WO2017171371A1 - Porous structure and preparation method thereof - Google Patents

Porous structure and preparation method thereof Download PDF

Info

Publication number
WO2017171371A1
WO2017171371A1 PCT/KR2017/003358 KR2017003358W WO2017171371A1 WO 2017171371 A1 WO2017171371 A1 WO 2017171371A1 KR 2017003358 W KR2017003358 W KR 2017003358W WO 2017171371 A1 WO2017171371 A1 WO 2017171371A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous structure
mixture
heating
binder
pore
Prior art date
Application number
PCT/KR2017/003358
Other languages
French (fr)
Korean (ko)
Inventor
이원민
이병섭
구양서
Original Assignee
주식회사 지엘켐
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 지엘켐 filed Critical 주식회사 지엘켐
Publication of WO2017171371A1 publication Critical patent/WO2017171371A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/30Materials not provided for elsewhere for aerosols
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/10Carbon fluorides, e.g. [CF]nor [C2F]n
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/157After-treatment of gels
    • C01B33/158Purification; Drying; Dehydrating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/157After-treatment of gels
    • C01B33/158Purification; Drying; Dehydrating
    • C01B33/1585Dehydration into aerogels
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/02Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/32Thermal properties

Definitions

  • the present invention relates to a porous structure and a method for manufacturing the same, and more particularly, to a porous structure prepared by mixing the pore structure and the microcapsule blowing agent.
  • Structures having a pore structure are high-tech materials with high porosity and very low density with a specific surface area of several hundred m2 / g.
  • the pore structure has excellent thermal insulation, high specific surface area, high porosity and light weight, so it can be used as a heat shield, molecular filter, semiconductor gas sensor and aerospace material.
  • the airgel is a high-tech material having a porosity of 90% or more, a specific surface area of several hundred m2 / g, a low density, and low thermal conductivity.
  • the airgel has a lot of pores distributed between the materials, due to the influence of the pores distributed in the material has a very low refractive index and low dielectric constant. Therefore, the porous airgel can be applied in various fields such as dielectric, catalyst, catalyst carrier, heat insulating material, electrode material and soundproof material.
  • silica airgel is a material having a three-dimensional network structure, in particular, because it has a low thermal conductivity, it is a material that can be used as a heat insulating material for buildings, refrigerators, automobiles, aircraft, cargo holds and the like.
  • silica airgel is not good mechanical properties due to high porosity, in particular, silica airgel has a very low density and has a form of an unstructured powder has a problem of poor workability. Accordingly, there are various limitations in using silica airgel as a heat insulating material, and its use is difficult to expand.
  • the silica aerogel can be imparted with the form by filling the structure, plastic bag, etc., but this method has the disadvantage that the cutting of the structure is impossible.
  • the method of filling an airgel into a structure such as an airgel blanket structure or a nonwoven fabric should have a high content of silica airgel per volume in order to realize low thermal conductivity, which has a disadvantage of having a high material cost per unit volume. have.
  • an object of the present invention is to provide a structure having a high porosity while imparting the formability by applying a microcapsule blowing agent and a binder to the airgel.
  • the present invention is prepared by foaming through heating after mixing the pore structure, the microcapsule blowing agent and the binder.
  • the pore structure is any one of silica-based nanoporous material, silica airgel, alumina-based pore material, titania-based pore material, zirconia-based pore material or carbon-based pore material, or a mixture thereof.
  • the diameter of the microcapsule blowing agent is 10 ⁇ 60 ⁇ m
  • the heating includes a primary heating and secondary heating
  • the primary heating is 80 ⁇ 150 °C
  • the secondary heating is made at 130 ⁇ 200 °C.
  • the binder is ethylene vinyl acetate (EVA), polyvinyl alcohol (PVA), acryl (acryl), acrylamide (acrylamide), vinyl chloride (PVC), polyvinyl acetal, acrylic, It is any one of saturated polyester type, polyamide type, polyethylene type, natural rubber type, synthetic rubber type, silicone type, or melamine type, or a mixture thereof.
  • the present invention provides a method for producing a porous structure to form a mixture by adding a binder to the pore structure and the microcapsule blowing agent, and a drying step of heating the mixture to remove the moisture and solvent of the binder And re-heating the mixture to a relatively high temperature to foam the microcapsule blowing agent.
  • the mixture is heated at 80 ° C to 150 ° C, and in the foaming step, the mixture is heated at 130 ° C to 200 ° C.
  • Following the foaming step may further include a cutting step for cutting the prepared porous structure in a predetermined form.
  • the mixture is dried and foamed in a container having a constant shape.
  • the porous structure of the present invention is prepared by mixing a microcapsule blowing agent and a binder in a pore structure such as a silica-based airgel, so that the powder is prevented from flying and has crystallization. Accordingly, the porous structure can be manufactured in a specific three-dimensional shape has the advantage that can be utilized for various uses, such as insulation.
  • the porous structure of the present invention has a very high porosity because the pores of the pore structure and the foamed pores of the microcapsule blowing agent are added. Accordingly, the porous structure of the present invention has a low thermal conductivity, and when used as a heat insulating material, the heat insulating property is greatly improved.
  • the porous structure of the present invention includes a microcapsule blowing agent as well as a pore structure such as a silica airgel, so that the foamed pores increase the overall porosity, the specific gravity of the relatively expensive pore structure can be relatively low. Accordingly, the manufacturing cost for manufacturing the porous structure is lowered, thereby improving the economic efficiency.
  • FIG. 1 is a photograph showing an embodiment of a porous structure according to the present invention.
  • Figure 2 is a photograph of the cross-sectional view of one embodiment of the porous structure according to the present invention under a microscope.
  • Figure 3 is a flow chart showing sequentially one embodiment of a method for producing a porous structure according to the present invention.
  • Porous structure according to the present invention is a three-dimensional structure processed by mixing a pore structure, a microcapsule foaming agent and a binder, as shown in Figure 1 after being manufactured in a specific form and cut for various uses, such as insulation, cold protection goods or shoes It can be used for a variety of purposes, such as soles.
  • the heat insulating material may have a very wide application, such as home appliances such as aircraft, space suits, refrigerators, as well as heat insulating material of the building.
  • the porous structure according to the present invention is very easy to process the shape, it can be used in various places by cutting to the desired thickness and size.
  • the pore structure constituting the porous structure according to the present invention is a structure containing micropores, in this embodiment is a silica airgel.
  • the pore structure may be various examples including fine pores, for example, silica airgel, as well as any one of silica-based nanoporous material, alumina-based pore material, titania-based pore material, zirconia-based pore material or carbon-based pore material It may be a mixture of these. That is, the pore structure may be selected from various pore materials containing the micropores developed in the past.
  • a microcapsule blowing agent is added to the pore structure.
  • the microcapsule foaming agent is foamed through heating to form pores, and is a thermally expandable microcapsule.
  • the microcapsule foaming agent has a property of rapidly expanding (expanding) at high temperatures, through which the particles increase in volume and have low specific gravity.
  • the microcapsule foaming agent is a fine and uniform independent bubble is formed, it is possible to expand even in a mixed state with the binder.
  • the structure of the microcapsule blowing agent it may be a structure surrounding the outside of the hydrocarbon with an acrylic thermoplastic resin. Accordingly, the outer resin is softened by heating, and the vapor pressure of the foaming agent is increased to expand the outer resin, and when the heating is stopped, the outer resin is cured to have a porous structure.
  • the mixture of the pore structure and the microcapsule blowing agent may be bonded to each other through a binder.
  • the binder is ethylene vinyl acetate (EVA), polyvinyl alcohol (PVA), acryl (acryl), acrylamide (acrylamide), vinyl chloride (PVC), polyvinyl acetal, acrylic, It may be any of saturated polyester, polyamide, polyethylene, natural rubber, synthetic rubber, silicone, or melamine, or a mixture thereof.
  • the binder is an EVA-based aqueous emulsion adhesive.
  • the pore structure, the microcapsule blowing agent and the binder should be mixed at an appropriate magnification, and the binder content is relatively high. Since the binder removes moisture through the heating process described below, the weight of the binder is reduced in the porous structure after processing.
  • the pore structure used in this example is silica airgel.
  • the silica airgel was an airgel prepared by the method of 'silica airgel prepared using the method and the silica airgel prepared using the method' of the Republic of Korea Patent Publication No. 10-2015-0078955.
  • the thermal conductivity of the silica airgel used is 0.026 (W / mK) and the microcapsule blowing agent has a particle size of 20 ⁇ m ⁇ 50 ⁇ m.
  • the microcapsule blowing agent is CELLCOM-CAP170K (Geumyang), the initial expansion temperature is 130 °C ⁇ 150 °C and the maximum expansion temperature is 160 °C ⁇ 180 °C.
  • As the binder an EVA-based aqueous emulsion type adhesive having a solid content of 50% was used.
  • the pore structure, the microcapsule blowing agent and the binder are mixed inside the container, and the silica airgel, the microcapsule blowing agent and the binder are mixed in a weight ratio of 2: 2: 10, respectively.
  • the mixing ratio of silica airgel and microcapsules is selected in consideration of both the shaping and the adiabatic effect.
  • the thermal insulation effect increases but the crystallinity decreases.
  • the silica airgel content decreases relatively, the crystallization is improved, but the thermal insulation effect cannot be expected. .
  • the mixture is prepared by heating.
  • the heating process consists of primary heating and secondary heating.
  • the primary heating is a drying step for removing the water and the solvent of the binder by heating the mixture
  • the secondary heating can be seen as a foaming step for foaming the microcapsule blowing agent contained in the mixture. Secondary heating for foaming takes about 5 to 10 minutes.
  • the secondary heating is made at a relatively high temperature than the primary heating, specifically, the primary heating is made at 80 °C ⁇ 150 °C, the secondary heating is preferably made at 130 °C ⁇ 200 °C. .
  • the initial expansion temperature of the microcapsule blowing agent is 130 °C ⁇ 150 °C
  • the maximum expansion temperature is 160 °C ⁇ 180 °C CELLCOM-CAP170K.
  • the mixture of silica airgel, microcapsule blowing agent, and binder each at a weight ratio of 2: 2: 10, is first heated to a temperature of 80 ° C to 100 ° C in a drying oven and dried. In this process, water and solvent of the binder are removed.
  • FIG. 1 is a photograph confirmed by the microscope after cross-sectional processing of the porous structure of FIG. As a result of the test, the thermal conductivity of the manufactured insulation was measured to be 0.028 (W / mK).
  • 0.028 (W / mK) which is a thermal conductivity obtained when the present production method is applied, is almost the same as that of a conventional product, that is, a product manufactured by using only silica aerogel without foaming agent. Therefore, according to the present invention, not only the same heat insulating effect can be obtained at a relatively low cost, but also the formation of more various shapes can be easily made by giving a shaping.
  • a cutting step of cutting the manufactured porous structure into a predetermined form may be further included.
  • the porous structure is prepared by mixing the microcapsule blowing agent and the binder in the pore structure, the powder is prevented from being blown, and at the same time, it has a crystallization, and thus the porous structure can be manufactured and cut into a specific three-dimensional shape.
  • Reference figure 1 is a cross-sectional view of the prepared porous structure is shown. In this way, even when the porous structure is cut, the porous structure maintains a three-dimensional shape, and thus the porous structure of the present invention can be cut after cutting into various shapes.
  • the present invention is not necessarily limited to these embodiments, although all of the components constituting the embodiments according to the present invention are described as being combined or operating in combination. In other words, within the scope of the present invention, all of the components may be selectively operated in combination with one or more.
  • the terms “comprise”, “comprise” or “having” described above mean that the corresponding component may be inherent unless specifically stated otherwise, and thus excludes other components. It should be construed that it may further include other components instead. All terms, including technical and scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art unless otherwise defined. Terms used generally, such as terms defined in a dictionary, should be interpreted to coincide with the contextual meaning of the related art, and shall not be interpreted in an ideal or excessively formal sense unless explicitly defined in the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

The present invention relates to a porous structure and a preparation method thereof. The porous structure is prepared by mixing a porous structure, a microcapsule foaming agent, and a binder and heating them to allow foaming. Prepared by mixing a porous structure, such as silica-based aerogel, with a microcapsule foaming agent and a binder, the porous structure of the present invention is prevented from being blown like powder as well as having typicality. Hence, the porous structure can be formed into specific steric shapes, thus finding applications in various fields including heat insulation materials.

Description

다공성 구조체 및 그 제조방법Porous Structure and Manufacturing Method Thereof
본 발명은 다공성 구조체 및 그 제조방법에 관한 것으로, 더욱 상세하게는 기공구조체와 마이크로캡슐 발포제를 혼합하여 제조되는 다공성 구조체에 관한 것이다.The present invention relates to a porous structure and a method for manufacturing the same, and more particularly, to a porous structure prepared by mixing the pore structure and the microcapsule blowing agent.
기공구조를 가지는 구조체는 기공률이 높고, 비표면적이 수백m2/g을 넘는 밀도가 매우 낮은 소재로 열전도도가 낮은 첨단 소재이다. 기공구조체는 우수한 단열성, 높은 비표면적, 높은 기공률과 경량성을 가지고 있어 열차단제, 분자 여과기, 반도체식 가스센서 및 우주항공 소재로 활용될 수 있다. Structures having a pore structure are high-tech materials with high porosity and very low density with a specific surface area of several hundred m2 / g. The pore structure has excellent thermal insulation, high specific surface area, high porosity and light weight, so it can be used as a heat shield, molecular filter, semiconductor gas sensor and aerospace material.
기공구조를 가지는 구조체 중에서도 에어로겔은 기공율이 90% 이상이고, 비표면적이 수백m2/g을 넘는 투명하고 밀도가 매우 낮으며, 열전도도도 낮은 첨단 소재이다. 또한, 에어로겔은 물질 사이사이에 많은 기공들이 분포하고 있는데, 물질에 분포된 기공들의 영향으로 굴절율이 매우 낮고 유전상수도 낮은 특성을 갖는다. 따라서, 다공성 에어로겔은 유전체, 촉매, 촉매의 담체, 단열재, 전극소재 및 방음재 등의 분야에 다양하게 응용이 가능하다. Among the structures having a pore structure, the airgel is a high-tech material having a porosity of 90% or more, a specific surface area of several hundred m2 / g, a low density, and low thermal conductivity. In addition, the airgel has a lot of pores distributed between the materials, due to the influence of the pores distributed in the material has a very low refractive index and low dielectric constant. Therefore, the porous airgel can be applied in various fields such as dielectric, catalyst, catalyst carrier, heat insulating material, electrode material and soundproof material.
특히, 실리카 에어로겔은 3차원 네트워크 구조를 갖는 물질로서, 특히 열전도도가 낮은 특성을 갖기 때문에 건축, 냉장고, 자동차, 항공기, 화물창 등의 단열재로 이용이 가능한 소재이다.In particular, silica airgel is a material having a three-dimensional network structure, in particular, because it has a low thermal conductivity, it is a material that can be used as a heat insulating material for buildings, refrigerators, automobiles, aircraft, cargo holds and the like.
다만, 실리카 에어로겔은 높은 기공률로 인하여 기계적 특성이 좋지 못한데, 특히 실리카 에어로겔은 밀도가 매우 낮고 정형화되지 못한 분말의 형태를 가지고 있어 가공성이 떨어지는 문제점이 있다. 이에 따라 실리카 에어로겔을 단열소재로 사용하는데 여러 가지 제약이 있으며 용도의 확장이 어렵다. However, silica airgel is not good mechanical properties due to high porosity, in particular, silica airgel has a very low density and has a form of an unstructured powder has a problem of poor workability. Accordingly, there are various limitations in using silica airgel as a heat insulating material, and its use is difficult to expand.
이를 해결하기 위하여, 부직포나 유리섬유 등에 에어로겔을 침적(沈積)하여 블랑켓(aerogel blanket) 형태로 제조하여 사용할 수도 있으나, 이 역시 에어로겔 분말이 날리는 문제를 가지고 있어 시공 후 마감재를 덮어주는 등 추가 시공이 필요한 불편함이 있다.In order to solve this problem, it is also possible to manufacture and use aerogel blanket by dipping aerogel into nonwoven fabric or glass fiber, but this also has a problem that the aerogel powder is blown, and thus additional construction such as covering the finishing material after construction This is a necessary inconvenience.
다른 방법으로는 실리카 에어로겔을 구조물, 플라스틱백 등에 채우는 방법으로 정형성을 부여할 수 있으나, 이 방법은 구조체의 재단이 불가능한 단점을 가지고 있다. Alternatively, the silica aerogel can be imparted with the form by filling the structure, plastic bag, etc., but this method has the disadvantage that the cutting of the structure is impossible.
또한, 에어로겔 블랑켓 구조나, 부직포 등 구조물에 에어로겔을 채우는 방법은 낮은 열전도도를 구현하기 위해 부피당 실리카 에어로겔의 함량이 많아야 하며, 이는 단위 부피당 높은 재료비를 갖게 되는 단점이 있어 상용화에 큰 걸림돌이 되고 있다.In addition, the method of filling an airgel into a structure such as an airgel blanket structure or a nonwoven fabric should have a high content of silica airgel per volume in order to realize low thermal conductivity, which has a disadvantage of having a high material cost per unit volume. have.
본 발명은 상기한 바와 같은 종래기술의 문제점을 해결하기 위한 것으로, 본 발명의 목적은 에어로겔에 마이크로캡슐 발포제 및 바인더를 적용하여 정형성이 부여되면서도 높은 기공율을 갖는 구조체를 제공하는 것이다. The present invention is to solve the problems of the prior art as described above, an object of the present invention is to provide a structure having a high porosity while imparting the formability by applying a microcapsule blowing agent and a binder to the airgel.
상기한 바와 같은 목적을 달성하기 위한 본 발명의 특징에 따르면, 본 발명은 기공구조체, 마이크로캡슐 발포제 및 바인더를 혼합한 후에 가열을 통해 발포하여 제조된다. According to a feature of the present invention for achieving the object as described above, the present invention is prepared by foaming through heating after mixing the pore structure, the microcapsule blowing agent and the binder.
상기 기공구조체는 실리카계 나노기공소재, 실리카 에어로겔, 알루미나계 기공소재, 타이타니아계 기공소재, 지르코니아계 기공소재 또는 탄소계 기공소재 중 어느 하나이거나 이들을 혼합한 것이다. The pore structure is any one of silica-based nanoporous material, silica airgel, alumina-based pore material, titania-based pore material, zirconia-based pore material or carbon-based pore material, or a mixture thereof.
상기 마이크로캡슐 발포제의 직경은 10~60㎛이고, 상기 가열은 1차가열 및 2차가열을 포함하며, 상기 1차가열은 80~150℃, 상기 2차가열은 130~200℃에서 이루어진다.The diameter of the microcapsule blowing agent is 10 ~ 60㎛, the heating includes a primary heating and secondary heating, the primary heating is 80 ~ 150 ℃, the secondary heating is made at 130 ~ 200 ℃.
상기 바인더는 에틸렌 초산비닐(EVA)계, 폴리비닐알코올(PVA)계, 아크릴(Acryl)계, 아크릴아마이드(Acrylamide)계, 염화비닐(PVC)계, 폴리비닐아세탈(polyvinyl acetal)계, 아크릴계, 포화 폴리에스테르계, 폴리아미드계, 폴리에틸렌계, 천연고무계, 합성고무계, 실리콘계 또는 멜라민계 중 어느 하나이거나 이들을 혼합한 것이다.The binder is ethylene vinyl acetate (EVA), polyvinyl alcohol (PVA), acryl (acryl), acrylamide (acrylamide), vinyl chloride (PVC), polyvinyl acetal, acrylic, It is any one of saturated polyester type, polyamide type, polyethylene type, natural rubber type, synthetic rubber type, silicone type, or melamine type, or a mixture thereof.
본 발명의 다른 특징에 따르면, 본 발명은 다공성 구조체의 제조방법으로서 기공구조체 및 마이크로캡슐 발포제에 바인더를 부가하여 혼합물을 형성하는 단계와, 상기 혼합물을 가열하여 바인더의 수분과 용제를 제거하는 건조단계와, 상기 혼합물을 상대적으로 높은 온도로 재가열하여 마이크로캡슐 발포제를 발포시키는 발포단계를 포함한다. According to another feature of the present invention, the present invention provides a method for producing a porous structure to form a mixture by adding a binder to the pore structure and the microcapsule blowing agent, and a drying step of heating the mixture to remove the moisture and solvent of the binder And re-heating the mixture to a relatively high temperature to foam the microcapsule blowing agent.
상기 건조단계에서 상기 혼합물은 80℃~150℃에서 가열되고, 상기 발포단계에서 상기 혼합물은 130℃~200℃에서 가열된다. In the drying step, the mixture is heated at 80 ° C to 150 ° C, and in the foaming step, the mixture is heated at 130 ° C to 200 ° C.
상기 발포단계에 이어 제조된 다공성 구조체를 일정형태로 재단하는 재단단계가 더 포함될 수 있다. Following the foaming step may further include a cutting step for cutting the prepared porous structure in a predetermined form.
상기 혼합물은 일정한 형태를 갖는 용기에 담긴 상태로 건조 및 발포된다. The mixture is dried and foamed in a container having a constant shape.
위에서 살핀 바와 같은 본 발명에 의한 다공성 구조체 및 그 제조방법에는 다음과 같은 효과가 있다. The porous structure according to the present invention as described above and the method of manufacturing the same have the following effects.
본 발명의 다공성 구조체는 실리카계 에어로겔 등과 같은 기공구조체에 마이크로캡슐 발포제와 바인더가 혼합되어 제조되므로 분말이 날리는 것이 방지됨과 동시에 정형성을 갖게 된다. 이에 따라 다공성 구조체를 특정 입체형상으로 제조할 수 있어 단열재 등 다양한 용도로 활용할 수 있는 장점이 있다. The porous structure of the present invention is prepared by mixing a microcapsule blowing agent and a binder in a pore structure such as a silica-based airgel, so that the powder is prevented from flying and has crystallization. Accordingly, the porous structure can be manufactured in a specific three-dimensional shape has the advantage that can be utilized for various uses, such as insulation.
그리고, 본 발명의 다공성 구조체는 기공구조체의 기공과 마이크로캡슐 발포제의 발포 기공이 더해지므로 기공률이 매우 높은 특성을 갖는다. 이에 따라 본 발명의 다공성 구조체는 낮은 열전도도를 가져 단열재로 사용될 경우 단열성이 크게 향상되는 효과가 있다. In addition, the porous structure of the present invention has a very high porosity because the pores of the pore structure and the foamed pores of the microcapsule blowing agent are added. Accordingly, the porous structure of the present invention has a low thermal conductivity, and when used as a heat insulating material, the heat insulating property is greatly improved.
또한 본 발명의 다공성 구조체는 실리카계 에어로겔 등 기공구조체 뿐 아니라 마이크로캡슐 발포제가 포함되어 그 발포 기공이 전체 기공률을 높이므로, 비교적 고가인 기공구조체의 원재료 비중이 상대적으로 낮아질 수 있다. 이에 따라 다공성 구조체를 제조하기 위한 제조비가 낮아져 경제성이 향상되는 효과도 있다. In addition, the porous structure of the present invention includes a microcapsule blowing agent as well as a pore structure such as a silica airgel, so that the foamed pores increase the overall porosity, the specific gravity of the relatively expensive pore structure can be relatively low. Accordingly, the manufacturing cost for manufacturing the porous structure is lowered, thereby improving the economic efficiency.
도 1은 본 발명에 의한 다공성 구조체의 일실시례를 보인 사진.1 is a photograph showing an embodiment of a porous structure according to the present invention.
도 2는 본 발명에 의한 다공성 구조체의 일실시례의 단면을 현미경으로 관찰한 사진. Figure 2 is a photograph of the cross-sectional view of one embodiment of the porous structure according to the present invention under a microscope.
도 3은 본 발명에 의한 다공성 구조체를 제조하기 위한 방법의 일실시례를 순차적으로 보인 순서도.Figure 3 is a flow chart showing sequentially one embodiment of a method for producing a porous structure according to the present invention.
이하, 본 발명의 일부 실시례들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명의 실시례를 설명함에 있어, 관련된 공지구성 또는 기능에 대한 구체적인 설명이 본 발명의 실시례에 대한 이해를 방해한다고 판단되는 경우에는 그 상세한 설명은 생략한다.Hereinafter, some embodiments of the present invention will be described in detail through exemplary drawings. In adding reference numerals to the components of each drawing, it should be noted that the same reference numerals are assigned to the same components as much as possible even though they are shown in different drawings. In addition, in describing an embodiment of the present invention, if it is determined that the detailed description of the related known configuration or function is to interfere with the understanding of the embodiment of the present invention, the detailed description thereof will be omitted.
또한, 본 발명의 실시례의 구성 요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성요소에 "연결", "결합" 또는 "혼합"된다고 기재된 경우, 그 구성 요소는 그 다른 구성요소에 직접적으로 연결되거나 혼합될 수 있지만, 각 구성 요소 사이에 또 다른 구성 요소가 "연결", "결합" 또는 "혼합"될 수도 있다고 이해되어야 할 것이다.In addition, in explaining the component of the Example of this invention, terms, such as 1st, 2nd, A, B, (a), (b), can be used. These terms are only for distinguishing the components from other components, and the nature, order or order of the components are not limited by the terms. If a component is described as being "connected", "coupled", or "mixed" to another component, that component may be directly connected or mixed with that other component, but there is another component between each component. It will be understood that may be "connected", "coupled" or "mixed".
본 발명에 의한 다공성 구조체는 기공구조체, 마이크로캡슐 발포제 및 바인더를 혼합하여 가공한 입체구조로, 도 1에서 보듯이 특정 형태로 제조한 후에 재단하여 다양한 용도, 예를 들어 단열재, 방한용품 또는 신발의 밑창과 같이 다양한 목적으로 사용될 수 있다. 이 중에서 단열재는 건축물의 단열재뿐 아니라, 항공기, 우주복, 냉장고 등 가전제품과 같이 매우 넓은 활용도를 가질 수 있다. 특히 본 발명에 의한 다공성 구조체는 그 형태가공이 매우 용이하므로, 원하는 두께와 크기로 재단하여 다양한 곳에 활용할 수 있다. Porous structure according to the present invention is a three-dimensional structure processed by mixing a pore structure, a microcapsule foaming agent and a binder, as shown in Figure 1 after being manufactured in a specific form and cut for various uses, such as insulation, cold protection goods or shoes It can be used for a variety of purposes, such as soles. Among them, the heat insulating material may have a very wide application, such as home appliances such as aircraft, space suits, refrigerators, as well as heat insulating material of the building. In particular, since the porous structure according to the present invention is very easy to process the shape, it can be used in various places by cutting to the desired thickness and size.
본 발명에 의한 다공성 구조체를 구성하는 기공구조체는 미세기공이 포함되는 구조체로, 본 실시례에서는 실리카 에어로겔이다. 상기 기공구조체는 미세기공이 포함된 다양한 예가 가능한데, 예를 들어 실리카 에어로겔뿐 아니라, 실리카계 나노기공소재, 알루미나계 기공소재, 타이타니아계 기공소재, 지르코니아계 기공소재 또는 탄소계 기공소재 중 어느 하나이거나 이들을 혼합한 것일 수 있다. 즉, 상기 기공구조체는 종래 개발된 미세기공이 함유된 다양한 기공소재 중에서 선택될 수 있다. The pore structure constituting the porous structure according to the present invention is a structure containing micropores, in this embodiment is a silica airgel. The pore structure may be various examples including fine pores, for example, silica airgel, as well as any one of silica-based nanoporous material, alumina-based pore material, titania-based pore material, zirconia-based pore material or carbon-based pore material It may be a mixture of these. That is, the pore structure may be selected from various pore materials containing the micropores developed in the past.
본 발명에서 상기 기공구조체에 마이크로캡슐 발포제가 추가된다. 상기 마이크로캡슐 발포제는 가열을 통해 발포되어 기공이 형성되는 것으로, 열팽창성 마이크로캡슐(thermally expandable microcapsule)이다. 상기 마이크로캡슐 발포제는 고온에서 급격하게 팽창(발포)하는 성질을 갖는데, 이러한 팽창을 통해 각입자는 체적이 증가하고 비중이 낮아진다. 또한, 상기 마이크로캡슐 발포제는 미세하고 균일한 독립기포가 형성되고, 바인더와 혼합된 상태에서도 팽창이 가능하다. 상기 마이크로캡슐 발포제 구조의 일례로는, 탄화수소 외부를 아크릴계 열가소성 수지로 감싸는 구조일 수 있다. 이에 따라 가열에 의해 외피수지가 연화됨과 동시에 내포된 발포제의 증기압이 상승하여 외피수지가 팽창되고, 가열이 정지되면 외피수지가 경화되어 다공성 구조를 갖게 된다. In the present invention, a microcapsule blowing agent is added to the pore structure. The microcapsule foaming agent is foamed through heating to form pores, and is a thermally expandable microcapsule. The microcapsule foaming agent has a property of rapidly expanding (expanding) at high temperatures, through which the particles increase in volume and have low specific gravity. In addition, the microcapsule foaming agent is a fine and uniform independent bubble is formed, it is possible to expand even in a mixed state with the binder. As an example of the structure of the microcapsule blowing agent, it may be a structure surrounding the outside of the hydrocarbon with an acrylic thermoplastic resin. Accordingly, the outer resin is softened by heating, and the vapor pressure of the foaming agent is increased to expand the outer resin, and when the heating is stopped, the outer resin is cured to have a porous structure.
한편, 상기 기공구조체 및 마이크로캡슐 발포제의 혼합물은 바인더를 통해 서로 결합될 수 있다. 상기 바인더는 에틸렌 초산비닐(EVA)계, 폴리비닐알코올(PVA)계, 아크릴(Acryl)계, 아크릴아마이드(Acrylamide)계, 염화비닐(PVC)계, 폴리비닐아세탈(polyvinyl acetal)계, 아크릴계, 포화 폴리에스테르계, 폴리아미드계, 폴리에틸렌계, 천연고무계, 합성고무계, 실리콘계 또는 멜라민계 중 어느 하나 일 수 있으며, 또는 이들을 혼합한 것일 수도 있다. 본 실시례에서 상기 바인더는 EVA계 수성 에멀젼형 접착제이다. On the other hand, the mixture of the pore structure and the microcapsule blowing agent may be bonded to each other through a binder. The binder is ethylene vinyl acetate (EVA), polyvinyl alcohol (PVA), acryl (acryl), acrylamide (acrylamide), vinyl chloride (PVC), polyvinyl acetal, acrylic, It may be any of saturated polyester, polyamide, polyethylene, natural rubber, synthetic rubber, silicone, or melamine, or a mixture thereof. In this embodiment, the binder is an EVA-based aqueous emulsion adhesive.
상기 기공구조체, 마이크로캡슐 발포제 및 바인더는 적절한 배율로 혼합되어야 하는데, 상대적으로 바인더의 함유량이 높게 형성된다. 상기 바인더는 아래에서 설명될 가열과정을 통해 수분이 제거되므로, 가공 후의 다공성 구조체에서 차지하는 중량은 줄어들게 된다. The pore structure, the microcapsule blowing agent and the binder should be mixed at an appropriate magnification, and the binder content is relatively high. Since the binder removes moisture through the heating process described below, the weight of the binder is reduced in the porous structure after processing.
(제조례1)(Production example 1)
도 1은 본 발명에 의해 제조된 다공성 구조체의 사진이다. 본 제조례에서 사용된 기공구조체는 실리카 에어로겔이다. 상기 실리카 에어로겔은 대한민국 공개특허 제10-2015-0078955호인 '실리카 에어로겔의 제조방법과 상기 방법을 이용하여 제조된 실리카 에어로겔'의 방법으로 제조된 에어로겔을 사용하였다. 1 is a photograph of a porous structure produced by the present invention. The pore structure used in this example is silica airgel. The silica airgel was an airgel prepared by the method of 'silica airgel prepared using the method and the silica airgel prepared using the method' of the Republic of Korea Patent Publication No. 10-2015-0078955.
사용된 상기 실리카 에어로겔의 열전도도는 0.026(W/mK)이고 마이크로캡슐 발포제는 입도 20㎛~50㎛이다. 상기 마이크로캡슐 발포제는 초기팽창온도는 130℃~150℃이며 최대팽창온도는 160℃~180℃인 CELLCOM-CAP170K(㈜금양)이다. 바인더로는 고형분 50%의 EVA계 수성 에멀젼형 접착제를 사용하였다.The thermal conductivity of the silica airgel used is 0.026 (W / mK) and the microcapsule blowing agent has a particle size of 20㎛ ~ 50㎛. The microcapsule blowing agent is CELLCOM-CAP170K (Geumyang), the initial expansion temperature is 130 ℃ ~ 150 ℃ and the maximum expansion temperature is 160 ℃ ~ 180 ℃. As the binder, an EVA-based aqueous emulsion type adhesive having a solid content of 50% was used.
상기 기공구조체, 마이크로캡슐 발포제 및 바인더는 용기 내부에서 혼합되는데, 실리카 에어로겔, 마이크로캡슐 발포제 및 바인더는 각각 2:2:10의 무게비로 혼합된다. 여기서 실리카 에어로겔과 마이크로캡슐의 혼합비율은 정형성과 단열효과를 모두 고려하여 선택된 것이다. 만약, 실리카 에어로겔과 마이크로캡슐의 혼합비율에서, 에어로겔의 상대함량이 높아지면 단열효과는 증가하나 정형성이 떨어지고, 반대로 실리카 에어로겔의 함량이 상대적으로 낮아지면 정형성은 향상되지만 단열효과를 기대할 수 없게 된다. The pore structure, the microcapsule blowing agent and the binder are mixed inside the container, and the silica airgel, the microcapsule blowing agent and the binder are mixed in a weight ratio of 2: 2: 10, respectively. Here, the mixing ratio of silica airgel and microcapsules is selected in consideration of both the shaping and the adiabatic effect. In the mixing ratio of silica airgel and microcapsules, when the relative content of the airgel increases, the thermal insulation effect increases but the crystallinity decreases. On the contrary, when the silica airgel content decreases relatively, the crystallization is improved, but the thermal insulation effect cannot be expected. .
상기 혼합물은 가열과정을 거쳐 제조된다. 상기 가열과정은 1차가열 및 2차가열로 구성된다. 여기서 1차가열은 상기 혼합물을 가열하여 바인더의 수분과 용제를 제거하기 위한 건조단계이며, 2차가열은 상기 혼합물에 포함된 마이크로캡슐 발포제를 발포시키기 위한 발포단계로 볼 수 있다. 발포를 위한 2차가열은 약 5분 내지 10분간 진행된다. The mixture is prepared by heating. The heating process consists of primary heating and secondary heating. Here, the primary heating is a drying step for removing the water and the solvent of the binder by heating the mixture, the secondary heating can be seen as a foaming step for foaming the microcapsule blowing agent contained in the mixture. Secondary heating for foaming takes about 5 to 10 minutes.
상기 2차가열은 상기 1차가열에 비해 상대적으로 높은 온도에서 이루어지는데, 구체적으로는 상기 1차가열은 80℃~150℃에서 이루어지고, 상기 2차가열은 130℃~200℃에서 이루어지는 것이 바람직하다. 참고로, 본 발명 실시례에서 상기 마이크로캡슐 발포제의 초기팽창온도는 130℃~150℃이고, 최대팽창온도는 160℃~180℃인 CELLCOM-CAP170K이다. The secondary heating is made at a relatively high temperature than the primary heating, specifically, the primary heating is made at 80 ℃ ~ 150 ℃, the secondary heating is preferably made at 130 ℃ ~ 200 ℃. . For reference, in the present invention, the initial expansion temperature of the microcapsule blowing agent is 130 ℃ ~ 150 ℃, the maximum expansion temperature is 160 ℃ ~ 180 ℃ CELLCOM-CAP170K.
한편, 본 제조례1에서 실리카 에어로겔, 마이크로캡슐 발포제, 바인더를 각각 2:2:10의 무게비로 혼합한 혼합물은 건조 오븐에서 80℃~100℃의 온도로 1차가열되어 건조된다. 이 과정에서 상기 바인더의 수분과 용제가 제거된다. On the other hand, in the Preparation Example 1, the mixture of silica airgel, microcapsule blowing agent, and binder, each at a weight ratio of 2: 2: 10, is first heated to a temperature of 80 ° C to 100 ° C in a drying oven and dried. In this process, water and solvent of the binder are removed.
이어서, 건조된 혼합물을 180℃~200℃의 오븐에서 용기에 넣고 2차가열하여 발포한다. 즉, 이 과정에서 마이크로캡슐 발포제가 발포하게 되는 것인데, 이에 따라 다공성 구조체는 기공구조체의 기공과 마이크로캡슐 발포제의 발포 기공이 더해지므로 기공률이 매우 높아진다. 따라서 동일한 단열성능을 구현하기 위한 다공성 구조체를 제조하는데 필요한 기공구조체의 원재료 비중이 낮아질 수 있다. 도 2는 도 1의 다공성 구조체를 단면처리한 후에 현미경으로 확인한 사진이다. 테스트 결과 제조된 단열재의 열전도도는 0.028(W/mK)로 측정되었다. 참고로, 본 제조방법을 적용할 경우에 얻어지는 열전도도인 0.028(W/mK)는 종래기술, 즉 발포제가 생략된 실리카 에어로겔만으로 제조된 제품의 열전도도와 거의 동일하다. 따라서, 본 발명에 의하면, 상대적으로 적은 비용으로 동일한 단열효과를 얻을 수 있을 뿐 아니라, 정형성을 부여하여 보다 다양한 형상을 용이하게 만들어낼 수 있는 것이다. Subsequently, the dried mixture is placed in a container in an oven at 180 ° C. to 200 ° C., and then secondaryly heated and foamed. That is, in this process, the microcapsule foaming agent is foamed. Accordingly, the porosity of the porous structure is very high because the pores of the pore structure and the foamed pores of the microcapsule foaming agent are added. Therefore, the specific gravity of the raw material of the pore structure required to manufacture the porous structure to implement the same insulation performance can be lowered. Figure 2 is a photograph confirmed by the microscope after cross-sectional processing of the porous structure of FIG. As a result of the test, the thermal conductivity of the manufactured insulation was measured to be 0.028 (W / mK). For reference, 0.028 (W / mK), which is a thermal conductivity obtained when the present production method is applied, is almost the same as that of a conventional product, that is, a product manufactured by using only silica aerogel without foaming agent. Therefore, according to the present invention, not only the same heat insulating effect can be obtained at a relatively low cost, but also the formation of more various shapes can be easily made by giving a shaping.
물론, 필요한 경우에는 상기 발포단계에 이어, 제조된 다공성 구조체를 일정형태로 재단하는 재단단계가 더 포함될 수도 있다. 상기 다공성 구조체는 기공구조체에 마이크로캡슐 발포제와 바인더가 혼합되어 제조되므로 분말이 날리는 것이 방지됨과 동시에 정형성을 갖게 되고, 이에 따라 다공성 구조체를 특정 입체형상으로 제조 및 재단할 수 있는 것이다. 참고도 도 1에는 제조된 다공성 구조체를 재단하여 단면처리한 모습이 도시되어 있다. 이와 같이 다공성 구조체를 재단하더라도 다공성 구조체는 입체형태를 유지하게 되므로, 본 발명의 다공성 구조체는 다양한 형상으로 재단하는 후가공이 가능하다. Of course, if necessary, after the foaming step, a cutting step of cutting the manufactured porous structure into a predetermined form may be further included. Since the porous structure is prepared by mixing the microcapsule blowing agent and the binder in the pore structure, the powder is prevented from being blown, and at the same time, it has a crystallization, and thus the porous structure can be manufactured and cut into a specific three-dimensional shape. Reference figure 1 is a cross-sectional view of the prepared porous structure is shown. In this way, even when the porous structure is cut, the porous structure maintains a three-dimensional shape, and thus the porous structure of the present invention can be cut after cutting into various shapes.
이상에서, 본 발명에 따른 실시례를 구성하는 모든 구성 요소들이 하나로 결합하거나 결합하여 동작하는 것으로 설명되었다고 해서, 본 발명이 반드시 이러한 실시례에 한정되는 것은 아니다. 즉, 본 발명의 목적 범위 안에서라면, 그 모든 구성 요소들이 하나 이상으로 선택적으로 결합하여 동작할 수도 있다. 또한, 이상에서 기재된 "포함하다", "구성하다" 또는 "가지다" 등의 용어는, 특별히 반대되는 기재가 없는 한, 해당 구성 요소가 내재할 수 있음을 의미하는 것이므로, 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것으로 해석되어야 한다. 기술적이거나 과학적인 용어를 포함한 모든 용어들은, 다르게 정의되지 않는 한, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미가 있다. 사전에 정의된 용어와 같이 일반적으로 사용되는 용어들은 관련 기술의 문맥상의 의미와 일치하는 것으로 해석되어야 하며, 본 발명에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.In the foregoing description, the present invention is not necessarily limited to these embodiments, although all of the components constituting the embodiments according to the present invention are described as being combined or operating in combination. In other words, within the scope of the present invention, all of the components may be selectively operated in combination with one or more. In addition, the terms "comprise", "comprise" or "having" described above mean that the corresponding component may be inherent unless specifically stated otherwise, and thus excludes other components. It should be construed that it may further include other components instead. All terms, including technical and scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art unless otherwise defined. Terms used generally, such as terms defined in a dictionary, should be interpreted to coincide with the contextual meaning of the related art, and shall not be interpreted in an ideal or excessively formal sense unless explicitly defined in the present invention.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시례들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시례에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely illustrative of the technical idea of the present invention, and those skilled in the art to which the present invention pertains may make various modifications and changes without departing from the essential characteristics of the present invention. Therefore, the embodiments disclosed in the present invention are not intended to limit the technical spirit of the present invention but to describe the present invention, and the scope of the technical idea of the present invention is not limited by these embodiments. The protection scope of the present invention should be interpreted by the following claims, and all technical ideas within the equivalent scope should be interpreted as being included in the scope of the present invention.

Claims (10)

  1. 기공구조체, 마이크로캡슐 발포제 및 바인더를 혼합한 후에 가열을 통해 발포하여 제조되는 다공성 구조체.Porous structure prepared by mixing the pore structure, the microcapsule blowing agent and the binder and then foaming through heating.
  2. 제 1 항에 있어서, 상기 기공구조체는 실리카계 나노기공소재, 실리카 에어로겔, 알루미나계 기공소재, 타이타니아계 기공소재, 지르코니아계 기공소재 또는 탄소계 기공소재 중 어느 하나이거나 이들을 혼합한 것인 다공성 구조체.The porous structure of claim 1, wherein the pore structure is any one of silica-based nanoporous material, silica airgel, alumina-based pore material, titania-based pore material, zirconia-based pore material, or carbon-based pore material.
  3. 제 2 항에 있어서, 상기 마이크로캡슐 발포제의 직경은 10~60㎛이고, 상기 가열은 1차가열 및 2차가열을 포함하며, 상기 1차가열은 80~150℃, 상기 2차가열은 130~200℃에서 이루어지는 다공성 구조체.According to claim 2, wherein the diameter of the microcapsule blowing agent is 10 ~ 60㎛, the heating includes a primary heating and secondary heating, the primary heating is 80 ~ 150 ℃, the secondary heating is 130 ~ Porous structure made at 200 ℃.
  4. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서, 상기 바인더는 에틸렌 초산비닐(EVA)계, 폴리비닐알코올(PVA)계, 아크릴(Acryl)계, 아크릴아마이드(Acrylamide)계, 염화비닐(PVC)계, 폴리비닐아세탈(polyvinyl acetal)계, 아크릴계, 포화 폴리에스테르계, 폴리아미드계, 폴리에틸렌계, 천연고무계, 합성고무계, 실리콘계 또는 멜라민계 중 어느 하나이거나 이들을 혼합한 것인 다공성 구조체.The method of claim 1, wherein the binder is ethylene vinyl acetate (EVA), polyvinyl alcohol (PVA), acrylic (Acryl), acrylamide, vinyl chloride (PVC) ), A polyvinyl acetal (polyvinyl acetal), acrylic, saturated polyester, polyamide, polyethylene, natural rubber, synthetic rubber, silicone or melamine-based porous structure of any one or a mixture thereof.
  5. 다공성 구조체의 제조방법으로서, As a method for producing a porous structure,
    기공구조체 및 마이크로캡슐 발포제에 바인더를 부가하여 혼합물을 형성하는 단계와,Adding a binder to the pore structure and the microcapsule blowing agent to form a mixture,
    상기 혼합물을 가열하여 바인더의 수분과 용제를 제거하는 건조단계와,A drying step of heating the mixture to remove water and solvent from the binder;
    상기 혼합물을 상대적으로 높은 온도로 재가열하여 마이크로캡슐 발포제를 발포시키는 발포단계를 포함하는 다공성 구조체 제조방법.And re-heating the mixture to a relatively high temperature to foam the microcapsule blowing agent.
  6. 제 5 항에 있어서, 상기 기공구조체는 실리카계 나노기공소재, 실리카 에어로겔, 알루미나계 기공소재, 타이타니아계 기공소재, 지르코니아계 기공소재 또는 탄소계 기공소재 중 어느 하나이거나 이들을 혼합한 것인 다공성 구조체 제조방법.The method of claim 5, wherein the pore structure is any one of silica-based nanoporous material, silica airgel, alumina-based pore material, titania-based pore material, zirconia-based pore material or carbon-based pore material or a mixture thereof Way.
  7. 제 6 항에 있어서, 상기 바인더는 에틸렌 초산비닐(EVA)계, 폴리비닐알코올(PVA)계, 아크릴(Acryl)계, 아크릴아마이드(Acrylamide)계, 염화비닐(PVC)계, 폴리비닐아세탈(polyvinyl acetal)계, 아크릴계, 포화 폴리에스테르계, 폴리아미드계, 폴리에틸렌계, 천연고무계, 합성고무계, 실리콘계 또는 멜라민계 중 어느 하나이거나 이들을 혼합한 것인 다공성 구조체 제조방법.The method of claim 6, wherein the binder is ethylene vinyl acetate (EVA), polyvinyl alcohol (PVA), acryl (acryl), acrylamide (acrylamide), vinyl chloride (PVC), polyvinyl acetal (polyvinyl) acetal), acrylic, saturated polyesters, polyamides, polyethylenes, natural rubbers, synthetic rubbers, silicones or melamines, or a mixture thereof.
  8. 제 5 항 내지 제 7 항 중 어느 한 항에 있어서, 상기 건조단계에서 상기 혼합물은 80℃~150℃에서 가열되고, 상기 발포단계에서 상기 혼합물은 130℃~200℃에서 가열되는 다공성 구조체 제조방법.The method of claim 5, wherein the mixture is heated at 80 ° C. to 150 ° C. in the drying step, and the mixture is heated at 130 ° C. to 200 ° C. in the foaming step.
  9. 제 5 항에 있어서, 상기 발포단계에 이어 제조된 다공성 구조체를 일정형태로 재단하는 재단단계가 더 포함되는 다공성 구조체 제조방법.According to claim 5, Porous structure manufacturing method further comprises a cutting step of cutting the porous structure produced in a predetermined form following the foaming step.
  10. 제 5 항에 있어서, 상기 혼합물은 일정형태를 갖는 용기에 담긴 상태로 건조 및 발포되는 다공성 구조체 제조방법.The method of claim 5, wherein the mixture is dried and foamed in a container having a predetermined shape.
PCT/KR2017/003358 2016-03-28 2017-03-28 Porous structure and preparation method thereof WO2017171371A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0037122 2016-03-28
KR1020160037122A KR101756862B1 (en) 2016-03-28 2016-03-28 Porous structure and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2017171371A1 true WO2017171371A1 (en) 2017-10-05

Family

ID=59427896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/003358 WO2017171371A1 (en) 2016-03-28 2017-03-28 Porous structure and preparation method thereof

Country Status (2)

Country Link
KR (1) KR101756862B1 (en)
WO (1) WO2017171371A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102314067B1 (en) * 2019-08-16 2021-10-19 주식회사 지엘켐 A manufacturing method of hydrophobic silica aerogel powder with surfactant applied, a composite foam having silica aerogel and composite foam using this

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0184031B1 (en) * 1994-04-27 1999-05-15 모리시타 요이찌 Heat insulating foamed material and method for manufacturing the same
US20040077738A1 (en) * 2002-05-15 2004-04-22 Cabot Corporation Aerogel and hollow particle binder composition, insulation composite, and method for preparing the same
KR20090061301A (en) * 2007-12-11 2009-06-16 삼성전자주식회사 Silica nanocomposite, method for preparing the same, composite foam and method for preparing the foam
KR20110139152A (en) * 2010-06-21 2011-12-28 삼성전자주식회사 Aerogel-foam composites
KR20130135867A (en) * 2010-12-07 2013-12-11 바스프 에스이 Melamine resin foams comprising nanoporous fillers

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0184031B1 (en) * 1994-04-27 1999-05-15 모리시타 요이찌 Heat insulating foamed material and method for manufacturing the same
US20040077738A1 (en) * 2002-05-15 2004-04-22 Cabot Corporation Aerogel and hollow particle binder composition, insulation composite, and method for preparing the same
KR20090061301A (en) * 2007-12-11 2009-06-16 삼성전자주식회사 Silica nanocomposite, method for preparing the same, composite foam and method for preparing the foam
KR20110139152A (en) * 2010-06-21 2011-12-28 삼성전자주식회사 Aerogel-foam composites
KR20130135867A (en) * 2010-12-07 2013-12-11 바스프 에스이 Melamine resin foams comprising nanoporous fillers

Also Published As

Publication number Publication date
KR101756862B1 (en) 2017-07-27

Similar Documents

Publication Publication Date Title
CN108778707B (en) Insulating material
EP1515796B1 (en) Aerogel and hollow particle binder composition, insulation composite therewith, and method of preparation
AU2012224772B2 (en) Composite elements
US20170356589A1 (en) Thermally Insulative Expanded Polytetrafluoroethylene Article
KR102475767B1 (en) Method of preparing for aerogel blanket
CN101248124A (en) Open-cell foam having fire-retardant and oleophobic/hydrophobic properties and method for producing the same
KR20150090320A (en) A manufacturing method of multiple insulting material binded to aerogel multiple material and multiple insulting material thereby
CN107215035A (en) A kind of insulation flame-retardant board
US10364932B2 (en) Hybrid high temperature insulation
WO2017171371A1 (en) Porous structure and preparation method thereof
CN114231202B (en) Sponge adhesive tape and preparation method thereof
KR101489583B1 (en) Non-Flammable composite for expanded polystyrene foam and manufacturing method thereof
KR20190138459A (en) Thermal insulating material Phaving prous structure and manufacturing method thereof
CN103132620B (en) Integrated closed-cell perlite insulation board
US9126386B2 (en) Composite elements
CN104974581A (en) Super-hydrophobic heat-insulating coating and preparation method thereof
KR101928336B1 (en) Composition for polystyrene foam and a manufacturing method for extruded polystyrene form using the same
JP2009269329A (en) Foamed plastic base heat insulating material
KR102314067B1 (en) A manufacturing method of hydrophobic silica aerogel powder with surfactant applied, a composite foam having silica aerogel and composite foam using this
CN105177992B (en) A kind of inflaming retarding fabric based on foamy carbon and preparation method thereof
KR102286506B1 (en) Heat insulation material using aerogel and method for preparing same
KR20180102784A (en) Organic insulation including expanding inorganic aggregate
CN105175919A (en) Polystyrene composition, and flame retardation and heat insulation composite board produced by using composition
CN109930765A (en) A kind of gel polyurethane compound thermal-insulating decorative integrated board and preparation method thereof
KR20190100618A (en) a production method of a highly flame resisting and heat insulating styrofoam and the styrofoam thereof

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17775795

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17775795

Country of ref document: EP

Kind code of ref document: A1