WO2017171434A1 - Method and apparatus for transmitting v2x message to neighboring enb in wireless communication system - Google Patents

Method and apparatus for transmitting v2x message to neighboring enb in wireless communication system Download PDF

Info

Publication number
WO2017171434A1
WO2017171434A1 PCT/KR2017/003492 KR2017003492W WO2017171434A1 WO 2017171434 A1 WO2017171434 A1 WO 2017171434A1 KR 2017003492 W KR2017003492 W KR 2017003492W WO 2017171434 A1 WO2017171434 A1 WO 2017171434A1
Authority
WO
WIPO (PCT)
Prior art keywords
message
enb
server
neighbor
neighbor enb
Prior art date
Application number
PCT/KR2017/003492
Other languages
French (fr)
Korean (ko)
Inventor
쑤지안
변대욱
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2017171434A1 publication Critical patent/WO2017171434A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/20Interfaces between hierarchically similar devices between access points

Definitions

  • the present invention relates to wireless communication, and more particularly, to a method and apparatus for transmitting a vehicle-to-everything (V2X) message to a neighbor base station in a wireless communication system.
  • V2X vehicle-to-everything
  • 3rd generation partnership project (3GPP) long-term evolution (LTE) is a technology for enabling high-speed packet communication. Many approaches have been proposed to reduce the cost, improve service quality, expand coverage, and increase system capacity for LTE targets. 3GPP LTE is a high level requirement that requires cost per bit, improved service usability, flexible use of frequency bands, simple structure, open interface and proper power consumption of terminals.
  • V2X LTE-based vehicle-to-everything
  • V2X LTE-based vehicle-to-everything
  • the market for vehicle-to-vehicle (V2V) communications is expected to have ongoing or initiated related activities, such as research projects, field testing and regulatory work, in some countries or regions, such as the United States, Europe, Japan, Korea, and China. do.
  • LIPA local IP access
  • SIPTO selected IP traffic offload
  • traffic is delivered directly to the Internet through a local gateway (L-GW) rather than through an evolved packet system (EPC).
  • LIPA is a method of transferring data to a local network connected to the same HeNB without passing through a macro cell to a user connected to a home eNodeB (HeNB).
  • HeNB home eNodeB
  • LIPA also connects users to any external network connected to the local network.
  • SIPTO is a method of offloading IP traffic share of HeNB or cellular network to local network to reduce system load.
  • the target network may be a HeNB or other gateway closer to the user in the cellular network.
  • a method of efficiently and without delaying V2X communication through LIPA and / or SIPTO may be proposed.
  • the present invention provides a method and apparatus for transmitting a vehicle-to-everything (V2X) message to a neighbor base station in a wireless communication system.
  • the present invention provides a method and apparatus for directly transmitting a V2X message to a neighbor base station without passing through a core network when V2X communication is performed through a selected IP traffic offload at local network (SIPTO @ LN).
  • SIPTO @ LN selected IP traffic offload at local network
  • a method for transmitting a vehicle-to-everything (V2X) message by an eNB (eNodeB) in a wireless communication system.
  • the method receives a V2X message from a user equipment (V2X UE), forwards the V2X message to a V2X server through a local gateway (L-GW), and the V2X message is to be transmitted to a neighbor eNB.
  • V2X UE user equipment
  • L-GW local gateway
  • an eNB in a wireless communication system.
  • the eNB includes a memory and a processor connected to the memory, the processor receiving a V2X message from a vehicle-to-everything (V2X) user equipment (UE) and sending the V2X message to a local gateway (L). Forward to a V2X server via a local gateway (GW), receive an indicator indicating that the V2X message will be sent to a neighbor eNB, and send the V2X message to the neighbor eNB.
  • V2X vehicle-to-everything
  • UE vehicle-to-everything
  • L local gateway
  • GW local gateway
  • V2X messages may be sent to neighboring base stations without delay.
  • FIG. 1 shows a structure of an LTE system.
  • FIG. 2 shows a logical structure for an eNB when SIPTO @ LN is supported via a co-located L-GW.
  • FIG. 3 shows an example of a structure for V2X communication.
  • FIG 4 shows an example of V2X communication via SIPTO @ LN supported by L-GW co-located.
  • FIG 5 shows an example of V2X communication via SIPTO @ LN supported by an independent L-GW.
  • FIG. 6 illustrates a method of transmitting a V2X message to a neighbor eNB according to an embodiment of the present invention.
  • FIG. 7 illustrates a method for an eNB to transmit a V2X message according to an embodiment of the present invention.
  • FIG 8 illustrates a wireless communication system in which an embodiment of the present invention is implemented.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA may be implemented by a radio technology such as universal terrestrial radio access (UTRA) or CDMA2000.
  • TDMA may be implemented with wireless technologies such as global system for mobile communications (GSM) / general packet radio service (GPRS) / enhanced data rates for GSM evolution (EDGE).
  • GSM global system for mobile communications
  • GPRS general packet radio service
  • EDGE enhanced data rates for GSM evolution
  • OFDMA may be implemented by wireless technologies such as Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, evolved UTRA (E-UTRA), and the like.
  • IEEE 802.16m is an evolution of IEEE 802.16e and provides backward compatibility with IEEE 802.16 based systems.
  • UTRA is part of a universal mobile telecommunications system (UMTS).
  • 3rd generation partnership project (3GPP) long term evolution (LTE) is part of evolved UMTS (E-UMTS) using evolved-UMTS terrestrial radio access (E-UTRA), which employs OFDMA in downlink and SC in uplink -FDMA is adopted.
  • LTE-A (advanced) is the evolution of 3GPP LTE.
  • an LTE system structure includes one or more user equipment (UE) 10, an evolved-UMTS terrestrial radio access network (E-UTRAN), and an evolved packet core (EPC).
  • the UE 10 is a communication device moved by a user.
  • the UE 10 may be fixed or mobile and may be referred to by other terms such as a mobile station (MS), a user terminal (UT), a subscriber station (SS), and a wireless device.
  • MS mobile station
  • UT user terminal
  • SS subscriber station
  • wireless device a wireless device.
  • the E-UTRAN includes one or more evolved NodeBs (eNBs) 20, and a plurality of UEs may exist in one cell.
  • the eNB 20 provides an end point of a control plane and a user plane to the UE 10.
  • the eNB 20 generally refers to a fixed station that communicates with the UE 10 and may be referred to in other terms, such as a base station (BS), an access point, and the like.
  • BS base station
  • One eNB 20 may be arranged per cell.
  • downlink means communication from the eNB 20 to the UE 10.
  • Uplink means communication from the UE 10 to the eNB 20.
  • Sidelink means communication between the UE (10).
  • the transmitter may be part of the eNB 20 and the receiver may be part of the UE 10.
  • the transmitter may be part of the UE 10 and the receiver may be part of the eNB 20.
  • the transmitter and the receiver may be part of the UE 10.
  • the EPC includes a mobility management entity (MME) and a serving gateway (S-GW).
  • MME mobility management entity
  • S-GW serving gateway
  • the MME / S-GW 30 is located at the end of the network.
  • the MME / S-GW 30 provides an end point of session and mobility management functionality for the UE 10.
  • the MME / S-GW 30 is simply expressed as a "gateway", which may include both the MME and the S-GW.
  • a packet dana network (PDN) gateway (P-GW) may be connected to an external network.
  • PDN packet dana network gateway
  • the MME includes non-access stratum (NAS) signaling to the eNB 20, NAS signaling security, access stratum (AS) security control, inter CN (node network) signaling for mobility between 3GPP access networks, idle mode terminal reachability ( Control and execution of paging retransmission), tracking area list management (for UEs in idle mode and activation mode), P-GW and S-GW selection, MME selection for handover with MME change, 2G or 3G 3GPP access Bearer management features, including roaming, authentication, and dedicated bearer setup, selection of a serving GPRS support node (SGSN) for handover to the network, public warning system (ETWS) and earthquake and tsunami warning system (CMAS) It provides various functions such as message transmission support.
  • NAS non-access stratum
  • AS access stratum
  • inter CN node network
  • IMS node network
  • MME selection for handover with MME change 2G or 3G 3GPP access Bearer management features, including roaming, authentication, and dedicated bearer setup, selection
  • S-GW hosts can be based on per-user packet filtering (eg, through deep packet inspection), legal blocking, terminal IP (Internet protocol) address assignment, transport level packing marking in DL, UL / DL service level charging, gating and It provides various functions of class enforcement, DL class enforcement based on APN-AMBR (access point name aggregate maximum bit rate).
  • per-user packet filtering eg, through deep packet inspection
  • legal blocking e.g, terminal IP (Internet protocol) address assignment
  • transport level packing marking in DL e.g, UL / DL service level charging
  • gating Internet protocol
  • An interface for user traffic transmission or control traffic transmission may be used.
  • the UE 10 and the eNB 20 are connected by a Uu interface.
  • the UEs 10 are connected by a PC5 interface.
  • the eNBs 20 are connected by an X2 interface.
  • the neighboring eNB 20 may have a mesh network structure by the X2 interface.
  • the eNB 20 and the gateway 30 are connected through an S1 interface.
  • E-UTRAN uses selected IP traffic (SIPTO @ LN) via a colocated local gateway (collocated L-GW) in the eNB or a standalone gateway (coordinated with S-GW and L-GW). offload at local network).
  • IPTO @ LN selected IP traffic
  • L-GW colocated local gateway
  • L-GW standalone gateway
  • FIG. 2 shows a logical structure for an eNB when SIPTO @ LN is supported via a co-located L-GW.
  • the eNB establishes and maintains an S5 connection to the EPC.
  • the SIPTO @ LN PDN connection is released after the handover is performed, and the co-located L-GW in the source eNB triggers the release through the S5 interface.
  • the eNB When SIPTO @ LN is supported through the co-located L-GW, the eNB supports the following additional functions.
  • the MME supports the following additional features:
  • SIPTO @ LN is also supported using independent gateways (with S-GWs and L-GWs) deployed in the local network.
  • the MME can determine to trigger S-GW relocation without UE movement.
  • the source and target eNBs are in the same local home eNB (HeNB) network (ie, they do not have the same LHN ID)
  • the SIPTO @ LN PDN connection is released after handover.
  • the eNB When SIPTO @ LN is supported through the independent L-GW, the eNB supports the following additional functions.
  • the MME supports the following additional features:
  • V2X vehicle-to-everything
  • V2V vehicle-to-vehicle
  • V2I vehicle-to-infrastructure
  • V2P vehicle-to-pedestrian
  • RSU road side unit
  • pedestrians to collect knowledge about their local environment (for example, information received from other vehicles or sensor equipment in close proximity), and can be used for collaborative collision alerts or autonomous driving. This means that knowledge can be processed and shared to provide intelligent services.
  • V2X service is a type of communication service that includes a transmitting or receiving UE using a V2V application over 3GPP transmission.
  • the V2X service may be divided into a V2V service, a V2I service, a V2P service, and a vehicle-to-network (V2N) service according to a counterpart who participated in the communication.
  • V2V service is a type of V2X service that is a UE that uses V2V applications on both sides of the communication.
  • a V2I service is a type of V2X service that uses a V2I application, with one side of communication being a UE and the other side being an RSU.
  • the RSU is an entity supporting a V2I service that can transmit / receive with a UE using a V2I application.
  • RSU is implemented in an eNB or a fixed UE.
  • V2P service is a type of V2X service that is a UE that uses V2P applications on both sides of the communication.
  • a V2N service is a type of V2X service in which one side of communication is a UE and the other is a serving entity, all using V2N applications and communicating with each other via an LTE network entity.
  • the E-UTRAN allows UEs in close proximity to each other to exchange V2V related information using E-UTRA (N) when permit, authorization and proximity criteria are met.
  • Proximity criteria may be configured by a mobile network operator (MNO).
  • MNO mobile network operator
  • the UE supporting the V2V service may exchange such information when it is provided or not provided by the E-UTRAN supporting the V2X service.
  • the UE supporting the V2V application sends application layer information (eg, about its location, dynamics and attributes as part of the V2V service).
  • the V2V payload must be flexible to accommodate different content, and information can be sent periodically depending on the configuration provided by the MNO.
  • V2V is mainly broadcast based.
  • V2V includes the direct exchange of V2V related application information between different UEs, and / or due to the limited direct communication range of V2V, V2V is an infrastructure supporting V2X service for V2V related application information between different UEs (eg For example, the exchange through the RSU, application server, etc.).
  • the UE supporting the V2I application transmits application layer information to the RSU.
  • the RSU transmits application layer information to the UE supporting the UE group or the V2I application.
  • the E-UTRAN allows UEs in close proximity to each other to exchange V2P related information using the E-UTRAN when permit, authorization and proximity criteria are met.
  • Proximity criteria may be constructed by the MNO.
  • the UE supporting the V2P service may exchange this information even when not serviced by the E-UTRAN supporting the V2X service.
  • the UE supporting the V2P application transmits application layer information. Such information may be broadcast by vehicle UEs (eg, alerting pedestrians) that support V2X services and / or pedestrian UEs (eg, alerting vehicles) that support V2X services.
  • V2P involves exchanging V2V related application information directly between different UEs (one vehicle, another pedestrian), and / or due to the limited direct communication range of V2P, V2P is a V2P related application between different UEs. This involves exchanging information through infrastructures that support V2X services (eg, RSUs, application servers, etc.).
  • V2X services eg, RSUs, application servers, etc.
  • FIG. 3 shows an example of a structure for V2X communication.
  • an existing node ie, eNB / MME
  • a new node may be deployed to support V2X communication.
  • the interface between nodes may be an S1 / X2 interface or a new interface. That is, the interface between eNB1 and eNB2 may be an X2 interface or a new interface.
  • the interface between eNB1 / eNB2 and MME1 / MME2 may be an S1 interface or a new interface.
  • UEs for V2X communication there may be three UEs for V2X communication, one is a vehicle UE, the other is an RSU UE, and the last is a pedestrian UE.
  • the vehicle UE may be the same as a normal UE.
  • An RSU UE is an RSU implemented in a UE and may relay, multicast or broadcast traffic or safety information or other vehicle UEs.
  • a pedestrian UE is a UE that supports V2X communication carried by pedestrians, bicyclists, drivers or passengers.
  • the vehicle UE and the pedestrian UE can communicate with each other directly via the PC5 interface.
  • the vehicle UE and the pedestrian UE may communicate with each other indirectly via a network node.
  • the network node may be any one of an eNB, a new entity for V2X communication, a new gateway for V2X communication, and an RSU.
  • the network node may not be an existing MME or S-GW.
  • the vehicle UE or pedestrian UE may broadcast data, and the RSU UE may receive the broadcast data.
  • the RSU and other vehicle UEs / pedestrian UEs may communicate with each other indirectly via a network node.
  • the network node may be any one of an eNB, a new entity for V2X communication, a new gateway for V2X communication, and an RSU.
  • V2X communication can be performed via SIPTO @ LN. That is, when SIPTO @ LN is supported, the V2X message may be transmitted through the L-GW without passing through the core network. There are three use cases where V2X communication is performed via SIPTO @ LN.
  • the V2X server connects via independent L-GW and SIPTO @ LN:
  • the V2X server processes data from a local sensor / camera array, for example, and distributes it to all locally connected vehicle UEs. Connection is provided to all local eNBs identified with the same LHN ID.
  • the V2X service can be provided at the appropriate location in the most appropriate way. Thanks to the nature of SIPTO @ LN with independent L-GW, the connection to the V2X server is always maintained in vehicle UE movement within the LHN.
  • connection through the L-GW and SIPTO @ LN co-located with the V2X server As in the first use example above, the connection is routed through the L-GW co-located to each eNB. In this case, however, the connection to the V2X server of the vehicle UE is suspended before the movement and is established again through the L-GW in the target eNB after the handover is completed.
  • V2X server co-located with the eNB In this case all essential functions are implemented in the eNB. For example, this could be the physical road side box containing the sensor (ie, terminating all traffic locally) and the RSU handling the associated connection to the vehicle UE. This can be thought of as "shrink" the logical node above into a single physical node with the V2X server.
  • the neighbor eNB When the neighbor eNB is at the edge of the coverage of the independent L-GW in the second use case, the third use case and the first use example described above, when the V2X message received from the V2X UE needs to be propagated to the neighbor area. There may be one problem with how to transmit to a neighbor eNB.
  • FIG. 4 shows an example of V2X communication via SIPTO @ LN supported by L-GW co-located.
  • the V2X communication through SIPTO @ LN of FIG. 4 corresponds to the third usage example above. That is, there is an L-GW and a V2X server, which are disposed together inside the first eNB and the second eNB, respectively. Basically, there is no problem in that the V2X message received from the V2X UE is transmitted to the co-located L-GW and the V2X server in the same eNB.
  • the V2X server present in the eNB may determine a V2X UE belonging to the same eNB, and may decide to send a V2X message to the V2X UE. That is, in FIG.
  • V2X UE when the V2X UE transmits a V2X message to eNB1, it may be determined that the V2X message is transmitted to the co-located L-GW and V2X server in eNB1 and transmitted to the V2X UE belonging to eNB1 by the V2X server. have.
  • a V2X server present in eNB1 interprets a V2X message and determines that the V2X message should be delivered to a neighbor eNB (e.g., eNB2), a problem arises because there is currently no mechanism for transmitting the V2X message to a neighbor eNB. Can be.
  • V2X communication via SIPTO @ LN of FIG. 5 corresponds to the case where the neighbor eNB is at the edge of coverage of the independent L-GW in the first use example above.
  • a V2X UE transmits a V2X message to an eNB having an RSU function
  • the V2X message is delivered to a V2X server through an independent L-GW.
  • the V2X server can determine how far the V2X message should be propagated.
  • the V2X server may determine to send the V2X message to the V2X UE belonging to the eNB.
  • the V2X server may determine that the V2X message should be propagated to the neighbor area. At this time, if a neighbor eNB having an RSU function exists at the edge of coverage of the independent L-GW, the V2X message cannot be directly transmitted to the neighbor eNB through the independent L-GW. There is currently no mechanism for sending the V2X message to neighbor eNBs.
  • a method of transmitting a V2X message to a neighbor eNB is proposed.
  • a third use example that is, a case where the V2X server is located in an eNB including an L-GW arranged together is described as an example.
  • the present invention is not limited to the third use example, but can also be applied to the first and second use examples.
  • FIG. 6 illustrates a method of transmitting a V2X message to a neighbor eNB according to an embodiment of the present invention.
  • Step 1 The V2X UE reports a V2X message to eNB1.
  • the V2X message is delivered to the co-located L-GW in eNB1 and then arrives at the V2X server in eNB1.
  • Step 2 The V2X server determines an area to which the V2X message should propagate.
  • Step 3 The V2X server communicates with the L-GW co-located via internal signaling or SGi interface to inform the L-GW whether the V2X message should be propagated to the neighbor eNB.
  • the V2X server can send additional indicators to the L-GW.
  • the additional indicator may indicate whether the V2X message should be propagated to a neighbor eNB.
  • Step 4 Upon receiving the additional indicator from the V2X server, the L-GW communicates with eNB1 via internal signaling or interface to inform eNB1 that the V2X message should be sent to a neighbor eNB. The L-GW may send the additional indicator to eNB1.
  • Step 5 Upon receiving the additional indicator from the L-GW, eNB1 may know whether the V2X message should be sent to a neighbor eNB (eg, eNB2). eNB1 may convert the V2X message into a protocol data unit (PDU) and send the PDU to eNB2 via a new or existing X2 control plane message.
  • the V2X message in the PDU may be transparent to eNB1 and eNB2. That is, the V2X message may be encapsulated in a PDU.
  • An additional indicator may be added to the PDU to inform eNB2 that the PDU should be sent to the corresponding L-GW of eNB2.
  • the additional indicator may be realized by a new information element (IE) or a new message in the X2AP message.
  • IE new information element
  • eNB1 may transmit a request message for establishing a GPRS tunneling protocol (GTP) tunnel to eNB2 to transmit the V2X message.
  • GTP GPRS tunneling protocol
  • An additional indicator may be added to the request message.
  • a new message can be used as the additional indicator.
  • eNB2 Upon receiving the request message, eNB2 provides a response message including GTP tunnel information. Then, eNB1 may send the V2X message to eNB2 based on the established UP path.
  • GTP GPRS tunneling protocol
  • Step 6 Upon receiving the X2AP message including the V2X message and the additional indicator, eNB2 may check the additional indicator to check whether the V2X message should be propagated. eNB2 may deliver the X2AP message to the L-GW co-located within eNB2. The L-GW may communicate with a V2X server in eNB2.
  • Step 7 The V2X server may make a decision and then establish a PDN connection or a multimedia broadcast multicast services (MBMS) session to transmit the V2X message to the UEs under the control coverage area.
  • MBMS multimedia broadcast multicast services
  • FIG. 7 illustrates a method for an eNB to transmit a V2X message according to an embodiment of the present invention.
  • step S100 the eNB receives a V2X message from the V2X UE.
  • step S110 the eNB delivers the V2X message to the V2X server through the L-GW.
  • the L-GW is an independent L-GW, and the V2X server may be located outside of the eNB. This corresponds to the first use example described above.
  • the L-GW may be an L-GW co-located in the eNB, and the V2X server may be located outside the eNB. This corresponds to the second use example described above.
  • the L-GW and the V2X server may be co-located within the eNB. This corresponds to the third use example described above.
  • step S120 the eNB receives an indicator indicating that the V2X message will be sent to the neighbor eNB.
  • the indicator may be generated by the V2X server and may be received by the eNB via the L-GW.
  • the eNB Upon receiving an indicator indicating that the V2X message will be sent to a neighbor eNB, in step S130, the eNB sends the V2X message to the neighbor eNB.
  • the eNB may encapsulate the V2X message in a PDU and send the PDU to the neighbor eNB.
  • the PDU may be included in an X2AP message and transmitted to the neighbor eNB.
  • the X2AP message may include an indicator indicating to the neighbor eNB that the PDU includes the V2X message and will be sent to the L-GW corresponding to the neighbor eNB.
  • the eNB transmits a request message for establishing a GTP tunnel to the neighbor eNB, receives a response message including information about the GTP tunnel from the neighbor eNB, and receives the V2X message through the GTP tunnel. May transmit to a neighbor eNB.
  • the request message may include an indicator indicating that the V2X message will be sent to the L-GW corresponding to the neighbor eNB.
  • the V2X message to be propagated to the neighbor base station goes up to the core network and is transmitted through the MME, MBMS GW, MCE, etc., but instead directly through the X2 interface to the neighbor base station Can be sent.
  • the V2X message is transmitted to the neighbor base station through the core network, a delay occurs for each node.
  • the V2X message can be quickly transmitted to the neighbor base station without such a delay.
  • FIG 8 illustrates a wireless communication system in which an embodiment of the present invention is implemented.
  • the first eNB 800 includes a processor 810, a memory 820, and a transceiver 830.
  • Processor 810 may be configured to implement the functions, processes, and / or methods described herein. Layers of the air interface protocol may be implemented by the processor 810.
  • the memory 820 is connected to the processor 810 and stores various information for driving the processor 810.
  • the transceiver 830 is connected to the processor 810 to transmit and / or receive a radio signal.
  • the second eNB 900 includes a processor 910, a memory 920, and a transceiver 930.
  • Processor 910 may be configured to implement the functions, processes, and / or methods described herein. Layers of the air interface protocol may be implemented by the processor 910.
  • the memory 920 is connected to the processor 910 and stores various information for driving the processor 910.
  • the transceiver 930 is connected to the processor 910 to transmit and / or receive a radio signal.
  • Processors 810 and 910 may include application-specific integrated circuits (ASICs), other chipsets, logic circuits, and / or data processing devices.
  • the memory 820, 920 may include read-only memory (ROM), random access memory (RAM), flash memory, memory card, storage medium, and / or other storage device.
  • the transceivers 830 and 930 may include a baseband circuit for processing radio frequency signals.
  • the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function.
  • the module may be stored in the memory 820, 920 and executed by the processor 810, 910.
  • the memories 820 and 920 may be inside or outside the processors 810 and 910, and may be connected to the processors 810 and 910 by various well-known means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

In performing vehicle-to-everything (V2X) communication through a local gateway (L-GW), an eNodeB (eNB) receives a V2X message from a V2X user equipment (UE), and transfers the V2X message to a V2X server through the L-GW. When it is determined that the V2X message needs to be propagated to a neighboring area, the V2X server provides an indicator indicating the same to the eNB through the L-GW. Upon receiving the indicator indicating that the V2X message is to be transmitted to a neighboring eNB, the eNB transmits the V2X message to the neighboring eNB.

Description

무선 통신 시스템에서 V2X 메시지를 이웃 기지국으로 전송하는 방법 및 장치Method and apparatus for transmitting V2X message to neighbor base station in wireless communication system
본 발명은 무선 통신에 관한 것으로, 보다 상세하게는 무선 통신 시스템에서 V2X(vehicle-to-everything) 메시지를 이웃 기지국으로 전송하는 방법 및 장치에 관한 것이다.The present invention relates to wireless communication, and more particularly, to a method and apparatus for transmitting a vehicle-to-everything (V2X) message to a neighbor base station in a wireless communication system.
3GPP(3rd generation partnership project) LTE(long-term evolution)는 고속 패킷 통신을 가능하게 하기 위한 기술이다. LTE 목표인 사용자와 사업자의 비용 절감, 서비스 품질 향상, 커버리지 확장 및 시스템 용량 증대를 위해 많은 방식이 제안되었다. 3GPP LTE는 상위 레벨 필요조건으로서 비트당 비용 절감, 서비스 유용성 향상, 주파수 밴드의 유연한 사용, 간단한 구조, 개방형 인터페이스 및 단말의 적절한 전력 소비를 요구한다.3rd generation partnership project (3GPP) long-term evolution (LTE) is a technology for enabling high-speed packet communication. Many approaches have been proposed to reduce the cost, improve service quality, expand coverage, and increase system capacity for LTE targets. 3GPP LTE is a high level requirement that requires cost per bit, improved service usability, flexible use of frequency bands, simple structure, open interface and proper power consumption of terminals.
널리 보급된 LTE 기반의 네트워크가 자동차 산업이 "연결된 자동차(connected car)"이라는 개념을 실현할 수 있는 기회를 제공하기 때문에, LTE 기반 V2X(vehicle-to-everything)가 시장으로부터 긴급하게 요구되고 있다. 특히 V2V(vehicle-to-vehicle) 통신을 위한 시장은 연구 프로젝트, 필드 테스트 및 규제 업무와 같은 관련 활동이 미국, 유럽, 일본, 한국 및 중국과 같은 일부 국가 또는 지역에서 이미 진행 중이거나 시작될 것으로 예상된다.LTE-based vehicle-to-everything (V2X) is urgently needed from the market, because the widespread LTE-based network offers the opportunity for the automotive industry to realize the concept of a "connected car." In particular, the market for vehicle-to-vehicle (V2V) communications is expected to have ongoing or initiated related activities, such as research projects, field testing and regulatory work, in some countries or regions, such as the United States, Europe, Japan, Korea, and China. do.
3GPP에서는 셀용량 증대 및 음영 지역 해소를 위해 도입한 소형 셀을 활용하여 코어 망으로 가는 트래픽을 오프로딩 하는 해결책을 제시하고 있다. 오프로딩 솔루션 중 하나인 LIPA(local IP access)/SIPTO(selected IP traffic offload)에서는 트래픽이 EPC(evolved packet system)를 통하지 않고 로컬 게이트웨이(L-GW)를 통해서 인터넷 망으로 바로 전달된다. LIPA는 HeNB(home eNodeB)에 연결된 사용자를 매크로 셀을 경유하지 않고 동일한 HeNB에 연결된 로컬 네트워크로 데이터를 전달하는 방법이다. 또한, LIPA는 사용자를 로컬 네트워크에 연결된 임의의 외부 네트워크로 연결하는 기능을 한다. SIPTO는 시스템 부하를 줄이기 위하여 HeNB나 셀룰러 망의 IP 트래픽 점유율을 로컬 망으로 오프로드하는 방법이다. 타겟 망은 셀룰러 망에서 사용자에 보다 가까운 HeNB나 다른 게이트웨이가 될 수 있다.3GPP proposes a solution to offload traffic to the core network by utilizing small cells introduced to increase cell capacity and eliminate shadow areas. In one of the offloading solutions, local IP access (LIPA) and selected IP traffic offload (SIPTO), traffic is delivered directly to the Internet through a local gateway (L-GW) rather than through an evolved packet system (EPC). LIPA is a method of transferring data to a local network connected to the same HeNB without passing through a macro cell to a user connected to a home eNodeB (HeNB). LIPA also connects users to any external network connected to the local network. SIPTO is a method of offloading IP traffic share of HeNB or cellular network to local network to reduce system load. The target network may be a HeNB or other gateway closer to the user in the cellular network.
LIPA 및/또는 SIPTO 등을 통하여 V2X 통신을 효율적으로 그리고 지연 없이 수행하는 방법이 제안될 수 있다. A method of efficiently and without delaying V2X communication through LIPA and / or SIPTO may be proposed.
본 발명은 무선 통신 시스템에서 V2X(vehicle-to-everything) 메시지를 이웃 기지국으로 전송하는 방법 및 장치를 제공한다. 본 발명은 V2X 통신이 SIPTO@LN(selected IP traffic offload at local network)를 통해 수행될 때, V2X 메시지를 코어 망을 거치지 않고 이웃 기지국으로 직접 전송하는 방법 및 장치를 제공한다.The present invention provides a method and apparatus for transmitting a vehicle-to-everything (V2X) message to a neighbor base station in a wireless communication system. The present invention provides a method and apparatus for directly transmitting a V2X message to a neighbor base station without passing through a core network when V2X communication is performed through a selected IP traffic offload at local network (SIPTO @ LN).
일 양태에 있어서, 무선 통신 시스템에서 eNB(eNodeB)에 의하여 V2X(vehicle-to-everything) 메시지를 전송하는 방법이 제공된다. 상기 방법은 V2X 단말(UE; user equipment)로부터 V2X 메시지를 수신하고, 상기 V2X 메시지를 로컬 게이트웨이(L-GW; local gateway)를 통해 V2X 서버로 전달하고, 상기 V2X 메시지가 이웃 eNB로 전송될 것임을 지시하는 지시자를 수신하고, 및 상기 V2X 메시지를 상기 이웃 eNB로 전송하는 것을 포함한다.In one aspect, a method is provided for transmitting a vehicle-to-everything (V2X) message by an eNB (eNodeB) in a wireless communication system. The method receives a V2X message from a user equipment (V2X UE), forwards the V2X message to a V2X server through a local gateway (L-GW), and the V2X message is to be transmitted to a neighbor eNB. Receiving an indicating indicator, and transmitting the V2X message to the neighbor eNB.
다른 양태에 있어서, 무선 통신 시스템에서 eNB(eNodeB)가 제공된다. 상기 eNB는 메모리, 및 상기 메모리와 연결되는 프로세서를 포함하며, 상기 프로세서는, V2X(vehicle-to-everything) 단말(UE; user equipment)로부터 V2X 메시지를 수신하고, 상기 V2X 메시지를 로컬 게이트웨이(L-GW; local gateway)를 통해 V2X 서버로 전달하고, 상기 V2X 메시지가 이웃 eNB로 전송될 것임을 지시하는 지시자를 수신하고, 및 상기 V2X 메시지를 상기 이웃 eNB로 전송한다.In another aspect, an eNB (eNodeB) is provided in a wireless communication system. The eNB includes a memory and a processor connected to the memory, the processor receiving a V2X message from a vehicle-to-everything (V2X) user equipment (UE) and sending the V2X message to a local gateway (L). Forward to a V2X server via a local gateway (GW), receive an indicator indicating that the V2X message will be sent to a neighbor eNB, and send the V2X message to the neighbor eNB.
V2X 메시지가 지연 없이 이웃 기지국으로 전송될 수 있다.V2X messages may be sent to neighboring base stations without delay.
도 1은 LTE 시스템의 구조를 나타낸다. 1 shows a structure of an LTE system.
도 2는 함께 배치된 L-GW를 통해 SIPTO@LN가 지원될 때 eNB를 위한 논리 구조를 나타낸다.2 shows a logical structure for an eNB when SIPTO @ LN is supported via a co-located L-GW.
도 3은 V2X 통신을 위한 구조의 일 예를 나타낸다. 3 shows an example of a structure for V2X communication.
도 4는 함께 배치된 L-GW에 의하여 지원되는 SIPTO@LN를 통한 V2X 통신의 일 예를 나타낸다. 4 shows an example of V2X communication via SIPTO @ LN supported by L-GW co-located.
도 5는 독립 L-GW에 의하여 지원되는 SIPTO@LN를 통한 V2X 통신의 일 예를 나타낸다. 5 shows an example of V2X communication via SIPTO @ LN supported by an independent L-GW.
도 6은 본 발명의 일 실시예에 따라 V2X 메시지를 이웃 eNB로 전송하는 방법을 나타낸다.6 illustrates a method of transmitting a V2X message to a neighbor eNB according to an embodiment of the present invention.
도 7은 본 발명의 실시예에 따라 eNB가 V2X 메시지를 전송하는 방법을 나타낸다.7 illustrates a method for an eNB to transmit a V2X message according to an embodiment of the present invention.
도 8은 본 발명의 실시예가 구현되는 무선 통신 시스템을 나타낸다.8 illustrates a wireless communication system in which an embodiment of the present invention is implemented.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 통신 시스템에 사용될 수 있다. CDMA는 UTRA(universal terrestrial radio access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(global system for mobile communications)/GPRS(general packet radio service)/EDGE(enhanced data rates for GSM evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE(institute of electrical and electronics engineers) 802.11(Wi-Fi), IEEE 802.16(WiMAX), IEEE 802-20, E-UTRA(evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. IEEE 802.16m은 IEEE 802.16e의 진화로, IEEE 802.16 기반 시스템과의 하위 호환성(backward compatibility)을 제공한다. UTRA는 UMTS(universal mobile telecommunications system)의 일부이다. 3GPP(3rd generation partnership project) LTE(long term evolution)은 E-UTRA(evolved-UMTS terrestrial radio access)를 사용하는 E-UMTS(evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(advanced)는 3GPP LTE의 진화이다.The following techniques include code division multiple access (CDMA), frequency division multiple access (FDMA), time division multiple access (TDMA), orthogonal frequency division multiple access (OFDMA), single carrier frequency division multiple access (SC-FDMA), and the like. It can be used in various wireless communication systems. CDMA may be implemented by a radio technology such as universal terrestrial radio access (UTRA) or CDMA2000. TDMA may be implemented with wireless technologies such as global system for mobile communications (GSM) / general packet radio service (GPRS) / enhanced data rates for GSM evolution (EDGE). OFDMA may be implemented by wireless technologies such as Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, evolved UTRA (E-UTRA), and the like. IEEE 802.16m is an evolution of IEEE 802.16e and provides backward compatibility with IEEE 802.16 based systems. UTRA is part of a universal mobile telecommunications system (UMTS). 3rd generation partnership project (3GPP) long term evolution (LTE) is part of evolved UMTS (E-UMTS) using evolved-UMTS terrestrial radio access (E-UTRA), which employs OFDMA in downlink and SC in uplink -FDMA is adopted. LTE-A (advanced) is the evolution of 3GPP LTE.
설명을 명확하게 하기 위해, LTE-A를 위주로 기술하지만 본 발명의 기술적 특징이 이에 제한되는 것은 아니다.For clarity, the following description focuses on LTE-A, but the technical features of the present invention are not limited thereto.
도 1은 LTE 시스템의 구조를 나타낸다. 도 1을 참조하면, LTE 시스템 구조는 하나 이상의 사용자 단말(UE; user equipment; 10), E-UTRAN(evolved-UMTS terrestrial radio access network) 및 EPC(evolved packet core)를 포함한다. UE(10)는 사용자에 의해 움직이는 통신 장치이다. UE(10)는 고정되거나 이동성을 가질 수 있으며, MS(mobile station), UT(user terminal), SS(subscriber station), 무선기기(wireless device) 등 다른 용어로 불릴 수 있다.1 shows a structure of an LTE system. Referring to FIG. 1, an LTE system structure includes one or more user equipment (UE) 10, an evolved-UMTS terrestrial radio access network (E-UTRAN), and an evolved packet core (EPC). The UE 10 is a communication device moved by a user. The UE 10 may be fixed or mobile and may be referred to by other terms such as a mobile station (MS), a user terminal (UT), a subscriber station (SS), and a wireless device.
E-UTRAN은 하나 이상의 eNB(evolved NodeB; 20)를 포함하고, 하나의 셀에 복수의 UE가 존재할 수 있다. eNB(20)는 제어 평면(control plane)과 사용자 평면(user plane)의 끝 지점을 UE(10)에게 제공한다. eNB(20)는 일반적으로 UE(10)와 통신하는 고정된 지점(fixed station)을 말하며, BS(base station), 액세스 포인트(access point) 등 다른 용어로 불릴 수 있다. 하나의 eNB(20)는 셀마다 배치될 수 있다. The E-UTRAN includes one or more evolved NodeBs (eNBs) 20, and a plurality of UEs may exist in one cell. The eNB 20 provides an end point of a control plane and a user plane to the UE 10. The eNB 20 generally refers to a fixed station that communicates with the UE 10 and may be referred to in other terms, such as a base station (BS), an access point, and the like. One eNB 20 may be arranged per cell.
이하에서, 하향링크(DL; downlink)은 eNB(20)에서 UE(10)로의 통신을 의미한다. 상향링크(UL; uplink)는 UE(10)에서 eNB(20)으로의 통신을 의미한다. 사이드링크(SL; sidelink)는 UE(10) 간의 통신을 의미한다. DL에서 송신기는 eNB(20)의 일부이고, 수신기는 UE(10)의 일부일 수 있다. UL에서 송신기는 UE(10)의 일부이고, 수신기는 eNB(20)의 일부일 수 있다. SL에서 송신기와 수신기는 UE(10)의 일부일 수 있다.Hereinafter, downlink (DL) means communication from the eNB 20 to the UE 10. Uplink (UL) means communication from the UE 10 to the eNB 20. Sidelink (SL) means communication between the UE (10). In the DL, the transmitter may be part of the eNB 20 and the receiver may be part of the UE 10. In the UL, the transmitter may be part of the UE 10 and the receiver may be part of the eNB 20. In the SL, the transmitter and the receiver may be part of the UE 10.
EPC는 MME(mobility management entity)와 S-GW(serving gateway)를 포함한다. MME/S-GW(30)은 네트워크의 끝에 위치한다. MME/S-GW(30)은 UE(10)를 위한 세션 및 이동성 관리 기능의 끝 지점을 제공한다. 설명의 편의를 위해 MME/S-GW(30)은 "게이트웨이"로 단순히 표현하며, 이는 MME 및 S-GW를 모두 포함할 수 있다. PDN(packet dana network) 게이트웨이(P-GW)는 외부 네트워크와 연결될 수 있다. The EPC includes a mobility management entity (MME) and a serving gateway (S-GW). The MME / S-GW 30 is located at the end of the network. The MME / S-GW 30 provides an end point of session and mobility management functionality for the UE 10. For convenience of description, the MME / S-GW 30 is simply expressed as a "gateway", which may include both the MME and the S-GW. A packet dana network (PDN) gateway (P-GW) may be connected to an external network.
MME는 eNB(20)로의 NAS(non-access stratum) 시그널링, NAS 시그널링 보안, AS(access stratum) 보안 제어, 3GPP 액세스 네트워크 간의 이동성을 위한 inter CN(core network) 노드 시그널링, 아이들 모드 단말 도달 가능성(페이징 재전송의 제어 및 실행 포함), 트래킹 영역 리스트 관리(아이들 모드 및 활성화 모드인 UE을 위해), P-GW 및 S-GW 선택, MME 변경과 함께 핸드오버를 위한 MME 선택, 2G 또는 3G 3GPP 액세스 네트워크로의 핸드오버를 위한 SGSN(serving GPRS support node) 선택, 로밍, 인증, 전용 베이러 설정을 포함한 베어러 관리 기능, PWS(public warning system: ETWS(earthquake and tsunami warning system) 및 CMAS(commercial mobile alert system) 포함) 메시지 전송 지원 등의 다양한 기능을 제공한다. S-GW 호스트는 사용자 별 기반 패킷 필터링(예를 들면, 심층 패킷 검사를 통해), 합법적 차단, 단말 IP(internet protocol) 주소 할당, DL에서 전송 레벨 패킹 마킹, UL/DL 서비스 레벨 과금, 게이팅 및 등급 강제, APN-AMBR(access point name aggregate maximum bit rate)에 기반한 DL 등급 강제의 갖가지 기능을 제공한다. The MME includes non-access stratum (NAS) signaling to the eNB 20, NAS signaling security, access stratum (AS) security control, inter CN (node network) signaling for mobility between 3GPP access networks, idle mode terminal reachability ( Control and execution of paging retransmission), tracking area list management (for UEs in idle mode and activation mode), P-GW and S-GW selection, MME selection for handover with MME change, 2G or 3G 3GPP access Bearer management features, including roaming, authentication, and dedicated bearer setup, selection of a serving GPRS support node (SGSN) for handover to the network, public warning system (ETWS) and earthquake and tsunami warning system (CMAS) It provides various functions such as message transmission support. S-GW hosts can be based on per-user packet filtering (eg, through deep packet inspection), legal blocking, terminal IP (Internet protocol) address assignment, transport level packing marking in DL, UL / DL service level charging, gating and It provides various functions of class enforcement, DL class enforcement based on APN-AMBR (access point name aggregate maximum bit rate).
사용자 트래픽 전송 또는 제어 트래픽 전송을 위한 인터페이스가 사용될 수 있다. UE(10)와 eNB(20)은 Uu 인터페이스에 의해 연결된다. UE(10) 간은 PC5 인터페이스에 의해 연결된다. eNB(20) 간은 X2 인터페이스에 의해 연결된다. 이웃한 eNB(20)는 X2 인터페이스에 의한 망형 네트워크 구조를 가질 수 있다. eNB(20)와 게이트웨이(30)는 S1 인터페이스를 통해 연결된다. An interface for user traffic transmission or control traffic transmission may be used. The UE 10 and the eNB 20 are connected by a Uu interface. The UEs 10 are connected by a PC5 interface. The eNBs 20 are connected by an X2 interface. The neighboring eNB 20 may have a mesh network structure by the X2 interface. The eNB 20 and the gateway 30 are connected through an S1 interface.
E-UTRAN은 eNB 내의 함께 배치된 로컬 게이트웨이(collocated L-GW)(local gateway)) 또는 독립(standalone) 게이트웨이(S-GW와 L-GW가 함께 배치된)를 통해 SIPTO@LN(selected IP traffic offload at local network)를 지원한다. E-UTRAN uses selected IP traffic (SIPTO @ LN) via a colocated local gateway (collocated L-GW) in the eNB or a standalone gateway (coordinated with S-GW and L-GW). offload at local network).
도 2는 함께 배치된 L-GW를 통해 SIPTO@LN가 지원될 때 eNB를 위한 논리 구조를 나타낸다. 도 2를 참조하면, SIPTO@LN PDN 연결에 대하여, eNB는 EPC에 대한 S5 연결을 설정하고 유지 관리한다. SIPTO@LN PDN 연결은 핸드 오버가 수행 된 후에 해제되고, 소스 eNB 내의 함께 배치된 L-GW는 S5 인터페이스를 통해 해제를 트리거 한다.2 shows a logical structure for an eNB when SIPTO @ LN is supported via a co-located L-GW. Referring to FIG. 2, for a SIPTO @ LN PDN connection, the eNB establishes and maintains an S5 connection to the EPC. The SIPTO @ LN PDN connection is released after the handover is performed, and the co-located L-GW in the source eNB triggers the release through the S5 interface.
함께 배치된 L-GW를 통해 SIPTO@LN가 지원되는 경우, eNB는 다음과 같은 추가 기능을 지원한다.When SIPTO @ LN is supported through the co-located L-GW, the eNB supports the following additional functions.
- 모든 유휴-활성 전환시에 S1-MME를 통해 eNB의 함께 배치된 L-GW IP 주소를 EPC로 전송;Send the co-located L-GW IP address of the eNB to the EPC via S1-MME on all idle-active transitions;
- 모든 상향링크 NAS 전송 절차 내에서 S1-MME를 통해 eNB의 함께 배치된 L-GW IP 주소를 EPC로 전송;Send the co-located L-GW IP address of the eNB to the EPC via S1-MME within all uplink NAS transmission procedures;
- SIPTO@LN에 상응하는 SGi 인터페이스의 지원과 같은, 함께 배치된 L-GW에서의 기본적인 P-GW 기능의 지원;Support of basic P-GW functions in co-located L-GWs, such as support of SGi interfaces corresponding to SIPTO @ LN;
- 첫 번째 패킷 전송, 후속 패킷의 버퍼링, 직접 L-GW-eNB 사용자 경로의 내부 관리 및 UE로의 시퀀스 패킷 전달에 대한 추가 지원Additional support for first packet transmission, buffering of subsequent packets, direct management of the L-GW-eNB user path and forwarding of sequence packets to the UE
- SIPTO@LN 기능의 지원에 대응하는 필요한 제한된 S5 절차의 지원;-Support of necessary limited S5 procedures corresponding to the support of SIPTO @ LN functionality;
- 제한된 절차 집합 내에서 S5 인터페이스를 통해 SIPTO@LN 베어러를 위한 함께 배치된 L-GW 상향링크 TEID(tunneling endpoint ID) 또는 GRE(generic routing encapsulation) 키를 EPC로 통지;Notify the EPC of the co-located L-GW uplink tunneling endpoint ID (TEID) or generic routing encapsulation (GRE) key for the SIPTO @ LN bearer over the S5 interface within a limited set of procedures;
- 핸드오버가 수행된 후에 함께 배치된 L-GW에 의한 SIPTO@LN PDN 연결 해제의 트리거.Trigger of SIPTO @ LN PDN disconnection by co-located L-GW after handover is performed.
함께 배치된 L-GW를 통해 SIPTO@LN가 지원되는 경우, MME는 다음과 같은 추가 기능을 지원한다.If SIPTO @ LN is supported through the co-located L-GW, the MME supports the following additional features:
- 수신된 함께 배치된 L-GW IP 주소 및 가입 데이터 내의 SIPTO 허가를 기반으로 요청된 APN(access point name)에 대한 SIPTO@LN 활성화;SIPTO @ LN activation for the requested access point name (APN) based on received co-located L-GW IP address and SIPTO authorization in subscription data;
- 초기 컨텍스트 설정 절차 및 E-RAB(E-UTRAN radio access bearer) 설정 절차를 통한 "SIPTO 상관 id"를 eNB로 전송;Send “SIPTO correlation id” to the eNB via an initial context setup procedure and an E-UTRAN radio access bearer (E-RAB) setup procedure;
- UE가 eNB의 커버리지 영역으로부터 멀리 이동할 때 아이들 모드 UE의 SIPTO@LN PDN 연결 해제.SIPTO @ LN PDN disconnection of idle mode UE when UE moves away from coverage area of eNB.
또한, SIPTO@LN은 로컬 네트워크에 배치된 독립 게이트웨이(S-GW와 L-GW가 함께 배치된)를 사용하여 지원된다. MME는 UE 이동 없이 S-GW 재배치를 트리거 하는 것을 결정할 수 있다. 소스 및 대상 eNB가 동일한 LHN(local home eNB(HeNB) network)에 있지 않는 한(즉, 동일한 LHN ID를 지지 않는 한), SIPTO@LN PDN 연결은 핸드오버 후에 해제된다.SIPTO @ LN is also supported using independent gateways (with S-GWs and L-GWs) deployed in the local network. The MME can determine to trigger S-GW relocation without UE movement. Unless the source and target eNBs are in the same local home eNB (HeNB) network (ie, they do not have the same LHN ID), the SIPTO @ LN PDN connection is released after handover.
독립 L-GW를 통해 SIPTO@LN가 지원되는 경우, eNB는 다음과 같은 추가 기능을 지원한다.When SIPTO @ LN is supported through the independent L-GW, the eNB supports the following additional functions.
- 초기 UE 메시지, 상향링크 NAS 전달 메시지, 핸드오버 알림 메시지 및 경로 전환 요청 메시지에서 자신의 LHN ID를 MME에 시그널링;Signaling its LHN ID to the MME in an initial UE message, an uplink NAS delivery message, a handover notification message and a path switch request message;
- E-RAB 수정 요청 메시지를 통해 UE 이동이 없는 MME 트리거 S-GW 재배치를 지원;Support MME triggered S-GW relocation without UE movement via E-RAB modification request message;
독립 L-GW를 통해 SIPTO@LN가 지원되는 경우, MME는 다음과 같은 추가 기능을 지원한다.If SIPTO @ LN is supported through an independent L-GW, the MME supports the following additional features:
- 수신된 LHN ID 및 가입 데이터를 기반으로 요청된 APN에 대한 SIPTO@LN 활성화;SIPTO @ LN activation for the requested APN based on the received LHN ID and subscription data;
- UE 이동 없는 S-GW 재배치.S-GW relocation without UE movement.
V2X(vehicle-to-everything) 통신에 대해 설명한다. V2X 통신은 V2V(vehicle-to-vehicle) 통신, V2I(vehicle-to-infrastructure) 통신 및 V2P(vehicle-to-pedestrian) 통신의 세 가지 유형이 있다. V2X의 이러한 세 가지 유형은 최종 사용자를 위한 보다 지능적인 서비스를 제공하기 위해 "협동 의식"을 사용할 수 있다. 이는 차량, RSU(road side unit) 및 보행자와 같은 운송 개체가 해당 지역 환경(예를 들어, 근접한 다른 차량 또는 센서 장비로부터 수신한 정보)에 대한 지식을 수집하고, 협동 충돌 경고 또는 자율 주행과 같은 지능형 서비스를 제공할 수 있도록 해당 지식을 처리하고 공유할 수 있음을 의미한다.Describes vehicle-to-everything (V2X) communication. There are three types of V2X communication: vehicle-to-vehicle (V2V) communication, vehicle-to-infrastructure (V2I) communication, and vehicle-to-pedestrian (V2P) communication. These three types of V2X can use "collaboration consciousness" to provide more intelligent services for end users. This allows vehicle, road side unit (RSU) and transportation entities such as pedestrians to collect knowledge about their local environment (for example, information received from other vehicles or sensor equipment in close proximity), and can be used for collaborative collision alerts or autonomous driving. This means that knowledge can be processed and shared to provide intelligent services.
V2X 서비스는 3GPP 전송을 통해 V2V 어플리케이션을 사용하는 전송 또는 수신 UE를 포함하는 통신 서비스의 한 유형이다. 통신에 참여한 상대방에 따라 V2X 서비스는 V2V 서비스, V2I 서비스, V2P 서비스 및 V2N(vehicle-to-network) 서비스로 나뉠 수 있다. V2V 서비스는 통신의 양 측 모두 V2V 어플리케이션을 사용하는 UE인 V2X 서비스의 유형이다. V2I 서비스는 통신의 한 측이 UE이고 다른 한 측이 RSU이며, 모두 V2I 어플리케이션을 사용하는 V2X 서비스의 유형이다. RSU는 V2I 어플리케이션을 사용하여 UE와 송수신할 수 있는 V2I 서비스를 지원하는 개체이다. RSU는 eNB 또는 고정 UE에서 구현된다. V2P 서비스는 통신의 양 측 모두 V2P 어플리케이션을 사용하는 UE인 V2X 서비스의 유형이다. V2N 서비스는 통신의 한 측이 UE이고 다른 한 측이 서빙 개체이며, 모두 V2N 어플리케이션을 사용하며 LTE 네트워크 개체를 통해 서로 통신하는 V2X 서비스의 유형이다.V2X service is a type of communication service that includes a transmitting or receiving UE using a V2V application over 3GPP transmission. The V2X service may be divided into a V2V service, a V2I service, a V2P service, and a vehicle-to-network (V2N) service according to a counterpart who participated in the communication. V2V service is a type of V2X service that is a UE that uses V2V applications on both sides of the communication. A V2I service is a type of V2X service that uses a V2I application, with one side of communication being a UE and the other side being an RSU. The RSU is an entity supporting a V2I service that can transmit / receive with a UE using a V2I application. RSU is implemented in an eNB or a fixed UE. V2P service is a type of V2X service that is a UE that uses V2P applications on both sides of the communication. A V2N service is a type of V2X service in which one side of communication is a UE and the other is a serving entity, all using V2N applications and communicating with each other via an LTE network entity.
V2V에서, E-UTRAN은 허용, 인가 및 근접성 기준이 충족될 때 서로 근접한 UE가 E-UTRA(N)를 사용하여 V2V 관련 정보를 교환하는 것을 허용한다. 근접 기준은 MNO(mobile network operator)에 의해 구성될 수 있다. 그러나 V2V 서비스를 지원하는 UE는 V2X 서비스를 지원하는 E-UTRAN에 의해 서비스를 제공받거나 제공받지 않을 때 그러한 정보를 교환할 수 있다. V2V 어플리케이션을 지원하는 UE는 어플리케이션 계층 정보(예를 들어, V2V 서비스의 일부로서 그 위치, 동적 및 속성에 관하여)를 전송한다. V2V 페이로드(payload)는 서로 다른 내용을 수용하기 위해 융통성이 있어야 하며, 정보는 MNO에 의해 제공된 구성에 따라 주기적으로 전송될 수 있다. V2V는 주로 방송 기반이다. V2V는 서로 다른 UE 간에 V2V 관련 어플리케이션 정보를 직접 교환하는 것을 포함하고, 및/또는 V2V의 제한된 직접 통신 범위로 인해, V2V는 서로 다른 UE 간에 V2V 관련 어플리케이션 정보를 V2X 서비스를 지원하는 기반 구조(예를 들어, RSU, 어플리케이션 서버 등)를 통해 교환하는 것을 포함한다.In V2V, the E-UTRAN allows UEs in close proximity to each other to exchange V2V related information using E-UTRA (N) when permit, authorization and proximity criteria are met. Proximity criteria may be configured by a mobile network operator (MNO). However, the UE supporting the V2V service may exchange such information when it is provided or not provided by the E-UTRAN supporting the V2X service. The UE supporting the V2V application sends application layer information (eg, about its location, dynamics and attributes as part of the V2V service). The V2V payload must be flexible to accommodate different content, and information can be sent periodically depending on the configuration provided by the MNO. V2V is mainly broadcast based. V2V includes the direct exchange of V2V related application information between different UEs, and / or due to the limited direct communication range of V2V, V2V is an infrastructure supporting V2X service for V2V related application information between different UEs (eg For example, the exchange through the RSU, application server, etc.).
V2I에서, V2I 어플리케이션을 지원하는 UE는 어플리케이션 계층 정보를 RSU로 전송한다. RSU는 어플리케이션 계층 정보를 UE 그룹 또는 V2I 어플리케이션을 지원하는 UE로 전송한다. In V2I, the UE supporting the V2I application transmits application layer information to the RSU. The RSU transmits application layer information to the UE supporting the UE group or the V2I application.
V2P에서, E-UTRAN은 허용, 인가 및 근접성 기준이 충족될 때 서로 근접한 UE가 E-UTRAN을 사용하여 V2P 관련 정보를 교환하는 것을 허용한다. 근접 기준은 MNO에 의해 구성될 수 있다. 그러나, V2P 서비스를 지원하는 UE는 V2X 서비스를 지원하는 E-UTRAN에 의해 서비스되지 않을 때에도 이러한 정보를 교환할 수 있다. V2P 어플리케이션을 지원하는 UE는 어플리케이션 계층 정보를 전송한다. 이러한 정보는 V2X 서비스를 지원하는 차량 UE(예를 들어, 보행자에게 경고) 및/또는 V2X 서비스를 지원하는 보행자 UE(예를 들어, 차량에 경고)에 의해 방송될 수 있다. V2P는 서로 다른 UE 간(하나는 차량, 또 하나는 보행자)에 V2V 관련 어플리케이션 정보를 직접 교환하는 것을 포함하고, 및/또는 V2P의 제한된 직접 통신 범위로 인해, V2P는 서로 다른 UE 간에 V2P 관련 어플리케이션 정보를 V2X 서비스를 지원하는 기반 구조(예를 들어, RSU, 어플리케이션 서버 등)를 통해 교환하는 것을 포함한다.In V2P, the E-UTRAN allows UEs in close proximity to each other to exchange V2P related information using the E-UTRAN when permit, authorization and proximity criteria are met. Proximity criteria may be constructed by the MNO. However, the UE supporting the V2P service may exchange this information even when not serviced by the E-UTRAN supporting the V2X service. The UE supporting the V2P application transmits application layer information. Such information may be broadcast by vehicle UEs (eg, alerting pedestrians) that support V2X services and / or pedestrian UEs (eg, alerting vehicles) that support V2X services. V2P involves exchanging V2V related application information directly between different UEs (one vehicle, another pedestrian), and / or due to the limited direct communication range of V2P, V2P is a V2P related application between different UEs. This involves exchanging information through infrastructures that support V2X services (eg, RSUs, application servers, etc.).
도 3은 V2X 통신을 위한 구조의 일 예를 나타낸다. 도 3을 참조하면, 기존 노드(즉, eNB/MME) 또는 새로운 노드가 V2X 통신을 지원하기 위해 배치될 수 있다. 노드 간의 인터페이스는 S1/X2 인터페이스 또는 새로운 인터페이스일 수 있다. 즉, eNB1과 eNB2 간의 인터페이스는 X2 인터페이스 또는 새로운 인터페이스일 수 있다. eNB1/eNB2와 MME1/MME2 간의 인터페이스는 S1 인터페이스 또는 새로운 인터페이스일 수 있다.3 shows an example of a structure for V2X communication. Referring to FIG. 3, an existing node (ie, eNB / MME) or a new node may be deployed to support V2X communication. The interface between nodes may be an S1 / X2 interface or a new interface. That is, the interface between eNB1 and eNB2 may be an X2 interface or a new interface. The interface between eNB1 / eNB2 and MME1 / MME2 may be an S1 interface or a new interface.
또한, V2X 통신을 위한 UE는 3가지가 있을 수 있는데, 하나는 차량용 UE(vehicle UE)이고, 다른 하나는 RSU UE이며, 마지막은 보행자 UE(pedestrian UE)이다. 차량 UE는 일반 UE와 같을 수 있다. RSU UE는 UE 내에 구현되는 RSU이며, 트래픽 또는 안전 정보 또는 다른 차량 UE를 중계하거나 멀티캐스트 또는 방송할 수 있다. 보행자 UE는 보행자, 자전거, 운전자 또는 승객에 의해 운반되는 V2X 통신을 지원하는 UE이다. V2X 통신을 위해, 차량 UE 및 보행자 UE는 PC5 인터페이스를 통해 서로 직접 통신할 수 있다. 대안적으로, 차량 UE 및 보행자 UE는 네트워크 노드를 통해 간접적으로 서로 통신할 수 있다. 네트워크 노드는 eNB, V2X 통신을 위한 새로운 개체, V2X 통신을 위한 새로운 게이트웨이, RSU 중 어느 하나일 수 있다. 네트워크 노드는 기존의 MME 또는 S-GW가 아닐 수 있다. 대안적으로, 차량 UE 또는 보행자 UE는 데이터를 방송할 수 있고, RSU UE는 방송된 데이터를 수신 할 수 있다. RSU 및 다른 차량 UE/보행자 UE는 네트워크 노드를 통해 간접적으로 서로 통신할 수 있다. 네트워크 노드는 eNB, V2X 통신을 위한 새로운 개체, V2X 통신을 위한 새로운 게이트웨이, RSU 중 어느 하나일 수 있다. In addition, there may be three UEs for V2X communication, one is a vehicle UE, the other is an RSU UE, and the last is a pedestrian UE. The vehicle UE may be the same as a normal UE. An RSU UE is an RSU implemented in a UE and may relay, multicast or broadcast traffic or safety information or other vehicle UEs. A pedestrian UE is a UE that supports V2X communication carried by pedestrians, bicyclists, drivers or passengers. For V2X communication, the vehicle UE and the pedestrian UE can communicate with each other directly via the PC5 interface. Alternatively, the vehicle UE and the pedestrian UE may communicate with each other indirectly via a network node. The network node may be any one of an eNB, a new entity for V2X communication, a new gateway for V2X communication, and an RSU. The network node may not be an existing MME or S-GW. Alternatively, the vehicle UE or pedestrian UE may broadcast data, and the RSU UE may receive the broadcast data. The RSU and other vehicle UEs / pedestrian UEs may communicate with each other indirectly via a network node. The network node may be any one of an eNB, a new entity for V2X communication, a new gateway for V2X communication, and an RSU.
V2X 통신이 SIPTO@LN을 통해 수행될 수 있다. 즉, SIPTO@LN이 지원될 때, V2X 메시지가 코어 망을 거치지 않고 L-GW를 거쳐 전송될 수 있다. V2X 통신이 SIPTO@LN을 통해 수행되는 다음 3가지의 사용 예가 있을 수 있다. V2X communication can be performed via SIPTO @ LN. That is, when SIPTO @ LN is supported, the V2X message may be transmitted through the L-GW without passing through the core network. There are three use cases where V2X communication is performed via SIPTO @ LN.
1. V2X 서버가 독립 L-GW와 SIPTO@LN을 통해 연결: 이러한 경우, V2X 서버는, 예를 들어 로컬 센서 / 카메라 어레이로부터의 데이터를 처리하여, 모든 로컬 연결된 차량 UE에 배포한다. 동일한 LHN ID로 식별되는 모든 로컬 eNB에 연결이 제공된다. V2X 서비스 영역과 함께 LHN ID를 적절하게 설정함으로써, V2X 서비스가 가장 적합한 방법으로 적절한 위치에 제공될 수 있다. 독립 L-GW가 있는 SIPTO@LN의 특성 덕분에, V2X 서버로의 연결은 항상 LHN 내의 차량 UE 이동에서 유지된다.1. The V2X server connects via independent L-GW and SIPTO @ LN: In this case, the V2X server processes data from a local sensor / camera array, for example, and distributes it to all locally connected vehicle UEs. Connection is provided to all local eNBs identified with the same LHN ID. By properly setting the LHN ID with the V2X service area, the V2X service can be provided at the appropriate location in the most appropriate way. Thanks to the nature of SIPTO @ LN with independent L-GW, the connection to the V2X server is always maintained in vehicle UE movement within the LHN.
2. V2X 서버가 함께 배치된 L-GW와 SIPTO@LN을 통해 연결: 위의 제1 사용 예와 같으나, 연결이 각 eNB에 함께 배치된 L-GW를 통해 라우팅 된다. 그러나 이 경우, 차량 UE의 V2X 서버로의 접속은 이동 전에 중지되고, 핸드오버가 완료된 후 타겟 eNB 내의 L-GW를 통해 다시 설정된다.2. Connection through the L-GW and SIPTO @ LN co-located with the V2X server: As in the first use example above, the connection is routed through the L-GW co-located to each eNB. In this case, however, the connection to the V2X server of the vehicle UE is suspended before the movement and is established again through the L-GW in the target eNB after the handover is completed.
3. eNB에 함께 배치된 V2X 서버: 이 경우 모든 필수 기능이 eNB에 구현된다. 예를 들어, 센서를 포함하는 물리적인 도로 측 박스 (즉, 모든 트래픽을 국부적으로 종료함) 및 차량 UE에 대한 관련 연결을 처리하는 RSU가 이에 해당할 수 있다. 이는 V2X 서버와 함께 위의 논리 노드를 하나의 물리적 노드로 "축소"하는 것으로 볼 수 있다.3. V2X server co-located with the eNB: In this case all essential functions are implemented in the eNB. For example, this could be the physical road side box containing the sensor (ie, terminating all traffic locally) and the RSU handling the associated connection to the vehicle UE. This can be thought of as "shrink" the logical node above into a single physical node with the V2X server.
상술한 제2 사용 예, 제3 사용 예 및 제1 사용 예에서 이웃 eNB가 독립 L-GW의 커버리지의 가장자리에 있는 경우, V2X UE로부터 수신한 V2X 메시지가 이웃 영역으로 전파되어야 할 필요가 있을 때, 어떻게 이웃 eNB로 전송할 것인지에 대하여 한 가지 문제가 존재할 수 있다. When the neighbor eNB is at the edge of the coverage of the independent L-GW in the second use case, the third use case and the first use example described above, when the V2X message received from the V2X UE needs to be propagated to the neighbor area. There may be one problem with how to transmit to a neighbor eNB.
도 4는 함께 배치된 L-GW에 의하여 지원되는 SIPTO@LN를 통한 V2X 통신의 일 예를 나타낸다. 도 4의 SIPTO@LN를 통한 V2X 통신은 위의 제3 사용 예에 대응된다. 즉, 제1 eNB와 제2 eNB 내부에 각각 함께 배치된 L-GW와 V2X 서버가 존재한다. 기본적으로 V2X UE로부터 수신한 V2X 메시지가 동일한 eNB 내의 함께 배치된 L-GW와 V2X 서버로 전송되는 점에는 문제가 없다. eNB 내에 존재하는 V2X 서버는 동일한 eNB에 속하는 V2X UE를 결정하고, V2X 메시지를 V2X UE로 전송하도록 결정할 수 있다. 즉, 도 4에서 V2X UE가 eNB1로 V2X 메시지를 전송하면, 상기 V2X 메시지는 eNB1 내의 함께 배치된 L-GW 및 V2X 서버로 전달되고, V2X 서버에 의하여 eNB1에 속하는 V2X UE로 전송되는 것이 결정될 수 있다. 그러나, eNB1 내에 존재하는 V2X 서버가 V2X 메시지를 해석하여 상기 V2X 메시지가 이웃 eNB(예를 들어, eNB2)로 전달되어야 한다고 판단하면, 상기 V2X 메시지를 이웃 eNB로 전송하는 메커니즘이 현재 없으므로 문제가 발생할 수 있다.4 shows an example of V2X communication via SIPTO @ LN supported by L-GW co-located. The V2X communication through SIPTO @ LN of FIG. 4 corresponds to the third usage example above. That is, there is an L-GW and a V2X server, which are disposed together inside the first eNB and the second eNB, respectively. Basically, there is no problem in that the V2X message received from the V2X UE is transmitted to the co-located L-GW and the V2X server in the same eNB. The V2X server present in the eNB may determine a V2X UE belonging to the same eNB, and may decide to send a V2X message to the V2X UE. That is, in FIG. 4, when the V2X UE transmits a V2X message to eNB1, it may be determined that the V2X message is transmitted to the co-located L-GW and V2X server in eNB1 and transmitted to the V2X UE belonging to eNB1 by the V2X server. have. However, if a V2X server present in eNB1 interprets a V2X message and determines that the V2X message should be delivered to a neighbor eNB (e.g., eNB2), a problem arises because there is currently no mechanism for transmitting the V2X message to a neighbor eNB. Can be.
도 5는 독립 L-GW에 의하여 지원되는 SIPTO@LN를 통한 V2X 통신의 일 예를 나타낸다. 도 5의 SIPTO@LN를 통한 V2X 통신은 위의 제1 사용 예에서 이웃 eNB가 독립 L-GW의 커버리지의 가장자리에 있는 경우에 대응한다. 도 5를 참조하면, V2X UE가 RSU 기능을 가진 eNB로 V2X 메시지를 전송하면, 상기 V2X 메시지는 독립 L-GW를 거쳐 V2X 서버로 전달된다. V2X 서버는 상기 V2X 메시지가 어디까지 전파되어야 할지를 결정할 수 있다. V2X 서버는 eNB에 속하는 V2X UE로 상기 V2X 메시지를 전송할 것을 결정할 수 있다. 또는, V2X 서버는 상기 V2X 메시지가 이웃 영역으로 전파되어야 함을 결정할 수 있다. 이때 RSU 기능을 가진 이웃 eNB가 독립 L-GW의 커버리지의 가장자리에 존재한다면, 상기 V2X 메시지는 독립 L-GW를 거쳐 이웃 eNB로 바로 전송될 수 없다. 현재로서는 상기 V2X 메시지를 이웃 eNB로 전송하는 메커니즘이 없다.5 shows an example of V2X communication via SIPTO @ LN supported by an independent L-GW. V2X communication via SIPTO @ LN of FIG. 5 corresponds to the case where the neighbor eNB is at the edge of coverage of the independent L-GW in the first use example above. Referring to FIG. 5, when a V2X UE transmits a V2X message to an eNB having an RSU function, the V2X message is delivered to a V2X server through an independent L-GW. The V2X server can determine how far the V2X message should be propagated. The V2X server may determine to send the V2X message to the V2X UE belonging to the eNB. Alternatively, the V2X server may determine that the V2X message should be propagated to the neighbor area. At this time, if a neighbor eNB having an RSU function exists at the edge of coverage of the independent L-GW, the V2X message cannot be directly transmitted to the neighbor eNB through the independent L-GW. There is currently no mechanism for sending the V2X message to neighbor eNBs.
상술한 문제점을 해결하기 위해, 본 발명의 실시예에 따라 V2X 메시지를 이웃 eNB로 전송하는 방법을 제안한다. 이하의 설명에서는 편의상, 제3 사용 예, 즉 V2X 서버가 함께 배치된 L-GW를 포함하는 eNB 내에 위치하는 경우를 예로 들어 설명한다. 그러나, 본 발명은 제3 사용 예에 한정되지 않고, 제1 및 제2 사용 예에도 적용될 수 있다.In order to solve the above problem, according to an embodiment of the present invention, a method of transmitting a V2X message to a neighbor eNB is proposed. In the following description, for convenience, a third use example, that is, a case where the V2X server is located in an eNB including an L-GW arranged together is described as an example. However, the present invention is not limited to the third use example, but can also be applied to the first and second use examples.
도 6은 본 발명의 일 실시예에 따라 V2X 메시지를 이웃 eNB로 전송하는 방법을 나타낸다.6 illustrates a method of transmitting a V2X message to a neighbor eNB according to an embodiment of the present invention.
(1) 1단계: V2X UE는 V2X 메시지를 eNB1에 보고한다. 상기 V2X 메시지는 eNB1 내의 함께 배치된 L-GW로 전달된 다음, eNB1 내의 V2X 서버에 도착한다.(1) Step 1: The V2X UE reports a V2X message to eNB1. The V2X message is delivered to the co-located L-GW in eNB1 and then arrives at the V2X server in eNB1.
(2) 2단계: V2X 서버는 상기 V2X 메시지가 전파되어야 하는 영역을 판단한다.(2) Step 2: The V2X server determines an area to which the V2X message should propagate.
(3) 3단계: V2X 서버는 상기 V2X 메시지가 이웃 eNB로 전파되어야 하는지 여부를 L-GW에 알리기 위해, 내부 시그널링 또는 SGi 인터페이스를 통해 함께 배치된 L-GW와 통신한다. 이를 위해, V2X 서버는 L-GW로 추가 지시자를 전송할 수 있다. 상기 추가 지시자는 상기 V2X 메시지가 이웃 eNB로 전파되어야 하는지 여부를 나타낼 수 있다.(3) Step 3: The V2X server communicates with the L-GW co-located via internal signaling or SGi interface to inform the L-GW whether the V2X message should be propagated to the neighbor eNB. To this end, the V2X server can send additional indicators to the L-GW. The additional indicator may indicate whether the V2X message should be propagated to a neighbor eNB.
(4) 4단계: V2X 서버로부터 상기 추가 지시자를 수신하면, L-GW는 내부 시그널링 또는 인터페이스를 통해 eNB1과 통신하여 eNB1에게 상기 V2X 메시지가 이웃 eNB로 전송되어야 함을 알린다. L-GW는 eNB1에 상기 추가 지시자를 전송할 수 있다.(4) Step 4: Upon receiving the additional indicator from the V2X server, the L-GW communicates with eNB1 via internal signaling or interface to inform eNB1 that the V2X message should be sent to a neighbor eNB. The L-GW may send the additional indicator to eNB1.
(5) 5단계: L-GW로부터 상기 추가 지시자를 수신하면, eNB1은 상기 V2X 메시지가 이웃 eNB(예를 들어, eNB2)로 전송되어야 하는지 여부를 알 수 있다. eNB1은 상기 V2X 메시지를 PDU(protocol data unit)으로 변환하고 새로운 또는 기존의 X2 제어 평면 메시지를 통해 상기 PDU를 eNB2로 전송할 수 있다. PDU에서 상기 V2X 메시지는 eNB1 및 eNB2에 투명할 수 있다. 즉, 상기 V2X 메시지는 PDU 내에 캡슐화 될 수 있다. eNB2에게 상기 PDU가 eNB2의 대응하는 L-GW로 전송되어야 함을 알리기 위해 추가 지시자가 상기 PDU에 부가될 수 있다. 상기 추가 지시자는 X2AP 메시지 내의 새로운 IE(information element) 또는 새로운 메시지에 의해 실현될 수 있다.(5) Step 5: Upon receiving the additional indicator from the L-GW, eNB1 may know whether the V2X message should be sent to a neighbor eNB (eg, eNB2). eNB1 may convert the V2X message into a protocol data unit (PDU) and send the PDU to eNB2 via a new or existing X2 control plane message. The V2X message in the PDU may be transparent to eNB1 and eNB2. That is, the V2X message may be encapsulated in a PDU. An additional indicator may be added to the PDU to inform eNB2 that the PDU should be sent to the corresponding L-GW of eNB2. The additional indicator may be realized by a new information element (IE) or a new message in the X2AP message.
대안적으로, 상기 V2X 메시지를 eNB2로 전송하기 위해, 사용자 평면 기반의 접근법이 또한 가능할 수 있다. 구체적으로, eNB1은 상기 V2X 메시지를 전송하기 위해 GTP(GPRS tunneling protocol) 터널을 만들기 위한 요청 메시지를 eNB2에 전송할 수 있다. 상기 요청 메시지에 추가 지시자가 부가될 수 있다. 또는, 새로운 메시지가 상기 추가 지시자로 사용될 수 있다. 상기 요청 메시지를 수신한 eNB2는 GTP 터널 정보를 포함한 응답 메시지를 제공한다. 그런 다음, eNB1은 확립된 UP 경로를 기반으로 eNB2에 상기 V2X 메시지를 전송할 수 있다.Alternatively, a user plane based approach may also be possible to send the V2X message to eNB2. Specifically, eNB1 may transmit a request message for establishing a GPRS tunneling protocol (GTP) tunnel to eNB2 to transmit the V2X message. An additional indicator may be added to the request message. Alternatively, a new message can be used as the additional indicator. Upon receiving the request message, eNB2 provides a response message including GTP tunnel information. Then, eNB1 may send the V2X message to eNB2 based on the established UP path.
(6) 6단계: 상기 V2X 메시지 및 상기 추가 지시자를 포함하는 X2AP 메시지를 수신하면, eNB2는 V2X 메시지가 전파되어야 하는지 여부를 검사하기 위해 상기 추가 지시자를 검사할 수 있다. eNB2는 상기 X2AP 메시지를 eNB2 내에 함께 배치된 L-GW로 전달할 수 있다. L-GW는 eNB2 내의 V2X 서버와 통신할 수 있다.(6) Step 6: Upon receiving the X2AP message including the V2X message and the additional indicator, eNB2 may check the additional indicator to check whether the V2X message should be propagated. eNB2 may deliver the X2AP message to the L-GW co-located within eNB2. The L-GW may communicate with a V2X server in eNB2.
(7) 7단계: V2X 서버는 결정을 내린 다음 PDN 연결 또는 MBMS(multimedia broadcast multicast services) 세션을 만들어 상기 V2X 메시지를 제어 커버리지 영역 아래의 UE들로 전송할 수 있다.(7) Step 7: The V2X server may make a decision and then establish a PDN connection or a multimedia broadcast multicast services (MBMS) session to transmit the V2X message to the UEs under the control coverage area.
도 7은 본 발명의 실시예에 따라 eNB가 V2X 메시지를 전송하는 방법을 나타낸다.7 illustrates a method for an eNB to transmit a V2X message according to an embodiment of the present invention.
단계 S100에서, eNB는 V2X UE로부터 V2X 메시지를 수신한다. 단계 S110에서, eNB는 상기 V2X 메시지를 L-GW를 통해 V2X 서버로 전달한다. 상기 L-GW는 독립 L-GW이며, 상기 V2X 서버는 상기 eNB의 외부에 위치할 수 있다. 이는 상술한 제1 사용 예에 대응한다. 또는, 상기 L-GW는 상기 eNB 내에 함께 배치된 L-GW이며, 상기 V2X 서버는 상기 eNB의 외부에 위치할 수 있다. 이는 상술한 제2 사용 예에 대응한다. 또는, 상기 L-GW 및 상기 V2X 서버는 상기 eNB 내에 함께 배치될 수 있다. 이는 상술한 제3 사용 예에 대응한다.In step S100, the eNB receives a V2X message from the V2X UE. In step S110, the eNB delivers the V2X message to the V2X server through the L-GW. The L-GW is an independent L-GW, and the V2X server may be located outside of the eNB. This corresponds to the first use example described above. Alternatively, the L-GW may be an L-GW co-located in the eNB, and the V2X server may be located outside the eNB. This corresponds to the second use example described above. Alternatively, the L-GW and the V2X server may be co-located within the eNB. This corresponds to the third use example described above.
단계 S120에서, eNB는 상기 V2X 메시지가 이웃 eNB로 전송될 것임을 지시하는 지시자를 수신한다. 상기 지시자는 V2X 서버에 의하여 생성될 수 있고, L-GW를 거쳐 eNB에 의하여 수신될 수 있다.In step S120, the eNB receives an indicator indicating that the V2X message will be sent to the neighbor eNB. The indicator may be generated by the V2X server and may be received by the eNB via the L-GW.
상기 V2X 메시지가 이웃 eNB로 전송될 것임을 지시하는 지시자를 수신하면, 단계 S130에서, eNB는 상기 V2X 메시지를 상기 이웃 eNB로 전송한다. 상기 V2X 메시지를 상기 이웃 eNB로 전송하기 위하여, eNB는 상기 V2X 메시지를 PDU에 캡슐화하고, 상기 PDU를 상기 이웃 eNB로 전송할 수 있다. 상기 PDU는 X2AP 메시지에 포함되어 상기 이웃 eNB로 전송될 수 있다. 상기 X2AP 메시지는 상기 PDU가 상기 V2X 메시지를 포함하고 상기 이웃 eNB에 대응하는 L-GW로 전송될 것임을 상기 이웃 eNB에 지시하는 지시자를 포함할 수 있다. 대안적으로, eNB는 GTP 터널을 만들기 위한 요청 메시지를 상기 이웃 eNB로 전송하고, 상기 GTP 터널에 대한 정보를 포함하는 응답 메시지를 상기 이웃 eNB로부터 수신하고, 상기 GTP 터널을 통해 상기 V2X 메시지를 상기 이웃 eNB로 전송할 수 있다. 상기 요청 메시지는 상기 V2X 메시지가 상기 이웃 eNB에 대응하는 L-GW로 전송될 것임을 지시하는 지시자를 포함할 수 있다. Upon receiving an indicator indicating that the V2X message will be sent to a neighbor eNB, in step S130, the eNB sends the V2X message to the neighbor eNB. In order to send the V2X message to the neighbor eNB, the eNB may encapsulate the V2X message in a PDU and send the PDU to the neighbor eNB. The PDU may be included in an X2AP message and transmitted to the neighbor eNB. The X2AP message may include an indicator indicating to the neighbor eNB that the PDU includes the V2X message and will be sent to the L-GW corresponding to the neighbor eNB. Alternatively, the eNB transmits a request message for establishing a GTP tunnel to the neighbor eNB, receives a response message including information about the GTP tunnel from the neighbor eNB, and receives the V2X message through the GTP tunnel. May transmit to a neighbor eNB. The request message may include an indicator indicating that the V2X message will be sent to the L-GW corresponding to the neighbor eNB.
본 발명에 의하여, V2X 통신이 SIPTO@LN을 통하여 수행될 때, 이웃 기지국으로 전파될 V2X 메시지는 코어 망까지 올라가서 MME, MBMS GW, MCE 등을 거쳐 전송되는 대신, X2 인터페이스를 통해 바로 이웃 기지국으로 전송될 수 있다. V2X 메시지가 코어 망을 거쳐 이웃 기지국으로 전송되면 각 노드 별로 지연이 발생하는데, 본 발명에 의하면 이러한 지연 없이 V2X 메시지가 이웃 기지국으로 빠르게 전송될 수 있다. According to the present invention, when V2X communication is performed through SIPTO @ LN, the V2X message to be propagated to the neighbor base station goes up to the core network and is transmitted through the MME, MBMS GW, MCE, etc., but instead directly through the X2 interface to the neighbor base station Can be sent. When the V2X message is transmitted to the neighbor base station through the core network, a delay occurs for each node. According to the present invention, the V2X message can be quickly transmitted to the neighbor base station without such a delay.
도 8은 본 발명의 실시예가 구현되는 무선 통신 시스템을 나타낸다.8 illustrates a wireless communication system in which an embodiment of the present invention is implemented.
제1 eNB(800)는 프로세서(processor; 810), 메모리(memory; 820) 및 송수신(transceiver; 830)를 포함한다. 프로세서(810)는 본 명세서에서 설명된 기능, 과정 및/또는 방법을 구현하도록 구성될 수 있다. 무선 인터페이스 프로토콜의 계층들은 프로세서(810)에 의해 구현될 수 있다. 메모리(820)는 프로세서(810)와 연결되어, 프로세서(810)를 구동하기 위한 다양한 정보를 저장한다. 송수신부(830)는 프로세서(810)와 연결되어, 무선 신호를 전송 및/또는 수신한다.The first eNB 800 includes a processor 810, a memory 820, and a transceiver 830. Processor 810 may be configured to implement the functions, processes, and / or methods described herein. Layers of the air interface protocol may be implemented by the processor 810. The memory 820 is connected to the processor 810 and stores various information for driving the processor 810. The transceiver 830 is connected to the processor 810 to transmit and / or receive a radio signal.
제2 eNB(900)는 프로세서(910), 메모리(920) 및 송수신부(930)를 포함한다. 프로세서(910)는 본 명세서에서 설명된 기능, 과정 및/또는 방법을 구현하도록 구성될 수 있다. 무선 인터페이스 프로토콜의 계층들은 프로세서(910)에 의해 구현될 수 있다. 메모리(920)는 프로세서(910)와 연결되어, 프로세서(910)를 구동하기 위한 다양한 정보를 저장한다. 송수신부(930)는 프로세서(910)와 연결되어, 무선 신호를 전송 및/또는 수신한다.The second eNB 900 includes a processor 910, a memory 920, and a transceiver 930. Processor 910 may be configured to implement the functions, processes, and / or methods described herein. Layers of the air interface protocol may be implemented by the processor 910. The memory 920 is connected to the processor 910 and stores various information for driving the processor 910. The transceiver 930 is connected to the processor 910 to transmit and / or receive a radio signal.
프로세서(810, 910)은 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로 및/또는 데이터 처리 장치를 포함할 수 있다. 메모리(820, 920)는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. 송수신부(830, 930)는 무선 주파수 신호를 처리하기 위한 베이스밴드 회로를 포함할 수 있다. 실시예가 소프트웨어로 구현될 때, 상술한 기법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리(820, 920)에 저장되고, 프로세서(810, 910)에 의해 실행될 수 있다. 메모리(820, 920)는 프로세서(810, 910) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서(810, 910)와 연결될 수 있다. Processors 810 and 910 may include application-specific integrated circuits (ASICs), other chipsets, logic circuits, and / or data processing devices. The memory 820, 920 may include read-only memory (ROM), random access memory (RAM), flash memory, memory card, storage medium, and / or other storage device. The transceivers 830 and 930 may include a baseband circuit for processing radio frequency signals. When the embodiment is implemented in software, the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function. The module may be stored in the memory 820, 920 and executed by the processor 810, 910. The memories 820 and 920 may be inside or outside the processors 810 and 910, and may be connected to the processors 810 and 910 by various well-known means.
상술한 예시적인 시스템에서, 상술된 본 발명의 특징에 따라 구현될 수 있는 방법들은 순서도를 기초로 설명되었다. 편의상 방법들은 일련의 단계 또는 블록으로 설명되었으나, 청구된 본 발명의 특징은 단계들 또는 불록들의 순서에 한정되는 것은 아니며, 어떤 단계는 다른 단계와 상술한 바와 다른 순서로 또는 동시에 발생할 수 있다. 또한, 당업자라면 순서도에 나타낸 단계들이 배타적이지 않고, 다른 단계가 포함되거나 순서도의 하나 또는 그 이상의 단계가 본 발명의 범위에 영향을 미치지 않고 삭제될 수 있음을 이해할 수 있을 것이다. In the exemplary system described above, methods that may be implemented in accordance with the above-described features of the present invention have been described based on a flowchart. For convenience, the methods have been described as a series of steps or blocks, but the claimed features of the present invention are not limited to the order of the steps or blocks, and some steps may occur in the same order or in a different order than the other steps. In addition, those skilled in the art will appreciate that the steps shown in the flowcharts are not exclusive and that other steps may be included or one or more steps in the flowcharts may be deleted without affecting the scope of the present invention.

Claims (15)

  1. 무선 통신 시스템에서 eNB(eNodeB)에 의하여 V2X(vehicle-to-everything) 메시지를 전송하는 방법에 있어서,In a method for transmitting a vehicle-to-everything (V2X) message by an eNB (eNodeB) in a wireless communication system,
    V2X 단말(UE; user equipment)로부터 V2X 메시지를 수신하고;Receive a V2X message from a V2X user equipment (UE);
    상기 V2X 메시지를 로컬 게이트웨이(L-GW; local gateway)를 통해 V2X 서버로 전달하고;Forward the V2X message to a V2X server via a local gateway (L-GW);
    상기 V2X 메시지가 이웃 eNB로 전송될 것임을 지시하는 지시자를 수신하고; 및Receive an indicator indicating that the V2X message will be sent to a neighbor eNB; And
    상기 V2X 메시지를 상기 이웃 eNB로 전송하는 것을 포함하는 방법.Sending the V2X message to the neighbor eNB.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 L-GW는 독립 L-GW이며,The L-GW is an independent L-GW,
    상기 V2X 서버는 상기 eNB의 외부에 위치하는 것을 특징으로 하는 방법.The V2X server is located outside of the eNB.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 L-GW는 상기 eNB 내에 함께 배치된 L-GW이며,The L-GW is an L-GW co-located in the eNB,
    상기 V2X 서버는 상기 eNB의 외부에 위치하는 것을 특징으로 하는 방법.The V2X server is located outside of the eNB.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 L-GW 및 상기 V2X 서버는 상기 eNB 내에 함께 배치되는 것을 특징으로 하는 방법.The L-GW and the V2X server are collocated together in the eNB.
  5. 제 1 항에 있어서,The method of claim 1,
    상기 V2X 메시지를 상기 이웃 eNB로 전송하는 것은,Sending the V2X message to the neighbor eNB,
    상기 V2X 메시지를 PDU(protocol data unit)에 캡슐화하고;Encapsulating the V2X message in a protocol data unit (PDU);
    상기 PDU를 상기 이웃 eNB로 전송하는 것을 포함하는 것을 특징으로 하는 방법.Transmitting the PDU to the neighbor eNB.
  6. 제 5 항에 있어서,The method of claim 5, wherein
    상기 PDU는 X2AP 메시지에 포함되어 상기 이웃 eNB로 전송되는 것을 특징으로 하는 방법.The PDU is included in an X2AP message and transmitted to the neighbor eNB.
  7. 제 6 항에 있어서,The method of claim 6,
    상기 X2AP 메시지는 상기 PDU가 상기 V2X 메시지를 포함하고 상기 이웃 eNB에 대응하는 L-GW로 전송될 것임을 상기 이웃 eNB에 지시하는 지시자를 포함하는 것을 특징으로 하는 방법.The X2AP message includes an indicator indicating to the neighbor eNB that the PDU includes the V2X message and will be sent to the L-GW corresponding to the neighbor eNB.
  8. 제 1 항에 있어서,The method of claim 1,
    상기 V2X 메시지를 상기 이웃 eNB로 전송하는 것은,Sending the V2X message to the neighbor eNB,
    GTP(GPRS tunneling protocol) 터널을 만들기 위한 요청 메시지를 상기 이웃 eNB로 전송하고;Send a request message to a neighbor eNB to establish a GPRS tunneling protocol (GTP) tunnel;
    상기 GTP 터널에 대한 정보를 포함하는 응답 메시지를 상기 이웃 eNB로부터 수신하고; 및Receive a response message from the neighbor eNB including information about the GTP tunnel; And
    상기 GTP 터널을 통해 상기 V2X 메시지를 상기 이웃 eNB로 전송하는 것을 포함하는 것을 특징으로 하는 방법.And transmitting the V2X message to the neighbor eNB via the GTP tunnel.
  9. 제 8 항에 있어서,The method of claim 8,
    상기 요청 메시지는 상기 V2X 메시지가 상기 이웃 eNB에 대응하는 L-GW로 전송될 것임을 지시하는 지시자를 포함하는 것을 특징으로 하는 방법.The request message includes an indicator indicating that the V2X message will be sent to the L-GW corresponding to the neighbor eNB.
  10. 무선 통신 시스템에서 eNB(eNodeB)에 있어서,In an eNB (eNodeB) in a wireless communication system,
    메모리; 및Memory; And
    상기 메모리와 연결되는 프로세서를 포함하되,Including a processor connected to the memory,
    상기 프로세서는,The processor,
    V2X(vehicle-to-everything) 단말(UE; user equipment)로부터 V2X 메시지를 수신하고,Receive a V2X message from a vehicle-to-everything (V2X) user equipment (UE),
    상기 V2X 메시지를 로컬 게이트웨이(L-GW; local gateway)를 통해 V2X 서버로 전달하고,The V2X message is delivered to a V2X server through a local gateway (L-GW),
    상기 V2X 메시지가 이웃 eNB로 전송될 것임을 지시하는 지시자를 수신하고, 및Receive an indicator indicating that the V2X message will be sent to a neighbor eNB, and
    상기 V2X 메시지를 상기 이웃 eNB로 전송하는 것을 특징으로 하는 eNB.The V2X message is transmitted to the neighbor eNB.
  11. 제 10 항에 있어서,The method of claim 10,
    상기 L-GW는 독립 L-GW이며,The L-GW is an independent L-GW,
    상기 V2X 서버는 상기 eNB의 외부에 위치하는 것을 특징으로 하는 eNB.The V2X server is located outside of the eNB.
  12. 제 10 항에 있어서,The method of claim 10,
    상기 L-GW는 상기 eNB 내에 함께 배치된 L-GW이며,The L-GW is an L-GW co-located in the eNB,
    상기 V2X 서버는 상기 eNB의 외부에 위치하는 것을 특징으로 하는 eNB.The V2X server is located outside of the eNB.
  13. 제 10 항에 있어서,The method of claim 10,
    상기 L-GW 및 상기 V2X 서버는 상기 eNB 내에 함께 배치되는 것을 특징으로 하는 eNB.The L-GW and the V2X server are collocated together in the eNB.
  14. 제 10 항에 있어서,The method of claim 10,
    상기 V2X 메시지를 상기 이웃 eNB로 전송하는 것은,Sending the V2X message to the neighbor eNB,
    상기 V2X 메시지를 PDU(protocol data unit)에 캡슐화하고,Encapsulate the V2X message in a protocol data unit (PDU),
    상기 PDU를 상기 이웃 eNB로 전송하는 것을 포함하는 것을 특징으로 하는 eNB.And sending the PDU to the neighbor eNB.
  15. 제 14 항에 있어서,The method of claim 14,
    상기 PDU는 X2AP 메시지에 포함되어 상기 이웃 eNB로 전송되는 것을 특징으로 하는 eNB.The PDU is included in an X2AP message and is transmitted to the neighbor eNB.
PCT/KR2017/003492 2016-03-30 2017-03-30 Method and apparatus for transmitting v2x message to neighboring enb in wireless communication system WO2017171434A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662315620P 2016-03-30 2016-03-30
US62/315,620 2016-03-30

Publications (1)

Publication Number Publication Date
WO2017171434A1 true WO2017171434A1 (en) 2017-10-05

Family

ID=59964968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/003492 WO2017171434A1 (en) 2016-03-30 2017-03-30 Method and apparatus for transmitting v2x message to neighboring enb in wireless communication system

Country Status (1)

Country Link
WO (1) WO2017171434A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104601667A (en) * 2014-12-23 2015-05-06 武汉大学 Gapless vehicle networking assist downloading method
CN104980391A (en) * 2014-04-01 2015-10-14 华为技术有限公司 Safety message transmission method and apparatus
US20150334577A1 (en) * 2012-12-20 2015-11-19 Samsung Electronics Co., Ltd. Methods, systems and devices for small cell communications

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150334577A1 (en) * 2012-12-20 2015-11-19 Samsung Electronics Co., Ltd. Methods, systems and devices for small cell communications
CN104980391A (en) * 2014-04-01 2015-10-14 华为技术有限公司 Safety message transmission method and apparatus
CN104601667A (en) * 2014-12-23 2015-05-06 武汉大学 Gapless vehicle networking assist downloading method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Intelligent Transport Systems (ITS); Framework for Public Mobile Networks in Cooperative ITS (C-ITS", ETSITR 102 962, February 2012 (2012-02-01), XP055427864, Retrieved from the Internet <URL:http://www.etsi.org/deliver/etsi_tr/102900_102999/102962/01.01.01_60/tr)_102962v010101p.pdf> *
MIR, ZEESHAN HAMEED ET AL.: "LTE and IEEE 802.11p for Vehicular Networking: A Performance Evaluation", EURASIP JOURNAL ON WIRELESS COMMUNICATIONS AND NETWORKING, 30 May 2014 (2014-05-30), XP055269254, Retrieved from the Internet <URL:https://jwcn-eurasipjournals.springeropen.com/articles/10.1186/1687-1499-20-4-89> *

Similar Documents

Publication Publication Date Title
WO2017043940A1 (en) Method and apparatus for allocating mbms based resources for v2x message transmission in wireless communication system
WO2017135783A1 (en) Method and apparatus for allocating resources for v2x message transmission in wireless communication system
WO2017014536A1 (en) Method and apparatus for authorizing vehicle ue and rsu ue in wireless communication system
WO2016021849A1 (en) Method and apparatus for notifying of service release for dual connectivity in wireless communication system
WO2016108554A1 (en) Method and apparatus for performing switching control between uplink and sidelink in wireless communication system
WO2018021861A1 (en) Method and apparatus for performing cell specification procedure for network slice-based nr in wireless communication system
WO2017074154A1 (en) Method and apparatus for supporting bearer type for v2x communication in wireless communication system
KR101690718B1 (en) Method and apparatus for transmitting data in a wireless communication network system
WO2017160070A1 (en) Method and device for reporting sidelink resource occupancy level in wireless communication system
WO2018128406A1 (en) Method and device for managing interface for supporting lte/nr interworking in wireless communication system
WO2018062907A1 (en) Method for ue context management and device for supporting same
WO2017014592A1 (en) Method and apparatus for supporting v2x function for x2 procedure in wireless communication system
WO2018139888A1 (en) Method for managing terminal context and device for supporting same
WO2017135740A1 (en) Method and apparatus for performing v2x communication
WO2016114612A1 (en) Method and apparatus for supporting standalone local gateway service for dual connectivity in wireless communication system
WO2017222290A1 (en) Method for reporting rrc state of terminal and apparatus for supporting same
WO2018124693A1 (en) Method for controlling flow and apparatus for supporting same
WO2019132234A1 (en) Method for switching a bandwidth part (bwp) for configured ul resources in wireless communication system and a device therefor
WO2016006958A1 (en) Method and apparatus for performing location update for dual connectivity in wireless communication system
US10142844B2 (en) Method and apparatus for authorizing pedestrian user equipment in wireless communication system
WO2017171515A1 (en) Method and apparatus for notifying information about mbms network
WO2016076564A1 (en) Method and apparatus for supporting local gateway service for dual connectivity in wireless communication system
WO2015147614A1 (en) Method and apparatus for performing call relay in wireless communication system
WO2017171434A1 (en) Method and apparatus for transmitting v2x message to neighboring enb in wireless communication system
WO2016006953A1 (en) Method and apparatus for displaying terminal in single base station in wireless communication system

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17775858

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17775858

Country of ref document: EP

Kind code of ref document: A1