Tan δ 0 ° C.) should be improved while Tg is maintained at the same or similar level. Ideally, the direction in which the rotational resistance is lowered and the wet grip force is higher is preferable. However, since the rotational resistance and the wet grip force are complementary to each other, it is not easy to improve both of these properties. Therefore, it is most ideal to increase the wet grip force while the rotational resistance is substantially maintained or at least deteriorated.
본 발명의 바람직한 실험예 2에 따르면, 본 발명에 따른 실란 변성 석유수지를 사용한 경우 Tg가 동일하게 유지된 상태에서 11Hz에서 손실 계수를 측정한 결과, 이를 사용하지 않은 고무(비교예 1)와 비교하여 dry 그립력은 최대 128%, wet 그립력은 133% 이상의 향상을 보였으며, 회전 저항의 경우 상승 수치가 -16% 이내로 나타내었다. 이는 현재 산업계에서 그립력 향상을 목적으로 범용으로 사용되고 있는 테르펜 페놀 수지(비교예 2)와 비교시 유사한 수준으로 볼 수 있다. 이를 통해 본 발명의 제품을 적용할 경우 그립력의 수치가 올라가더라도 회전 저항의 상승 수치를 최소화할 수 있었다.According to Experimental Example 2 of the present invention, in the case of using the silane-modified petroleum resin according to the present invention, a loss factor was measured at 11 Hz while Tg was kept the same, and compared with rubber (Comparative Example 1) not using the same. As a result, the dry grip force improved up to 128%, the wet grip force increased by 133%, and the rotational resistance increased within -16%. This can be seen as a similar level compared to the terpene phenol resin (Comparative Example 2), which is currently used in the industry for the purpose of improving grip. Through this, even if the value of the grip force is increased when applying the product of the present invention it was possible to minimize the rising value of the rotational resistance.
이미 언급한 바와 같이, 본 발명에 따른 타이어 트레드용 고무 조성물은 상기 실란 변성 석유수지 이외에 필수 조성으로 원료 고무, 보강제, 실란 커플링제, 가황제, 및 가황촉진제를 포함한다.As already mentioned, the rubber composition for tire treads according to the present invention includes raw rubber, reinforcing agent, silane coupling agent, vulcanizing agent, and vulcanization accelerator as essential compositions in addition to the silane-modified petroleum resin.
원료 고무는 올레핀성 이중 결합(탄소-탄소 이중 결합)을 갖는 것이면 특별히 제한은 없고, 천연 고무, 합성 고무, 또는 이들을 혼합하여 사용할 수 있다. 일례로, 상기 원료 고무로는 천연 고무, 부타디엔 고무, 니트릴 고무, 실리콘 고무, 이소프렌 고무, 스티렌-부타디엔 고무(SBR), 이소프렌-부타디엔 고무, 스티렌-이소프렌-부타디엔 고무, 아크릴로니트릴-부타디엔 고무(NBR), 에틸렌-프로필렌-디엔 고무, 할로겐화 부틸 고무, 할로겐화 이소프렌 고무, 할로겐화 이소부틸렌 공중합체, 클로로프렌 고무, 부틸 고무 및 할로겐화 이소부틸렌-p-메틸스티렌 고무로 이루어진 그룹으로부터 선택되는 적어도 1종인 것이 바람직하다. The raw material rubber is not particularly limited as long as it has an olefinic double bond (carbon-carbon double bond), and natural rubber, synthetic rubber, or a mixture thereof can be used. For example, the raw rubber may be natural rubber, butadiene rubber, nitrile rubber, silicone rubber, isoprene rubber, styrene-butadiene rubber (SBR), isoprene-butadiene rubber, styrene-isoprene-butadiene rubber, acrylonitrile-butadiene rubber ( NBR), ethylene-propylene-diene rubber, halogenated butyl rubber, halogenated isoprene rubber, halogenated isobutylene copolymer, chloroprene rubber, butyl rubber and halogenated isobutylene-p-methylstyrene rubber It is preferable.
보강제로는 카본블랙과 실리카를 사용한다. As the reinforcing agent, carbon black and silica are used.
카본 블랙은 내마모성의 향상, 회전 저항 특성의 향상, 자외선에 의한 균열이나 균열의 방지(자외선 열화 방지) 등의 효과를 얻는다. 본 발명에서 사용 가능한 카본 블랙은 특별히 한정하지 않으며, 타이어 트레드 분야에서 통상적으로 사용되는 것이면 어느 것이든 사용이 가능하다. 일례로, 상기 카본 블랙으로는 파네스 블랙, 아세틸렌 블랙, 서멀 블랙, 채널 블랙, 그래파이트 등의 카본 블랙을 사용할 수 있다. 또한, 카본 블랙의 입자 직경, 세공 용적, 비표면적 등의 물리적 특성에 관해서도 특별히 한정되는 것이 아니고, 종래 고무 공업에서 사용되고 있는 각종의 카본 블랙, 예를 들면, SAF, ISAF, HAF, FEF, GPF, SRF(모두, 미국의 ASTM 규격 D-1765-82a로 분류된 카본 블랙의 약칭) 등을 적절히 사용할 수 있다. Carbon black obtains effects such as improvement of abrasion resistance, improvement of rotational resistance characteristics, prevention of cracking and cracking (ultraviolet rays deterioration) by ultraviolet rays. The carbon black usable in the present invention is not particularly limited, and any carbon black may be used as long as it is commonly used in the field of tire treads. For example, as the carbon black, carbon black such as farnes black, acetylene black, thermal black, channel black and graphite may be used. In addition, physical properties such as particle diameter, pore volume, specific surface area, etc. of carbon black are not particularly limited, and various carbon blacks used in the rubber industry, for example, SAF, ISAF, HAF, FEF, GPF, SRF (all of which are abbreviations for carbon black classified in the ASTM specification D-1765-82a of the United States) and the like can be suitably used.
이러한 카본블랙은 원료 고무 100 중량부에 대하여 5 내지 50 중량부, 바람직하게는 50 내지 65 중량부로 포함되는 것이 바람직하다. 상기 카본블랙은 보강성 충전제로 고무배합에 필수적인 요소로서, 만약 그 함량이 상기 범위 미만인 경우에는 보강의 효과가 떨어지게 되고, 이와 반대로 상기 범위를 초과하는 경우에는 분산의 어려움이 있다.Such carbon black is preferably contained 5 to 50 parts by weight, preferably 50 to 65 parts by weight based on 100 parts by weight of the raw rubber. The carbon black is an essential element for rubber compounding as a reinforcing filler. If the content is less than the above range, the effect of reinforcing is inferior. On the contrary, if the carbon black exceeds the above range, dispersion is difficult.
또한, 실리카는 타이어 트레드 분야에서 고무용 보강제로서 사용되고 있는 것을 특별히 제한 없이 사용할 수 있고, 예를 들면 건식법 화이트 카본, 습식법 화이트 카본, 합성 규산염계 화이트 카본, 콜로이드성 실리카, 침강 실리카 등을 들 수 있다. 실리카의 비표면적은 특별히 제한은 없지만, 통상, 40 내지 600㎡/g의 범위, 바람직하게는 70 내지 300㎡/g의 것을 사용할 수 있고, 1차 입자 직경은 10 내지 1000nm인 것을 사용할 수 있다. 이들은 단독으로 사용해도 좋고 2종 이상을 조합하여 사용해도 좋다. In addition, silica can be used without particular limitation what is used as a rubber reinforcing agent in the tire tread field, for example, dry method white carbon, wet method white carbon, synthetic silicate-based white carbon, colloidal silica, precipitated silica and the like. . Although the specific surface area of silica does not have a restriction | limiting in particular, Usually, the range of 40-600 m <2> / g, Preferably it is 70-300 m <2> / g, The thing of 10-1000 nm can be used for a primary particle diameter. These may be used independently or may be used in combination of 2 or more type.
이러한 실리카는 원료 고무 100 중량부에 대하여 30 내지 80 중량부, 바람직하게는 50 내지 65 중량부로 포함되는 것이 바람직하다. 만약 그 함량이 상기 범위 미만이면 회전 저항이 높아 연비 효율이 저하되고, 이와 반대로 상기 범위를 초과하면 그립력의 저하를 야기할 수 있으므로, 상기 범위 내에서 적절히 사용한다.Such silica is preferably included in 30 to 80 parts by weight, preferably 50 to 65 parts by weight based on 100 parts by weight of the raw rubber. If the content is less than the above range, the rotational resistance is high and the fuel efficiency is lowered. On the contrary, if the content exceeds the above range, the grip force may be lowered. Therefore, it is suitably used within the above range.
보강제로서, 상기 카본블랙 및 실리카 이외에 클레이, 활석 등의 광물의 분말류, 탄산마그네슘, 탄산칼슘 등의 탄산염류, 수산화알루미늄 등의 알루미나 수화물 등을 사용할 수 있다.As the reinforcing agent, in addition to the carbon black and silica, powders of minerals such as clay and talc, carbonates such as magnesium carbonate and calcium carbonate, alumina hydrates such as aluminum hydroxide and the like can be used.
실란 커플링제는 실리카를 배합시키기 위해 사용한다.Silane coupling agents are used to compound the silica.
사용 가능한 실란 커플링제로는 비닐트리클로로실란, 비닐트리에톡시실란, 비닐트리스(β-메톡시-에톡시)실란, β-(3,4-에폭시사이클로헥실)-에틸트리메톡시실란, 3-클로로프로필트리메톡시실란, 3-클로로프로필트리에톡시실란, 3-머캅토프로필트리메톡시실란, 3-머캅토프로필트리에톡시실란, 비스(3-(트리에톡시실릴)프로필)디설파이드, 비스(3-트리에톡시실릴프로필)트리설파이드, 비스(3-(트리에톡시실릴)프로필)테트라설파이드, 비스(2-트리에톡시실릴에틸)테트라설파이드, 비스(3-트리메톡시실릴프로필)테트라설파이드, 비스(2-트리메톡시실릴에틸)테트라설파이드, 3-메르캅토프로필트리메톡시실란, 3-메르캅토프로필트리에톡시실란, 2-메르캅토에틸트리메톡시실란, 2-메르캅토에틸트리에톡시실란, 3-트리메톡시실릴프로필-N,N-디메틸티오카르바모일테트라설파이드, 3-트리에톡시실릴프로필-N,N-디메틸티오카르바모일테트라설파이드, 2-트리에톡시실릴에틸-N,N-디메틸티오카르바모일테트라설파이드, 3-트리메톡시실릴프로필벤조티아졸릴테트라설파이드, 3-트리에톡시실릴프로필벤졸릴테트라설파이드, 3-트리에톡시실릴프로필메타크릴레이트모노설파이드, 3-트리메톡시실릴프로필메타크릴레이트모노설파이드, 비스(3-디에톡시메틸실릴프로필)테트라설파이드, 3-메르캅토프로필디메톡시메틸실란, 디메톡시메틸실릴프로필-N,N-디메틸티오카르바모일테트라설파이드, 디메톡시메틸실릴프로필벤조티아졸릴테트라설파이드 등이 있으며, 이들은 단독 또는 2종 이상 혼합 사용하고, 바람직하기로는 비스(3-(트리에톡시실릴)프로필)테트라설파이드를 사용한다.Examples of the silane coupling agent that can be used include vinyltrichlorosilane, vinyltriethoxysilane, vinyltris (β-methoxy-ethoxy) silane, β- (3,4-epoxycyclohexyl) -ethyltrimethoxysilane, 3 -Chloropropyltrimethoxysilane, 3-chloropropyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, bis (3- (triethoxysilyl) propyl) disulfide , Bis (3-triethoxysilylpropyl) trisulfide, bis (3- (triethoxysilyl) propyl) tetrasulfide, bis (2-triethoxysilylethyl) tetrasulfide, bis (3-trimethoxysilyl Propyl) tetrasulfide, bis (2-trimethoxysilylethyl) tetrasulfide, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 2-mercaptoethyltrimethoxysilane, 2- Mercaptoethyltriethoxysilane, 3-trimethoxysilylpropyl-N, N-dimethylthiocarbamoyl Trasulfide, 3-triethoxysilylpropyl-N, N-dimethylthiocarbamoyltetrasulfide, 2-triethoxysilylethyl-N, N-dimethylthiocarbamoyltetrasulfide, 3-trimethoxysilylpropyl Benzothiazolyl tetrasulfide, 3-triethoxysilylpropylbenzolyl tetrasulfide, 3-triethoxysilylpropyl methacrylate monosulfide, 3-trimethoxysilylpropyl methacrylate monosulfide, bis (3-diethoxy Methylsilylpropyl) tetrasulfide, 3-mercaptopropyldimethoxymethylsilane, dimethoxymethylsilylpropyl-N, N-dimethylthiocarbamoyltetrasulfide, dimethoxymethylsilylpropylbenzothiazolyl tetrasulfide, and the like. It is used individually or in mixture of 2 or more types, Preferably bis (3- (triethoxysilyl) propyl) tetrasulfide is used.
상기 실란 커플링제의 사용 함량은 실리카의 함량에 따라 달라지며, 바람직하기로 원료 고무 100 중량부에 대해 5 내지 20 중량부로 사용한다. 만약 그 함량이 상기 범위 미만이면 실리카의 균일한 혼합이 어려워 타이어 트레드의 물성이 저하될 우려가 있고, 이와 반대로 상기 범위를 초과하여 사용할 경우 타이어 트레드 제조시 고무의 겔화가 발생할 수 있으므로, 상기 범위 내에서 적절히 사용한다.The use amount of the silane coupling agent depends on the content of silica, and preferably 5 to 20 parts by weight based on 100 parts by weight of the raw rubber. If the content is less than the above range, it is difficult to uniformly mix silica, which may lower the physical properties of the tire tread. On the contrary, if the content exceeds the above range, the gelation of rubber may occur during the production of the tire tread. Use it appropriately.
가교제는 고무의 가교에 통상 사용되는 것을 특별한 제한 없이 사용할 수 있고, 고무 성분 및 이소부틸렌계 중합체에 따라 적절히 선택할 수 있다. 가교제로서는, 예를 들면, 유황, 모르폴린디설파이드, 알킬페놀디설파이드 등의 유황 가교제; 사이클로헥사논퍼옥사이드, 메틸아세토아세테이트퍼옥사이드, 3급-부틸퍼옥시이소부틸레이트, 3급-부틸퍼옥시벤조에이트, 벤조일퍼옥사이드, 라우로일퍼옥사이드, 디쿠밀퍼옥사이드, 디3급-부틸퍼옥사이드, 1,3-비스(3급-부틸퍼옥시이소프로필)벤젠 등의 유기 과산화물 가교제 등을 들 수 있다. The crosslinking agent can be used without particular limitation what is normally used for crosslinking of the rubber, and can be appropriately selected according to the rubber component and the isobutylene polymer. As a crosslinking agent, For example, sulfur crosslinking agents, such as a sulfur, a morpholine disulfide, and an alkylphenol disulfide; Cyclohexanone peroxide, methyl acetoacetate peroxide, tert-butylperoxy isobutylate, tert-butylperoxybenzoate, benzoyl peroxide, lauroyl peroxide, dicumyl peroxide, di-tert-butyl peroxide And organic peroxide crosslinking agents such as 1,3-bis (tert-butylperoxyisopropyl) benzene and the like.
상기 가교제는 원료 고무 100 중량부에 대해 0.1 내지 5 중량부로 사용하며, 만약 그 함량이 상기 범위 미만이면 가교가 불충분하여 원하는 물성(예, 내마모성)의 타이어 제조가 어렵고, 이와 반대로 상기 범위를 초과할 경우 지나친 가교로 인해 이 또한 타이어 물성(예, 탄성)이 저하되므로, 상기 범위 내에서 적절히 사용한다.The crosslinking agent is used in an amount of 0.1 to 5 parts by weight based on 100 parts by weight of the raw rubber, and if the content is less than the above range, the crosslinking is insufficient, making it difficult to manufacture tires having desired physical properties (eg wear resistance), and vice versa. In this case, too, due to excessive crosslinking, the physical properties of the tire (eg, elasticity) are lowered, so it is appropriately used within the above range.
상기 가교제와 함께 본 발명에 따른 자동차 트레드용 고무 조성물은 가류 촉진제나 가류 조제를 포함한다. 가류촉진제나 가류 조제로서는 특별히 한정되지 않고, 고무 조성물이 함유하는 고무 성분, 이소부틸렌계 중합체, 가교제에 따라 적절히 선택하여 사용할 수 있다. 또한, 「가류」란 유황 원자를 적어도 1개 개재하는 가교를 나타낸다.The rubber composition for automobile treads according to the present invention together with the crosslinking agent includes a vulcanization accelerator and a vulcanization aid. It does not specifically limit as a vulcanization accelerator and a vulcanization adjuvant, According to the rubber component, isobutylene-type polymer, and crosslinking agent which a rubber composition contains, it can select suitably and can use. In addition, "vulcanization" represents the bridge | crosslinking through at least one sulfur atom.
가류 촉진제로서는 예를 들면, 테트라메틸티우람모노설파이드, 테트라메틸티우람디설파이드, 테트라에틸티우람디설파이드 등의 티우람계 촉진제; 2-머캅토벤조티아졸, 디벤조티아질디설파이드 등의 티아졸계 촉진제; N-사이클로헥실-2-벤조티아질설펜아미드, N-옥시디에틸렌-2-벤조티아졸릴설펜아미드 등의 설펜아미드계 촉진제; 디페닐구아니딘, 디오르토트릴구아니딘 등의 구아니딘계 촉진제; n-부틸알데히드-아닐린 축합품, 부틸알데히드-모노부틸아민 축합품 등의 알데히드-아민계 촉진제; 헥사메틸렌테트라민 등의 알데히드-암모니아계 촉진제; 티오카르바닐리드 등의 티오요소계 촉진제 등을 들 수 있다. 이들 가류 촉진제를 배합하는 경우에는 1종류를 단독으로 사용해도 좋고 2종 이상을 조합하여 사용해도 좋다. As a vulcanization accelerator, For example, Thiuram type accelerators, such as tetramethyl thiuram monosulfide, tetramethyl thiuram disulfide, and tetraethyl thiuram disulfide; Thiazole type accelerators such as 2-mercaptobenzothiazole and dibenzothiazyl disulfide; Sulfenamide-based accelerators such as N-cyclohexyl-2-benzothiazylsulfenamide and N-oxydiethylene-2-benzothiazolylsulfenamide; Guanidine-based accelerators such as diphenylguanidine and diorthotriguanidine; aldehyde-amine accelerators such as n-butylaldehyde-aniline condensate and butylaldehyde-monobutylamine condensate; Aldehyde-ammonia-based accelerators such as hexamethylenetetramine; Thiourea type accelerators, such as thiocarbanilide, etc. are mentioned. When mix | blending these vulcanization accelerators, you may use individually by 1 type or in combination of 2 or more types.
이러한 가류 촉진제의 함량은 원료 고무 100 중량부에 대해 0.1 내지 10 중량부로 사용하는 것이 물성 향상 면에서 바람직하다. The content of such a vulcanization accelerator is preferably used in an amount of 0.1 to 10 parts by weight based on 100 parts by weight of the raw rubber, in view of improving physical properties.
가류 조제로서는 산화아연(아연화), 산화마그네슘 등의 금속산화물; 수산화칼슘 등의 금속수산화물; 탄산아연, 염기성 탄산아연 등의 금속탄산염; 스테아르산, 올레산 등의 지방산; 스테아르산아연, 스테아르산마그네슘 등의 지방족 금속염; 디n-부틸아민, 디사이클로헥실아민 등의 아민류; 에틸렌디메타크릴레이트, 디알릴프탈레이트, N,N-m-페닐렌디말레이미드, 트리알릴이소시아누레이트, 트리메틸올프로판트리메타크릴레이트 등을 들 수 있다. 이들 가류 조제를 배합하는 경우에는 1종류를 단독으로 사용해도 좋고 2종 이상을 조합하여 사용해도 좋다. Examples of the vulcanization aid include metal oxides such as zinc oxide (zinc) and magnesium oxide; Metal hydroxides such as calcium hydroxide; Metal carbonates such as zinc carbonate and basic zinc carbonate; Fatty acids such as stearic acid and oleic acid; Aliphatic metal salts such as zinc stearate and magnesium stearate; Amines such as din-butylamine and dicyclohexylamine; Ethylene dimethacrylate, diallyl phthalate, N, N-m-phenylenedimaleimide, triallyl isocyanurate, trimethylolpropane trimethacrylate, and the like. When mix | blending these vulcanization adjuvant, you may use individually by 1 type or may use it in combination of 2 or more type.
이러한 가류 조제의 함량은 원료 고무 100 중량부에 대해 0.1 내지 10 중량부로 사용하는 것이 물성 향상 면에서 바람직하다. The content of such vulcanization aid is preferably used in an amount of 0.1 to 10 parts by weight based on 100 parts by weight of the raw rubber, in view of improving physical properties.
추가로, 본 발명에 따른 고무 조성물은 또한 고무 공업의 분야에서 사용되는 각종 첨가제, 예를 들면 노화 방지제, 가류 지연제, 풀림제, 프로세스유, 가소제 등의 1종 또는 2종 이상을 필요에 따라 함유하고 있어도 좋다. 이들 첨가제의 배합량은 고무 성분 100 중량부에 대해 0.1 내지 10 중량부인 것이 바람직하다.In addition, the rubber composition according to the present invention may also be used as one or two or more of various additives used in the field of the rubber industry, for example, an anti-aging agent, a vulcanization retardant, an annealing agent, a process oil, a plasticizer, etc. You may contain it. It is preferable that the compounding quantity of these additives is 0.1-10 weight part with respect to 100 weight part of rubber components.
전술한 바의 조성을 포함하는 자동차 트레드용 고무 조성물은 공지의 방법을 거쳐 타이어로 제조된다. The rubber composition for automobile treads comprising the composition as described above is made into a tire by a known method.
일례로, 본 발명에 따른 고무 조성물은, 상기의 각 성분을, 예를 들면 플라스토밀(plastomill), 밴버리 믹서, 롤, 인터널 믹서 등의 혼련기를 이용하여 혼련함으로써 조제할 수 있다. 구체적으로는, 상기의 각 성분 중, 가교제 및 가황촉진제 이외의 성분을 혼련하고, 그 후, 얻어진 혼련물에 가교제 및 가황 촉진제를 첨가하여 추가로 혼련하는 것이 바람직하다.As an example, the rubber composition according to the present invention can be prepared by kneading each of the above components using a kneading machine such as a plastomill, a Banbury mixer, a roll, an internal mixer, or the like. Specifically, among the above components, it is preferable to knead components other than the crosslinking agent and the vulcanization accelerator and further knead the crosslinking agent and the vulcanization accelerator to the obtained kneaded product after that.
상기 방법으로 제조된 고무 조성물은 노면과 접하는 트레드부(및 트레드부를 포함하는 캡부)를 구성하는 재료로서 사용할 수 있다. 그 제조방법을 보면, 상기 고무 조성물을 형성해야 할 타이어의 형상(구체적으로는, 트레드의 형상)에 따라서 압출 가공하고, 타이어 성형기 상에서 통상의 방법으로 성형함으로써, 타이어용 미가교 성형체를 제조한다. 이 타이어용 미가교 성형체를 예를 들면 가황기 중에서 가열 가압함으로써, 타이어 트레드를 제조하고, 이 타이어 트레드와 다른 부품을 조립함으로써, 목적으로 하는 타이어를 제조할 수 있다.The rubber composition produced by the above method can be used as a material constituting a tread portion (and a cap portion including the tread portion) in contact with the road surface. In view of the production method, an uncrosslinked molded body for a tire is produced by extrusion processing in accordance with the shape of the tire (specifically, the shape of the tread) in which the rubber composition is to be formed, and molding in a conventional manner on a tire molding machine. A tire tread can be manufactured by heat-pressing this uncrosslinked molded object for tires in a vulcanizer, for example, and a tire tread and other parts can be manufactured, and a target tire can be manufactured.
이렇게 제조된 타이어는 타이어로서 가져야 할 기계적 물성(탄성, 내마모성, 경도, 인장 강도, 모듈러스 등)이 우수하다. 특히, 그립성(wet/dry)이 높아 자동차의 주행 안정성 및 브레이크 제동성이 우수하고, 회전 저항이 낮아 자동차의 저연비화를 구현할 수 있다.The tires thus produced are excellent in mechanical properties (elasticity, wear resistance, hardness, tensile strength, modulus, etc.) to be used as tires. In particular, the grip (wet / dry) is high, driving stability and brake braking of the vehicle is excellent, and the rotational resistance is low, it is possible to implement a low fuel consumption of the vehicle.
따라서, 본 발명의 고무 조성물은, 저연비 타이어, 및 고성능 타이어 등의 타이어의 트레드를 얻기 위한 고무 조성물로서 적합하다.Therefore, the rubber composition of this invention is suitable as a rubber composition for obtaining the tread of tires, such as a low fuel consumption tire and a high performance tire.
이하 본 발명의 바람직한 실시예 및 비교예를 설명한다. 그러나 하기한 실시예는 본 발명의 바람직한 일 실시예일뿐, 본 발명이 하기한 실시예에 한정되는 것은 아니다.Hereinafter, preferred examples and comparative examples of the present invention will be described. However, the following examples are only preferred embodiments of the present invention, and the present invention is not limited to the following examples.
제조예Production Example 1:  One: 실란Silane 변성  denaturalization 석유수지Petroleum resin 1 제조 1 manufacturer
디사이클로펜타디엔(DCPD, 코오롱인더스트리(주), 순도 80%) 312.5g(순도를 고려할 때 반응물 250g에 해당)와 비닐트리메톡시실란(TMVS. 시약급, Aldrichtk 제품, 순도 99.99%) 62.5g(DCPD 반응물과의 총량에 대하여 20 중량% 양에 해당)에 용매로 Hysol(코오롱인더스트리(주), 비중합성의 나프텐계 물질을 주성분으로 하는 공정 발생물로 용매로 사용됨)을 상기 두 성분의 총량의 농도가 50 중량% 되는 양만큼으로 계량하여 1L 오토클레이브 내로 투입하였다. 원료 투입 후 반응기를 체결하고 고온에서의 산소와의 반응 등 불필요한 반응을 제거하기 위해 질소로 치환 및 약간의 가압상태를 만들어 주었다.312.5 g of dicyclopentadiene (DCPD, Kolon Industries Co., Ltd., purity 80%) (corresponding to 250 g of reactant in consideration of purity) and vinyltrimethoxysilane (TMVS.reagent grade, product of Aldrichtk, purity 99.99%) 62.5 g The total amount of the two components is Hysol (Kolon Industries Co., Ltd., a process product mainly composed of non-polymeric naphthenic materials) as a solvent (corresponding to 20% by weight of the total amount with the DCPD reactant). Was weighed in an amount of 50% by weight, and introduced into a 1L autoclave. After adding the raw materials, the reactor was fastened and replaced with nitrogen to remove unnecessary reaction such as reaction with oxygen at high temperature.
반응기 온도를 275℃까지 승온시키고 반응온도에 다다르면 반응시간을 측정하기 시작하여 1시간 동안 반응시켰다(반응 조건에서, 반응기 내부압력은 20 내지 25bar 수준임). 반응이 완료되면, 상온으로 세팅하여 냉각시켰다. 30℃ 이하로 냉각이 완료되면 내부 압력을 해압시킨 후, 반응기를 열어 중합물을 얻었다.When the temperature of the reactor was raised to 275 ° C. and the reaction temperature was reached, the reaction time was measured and reacted for 1 hour (in the reaction conditions, the reactor internal pressure was 20 to 25 bar). When the reaction was completed, it was cooled to room temperature. After cooling to 30 ° C. or lower, the internal pressure was depressurized, and the reactor was opened to obtain a polymer.
중합물 내에는 중합이 이루어진 물질 이외에 반응하지 않은 물질 및 용매가 포함되어 있으므로 이를 제거하였다. 구체적으로 1L 유리 4구 케틀에 중합물 전량을 투입하여, 상온에서 진공을 잡았다. 진공도는 10 torr로 유지하며, 진공이 잡히면 교반과 함께 240℃까지 승온시켰다. 240℃에 다다르면 농축 시간을 재기 시작하여 10분 동안 유지시켰다. 농축이 완료되면 그 상태에서 진공을 풀고 내부의 용융된 수지분을 회수하였다.Since the polymer contained a solvent and an unreacted material in addition to the polymerized material, the polymer was removed. Specifically, the total amount of the polymer was put in a 1 L glass four-neck kettle, and vacuum was obtained at room temperature. The degree of vacuum was maintained at 10 torr, and when the vacuum was caught, the temperature was raised to 240 ° C with stirring. When the temperature reached 240 ° C., the concentration time began to be measured and maintained for 10 minutes. When the concentration was completed, the vacuum was released in that state to recover the molten resin powder therein.
제조예Production Example 2:  2: 실란Silane 변성  denaturalization 석유수지Petroleum resin 2 제조 2 manufacturing
탈기를 260℃에서 수행한 것을 제외하고는 상기 제조예 1과 동일한 방법으로 실란 변성 석유수지를 제조하였다A silane-modified petroleum resin was prepared in the same manner as in Preparation Example 1, except that degassing was performed at 260 ° C.
제조예Production Example 3:  3: 실란Silane 변성  denaturalization 석유수지Petroleum resin 3 제조 3 manufacturing
탈기를 20분간 수행한 것을 제외하고는 상기 제조예 2와 동일한 방법으로 실란 변성 석유수지를 제조하였다.A silane-modified petroleum resin was prepared in the same manner as in Preparation Example 2 except that degassing was performed for 20 minutes.
제조예Production Example 4: 테르펜 페놀 변성  4: terpene phenol-modified 석유수지Petroleum resin 제조 Produce
미국등록특허 제8,637,606호에 의거하여, 테르펜 페놀(terpene phenol) 변성 석유수지를 제조하였다. In accordance with US Pat. No. 8,637,606, terpene phenol-modified petroleum resin was prepared.
실험예Experimental Example 1 : 물성 평가 1: property evaluation
상기 제조예 1 내지 4에서 제조된 실란/테르펜 페놀 변성 석유수지의 물성을 측정하였고, 그 결과를 하기 표 1에 나타내었다. The physical properties of the silane / terpene phenol-modified petroleum resins prepared in Preparation Examples 1 to 4 were measured, and the results are shown in Table 1 below.
측정 방법How to measure 제조예 1Preparation Example 1 제조예 2Preparation Example 2 제조예 3Preparation Example 3 제조예 4Preparation Example 4
연화점Softening point ASTM E 28ASTM E 28 100℃100 ℃ 120℃120 ℃ 130℃130 ℃ 115℃115 ℃
Mn(g/mol)Mn (g / mol) 겔투과 크로마토그래피(휴렛패커드사 제품, 모델명 HP-1100)Gel Permeation Chromatography (Hewlett-Packard Company, model name HP-1100) 455455 649649 662662 808808
Mw(g/mol)Mw (g / mol) 689689 966966 10021002 10931093
Mz(g/mol)Mz (g / mol) 12561256 14781478 16241624 23452345
실시예Example 1 내지 3,  1 to 3, 비교예Comparative example 1 및 2: 타이어  1 and 2: tires 트레드Tread 고무 조성물 제조 Rubber composition
상기 제조한 실란 또는 테르펜 페놀 변성 석유수지를 이용하여 타이어 트레드용 고무 조성물을 제조하였다.A rubber composition for tire treads was prepared using the silane or terpene phenol-modified petroleum resin prepared above.
하기 표 2의 조성으로 타이어 트레드 고무 조성물을 제조하고, 물성 측정을 위해 고무 시편을 제조하였다.A tire tread rubber composition was prepared in the composition of Table 2 below, and rubber specimens were prepared for physical property measurement.
반바리 믹서에 하기 표 2의 조성을 첨가한 후, 컴파운딩 작업을 하고 160℃에서 20분 동안 가류하여 시험용 고무시편을 제조하였다. 이때 비교예 1은 실란 변성 석유수지를 사용하지 않은 조성물(Blank)을 의미하고, 비교예 2는 미국등록특허 제8,637,606호에 의거하여 제조된 석유수지를 사용한 조성물을 의미한다.After adding the composition shown in Table 2 to the short-barrier mixer, the compounding operation and vulcanization at 160 ℃ 20 minutes to prepare a test rubber specimen. At this time, Comparative Example 1 means a composition (Blank) not using a silane-modified petroleum resin, Comparative Example 2 means a composition using a petroleum resin prepared according to US Patent No. 8,637,606.
조성 (중량부)Composition (parts by weight) 실시예1Example 1 실시예2Example 2 실시예3Example 3 비교예1Comparative Example 1 비교예2Comparative Example 2
원료고무Raw material rubber ESBR1 ) ESBR 1 ) 100100 100100 100100 100100 100100
석유수지Petroleum resin 제조예1Preparation Example 1 55 -- -- -- --
제조예2Preparation Example 2 -- 55 -- -- --
제조예3Preparation Example 3 -- -- 55 -- --
제조예4Preparation Example 4 -- -- -- -- 55
보강제Reinforcement 카본블랙2 ) Carbon Black 2 ) 6060 6060 6060 6060 6060
실리카3 ) Silica 3 ) 6060 6060 6060 6060 6060
실란커플링제Silane coupling agent TESPT4 ) TESPT 4 ) 1010 1010 1010 1010 1010
가황제Vulcanizer 유황5 ) Sulfur 5 ) 1.51.5 1.51.5 1.51.5 1.51.5 1.51.5
가황촉진제Vulcanization accelerator ZnO6 ) ZnO 6 ) 33 33 33 33 33
첨가제additive 스테아르산7 ) Stearic acid 7 ) 22 22 22 22 22
DPG8 ) DPG 8 ) 1One 1One 1One 1One 1One
TBBS9 ) TBBS 9 ) 1.51.5 1.51.5 1.51.5 1.51.5 1.51.5
주)1) ESBR(SBR-1502), KKPC사 제품, 2) CarbonN-330, OEC사 제품, 3) SilicaZ-155, Evonik사 제품, 4) TESPT; 비스(3-(트리에톡시실릴)프로필)테트라설파이드, X-50S, Evonik사 제품, 5) Sulfur, Miwon chem사 제품, 6) ZnO, Kemai chem사 제품, 7) Stearic acid, Kemai chem사 제품, 8) DPG: Diphenyl guanidine, Miwon chem사 제품, 9) TBBS; n-사이클로헥실 벤조티아질-2-설파마이드, Miwon chem사 제품Note 1) ESBR (SBR-1502), manufactured by KKPC, 2) CarbonN-330, manufactured by OEC, 3) SilicaZ-155, manufactured by Evonik, 4) TESPT; Bis (3- (triethoxysilyl) propyl) tetrasulfide, X-50S, manufactured by Evonik, 5) Sulfur, manufactured by Miwon chem, 6) ZnO, manufactured by Kemai chem, 7) manufactured by Stearic acid, Kemai chem , 8) DPG: Diphenyl guanidine, manufactured by Miwon chem, 9) TBBS; n-cyclohexyl benzothiazyl-2-sulfamide, manufactured by Miwon chem
실험예Experimental Example 2 : 기계적 물성 측정 2: measuring mechanical properties
상기 실시예 및 비교예에서 제조된 고무 시편의 물성을 측정하였고, 그 결과를 하기 표 3에 나타내었다.The physical properties of the rubber specimens prepared in Examples and Comparative Examples were measured, and the results are shown in Table 3 below.
물성Properties 실시예1Example 1 실시예2Example 2 실시예3Example 3 비교예1Comparative Example 1 비교예2Comparative Example 2
UTM 측정1 ) UTM Measurement 1 ) 50% 모듈러스(kgf/cm2)50% modulus (kgf / cm 2 ) 21.9521.95 21.9321.93 20.4520.45 23.7023.70 21.0121.01
100% 모듈러스kgf/cm2)100% modulus kgf / cm 2 ) 30.3330.33 30.4730.47 30.8530.85 30.9630.96 28.1728.17
300% 모듈러스(kgf/cm2)300% modulus (kgf / cm 2 ) 66.0366.03 68.0468.04 67.9567.95 66.3166.31 61.3861.38
인장강도(파단, kgf/cm2)Tensile Strength (break, kgf / cm 2 ) 222.72222.72 219.08219.08 219.57219.57 222.69222.69 219.03219.03
신율(파단, %)Elongation at break (%) 1163.941163.94 1073.41073.4 1068.541068.54 1147.351147.35 1222.521222.52
경도 2) Hardness 2) 경도 (Shore A)Shore A 8585 8686 8686 8686 8484
고무 레오미터3 ) Rubber rheometer 3 ) Tmin T min 5.755.75 5.495.49 5.895.89 8.648.64 6.526.52
Tmax T max 29.2229.22 30.2230.22 30.9130.91 37.3337.33 31.331.3
Ts2Ts2 1:431:43 1:521:52 1:501:50 1:081:08 1:261:26
Tc10Tc10 1:551:55 2:042:04 2:032:03 1:271:27 1:401:40
Tc50Tc50 4:124:12 4:114:11 4:004:00 3:293:29 4:094:09
Tc90Tc90 7:247:24 7:147:14 6:566:56 6:256:25 7:307:30
내마모성4 ) Abrasion Resistance 4 ) 초기무게(g)Initial weight (g) 3.83123.8312 3.84493.8449 3.85593.8559 3.92893.9289 3.88083.8808
1회(g)1 time (g) 3.67243.6724 3.66293.6629 3.67283.6728 3.64733.6473 3.69543.6954
2회(g)2 times (g) 3.51403.5140 3.49013.4901 3.52463.5246 3.41743.4174 3.53173.5317
lossloss 4.31%4.31% 4.72%4.72% 4.03%4.03% 6.30%6.30% 4.43%4.43%
주)1) UTM 물성: Model : U.T.M - Shimadzu AG-1S (Load cell: PFG-5kN), 2) 경도 : Model : Shore Hardness Tester (Shore-A type), 3) 고무 레오미터: ASTM D 5289-95(2001), 4) 내마모성: ASTM D 2228 1) UTM Properties: Model: UTM-Shimadzu AG-1S (Load cell: PFG-5kN), 2) Hardness: Model: Shore Hardness Tester (Shore-A type), 3) Rubber Rheometer: ASTM D 5289- 95 (2001), 4) Abrasion Resistance: ASTM D 2228
상기 표 3을 참조하면, 실시예 1 내지 3의 고무 조성물은 비교예 1 및 2와 비교하여 기계적 물성(모듈러스, 인장강도, 신율, 경도 등)이 동등한 결과를 나타내었다.Referring to Table 3, the rubber compositions of Examples 1 to 3 showed the same mechanical properties (modulus, tensile strength, elongation, hardness, etc.) compared to Comparative Examples 1 and 2.
고무 레오미터로 측정되는 레오미터 결과는 공정 적용시 경화속도 및 고무 조성물의 거동과 관련된 파라미터로, 타이어 제조시 가공성과 연관이 있다. 이때 그 수치(Tmin, Tmax)가 너무 높거나 낮은 경우 기존 공정에 적용이 용이하지 않아, 새로운 공정 설계가 필요함을 의미한다. 상기 표 3에서 제시된 상기 실시예 1 내지 3의 Tmin, Tmax, Ts2(스코치 시간), Tc2(2% 경화에 이르는 시간), Tc90(90% 경화에 이르는 시간) 등의 결과를 종합하여 볼 때 기존 공정에 용이하게 적용 가능한 스펙에 해당함을 알 수 있다.Rheometer results, measured with rubber rheometers, are parameters related to the rate of cure and the behavior of the rubber composition during process application, and are related to processability in tire manufacturing. At this time, if the value (T min , T max ) is too high or low, it is not easy to apply to the existing process, which means that a new process design is required. The results of T min , T max , Ts2 (scorch time), Tc2 (time to 2% curing), Tc90 (time to 90% curing), etc. of Examples 1 to 3 shown in Table 3 above It can be seen that it corresponds to a specification that can be easily applied to an existing process.
내마모성은 접촉에 의한 마모 저항성으로, 타이어와 같이 고무 제품을 동적 상태에 사용할 때 고려되는 수치로서, 실시예 1 내지 3의 고무 조성물의 경우 약 4.7% 수준 이하의 손실(loss)을 나타내, 내마모성이 우수함을 알 수 있다.Abrasion resistance is a wear resistance by contact, which is a value that is considered when using a rubber product such as a tire in a dynamic state, and the rubber composition of Examples 1 to 3 exhibits a loss of about 4.7% or less. It can be seen that excellent.
이러한 결과로부터, 본 발명에서 제시하는 실란 변성 석유수지의 경우 타이어의 제조시 첨가되더라도 가공성에 영향을 주지 않으면서도, 타이어로서 요구되는 물성을 충분히 만족시킬 수 있음을 알 수 있다.From these results, it can be seen that the silane-modified petroleum resin proposed in the present invention can satisfactorily satisfy the physical properties required as a tire without affecting the workability even when added during the manufacture of a tire.
실험예Experimental Example 3 :  3: 그립력Grip -회전 저항 Rotational resistance 동적기계Dynamic machinery 분석기(DMA; Dynamic Mechanical Analysis) 측정 Analyzer (DMA) Measurement
동적기계분석법(Dynamic Mechanical Analysis, Model: TA-DMA Q800)을 이용하여 11Hz에서 그립력과 회전 저항과 관련된 손실계수(Tan δ) 및 유리전이온도(Tg)를 측정하였고, 그 결과를 하기 표 4 및 도 1에 나타내었다. 이때 Tan δ@0℃, Tan δ@25℃의 수치가 높을수록 그립력이 우수함을 의미하고, Tan δ@70℃의 수치가 낮을수록 회전 저항 특성이 우수함을 의미한다.The loss coefficient (Tan δ) and glass transition temperature (Tg) related to grip force and rolling resistance were measured at 11 Hz by using Dynamic Mechanical Analysis (Model: TA-DMA Q800). 1 is shown. At this time, higher values of Tan δ @ 0 ° C and Tan δ @ 25 ° C mean better grip force, and lower values of Tan δ @ 70 ° C mean better rotation resistance.
  TanδTanδ Tg (℃)Tg (℃)
0℃0 ℃ 25℃25 ℃ 70℃70 ℃
실시예1Example 1 0.17780.1778 0.12650.1265 0.14660.1466 -34.2-34.2
125%125% 123%123% 83%83%
실시예2Example 2 0.18990.1899 0.13130.1313 0.14480.1448 -33.1-33.1
133%133% 128%128% 84%84%
실시예3Example 3 0.18750.1875 0.1310.131 0.14880.1488 -33.9-33.9
131%131% 128%128% 82%82%
비교예1Comparative Example 1 0.14280.1428 0.10260.1026 0.12210.1221 -34.7-34.7
100%100% 100%100% 100%100%
비교예2Comparative Example 2 0.17170.1717 0.120.12 0.14410.1441 -33.4-33.4
120%120% 117%117% 85%85%
상기 표 4에 나타난 바와 같이, 실시예 1 내지 3의 고무 조성물의 wet 그립력과 관련된 손실 계수인 Tan δ(0℃) 수치와 dry 그립력과 관련된 Tan δ(25℃)의 수치를 살펴보면, 이는 비교예 1 대비 dry 그립력은 최대 128%, wet 그립력은 133% 증가하여, 본 발명에 따른 실란 변성 석유수지를 사용할 경우 Wet/Dry 그립력을 향상시킬 수 있음을 알 수 있다.As shown in Table 4, looking at the value of Tan δ (0 ℃), which is a loss factor associated with the wet grip force of the rubber composition of Examples 1 to 3 and Tan δ (25 ℃) associated with the dry grip force, this is a comparative example Dry grip force up to 128%, wet grip force is increased by 133% compared to 1, it can be seen that when using the silane-modified petroleum resin according to the present invention can improve the wet / dry grip force.
회전 저항과 관련된 손실 계수인 Tan δ(70℃)의 수치의 경우, 실시예 1 내지 3의 고무 조성물의 경우 그립력 향상에 따라 상승하였으나, 현재 산업계에서 통상적이고 범용적으로 사용되고 있는 테르펜 페놀 수지(비교예 2) 대비 유사한 수준으로 실란 변성 석유수지의 사용에 의한 그립력 상승에 따른 회전 저항의 증가폭을 효과적으로 낮출 수 있음을 알 수 있다.In the case of the numerical value of Tan δ (70 ° C.), which is related to the rotational resistance, the rubber compositions of Examples 1 to 3 rose with the improvement of the grip force, but the terpene phenol resins which are commonly used in the industry and in general (compare Compared to Example 2, it can be seen that it is possible to effectively reduce the increase in rotational resistance due to the increased grip force by using the silane-modified petroleum resin.
상기 표 4에서 제시된 회전 저항과 그립력과 관련된 Tan δ의 수치는 Tg 값을 비교한 결과 신뢰성 있는 데이터임을 알 수 있다. Tan δ의 피크값은 Tg와 연관성이 있으며, 회전 저항과 그립력과 관련된 Tan δ을 비교하기 위해선 Tg 값이 거의 동일한 수준에서 비교하여야 한다. 상기 실시예 및 비교예의 조성물은 거의 유사한 범위의 Tg값을 가짐을 알 수 있다.The numerical values of Tan δ associated with the rotational resistance and the grip force presented in Table 4 are reliable data as a result of comparing the Tg values. The peak value of Tan δ is related to Tg. To compare Tan δ related to rolling resistance and grip force, the Tg value should be compared at almost the same level. It can be seen that the compositions of Examples and Comparative Examples have a Tg value in a nearly similar range.
이러한 결과로부터, 본 발명에 따른 실란 변성 석유수지를 포함하는 타이어 트레드용 고무 조성물은 그립력과 회전 저항을 동시에 만족시키는 효과를 확보함을 알 수 있다. From these results, it can be seen that the rubber composition for tire treads including the silane-modified petroleum resin according to the present invention secures an effect of simultaneously satisfying grip force and rotational resistance.
본 발명에 따른 타이어 트레드용 고무 조성물은 저연비 고성능의 타이어 제품 생산에 바람직하게 적용 가능하다.The rubber composition for tire treads according to the present invention is preferably applicable to the production of tire products with low fuel efficiency and high performance.

Claims (11)

  1. 석유수지계 단량체, 및 하기 화학식 1로 표시되는 실란계 화합물이 공중합된 실란 변성 석유수지를 포함하는 타이어 트레드용 고무 조성물: A rubber composition for tire treads comprising a petroleum resin-based monomer and a silane-modified petroleum resin copolymerized with a silane-based compound represented by Formula 1 below:
    [화학식 1][Formula 1]
    CH2=C(R1)-(COO)x(CnH2n)ySi(R2)(R3)(R4)CH 2 = C (R 1 )-(COO) x (C n H 2n ) y Si (R 2 ) (R 3 ) (R 4 )
    (상기 화학식 1에서, R1은 수소 또는 메틸기이고, R2 내지 R4는 서로 같거나 다르며, 수소, C1 내지 C20의 알킬기, C3 내지 C12의 사이클로알킬기, C1 내지 C12의 알콕시기, C2 내지 C12의 아실옥시기, C6 내지 C30의 아릴옥시기, C5 내지 C30의 아랄옥시기, 또는 C1 내지 C20의 아민기이고, (In Formula 1, R 1 is hydrogen or methyl group, R 2 to R 4 are the same as or different from each other, hydrogen, C1 to C20 alkyl group, C3 to C12 cycloalkyl group, C1 to C12 alkoxy group, C2 to C12 An acyloxy group, a C6 to C30 aryloxy group, a C5 to C30 araloxy group, or a C1 to C20 amine group,
    n는 1 내지 12의 정수이고, n is an integer from 1 to 12,
    x 및 y는 0 또는 1이다.)x and y are 0 or 1).
  2. 제1항에 있어서, The method of claim 1,
    상기 R1은 수소 또는 메틸기이고, R2 내지 R4는 서로 같거나 다르며, C1 내지 C6의 알킬기이고 또는 C1 내지 C6의 알콕시기이고, n는 1 내지 6의 정수이고, x 및 y는 0 또는 1인 타이어 트레드용 고무 조성물.R 1 is hydrogen or a methyl group, R 2 to R 4 are the same as or different from each other, an alkyl group of C1 to C6 or an alkoxy group of C1 to C6, n is an integer of 1 to 6, x and y are 0 or Rubber composition for a tire tread for 1 person.
  3. 제1항에 있어서, The method of claim 1,
    상기 석유수지계 단량체는 나프타 크래킹으로부터 얻어진 혼합 C5 유분, 혼합 C9 유분, 디사이클로펜타디엔 및 이들의 혼합물로 이루어진 군에서 선택된 1종인 타이어 트레드용 고무 조성물.The petroleum resin monomer is a rubber composition for tire treads which is one selected from the group consisting of mixed C5 fractions, mixed C9 fractions, dicyclopentadienes and mixtures thereof obtained from naphtha cracking.
  4. 제1항에 있어서, The method of claim 1,
    상기 실란계 화합물은 비닐트리메틸실란, 비닐트리메톡시실란, 비닐트리에톡시실란, 트리아세톡시비닐실란, 트리페닐비닐실란, 트리스(2-메톡시에톡시)비닐실란, 3-(트리메톡시실릴)프로필 메타크릴레이트, γ-(메트)아크릴옥시프로필 트리메톡시실란 및 이들의 혼합물로 이루어진 군에서 선택된 1종인 타이어 트레드용 고무 조성물.The silane compound is vinyl trimethyl silane, vinyl trimethoxy silane, vinyl triethoxy silane, triacetoxy vinyl silane, triphenyl vinyl silane, tris (2-methoxy ethoxy) vinyl silane, 3- (trimethoxy A rubber composition for a tire tread, which is one selected from the group consisting of silyl) propyl methacrylate, γ- (meth) acryloxypropyl trimethoxysilane, and mixtures thereof.
  5. 제1항에 있어서, The method of claim 1,
    상기 실란 변성 석유수지는 연화점이 70 내지 150℃이고, 수평균분자량(Mn)이 500 내지 5000 g/mol인 타이어 트레드용 고무 조성물.The silane-modified petroleum resin has a softening point of 70 to 150 ℃, the number average molecular weight (Mn) is 500 to 5000 g / mol rubber composition for the tire tread.
  6. 제1항에 있어서, The method of claim 1,
    상기 실란 변성 석유수지는 50 내지 95 중량%의 석유수지계 단량체와 5 내지 50 중량%의 실란계 화합물이 공중합된 타이어 트레드용 고무 조성물.The silane-modified petroleum resin is a rubber composition for tire tread copolymerized with 50 to 95% by weight of petroleum resin monomer and 5 to 50% by weight of silane compound.
  7. 제1항에 있어서, The method of claim 1,
    상기 공중합은 열중합 방식으로 수행하는 타이어 트레드용 고무 조성물.The copolymer is a rubber tread rubber composition is carried out by a thermal polymerization method.
  8. 제7항에 있어서, The method of claim 7, wherein
    상기 열중합은 150 내지 300℃에서 20 내지 25bar의 압력 하에서 수행하는 타이어 트레드용 고무 조성물.The thermal polymerization is a rubber composition for tire treads carried out at a pressure of 20 to 25 bar at 150 to 300 ℃.
  9. 제1항에 있어서, The method of claim 1,
    상기 실란 변성 석유수지는 타이어 트레드용 고무 조성물 내에서 원료 고무 100 중량부에 대하여 1 내지 30 중량부로 포함되는 타이어 트레드용 고무 조성물.The silane-modified petroleum resin is a tire tread rubber composition is contained in 1 to 30 parts by weight based on 100 parts by weight of the raw rubber in the rubber tread rubber composition.
  10. 제1항에 있어서, The method of claim 1,
    상기 타이어 트레드용 고무 조성물은 원료 고무, 카본블랙, 실리카, 실란 커플링제, 가황제, 및 가황촉진제를 포함하는 타이어 트레드용 고무 조성물.The tire tread rubber composition comprises a raw rubber, carbon black, silica, a silane coupling agent, a vulcanizing agent, and a vulcanizing accelerator rubber composition for a tire tread.
  11. 제10항에 있어서, The method of claim 10,
    상기 타이어 트레드용 고무 조성물은 원료 고무 100 중량부에 대하여, 카본블랙 5 내지 50 중량부, 실리카 30 내지 80 중량부, 실란 커플링제 5 내지 20 중량부, 가황제 0.1 내지 5 중량부, 및 가황 촉진제 0.1 내지 10 중량부를 포함하는 타이어 트레드용 고무 조성물.The rubber composition for tire tread is 5 to 50 parts by weight of carbon black, 30 to 80 parts by weight of silica, 5 to 20 parts by weight of silane coupling agent, 0.1 to 5 parts by weight of vulcanizing agent, and a vulcanization accelerator based on 100 parts by weight of raw rubber. Rubber composition for a tire tread comprising 0.1 to 10 parts by weight.
PCT/KR2017/003532 2016-03-31 2017-03-31 Rubber composition for tire tread WO2017171458A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2016-0039458 2016-03-31
KR20160039458 2016-03-31
KR10-2017-0039166 2017-03-28
KR1020170039166A KR101995924B1 (en) 2016-03-31 2017-03-28 Rubber Composition for Tire Tread

Publications (1)

Publication Number Publication Date
WO2017171458A1 true WO2017171458A1 (en) 2017-10-05

Family

ID=59965018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/003532 WO2017171458A1 (en) 2016-03-31 2017-03-31 Rubber composition for tire tread

Country Status (1)

Country Link
WO (1) WO2017171458A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100227566B1 (en) * 1997-07-29 1999-11-01 홍건희 The rubber composition for tire tread
KR20130075445A (en) * 2011-12-27 2013-07-05 한국타이어 주식회사 Rubber composition for tire tread and tire manufactured by using the same
US8815995B2 (en) * 2007-03-29 2014-08-26 Compagnie Generale Des Etablissements Michelin Tire tread with resin
WO2015153058A1 (en) * 2014-03-31 2015-10-08 Exxonmobil Chemical Patents Inc. Free radical grafting of functionalized resins for tires
WO2016018131A1 (en) * 2014-08-01 2016-02-04 코오롱인더스트리 주식회사 Curable petroleum resin and method for preparing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100227566B1 (en) * 1997-07-29 1999-11-01 홍건희 The rubber composition for tire tread
US8815995B2 (en) * 2007-03-29 2014-08-26 Compagnie Generale Des Etablissements Michelin Tire tread with resin
KR20130075445A (en) * 2011-12-27 2013-07-05 한국타이어 주식회사 Rubber composition for tire tread and tire manufactured by using the same
WO2015153058A1 (en) * 2014-03-31 2015-10-08 Exxonmobil Chemical Patents Inc. Free radical grafting of functionalized resins for tires
WO2016018131A1 (en) * 2014-08-01 2016-02-04 코오롱인더스트리 주식회사 Curable petroleum resin and method for preparing same

Similar Documents

Publication Publication Date Title
WO2021125837A1 (en) Hydrogenated petroleum resin and rubber composition comprising same
WO2018030645A1 (en) Modified conjugated diene-based polymer, method for producing same, and rubber composition including same
CN1469898A (en) Silica-reinforced rubber compounded with an organosilane tetrasulfide silica coupling agent at high mixing temperature
US20160237220A1 (en) Process for making elastomeric compositions comprising vinyl acetal polymers
WO2017078408A1 (en) Organolithium compound, method for production of modified conjugated diene-based polymer using same, and modified conjugated diene-based polymer
WO2018062933A2 (en) Composition for tire tread comprising resin alternative to process oil
KR101995924B1 (en) Rubber Composition for Tire Tread
US9670341B2 (en) Rubber compositions comprising metal carboxylates and processes for making the same
KR102477254B1 (en) Rubber composition
WO2019045504A1 (en) Rubber composition
US11111338B2 (en) Terminal-functionalized polymer and related methods
WO2022108143A1 (en) Resin composition, method for producing same, and rubber composition comprising same
WO2022108144A1 (en) Resin composition, method for producing same, and coating composition comprising same
JP2022542498A (en) rubber composition
WO2017171458A1 (en) Rubber composition for tire tread
US20180002497A1 (en) Elastomeric compositions comprising vinyl acetal polymers
WO2017105144A1 (en) Method for preparing modified conjugated diene-based polymer
WO2018097517A1 (en) Modified conjugated diene-based polymer and method for producing same
WO2018088711A1 (en) Modified conjugated diene-based polymer and method for producing same
US20230220191A1 (en) Polymer composite, rubber composition, and tire
WO2016130880A1 (en) Elastomeric compositions comprising vinyl acetal polymers
US20170321045A1 (en) Elastomeric compositions comprising vinyl acetal polymers
WO2019018466A1 (en) Elastomeric compositions comprising vinyl acetal polymers
WO2018097480A1 (en) Modified conjugated diene-based polymer and method for producing same
KR20130062706A (en) Rubber composition for tire tread and tire manufactured by using the same

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17775882

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17775882

Country of ref document: EP

Kind code of ref document: A1