WO2017170953A1 - Swashplate compressor - Google Patents

Swashplate compressor Download PDF

Info

Publication number
WO2017170953A1
WO2017170953A1 PCT/JP2017/013446 JP2017013446W WO2017170953A1 WO 2017170953 A1 WO2017170953 A1 WO 2017170953A1 JP 2017013446 W JP2017013446 W JP 2017013446W WO 2017170953 A1 WO2017170953 A1 WO 2017170953A1
Authority
WO
WIPO (PCT)
Prior art keywords
swash plate
rotor
arm
transmission mechanism
coating
Prior art date
Application number
PCT/JP2017/013446
Other languages
French (fr)
Japanese (ja)
Inventor
恭平 山根
Original Assignee
大豊工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大豊工業株式会社 filed Critical 大豊工業株式会社
Publication of WO2017170953A1 publication Critical patent/WO2017170953A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/10Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F04B27/12Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders having plural sets of cylinders or pistons

Definitions

  • the present invention relates to the technology of a swash plate type compressor.
  • Patent Document 1 the technology of a swash plate type compressor is known. For example, it is as described in Patent Document 1.
  • a rotatable drive shaft a rotor integrally provided rotatably with the drive shaft, a swash plate slidably supported on the drive shaft and tiltably supported, and an outer periphery of the swash plate
  • a swash plate compressor (variable displacement swash plate compressor) which comprises a piston anchored via a shoe to a section and a transmission mechanism (hinge mechanism) interposed between the rotor and the swash plate.
  • the rotational motion of the drive shaft is converted to the reciprocating motion of the piston through the rotor, the transmission mechanism and the swash plate, and the swash plate is slid while being guided on the drive shaft by the guide of the transmission mechanism. By being moved, the displacement of the piston is changed.
  • the transmission mechanism includes a link rotatably connected to an arm provided on the rotor and an arm provided on the swash plate.
  • the rotor and the swash plate are connected by the link.
  • the rotor and the arm portion of the swash plate and the link are engaged by bringing the side surfaces into abutment with each other, and the rotational force from the rotor is transmitted to the swash plate via the transmission mechanism.
  • the link can rotate relative to the rotor and the arm portion of the swash plate to allow tilting of the swash plate.
  • the present invention has been made in view of the above circumstances, and the problem to be solved is to provide a swash plate type compressor in which the problems caused by the parts where the rotor, swash plate and transmission mechanism contact each other are improved. It is a thing.
  • a rotor fixed to a rotating shaft, a swash plate connected to a piston and supported so as to be able to tilt with respect to the rotating shaft, and the swash plate with rotation of the rotor
  • a coating unit for covering the surface of a portion where the rotor, the swash plate, and the transmission mechanism are in contact with each other.
  • the said coating part is formed in the part in which the said rotor, the said swash plate, and the said transmission mechanism oppose the circumferential direction of the said rotating shaft.
  • the transmission mechanism includes an arm portion, and a shaft portion rotatably connecting the arm portion, the rotor, and the swash plate, and the coating portion includes the shaft portion and the arm portion. And a sliding surface formed between the rotor and the swash plate.
  • the coating portion includes a plurality of portions formed of different materials.
  • the problems caused by the abutting portion of the transmission mechanism can be improved.
  • Vibration and noise can be reduced in the swash plate compressor of the present invention.
  • the slidability between the transmission mechanism and the rotor and the swash plate can be improved when the swash plate is tilted.
  • the swash plate type compressor 1 is a swash plate type compressor used for, for example, an air conditioner for vehicles.
  • the swash plate type compressor 1 mainly comprises a housing 10, a rotating shaft 20, a rotor 30, a swash plate 40, a piston 50, a shoe 60, a spring 70, a control valve 80, a transmission mechanism 100 and a coating portion 150.
  • the housing 10 is formed in a substantially box shape. Inside the housing 10, a crank chamber 10a is provided. A cylinder block 11 is provided at the front and rear midway portion of the housing 10.
  • a cylinder bore 11 a is formed in the cylinder block 11.
  • the cylinder bore 11a is formed to have a circular cross section with the axial direction directed in the front-rear direction. Although only one cylinder bore 11a is shown in FIG. 1, a plurality of cylinder bores 11a are formed at intervals in the circumferential direction.
  • a compression chamber 11 b is formed behind the piston 50 described later in the cylinder bore 11 a.
  • the rotation shaft 20 is disposed with the axial direction directed in the front-rear direction.
  • the rotation shaft 20 is rotatably supported at a central portion of the housing 10.
  • One end (front end) of the rotating shaft 20 is connected to a drive source (not shown).
  • the rotor 30 is a substantially disk-shaped member whose axial direction is directed in the front-rear direction.
  • the rotor 30 is fixed to the rotating shaft 20 so that the axial direction coincides with the axial direction of the rotating shaft 20.
  • the rotor 30 is formed integrally rotatable with the rotation shaft 20.
  • the rotor 30 comprises a rotor side arm 31.
  • the rotor side arm 31 is provided at the rear of the rotor 30 (the side facing the swash plate 40).
  • the rotor side arm 31 is formed to project rearward from the rotor 30.
  • the rotor side arm 31 is integrally formed with the rotor 30 at the rear of the rotor 30.
  • Two rotor side arms 31 are formed at intervals in the circumferential direction of the rotor 30 (see FIG. 4).
  • the swash plate 40 is a member formed in a circular flat plate shape.
  • the rotation shaft 20 is inserted through the central portion of the swash plate 40.
  • the swash plate 40 is provided at the front and rear midway portion of the rotating shaft 20.
  • the swash plate 40 is provided on the rear side of the rotor 30.
  • the swash plate 40 is supported so as to be slidable back and forth with respect to the rotation shaft 20 and to be able to tilt back and forth.
  • the swash plate 40 is not fixed to the rotation shaft 20, but rotates with the rotation of the rotation shaft 20 (the rotor 30) by the transmission mechanism 100 described later.
  • the swash plate 40 includes a swash plate side arm 41.
  • the swash plate side arm 41 is provided on the front of the swash plate 40 (the side facing the rotor 30).
  • the swash plate side arm 41 is formed to project substantially forward from the swash plate 40.
  • the swash plate side arm 41 is disposed between the two rotor side arms 31 in the circumferential direction.
  • the piston 50 slides on a cylinder bore 11 a formed in the cylinder block 11.
  • the piston 50 mainly includes an engaging portion 51 and a head 52.
  • the engaging portion 51 is a portion engaged with the swash plate 40.
  • a notch is formed in one side portion (lower portion) of the front of the engagement portion 51.
  • the engaging portion 51 is disposed such that the notch portion straddles the outer peripheral end portion of the swash plate 40.
  • the engaging portion 51 is engaged with the swash plate 40 via a shoe 60 described later.
  • the head 52 is a portion slidably disposed relative to the cylinder bore 11a.
  • the head 52 is formed at the rear of the engaging portion 51.
  • the head 52 is formed to have a circular cross section with the axial direction directed in the front-rear direction.
  • the outer diameter of the head 52 is formed to be substantially the same as the inner diameter of the cylinder bore 11a.
  • the shoe 60 engages the swash plate 40 with the piston 50 (engaging portion 51).
  • the shoe 60 is formed in a substantially hemispherical shape.
  • the shoes 60 are respectively disposed before and after the outer peripheral end of the swash plate 40.
  • the shoe 60 is disposed such that the flat portion is in contact with the swash plate 40.
  • the shoe 60 is arranged such that the spherical portion can swing relative to the notch of the engaging portion 51.
  • the spring 70 biases the swash plate 40.
  • the spring 70 is a compression spring.
  • the rotation shaft 20 is inserted through the central portion of the spring 70.
  • the springs 70 are disposed at the front and the back of the swash plate 40, respectively, with the expansion and contraction direction oriented in the front and back direction. Thus, the spring 70 biases the swash plate 40 from the front and back.
  • the control valve 80 adjusts the internal pressure of the crank chamber 10a.
  • the control valve 80 is disposed at the rear of the housing 10.
  • the transmission mechanism 100 rotates the swash plate 40 as the rotor 30 rotates. Further, the transmission mechanism 100 guides the tilting of the swash plate 40.
  • FIGS. 1 to 6 the configuration of the transmission mechanism 100 will be described using FIGS. 1 to 6.
  • FIG.1, FIG.2, FIG.4, FIG.5 and FIG. 6 the state when the discharge capacity of the swash plate type compressor 1 is the minimum is shown, and in FIG. 3, the discharge capacity of the swash plate type compressor 1 is the largest. It shows the state of the hour.
  • the transmission mechanism 100 is formed to connect the rotor 30 and the swash plate 40.
  • the transmission mechanism 100 mainly includes a connection arm 110, a rotor side connection pin 120 and a swash plate side connection pin 130.
  • connection arm 110 is a portion which connects the rotor side arm 31 and the swash plate side arm 41 in the transmission mechanism 100.
  • the connection arm 110 is formed in a block shape extending substantially in the front-rear direction.
  • the front part of the connecting arm 110 is disposed between the two rotor side arms 31.
  • the rear portion of the connection arm 110 is divided into two in the circumferential direction.
  • a front end portion of the swash plate side arm 41 is disposed at the divided portion of the connection arm 110.
  • the rotor side connection pin 120 rotatably connects the rotor side arm 31 and the connection arm 110.
  • the rotor side connection pin 120 is formed in a substantially cylindrical shape extending leftward and rightward.
  • the rotor side connection pin 120 is inserted through the two rotor side arms 31 and the connection arm 110 so as to be rotatable. As a result, the rotor side arm 31 and the connection arm 110 are connected so as to be relatively rotatable around the rotor side connection pin 120.
  • the swash plate side connection pin 130 rotatably connects the swash plate side arm 41 and the connection arm 110.
  • the swash plate side connection pin 130 is formed in a substantially cylindrical shape extending leftward and rightward.
  • the swash plate side connection pin 130 is inserted through the rear portion (portion divided into two) of the connection arm 110 and the swash plate side arm 41 so as to be rotatable. As a result, the swash plate side arm 41 and the connection arm 110 are connected so as to be relatively rotatable around the swash plate side connection pin 130.
  • covers the surface of the part which the rotor 30, the swash plate 40, and the transmission mechanism 100 mutually contact
  • the coating unit 150 is formed on the transmission mechanism 100 side.
  • the coating unit 150 includes a first coating unit 151 and a second coating unit 152.
  • the first coating portion 151 shown in FIG. 5 is a portion of the coating portion 150 formed on the connection arm 110.
  • the first coating portion 151 is formed to cover the left and right outer side surfaces and the left and right inner side surfaces (inner surfaces of the divided portions) of the connection arm 110.
  • the first coating portion 151 is formed at a portion where the connection arm 110 opposes the rotor side arm 31 and the swash plate side arm 41 in the circumferential direction (the left and right direction in the drawing).
  • the first coating portion 151 is a resin-based coating layer containing 5 to 60% by mass of spherical graphite having an average particle diameter of 5 to 50 ⁇ m, with the balance being polyimide resin and / or polyamideimide resin.
  • the spherical graphite particles are those in which 50% or more of the total number of graphite particles is present in graphite particles having a ratio of minimum diameter / maximum diameter (particle ratio) of 0.5 or more.
  • the average particle diameter D of the spherical graphite particles is preferably in the range of 0.25 t ⁇ D ⁇ 0.67 t with respect to the film thickness t of the first coating portion 151.
  • the thickness t of the first coating portion 151 is preferably 5 to 50 ⁇ m, and more preferably 10 to 40 ⁇ m.
  • the graphitization degree of the spherical graphite particles is preferably 0.6 or more, more preferably 0.8 or more.
  • Such spherical graphite particles having a high degree of graphitization can be obtained by spheroidizing and grinding of graphite.
  • the spherical graphite particles are preferably blended in an amount of 5 to 60% by mass, more preferably 10 to 50% by mass, based on the entire first coating portion 151.
  • the remainder of the spherical graphite particles described above is a resinous binder made of polyimide (PI) and / or polyamideimide (PAI) resin.
  • PI polyimide
  • PAI polyamideimide
  • the polyimide liquid or solid powdery polyesterimide, aromatic polyimide, polyetherimide, bismaleimide or the like can be used.
  • the polyamideimide resin an aromatic polyamideimide resin can be used.
  • Each of these resins is characterized by having excellent heat resistance and a small coefficient of friction.
  • MoS 2 particles can be added as a solid lubricant, good sliding characteristics can be obtained because the solid lubricant action of the spherical graphite particles is sustained even if the MoS 2 particles are not added. .
  • materials other than the above can also be used, for example, what was suitably selected from solid lubricants, such as PTFE, graphite (graphite), MoS 2, etc. is blended with a resin type binder
  • solid lubricants such as PTFE, graphite (graphite), MoS 2, etc.
  • the materials (such as the materials described in JP-A-2005-89514) may be used.
  • the second coating portion 152 shown in FIG. 6 is a portion of the coating portion 150 formed on the rotor side connection pin 120 and the swash plate side connection pin 130.
  • the second coating portion 152 is formed to cover outer peripheral surfaces of the rotor side connection pin 120 and the swash plate side connection pin 130, respectively. While the first coated portion 151 is intended for durability and the like, the second coated portion 152 is intended for wear resistance and the like, and since the required roles of the two are slightly different, the second coated portion 152 is
  • the first coating portion 151 is formed of a material (raw material) different from that of the first coating portion 151 or a different mixing ratio.
  • the rotor 30 rotates integrally with the rotary shaft 20 around the axis of the rotary shaft 20. Then, the rotor side arm 31 provided on the rotor 30 also rotates about the axis of the rotation shaft 20.
  • connection arm 110 When the rotor side arm 31 rotates, the side surface (right and left inner side surface) of the rotor side arm 31 and the side surface (right and left outer side surface) of the connection arm 110 are engaged with each other. Thereby, the rotational force of the rotor 30 is transmitted to the connection arm 110. Furthermore, the side surface (right and left inner side surface) of the connection arm 110 engages with the side surface (right and left outer side surface) of the swash plate side arm 41 by abutting. Thereby, the rotational force of the connection arm 110 is transmitted to the swash plate side arm 41. Thus, the rotational force of the rotating shaft 20 is transmitted to the swash plate 40, and the swash plate 40 is rotated.
  • the swash plate type compressor 1 is formed so that the discharge capacity can be changed by tilting the swash plate 40 (the inclination angle of the swash plate 40 is changed).
  • the control of the displacement is performed by adjusting the difference in internal pressure between the crank chamber 10a and the compression chamber 11b by the control valve 80, thereby changing the inclination angle of the swash plate 40.
  • the swash plate 40 rotates clockwise in left side view.
  • the connection arm 110 can appropriately guide the rotation (tilting) of the swash plate 40 by rotating counterclockwise in left side view.
  • the inclination angle of the swash plate 40 is increased (see FIG. 3).
  • the displacement of the swash plate type compressor 1 is increased.
  • the connection arm 110 can appropriately guide the rotation (tilting) of the swash plate 40 by rotating clockwise in left side view. Thereby, the inclination angle of the swash plate 40 is reduced (see FIG. 2). As the inclination angle of the swash plate 40 is reduced, the displacement of the swash plate compressor 1 is reduced.
  • the first coating portion 151 is provided on the side surface of the connection arm 110, the clearance between the connection arm 110 and the rotor side arm 31 and the swash plate side arm 41 can be reduced. Thereby, when the rotational speed of the rotating shaft 20 changes (during acceleration and deceleration), vibration and noise when the connecting arm 110 collides with the rotor arm 31 and the swash plate arm 41 are reduced. Can.
  • the first coating portion 151 is formed of a resin softer than metal. Therefore, vibration and noise can be further reduced, and the swash plate 40 can be tilted smoothly even if the clearance between the connection arm 110 and the rotor side arm 31 and the swash plate side arm 41 is set small. .
  • the second coating portion 152 is provided on the rotor side connection pin 120 and the swash plate side connection pin 130, the slidability between the rotor side connection pin 120 and the rotor side arm 31 and the connection arm 110, and the swash plate The slidability between the side connection pin 130 and the swash plate side arm 41 and the connection arm 110 can be improved. Specifically, it is possible to reduce the friction of the connecting arm 110 and the like rotating around the rotor side connecting pin 120 and the swash plate side connecting pin 130, and to improve the wear resistance.
  • the formation of the coating portion 150 can improve the retention of the lubricating oil. Therefore, the slidability of the rotor 30 (the rotor side arm 31), the transmission mechanism 100 and the swash plate 40 (the swash plate side arm 41) can be improved.
  • the swash plate type compressor 1 includes the rotor 30 fixed to the rotating shaft 20, and the swash plate 40 connected to the piston 50 and supported so as to be tiltable with respect to the rotating shaft 20.
  • the coating portion 150 (first coating portion 151) is formed at a portion where the rotor 30, the swash plate 40 and the transmission mechanism 100 are opposed in the circumferential direction of the rotation shaft 20. With this configuration, vibration and noise can be reduced.
  • the transmission mechanism 100 includes a connection arm 110 (arm portion),
  • the coating unit 150 includes a rotor side connection pin 120 and a swash plate side connection pin 130 (shaft portion) that rotatably connects the connection arm 110 with the rotor 30 and the swash plate 40, respectively. It is formed on the sliding surfaces of the rotor side connection pin 120 and the swash plate side connection pin 130, the connection arm 110, the rotor 30 and the swash plate 40.
  • the coating unit 150 includes a first coating unit 151 and a second coating unit 152 (a plurality of portions) formed of different materials. By configuring in this way, different functions can be provided depending on the place.
  • connection arm 110 which concerns on this embodiment is one form of the arm part which concerns on this invention.
  • the rotor side connection pin 120 and the swash plate side connection pin 130 which concern on this embodiment are one form of the axial part which concerns on this invention.
  • the coating unit 150 is provided to the transmission mechanism 100.
  • the present invention is not limited to this, and the rotor 30 (rotor side arm 31) or the swash plate 40 (slanted) It may be provided on the plate side arm 41), and may be provided on both the transmission mechanism 100 and the rotor 30 (the rotor side arm 31) and the swash plate 40 (the swash plate side arm 41).
  • the first coating portion 151 is provided on the side surface of the connection arm 110, but may be provided on the side surface of the rotor side arm 31 or the swash plate side arm 41, It may be provided on both the side surface of the connection arm 110 and the side surfaces of the rotor side arm 31 and the swash plate side arm 41.
  • the second coating portion 152 is provided on the outer peripheral surface of the rotor side connection pin 120 and the swash plate side connection pin 130, but the rotor side arm 31, the swash plate side arm 41 and the connection It may be provided on the inner peripheral surface of the arm 110 (the inner peripheral surface of the hole through which the rotor side connection pin 120 etc. is inserted), and the rotor side connection pin 120 and the swash plate side connection pin 130 as well as the rotor side arm 31 It may be provided on both the plate side arm 41 and the connection arm 110.
  • the first coating portion 151 is formed on the connection arm 110, and the second coating portion 152 is formed on the rotor side connection pin 120 and the swash plate side connection pin 130, respectively.
  • the first coating portion 151 is formed on the connection arm 110
  • the second coating portion 152 is formed on the rotor side connection pin 120 and the swash plate side connection pin 130, respectively.
  • the first coating portion 151 is formed on the side surface of the connection arm 110
  • the second coating portion 152 is formed on the inner peripheral surface of the connection arm 110 (the inner peripheral surface of the hole through which the rotor side connection pin 120 etc. is inserted). It is also possible.
  • first coating portion 151 and the second coating portion 152 are formed of different materials, but the present invention is not limited to this, and the first coating portion 151 and the second coating portion 152 are not limited to this.
  • the second coating portion 152 may be formed of the same material.
  • both the 1st coating part 151 and the 2nd coating part 152 shall be provided, this invention is not limited to this, The 1st coating part 151 or the 2nd coating Either one of the units 152 may be provided.
  • the present invention can be applied to a swash plate compressor.
  • Reference Signs List 1 swash plate type compressor 20 rotary shaft 30 rotor 31 rotor side arm 40 swash plate 41 swash plate side arm 50 piston 100 transmission mechanism 150 coating portion 151 first coating portion 152 second coating portion

Abstract

The present invention provides a swashplate compressor wherein problems arising from an area where a rotor, a swashplate, and a transmission mechanism come into contact with each other are remedied. The present invention is provided with: a rotor 30 which is fixed on a rotary shaft 20; a swashplate 40 which is coupled to a piston 50 and tiltably supported on the rotary shaft 20; a transmission mechanism 100 which rotates the swashplate 40 in conjunction with the rotation of the rotor 30, and which guides the tilting of the swashplate 40; and a coating part which covers the surface of the area where the rotor 30, the swashplate 40, and the transmission mechanism 100 come into contact with each other.

Description

斜板式コンプレッサーSwash plate type compressor
 本発明は、斜板式コンプレッサーの技術に関する。 The present invention relates to the technology of a swash plate type compressor.
 従来、斜板式コンプレッサーの技術は公知となっている。例えば、特許文献1に記載の如くである。 Conventionally, the technology of a swash plate type compressor is known. For example, it is as described in Patent Document 1.
 特許文献1には、回転可能な駆動軸と、前記駆動軸と一体回転可能に設けられたロータと、前記駆動軸にスライド移動可能且つ傾動可能に支持された斜板と、前記斜板の外周部にシューを介して係留されたピストンと、ロータと斜板との間に介在された伝達機構(ヒンジ機構)を具備する斜板式コンプレッサー(容量可変型斜板式圧縮機)が記載されている。この斜板式コンプレッサーにおいては、駆動軸の回転運動が、ロータ、伝達機構及び斜板を介してピストンの往復運動に変換されると共に、斜板が伝達機構の案内によって駆動軸上を傾動しつつスライド移動されることで、ピストンの吐出容量が変更される。 In Patent Document 1, a rotatable drive shaft, a rotor integrally provided rotatably with the drive shaft, a swash plate slidably supported on the drive shaft and tiltably supported, and an outer periphery of the swash plate A swash plate compressor (variable displacement swash plate compressor) is described which comprises a piston anchored via a shoe to a section and a transmission mechanism (hinge mechanism) interposed between the rotor and the swash plate. In this swash plate type compressor, the rotational motion of the drive shaft is converted to the reciprocating motion of the piston through the rotor, the transmission mechanism and the swash plate, and the swash plate is slid while being guided on the drive shaft by the guide of the transmission mechanism. By being moved, the displacement of the piston is changed.
 前記伝達機構は、ロータに設けられたアーム部と、斜板に設けられたアーム部とにそれぞれ回動可能に連結されたリンクを具備している。当該リンクによってロータと斜板が連結されている。 The transmission mechanism includes a link rotatably connected to an arm provided on the rotor and an arm provided on the swash plate. The rotor and the swash plate are connected by the link.
 ロータ及び斜板のアーム部とリンクとは、互いの側面を当接させることで係合されており、ロータからの回転力が伝達機構を介して斜板に伝達される。また、リンクがロータ及び斜板のアーム部に対して相対的に回転することで、斜板の傾動を可能としている。 The rotor and the arm portion of the swash plate and the link are engaged by bringing the side surfaces into abutment with each other, and the rotational force from the rotor is transmitted to the swash plate via the transmission mechanism. In addition, the link can rotate relative to the rotor and the arm portion of the swash plate to allow tilting of the swash plate.
 しかしながら、特許文献1に記載の技術においては、駆動軸の回転の加速時や減速時に、ロータ及び斜板のアーム部とリンクとが衝突して、振動や騒音が生じ易いという問題があった。また、リンクがロータ及び斜板のアーム部に対して相対的に回転する際の摺動性についても改善の余地があった。
 このように、特許文献1に記載の技術においては、ロータ、斜板及び伝達機構が互いに接する部分に起因する問題点を有していた。
However, in the technology described in Patent Document 1, there is a problem that the arm of the rotor and the swash plate collides with the link at the time of acceleration or deceleration of the rotation of the drive shaft, and vibration and noise easily occur. There is also room for improvement in the slidability of the link relative to the rotor and the arm portion of the swash plate.
As described above, in the technology described in Patent Document 1, there is a problem caused by the portion where the rotor, the swash plate and the transmission mechanism are in contact with each other.
特開2009-127470号公報JP, 2009-127470, A
 本発明は以上の如き状況に鑑みてなされたものであり、その解決しようとする課題は、ロータ、斜板及び伝達機構が互いに接する部分に起因する問題点が改善された斜板式コンプレッサーを提供するものである。 The present invention has been made in view of the above circumstances, and the problem to be solved is to provide a swash plate type compressor in which the problems caused by the parts where the rotor, swash plate and transmission mechanism contact each other are improved. It is a thing.
 本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段を説明する。 The problem to be solved by the present invention is as described above, and next, means for solving the problem will be described.
 即ち、本発明の斜板式コンプレッサーは、回転軸に固定されたロータと、ピストンと連結されて前記回転軸に対して傾動可能に支持された斜板と、前記ロータの回転に伴って前記斜板を回転させると共に、前記斜板の傾動を案内する伝達機構と、前記ロータ、前記斜板及び前記伝達機構が互いに接する部分の表面を被覆するコーティング部と、を具備するものである。 That is, according to the swash plate type compressor of the present invention, a rotor fixed to a rotating shaft, a swash plate connected to a piston and supported so as to be able to tilt with respect to the rotating shaft, and the swash plate with rotation of the rotor And a coating unit for covering the surface of a portion where the rotor, the swash plate, and the transmission mechanism are in contact with each other.
 また、前記コーティング部は、前記ロータ、前記斜板及び前記伝達機構が、前記回転軸の周方向に対向する部分に形成されているものである。 Moreover, the said coating part is formed in the part in which the said rotor, the said swash plate, and the said transmission mechanism oppose the circumferential direction of the said rotating shaft.
 また、前記伝達機構は、アーム部と、前記アーム部と前記ロータ及び前記斜板とをそれぞれ回動可能に連結する軸部と、を具備し、前記コーティング部は、前記軸部と前記アーム部、前記ロータ及び前記斜板との摺動面に形成されているものである。 In addition, the transmission mechanism includes an arm portion, and a shaft portion rotatably connecting the arm portion, the rotor, and the swash plate, and the coating portion includes the shaft portion and the arm portion. And a sliding surface formed between the rotor and the swash plate.
 また、前記コーティング部は、互いに異なる素材で形成された複数の部分を含むものである。 Further, the coating portion includes a plurality of portions formed of different materials.
 本発明の効果として、以下に示すような効果を奏する。 The effects of the present invention are as follows.
 本発明の斜板式コンプレッサーにおいては、伝達機構の当接部分に起因する問題点を改善することができる。 In the swash plate type compressor of the present invention, the problems caused by the abutting portion of the transmission mechanism can be improved.
 本発明の斜板式コンプレッサーにおいては、振動及び騒音を低減することができる。 Vibration and noise can be reduced in the swash plate compressor of the present invention.
 本発明の斜板式コンプレッサーにおいては、斜板の傾動時における伝達機構とロータ及び斜板との摺動性を向上させることができる。 In the swash plate type compressor of the present invention, the slidability between the transmission mechanism and the rotor and the swash plate can be improved when the swash plate is tilted.
 本発明の斜板式コンプレッサーにおいては、場所によって異なる機能を付与することができる。 In the swash plate compressor of the present invention, different functions can be provided depending on the place.
本発明の一実施形態に係る斜板式コンプレッサーの全体的な構成を示した側面断面図。BRIEF DESCRIPTION OF THE DRAWINGS Side surface sectional drawing which showed the whole structure of the swash plate type | mold compressor which concerns on one Embodiment of this invention. 伝達機構を示した側面図。The side view which showed the transmission mechanism. 最大容量時における伝達機構を示した側面図。The side view showing the transmission mechanism at the time of maximum capacity. 伝達機構を示した平面図。The top view which showed the transmission mechanism. 図4におけるA-A端面模式図(一部拡大図)。The AA end face schematic diagram (a partially enlarged view) in FIG. 伝達機構の側面断面図(一部拡大図)。Side surface sectional drawing (partially enlarged view) of a transmission mechanism.
 以下では、図中の矢印U、矢印D、矢印F、矢印B、矢印L及び矢印Rで示した方向を、それぞれ上方向、下方向、前方向、後方向、左方向及び右方向と定義して説明を行う。 In the following, the directions indicated by arrow U, arrow D, arrow F, arrow B, arrow L and arrow R in the figure are respectively defined as upward, downward, forward, backward, leftward and rightward I will explain.
 まず、図1を用いて、斜板式コンプレッサー1の構成の概要について説明する。 First, the outline of the configuration of the swash plate type compressor 1 will be described with reference to FIG.
 斜板式コンプレッサー1は、例えば車両用の空調装置等に用いられる斜板式のコンプレッサーである。斜板式コンプレッサー1は、主としてハウジング10、回転軸20、ロータ30、斜板40、ピストン50、シュー60、ばね70、制御弁80、伝達機構100及びコーティング部150を具備する。 The swash plate type compressor 1 is a swash plate type compressor used for, for example, an air conditioner for vehicles. The swash plate type compressor 1 mainly comprises a housing 10, a rotating shaft 20, a rotor 30, a swash plate 40, a piston 50, a shoe 60, a spring 70, a control valve 80, a transmission mechanism 100 and a coating portion 150.
 ハウジング10は、略箱状に形成される。ハウジング10の内側には、クランク室10aが設けられる。ハウジング10の前後中途部には、シリンダブロック11が設けられる。 The housing 10 is formed in a substantially box shape. Inside the housing 10, a crank chamber 10a is provided. A cylinder block 11 is provided at the front and rear midway portion of the housing 10.
 シリンダブロック11には、シリンダボア11aが形成される。シリンダボア11aは、軸線方向を前後方向へ向けた円形断面を有するように形成される。なお、シリンダボア11aは、図1において1つしか示されていないが、周方向に間隔をおいて複数形成されている。シリンダボア11aにおいて後述するピストン50の後方には、圧縮室11bが形成される。 A cylinder bore 11 a is formed in the cylinder block 11. The cylinder bore 11a is formed to have a circular cross section with the axial direction directed in the front-rear direction. Although only one cylinder bore 11a is shown in FIG. 1, a plurality of cylinder bores 11a are formed at intervals in the circumferential direction. A compression chamber 11 b is formed behind the piston 50 described later in the cylinder bore 11 a.
 回転軸20は、軸線方向を前後方向に向けて配置される。回転軸20は、ハウジング10の中央部に回転可能に支持される。回転軸20の一端部(前端部)は図示しない駆動源に連結される。 The rotation shaft 20 is disposed with the axial direction directed in the front-rear direction. The rotation shaft 20 is rotatably supported at a central portion of the housing 10. One end (front end) of the rotating shaft 20 is connected to a drive source (not shown).
 ロータ30は、軸線方向を前後方向へ向けた略円板状の部材である。ロータ30は、その軸線方向が回転軸20の軸線方向と一致するように、当該回転軸20に固定されている。これにより、ロータ30は、回転軸20と一体回転可能に形成されている。ロータ30は、ロータ側アーム31を具備する。 The rotor 30 is a substantially disk-shaped member whose axial direction is directed in the front-rear direction. The rotor 30 is fixed to the rotating shaft 20 so that the axial direction coincides with the axial direction of the rotating shaft 20. Thus, the rotor 30 is formed integrally rotatable with the rotation shaft 20. The rotor 30 comprises a rotor side arm 31.
 ロータ側アーム31は、ロータ30の後部(斜板40と対向する側)に設けられる。ロータ側アーム31は、ロータ30から後方に突出するように形成される。ロータ側アーム31は、ロータ30の後部に当該ロータ30と一体的に形成される。ロータ側アーム31は、ロータ30の周方向に互いに間隔をおいて2つ形成される(図4参照)。 The rotor side arm 31 is provided at the rear of the rotor 30 (the side facing the swash plate 40). The rotor side arm 31 is formed to project rearward from the rotor 30. The rotor side arm 31 is integrally formed with the rotor 30 at the rear of the rotor 30. Two rotor side arms 31 are formed at intervals in the circumferential direction of the rotor 30 (see FIG. 4).
 斜板40は、円形平板状に形成される部材である。斜板40の中央部分には、回転軸20が挿通される。斜板40は、回転軸20の前後中途部に設けられる。斜板40は、ロータ30の後側に設けられる。斜板40は、回転軸20に対して、前後方向へスライド可能に、且つ、前後へ傾動可能に支持される。なお、斜板40は、回転軸20に固定されていないが、後述する伝達機構100により回転軸20(ロータ30)の回転に伴って回転する。斜板40は、斜板側アーム41を具備する。 The swash plate 40 is a member formed in a circular flat plate shape. The rotation shaft 20 is inserted through the central portion of the swash plate 40. The swash plate 40 is provided at the front and rear midway portion of the rotating shaft 20. The swash plate 40 is provided on the rear side of the rotor 30. The swash plate 40 is supported so as to be slidable back and forth with respect to the rotation shaft 20 and to be able to tilt back and forth. The swash plate 40 is not fixed to the rotation shaft 20, but rotates with the rotation of the rotation shaft 20 (the rotor 30) by the transmission mechanism 100 described later. The swash plate 40 includes a swash plate side arm 41.
 斜板側アーム41は、斜板40の前部(ロータ30と対向する側)に設けられる。斜板側アーム41は、斜板40から略前方に突出するように形成される。斜板側アーム41は、周方向において、2つのロータ側アーム31の間に配置される。 The swash plate side arm 41 is provided on the front of the swash plate 40 (the side facing the rotor 30). The swash plate side arm 41 is formed to project substantially forward from the swash plate 40. The swash plate side arm 41 is disposed between the two rotor side arms 31 in the circumferential direction.
 ピストン50は、シリンダブロック11に形成されたシリンダボア11aに対して摺動するものである。ピストン50は、主として係合部51及び頭部52を具備する。 The piston 50 slides on a cylinder bore 11 a formed in the cylinder block 11. The piston 50 mainly includes an engaging portion 51 and a head 52.
 係合部51は、斜板40と係合される部分である。係合部51の前部の一側部(下部)には、切欠部が形成される。係合部51は、前記切欠部が斜板40の外周端部を跨ぐように配置される。係合部51は、後述するシュー60を介して斜板40と係合される。 The engaging portion 51 is a portion engaged with the swash plate 40. A notch is formed in one side portion (lower portion) of the front of the engagement portion 51. The engaging portion 51 is disposed such that the notch portion straddles the outer peripheral end portion of the swash plate 40. The engaging portion 51 is engaged with the swash plate 40 via a shoe 60 described later.
 頭部52は、シリンダボア11aに対して摺動可能に配置される部分である。頭部52は、係合部51の後方に形成される。頭部52は、軸線方向を前後方向へ向けた円形断面を有するように形成される。頭部52の外径は、シリンダボア11aの内径と略同一となるように形成される。 The head 52 is a portion slidably disposed relative to the cylinder bore 11a. The head 52 is formed at the rear of the engaging portion 51. The head 52 is formed to have a circular cross section with the axial direction directed in the front-rear direction. The outer diameter of the head 52 is formed to be substantially the same as the inner diameter of the cylinder bore 11a.
 シュー60は、斜板40とピストン50(係合部51)とを係合するものである。シュー60は略半球状に形成される。シュー60は、斜板40の外周端部の前後にそれぞれ配置される。シュー60は、平面部分が斜板40と接するように配置される。シュー60は、球面部分が係合部51の切欠部に対して揺動可能となるように配置される。 The shoe 60 engages the swash plate 40 with the piston 50 (engaging portion 51). The shoe 60 is formed in a substantially hemispherical shape. The shoes 60 are respectively disposed before and after the outer peripheral end of the swash plate 40. The shoe 60 is disposed such that the flat portion is in contact with the swash plate 40. The shoe 60 is arranged such that the spherical portion can swing relative to the notch of the engaging portion 51.
 ばね70は、斜板40を付勢するものである。ばね70は、圧縮ばねである。ばね70の中央部には、回転軸20が挿通される。ばね70は、伸縮方向を前後方向へ向けた状態で、斜板40の前後にそれぞれ配置される。これにより、ばね70は、斜板40を前後から付勢している。 The spring 70 biases the swash plate 40. The spring 70 is a compression spring. The rotation shaft 20 is inserted through the central portion of the spring 70. The springs 70 are disposed at the front and the back of the swash plate 40, respectively, with the expansion and contraction direction oriented in the front and back direction. Thus, the spring 70 biases the swash plate 40 from the front and back.
 制御弁80は、クランク室10aの内圧を調整するものである。制御弁80は、ハウジング10の後部に配置される。 The control valve 80 adjusts the internal pressure of the crank chamber 10a. The control valve 80 is disposed at the rear of the housing 10.
 伝達機構100は、ロータ30の回転に伴って斜板40を回転させるものである。また、伝達機構100は、斜板40の傾動を案内するものである。 The transmission mechanism 100 rotates the swash plate 40 as the rotor 30 rotates. Further, the transmission mechanism 100 guides the tilting of the swash plate 40.
 以下では、図1から図6を用いて、伝達機構100の構成について説明する。なお、図1、図2、図4、図5及び図6においては、斜板式コンプレッサー1の吐出容量が最小時の状態を示しており、図3においては、斜板式コンプレッサー1の吐出容量が最大時の状態を示している。 Hereinafter, the configuration of the transmission mechanism 100 will be described using FIGS. 1 to 6. In addition, in FIG.1, FIG.2, FIG.4, FIG.5 and FIG. 6, the state when the discharge capacity of the swash plate type compressor 1 is the minimum is shown, and in FIG. 3, the discharge capacity of the swash plate type compressor 1 is the largest. It shows the state of the hour.
 伝達機構100は、ロータ30と斜板40とを連結するように形成される。伝達機構100は、主として連結アーム110、ロータ側連結ピン120及び斜板側連結ピン130を具備する。 The transmission mechanism 100 is formed to connect the rotor 30 and the swash plate 40. The transmission mechanism 100 mainly includes a connection arm 110, a rotor side connection pin 120 and a swash plate side connection pin 130.
 連結アーム110は、伝達機構100のうちロータ側アーム31と斜板側アーム41とを連結する部分である。連結アーム110は、略前後方向に延びるブロック状に形成される。連結アーム110の前部は、2つのロータ側アーム31の間に配置される。連結アーム110の後部は、周方向に2つに分割される。連結アーム110の当該分割された部分には、斜板側アーム41の前端部が配置される。 The connection arm 110 is a portion which connects the rotor side arm 31 and the swash plate side arm 41 in the transmission mechanism 100. The connection arm 110 is formed in a block shape extending substantially in the front-rear direction. The front part of the connecting arm 110 is disposed between the two rotor side arms 31. The rear portion of the connection arm 110 is divided into two in the circumferential direction. A front end portion of the swash plate side arm 41 is disposed at the divided portion of the connection arm 110.
 ロータ側連結ピン120は、ロータ側アーム31と連結アーム110とを回動可能に連結するものである。ロータ側連結ピン120は、左右に延びる略円柱状に形成される。ロータ側連結ピン120は、2つのロータ側アーム31及び連結アーム110に回動可能となるように挿通される。これによって、ロータ側アーム31と連結アーム110とが、ロータ側連結ピン120を中心として相対的に回動可能な状態で連結される。 The rotor side connection pin 120 rotatably connects the rotor side arm 31 and the connection arm 110. The rotor side connection pin 120 is formed in a substantially cylindrical shape extending leftward and rightward. The rotor side connection pin 120 is inserted through the two rotor side arms 31 and the connection arm 110 so as to be rotatable. As a result, the rotor side arm 31 and the connection arm 110 are connected so as to be relatively rotatable around the rotor side connection pin 120.
 斜板側連結ピン130は、斜板側アーム41と連結アーム110とを回動可能に連結するものである。斜板側連結ピン130は、左右に延びる略円柱状に形成される。斜板側連結ピン130は、連結アーム110の後部(2つに分割された部分)及び斜板側アーム41に回動可能となるように挿通される。これによって、斜板側アーム41と連結アーム110とが、斜板側連結ピン130を中心として相対的に回動可能な状態で連結される。 The swash plate side connection pin 130 rotatably connects the swash plate side arm 41 and the connection arm 110. The swash plate side connection pin 130 is formed in a substantially cylindrical shape extending leftward and rightward. The swash plate side connection pin 130 is inserted through the rear portion (portion divided into two) of the connection arm 110 and the swash plate side arm 41 so as to be rotatable. As a result, the swash plate side arm 41 and the connection arm 110 are connected so as to be relatively rotatable around the swash plate side connection pin 130.
 図5及び図6に示すコーティング部150は、ロータ30、斜板40及び伝達機構100が互いに接する部分の表面を被覆するものである。本実施形態においては、コーティング部150は、伝達機構100側に形成される。コーティング部150は、第一コーティング部151及び第二コーティング部152を具備する。 The coating part 150 shown in FIG.5 and FIG.6 coat | covers the surface of the part which the rotor 30, the swash plate 40, and the transmission mechanism 100 mutually contact | connect. In the present embodiment, the coating unit 150 is formed on the transmission mechanism 100 side. The coating unit 150 includes a first coating unit 151 and a second coating unit 152.
 図5に示す第一コーティング部151は、コーティング部150のうち、連結アーム110に形成される部分である。第一コーティング部151は、連結アーム110の左右外側の側面及び左右内側の側面(分割された部分の内側の面)を被覆するように形成される。このように、第一コーティング部151は、連結アーム110が、ロータ側アーム31及び斜板側アーム41と周方向(図中では左右方向)に対向する部分に形成される。 The first coating portion 151 shown in FIG. 5 is a portion of the coating portion 150 formed on the connection arm 110. The first coating portion 151 is formed to cover the left and right outer side surfaces and the left and right inner side surfaces (inner surfaces of the divided portions) of the connection arm 110. Thus, the first coating portion 151 is formed at a portion where the connection arm 110 opposes the rotor side arm 31 and the swash plate side arm 41 in the circumferential direction (the left and right direction in the drawing).
 第一コーティング部151は、平均粒径が5~50μmである球状黒鉛5~60質量%を含有し、残部ポリイミド樹脂及びポリアミドイミド樹脂の1種又は2種からなる樹脂系コーティング層である。 The first coating portion 151 is a resin-based coating layer containing 5 to 60% by mass of spherical graphite having an average particle diameter of 5 to 50 μm, with the balance being polyimide resin and / or polyamideimide resin.
 球状黒鉛粒子は、最小径/最大径の比率(粒子比)が0.5以上の黒鉛粒子が全黒鉛粒子個数の50%以上存在するものである。球状黒鉛粒子の平均粒径Dは、第一コーティング部151の膜厚tに対して、0.25t<D<0.67tの範囲にあることが好ましい。第一コーティング部151の膜厚tは、5~50μmが好ましく、10~40μmがより好ましい。
 球状黒鉛粒子の黒鉛化度は、好ましくは0.6以上であり、さらに好ましくは0.8以上である。かかる黒鉛化度が高い球状黒鉛粒子は、黒鉛の球状化粉砕加工により得ることができる。
 球状黒鉛粒子は、第一コーティング部151全体に対して、好ましくは5~60質量%、より好ましくは10~50質量%配合する。
The spherical graphite particles are those in which 50% or more of the total number of graphite particles is present in graphite particles having a ratio of minimum diameter / maximum diameter (particle ratio) of 0.5 or more. The average particle diameter D of the spherical graphite particles is preferably in the range of 0.25 t <D <0.67 t with respect to the film thickness t of the first coating portion 151. The thickness t of the first coating portion 151 is preferably 5 to 50 μm, and more preferably 10 to 40 μm.
The graphitization degree of the spherical graphite particles is preferably 0.6 or more, more preferably 0.8 or more. Such spherical graphite particles having a high degree of graphitization can be obtained by spheroidizing and grinding of graphite.
The spherical graphite particles are preferably blended in an amount of 5 to 60% by mass, more preferably 10 to 50% by mass, based on the entire first coating portion 151.
 上記した球状黒鉛粒子の残部は、ポリイミド(PI)及び/又はポリアミドイミド(PAI)樹脂からなる樹脂系バインダーである。ポリイミドとしては、液状もしくは固体粉末状のポリエステルイミド、芳香族ポリイミド、ポリエーテルイミド、ビスマレインイミドなどを使用することができる。
 ポリアミドイミド樹脂としては、芳香族ポリアミドイミド樹脂を使用することができる。これらの樹脂は何れも耐熱性に優れ、摩擦係数が小さいという特長を有している。なお、固体潤滑剤としてMoS粒子を添加することができるが、MoS粒子が添加されていなくとも、球状黒鉛粒子の固体潤滑剤作用の持続性があるから、良好な摺動特性が得られる。
The remainder of the spherical graphite particles described above is a resinous binder made of polyimide (PI) and / or polyamideimide (PAI) resin. As the polyimide, liquid or solid powdery polyesterimide, aromatic polyimide, polyetherimide, bismaleimide or the like can be used.
As the polyamideimide resin, an aromatic polyamideimide resin can be used. Each of these resins is characterized by having excellent heat resistance and a small coefficient of friction. Although MoS 2 particles can be added as a solid lubricant, good sliding characteristics can be obtained because the solid lubricant action of the spherical graphite particles is sustained even if the MoS 2 particles are not added. .
 なお、第一コーティング部151の材料としては、上記以外のものも用いることができ、例えば、PTFE、黒鉛(グラファイト)、MoS等の固体潤滑剤から適宜選択されたものが樹脂系バインダーに配合された材料(特開2005-89514号公報に記載の材料等)を用いてもよい。 In addition, as a material of the 1st coating part 151, materials other than the above can also be used, for example, what was suitably selected from solid lubricants, such as PTFE, graphite (graphite), MoS 2, etc. is blended with a resin type binder The materials (such as the materials described in JP-A-2005-89514) may be used.
 図6に示す第二コーティング部152は、コーティング部150のうち、ロータ側連結ピン120及び斜板側連結ピン130に形成される部分である。第二コーティング部152は、ロータ側連結ピン120及び斜板側連結ピン130の外周面をそれぞれ被覆するように形成される。第一コーティング部151は耐久性等を目的としているのに対し、第二コーティング部152は耐摩耗性等を目的としており、求められる両者の役割が若干異なるため、第二コーティング部152は、第一コーティング部151と異なる材料(素材)や、異なる配合率で形成されている。 The second coating portion 152 shown in FIG. 6 is a portion of the coating portion 150 formed on the rotor side connection pin 120 and the swash plate side connection pin 130. The second coating portion 152 is formed to cover outer peripheral surfaces of the rotor side connection pin 120 and the swash plate side connection pin 130, respectively. While the first coated portion 151 is intended for durability and the like, the second coated portion 152 is intended for wear resistance and the like, and since the required roles of the two are slightly different, the second coated portion 152 is The first coating portion 151 is formed of a material (raw material) different from that of the first coating portion 151 or a different mixing ratio.
 このように構成される斜板式コンプレッサー1において、図示せぬ駆動源により回転軸20が回転すると、ロータ30は、回転軸20の軸線回りに当該回転軸20と一体的に回転する。すると、ロータ30に設けられたロータ側アーム31も同様に回転軸20の軸線回りに回転する。 In the swash plate type compressor 1 configured as described above, when the rotary shaft 20 is rotated by a drive source (not shown), the rotor 30 rotates integrally with the rotary shaft 20 around the axis of the rotary shaft 20. Then, the rotor side arm 31 provided on the rotor 30 also rotates about the axis of the rotation shaft 20.
 ロータ側アーム31が回転すると、ロータ側アーム31の側面(左右内側の側面)と連結アーム110の側面(左右外側の側面)とが互いに当接することで係合する。これにより、ロータ30の回転力が連結アーム110に伝達される。さらに、連結アーム110の側面(左右内側の側面)は、斜板側アーム41の側面(左右外側の側面)と当接することで係合する。これにより、連結アーム110の回転力が斜板側アーム41に伝達される。このようにして回転軸20の回転力が斜板40に伝達され、当該斜板40が回転する。 When the rotor side arm 31 rotates, the side surface (right and left inner side surface) of the rotor side arm 31 and the side surface (right and left outer side surface) of the connection arm 110 are engaged with each other. Thereby, the rotational force of the rotor 30 is transmitted to the connection arm 110. Furthermore, the side surface (right and left inner side surface) of the connection arm 110 engages with the side surface (right and left outer side surface) of the swash plate side arm 41 by abutting. Thereby, the rotational force of the connection arm 110 is transmitted to the swash plate side arm 41. Thus, the rotational force of the rotating shaft 20 is transmitted to the swash plate 40, and the swash plate 40 is rotated.
 斜板40が傾斜している場合に当該斜板40が回転軸20の軸線回りに回転すると、斜板40の回転運動は、シュー60を介してピストン50の直線運動に変換される。これによって、ピストン50がシリンダボア11a内を前後に摺動(往復運動)する。ピストン50がシリンダボア11a内を前方へ移動することによって、当該シリンダボア内に流体が吸入される。また、ピストン50がシリンダボア11a内を後方へ移動することによって、当該シリンダボア11a内の流体が圧縮され、吐出される。 When the swash plate 40 is rotated about the axis of the rotating shaft 20 when the swash plate 40 is inclined, the rotational movement of the swash plate 40 is converted to the linear movement of the piston 50 via the shoe 60. As a result, the piston 50 slides back and forth (reciprocates) in the cylinder bore 11a. As the piston 50 moves forward in the cylinder bore 11a, fluid is drawn into the cylinder bore. Further, as the piston 50 moves rearward in the cylinder bore 11a, the fluid in the cylinder bore 11a is compressed and discharged.
 次に、図1から図4を用いて、斜板40が傾動する機構について説明する。 Next, the mechanism by which the swash plate 40 tilts will be described using FIGS. 1 to 4.
 斜板式コンプレッサー1は、斜板40が傾動する(斜板40の傾斜角度が変動される)ことにより、吐出容量を変更可能に形成されている。この吐出容量の制御は、制御弁80によりクランク室10aと圧縮室11bとの内圧差を調整することによって、斜板40の傾斜角度が変更されることで行われる。 The swash plate type compressor 1 is formed so that the discharge capacity can be changed by tilting the swash plate 40 (the inclination angle of the swash plate 40 is changed). The control of the displacement is performed by adjusting the difference in internal pressure between the crank chamber 10a and the compression chamber 11b by the control valve 80, thereby changing the inclination angle of the swash plate 40.
 具体的には、クランク室10aの内圧が低下されると、斜板40は、左側面視において時計回りに回転する。この際、連結アーム110は、左側面視において反時計回りに回転することで、当該斜板40の回転(傾動)を適宜案内することができる。これにより、斜板40の傾斜角度が増大される(図3参照)。斜板40の傾斜角度が増大されることで、斜板式コンプレッサー1の吐出容量が増大される。 Specifically, when the internal pressure of the crank chamber 10a is decreased, the swash plate 40 rotates clockwise in left side view. At this time, the connection arm 110 can appropriately guide the rotation (tilting) of the swash plate 40 by rotating counterclockwise in left side view. Thereby, the inclination angle of the swash plate 40 is increased (see FIG. 3). As the inclination angle of the swash plate 40 is increased, the displacement of the swash plate type compressor 1 is increased.
 一方、クランク室10aの内圧が上昇されると、斜板40は、左側面視において反時計回りに回転する。この際、連結アーム110は、左側面視において時計回りに回転することで、当該斜板40の回転(傾動)を適宜案内することができる。これにより、斜板40の傾斜角度が減少される(図2参照)。斜板40の傾斜角度が減少されることで、斜板式コンプレッサー1の吐出容量が減少される。 On the other hand, when the internal pressure of the crank chamber 10a is increased, the swash plate 40 rotates counterclockwise in left side view. At this time, the connection arm 110 can appropriately guide the rotation (tilting) of the swash plate 40 by rotating clockwise in left side view. Thereby, the inclination angle of the swash plate 40 is reduced (see FIG. 2). As the inclination angle of the swash plate 40 is reduced, the displacement of the swash plate compressor 1 is reduced.
 ここで、連結アーム110の側面に第一コーティング部151が設けられているため、当該連結アーム110とロータ側アーム31及び斜板側アーム41とのクリアランスを小さくすることができる。これにより、回転軸20の回転速度が変化した場合(加速時及び減速時)に、連結アーム110とロータ側アーム31及び斜板側アーム41とが互いに衝突するときの振動や騒音を低減することができる。 Here, since the first coating portion 151 is provided on the side surface of the connection arm 110, the clearance between the connection arm 110 and the rotor side arm 31 and the swash plate side arm 41 can be reduced. Thereby, when the rotational speed of the rotating shaft 20 changes (during acceleration and deceleration), vibration and noise when the connecting arm 110 collides with the rotor arm 31 and the swash plate arm 41 are reduced. Can.
 さらに、第一コーティング部151は金属よりも柔らかい樹脂で形成されている。このため、さらに振動や騒音を低減することができると共に、連結アーム110とロータ側アーム31及び斜板側アーム41とのクリアランスを小さく設定しても、斜板40を円滑に傾動させることができる。 Furthermore, the first coating portion 151 is formed of a resin softer than metal. Therefore, vibration and noise can be further reduced, and the swash plate 40 can be tilted smoothly even if the clearance between the connection arm 110 and the rotor side arm 31 and the swash plate side arm 41 is set small. .
 また、ロータ側連結ピン120及び斜板側連結ピン130に第二コーティング部152が設けられているため、ロータ側連結ピン120とロータ側アーム31及び連結アーム110との摺動性、並びに斜板側連結ピン130と斜板側アーム41及び連結アーム110との摺動性を向上させることができる。具体的には、ロータ側連結ピン120及び斜板側連結ピン130を中心として回転する連結アーム110等のフリクションを低減することができ、また耐摩耗性を向上させることができる。 Further, since the second coating portion 152 is provided on the rotor side connection pin 120 and the swash plate side connection pin 130, the slidability between the rotor side connection pin 120 and the rotor side arm 31 and the connection arm 110, and the swash plate The slidability between the side connection pin 130 and the swash plate side arm 41 and the connection arm 110 can be improved. Specifically, it is possible to reduce the friction of the connecting arm 110 and the like rotating around the rotor side connecting pin 120 and the swash plate side connecting pin 130, and to improve the wear resistance.
 また、コーティング部150が形成されていることにより、潤滑油の保持力を向上させることができる。このため、ロータ30(ロータ側アーム31)、伝達機構100及び斜板40(斜板側アーム41)の摺動性を向上させることができる。 Further, the formation of the coating portion 150 can improve the retention of the lubricating oil. Therefore, the slidability of the rotor 30 (the rotor side arm 31), the transmission mechanism 100 and the swash plate 40 (the swash plate side arm 41) can be improved.
 以上の如く、本実施形態に係る斜板式コンプレッサー1は、回転軸20に固定されたロータ30と、ピストン50と連結されて前記回転軸20に対して傾動可能に支持された斜板40と、前記ロータ30の回転に伴って前記斜板40を回転させると共に、前記斜板40の傾動を案内する伝達機構100と、前記ロータ30、前記斜板40及び前記伝達機構100が互いに接する部分の表面を被覆するコーティング部150と、を具備するものである。
 このように構成することにより、ロータ30、斜板40及び伝達機構100が互いに接する部分に起因する問題点を改善することができる。例えば、振動及び騒音を低減することができる。また、斜板40の傾動時に連結アーム110が回転する際の摺動性を向上させることができる。
As described above, the swash plate type compressor 1 according to the present embodiment includes the rotor 30 fixed to the rotating shaft 20, and the swash plate 40 connected to the piston 50 and supported so as to be tiltable with respect to the rotating shaft 20. A transmission mechanism 100 for rotating the swash plate 40 with the rotation of the rotor 30 and guiding the tilting of the swash plate 40, and a surface of a portion where the rotor 30, the swash plate 40 and the transmission mechanism 100 contact each other And the coating part 150 which coat | covers.
By configuring in this manner, it is possible to improve the problems caused by the portions where the rotor 30, the swash plate 40 and the transmission mechanism 100 contact each other. For example, vibration and noise can be reduced. Moreover, the slidability at the time of rotation of the connection arm 110 at the time of tilting of the swash plate 40 can be improved.
 また、前記コーティング部150(第一コーティング部151)は、前記ロータ30、前記斜板40及び前記伝達機構100が、前記回転軸20の周方向に対向する部分に形成されているものである。
 このように構成することにより、振動及び騒音を低減することができる。
Further, the coating portion 150 (first coating portion 151) is formed at a portion where the rotor 30, the swash plate 40 and the transmission mechanism 100 are opposed in the circumferential direction of the rotation shaft 20.
With this configuration, vibration and noise can be reduced.
 また、前記伝達機構100は、連結アーム110(アーム部)と、
 前記連結アーム110と前記ロータ30及び前記斜板40とをそれぞれ回動可能に連結するロータ側連結ピン120及び斜板側連結ピン130(軸部)と、を具備し、前記コーティング部150は、前記ロータ側連結ピン120及び斜板側連結ピン130と前記連結アーム110、前記ロータ30及び前記斜板40との摺動面に形成されているものである。
 このように構成することにより、斜板40の傾動時における伝達機構100とロータ30及び斜板40との摺動性を向上させることができる。
Further, the transmission mechanism 100 includes a connection arm 110 (arm portion),
The coating unit 150 includes a rotor side connection pin 120 and a swash plate side connection pin 130 (shaft portion) that rotatably connects the connection arm 110 with the rotor 30 and the swash plate 40, respectively. It is formed on the sliding surfaces of the rotor side connection pin 120 and the swash plate side connection pin 130, the connection arm 110, the rotor 30 and the swash plate 40.
By this configuration, the slidability of the transmission mechanism 100 and the rotor 30 and the swash plate 40 when the swash plate 40 is tilted can be improved.
 また、前記コーティング部150は、互いに異なる素材で形成された第一コーティング部151及び第二コーティング部152(複数の部分)を含むものである。
 このように構成することにより、場所によって異なる機能を付与することができる。
In addition, the coating unit 150 includes a first coating unit 151 and a second coating unit 152 (a plurality of portions) formed of different materials.
By configuring in this way, different functions can be provided depending on the place.
 なお、本実施形態に係る連結アーム110は、本発明に係るアーム部の一形態である。
 また、本実施形態に係るロータ側連結ピン120及び斜板側連結ピン130は、本発明に係る軸部の一形態である。
In addition, the connection arm 110 which concerns on this embodiment is one form of the arm part which concerns on this invention.
Moreover, the rotor side connection pin 120 and the swash plate side connection pin 130 which concern on this embodiment are one form of the axial part which concerns on this invention.
 以上、本発明の一実施形態を説明したが、本発明は上記構成に限定されるものではなく、特許請求の範囲に記載された発明の範囲内で種々の変更が可能である。 As mentioned above, although one Embodiment of this invention was described, this invention is not limited to the said structure, A various change is possible within the range of the invention described in the claim.
 例えば、本実施形態においては、コーティング部150は、伝達機構100に設けられるものとしたが、本発明はこれに限定されるものではなく、ロータ30(ロータ側アーム31)や斜板40(斜板側アーム41)に設けられてもよく、伝達機構100、並びにロータ30(ロータ側アーム31)及び斜板40(斜板側アーム41)の両方に設けられてもよい。 For example, in the present embodiment, the coating unit 150 is provided to the transmission mechanism 100. However, the present invention is not limited to this, and the rotor 30 (rotor side arm 31) or the swash plate 40 (slanted) It may be provided on the plate side arm 41), and may be provided on both the transmission mechanism 100 and the rotor 30 (the rotor side arm 31) and the swash plate 40 (the swash plate side arm 41).
 具体的には、本実施形態においては、第一コーティング部151は、連結アーム110の側面に設けられるものとしたが、ロータ側アーム31や斜板側アーム41の側面に設けられてもよく、連結アーム110の側面、並びにロータ側アーム31及び斜板側アーム41の側面の両方に設けられてもよい。
 また、本実施形態においては、第二コーティング部152は、ロータ側連結ピン120及び斜板側連結ピン130の外周面に設けられるものとしたが、ロータ側アーム31、斜板側アーム41及び連結アーム110の内周面(ロータ側連結ピン120等が挿通される孔の内周面)に設けられてもよく、ロータ側連結ピン120及び斜板側連結ピン130、並びにロータ側アーム31、斜板側アーム41及び連結アーム110の両方に設けられてもよい。
Specifically, in the present embodiment, the first coating portion 151 is provided on the side surface of the connection arm 110, but may be provided on the side surface of the rotor side arm 31 or the swash plate side arm 41, It may be provided on both the side surface of the connection arm 110 and the side surfaces of the rotor side arm 31 and the swash plate side arm 41.
Further, in the present embodiment, the second coating portion 152 is provided on the outer peripheral surface of the rotor side connection pin 120 and the swash plate side connection pin 130, but the rotor side arm 31, the swash plate side arm 41 and the connection It may be provided on the inner peripheral surface of the arm 110 (the inner peripheral surface of the hole through which the rotor side connection pin 120 etc. is inserted), and the rotor side connection pin 120 and the swash plate side connection pin 130 as well as the rotor side arm 31 It may be provided on both the plate side arm 41 and the connection arm 110.
 また、本実施形態においては、第一コーティング部151を連結アーム110に、第二コーティング部152をロータ側連結ピン120及び斜板側連結ピン130に、それぞれ形成するものとした。このように、本実施形態では異なる2つの部材に異なるコーティングを施すため、1つの部材に複数種類のコーティングを施す場合に比べてコーティング作業を容易に行う(加工性を向上させる)ことができる。なお、第一コーティング部151及び第二コーティング部152を1つの部材に形成することも可能である。例えば、連結アーム110の側面に第一コーティング部151を形成するとともに、連結アーム110の内周面(ロータ側連結ピン120等が挿通される孔の内周面)に第二コーティング部152を形成することも可能である。 Further, in the present embodiment, the first coating portion 151 is formed on the connection arm 110, and the second coating portion 152 is formed on the rotor side connection pin 120 and the swash plate side connection pin 130, respectively. As described above, in this embodiment, since different coatings are applied to two different members, it is possible to easily perform a coating operation (improve the processability) as compared to the case where a plurality of types of coatings are applied to one member. In addition, it is also possible to form the 1st coating part 151 and the 2nd coating part 152 in one member. For example, the first coating portion 151 is formed on the side surface of the connection arm 110, and the second coating portion 152 is formed on the inner peripheral surface of the connection arm 110 (the inner peripheral surface of the hole through which the rotor side connection pin 120 etc. is inserted). It is also possible.
 また、本実施形態においては、第一コーティング部151と第二コーティング部152とは異なる素材で形成されたものとしたが、本発明はこれに限定されるものではなく、第一コーティング部151と第二コーティング部152とは同じ材料で形成されていてもよい。 Also, in the present embodiment, the first coating portion 151 and the second coating portion 152 are formed of different materials, but the present invention is not limited to this, and the first coating portion 151 and the second coating portion 152 are not limited to this. The second coating portion 152 may be formed of the same material.
 また、本実施形態においては、第一コーティング部151と第二コーティング部152の両方が設けられるものとしたが、本発明はこれに限定されるものではなく、第一コーティング部151又は第二コーティング部152のいずれか一方が設けられるものであってもよい。 Moreover, in this embodiment, although both the 1st coating part 151 and the 2nd coating part 152 shall be provided, this invention is not limited to this, The 1st coating part 151 or the 2nd coating Either one of the units 152 may be provided.
 本発明は、斜板式コンプレッサーに適用することができる。 The present invention can be applied to a swash plate compressor.
 1    斜板式コンプレッサー
 20   回転軸
 30   ロータ
 31   ロータ側アーム
 40   斜板
 41   斜板側アーム
 50   ピストン
 100  伝達機構
 150  コーティング部
 151  第一コーティング部
 152  第二コーティング部
Reference Signs List 1 swash plate type compressor 20 rotary shaft 30 rotor 31 rotor side arm 40 swash plate 41 swash plate side arm 50 piston 100 transmission mechanism 150 coating portion 151 first coating portion 152 second coating portion

Claims (4)

  1.  回転軸に固定されたロータと、
     ピストンと連結されて前記回転軸に対して傾動可能に支持された斜板と、
     前記ロータの回転に伴って前記斜板を回転させると共に、前記斜板の傾動を案内する伝達機構と、
     前記ロータ、前記斜板及び前記伝達機構が互いに接する部分の表面を被覆するコーティング部と、
     を具備する、
     斜板式コンプレッサー。
    A rotor fixed to the rotating shaft,
    A swash plate connected to the piston and supported so as to be tiltable with respect to the rotation axis;
    A transmission mechanism that rotates the swash plate with the rotation of the rotor and guides the tilting of the swash plate;
    A coating portion covering a surface of a portion where the rotor, the swash plate and the transmission mechanism are in contact with each other;
    Equipped with
    Swash plate type compressor.
  2.  前記コーティング部は、
     前記ロータ、前記斜板及び前記伝達機構が、前記回転軸の周方向に対向する部分に形成されている、
     請求項1に記載の斜板式コンプレッサー。
    The coating portion is
    The rotor, the swash plate, and the transmission mechanism are formed in portions facing in the circumferential direction of the rotation shaft.
    A swash plate type compressor according to claim 1.
  3.  前記伝達機構は、
     アーム部と、
     前記アーム部と前記ロータ及び前記斜板とをそれぞれ回動可能に連結する軸部と、
     を具備し、
     前記コーティング部は、
     前記軸部と前記アーム部、前記ロータ及び前記斜板との摺動面に形成されている、
     請求項1又は請求項2に記載の斜板式コンプレッサー。
    The transmission mechanism is
    Arm part,
    A shaft portion rotatably connecting the arm portion to the rotor and the swash plate;
    Equipped with
    The coating portion is
    It is formed on a sliding surface between the shaft portion and the arm portion, the rotor and the swash plate,
    The swash plate type compressor according to claim 1 or 2.
  4.  前記コーティング部は、
     互いに異なる素材で形成された複数の部分を含む、
     請求項1から請求項3までのいずれか一項に記載の斜板式コンプレッサー。
    The coating portion is
    Including multiple parts made of different materials,
    The swash plate compressor according to any one of claims 1 to 3.
PCT/JP2017/013446 2016-03-31 2017-03-30 Swashplate compressor WO2017170953A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-073125 2016-03-31
JP2016073125A JP2017180432A (en) 2016-03-31 2016-03-31 Swash plate type compressor

Publications (1)

Publication Number Publication Date
WO2017170953A1 true WO2017170953A1 (en) 2017-10-05

Family

ID=59965896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/013446 WO2017170953A1 (en) 2016-03-31 2017-03-30 Swashplate compressor

Country Status (2)

Country Link
JP (1) JP2017180432A (en)
WO (1) WO2017170953A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200080821A (en) * 2018-12-27 2020-07-07 한온시스템 주식회사 Swash plate type compressor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02136586A (en) * 1988-11-15 1990-05-25 Riken Corp Vane type compressor
JPH05149243A (en) * 1991-11-29 1993-06-15 Toyota Autom Loom Works Ltd Variable displacement rocking swash plate type compressor
JP2004027913A (en) * 2002-06-24 2004-01-29 Sanden Corp Piston type compressor
JP2010144589A (en) * 2008-12-17 2010-07-01 Sanden Corp Link mechanism between rotor and swash plate of variable displacement compressor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02136586A (en) * 1988-11-15 1990-05-25 Riken Corp Vane type compressor
JPH05149243A (en) * 1991-11-29 1993-06-15 Toyota Autom Loom Works Ltd Variable displacement rocking swash plate type compressor
JP2004027913A (en) * 2002-06-24 2004-01-29 Sanden Corp Piston type compressor
JP2010144589A (en) * 2008-12-17 2010-07-01 Sanden Corp Link mechanism between rotor and swash plate of variable displacement compressor

Also Published As

Publication number Publication date
JP2017180432A (en) 2017-10-05

Similar Documents

Publication Publication Date Title
EP1310674B1 (en) Coating for swash plate compressor
WO2009084395A1 (en) Wobble plate type variable displacement compressor
JPH10266952A (en) Variable displacement type swash plate compressor
US6568918B2 (en) Lubrication coating for the sliding portion of a swashplate compressor
US6666128B2 (en) Swash plate in swash plate type compressor
WO2017170953A1 (en) Swashplate compressor
JP4656666B2 (en) Swash ring compressor
JP5022305B2 (en) Swing plate type variable capacity compressor
JP2006291748A (en) Piston type variable displacement compressor
JPH09209926A (en) Swash plate type compressor
JP2015094323A (en) Variable displacement type swash plate compressor
US6761106B2 (en) Swash plate for compressor
JP4545035B2 (en) Cylinder block and axial piston pump motor with the same cylinder block
WO2017170954A1 (en) Shoe and swashplate type compressor equipped with said shoe
KR20040012840A (en) Reciprocating engine with an articulation arrangement
US20090097990A1 (en) Swash plate type compressor
WO2019176724A1 (en) Swash plate-type compressor
JP2017180434A (en) Swash plate for compressor
JP2020105950A (en) Swash plate type hydraulic rotary machine
JP2006125222A (en) Rocking support mechanism
JP2009250117A (en) Swash plate type compressor
JP2008019770A (en) Variable capacity compressor
JP2006009626A (en) Variable displacement compressor
JP2016186276A (en) Variable displacement type swash plate compressor
JP2010229860A (en) Variable displacement compressor

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17775487

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17775487

Country of ref document: EP

Kind code of ref document: A1