WO2017170423A1 - Alcohol-terminated polyester and polyester production method - Google Patents

Alcohol-terminated polyester and polyester production method Download PDF

Info

Publication number
WO2017170423A1
WO2017170423A1 PCT/JP2017/012431 JP2017012431W WO2017170423A1 WO 2017170423 A1 WO2017170423 A1 WO 2017170423A1 JP 2017012431 W JP2017012431 W JP 2017012431W WO 2017170423 A1 WO2017170423 A1 WO 2017170423A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester
acid
alcohol
lactic acid
molecular weight
Prior art date
Application number
PCT/JP2017/012431
Other languages
French (fr)
Japanese (ja)
Inventor
精一 田口
Original Assignee
国立大学法人北海道大学
株式会社Adeka
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人北海道大学, 株式会社Adeka filed Critical 国立大学法人北海道大学
Priority to JP2018508000A priority Critical patent/JP7149473B2/en
Publication of WO2017170423A1 publication Critical patent/WO2017170423A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/91Polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/62Carboxylic acid esters

Definitions

  • the present invention relates to an alcohol-terminated polyester and a method for producing the polyester. According to the present invention, polyester produced by microorganisms can be efficiently secreted into the medium.
  • Patent Document 1 discloses a method for producing a target protein outside the cell by using a microorganism transformed with an expression vector containing a gene encoding the OmpF protein of E. coli.
  • Patent Document 2 discloses that the secretion of the target protein is enhanced in low-temperature culture by modifying the Gram-negative bacterium Type I secretion system used for secretion of hemolytic toxin ⁇ -hemolysin (HlyA) produced by uropathogenic E. coli. An efficient system is disclosed. However, the method of adding a signal sequence as in Patent Documents 1 and 2 is difficult to apply to other than proteins.
  • HlyA hemolytic toxin ⁇ -hemolysin
  • Patent Document 3 a method for producing shikimic acid using a microorganism belonging to a specific genus Citrobacter
  • Patent Document 4 a method for efficiently producing lipids containing unsaturated fatty acids using the microorganism
  • polyesters Furthermore, for polyesters, a gene encoding a protein having an activity of converting lactic acid into lactic acid CoA and a protein having an activity of synthesizing polyhydroxyalkanoic acid using hydroxyacyl CoA as a substrate for a host microorganism
  • a method for producing an aliphatic polyester has been disclosed in which a recombinant microorganism obtained by introducing and is cultured and the aliphatic polyester is recovered from the medium (Patent Document 5).
  • Patent Documents 3 and 4 utilize specific strains that are secreted outside the cells, and the products are greatly limited. Further, in the method of Patent Document 5, the amount of the lactic acid polymer obtained is about 200 mg per liter, and the production amount was not sufficient.
  • an object of the present invention is to provide a method for producing polyester capable of secreting polyester outside the cells of microorganisms.
  • the present inventor surprisingly added an alcohol having a molecular weight of 300 or less to a culture medium for culturing a microorganism. It has been found that the polyester produced in the cells of the microorganism is efficiently secreted into the medium.
  • the present invention is based on these findings.
  • the present invention [1] An alcohol-terminated polyester having an alcohol residue with a molecular weight of 300 or less at the end, [2] The alcohol-terminated polyester according to [1], wherein the polyester is a polyester comprising ⁇ -hydroxy acid and / or ⁇ -hydroxy acid, [3] The alcohol-terminated polyester according to [2], wherein the ⁇ -hydroxy acid and / or ⁇ -hydroxy acid is lactic acid and / or 3-hydroxybutanoic acid, [4] The alcohol-terminated polyester according to any one of [1] to [3], wherein the average number of repeating units of the polyester is 2 to 12, [5] The alcohol-terminated polyester according to [3] or [4], wherein the average lactic acid content is 70 mol% to 100 mol%, [6] A method for producing polyester, comprising culturing a microorganism capable of producing polyester in a medium containing an alcohol having a molecular weight of 300 or less, [7] The method for producing a polyester according to [6], wherein
  • the polyester of the present invention it can be efficiently secreted outside the cells of microorganisms. Moreover, according to the manufacturing method of the polyester of this invention, the polyester containing lactic acid can be efficiently produced by microorganisms. Naturally, there are many L-form lactic acids, but when a specific polyhydroxyalkanoate synthase is used in the present invention, it is possible to secrete a polyester containing D-form lactic acid outside the cells, The obtained polyester is useful as a raw material for biodegradable materials.
  • the alcohol-terminated polyester obtained according to the present invention can be used as a raw material for food and cosmetics in addition to the alcohol-terminated polyester itself as a polymer raw material.
  • the alcohol-terminated polyester obtained by the present invention has a high lactic acid content
  • it can be suitably used as a lactide raw material for producing polylactic acid.
  • industrially producing high molecular weight polylactic acid it is generally carried out by a ring-opening polymerization reaction with a cyclic dimer (lactide) of lactic acid.
  • lactide cyclic dimer
  • it is necessary to synthesize lactide once, so that there are problems that the process becomes complicated and costs increase.
  • lactide By synthesizing lactide from an alcohol-terminated polyester having a high lactic acid content, it is possible to produce polylactic acid more simply and efficiently than in the past.
  • 3 is a graph showing the results of analyzing the molecular weight of the molecules in the supernatant of the medium obtained by the production method of the present invention by ESI-MS. It is a diagram showing the 1 H- 1 H COSY NMR (a ) and 1 H- 1 H DOSY NMR (b ) extracellular oligomer obtained in this invention. It is the figure which showed 1 H NMR (a), 13 C NMR (b), and 1 H- 13 C HMQC (c) of the extracellular oligomer obtained by the present invention. Is a diagram showing the 1 H NMR of lactide synthesized from the extracellular oligomer obtained in this invention.
  • Alcohol-terminated polyester has an alcohol residue having a molecular weight of 300 or less at the terminal. That is, when the alcohol is a polyhydric alcohol, the alcohol-terminated polyester of the present invention comprises a polyester unit composed of a repeating unit of A in the following general formula (1) and a hydrogen atom, and an alcohol residue composed of B and a hydroxy group.
  • l is not particularly limited, but is 2 to 1000 in some embodiments, 2 to 100 in some embodiments, 2 to 50 in some embodiments, and 2 in some embodiments. ⁇ 20.
  • polyester part is a polyester composed of lactic acid or 3-hydroxybutanoic acid, or a polyester composed of lactic acid and 3-hydroxybutanoic acid, and diethylene glycol, for example, as an alcohol is bonded to the terminal of the polyester part
  • the alcohol-terminated polyester of the invention has the general formula (2) It can be expressed as In the present specification, “polyester” includes oligomers.
  • the repeating unit of the polyester portion of the present invention is not particularly limited as long as it can constitute the polyester, but is preferably a hydroxy acid, more preferably an ⁇ -hydroxy acid and / or a ⁇ -hydroxy acid.
  • the hydroxy acid include 2-hydroxypropionic acid (lactic acid), 2-hydroxybutanoic acid, 2-hydroxypentanoic acid, 2-hydroxyhexanoic acid, 2-hydroxyheptanoic acid, 2-hydroxyoctanoic acid, and 2-hydroxynonanoic acid.
  • ⁇ -hydroxy acids such as 2-hydroxydecanoic acid, 3-hydroxypropionic acid, 3-hydroxybutanoic acid, 3-hydroxypentanoic acid, 3-hydroxyhexanoic acid, 3-hydroxyheptanoic acid, 3-hydroxyoctanoic acid, 3 ⁇ -hydroxy acids such as hydroxynonanoic acid and 3-hydroxydecanoic acid, 4-hydroxybutanoic acid, 4-hydroxypentanoic acid, 4-hydroxyhexanoic acid, 4-hydroxyheptanoic acid, 4-hydroxyoctanoic acid, 4-hydroxy Nonanoic acid, 4-hydroxydecanoic acid, etc. be able to.
  • the repeating unit of the polyester part may be one type of repeating unit or a combination of two or more types of repeating units.
  • the repeating unit is referred to as, for example, a hydroxy acid residue, but for convenience, the hydroxy acid residue may be referred to as a “hydroxy acid”.
  • the polyester portion of the alcohol-terminated polyester of the present invention comprises a repeating unit and a terminal hydroxy group to which no alcohol is bonded.
  • a hydroxy acid is polymerized by a condensation reaction.
  • the polyester portion of the alcohol-terminated polyester of the present invention there can be mentioned a terminal hydroxy group to which a lactic acid residue and an alcohol are not bonded.
  • polyester portion there can be mentioned a hydroxy group at a terminal to which a lactic acid residue, a 3-hydroxybutanoic acid residue and an alcohol are not bonded. Furthermore, as another embodiment of the polyester portion, there can be mentioned a hydroxy group at a terminal to which a 3-hydroxybutanoic acid residue and an alcohol are not bonded.
  • lactic acid and lactic acid, lactic acid and 3-hydroxybutanoic acid, or 3-hydroxybutanoic acid and 3-hydroxybutanoic acid are polymerized by a condensation reaction.
  • the alcohol-terminated polyester of the present invention has the following formula (3)
  • the lactic acid represented by these can be included. More specifically, the alcohol-terminated polyester of the present invention is a lactic acid repeating unit (4).
  • the repeating unit is referred to as a lactic acid residue.
  • the lactic acid residue is sometimes referred to as “lactic acid” for convenience.
  • the alcohol-terminated polyester of the present invention has the following formula (5):
  • the 3-hydroxybutanoic acid represented by these can be included. More specifically, the alcohol-terminated polyester of the present invention contains 3-hydroxybutanoic acid repeating units (6)
  • the repeating unit is referred to as a 3-hydroxybutanoic acid residue.
  • the 3-hydroxybutanoic acid residue is sometimes referred to as “3-hydroxybutanoic acid” for convenience.
  • the number of repeating units of lactic acid and / or 3-hydroxybutanoic acid in the alcohol-terminated polyester of the present invention is not particularly limited, but is 2 to 1000 in some embodiments and 2 to 100 in some embodiments. In some embodiments, it is 2-50, in some embodiments 2-20, and in some embodiments 2-10. That is, “n + m” in the general formula (2) is not limited, but is 2 to 1000 in an embodiment, 2 to 100 in an embodiment, and 2 to 50 in an embodiment. Is from 2 to 20, and in some embodiments from 2 to 10.
  • n which is the number of repeating units of 3-hydroxybutanoic acid, is not limited, but in some embodiments, 0 to 1000, in some embodiments, 0 to 100, and in some embodiments, 0 to 50, In some embodiments, 0 to 20, and in some embodiments 0 to 10, but when the alcohol-terminated polyester consists only of 3-hydroxybutanoic acid, the lower limit of m is 2.
  • n which is the number of repeating units of lactic acid, is 0 to 1000 in an embodiment, 0 to 100 in an embodiment, 0 to 50 in an embodiment, and 0 to 20 in an embodiment. In this case, the lower limit of n is 2 when the alcohol-terminated polyester consists only of lactic acid.
  • the molecular weight of the alcohol-terminated polyester of the present invention is not particularly limited, but preferably the lower limit of the molecular weight is about 200 and the upper limit of the molecular weight is 100,000. Further, the upper limit of the more preferable molecular weight is 10,000, more preferably 5000, and most preferably 1000.
  • the ratio of lactic acid to 3-hydroxybutanoic acid in the alcohol-terminated polyester of the present invention is not particularly limited.
  • the alcohol-terminated polyester of the present invention is a polyester composed of lactic acid
  • the ratio of lactic acid is 100 mol%.
  • the alcohol-terminated polyester is a polyester composed of 3-hydroxybutanoic acid
  • the ratio of 3-hydroxybutanoic acid is 100 mol%.
  • the alcohol-terminated polyester of the present invention is a polyester comprising lactic acid and 3-hydroxybutanoic acid
  • the content of lactic acid is not particularly limited, but is preferably 70 mol% or more, more preferably 80 mol. % Or more, more preferably 90 mol% or more.
  • the alcohol-terminated polyester of the present invention can be suitably used as a raw material for biodegradable materials.
  • the lactic acid residue and the 3-hydroxybutanoic acid residue are represented as being arranged in a block form.
  • the sequence of these residues is a block form, a random form. Any combination of a block-like part and a random part may be used. That is, a 3-hydroxybutanoic acid residue may be present at the end of the polyester portion.
  • the lactic acid contained in the alcohol-terminated polyester may be D-form or L-form, but D-form is preferred.
  • Natural lactic acid existing in nature has many L-forms. When a biodegradable material is produced, the use of racemic polylactic acid may make the biodegradable material brittle. Therefore, it is preferable to use L-form polylactic acid and D-form polylactic acid to be co-crystallized and to use a stereocomplex type polymer. As mentioned above, since natural D-form polylactic acid is difficult to obtain, D-form polylactic acid is useful as a raw material for biodegradable materials.
  • an alcohol forms an ester bond with lactic acid by a condensation reaction, or an alcohol forms an ester bond with 3-hydroxybutanoic acid by a condensation reaction.
  • an alcohol residue an alcohol-derived group bonded to lactic acid or 3-hydroxybutanoic acid is referred to as an alcohol residue.
  • the alcohol residue means a residue obtained by removing a hydroxy group from the alcohol.
  • the alcohol residue is sometimes referred to as “alcohol” for convenience.
  • the alcohol capable of generating an alcohol residue contained in the alcohol-terminated polyester of the present invention is an alcohol having a molecular weight of 300 or less. Moreover, as a minimum of molecular weight, Preferably it is 50 or more, More preferably, it is 65 or more.
  • the alcohol having a molecular weight of 300 or less is not particularly limited as long as it has a hydroxy group and has a molecular weight of 300 or less, but is preferably a polyhydric alcohol or an alcohol having an ether bond, and more preferably. Is a polyhydric alcohol having an ether bond, more preferably a diol having an ether bond.
  • Another preferred embodiment is an aliphatic alcohol having a monovalent to trivalent hydroxy group.
  • Specific aliphatic alcohols include methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol, 1-hexanol, cyclohexanol, 1-heptanol, 1-octanol, 1-nonanol, 1-decanol, glycidol , Methylcyclohexanol, 2-methyl-1-butanol, 3-methyl-2-butanol, 4-methyl-2-pentanol, isopropyl alcohol, 2-ethylbutanol, 2-ethylhexanol, 2-octanol, terpineol, dihydro Terpineol, 2-methoxyethanol, 2-ethoxyethanol, 2-n-butoxyethanol, carbitol, ethyl carbitol, n-butyl carbitol, diacetone alcohol, diethylene
  • the alcohol-terminated polyester of the present invention contains a monohydric alcohol such as methanol or ethanol
  • the alcohol-terminated polyester of the present invention is a polyester part composed of a repeating unit of A in the following general formula (7) and a hydrogen atom, and It consists of B alcohol residues.
  • the alcohol-terminated polyester of the present invention can be used as a polymer raw material, food, cosmetic raw material, etc., but can also be derivatized by further reacting with a terminal hydroxyl group.
  • the group that reacts with the hydroxyl group of the polyester include an isocyanate group, a carboxyl group, a carboxylic acid halide group, and an epoxy group.
  • examples of the low molecular weight compound having a group that reacts with the hydroxyl group of the polyester include isocyanate compounds, carboxylic acids, carboxylic acid halides, and epoxy compounds.
  • Examples of the monofunctional isocyanate compound include 2,6-diisopropylphenyl isocyanate.
  • Polyfunctional isocyanate compounds include tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), xylylene diisocyanate (XDI), isophorone diisocyanate (IPDI), xylylene diisocyanate (XDI), isophorone diisocyanate (IPDI), methyl.
  • Cyclohexyl diisocyanate (H6TDI), 4,4′-dicyclohexylmethane diisocyanate (H12MDI), 1,3-bis (isocyanatomethyl) cyclohexane (H6XDI), tetramethylxylylene diisocyanate (TMXDI), 2,2,4-trimethylhexa Methylene diisocyanate (TMHDI), hexamethylene diisocyanate (HDI), norbornene diisocyanate (NBDI) 2,4,6-triisopropylphenyl diisocyanate (TIDI), 1,12-diisocyanate dodecane (DDI), 2,4, -bis- (8-isocyanate octyl) -1,3-dioctylcyclobutane (OCDI), or n -Pentane-1,4-diisocyanate.
  • H6TDI 4,4′-dicyclohexy
  • Monofunctional carboxylic acids include linear or branched saturated aliphatic monofunctional carboxylic acids such as acetic acid, propionic acid, butyric acid, and lauric acid, and linear or branched unsaturated groups such as acrylic acid and methacrylic acid. Mention may be made of aliphatic monofunctional carboxylic acids and aromatic monofunctional carboxylic acids such as benzoic acid and 2-phenoxybenzoic acid.
  • Examples of the bifunctional carboxylic acid include aliphatic dicarboxylic acids such as succinic acid, adipic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, and eicosane diacid, 1,2-cyclohexanedicarboxylic acid, 1,3- Cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, perhydronaphthalenedicarboxylic acid, alicyclic dicarboxylic acid such as dimer acid, fumaric acid, maleic acid, and unsaturated dicarboxylic acid such as itaconic acid, tetrahydrophthalic acid, and Mention may be made of unsaturated alicyclic dicarboxylic acids such as cyclobutene dicarboxylic acid, p-hydroxyethyloxybenzoic acid, and oxyacids such as ⁇ -caprolactone. Further,
  • Monofunctional carboxylic acid halides include acetyl chloride, acetyl bromide, propanoyl chloride, propanoyl bromide, butanoyl chloride, butanoyl bromide, pentanoyl chloride, pentanoyl bromide, hexanoyl chloride, hexanoyl bromide, benzoyl chloride, and odor Benzoyl chloride.
  • Examples of polyfunctional carboxylic acid halides include dicarboxylic acid chlorides, dicarboxylic acid bromides, and dicarboxylic acid iodides. More specifically, polyfunctional carboxylic acid having two or more carboxylic acid halide groups.
  • biphenyl dicarboxylic acid dichloride biphenylene dicarboxylic acid dichloride, azobenzene dicarboxylic acid dichloride, terephthalic acid dichloride, isophthalic acid dichloride, naphthalene dicarboxylic acid dichloride, etc.
  • Aliphatic bifunctional carboxylic acid halides such as adipoyl dichloride, sebacoyl dichloride, cyclopentane dicarboxylic acid dichloride, cyclohexane dicarboxylic acid dichloride, tetrahydrofuran dicarbonate It can be mentioned alicyclic bifunctional carboxylic acid halides such as carbon acid dichloride.
  • examples of the trifunctional carboxylic acid halide include trimesic acid trichloride, 1,3,5-cyclohexane tricarboxylic acid trichloride, and 1,2,4-cyclobutane tricarboxylic acid trichloride.
  • an alcohol-terminated polyester derivative By using the isocyanate compound, carboxylic acid, or carboxylic acid halide, an alcohol-terminated polyester derivative can be obtained.
  • the isocyanate compound, carboxylic acid, or carboxylic acid halide-terminated polyester is obtained by replacing the alcohol with an isocyanate compound, carboxylic acid, or carboxylic acid halide. It can be carried out by replacing with an isocyanate compound, carboxylic acid, or carboxylic acid halide.
  • the epoxy compound include ethylene oxide, propylene oxide, and phenylene oxide.
  • the alcohol-terminated polyester of the present invention is not limited, but can be produced by, for example, microorganisms as described in the production method described later. As shown in FIG. 1, the alcohol-terminated polyester produced by a microorganism includes an extracellular alcohol-terminated polyester that is secreted outside the cells of the microorganism and an intracellular alcohol-terminated polyester that exists inside the cells of the microorganism.
  • the extracellular alcohol-terminated polyester can be recovered from the culture medium of the microorganism. Therefore, it is easy to collect and purify as compared with polyester accumulated in cells.
  • the number of repeating units of the extracellular alcohol-terminated polyester is not particularly limited, but is 2 to 12 in some embodiments, 2 to 10 in some embodiments, and 2 to 8 in some embodiments. Therefore, when the extracellular alcohol-terminated polyester comprises 3-hydroxybutanoic acid and lactic acid, “n + m” in the general formula (2) is not limited, but is 2 to 12 in some embodiments, and in some embodiments, 2 to 10, and in some embodiments 2 to 8. That is, the extracellular alcohol-terminated polyester contains a large amount of polyester generally called an oligomer.
  • m in the general formula (2) is not limited, but is 2 to 12 in some embodiments and 2 to 10 in some embodiments In some embodiments, it is 2-8.
  • n in the general formula (2) is not limited, but in some embodiments it is 2 to 12, in some embodiments 2 to 10, and in some embodiments 2-8.
  • the intracellular alcohol-terminated polyester has a larger number of repeating units than the extracellular alcohol-terminated polyester. Therefore, it is useful as a raw material for high molecular weight biodegradable materials.
  • the number of repeating units of the intracellular alcohol-terminated polyester is not particularly limited, but is 2 to 1000 in some embodiments, 2 to 100 in some embodiments, and 2 to 50 in some embodiments. That is, when the intracellular alcohol-terminated polyester comprises 3-hydroxybutanoic acid and lactic acid, “n + m” in the general formula (2) is not limited, but is 2 to 1000 in some embodiments, and in some embodiments, 2 to 100, and in some embodiments 2 to 50.
  • intracellular alcohol-terminated polyesters include high molecular weight polymers and low and medium molecular weight oligomers.
  • m in the general formula (2) is not limited, but is 2 to 12 in some embodiments and 2 to 10 in some embodiments In some embodiments, it is 2-8.
  • n in the general formula (2) is not limited, but in some embodiments it is 2 to 12, in some embodiments 2 to 10, and in some embodiments 2-8.
  • An alcohol-terminated polyester produced using Escherichia coli as a microorganism is represented by the following formula (8):
  • the D-form lactic acid residue represented by these can be included.
  • D-form polylactic acid produced using Escherichia coli as a host is useful as a raw material for biodegradable materials.
  • the method for producing a polyester of the present invention is characterized in that a microorganism capable of producing a polyester is cultured in a medium containing an alcohol having a molecular weight of 300 or less.
  • a microorganism capable of producing a polyester composed of lactic acid a microorganism capable of producing a polyester composed of 3-hydroxybutanoic acid, or a microorganism capable of producing a polyester composed of lactic acid and 3-hydroxybutanoic acid are mixed with an alcohol having a molecular weight of 300 or less.
  • Polyester can be obtained by culturing in a medium containing the same.
  • the microorganism used in the production method of the present invention is not particularly limited as long as it has the ability to produce polyester.
  • microorganisms having the ability to produce polyester comprising lactic acid and 3-hydroxybutanoic acid include bacteria such as Ralstonia and Eutropha.
  • a recombinant microorganism can also be used as a microorganism used for the production method of the present invention.
  • these transformed recombinant microorganisms the convenience of operation can be improved and the productivity can be improved.
  • Microorganisms that can be used as recombinant microorganisms are not particularly limited, but Escherichia coli is particularly preferable, and using tatB, tatE, and araf (deficient mutant) among E. coli can improve the amount of polyester produced per unit medium.
  • pfla and dld deletion mutants are preferable for improving the polyester production and increasing the content of lactic acid in the oligomer.
  • the recombinant microorganism for example, at least one gene selected from the group consisting of a polyhydroxyalkanoate synthase gene, a propionyl CoA transferase gene, a ⁇ -ketothiolase gene, and an acetoacetyl CoA reductase gene is introduced into the microorganism.
  • polyhydroxyalkanoate synthase The polyhydroxyalkanoate synthase, propionyl CoA transferase, ⁇ -ketothiolase, and acetoacetyl CoA reductase will be described.
  • the polyhydroxyalkanoic acid synthase is a protein having catalytic activity for a reaction of synthesizing polyhydroxyalkanoic acid using hydroxyacyl CoA as a monomer.
  • Polyhydroxyalkanoic acid synthase catalyzes a reaction for synthesizing polylactic acid using lactyl CoA as a monomer.
  • polyhydroxyalkanoate synthase catalyzes a reaction for synthesizing a hydroxyalkanoic acid-lactic acid copolymer using hydroxyacyl CoA and lactyl CoA as monomers.
  • a preferred polyhydroxyalkanoate synthase gene to be introduced into the recombinant microorganism used in the present invention is derived from any of Ralstonia, Pseudomonas, Escherichia, and Megasfera Particularly preferred is derived from Pseudomonas sp. 61-3, the base sequence thereof is shown in SEQ ID NO: 1, and the amino acid sequence encoded by the base sequence is shown in SEQ ID NO: 2.
  • a gene encoding a mutant polyhydroxyalkanoate synthase can also be used as the polyhydroxyalkanoate synthase gene.
  • the 130th, 325th, 392rd, 477th and 481st amino acids of the amino acid sequence (SEQ ID NO: 2) encoded by the nucleotide sequence shown in SEQ ID NO: 1 are each independently substituted.
  • Propionyl CoA transferase is a protein having an activity of catalyzing a reaction in which CoA is transferred from an appropriate CoA substrate to propionic acid and / or lactic acid.
  • propionyl CoA transferase is described as “PCT”.
  • PCT genes in the present invention are those derived from any of Ralstonia, Pseudomonas, Escherichia, and Megasfera. Particularly preferred is derived from Megaphaphaela elsdenii, the base sequence thereof is shown in SEQ ID NO: 3, and the amino acid sequence encoded by the base sequence is shown in SEQ ID NO: 4.
  • ⁇ -ketothiolase gene ⁇ -ketothiolase is a protein that catalyzes a reaction in which two molecules of acetyl CoA are condensed to form acetoacetyl CoA.
  • ⁇ -ketothiolase is referred to as “ ⁇ KT” in the present specification.
  • a preferred ⁇ KT gene in the present invention is derived from any of Ralstonia, Pseudomonas, Escherichia, and Megasfera. Particularly preferably, it is derived from Ralstonia eutropha, the base sequence thereof is shown in SEQ ID NO: 5, and the amino acid sequence encoded by the base sequence is shown in SEQ ID NO: 6.
  • Acetoacetyl-CoA reductase undergoes a reaction in which D (-)- ⁇ -hydroxybutyryl-CoA is formed by a reduction reaction that occurs in the presence of a coenzyme such as NADP of acetoacetyl-CoA. It is a protein that catalyzes.
  • acetoacetyl CoA reductase is referred to as “AACoA-R” in the present specification.
  • Preferred AACoA-R genes in the present invention are those derived from any of Ralstonia, Pseudomonas, Escherichia, and Megasfera. Particularly preferably, it is derived from Ralstonia eutropha, the base sequence thereof is shown in SEQ ID NO: 7, and the amino acid sequence encoded by the base sequence is shown in SEQ ID NO: 8.
  • the polyhydroxyalkanoate synthase gene, propionyl CoA transferase, ⁇ -ketothiolase, and acetoacetyl CoA reductase used in the present invention have the nucleotide sequences of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, and SEQ ID NO: 7, respectively. It may have 1 to several base deletions, substitutions, additions or insertions.
  • the term “several” means 1 to 40, preferably 1 to 20, more preferably 10 or less.
  • the polyhydroxyalkanoate synthase gene, propionyl CoA transferase, ⁇ -ketothiolase, and acetoacetyl CoA reductase are bases complementary to the nucleotide sequences of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, and SEQ ID NO: 7, respectively. It may be a base sequence of DNA that can hybridize with DNA comprising a sequence under stringent conditions.
  • the polyhydroxyalkanoic acid synthase gene is a gene encoding a protein having a catalytic activity for the reaction of synthesizing polyhydroxyalkanoic acid using hydroxyacyl CoA as a monomer
  • propionyl CoA transferase gene is propionic acid and / or
  • the ⁇ -ketothiolase gene has an activity of catalyzing a reaction in which two molecules of acetyl CoA are condensed to form acetoacetyl CoA
  • the acetoacetyl CoA reductase gene is a gene encoding a protein having catalytic activity for the reduction reaction of acetoacetyl CoA.
  • the catalytic activity of the reaction in which CoA is transferred to propionic acid and / or lactic acid is, for example, A. E. It can be measured according to the method described in Hofmeister et al. (Eur. J. Biochem., 206, 547-552).
  • the catalytic activity of the reaction in which acetoacetyl CoA is formed from the two molecules of acetyl CoA is measured, for example, by the method described in Slater et al. (J. Bacteriology, 1998, 180, 1979-1987). Can do.
  • the catalytic activity of the reduction reaction of acetoacetyl CoA is, for example, G.M. W. It can be measured by the method described in Haywood et al. (FEMS Microbiology Letters, 1988, Vol. 52, pp. 259-264).
  • the medium used in the production method of the present invention can be appropriately selected depending on the microorganism used, but a medium containing a carbon source is usually used.
  • a medium containing a carbon source is usually used.
  • E. coli for example, LB medium, M9 medium, NZYM medium, SOB medium, 2 ⁇ YT medium, or terrific broth can be used.
  • the carbon source contained in the medium is not particularly limited as long as the polyester of the present invention can be produced.
  • glucose, xylose, fructose, cellobiose, raffinose, maltose, galactose, starch, starch hydrolysate, molasses examples include sugars such as waste molasses, and natural products such as wheat and rice.
  • xylose is preferable when obtaining a polyester having a high lactic acid content (lactic acid content).
  • Alcohol with a molecular weight of 300 or less is added to the medium. That is, the microorganism is brought into contact with an alcohol having a molecular weight of 300 or less.
  • the alcohol having a molecular weight of 300 or less the “alcohol having a molecular weight of 300 or less” described in the section “[1] Alcohol-terminated polyester” can be used without limitation.
  • a polyhydric alcohol or an ether bond is used. More preferably a polyhydric alcohol having an ether bond, and still more preferably a diol having an ether bond.
  • Another preferred embodiment is an aliphatic alcohol having a monovalent to trivalent hydroxy group.
  • diethylene glycol, butanediol, or polyethylene glycol is preferable.
  • polyethylene glycol polyethylene glycol having a molecular weight of 300 or less is used.
  • the molecular weight of polyethylene glycol is preferably 280 or less, more preferably 260 or less.
  • the lower limit of the molecular weight is preferably 50 or more, more preferably 65 or more.
  • the alcohol is presumed to be bonded to the end of the polyester portion by a condensation reaction to stop the polymerization of the polyester.
  • the alcohol concentration added to the medium is not particularly limited as long as the effects of the present invention can be obtained.
  • the concentration that does not inhibit the growth of microorganisms depends on the type of alcohol and the type of microorganism. It can be determined as appropriate.
  • the concentration of diethylene glycol is preferably 0.01 to 20% by volume, more preferably 0.1 to 10% by volume.
  • the concentration of polyethylene glycol is preferably 0.01 to 15% by volume, more preferably 0.1 to 10% by volume.
  • the polyester obtained is characterized by being not only accumulated in the cells of microorganisms but also secreted outside the cells. That is, the amount of extracellular polyester produced when alcohol having a molecular weight of 300 or less is contained in the medium is significantly higher than the amount of extracellular polyester produced when no alcohol having a molecular weight of 300 or less is contained in the medium. It has improved.
  • the polyester obtained by the method for producing a polyester of the present invention includes an alcohol-terminated polyester in which an alcohol residue having a molecular weight of 300 or less is bonded to the terminal of the polyester. That is, although not limited, the alcohol-terminated polyester described in the section “[1] Alcohol-terminated polyester” can be produced. Since the alcohol is bonded to the terminal of the polyester, the polyester can be efficiently secreted outside the cells of the microorganism.
  • Low molecular weight to high molecular weight polyesters can be produced by the polyester production method of the present invention.
  • the obtained polyester includes not only a polymer compound having a molecular weight of several thousand to several tens of thousands, but also an oligomer having about a dimer to a 10-mer and a copolymer composed of two or more types of monomer units. That is, in the present invention, it is usually possible to produce a polyester having a low molecular weight to a high molecular weight.
  • Many polyesters secreted extracellularly have a relatively small molecular weight. For example, the average number of repeating units of lactic acid and 3-hydroxybutanoic acid in a polyester is 2 to 12 in an embodiment, and 2 to 10 in an embodiment.
  • the molecular weight of the polyester in the cell is not particularly limited, but many of them have a relatively large molecular weight.
  • the average number of repeating units of lactic acid and 3-hydroxybutanoic acid in the polyester is 2 to 1000 in some embodiments. In some embodiments, it is 2 to 100, and in some embodiments, 2 to 50.
  • the recovered polyester can be recovered by a method known to those skilled in the art for recovering a copolyester from a microorganism.
  • the microorganism is collected from the culture solution by centrifugation, washed, dried, suspended in chloroform, and heated to extract the desired copolyester into the chloroform fraction. Methanol is added to precipitate the polyester, the supernatant is removed by filtration or centrifugation, and then dried to obtain a purified copolyester.
  • the composition of the recovered polyester may be confirmed by a usual method such as gas chromatography or nuclear magnetic resonance.
  • the polyester obtained by the production method of the present invention has an alcohol residue having a molecular weight of 300 or less bonded to the terminal of the polyester.
  • polyesters secreted extracellularly have a high proportion of bonded alcohol residues having a molecular weight of 300 or less.
  • the reason why the alcohol is bonded to the obtained polyester is not clear in detail, but can be estimated as follows. The added alcohol having a molecular weight of 300 or less seems to act on the termination of polyester biosynthesis after being taken into the cells. As a result, a polyester in which the alcohol is bonded to the terminal is obtained.
  • alcohol having a molecular weight of 300 or less acts as a chain transfer agent.
  • the chain transfer agent receives radicals from the polymer chain and stops the extension of the polymer, but the chain transfer agent can also attack the monomer to initiate polymerization. It is also possible that the alcohol bound to the end of the polyester has migrated out of the cell by playing a role like a signal sequence.
  • the present invention is not limited by the above description.
  • Example 1 Manufacture of polyesters The method described in Example 1 of WO2009 / 131186 DNA encoding propionyl CoA transferase from M. elsdenii, DNA encoding ⁇ -ketothiolase from R. eutropha, R. DNA encoding acetoacetyl-CoA reductase from R. eutropha, and Pseudomonas sp.
  • coli BW25113 was transformed by the calcium phosphate method, and a transformant in which propionyl CoA transferase, ⁇ -ketothiolase, acetoacetyl CoA reductase, and ST / QK mutant enzyme were expressed (hereinafter sometimes referred to as ST / QK E. coli).
  • ST / QK E. coli a transformant in which propionyl CoA transferase, ⁇ -ketothiolase, acetoacetyl CoA reductase, and ST / QK mutant enzyme
  • ST / QK E. coli transformants expressing propionyl CoA transferase, ⁇ -ketothiolase, acetoacetyl CoA reductase, and ST / FS / QK mutant enzyme (hereinafter sometimes referred to as ST / FS / QK E. coli) Got the body.
  • the obtained transformant was cultured at 30 ° C. for 48 hours while stirring at 180 rpm using LB medium containing 2 wt% glucose and ampicillin.
  • polyethylene glycol PEG 200, sometimes simply referred to as “polyethylene glycol” or “PEG” in the following examples
  • diethylene glycol in an amount of 1 to 5% by volume as a final concentration was added to LB medium in advance (hereinafter, alcohol was added to the medium). The same applies to the case of adding to the above).
  • the culture supernatant was collected, and lactic acid contained in the culture supernatant was measured with a quantification kit (International Ireland, Megazyme).
  • the amount of lactic acid is determined by measuring lactic acid (Free LA) using the culture supernatant as it is (not treated with hydrochloric acid), or adding 80 ⁇ L of 5N hydrochloric acid and 20 ⁇ L of water to 100 ⁇ L of the culture supernatant, and 100 ° C. The hydrolysis was carried out overnight. Thereafter, 200 ⁇ L of 2N NaOH was added for neutralization, and lactic acid (Total LA) in the sample was measured. Since Free LA is not treated with hydrochloric acid, monomeric lactic acid in the culture supernatant is measured.
  • Total LA measures the total amount of monomeric and oligomeric lactic acid because oligomeric lactic acid in the culture supernatant is decomposed by hydrochloric acid to become a monomer. Therefore, it is considered that the amount of lactic acid oligomer in the culture supernatant is obtained by subtracting the lactic acid amount of Free LA from the lactic acid amount of Total LA.
  • the results are shown in FIGS. The black bar indicates Free LA, and the white bar indicates Total LA.
  • polylactic acid is added to the culture supernatant by adding polyethylene glycol (PEG) or diethylene glycol (DEG).
  • PEG polyethylene glycol
  • DEG diethylene glycol
  • Example 2 In this example, the ratio of lactic acid to 3-hydroxybutanoic acid contained in the oligomer of polylactic acid secreted into the culture supernatant was measured.
  • the ST / FS / QK E. coli obtained in Example 1 was cultured in the same manner as in Example 1 in a medium to which diethylene glycol was added to obtain a culture supernatant.
  • a sample not treated with hydrochloric acid and a sample treated with hydrochloric acid were prepared from the obtained culture supernatant.
  • Example 3 In this example, alcohol was added to the oligomer of extracellular polylactic acid (FIG. 5A), the oligomer of intracellular polylactic acid (FIG. 5B), and the polymer of intracellular polylactic acid (FIG. 5C) using NMR. It was confirmed that they were bonded. (Separation and sample preparation of extracellular oligomers, intracellular oligomers, and polymers) Escherichia coli BW25113 having pTV118NpctphaC1ps (ST / FS / QK) AB was cultured at 30 ° C.
  • FIG. 9A shows 1 H- 1 H COSY NMR.
  • the crossover signal of 3.7 ppm / 4.3 ppm indicates that the 4.3 ppm resonance is derived from the proton of (B) of DEG, and therefore DEG was thought to be bound to the polyester at the carboxy terminus. .
  • FIG. 9 (b) shows 1 H- 1 H DOSY NMR, which shows that the diffusion coefficient of DEG is similar to that of D-lactic acid oligomer and is lower than that of unbound DEG. Therefore, the observed DEG was completely bound to the D-lactic acid oligomer.
  • FIG. 10 (a, b, c) shows 1 H NMR, 13 C NMR, and 1 H- 13 C HMQC. These data also show that the secretory oligomer obtained by adding DEG is D-lactic acid. It was supported to be an oligomeric DEG conjugate.
  • Example 4 the amount of intracellular and extracellular polyester was measured using a gene disruption mutant of E. coli.
  • a culture supernatant and Escherichia coli cells were obtained by repeating the procedure of Example 2 except that the gene disruption mutant Escherichia coli shown in FIG. 6 was used instead of Escherichia coli BW25113.
  • the amount of lactic acid was measured for the culture supernatant and the cells.
  • FIG. 6 an increase in the amount of polyester produced per unit medium amount was observed when deletion mutants such as tatB, tatE, and araf were used.
  • the upper diagram in FIG. 6 shows the amount of lactic acid oligomer produced per liter of the culture solution
  • the lower diagram shows the cell weight (Dry Cell Weight) per liter of the culture solution.
  • Example 5 The operation of Example 1 was repeated to measure Total LA and Free LA in the culture supernatant.
  • FIG. 7 shows the amount of oligomer produced by subtracting Free LA from Total LA.
  • PEG polyethylene glycol
  • DEG diethylene glycol
  • secretion of the oligomer increased depending on the volume of DEG.
  • ST / FS / QK E. coli when polyethylene glycol (PEG) was used as the alcohol, almost the same amount of oligomer was secreted in any of 1 to 5% by volume.
  • diethylene glycol (DEG) was used as the alcohol, secretion of the oligomer increased up to 5% by volume depending on the volume of DEG.
  • Example 6 molecules secreted into the culture supernatant were measured by ESI-MS using ST / FS / QK E. coli and 3% by volume of DEG. The operation of Example 2 was repeated to obtain a culture supernatant. The obtained culture supernatant was analyzed using ESI-MS (manufactured by Bruker). The results are shown in FIG.
  • Example 7 In this example, an extracellular polylactic acid oligomer, an intracellular polylactic acid oligomer produced by the production method of the present invention using ST / FS / QK E. coli and 1 to 5% by volume of DEG, and cells The amount of the polylactic acid polymer was measured. The operation of Example 3 was repeated to obtain an extracellular polylactic acid oligomer, an intracellular polylactic acid oligomer, and an intracellular polylactic acid polymer. As shown in Table 1, by culturing ST / FS / QK E. coli using DEG, oligomers secreted extracellularly increased remarkably.
  • Example 8 In this example, using the DEG-bonded polyester obtained by culturing in a medium containing 5% by volume DEG of Example 1, and the DEG non-bonded polyester obtained by culturing in a medium not containing DEG, Lactide was synthesized. 10 mg of dry DEG-bonded polyester or non-DEG-bonded polyester was mixed with 10 mg of zinc oxide (catalyst). The mixture was heated in a vacuum at 180 ° C. for 1 hour using an oven (GTO-350RD glass oven: manufactured by Shibata). The evaporated lactide was liquefied in a round bottom flask on ice and the crude lactide was recovered with chloroform. The crude lactide was analyzed by 1 H-NMR.
  • Example 9 In the same manner as in Example 1, R.I. DNA encoding ⁇ -ketothiolase from R. eutropha, R. DNA encoding acetoacetyl-CoA reductase from R. eutropha; A recombinant plasmid pTV118NphaCAB containing DNA encoding a polyhydroxyalkanoate synthase derived from R. eutropha was prepared. Subsequently, E. coli BW25113 was transformed by the calcium phosphate method to obtain a transformant expressing ⁇ -ketothiolase, acetoacetyl CoA reductase, and polyhydroxyalkanoate synthase.
  • the obtained transformant was cultured at 30 ° C. for 48 hours while stirring at 180 rpm using LB medium containing 2 wt% glucose and ampicillin. Any one of compounds A to C in an amount of 3% by volume as a final concentration was previously added to the LB medium.
  • the culture supernatant was collected and a sample treated with hydrochloric acid was prepared.
  • the amount of 3-hydroxybutanoic acid in the sample was measured with a quantification kit (Wako Pure Chemical Industries, AUTOKIT 3-HB). The results are shown in Table 3.
  • Example 10 the effect of adding a carbon source to the LB medium was examined.
  • E. coli BW25113 was transformed by the calcium phosphate method, and a transformant (ST / FS / QK) in which propionyl CoA transferase, ⁇ -ketothiolase, acetoacetyl CoA reductase, ST / FS / QK mutant enzyme was expressed.
  • E. coli was obtained.
  • LB medium containing 100 mg / L ampicillin was prepared, to which diethylene glycol was added to a final concentration of 5% by volume and glucose or xylose was added to a concentration of 20 g / L.
  • the obtained ST / FS / QK E. coli was cultured at 30 ° C. for 48 hours while stirring at 180 rpm in the above-mentioned two types of media supplemented with glucose or xylose. After completion of the culture, the culture supernatant was collected and analyzed in the same manner as in Examples 1 and 2. The results are shown in Table 4.
  • lactic acid contained in the oligomer increased to 97 mol%.
  • Example 11 culture was performed using two gene-deficient ( ⁇ pfla and ⁇ dld) mutants JWMB1 as E. coli. The procedure of Example 10 was repeated except that JWMB1 strain was used as E. coli. The results are shown in Table 5.
  • the alcohol-terminated polyester of the present invention and the polyester obtained by the method for producing the polyester of the present invention can be used as raw materials for biodegradable materials.
  • this invention was demonstrated along the specific aspect, the modification and improvement obvious to those skilled in the art are contained in the scope of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

The objective of the present invention is to provide a polyester production method causing polyester to be secreted outside of a microorganism cell. This problem can be solved by this alcohol-terminated polyester having an alcohol residue of 300 molecular weight or lower at a terminal thereof. In addition, the problem can be solved by a polyester production method characterized by the culture of a microorganism capable of producing this polyester in a culture medium containing alcohol of 300 molecular weight or lower.

Description

アルコール終止ポリエステル及びポリエステルの製造方法Alcohol-terminated polyester and method for producing polyester
 本発明は、アルコール終止ポリエステル及びポリエステルの製造方法に関する。本発明によれば、微生物によって産生されたポリエステルを培地中に効率的に分泌することができる。 The present invention relates to an alcohol-terminated polyester and a method for producing the polyester. According to the present invention, polyester produced by microorganisms can be efficiently secreted into the medium.
 近年、化石燃料の大量消費による温暖化や将来的な化石燃料の枯渇問題が活発に議論されるようになり、これらに換わる再生可能なバイオマスを利用した素材の開発が行われてきた。中でも、微生物を利用したポリエステル類の開発は、素材としての有用性のほか、環境中の微生物によって容易に分解資化される生分解性を有するため、注目されている。
 ある種の微生物がポリエステル類を合成することは以前から知られており、最初の報告例は、1926年にパスツール研究所で発見されたpolyhydroxybutyrate(PHB)である。その後、微生物ポリエステルの構成ユニットは現在に至るまで3-hydroxybutyrate(3HB)をはじめとする150種類以上が報告されており、PHA(polyhydroxyalkanoate)と総称されている。
In recent years, warming due to mass consumption of fossil fuels and future depletion of fossil fuels have been actively discussed, and materials that use renewable biomass to replace these have been developed. Above all, the development of polyesters using microorganisms has attracted attention because it has biodegradability that is easily decomposed and utilized by microorganisms in the environment in addition to its usefulness as a material.
It has long been known that certain microorganisms synthesize polyesters, and the first reported example is polyhydroxybutyrate (PHB) discovered in 1926 at the Pasteur Institute. Since then, over 150 types of constituent units of microbial polyester have been reported, including 3-hydroxybutyrate (3HB), and are collectively called PHA (polyhydroxyalkanoate).
 しかし、ポリエステル類を生産することのできる微生物の多くは菌体内に生産物を蓄積するものであり、ポリエステル類を回収する際には菌体を破砕する必要があるほか、菌体内での蓄積に伴い生育が阻害されたり、ポリエステル類の生産量に上限があるといった問題が生じる場合があり、大量生産を行ううえで障害となっていた。
 菌体内で生産された有用物質を菌体外へ移行させる検討はこれまでにも各種行われている。目的物質がタンパク質等の場合、例えば特許文献1には、大腸菌のOmpFタンパク質をコードする遺伝子を含む発現ベクターで形質転換された微生物を用いることで、目的タンパク質を菌体外へ生産する方法が開示され、特許文献2には、尿路病原性大腸菌が産生する溶血毒素α-ヘモリシン(HlyA)の分泌に使われるグラム陰性菌TypeI分泌システムを改変することにより、低温培養において目的タンパク質の分泌を高効率に実現するシステムが開示されている。しかし、特許文献1及び2のようなシグナル配列を付加する方法は、タンパク質以外には適用が難しい。
However, many of the microorganisms that can produce polyesters accumulate product in the cells, and when recovering polyesters, it is necessary to crush the cells and to accumulate in the cells. Along with this, there have been cases where growth is hindered or there is an upper limit in the production amount of polyester, which has been an obstacle to mass production.
Various studies have been conducted so far to transfer useful substances produced in the cells outside the cells. When the target substance is a protein or the like, for example, Patent Document 1 discloses a method for producing a target protein outside the cell by using a microorganism transformed with an expression vector containing a gene encoding the OmpF protein of E. coli. Patent Document 2 discloses that the secretion of the target protein is enhanced in low-temperature culture by modifying the Gram-negative bacterium Type I secretion system used for secretion of hemolytic toxin α-hemolysin (HlyA) produced by uropathogenic E. coli. An efficient system is disclosed. However, the method of adding a signal sequence as in Patent Documents 1 and 2 is difficult to apply to other than proteins.
 一方、タンパク質以外の生成物を菌体外へ移行させる方法としては、特定のシトロバクター属に属する微生物を用いてシキミ酸を製造する方法(特許文献3)、人為的処理を施した微生物又は自然界から採取した微生物を固体培地で生育させ、コロニーの周りに油滴小胞を形成する菌株および/または透明な液体培地を用いた培養で培養液に濁りが生じる菌株を選抜する、微生物のスクリーニング方法と当該微生物を用いて不飽和脂肪酸を含有する脂質を効率よく製造する方法(特許文献4)等が開示されている。さらにポリエステル類については、宿主微生物に対して、乳酸を乳酸CoAに変換する活性を有するタンパク質をコードする遺伝子と、ヒドロキシアシルCoAを基質としてポリヒドロキシアルカン酸を合成する活性を有するタンパク質をコードする遺伝子とを導入してなる組み換え微生物を培養し、培地から脂肪族ポリエステルを回収する脂肪族ポリエステルの製造方法が開示されている(特許文献5)。 On the other hand, as a method for transferring products other than proteins to the outside of the cell, a method for producing shikimic acid using a microorganism belonging to a specific genus Citrobacter (Patent Document 3), a microorganism subjected to artificial treatment, or the natural world Microorganism screening method for selecting a strain that grows a microorganism collected from a solid medium and forms a vesicle around the colony and / or a strain that causes turbidity in culture using a transparent liquid medium And a method for efficiently producing lipids containing unsaturated fatty acids using the microorganism (Patent Document 4). Furthermore, for polyesters, a gene encoding a protein having an activity of converting lactic acid into lactic acid CoA and a protein having an activity of synthesizing polyhydroxyalkanoic acid using hydroxyacyl CoA as a substrate for a host microorganism A method for producing an aliphatic polyester has been disclosed in which a recombinant microorganism obtained by introducing and is cultured and the aliphatic polyester is recovered from the medium (Patent Document 5).
 しかし、特許文献3及び4の方法は、菌体外へ分泌する特定の菌株を利用するものであり、生産物が大きく制限されるものであった。また、特許文献5の方法は、得られる乳酸重合体の量が1Lあたり200mg程度であり、生産量が十分とはいえなかった。 However, the methods of Patent Documents 3 and 4 utilize specific strains that are secreted outside the cells, and the products are greatly limited. Further, in the method of Patent Document 5, the amount of the lactic acid polymer obtained is about 200 mg per liter, and the production amount was not sufficient.
WO2003/016538号パンフレットWO2003 / 016538 pamphlet WO2005/049823号パンフレットWO2005 / 049823 pamphlet 特開2002-281993号公報JP 2002-281993 A WO01/012780号パンフレットWO01 / 012780 pamphlet 特開2011-200153号公報JP 2011-2000153 A
 従って、本発明の目的は、ポリエステルを微生物の細胞外に分泌することのできるポリエステルの製造方法を提供することである。 Therefore, an object of the present invention is to provide a method for producing polyester capable of secreting polyester outside the cells of microorganisms.
 本発明者は、ポリエステルを微生物の細胞外に分泌することのできるポリエステルの製造方法について、鋭意研究した結果、驚くべきことに、微生物を培養する培地に分子量300以下のアルコールを添加することにより、微生物の細胞内で生成されたポリエステルが培地中に効率的に分泌されることを見出した。
 本発明は、こうした知見に基づくものである。
 従って、本発明は、
[1]末端に分子量300以下のアルコール残基を有するアルコール終止ポリエステル、
[2]前記ポリエステルが、α-ヒドロキシ酸及び/又はβ-ヒドロキシ酸からなるポリエステルである、[1]に記載のアルコール終止ポリエステル、
[3]前記α-ヒドロキシ酸及び/又はβ-ヒドロキシ酸が、乳酸及び/又は3-ヒドロキシブタン酸である、[2]に記載のアルコール終止ポリエステル、
[4]ポリエステルの平均繰り返し単位数が2~12である、[1]~[3]のいずれかに記載のアルコール終止ポリエステル、
[5]平均乳酸含有率が70モル%~100モル%である、[3]又は[4]に記載のアルコール終止ポリエステル、
[6]ポリエステル生産能を有する微生物を、分子量300以下のアルコールを含む培地で培養することを特徴とする、ポリエステルの製造方法、
[7]前記ポリエステルが、α-ヒドロキシ酸及び/又はβ-ヒドロキシ酸からなるポリエステルである、[6]に記載のポリエステルの製造方法、
[8]前記α-ヒドロキシ酸及び/又はβ-ヒドロキシ酸が、乳酸及び/又は3-ヒドロキシブタン酸である、[7]に記載のポリエステルの製造方法、
[9]前記ポリエステルの一部又は全部が微生物から分泌される、[6]~[8]のいずれかに記載のポリエステルの製造方法、
[10]ポリエステルの平均繰り返し単位数が2~12である、[6]~[9]のいずれかに記載のポリエステルの製造方法、及び
[11]前記ポリエステルが、ポリエステルの末端に分子量300以下のアルコール残基を有するアルコール終止ポリエステルを含む、[6]~[10]のいずれかに記載のポリエステルの製造方法、
に関する。
 また、本明細書は、
[12]乳酸からなるポリエステル、又は乳酸及び3-ヒドロキシブタン酸からなるポリエステルの末端に分子量300以下のアルコール残基を有するアルコール終止ポリエステル、
[13]乳酸及び/又は3-ヒドロキシブタン酸の平均繰り返し単位数が2~12である、[12]に記載のアルコール終止ポリエステル、
[14]平均乳酸含有率が70モル%~100モル%である、[12]又は[13]に記載のアルコール終止ポリエステル、
[15]乳酸からなるポリエステル、又は乳酸及び3-ヒドロキシブタン酸からなるポリエステル生産能を有する微生物を、分子量300以下のアルコールを含む培地で培養することを特徴とする、ポリエステルの製造方法、
[16]前記ポリエステルの一部又は全部が微生物から分泌される、[15]に記載のポリエステルの製造方法、
[17]ポリエステルの乳酸及び/又は3-ヒドロキシブタン酸の平均繰り返し単位数が2~12である、[15]又は[16]に記載のポリエステルの製造方法、及び
[18]前記ポリエステルが、ポリエステルの末端に分子量300以下のアルコール残基を有するアルコール終止ポリエステルを含む、[15]~[17]のいずれかに記載のポリエステルの製造方法、
を開示する。
As a result of diligent research on a method for producing a polyester capable of secreting polyester outside the cells of a microorganism, the present inventor surprisingly added an alcohol having a molecular weight of 300 or less to a culture medium for culturing a microorganism. It has been found that the polyester produced in the cells of the microorganism is efficiently secreted into the medium.
The present invention is based on these findings.
Therefore, the present invention
[1] An alcohol-terminated polyester having an alcohol residue with a molecular weight of 300 or less at the end,
[2] The alcohol-terminated polyester according to [1], wherein the polyester is a polyester comprising α-hydroxy acid and / or β-hydroxy acid,
[3] The alcohol-terminated polyester according to [2], wherein the α-hydroxy acid and / or β-hydroxy acid is lactic acid and / or 3-hydroxybutanoic acid,
[4] The alcohol-terminated polyester according to any one of [1] to [3], wherein the average number of repeating units of the polyester is 2 to 12,
[5] The alcohol-terminated polyester according to [3] or [4], wherein the average lactic acid content is 70 mol% to 100 mol%,
[6] A method for producing polyester, comprising culturing a microorganism capable of producing polyester in a medium containing an alcohol having a molecular weight of 300 or less,
[7] The method for producing a polyester according to [6], wherein the polyester is a polyester comprising α-hydroxy acid and / or β-hydroxy acid,
[8] The method for producing a polyester according to [7], wherein the α-hydroxy acid and / or β-hydroxy acid is lactic acid and / or 3-hydroxybutanoic acid,
[9] The method for producing a polyester according to any one of [6] to [8], wherein a part or all of the polyester is secreted from a microorganism.
[10] The method for producing a polyester according to any one of [6] to [9], wherein the average number of repeating units of the polyester is 2 to 12, and [11] the polyester has a molecular weight of 300 or less at the end of the polyester. A process for producing a polyester according to any one of [6] to [10], comprising an alcohol-terminated polyester having an alcohol residue;
About.
In addition, this specification
[12] An alcohol-terminated polyester having an alcohol residue having a molecular weight of 300 or less at the end of a polyester composed of lactic acid, or a polyester composed of lactic acid and 3-hydroxybutanoic acid,
[13] The alcohol-terminated polyester according to [12], wherein the average number of repeating units of lactic acid and / or 3-hydroxybutanoic acid is 2 to 12,
[14] The alcohol-terminated polyester according to [12] or [13], wherein the average lactic acid content is 70 mol% to 100 mol%,
[15] A method for producing a polyester comprising culturing a polyester comprising lactic acid or a microorganism capable of producing a polyester comprising lactic acid and 3-hydroxybutanoic acid in a medium containing an alcohol having a molecular weight of 300 or less,
[16] The method for producing a polyester according to [15], wherein a part or all of the polyester is secreted from a microorganism.
[17] The method for producing a polyester according to [15] or [16], wherein the polyester has an average number of repeating units of lactic acid and / or 3-hydroxybutanoic acid of 2 to 12, and [18] the polyester is a polyester A process for producing a polyester according to any one of [15] to [17], comprising an alcohol-terminated polyester having an alcohol residue with a molecular weight of 300 or less at the end of
Is disclosed.
 本発明のポリエステルによれば、微生物の菌体外に効率的に分泌されることができる。
 また、本発明のポリエステルの製造方法によれば、微生物によって乳酸を含むポリエステルを効率的に生産することができる。また、天然にはL体の乳酸が多いが、本発明において特定のポリヒドロキシアルカン酸合成酵素を用いた場合は、D体の乳酸を含むポリエステルを菌体外に分泌することが可能であり、得られたポリエステルは生分解性材料の原料として有用である。
 本発明により得られたアルコール終止ポリエステルは、アルコール終止ポリエステルそのものをポリマー原料として利用できるほか、食品や化粧品原料としての利用も期待できる。
 また、本発明により得られるアルコール終止ポリエステルの乳酸含有率が高い場合には、ポリ乳酸を生産する際のラクチド原料として好適に利用可能である。高分子量のポリ乳酸を工業的に生産する場合、一般に乳酸の環状二量体(ラクチド)による開環重合反応で行われる。一般にD乳酸、あるいはL乳酸を原料としてポリ乳酸を生産するには一度ラクチドを合成する必要があるため、工程が煩雑になるほか、コストがかかるという問題があった。
 乳酸含有率の高いアルコール終止ポリエステルからラクチドを合成することで、従来よりも簡便に効率よくポリ乳酸を製造することが可能となる。
According to the polyester of the present invention, it can be efficiently secreted outside the cells of microorganisms.
Moreover, according to the manufacturing method of the polyester of this invention, the polyester containing lactic acid can be efficiently produced by microorganisms. Naturally, there are many L-form lactic acids, but when a specific polyhydroxyalkanoate synthase is used in the present invention, it is possible to secrete a polyester containing D-form lactic acid outside the cells, The obtained polyester is useful as a raw material for biodegradable materials.
The alcohol-terminated polyester obtained according to the present invention can be used as a raw material for food and cosmetics in addition to the alcohol-terminated polyester itself as a polymer raw material.
Further, when the alcohol-terminated polyester obtained by the present invention has a high lactic acid content, it can be suitably used as a lactide raw material for producing polylactic acid. When industrially producing high molecular weight polylactic acid, it is generally carried out by a ring-opening polymerization reaction with a cyclic dimer (lactide) of lactic acid. In general, in order to produce polylactic acid using D-lactic acid or L-lactic acid as a raw material, it is necessary to synthesize lactide once, so that there are problems that the process becomes complicated and costs increase.
By synthesizing lactide from an alcohol-terminated polyester having a high lactic acid content, it is possible to produce polylactic acid more simply and efficiently than in the past.
本発明の製造方法によって得られるアルコール終止ポリエステルの微生物による産生を模式的に示した図である。It is the figure which showed typically the production by the microorganisms of the alcohol termination | terminus polyester obtained by the manufacturing method of this invention. 異なる変異型ポリヒドロキシアルカン酸合成酵素を有する2種の大腸菌(ST/QK(A)及びST/FS/QK(B))を、ポリエチレングリコールを添加した培地で培養することによって、培地中に乳酸を含むポリエステルのオリゴマーが分泌されたことを示すグラフである。黒色のバーが培養上清中のFree LA(単量体の乳酸)を示し、白抜きのバーがTotal LA(単量体及びオリゴマーの乳酸)を示す。By culturing two types of E. coli (ST / QK (A) and ST / FS / QK (B)) having different mutant polyhydroxyalkanoic acid synthases in a medium supplemented with polyethylene glycol, lactic acid is contained in the medium. It is a graph which shows that the oligomer of the polyester containing was secreted. The black bar indicates Free LA (monomer lactic acid) in the culture supernatant, and the white bar indicates Total LA (monomer and oligomer lactic acid). 異なる変異型ポリヒドロキシアルカン酸合成酵素を有する2種の大腸菌(ST/QK(A)及びST/FS/QK(B))を、ジエチレングリコールを添加した培地で培養することによって、培地中に乳酸を含むポリエステルのオリゴマーが分泌されたことを示すグラフである。黒色のバーが培養上清中のFree LA(単量体の乳酸)を示し、白抜きのバーがTotal LA(単量体及びオリゴマーの乳酸)を示す。By culturing two types of Escherichia coli (ST / QK (A) and ST / FS / QK (B)) having different mutant polyhydroxyalkanoate synthases in a medium supplemented with diethylene glycol, lactic acid is contained in the medium. It is a graph which shows that the oligomer of the polyester containing was secreted. The black bar indicates Free LA (monomer lactic acid) in the culture supernatant, and the white bar indicates Total LA (monomer and oligomer lactic acid). 本発明の製造方法により細胞外に分泌されたポリエステルのオリゴマーの乳酸含有率を示したグラフである。It is the graph which showed the lactic acid content rate of the oligomer of the polyester secreted extracellularly by the manufacturing method of this invention. 本発明の製造方法により得られた細胞外オリゴマー(A)、細胞内オリゴマー(B)、及び細胞内ポリマー(C)に、ジエチレングリコールが結合していることを示したNMRのチャートである。It is the chart of NMR which showed that diethylene glycol was couple | bonded with the extracellular oligomer (A) obtained by the manufacturing method of this invention, the intracellular oligomer (B), and the intracellular polymer (C). 大腸菌の遺伝子破壊変異体を用いて本発明の製造方法を実施し、細胞内及び細胞外のポリエステルの量を測定したグラフである。It is the graph which implemented the manufacturing method of this invention using the gene disruption mutant of colon_bacillus | E._coli, and measured the quantity of the polyester inside and outside a cell. ポリエチレングリコール(A)又はジエチレングリコール(B)を添加した培地で大腸菌を培養することによって、細胞外に分泌されたオリゴマーに含まれる乳酸の量(合計の乳酸量から単量体の乳酸量を減算した量)を示したグラフである。By culturing E. coli in a medium supplemented with polyethylene glycol (A) or diethylene glycol (B), the amount of lactic acid contained in the oligomer secreted outside the cell (the amount of lactic acid of the monomer was subtracted from the total amount of lactic acid) It is the graph which showed quantity. 本発明の製造方法により得られた培地の上清中の分子の分子量をESI-MSで分析した結果を示すグラフである。3 is a graph showing the results of analyzing the molecular weight of the molecules in the supernatant of the medium obtained by the production method of the present invention by ESI-MS. 本発明で得られた細胞外オリゴマーのH-H COSY NMR(a)及びH-H DOSY NMR(b)を示した図である。It is a diagram showing the 1 H- 1 H COSY NMR (a ) and 1 H- 1 H DOSY NMR (b ) extracellular oligomer obtained in this invention. 本発明で得られた細胞外オリゴマーのH NMR(a)、13C NMR(b)、及びH-13C HMQC(c)を示した図である。It is the figure which showed 1 H NMR (a), 13 C NMR (b), and 1 H- 13 C HMQC (c) of the extracellular oligomer obtained by the present invention. 本発明で得られた細胞外オリゴマーから合成されたラクチドのH NMRを示した図である。Is a diagram showing the 1 H NMR of lactide synthesized from the extracellular oligomer obtained in this invention.
〔1〕アルコール終止ポリエステル
 本発明のアルコール終止ポリエステルは、末端に分子量300以下のアルコール残基を有する。すなわち、本発明のアルコール終止ポリエステルは、アルコールが多価アルコールの場合、下記一般式(1)のAの繰り返し単位及び水素原子からなるポリエステル部分、及びB及びヒドロキシ基からなるアルコール残基からなる。
Figure JPOXMLDOC01-appb-C000001
 前記一般式(1)において、lは特に限定されるものではないが、ある態様では2~1000であり、ある態様では2~100であり、ある態様では2~50であり、ある態様では2~20である。例えば、前記ポリエステル部分が乳酸又は3-ヒドロキシブタン酸からなるポリエステル、或いは乳酸及び3-ヒドロキシブタン酸からなるポリエステルであり、そのポリエステル部分の末端に、例えばアルコールとしてジエチレングリコールが結合している場合、本発明のアルコール終止ポリエステルは、一般式(2)
Figure JPOXMLDOC01-appb-C000002
で表すことができる。
 なお、本明細書において、「ポリエステル」はオリゴマーを含むものである。
[1] Alcohol-terminated polyester The alcohol-terminated polyester of the present invention has an alcohol residue having a molecular weight of 300 or less at the terminal. That is, when the alcohol is a polyhydric alcohol, the alcohol-terminated polyester of the present invention comprises a polyester unit composed of a repeating unit of A in the following general formula (1) and a hydrogen atom, and an alcohol residue composed of B and a hydroxy group.
Figure JPOXMLDOC01-appb-C000001
In the general formula (1), l is not particularly limited, but is 2 to 1000 in some embodiments, 2 to 100 in some embodiments, 2 to 50 in some embodiments, and 2 in some embodiments. ~ 20. For example, when the polyester part is a polyester composed of lactic acid or 3-hydroxybutanoic acid, or a polyester composed of lactic acid and 3-hydroxybutanoic acid, and diethylene glycol, for example, as an alcohol is bonded to the terminal of the polyester part, The alcohol-terminated polyester of the invention has the general formula (2)
Figure JPOXMLDOC01-appb-C000002
It can be expressed as
In the present specification, “polyester” includes oligomers.
《ポリエステル部分》
 本発明のポリエステル部分の繰り返し単位は、ポリエステルを構成できる限りにおいて特に限定されるものではないが、好ましくはヒドロキシ酸であり、より好ましくはα-ヒドロキシ酸及び/又はβ-ヒドロキシ酸である。ヒドロキシ酸としては、例えば2-ヒドロキシプロピオン酸(乳酸)、2-ヒドロキシブタン酸、2-ヒドロキシペンタン酸、2-ヒドロキシヘキサン酸、2-ヒドロキシヘプタン酸、2-ヒドロキシオクタン酸、2-ヒドロキシノナン酸、2-ヒドロキシデカン酸等のα-ヒドロキシ酸、3-ヒドロキシプロピオン酸、3-ヒドロキシブタン酸、3-ヒドロキシペンタン酸、3-ヒドロキシヘキサン酸、3-ヒドロキシヘプタン酸、3-ヒドロキシオクタン酸、3-ヒドロキシノナン酸、3-ヒドロキシデカン酸等のβ-ヒドロキシ酸、4-ヒドロキシブタン酸、4-ヒドロキシペンタン酸、4-ヒドロキシヘキサン酸、4-ヒドロキシヘプタン酸、4-ヒドロキシオクタン酸、4-ヒドロキシノナン酸、4-ヒドロキシデカン酸等を挙げることができる。ポリエステル部分の繰り返し単位は、1種の繰り返し単位でもよく、2種以上の繰り返し単位の組み合わせでもよい。本明細書において、繰り返し単位を、例えばヒドロキシ酸残基と称するが、便宜的に前記ヒドロキシ酸残基を「ヒドロキシ酸」と称することがある。
 本発明のアルコール終止ポリエステルのポリエステル部分は、繰り返し単位及びアルコールの結合していない末端のヒドロキシ基からなる。ポリエステル部分においては、例えばヒドロキシ酸が縮合反応により重合している。
 本発明のアルコール終止ポリエステルのポリエステル部分の1つの態様としては、乳酸残基及びアルコールの結合していない末端のヒドロキシ基を挙げることができる。また、ポリエステル部分の別の態様としては、乳酸残基、3-ヒドロキシブタン酸残基及びアルコールの結合していない末端のヒドロキシ基を挙げることができる。更に、ポリエステル部分の別の態様としては、3-ヒドロキシブタン酸残基及びアルコールの結合していない末端のヒドロキシ基を挙げることができる。このような態様のポリエステル部分においては、乳酸及び乳酸、乳酸及び3-ヒドロキシブタン酸、又は3-ヒドロキシブタン酸及び3-ヒドロキシブタン酸が、縮合反応により重合している。
<Polyester part>
The repeating unit of the polyester portion of the present invention is not particularly limited as long as it can constitute the polyester, but is preferably a hydroxy acid, more preferably an α-hydroxy acid and / or a β-hydroxy acid. Examples of the hydroxy acid include 2-hydroxypropionic acid (lactic acid), 2-hydroxybutanoic acid, 2-hydroxypentanoic acid, 2-hydroxyhexanoic acid, 2-hydroxyheptanoic acid, 2-hydroxyoctanoic acid, and 2-hydroxynonanoic acid. Α-hydroxy acids such as 2-hydroxydecanoic acid, 3-hydroxypropionic acid, 3-hydroxybutanoic acid, 3-hydroxypentanoic acid, 3-hydroxyhexanoic acid, 3-hydroxyheptanoic acid, 3-hydroxyoctanoic acid, 3 Β-hydroxy acids such as hydroxynonanoic acid and 3-hydroxydecanoic acid, 4-hydroxybutanoic acid, 4-hydroxypentanoic acid, 4-hydroxyhexanoic acid, 4-hydroxyheptanoic acid, 4-hydroxyoctanoic acid, 4-hydroxy Nonanoic acid, 4-hydroxydecanoic acid, etc. be able to. The repeating unit of the polyester part may be one type of repeating unit or a combination of two or more types of repeating units. In this specification, the repeating unit is referred to as, for example, a hydroxy acid residue, but for convenience, the hydroxy acid residue may be referred to as a “hydroxy acid”.
The polyester portion of the alcohol-terminated polyester of the present invention comprises a repeating unit and a terminal hydroxy group to which no alcohol is bonded. In the polyester portion, for example, a hydroxy acid is polymerized by a condensation reaction.
As one embodiment of the polyester portion of the alcohol-terminated polyester of the present invention, there can be mentioned a terminal hydroxy group to which a lactic acid residue and an alcohol are not bonded. Further, as another embodiment of the polyester portion, there can be mentioned a hydroxy group at a terminal to which a lactic acid residue, a 3-hydroxybutanoic acid residue and an alcohol are not bonded. Furthermore, as another embodiment of the polyester portion, there can be mentioned a hydroxy group at a terminal to which a 3-hydroxybutanoic acid residue and an alcohol are not bonded. In the polyester portion of such an embodiment, lactic acid and lactic acid, lactic acid and 3-hydroxybutanoic acid, or 3-hydroxybutanoic acid and 3-hydroxybutanoic acid are polymerized by a condensation reaction.
 本発明のアルコール終止ポリエステルは、下記式(3)
Figure JPOXMLDOC01-appb-C000003
で表される乳酸を含むことができる。より具体的には、本発明のアルコール終止ポリエステルは、乳酸の繰り返し単位(4)
Figure JPOXMLDOC01-appb-C000004
を含むことができ、前記繰り返し単位を乳酸残基と称する。しかしながら、本明細書において、前記乳酸残基を便宜的に「乳酸」と称することがある。
The alcohol-terminated polyester of the present invention has the following formula (3)
Figure JPOXMLDOC01-appb-C000003
The lactic acid represented by these can be included. More specifically, the alcohol-terminated polyester of the present invention is a lactic acid repeating unit (4).
Figure JPOXMLDOC01-appb-C000004
The repeating unit is referred to as a lactic acid residue. However, in the present specification, the lactic acid residue is sometimes referred to as “lactic acid” for convenience.
 本発明のアルコール終止ポリエステルは、下記式(5)
Figure JPOXMLDOC01-appb-C000005
で表される3-ヒドロキシブタン酸を含むことができる。より具体的には、本発明のアルコール終止ポリエステルは、3-ヒドロキシブタン酸の繰り返し単位(6)
Figure JPOXMLDOC01-appb-C000006
を含むことができ、前記繰り返し単位を3-ヒドロキシブタン酸残基と称する。しかしながら、本明細書において、前記3-ヒドロキシブタン酸残基を、便宜的に「3-ヒドロキシブタン酸」と称することがある。
The alcohol-terminated polyester of the present invention has the following formula (5):
Figure JPOXMLDOC01-appb-C000005
The 3-hydroxybutanoic acid represented by these can be included. More specifically, the alcohol-terminated polyester of the present invention contains 3-hydroxybutanoic acid repeating units (6)
Figure JPOXMLDOC01-appb-C000006
The repeating unit is referred to as a 3-hydroxybutanoic acid residue. However, in the present specification, the 3-hydroxybutanoic acid residue is sometimes referred to as “3-hydroxybutanoic acid” for convenience.
 本発明のアルコール終止ポリエステルにおける乳酸及び/又は3-ヒドロキシブタン酸の繰り返し単位数は、特に限定されるものではないが、ある態様では2~1000であり、ある態様では2~100であり、ある態様では2~50であり、ある態様では2~20であり、ある態様では2~10である。すなわち、一般式(2)における「n+m」は、限定されるものではないが、ある態様では2~1000であり、ある態様では2~100であり、ある態様では2~50であり、ある態様では2~20であり、ある態様では2~10である。また、3-ヒドロキシブタン酸の繰り返し単位数であるmは限定されるものではないが、ある態様では0~1000であり、ある態様では0~100であり、ある態様では0~50であり、ある態様では0~20であり、ある態様では0~10であるが、アルコール終止ポリエステルが3-ヒドロキシブタン酸のみからなる場合は、mの下限は2である。また、乳酸の繰り返し単位数であるnは、ある態様では0~1000であり、ある態様では0~100であり、ある態様では0~50であり、ある態様では0~20であり、ある態様では0~10であるが、アルコール終止ポリエステルが乳酸のみからなる場合は、nの下限は2である。
 従って、本発明のアルコール終止ポリエステルの分子量も特に限定されるものではないが、好ましくは分子量の下限は200程度であり、分子量の上限は10万である。また、より好ましい分子量の上限は1万、さらに好ましくは5000、最も好ましくは1000である。
The number of repeating units of lactic acid and / or 3-hydroxybutanoic acid in the alcohol-terminated polyester of the present invention is not particularly limited, but is 2 to 1000 in some embodiments and 2 to 100 in some embodiments. In some embodiments, it is 2-50, in some embodiments 2-20, and in some embodiments 2-10. That is, “n + m” in the general formula (2) is not limited, but is 2 to 1000 in an embodiment, 2 to 100 in an embodiment, and 2 to 50 in an embodiment. Is from 2 to 20, and in some embodiments from 2 to 10. Further, m, which is the number of repeating units of 3-hydroxybutanoic acid, is not limited, but in some embodiments, 0 to 1000, in some embodiments, 0 to 100, and in some embodiments, 0 to 50, In some embodiments, 0 to 20, and in some embodiments 0 to 10, but when the alcohol-terminated polyester consists only of 3-hydroxybutanoic acid, the lower limit of m is 2. Further, n, which is the number of repeating units of lactic acid, is 0 to 1000 in an embodiment, 0 to 100 in an embodiment, 0 to 50 in an embodiment, and 0 to 20 in an embodiment. In this case, the lower limit of n is 2 when the alcohol-terminated polyester consists only of lactic acid.
Accordingly, the molecular weight of the alcohol-terminated polyester of the present invention is not particularly limited, but preferably the lower limit of the molecular weight is about 200 and the upper limit of the molecular weight is 100,000. Further, the upper limit of the more preferable molecular weight is 10,000, more preferably 5000, and most preferably 1000.
 また、本発明のアルコール終止ポリエステルにおける乳酸と3-ヒドロキシブタン酸との比率は、特に限定されるものではない。
 例えば、本発明のアルコール終止ポリエステルが乳酸からなるポリエステルの場合、乳酸の比率は100モル%である。また、アルコール終止ポリエステルが3-ヒドロキシブタン酸からなるポリエステルの場合、3-ヒドロキシブタン酸の比率は100モル%である。
 一方、本発明のアルコール終止ポリエステルが乳酸及び3-ヒドロキシブタン酸からなるポリエステルの場合、乳酸の含有率は特に限定されるものではないが、好ましくは70モル%以上であり、より好ましくは80モル%以上であり、更に好ましくは90モル%以上である。乳酸の含有率が高いことによって、本発明のアルコール終止ポリエステルは、生分解性材料の原料として、好適に使用することができる。
 なお、上記一般式(2)では、上記乳酸残基及び上記3-ヒドロキシブタン酸残基がブロック状に配列されているように表されているが、これらの残基の配列はブロック状、ランダム状の何れでよく、ブロック状の部分とランダム状の部分との組合せでもよい。すなわち、ポリエステル部分の末端に3-ヒドロキシブタン酸残基が存在してもよい。
Further, the ratio of lactic acid to 3-hydroxybutanoic acid in the alcohol-terminated polyester of the present invention is not particularly limited.
For example, when the alcohol-terminated polyester of the present invention is a polyester composed of lactic acid, the ratio of lactic acid is 100 mol%. When the alcohol-terminated polyester is a polyester composed of 3-hydroxybutanoic acid, the ratio of 3-hydroxybutanoic acid is 100 mol%.
On the other hand, when the alcohol-terminated polyester of the present invention is a polyester comprising lactic acid and 3-hydroxybutanoic acid, the content of lactic acid is not particularly limited, but is preferably 70 mol% or more, more preferably 80 mol. % Or more, more preferably 90 mol% or more. Due to the high content of lactic acid, the alcohol-terminated polyester of the present invention can be suitably used as a raw material for biodegradable materials.
In the above general formula (2), the lactic acid residue and the 3-hydroxybutanoic acid residue are represented as being arranged in a block form. The sequence of these residues is a block form, a random form. Any combination of a block-like part and a random part may be used. That is, a 3-hydroxybutanoic acid residue may be present at the end of the polyester portion.
 アルコール終止ポリエステルに含まれる乳酸は、D体でもよく、L体でもよいが、D体が好ましい。自然界に存在する天然の乳酸はL体が多い。生分解性材料を製造する場合、ラセミ体のポリ乳酸を用いると、生分解材料がもろくなることがある。従って、L体のポリ乳酸と、D体のポリ乳酸とを混合し共結晶化させ、ステレオコンプレックス型のポリマーを使用するのが好ましいとされる。前記の通り、天然のD体のポリ乳酸は入手が困難であるため、D体のポリ乳酸は、生分解材料の原料として、有用である。 The lactic acid contained in the alcohol-terminated polyester may be D-form or L-form, but D-form is preferred. Natural lactic acid existing in nature has many L-forms. When a biodegradable material is produced, the use of racemic polylactic acid may make the biodegradable material brittle. Therefore, it is preferable to use L-form polylactic acid and D-form polylactic acid to be co-crystallized and to use a stereocomplex type polymer. As mentioned above, since natural D-form polylactic acid is difficult to obtain, D-form polylactic acid is useful as a raw material for biodegradable materials.
《アルコール部分》
 本発明のアルコール終止ポリエステルのアルコール部分においては、乳酸にアルコールが縮合反応によりエステル結合を形成しているか、又は3-ヒドロキシブタン酸にアルコールが縮合反応によりエステル結合を形成している。
 本明細書において、乳酸又は3-ヒドロキシブタン酸に結合したアルコール由来の基をアルコール残基と称する。具体的には、アルコール残基は前記アルコールからヒドロキシ基を除いた残基を意味する。しかしながら、本明細書において、前記アルコール残基を、便宜的に「アルコール」と称することがある。
《Alcohol part》
In the alcohol moiety of the alcohol-terminated polyester of the present invention, an alcohol forms an ester bond with lactic acid by a condensation reaction, or an alcohol forms an ester bond with 3-hydroxybutanoic acid by a condensation reaction.
In the present specification, an alcohol-derived group bonded to lactic acid or 3-hydroxybutanoic acid is referred to as an alcohol residue. Specifically, the alcohol residue means a residue obtained by removing a hydroxy group from the alcohol. However, in the present specification, the alcohol residue is sometimes referred to as “alcohol” for convenience.
《分子量300以下のアルコール》
 本発明のアルコール終止ポリエステルに含まれるアルコール残基を生成できるアルコールは、分子量300以下のアルコールである。また、分子量の下限としては、好ましくは50以上、より好ましくは65以上である。前記分子量300以下のアルコールは、ヒドロキシ基を有し、且つ分子量が300以下である限りにおいて、特に限定されるものではないが、好ましくは、多価アルコール又はエーテル結合を有するアルコールであり、より好ましくはエーテル結合を有する多価アルコールであり、更に好ましくはエーテル結合を有するジオールである。また別の好ましい態様としては、1~3価のヒドロキシ基を有する脂肪族アルコールである。具体的な脂肪族アルコールとしては、メタノール、エタノール、1-プロパノール、1-ブタノール、1-ペンタノール、1-ヘキサノール、シクロヘキサノール、1-ヘプタノール、1-オクタノール、1-ノナノール、1-デカノール、グリシドール、メチルシクロヘキサノール、2-メチル-1-ブタノール、3-メチル-2-ブタノール、4-メチル-2-ペンタノール、イソプロピルアルコール、2-エチルブタノール、2-エチルヘキサノール、2-オクタノール、テルピネオール、ジヒドロテルピネオール、2-メトキシエタノール、2-エトキシエタノール、2-n-ブトキシエタノール、カルビトール、エチルカルビトール、n-ブチルカルビトール、ジアセトンアルコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、プロピレングリコール、トリメチレングリコール、ジプロピレングリコール、トリプロピレングリコール、1,2-ブチレングリコール、1,3-ブチレングリコール、1,4-ブチレングリコール、ペンタメチレングリコール、へキシレングリコール、又はグリセリンを挙げることができるが、好ましくは、ジエチレングリコール、プロパンジオール又はブタンジオールである。更に、アルコールとして、アルコールが縮合したポリエーテルを挙げることができ、具体的にはポリエチレングリコール又はポリプロピレングリコールなどを挙げることができる。
<< Alcohol with a molecular weight of 300 or less >>
The alcohol capable of generating an alcohol residue contained in the alcohol-terminated polyester of the present invention is an alcohol having a molecular weight of 300 or less. Moreover, as a minimum of molecular weight, Preferably it is 50 or more, More preferably, it is 65 or more. The alcohol having a molecular weight of 300 or less is not particularly limited as long as it has a hydroxy group and has a molecular weight of 300 or less, but is preferably a polyhydric alcohol or an alcohol having an ether bond, and more preferably. Is a polyhydric alcohol having an ether bond, more preferably a diol having an ether bond. Another preferred embodiment is an aliphatic alcohol having a monovalent to trivalent hydroxy group. Specific aliphatic alcohols include methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol, 1-hexanol, cyclohexanol, 1-heptanol, 1-octanol, 1-nonanol, 1-decanol, glycidol , Methylcyclohexanol, 2-methyl-1-butanol, 3-methyl-2-butanol, 4-methyl-2-pentanol, isopropyl alcohol, 2-ethylbutanol, 2-ethylhexanol, 2-octanol, terpineol, dihydro Terpineol, 2-methoxyethanol, 2-ethoxyethanol, 2-n-butoxyethanol, carbitol, ethyl carbitol, n-butyl carbitol, diacetone alcohol, diethylene glycol, triethyleneglycol , Tetraethylene glycol, propylene glycol, trimethylene glycol, dipropylene glycol, tripropylene glycol, 1,2-butylene glycol, 1,3-butylene glycol, 1,4-butylene glycol, pentamethylene glycol, hexylene glycol, Alternatively, glycerin can be mentioned, and diethylene glycol, propanediol or butanediol is preferable. Furthermore, examples of the alcohol include polyether condensed with alcohol, and specific examples include polyethylene glycol or polypropylene glycol.
 本発明のアルコール終止ポリエステルに、前記メタノール又はエタノールなどの一価アルコールが含まれる場合、本発明のアルコール終止ポリエステルは、下記一般式(7)のAの繰り返し単位及び水素原子からなるポリエステル部分、及びBのアルコール残基からなる。
Figure JPOXMLDOC01-appb-C000007
When the alcohol-terminated polyester of the present invention contains a monohydric alcohol such as methanol or ethanol, the alcohol-terminated polyester of the present invention is a polyester part composed of a repeating unit of A in the following general formula (7) and a hydrogen atom, and It consists of B alcohol residues.
Figure JPOXMLDOC01-appb-C000007
 本発明のアルコール終止ポリエステルは、アルコール終止ポリエステルそのものをポリマー原料や食品、化粧品原料等として利用することもできるが、末端の水酸基とさらに反応させることにより誘導体化することもできる。ポリエステルの水酸基と反応する基としては、イソシアネート基、カルボキシル基、又はカルボン酸ハロゲン化物基、エポキシ基等を挙げることができる。従って、ポリエステルの水酸基と反応する基を有する低分子化合物としては、イソシアネート化合物、カルボン酸、及びカルボン酸ハロゲン化物、エポキシ化合物等を挙げることができる。 The alcohol-terminated polyester of the present invention can be used as a polymer raw material, food, cosmetic raw material, etc., but can also be derivatized by further reacting with a terminal hydroxyl group. Examples of the group that reacts with the hydroxyl group of the polyester include an isocyanate group, a carboxyl group, a carboxylic acid halide group, and an epoxy group. Accordingly, examples of the low molecular weight compound having a group that reacts with the hydroxyl group of the polyester include isocyanate compounds, carboxylic acids, carboxylic acid halides, and epoxy compounds.
 単官能のイソシアネート化合物としては、2,6-ジイソプロピルフェニルイソシアネートが挙げられる。また、多官能のイソシアネート化合物としては、トリレンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)、キシリレンジイソシアネート(XDI)、イソホロンジイソシアネート(IPDI)、キシリレンジイソシアネート(XDI)、イソホロンジイソシアネート(IPDI)、メチルシクロヘキシルジイソシアネート(H6TDI)、4,4’-ジシクロヘキシルメタンジイソシアネート(H12MDI)、1,3-ビス(イソシアナトメチル)シクロヘキサン(H6XDI)、テトラメチルキシリレンジイソシアネート(TMXDI)、2,2,4-トリメチルヘキサメチレンジイソシアネート(TMHDI)、ヘキサメチレンジイソシアネート(HDI)、ノルボルネンジイソシアネート(NBDI)、2,4,6-トリイソプロピルフェニルジイソシアネート(TIDI)、1,12-ジイソシアネートドデカン(DDI)、2,4,-ビス-(8-イソシアネートオクチル)-1,3-ジオクチルシクロブタン(OCDI)、又はn-ペンタン-1,4-ジイソシアネートが挙げられる。 Examples of the monofunctional isocyanate compound include 2,6-diisopropylphenyl isocyanate. Polyfunctional isocyanate compounds include tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), xylylene diisocyanate (XDI), isophorone diisocyanate (IPDI), xylylene diisocyanate (XDI), isophorone diisocyanate (IPDI), methyl. Cyclohexyl diisocyanate (H6TDI), 4,4′-dicyclohexylmethane diisocyanate (H12MDI), 1,3-bis (isocyanatomethyl) cyclohexane (H6XDI), tetramethylxylylene diisocyanate (TMXDI), 2,2,4-trimethylhexa Methylene diisocyanate (TMHDI), hexamethylene diisocyanate (HDI), norbornene diisocyanate (NBDI) 2,4,6-triisopropylphenyl diisocyanate (TIDI), 1,12-diisocyanate dodecane (DDI), 2,4, -bis- (8-isocyanate octyl) -1,3-dioctylcyclobutane (OCDI), or n -Pentane-1,4-diisocyanate.
 単官能のカルボン酸としては、酢酸、プロピオン酸、酪酸、ラウリル酸などの直鎖状または分岐状の飽和脂肪族単官能カルボン酸、アクリル酸、メタクリル酸などの直鎖状または分岐状の不飽和脂肪族単官能カルボン酸、及び安息香酸、2-フェノキシ安息香酸などの芳香族単官能カルボン酸を挙げることができる。
 二官能カルボン酸(ジカルボン酸)としては、コハク酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸、及びエイコサン二酸等の脂肪族ジカルボン酸、1,2-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸、パーヒドロナフタレンジカルボン酸、及びダイマー酸等の脂環族ジカルボン酸、フマール酸、マレイン酸、及びイタコン酸等の不飽和ジカルボン酸、テトラヒドロフタル酸、及びシクロブテンジカルボン酸等の不飽和脂環族ジカルボン酸、p-ヒドロキシエチルオキシ安息香酸、及びε-カプロラクトン等のオキシ酸を挙げることができる。更に、トリメリット酸、及びピロメリット酸などの3官能以上のカルボン酸を挙げることができる。
Monofunctional carboxylic acids include linear or branched saturated aliphatic monofunctional carboxylic acids such as acetic acid, propionic acid, butyric acid, and lauric acid, and linear or branched unsaturated groups such as acrylic acid and methacrylic acid. Mention may be made of aliphatic monofunctional carboxylic acids and aromatic monofunctional carboxylic acids such as benzoic acid and 2-phenoxybenzoic acid.
Examples of the bifunctional carboxylic acid (dicarboxylic acid) include aliphatic dicarboxylic acids such as succinic acid, adipic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, and eicosane diacid, 1,2-cyclohexanedicarboxylic acid, 1,3- Cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, perhydronaphthalenedicarboxylic acid, alicyclic dicarboxylic acid such as dimer acid, fumaric acid, maleic acid, and unsaturated dicarboxylic acid such as itaconic acid, tetrahydrophthalic acid, and Mention may be made of unsaturated alicyclic dicarboxylic acids such as cyclobutene dicarboxylic acid, p-hydroxyethyloxybenzoic acid, and oxyacids such as ε-caprolactone. Further, trifunctional or higher functional carboxylic acids such as trimellitic acid and pyromellitic acid can be exemplified.
 単官能のカルボン酸ハロゲン化物としては、塩化アセチル、臭化アセチル、塩化プロパノイル、臭化プロパノイル、塩化ブタノイル、臭化ブタノイル、塩化ペンタノイル、臭化ペンタノイル、塩化ヘキサノイル、臭化ヘキサノイル、塩化ベンゾイル、及び臭化ベンゾイルを挙げることができる。
 多官能のカルボン酸ハロゲン化物としては、ジカルボン酸塩化物、ジカルボン酸臭化物、ジカルボン酸ヨウ化物を挙げることができるが、より具体的には、2個以上のカルボン酸ハライド基を有する多官能カルボン酸ハロゲン化物であれば、特に制限はなく、例えば、ビフェニルジカルボン酸ジクロライド、ビフェニレンジカルボン酸ジクロライド、アゾベンゼンジカルボン酸ジクロライド、テレフタル酸ジクロライド、イソフタル酸ジクロライド、ナフタレンジカルボン酸ジクロライド等の芳香族2官能カルボン酸ハロゲン化物、アジポイルジクロライド、セバコイルジクロライド等の脂肪族2官能カルボン酸ハロゲン化物、シクロペンタンジカルボン酸ジクロライド、シクロヘキサンジカルボン酸ジクロライド、テトラヒドロフランジカルボン酸ジクロライド等の脂環式2官能カルボン酸ハロゲン化物等を挙げることができる。更に、3官能カルボン酸ハロゲン化物としては、トリメシン酸トリクロライド、1,3,5-シクロヘキサントリカルボン酸トリクロライド、及び1,2,4-シクロブタントリカルボン酸トリクロライドを挙げることができる。
Monofunctional carboxylic acid halides include acetyl chloride, acetyl bromide, propanoyl chloride, propanoyl bromide, butanoyl chloride, butanoyl bromide, pentanoyl chloride, pentanoyl bromide, hexanoyl chloride, hexanoyl bromide, benzoyl chloride, and odor Benzoyl chloride.
Examples of polyfunctional carboxylic acid halides include dicarboxylic acid chlorides, dicarboxylic acid bromides, and dicarboxylic acid iodides. More specifically, polyfunctional carboxylic acid having two or more carboxylic acid halide groups. If it is a halide, there is no restriction in particular, for example, biphenyl dicarboxylic acid dichloride, biphenylene dicarboxylic acid dichloride, azobenzene dicarboxylic acid dichloride, terephthalic acid dichloride, isophthalic acid dichloride, naphthalene dicarboxylic acid dichloride, etc. , Aliphatic bifunctional carboxylic acid halides such as adipoyl dichloride, sebacoyl dichloride, cyclopentane dicarboxylic acid dichloride, cyclohexane dicarboxylic acid dichloride, tetrahydrofuran dicarbonate It can be mentioned alicyclic bifunctional carboxylic acid halides such as carbon acid dichloride. Furthermore, examples of the trifunctional carboxylic acid halide include trimesic acid trichloride, 1,3,5-cyclohexane tricarboxylic acid trichloride, and 1,2,4-cyclobutane tricarboxylic acid trichloride.
 前記イソシアネート化合物、カルボン酸、又はカルボン酸ハロゲン化物を用いることにより、アルコール終止ポリエステルの誘導体を得ることができる。なお、イソシアネート化合物、カルボン酸、又はカルボン酸ハロゲン化物終止ポリエステルは、本明細書において、アルコールをイソシアネート化合物、カルボン酸、又はカルボン酸ハロゲン化物に置き換えたものであり、それらの製造方法は、アルコールをイソシアネート化合物、カルボン酸、又はカルボン酸ハロゲン化物に置き換えることによって実施することができる。
 エポキシ化合物としては、エチレンオキサイド、プロピレンオキサイド、フェニレンオキサイドなどを挙げることができる。
By using the isocyanate compound, carboxylic acid, or carboxylic acid halide, an alcohol-terminated polyester derivative can be obtained. In this specification, the isocyanate compound, carboxylic acid, or carboxylic acid halide-terminated polyester is obtained by replacing the alcohol with an isocyanate compound, carboxylic acid, or carboxylic acid halide. It can be carried out by replacing with an isocyanate compound, carboxylic acid, or carboxylic acid halide.
Examples of the epoxy compound include ethylene oxide, propylene oxide, and phenylene oxide.
 本発明のアルコール終止ポリエステルは、限定されるものではないが、後述の製造方法に記載のように、例えば微生物によって産生することができる。微生物によって製造されるアルコール終止ポリエステルは、図1に示すように、微生物の細胞外に分泌される細胞外アルコール終止ポリエステル及び微生物の細胞内に存在する細胞内アルコール終止ポリエステルを含む。 The alcohol-terminated polyester of the present invention is not limited, but can be produced by, for example, microorganisms as described in the production method described later. As shown in FIG. 1, the alcohol-terminated polyester produced by a microorganism includes an extracellular alcohol-terminated polyester that is secreted outside the cells of the microorganism and an intracellular alcohol-terminated polyester that exists inside the cells of the microorganism.
 細胞外アルコール終止ポリエステルは、微生物を培養した培地から回収することができる。従って、細胞内に蓄積されたポリエステルと比較して、回収及び精製が容易である。細胞外アルコール終止ポリエステルの繰り返し単位数は、特に限定されるものではないが、ある態様では2~12であり、ある態様では2~10であり、ある態様では2~8である。従って、細胞外アルコール終止ポリエステルが3-ヒドロキシブタン酸及び乳酸からなる場合、一般式(2)における「n+m」は、限定されるものではないが、ある態様では2~12であり、ある態様では2~10であり、ある態様では2~8である。すなわち、細胞外アルコール終止ポリエステルは、一般的にオリゴマーと称されるポリエステルを多く含む。また、細胞外アルコール終止ポリエステルが3-ヒドロキシブタン酸からなる場合、一般式(2)におけるmは限定されるものではないが、ある態様では2~12であり、ある態様では2~10であり、ある態様では2~8である。また、細胞外アルコール終止ポリエステルが乳酸からなる場合、一般式(2)におけるnは限定されるものではないが、ある態様では2~12であり、ある態様では2~10であり、ある態様では2~8である。 The extracellular alcohol-terminated polyester can be recovered from the culture medium of the microorganism. Therefore, it is easy to collect and purify as compared with polyester accumulated in cells. The number of repeating units of the extracellular alcohol-terminated polyester is not particularly limited, but is 2 to 12 in some embodiments, 2 to 10 in some embodiments, and 2 to 8 in some embodiments. Therefore, when the extracellular alcohol-terminated polyester comprises 3-hydroxybutanoic acid and lactic acid, “n + m” in the general formula (2) is not limited, but is 2 to 12 in some embodiments, and in some embodiments, 2 to 10, and in some embodiments 2 to 8. That is, the extracellular alcohol-terminated polyester contains a large amount of polyester generally called an oligomer. In addition, when the extracellular alcohol-terminated polyester comprises 3-hydroxybutanoic acid, m in the general formula (2) is not limited, but is 2 to 12 in some embodiments and 2 to 10 in some embodiments In some embodiments, it is 2-8. In addition, when the extracellular alcohol-terminated polyester comprises lactic acid, n in the general formula (2) is not limited, but in some embodiments it is 2 to 12, in some embodiments 2 to 10, and in some embodiments 2-8.
 細胞内アルコール終止ポリエステルは、細胞外アルコール終止ポリエステルと比較して繰り返し単位数が多い。従って、高分子量の生分解材料の原料として有用である。細胞内アルコール終止ポリエステルの繰り返し単位数は、特に限定されるものではないが、ある態様では2~1000であり、ある態様では2~100であり、ある態様では2~50である。すなわち、細胞内アルコール終止ポリエステルが3-ヒドロキシブタン酸及び乳酸からなる場合、一般式(2)における「n+m」は、限定されるものではないが、ある態様では2~1000であり、ある態様では2~100であり、ある態様では2~50である。すなわち、細胞内アルコール終止ポリエステルは、高分子量のポリマー、及び中低の分子量のオリゴマーを含む。また、細胞内アルコール終止ポリエステルが3-ヒドロキシブタン酸からなる場合、一般式(2)におけるmは限定されるものではないが、ある態様では2~12であり、ある態様では2~10であり、ある態様では2~8である。また、細胞内アルコール終止ポリエステルが乳酸からなる場合、一般式(2)におけるnは限定されるものではないが、ある態様では2~12であり、ある態様では2~10であり、ある態様では2~8である。 The intracellular alcohol-terminated polyester has a larger number of repeating units than the extracellular alcohol-terminated polyester. Therefore, it is useful as a raw material for high molecular weight biodegradable materials. The number of repeating units of the intracellular alcohol-terminated polyester is not particularly limited, but is 2 to 1000 in some embodiments, 2 to 100 in some embodiments, and 2 to 50 in some embodiments. That is, when the intracellular alcohol-terminated polyester comprises 3-hydroxybutanoic acid and lactic acid, “n + m” in the general formula (2) is not limited, but is 2 to 1000 in some embodiments, and in some embodiments, 2 to 100, and in some embodiments 2 to 50. That is, intracellular alcohol-terminated polyesters include high molecular weight polymers and low and medium molecular weight oligomers. In addition, when the intracellular alcohol-terminated polyester comprises 3-hydroxybutanoic acid, m in the general formula (2) is not limited, but is 2 to 12 in some embodiments and 2 to 10 in some embodiments In some embodiments, it is 2-8. In addition, when the intracellular alcohol-terminated polyester comprises lactic acid, n in the general formula (2) is not limited, but in some embodiments it is 2 to 12, in some embodiments 2 to 10, and in some embodiments 2-8.
 微生物として大腸菌を用いて製造されたアルコール終止ポリエステルは、下記式(8)
Figure JPOXMLDOC01-appb-C000008
で表されるD体の乳酸残基を含むことができる。前記の通り、天然のD体のポリ乳酸は入手が困難であるため、大腸菌を宿主として製造されたD体のポリ乳酸は、生分解材料の原料として有用である。
An alcohol-terminated polyester produced using Escherichia coli as a microorganism is represented by the following formula (8):
Figure JPOXMLDOC01-appb-C000008
The D-form lactic acid residue represented by these can be included. As described above, since natural D-form polylactic acid is difficult to obtain, D-form polylactic acid produced using Escherichia coli as a host is useful as a raw material for biodegradable materials.
〔2〕ポリエステルの製造方法
 本発明のポリエステルの製造方法は、ポリエステル生産能を有する微生物を、分子量300以下のアルコールを含む培地で培養することを特徴とする。例えば、乳酸からなるポリエステル生産能を有する微生物、3-ヒドロキシブタン酸からなるポリエステル生産能を有する微生物、又は乳酸及び3-ヒドロキシブタン酸からなるポリエステル生産能を有する微生物を、分子量300以下のアルコールを含む培地で培養することによってポリエステルを得ることができる。
[2] Method for Producing Polyester The method for producing a polyester of the present invention is characterized in that a microorganism capable of producing a polyester is cultured in a medium containing an alcohol having a molecular weight of 300 or less. For example, a microorganism capable of producing a polyester composed of lactic acid, a microorganism capable of producing a polyester composed of 3-hydroxybutanoic acid, or a microorganism capable of producing a polyester composed of lactic acid and 3-hydroxybutanoic acid are mixed with an alcohol having a molecular weight of 300 or less. Polyester can be obtained by culturing in a medium containing the same.
《微生物》
 本発明の製造方法に用いる微生物は、ポリエステル生産能を有する限りにおいて、特に限定されるものではないが、例えば、乳酸からなるポリエステル生産能を有する微生物、3-ヒドロキシブタン酸からなるポリエステル生産能を有する微生物又は乳酸及び3-ヒドロキシブタン酸からなるポリエステル生産能を有する微生物を挙げることができる。具体的には、例えば、ラルストニア・ユートロファ等の細菌を挙げることができる。
 また、本発明の製造方法に用いる微生物として、組み換え微生物を用いることもできる。例えば、元来ポリエステル生産能を有さない微生物を形質転換によりポリエステル生産能を有するようにした微生物、ポリエステル生産能を有する微生物を形質転換することによりさらにポリエステル類生産能が増強された組み換え微生物を用いることができる。これらの形質転換された組み換え微生物を用いることにより、操作の簡便性を向上させたり、そして生産性を向上させることができる。
 組み換え微生物に使用できる微生物は特に制限されるものではないが、大腸菌が特に好ましく、大腸菌の中でもtatB、tatE、araf(欠損変異株)を用いると単位培地量あたりのポリエステル生産量を向上させることができる点でさらに好ましい。また、pfla及びdld欠損変異株(JWMB1株)は、ポリエステル生産量を向上させ、オリゴマー中の乳酸の含有量を増加させる場合には、好ましい。
 組み換え微生物としては、例えば、微生物にポリヒドロキシアルカン酸合成酵素遺伝子、プロピオニルCoAトランスフェラーゼ遺伝子、β-ケトチオラーゼ遺伝子、及びアセトアセチルCoAレダクターゼ遺伝子からなる群から選択させる少なくとも1つの遺伝子を導入し、ポリヒドロキシアルカン酸合成酵素、プロピオニルCoAトランスフェラーゼ、β-ケトチオラーゼ、及びアセトアセチルCoAレダクターゼの少なくとも1つを発現させることによって、ポリエステルの産生能を向上させることが可能であり、ポリエステルを細胞外に効率的に分泌することができる。特に、ポリヒドロキシアルカン酸合成酵素を発現させることによって、ポリエステルの産生能を付与、あるいは効率よく向上させることができる。また、前記遺伝子のコドンは、形質転換に用いる宿主生物のコドン使用頻度に合わせて変換されたものであってもよい。
《Microorganism》
The microorganism used in the production method of the present invention is not particularly limited as long as it has the ability to produce polyester. For example, a microorganism having a ability to produce polyester consisting of lactic acid, and a polyester producing ability consisting of 3-hydroxybutanoic acid. And microorganisms having the ability to produce polyester comprising lactic acid and 3-hydroxybutanoic acid. Specific examples include bacteria such as Ralstonia and Eutropha.
Moreover, a recombinant microorganism can also be used as a microorganism used for the production method of the present invention. For example, a microorganism that originally has a polyester-producing ability by transforming a microorganism that does not originally have a polyester-producing ability, or a recombinant microorganism that has a polyester-producing ability further enhanced by transforming a microorganism that has a polyester-producing ability. Can be used. By using these transformed recombinant microorganisms, the convenience of operation can be improved and the productivity can be improved.
Microorganisms that can be used as recombinant microorganisms are not particularly limited, but Escherichia coli is particularly preferable, and using tatB, tatE, and araf (deficient mutant) among E. coli can improve the amount of polyester produced per unit medium. It is further preferable in that it can be performed. In addition, pfla and dld deletion mutants (JWMB1 strain) are preferable for improving the polyester production and increasing the content of lactic acid in the oligomer.
As the recombinant microorganism, for example, at least one gene selected from the group consisting of a polyhydroxyalkanoate synthase gene, a propionyl CoA transferase gene, a β-ketothiolase gene, and an acetoacetyl CoA reductase gene is introduced into the microorganism. By expressing at least one of acid synthase, propionyl CoA transferase, β-ketothiolase, and acetoacetyl CoA reductase, it is possible to improve the ability to produce polyester, and efficiently secrete polyester outside the cell. be able to. In particular, by producing polyhydroxyalkanoic acid synthase, the ability to produce polyester can be imparted or efficiently improved. Moreover, the codon of the said gene may be converted according to the codon usage frequency of the host organism used for transformation.
 前記のポリヒドロキシアルカン酸合成酵素、プロピオニルCoAトランスフェラーゼ、β-ケトチオラーゼ、及びアセトアセチルCoAレダクターゼについて、説明する。
(1)ポリヒドロキシアルカン酸合成酵素
 ポリヒドロキシアルカン酸合成酵素は、ヒドロキシアシルCoAをモノマーとしてポリヒドロキシアルカン酸を合成する反応の触媒活性を有するタンパク質である。また、ポリヒドロキシアルカン酸合成酵素は、ラクチルCoAをモノマーとしてポリ乳酸を合成する反応を触媒する。さらに、ポリヒドロキシアルカン酸合成酵素は、ヒドロキシアシルCoAおよびラクチルCoAをモノマーとして、ヒドロキシアルカン酸-乳酸共重合体を合成する反応を触媒する。
 本発明に用いる組み換え微生物に導入する好ましいポリヒドロキシアルカン酸合成酵素遺伝子は、ラルストニア属(Ralstonia)、シュードモナス属(Pseudomonas)、大腸菌属(Escherichia)、およびメガスフェラ属(Megasphera)のいずれかに由来するものであり、特に好ましくはシュードモナス・スピーシーズ(Pseudomonas sp.)61-3に由来するものであり、その塩基配列を配列番号1に、当該塩基配列にコードされるアミノ酸配列を配列番号2に示す。
 更に、ポリヒドロキシアルカン酸合成酵素遺伝子として、変異型ポリヒドロキシアルカン酸合成酵素をコードする遺伝子も利用することができる。このような変異型としては、配列番号1に示される塩基配列にコードされるアミノ酸配列(配列番号2)の130番目、325番目、392番目、477番目及び481番目のアミノ酸が、それぞれ単独で置換された単独変異、任意の2つのアミノ酸が置換された二重変異、任意の3つのアミノ酸が置換された三重変異、4つのアミノ酸が置換された四重変異を挙げることができる。好ましくは、配列番号2のアミノ酸配列において325番目のSerがThrに、及び481番目のGlnがLysに置換された二重変異を有する変異型をコードする遺伝子、または配列番号2のアミノ酸配列において325番目のSerがThrに、392番目のPheがSerに、及び481番目のGlnがLysに置換された三重変異を有する変異型をコードする遺伝子である。
The polyhydroxyalkanoate synthase, propionyl CoA transferase, β-ketothiolase, and acetoacetyl CoA reductase will be described.
(1) Polyhydroxyalkanoic acid synthase The polyhydroxyalkanoic acid synthase is a protein having catalytic activity for a reaction of synthesizing polyhydroxyalkanoic acid using hydroxyacyl CoA as a monomer. Polyhydroxyalkanoic acid synthase catalyzes a reaction for synthesizing polylactic acid using lactyl CoA as a monomer. Furthermore, polyhydroxyalkanoate synthase catalyzes a reaction for synthesizing a hydroxyalkanoic acid-lactic acid copolymer using hydroxyacyl CoA and lactyl CoA as monomers.
A preferred polyhydroxyalkanoate synthase gene to be introduced into the recombinant microorganism used in the present invention is derived from any of Ralstonia, Pseudomonas, Escherichia, and Megasfera Particularly preferred is derived from Pseudomonas sp. 61-3, the base sequence thereof is shown in SEQ ID NO: 1, and the amino acid sequence encoded by the base sequence is shown in SEQ ID NO: 2.
Furthermore, a gene encoding a mutant polyhydroxyalkanoate synthase can also be used as the polyhydroxyalkanoate synthase gene. As such a mutant, the 130th, 325th, 392rd, 477th and 481st amino acids of the amino acid sequence (SEQ ID NO: 2) encoded by the nucleotide sequence shown in SEQ ID NO: 1 are each independently substituted. Single mutation, double mutation in which any two amino acids are substituted, triple mutation in which any three amino acids are substituted, and quadruple mutation in which four amino acids are substituted. Preferably, a gene encoding a mutant having a double mutation in which the 325th Ser is replaced with Thr and the 481st Gln is replaced with Lys in the amino acid sequence of SEQ ID NO: 2, or 325 in the amino acid sequence of SEQ ID NO: 2 It is a gene encoding a mutant having a triple mutation in which the first Ser is replaced with Thr, the 392rd Phe is replaced with Ser, and the 481st Gln is replaced with Lys.
(2)プロピオニルCoAトランスフェラーゼ遺伝子
 プロピオニルCoAトランスフェラーゼは、適当なCoA基質からプロピオン酸及び/又は乳酸にCoAが転移される反応を触媒する活性を有するタンパク質である。以下、本明細書において、プロピオニルCoAトランスフェラーゼを「PCT」と記載する。
 本発明における好ましいPCT遺伝子は、ラルストニア属(Ralstonia)、シュードモナス属(Pseudomonas)、大腸菌属(Escherichia)、およびメガスフェラ属(Megasphera)のいずれかに由来するものである。特に好ましくはメガスファエラ・エルスデニ(Megasphaera elsdenii)に由来するものであり、その塩基配列を配列番号3に、当該塩基配列にコードされるアミノ酸配列を配列番号4に示す。
(2) Propionyl CoA transferase gene Propionyl CoA transferase is a protein having an activity of catalyzing a reaction in which CoA is transferred from an appropriate CoA substrate to propionic acid and / or lactic acid. Hereinafter, in this specification, propionyl CoA transferase is described as “PCT”.
Preferred PCT genes in the present invention are those derived from any of Ralstonia, Pseudomonas, Escherichia, and Megasfera. Particularly preferred is derived from Megaphaphaela elsdenii, the base sequence thereof is shown in SEQ ID NO: 3, and the amino acid sequence encoded by the base sequence is shown in SEQ ID NO: 4.
(3)β-ケトチオラーゼ遺伝子
 β-ケトチオラーゼは、2分子のアセチルCoAが縮合してアセトアセチルCoAが形成される反応を触媒するタンパク質である。以下、本明細書において、β-ケトチオラーゼを、「βKT」と記載する。
 本発明における好ましいβKT遺伝子は、ラルストニア属(Ralstonia)、シュードモナス属(Pseudomonas)、大腸菌属(Escherichia)、およびメガスフェラ属(Megasphera)のいずれかに由来するものである。特に好ましくはラルストニア・ユートロファ(Ralstonia eutropha)に由来するものであり、その塩基配列を配列番号5に、当該塩基配列にコードされるアミノ酸配列を配列番号6に示す。
(3) β-ketothiolase gene β-ketothiolase is a protein that catalyzes a reaction in which two molecules of acetyl CoA are condensed to form acetoacetyl CoA. Hereinafter, β-ketothiolase is referred to as “βKT” in the present specification.
A preferred βKT gene in the present invention is derived from any of Ralstonia, Pseudomonas, Escherichia, and Megasfera. Particularly preferably, it is derived from Ralstonia eutropha, the base sequence thereof is shown in SEQ ID NO: 5, and the amino acid sequence encoded by the base sequence is shown in SEQ ID NO: 6.
(4)アセトアセチルCoAレダクターゼ遺伝子
 アセトアセチルCoAレダクターゼは、アセトアセチルCoAのNADP等の補酵素の存在下で生じる還元反応によって、D(-)-β-ヒドロキシブチリル-CoAが形成される反応を触媒するタンパク質である。以下、本明細書において、アセトアセチルCoAレダクターゼを、「AACoA-R」と記載する。
 本発明における好ましいAACoA-R遺伝子は、ラルストニア属(Ralstonia)、シュードモナス属(Pseudomonas)、大腸菌属(Escherichia)、およびメガスフェラ属(Megasphera)のいずれかに由来するものである。特に好ましくはラルストニア・ユートロファ(Ralstonia eutropha)に由来するものであり、その塩基配列を配列番号7に、当該塩基配列にコードされるアミノ酸配列を配列番号8に示す。
(4) Acetoacetyl-CoA reductase gene Acetoacetyl-CoA reductase undergoes a reaction in which D (-)-β-hydroxybutyryl-CoA is formed by a reduction reaction that occurs in the presence of a coenzyme such as NADP of acetoacetyl-CoA. It is a protein that catalyzes. Hereinafter, acetoacetyl CoA reductase is referred to as “AACoA-R” in the present specification.
Preferred AACoA-R genes in the present invention are those derived from any of Ralstonia, Pseudomonas, Escherichia, and Megasfera. Particularly preferably, it is derived from Ralstonia eutropha, the base sequence thereof is shown in SEQ ID NO: 7, and the amino acid sequence encoded by the base sequence is shown in SEQ ID NO: 8.
 前記の本発明に用いるポリヒドロキシアルカン酸合成酵素遺伝子、プロピオニルCoAトランスフェラーゼ、β-ケトチオラーゼ、及びアセトアセチルCoAレダクターゼは、それぞれ配列番号1、配列番号3、配列番号5、及び配列番号7の塩基配列において、1から数個の塩基の欠失、置換、付加又は挿入を有するものでもよい。ここで用語「数個」とは、1~40個、好ましくは1~20個、より好ましくは10個以下をいう。また、ポリヒドロキシアルカン酸合成酵素遺伝子、プロピオニルCoAトランスフェラーゼ、β-ケトチオラーゼ、及びアセトアセチルCoAレダクターゼは、それぞれ配列番号1、配列番号3、配列番号5、及び配列番号7の塩基配列と相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズ可能なDNAの塩基配列であってもよい。但し、前記ポリヒドロキシアルカン酸合成酵素遺伝子は、ヒドロキシアシルCoAをモノマーとしてポリヒドロキシアルカン酸を合成する反応の触媒活性を有するタンパク質をコードする遺伝子であり、プロピオニルCoAトランスフェラーゼ遺伝子は、プロピオン酸及び/又は乳酸にCoAが転移される反応の触媒活性を有するタンパク質をコードする遺伝子であり、β-ケトチオラーゼ遺伝子は、2分子のアセチルCoAが縮合してアセトアセチルCoAが形成される反応を触媒する活性を有するタンパク質をコードする遺伝子であり、アセトアセチルCoAレダクターゼ遺伝子は、アセトアセチルCoAの還元反応の触媒活性を有するタンパク質をコードする遺伝子である。前記プロピオン酸及び/又は乳酸にCoAが転移される反応の触媒活性は、例えばA.E.Hofmeisterら(Eur.J.Biochem.、第206巻、第547-552頁)に記載された方法に従って測定することができる。前記2分子のアセチルCoAからアセトアセチルCoAが形成される反応の触媒活性は、例えばSlaterら(J.Bacteriology、1998年、第180巻、第1979-1987頁)に記載された方法によって測定することができる。前記アセトアセチルCoAの還元反応の触媒活性は、例えばG.W.Haywoodら(FEMS Microbiology Letters,1988年、第52巻、第259-264頁)に記載された方法によって測定することができる。 The polyhydroxyalkanoate synthase gene, propionyl CoA transferase, β-ketothiolase, and acetoacetyl CoA reductase used in the present invention have the nucleotide sequences of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, and SEQ ID NO: 7, respectively. It may have 1 to several base deletions, substitutions, additions or insertions. Here, the term “several” means 1 to 40, preferably 1 to 20, more preferably 10 or less. The polyhydroxyalkanoate synthase gene, propionyl CoA transferase, β-ketothiolase, and acetoacetyl CoA reductase are bases complementary to the nucleotide sequences of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, and SEQ ID NO: 7, respectively. It may be a base sequence of DNA that can hybridize with DNA comprising a sequence under stringent conditions. However, the polyhydroxyalkanoic acid synthase gene is a gene encoding a protein having a catalytic activity for the reaction of synthesizing polyhydroxyalkanoic acid using hydroxyacyl CoA as a monomer, and propionyl CoA transferase gene is propionic acid and / or A gene encoding a protein having catalytic activity for the reaction of transferring CoA to lactic acid, and the β-ketothiolase gene has an activity of catalyzing a reaction in which two molecules of acetyl CoA are condensed to form acetoacetyl CoA It is a gene encoding a protein, and the acetoacetyl CoA reductase gene is a gene encoding a protein having catalytic activity for the reduction reaction of acetoacetyl CoA. The catalytic activity of the reaction in which CoA is transferred to propionic acid and / or lactic acid is, for example, A. E. It can be measured according to the method described in Hofmeister et al. (Eur. J. Biochem., 206, 547-552). The catalytic activity of the reaction in which acetoacetyl CoA is formed from the two molecules of acetyl CoA is measured, for example, by the method described in Slater et al. (J. Bacteriology, 1998, 180, 1979-1987). Can do. The catalytic activity of the reduction reaction of acetoacetyl CoA is, for example, G.M. W. It can be measured by the method described in Haywood et al. (FEMS Microbiology Letters, 1988, Vol. 52, pp. 259-264).
 前記のポリヒドロキシアルカン酸合成酵素遺伝子、プロピオニルCoAトランスフェラーゼ遺伝子、β-ケトチオラーゼ遺伝子、及びアセトアセチルCoAレダクターゼ遺伝子が導入された微生物を用いた場合、特に乳酸分率(乳酸含有量)の高いポリエステルを得ることができる。 When a microorganism into which the polyhydroxyalkanoic acid synthase gene, propionyl CoA transferase gene, β-ketothiolase gene, and acetoacetyl CoA reductase gene are introduced is used, a polyester having a particularly high lactic acid content (lactic acid content) is obtained. be able to.
《培地》
 本発明の製造方法に用いる培地は、用いる微生物によって、適宜選択することができるが、通常炭素源を含む培地を用いる。大腸菌を用いる場合、例えばLB培地、M9培地、NZYM培地、SOB培地、2xYT培地、又はTerrific Brothを用いることができる。
 培地に含まれる炭素源は、本発明のポリエステルを産生できる限りにおいて特に限定されるものではないが、例えばグルコース、キシロース、フラクトース、セルビオース、ラフィノース、マルトース、ガラクトース、デンプン、デンプン加水分解物、糖蜜、廃糖蜜等の糖類、麦、米等の天然物等を挙げることができる。特に乳酸分率(乳酸含有量)の高いポリエステルを得る場合には、キシロースが好ましい。
"Culture medium"
The medium used in the production method of the present invention can be appropriately selected depending on the microorganism used, but a medium containing a carbon source is usually used. When E. coli is used, for example, LB medium, M9 medium, NZYM medium, SOB medium, 2 × YT medium, or terrific broth can be used.
The carbon source contained in the medium is not particularly limited as long as the polyester of the present invention can be produced.For example, glucose, xylose, fructose, cellobiose, raffinose, maltose, galactose, starch, starch hydrolysate, molasses, Examples include sugars such as waste molasses, and natural products such as wheat and rice. In particular, xylose is preferable when obtaining a polyester having a high lactic acid content (lactic acid content).
《分子量300以下のアルコール》
 本発明の製造方法においては、分子量300以下のアルコールを培地に添加する。すなわち、前記微生物に分子量300以下のアルコールを接触させる。
 分子量300以下のアルコールとしては、前記「〔1〕アルコール終止ポリエステル」の項に記載の「分子量300以下のアルコール」を限定することなく用いることができるが、好ましくは、多価アルコール又はエーテル結合を有するアルコールであり、より好ましくはエーテル結合を有する多価アルコールであり、更に好ましくはエーテル結合を有するジオールである。また、別の好ましい態様としては、1~3価のヒドロキシ基を有する脂肪族アルコールである。
 特にはジエチレングリコール、ブタンジオール、又はポリエチレングリコールが好ましい。ポリエチレングルコールを用いる場合、分子量300以下のポリエチレングリコールを用いるが、ポリエチレングルコールの分子量は、好ましくは280以下であり、より好ましくは260以下である。
 分子量の下限は好ましくは50以上、より好ましくは65以上である。
 前記アルコールは、ポリエステル部分の末端と、縮合反応によって結合し、ポリエステルの重合を停止させていると推測される。
 培地に添加されるアルコール濃度は、本発明の効果が得られる限りにおいて、特に限定されるものではないが、例えば微生物の生育を阻害しない濃度を、アルコールの種類、及び微生物の種類に応じて、適宜決定することができる。例えば、大腸菌及びジエチレングリコールを用いる場合は、ジエチレングリコールの濃度は、好ましくは0.01~20容量%であり、より好ましくは0.1~10容量%である。また、大腸菌及びポリエチレングリコールを用いる場合、ポリエチレングリコールの濃度は、好ましくは0.01~15容量%であり、より好ましくは0.1~10容量%である。
<< Alcohol with a molecular weight of 300 or less >>
In the production method of the present invention, an alcohol having a molecular weight of 300 or less is added to the medium. That is, the microorganism is brought into contact with an alcohol having a molecular weight of 300 or less.
As the alcohol having a molecular weight of 300 or less, the “alcohol having a molecular weight of 300 or less” described in the section “[1] Alcohol-terminated polyester” can be used without limitation. Preferably, a polyhydric alcohol or an ether bond is used. More preferably a polyhydric alcohol having an ether bond, and still more preferably a diol having an ether bond. Another preferred embodiment is an aliphatic alcohol having a monovalent to trivalent hydroxy group.
In particular, diethylene glycol, butanediol, or polyethylene glycol is preferable. When polyethylene glycol is used, polyethylene glycol having a molecular weight of 300 or less is used. The molecular weight of polyethylene glycol is preferably 280 or less, more preferably 260 or less.
The lower limit of the molecular weight is preferably 50 or more, more preferably 65 or more.
The alcohol is presumed to be bonded to the end of the polyester portion by a condensation reaction to stop the polymerization of the polyester.
The alcohol concentration added to the medium is not particularly limited as long as the effects of the present invention can be obtained.For example, the concentration that does not inhibit the growth of microorganisms depends on the type of alcohol and the type of microorganism. It can be determined as appropriate. For example, when Escherichia coli and diethylene glycol are used, the concentration of diethylene glycol is preferably 0.01 to 20% by volume, more preferably 0.1 to 10% by volume. When using E. coli and polyethylene glycol, the concentration of polyethylene glycol is preferably 0.01 to 15% by volume, more preferably 0.1 to 10% by volume.
 本発明のポリエステルの製造方法においては、ポリエステルの一部又は全部が微生物から分泌される。すなわち、得られるポリエステルは、微生物の細胞内に蓄積されるだけでなく、細胞外へも分泌されているという特徴を有する。すなわち、培地中に分子量300以下のアルコール類を含有させない場合の細胞外のポリエステルの生産量に比べ、培地中に分子量300以下のアルコール類を含有させる場合の細胞外のポリエステルの生産量は顕著に向上している。
 本発明のポリエステルの製造方法で得られるポリエステルは、ポリエステルの末端に分子量300以下のアルコール残基が結合しているアルコール終止ポリエステルを含む。すなわち、限定されるものではないが、前記「〔1〕アルコール終止ポリエステル」の項に記載のアルコール終止ポリエステルを製造することができる。ポリエステルの末端にアルコールが結合していることにより、効率的に微生物の細胞外に、ポリエステルを分泌することができる。
In the method for producing a polyester of the present invention, part or all of the polyester is secreted from microorganisms. That is, the polyester obtained is characterized by being not only accumulated in the cells of microorganisms but also secreted outside the cells. That is, the amount of extracellular polyester produced when alcohol having a molecular weight of 300 or less is contained in the medium is significantly higher than the amount of extracellular polyester produced when no alcohol having a molecular weight of 300 or less is contained in the medium. It has improved.
The polyester obtained by the method for producing a polyester of the present invention includes an alcohol-terminated polyester in which an alcohol residue having a molecular weight of 300 or less is bonded to the terminal of the polyester. That is, although not limited, the alcohol-terminated polyester described in the section “[1] Alcohol-terminated polyester” can be produced. Since the alcohol is bonded to the terminal of the polyester, the polyester can be efficiently secreted outside the cells of the microorganism.
 本発明のポリエステルの製造方法によって、低分子量から高分子量のポリエステルを製造することができる。得られるポリエステルは、分子量が数千~数万の高分子化合物のほか、2量体~10量体程度のオリゴマーや2種以上のモノマー単位からなるコポリマーを含む。すなわち、本発明においては、通常、低分子量から高分子量のポリエステル産生することができる。
 細胞外に分泌されるポリエステルは、比較的分子量の小さいものが多く、例えばポリエステルの乳酸及び3-ヒドロキシブタン酸の平均繰り返し単位数は、ある態様では2~12であり、ある態様では2~10であり、ある態様では2~8である。
 細胞内のポリエステルの分子量も、特に限定されるものではないが、比較的分子量の大きいものが多く、例えばポリエステルの乳酸及び3-ヒドロキシブタン酸の平均繰り返し単位数はある態様では2~1000であり、ある態様では2~100であり、ある態様では2~50である。
Low molecular weight to high molecular weight polyesters can be produced by the polyester production method of the present invention. The obtained polyester includes not only a polymer compound having a molecular weight of several thousand to several tens of thousands, but also an oligomer having about a dimer to a 10-mer and a copolymer composed of two or more types of monomer units. That is, in the present invention, it is usually possible to produce a polyester having a low molecular weight to a high molecular weight.
Many polyesters secreted extracellularly have a relatively small molecular weight. For example, the average number of repeating units of lactic acid and 3-hydroxybutanoic acid in a polyester is 2 to 12 in an embodiment, and 2 to 10 in an embodiment. And in some embodiments 2-8.
The molecular weight of the polyester in the cell is not particularly limited, but many of them have a relatively large molecular weight. For example, the average number of repeating units of lactic acid and 3-hydroxybutanoic acid in the polyester is 2 to 1000 in some embodiments. In some embodiments, it is 2 to 100, and in some embodiments, 2 to 50.
 前記生産されたポリエステルの回収は、微生物から共重合ポリエステルを回収するための、当業者に公知の方法によって行うことができる。例えば、培養液から遠心分離によって集菌、洗浄した後、乾燥させ、クロロホルムに乾燥菌体を懸濁し、加熱することによって、目的とする共重合ポリエステルをクロロホルム画分に抽出し、さらにこのクロロホルム溶液にメタノールを加えてポリエステルを沈殿させ、濾過や遠心分離によって上澄み液を除去した後、乾燥することで、精製された共重合ポリエステルを得ることができる。
 回収されたポリエステルの組成の確認は、通常の方法、例えばガスクロマトグラフ法や核磁気共鳴法等により行えばよい。
The recovered polyester can be recovered by a method known to those skilled in the art for recovering a copolyester from a microorganism. For example, the microorganism is collected from the culture solution by centrifugation, washed, dried, suspended in chloroform, and heated to extract the desired copolyester into the chloroform fraction. Methanol is added to precipitate the polyester, the supernatant is removed by filtration or centrifugation, and then dried to obtain a purified copolyester.
The composition of the recovered polyester may be confirmed by a usual method such as gas chromatography or nuclear magnetic resonance.
《作用》
 前記の通り、本発明の製造方法によって得られるポリエステルの少なくとも一部は、ポリエステルの末端に分子量300以下のアルコール残基が結合している。特に、細胞外へ分泌されるポリエステルは、分子量300以下のアルコール残基が結合している割合が高い。本願発明において、得られるポリエステルにアルコールが結合している理由は、詳細には明らかではないが以下のように推定することができる。添加された分子量300以下のアルコールは、菌体内に取り込まれた後、ポリエステル類生合成のターミネーションに作用していると思われる。その結果、末端に上記アルコール類が結合したポリエステルが得られることになる。具体的には、分子量300以下のアルコールが連鎖移動剤として作用していると考えられる。連鎖移動剤はポリマー鎖からラジカルを受け取り、ポリマーの伸長を止めるものであるが、連鎖移動剤はモノマーを攻撃して重合を開始させることもできる。また、ポリエステルの末端に結合したアルコールがシグナル配列のような役割を果たすことで菌体外へ移行している可能性も考えられる。しかしながら、本発明は、前記の説明によって限定されるものではない。
<Action>
As described above, at least a part of the polyester obtained by the production method of the present invention has an alcohol residue having a molecular weight of 300 or less bonded to the terminal of the polyester. In particular, polyesters secreted extracellularly have a high proportion of bonded alcohol residues having a molecular weight of 300 or less. In the present invention, the reason why the alcohol is bonded to the obtained polyester is not clear in detail, but can be estimated as follows. The added alcohol having a molecular weight of 300 or less seems to act on the termination of polyester biosynthesis after being taken into the cells. As a result, a polyester in which the alcohol is bonded to the terminal is obtained. Specifically, it is considered that alcohol having a molecular weight of 300 or less acts as a chain transfer agent. The chain transfer agent receives radicals from the polymer chain and stops the extension of the polymer, but the chain transfer agent can also attack the monomer to initiate polymerization. It is also possible that the alcohol bound to the end of the polyester has migrated out of the cell by playing a role like a signal sequence. However, the present invention is not limited by the above description.
 以下、実施例によって本発明を具体的に説明するが、これらは本発明の範囲を限定するものではない。 Hereinafter, the present invention will be specifically described by way of examples, but these do not limit the scope of the present invention.
《実施例1》
ポリエステルの製造
 WO2009/131186の実施例1に記載された方法で、M.エルスデニ(M.elsdenii)由来のプロピオニルCoAトランスフェラーゼをコードするDNA、R.ユートロファ(R.eutropha)由来のβ-ケトチオラーゼをコードするDNA、R.ユートロファ(R.eutropha)由来のアセトアセチルCoAレダクターゼをコードするDNA、及びシュードモナスsp.(Pseudomonas sp.)61-3株由来のポリヒドロキシアルカン酸合成酵素の325番目のSerがThrに置換され、そして481番目のGlnがLysに置換された二重変異を有する変異型ポリヒドロキシアルカン酸合成酵素(以下、ST/QK変異酵素と称することがある)をコードするDNAを含む、組み換えプラスミドpTV118NpctphaC1PS(ST/QK)ABを調製した。
 また、上記ST/QK変異酵素の代わりに、シュードモナスsp.(Pseudomonas sp.)61-3株由来のポリヒドロキシアルカン酸合成酵素の325番目のSerがThrに置換され、392番目のPheがSerに置換され、そして481番目のGlnがLysに置換された三重変異を有する変異型ポリヒドロキシアルカン酸合成酵素(以下、ST/FS/QK変異酵素と称することがある)をコードするDNAを含むことを除いて上記pTV118NpctphaC1PS(ST/QK)ABと同様にして、組み換えプラスミドpTV118NpctphaC1PS(ST/FS/QK)ABを調製した。
 続いて、大腸菌BW25113をリン酸カルシウム法により形質転換し、プロピオニルCoAトランスフェラーゼ、β-ケトチオラーゼ、アセトアセチルCoAレダクターゼ、ST/QK変異酵素が発現した形質転換体(以下、ST/QK大腸菌と称することがある)、及びプロピオニルCoAトランスフェラーゼ、β-ケトチオラーゼ、アセトアセチルCoAレダクターゼ、ST/FS/QK変異酵素が発現した形質転換体(以下、ST/FS/QK大腸菌と称することがある)の合計2種類の形質転換体を得た。
Example 1
Manufacture of polyesters The method described in Example 1 of WO2009 / 131186 DNA encoding propionyl CoA transferase from M. elsdenii, DNA encoding β-ketothiolase from R. eutropha, R. DNA encoding acetoacetyl-CoA reductase from R. eutropha, and Pseudomonas sp. (Pseudomonas sp.) Mutant polyhydroxyalkanoic acid having a double mutation in which the 325th Ser of the polyhydroxyalkanoic acid synthase derived from the 61-3 strain is replaced with Thr and the 481st Gln is replaced with Lys A recombinant plasmid pTV118NpctphaC1 PS (ST / QK) AB containing DNA encoding a synthetic enzyme (hereinafter sometimes referred to as ST / QK mutant enzyme) was prepared.
Also, instead of the ST / QK mutant enzyme, Pseudomonas sp. (Pseudomonas sp.) Triple alkanoic acid synthase derived from the 61-3 strain was replaced with Thr, Ser at 325, Phe at 392 was replaced with Ser, and Gln at 481 was replaced with Lys. The same as pTV118NpctphaC1 PS (ST / QK) AB except that it contains a DNA encoding a mutant polyhydroxyalkanoate synthase having a mutation (hereinafter sometimes referred to as ST / FS / QK mutant enzyme). Recombinant plasmid pTV118NpctphaC1 PS (ST / FS / QK) AB was prepared.
Subsequently, E. coli BW25113 was transformed by the calcium phosphate method, and a transformant in which propionyl CoA transferase, β-ketothiolase, acetoacetyl CoA reductase, and ST / QK mutant enzyme were expressed (hereinafter sometimes referred to as ST / QK E. coli). , And transformants expressing propionyl CoA transferase, β-ketothiolase, acetoacetyl CoA reductase, and ST / FS / QK mutant enzyme (hereinafter sometimes referred to as ST / FS / QK E. coli) Got the body.
 得られた形質転換体を、2重量%グルコース及びアンピシリン含有LB培地を用いて、180rpmで撹拌しながら、30℃で48時間培養した。あらかじめLB培地に最終濃度として1~5容量%となる量のポリエチレングリコール(PEG200、以下実施例において単に「ポリエチレングリコール」又は「PEG」ということもある)又はジエチレングリコールを添加した(以下、アルコールを培地に添加する場合について同じ)。
 培養上清を回収し、培養上清に含まれる乳酸を、定量キット(International Ireland 社、Megazyme)によって測定した。乳酸量は、培養上清をそのまま(塩酸で処理しない)サンプルとして乳酸(Free LA)を測定するか、又は100μLの培養上清に80μLの5規定の塩酸と水20μLを添加し、そして100℃で一晩加水分解を行った。その後、2規定のNaOHを200μL加え中和し、サンプル中の乳酸(Total LA)を測定した。Free LAは、塩酸で処理しないため培養上清中の単量体の乳酸が測定される。Total LAは培養上清中のオリゴマーの乳酸が塩酸によって分解され、単量体となるために、単量体及びオリゴマーの乳酸の合計量が測定される。従って、Total LAの乳酸量からFree LAの乳酸量を減算したものが、培養上清中の乳酸のオリゴマーの量であると考えられる。結果を、図2及び図3に示す。黒色のバーがFree LAを示し、白抜きのバーがTotal LAを示す。
The obtained transformant was cultured at 30 ° C. for 48 hours while stirring at 180 rpm using LB medium containing 2 wt% glucose and ampicillin. In advance, polyethylene glycol (PEG 200, sometimes simply referred to as “polyethylene glycol” or “PEG” in the following examples) or diethylene glycol in an amount of 1 to 5% by volume as a final concentration was added to LB medium in advance (hereinafter, alcohol was added to the medium). The same applies to the case of adding to the above).
The culture supernatant was collected, and lactic acid contained in the culture supernatant was measured with a quantification kit (International Ireland, Megazyme). The amount of lactic acid is determined by measuring lactic acid (Free LA) using the culture supernatant as it is (not treated with hydrochloric acid), or adding 80 μL of 5N hydrochloric acid and 20 μL of water to 100 μL of the culture supernatant, and 100 ° C. The hydrolysis was carried out overnight. Thereafter, 200 μL of 2N NaOH was added for neutralization, and lactic acid (Total LA) in the sample was measured. Since Free LA is not treated with hydrochloric acid, monomeric lactic acid in the culture supernatant is measured. Total LA measures the total amount of monomeric and oligomeric lactic acid because oligomeric lactic acid in the culture supernatant is decomposed by hydrochloric acid to become a monomer. Therefore, it is considered that the amount of lactic acid oligomer in the culture supernatant is obtained by subtracting the lactic acid amount of Free LA from the lactic acid amount of Total LA. The results are shown in FIGS. The black bar indicates Free LA, and the white bar indicates Total LA.
 ST/QK変異酵素を発現する大腸菌、又はST/FS/QK変異酵素を発現する大腸菌のいずれにおいても、ポリエチレングリコール(PEG)又はジエチレングリコール(DEG)を添加することによって、培養上清中にポリ乳酸のオリゴマーが分泌されていた。特に、ST/FS/QK変異酵素を発現する大腸菌にジエチレングリコールを添加することにより、菌体外へのポリ乳酸のオリゴマーが顕著に分泌された(図2及び図3)。 In either E. coli expressing ST / QK mutant enzyme or E. coli expressing ST / FS / QK mutant enzyme, polylactic acid is added to the culture supernatant by adding polyethylene glycol (PEG) or diethylene glycol (DEG). Of oligomers were secreted. In particular, by adding diethylene glycol to E. coli expressing ST / FS / QK mutant enzymes, oligomers of polylactic acid outside the cells were significantly secreted (FIGS. 2 and 3).
《実施例2》
 本実施例では、培養上清に分泌されたポリ乳酸のオリゴマーに含まれる乳酸と3-ヒドロキシブタン酸の比率を測定した。実施例1で得られたST/FS/QK大腸菌を、ジエチレングリコールを添加した培地で、実施例1と同じように培養し、培養上清を得た。実施例1と同様に、得られた培養上清から、塩酸で処理しないサンプルと、塩酸で処理したサンプルを調製した。それぞれのサンプルについて、乳酸量を定量キット(International Ireland 社、Megazyme)で測定し、3-ヒドロキシブタン酸の量を定量キット(和光純薬社、AUTOKIT 3-HB)で測定した。結果を図4に示す。各バーの下部が3-ヒドロキシブタン酸の量を示し、上部が乳酸の量を示す。
 1容量%となるようジエチレングリコールを添加した場合、上清中の乳酸の含有量は91モル%であった。3容量%となるようジエチレングリコールを添加した場合、上清中の乳酸の含有量は96モル%であった。5容量%となるようジエチレングリコールを添加した場合、上清中の乳酸の含有量は87モル%であった。細胞外に分泌されたオリゴマーには多くの乳酸が含まれていることが分かった。
Example 2
In this example, the ratio of lactic acid to 3-hydroxybutanoic acid contained in the oligomer of polylactic acid secreted into the culture supernatant was measured. The ST / FS / QK E. coli obtained in Example 1 was cultured in the same manner as in Example 1 in a medium to which diethylene glycol was added to obtain a culture supernatant. In the same manner as in Example 1, a sample not treated with hydrochloric acid and a sample treated with hydrochloric acid were prepared from the obtained culture supernatant. For each sample, the amount of lactic acid was measured with a quantitative kit (International Ireland, Megazyme), and the amount of 3-hydroxybutanoic acid was measured with a quantitative kit (Wako Pure Chemical Industries, Ltd., AUTOKIT 3-HB). The results are shown in FIG. The lower part of each bar shows the amount of 3-hydroxybutanoic acid, and the upper part shows the amount of lactic acid.
When diethylene glycol was added so as to be 1% by volume, the lactic acid content in the supernatant was 91 mol%. When diethylene glycol was added so as to be 3% by volume, the content of lactic acid in the supernatant was 96 mol%. When diethylene glycol was added so as to be 5% by volume, the content of lactic acid in the supernatant was 87 mol%. It was found that the oligomer secreted extracellularly contains a large amount of lactic acid.
《実施例3》
 本実施例では、NMRを用いて、細胞外のポリ乳酸のオリゴマー(図5A)、細胞内のポリ乳酸のオリゴマー(図5B)、及び細胞内のポリ乳酸のポリマー(図5C)に、アルコールが結合していることを確認した。
(菌体外オリゴマー、菌体内オリゴマー、及びポリマーの分離と試料調製)
 pTV118NpctphaC1ps(ST/FS/QK)ABを有する大腸菌BW25113株を、2重量%グルコース及びアンピシリン含有LB培地を用いて、180rpmで撹拌しながら、3容量%DEG添加条件下で30℃48時間培養し、上清と菌体を遠心によって分離した。上清1質量部に対し、クロロホルムを1質量部加え、混合することにより菌体外オリゴマーを抽出した。過剰なDEGを除去するため、クロロホルム画分1質量部に対して水1質量部を加え、混合し水洗を行った。この操作を2回繰り返した。抽出されたオリゴマーを定量するため、クロロホルム画分のLAと3HBをGC/MSで分析した。
 菌体内の高分子量体は、凍結乾燥された細胞からクロロホルムで室温2日間抽出することにより得られた。細胞破砕物はPTFEフィルターを通すことにより取り除かれ、続いてポリマーを沈殿させるため、10倍量のメタノールを加えた。混合物はさらに4℃で1日インキュベートした。ポリマーはメタノール中で沈殿し、細胞内のオリゴマーはメタノール中に可溶であった。沈殿したポリマーと細胞内オリゴマーは遠心により分離された。ポリマーと菌体内オリゴマーに占めるLAと3HBの量はGC/MSにより分析された。
Example 3
In this example, alcohol was added to the oligomer of extracellular polylactic acid (FIG. 5A), the oligomer of intracellular polylactic acid (FIG. 5B), and the polymer of intracellular polylactic acid (FIG. 5C) using NMR. It was confirmed that they were bonded.
(Separation and sample preparation of extracellular oligomers, intracellular oligomers, and polymers)
Escherichia coli BW25113 having pTV118NpctphaC1ps (ST / FS / QK) AB was cultured at 30 ° C. for 48 hours under the condition of 3% by volume DEG addition with stirring at 180 rpm using LB medium containing 2% by weight glucose and ampicillin, The supernatant and the cells were separated by centrifugation. Extracellular oligomers were extracted by adding 1 part by mass of chloroform to 1 part by mass of the supernatant and mixing. In order to remove excess DEG, 1 part by mass of water was added to 1 part by mass of the chloroform fraction, mixed and washed with water. This operation was repeated twice. In order to quantify the extracted oligomer, LA and 3HB of the chloroform fraction were analyzed by GC / MS.
The high molecular weight body in the microbial cells was obtained by extracting from freeze-dried cells with chloroform for 2 days at room temperature. Cell debris was removed by passing through a PTFE filter, followed by addition of 10 volumes of methanol to precipitate the polymer. The mixture was further incubated at 4 ° C. for 1 day. The polymer precipitated in methanol and the intracellular oligomers were soluble in methanol. The precipitated polymer and intracellular oligomers were separated by centrifugation. The amounts of LA and 3HB in the polymer and intracellular oligomers were analyzed by GC / MS.
(NMR分析)
 菌体外オリゴマー、菌体内オリゴマー及びポリマーにDEGが結合していることの確認はH -NMRと二次元NMR(H-H DOSY NMR と H-13C HMQC)により確認した。サンプルは乾固したあと重クロロホルムに再度懸濁させBruker AMX500 spectrometerにより測定した。
 H-H DOSY NMR分析により、オリゴマー/ポリマーに結合したDEGは高分子化合物としてふるまうことを確認でき、ポリマー/オリゴマー鎖と同様の拡散を示した(図5A、B、及びC)。
 さらに、H-13C HMQC分析から、遊離しているDEGと結合しているDEGを異なるケミカルシフトとして確認した(図5D、E、F、及びG)。遊離しているDEGは2つのメチレン基を有する対象分子であり、そのため2つのシグナルのみを確認できる。一方、オリゴマー/ポリマーに結合しているDEGは対象分子ではなく、このため4つのメチレン基が異なるケミカルシフトを有すると考えられる。
 図9(a)にH-H COSY NMRを示す。3.7ppm/4.3ppmの交差シグナルは、4.3ppmの共鳴がDEGの(B)のプロトン由来であることを示しており、従ってDEGはカルボキシ末端でポリエステルに結合していると考えられた。更に、1.5ppm/4.3ppm及び1.3ppm/4.2ppmの弱い交差シグナルは、ポリエステルの乳酸及び3HBのヒドロキシ末端のメチンプロトンの共鳴を示していると考えられた。更に、図9(b)は、H-H DOSY NMRを示しており、DEGの拡散係数が、D-乳酸オリゴマーと似ており、非結合DEGよりも低いことを示していた。従って、観察されたDEGは、完全にD-乳酸オリゴマーと結合していた。
 図10(a,b,c)に、H NMR、13C NMR、及びH-13C HMQCを示すが、これらのデータも、DEGを添加して得られた分泌オリゴマーは、D-乳酸オリゴマーのDEG結合体であることを支持していた。
(NMR analysis)
It was confirmed by 1 H-NMR and two-dimensional NMR ( 1 H- 1 H DOSY NMR and 1 H- 13 C HMQC) that DEG was bound to the extracellular oligomers, intracellular oligomers and polymers. The sample was dried and then resuspended in deuterated chloroform and measured with a Bruker AMX500 spectrometer.
By 1 H- 1 H DOSY NMR analysis, it was confirmed that DEG bound to the oligomer / polymer behaved as a polymer compound, and showed diffusion similar to that of the polymer / oligomer chain (FIGS. 5A, B, and C).
Furthermore, from 1 H- 13 C HMQC analysis, DEG bound to free DEG was confirmed as a different chemical shift (FIGS. 5D, E, F, and G). The free DEG is a target molecule having two methylene groups, so only two signals can be confirmed. On the other hand, DEG bonded to the oligomer / polymer is not the target molecule, and therefore, the four methylene groups are considered to have different chemical shifts.
FIG. 9A shows 1 H- 1 H COSY NMR. The crossover signal of 3.7 ppm / 4.3 ppm indicates that the 4.3 ppm resonance is derived from the proton of (B) of DEG, and therefore DEG was thought to be bound to the polyester at the carboxy terminus. . Furthermore, the weak crossing signals of 1.5 ppm / 4.3 ppm and 1.3 ppm / 4.2 ppm were considered to indicate resonance of polyester lactic acid and 3HB hydroxy-terminal methine protons. Further, FIG. 9 (b) shows 1 H- 1 H DOSY NMR, which shows that the diffusion coefficient of DEG is similar to that of D-lactic acid oligomer and is lower than that of unbound DEG. Therefore, the observed DEG was completely bound to the D-lactic acid oligomer.
FIG. 10 (a, b, c) shows 1 H NMR, 13 C NMR, and 1 H- 13 C HMQC. These data also show that the secretory oligomer obtained by adding DEG is D-lactic acid. It was supported to be an oligomeric DEG conjugate.
《実施例4》
 本実施例では、大腸菌の遺伝子破壊変異体を用いて、細胞内及び細胞外のポリエステルの量を測定した。大腸菌BW25113に代えて、図6の遺伝子破壊変異体大腸菌を用いたことを除いては、実施例2の操作を繰り返して、培養上清及び大腸菌の菌体を得た。培養上清及び菌体について、乳酸量を測定した。
 図6に示すように、tatB、tatE、arafをはじめとする欠損変異株を用いた場合に単位培地量あたりのポリエステル生産量の増加が見られた。一方で、欠損変異株によっては菌体の生育阻害も顕著に見られた。
 なお、図6の上図は培養液1リットルあたりの乳酸オリゴマー生産量を示し、下図は培養液1リットルあたりの菌体重量(Dry Cell Weight)を示す。
Example 4
In this example, the amount of intracellular and extracellular polyester was measured using a gene disruption mutant of E. coli. A culture supernatant and Escherichia coli cells were obtained by repeating the procedure of Example 2 except that the gene disruption mutant Escherichia coli shown in FIG. 6 was used instead of Escherichia coli BW25113. The amount of lactic acid was measured for the culture supernatant and the cells.
As shown in FIG. 6, an increase in the amount of polyester produced per unit medium amount was observed when deletion mutants such as tatB, tatE, and araf were used. On the other hand, depending on the defective mutant, growth inhibition of the bacterial cells was also noticeable.
The upper diagram in FIG. 6 shows the amount of lactic acid oligomer produced per liter of the culture solution, and the lower diagram shows the cell weight (Dry Cell Weight) per liter of the culture solution.
《実施例5》
 実施例1の操作を繰り返して、培養上清中のTotal LA及びFree LAを測定した。Total LAからFree LAを減算したオリゴマーの産生量を図7に示す。
 ST/QK大腸菌では、アルコールとして5容量%のポリエチレングリコール(PEG)を用いた場合、オリゴマーの分泌が増加した。また、アルコールとしてジエチレングリコール(DEG)を用いた場合、DEGの容量依存的にオリゴマーの分泌が増加した。
 ST/FS/QK大腸菌では、アルコールとしてポリエチレングリコール(PEG)を用いた場合、1~5容量%のいずれでもほぼ同程度のオリゴマーが分泌された。一方、アルコールとしてジエチレングリコール(DEG)を用いた場合、5容量%までDEGの容量依存的にオリゴマーの分泌が増加した。
Example 5
The operation of Example 1 was repeated to measure Total LA and Free LA in the culture supernatant. FIG. 7 shows the amount of oligomer produced by subtracting Free LA from Total LA.
In ST / QK E. coli, oligomer secretion increased when 5% by volume of polyethylene glycol (PEG) was used as the alcohol. In addition, when diethylene glycol (DEG) was used as the alcohol, secretion of the oligomer increased depending on the volume of DEG.
In ST / FS / QK E. coli, when polyethylene glycol (PEG) was used as the alcohol, almost the same amount of oligomer was secreted in any of 1 to 5% by volume. On the other hand, when diethylene glycol (DEG) was used as the alcohol, secretion of the oligomer increased up to 5% by volume depending on the volume of DEG.
《実施例6》
 本実施例では、ST/FS/QK大腸菌及び3容量%のDEGを用いて、培養上清に分泌される分子をESI-MSで測定した。
 実施例2の操作を繰り返して、培養上清を得た。
 得られた培養上清をESI-MS(Bruker社製)を用いて分析した。結果を図8に示す。
Example 6
In this example, molecules secreted into the culture supernatant were measured by ESI-MS using ST / FS / QK E. coli and 3% by volume of DEG.
The operation of Example 2 was repeated to obtain a culture supernatant.
The obtained culture supernatant was analyzed using ESI-MS (manufactured by Bruker). The results are shown in FIG.
《実施例7》
 本実施例では、ST/FS/QK大腸菌及び1~5容量%のDEGを用いて、本発明の製造方法によって産生される細胞外のポリ乳酸のオリゴマー、細胞内のポリ乳酸のオリゴマー、及び細胞内のポリ乳酸のポリマーの量を測定した。
 実施例3の操作を繰り返して、細胞外のポリ乳酸のオリゴマー、細胞内のポリ乳酸のオリゴマー、及び細胞内のポリ乳酸のポリマーを取得した。表1に示すように、DEGを用いて、ST/FS/QK大腸菌を培養することにより、細胞外に分泌されるオリゴマーが顕著に増加した。
Example 7
In this example, an extracellular polylactic acid oligomer, an intracellular polylactic acid oligomer produced by the production method of the present invention using ST / FS / QK E. coli and 1 to 5% by volume of DEG, and cells The amount of the polylactic acid polymer was measured.
The operation of Example 3 was repeated to obtain an extracellular polylactic acid oligomer, an intracellular polylactic acid oligomer, and an intracellular polylactic acid polymer. As shown in Table 1, by culturing ST / FS / QK E. coli using DEG, oligomers secreted extracellularly increased remarkably.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
《実施例8》
 本実施例では、実施例1の5容量%DEGを含む培地で培養することによって得られたDEG結合ポリエステル、及びDEGを含まない培地で培養することによって得られたDEG非結合ポリエステルを用いて、ラクチドを合成した。
 10mgの乾燥したDEG結合ポリエステル又はDEG非結合ポリエステルを10mgの酸化亜鉛(触媒)と混合した。混合物を、オーブン(GTO-350RDグラスオーブン:シバタ社製)を用いて、180℃、1時間、真空中で加熱した。蒸発したラクチドを、氷上の丸底フラスコで液化し、クロロホルムで粗精製ラクチドを回収した。粗生成ラクチドは、H -NMRで解析した。DEG結合ポリエステルから得られたラクチドは、標準品のD-ラクチドと一致するδ1.68(d,J=5.5Hz,1H)のシグナル、及びδ5.03(q,J=8.5Hz,2H)のシグナルを示した(図11)。DEG結合ポリエステルからD-ラクチドが生成されたことが分かった。また、DEG非結合ポリエステルから得られたラクチドも、同様のシグナルを示した。
 ラクチドの収率(%[μmol ラクチドに含まれるLAユニット]/[μmol 転換DEG結合ポリエステルに含まれるLAユニット])は、産生されたラクチドの量、及び安息香酸をH -NMRの内部標準として用いて定量した転換オリゴマーの量を基にして計算した。市販の合成オリゴマー(L-乳酸)をコントロールとして用いた。DEG結合ポリエステル又はDEG非結合ポリエステルの収率は、それぞれ18%及び12%であった(表2)。
Example 8
In this example, using the DEG-bonded polyester obtained by culturing in a medium containing 5% by volume DEG of Example 1, and the DEG non-bonded polyester obtained by culturing in a medium not containing DEG, Lactide was synthesized.
10 mg of dry DEG-bonded polyester or non-DEG-bonded polyester was mixed with 10 mg of zinc oxide (catalyst). The mixture was heated in a vacuum at 180 ° C. for 1 hour using an oven (GTO-350RD glass oven: manufactured by Shibata). The evaporated lactide was liquefied in a round bottom flask on ice and the crude lactide was recovered with chloroform. The crude lactide was analyzed by 1 H-NMR. The lactide obtained from DEG-bonded polyester has a signal of δ 1.68 (d, J = 5.5 Hz, 1H) consistent with the standard D-lactide and δ 5.03 (q, J = 8.5 Hz, 2H). ) Signal (FIG. 11). It was found that D-lactide was produced from DEG-bonded polyester. The lactide obtained from non-DEG polyester also showed a similar signal.
The yield of lactide (% [LA unit contained in μmol lactide] / [LA unit contained in μmol converted DEG-conjugated polyester]) was determined using the amount of lactide produced and benzoic acid as an internal standard for 1 H-NMR. Calculations were based on the amount of converted oligomers quantified. A commercially available synthetic oligomer (L-lactic acid) was used as a control. The yields of DEG-bonded polyester or non-DEG-bonded polyester were 18% and 12%, respectively (Table 2).
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
《実施例9》
 実施例1と同様の手法で、R.ユートロファ(R.eutropha)由来のβ-ケトチオラーゼをコードするDNA、R.ユートロファ(R.eutropha)由来のアセトアセチルCoAレダクターゼをコードするDNA、及びR.ユートロファ(R.eutropha)由来のポリヒドロキシアルカン酸合成酵素をコードするDNAを含む、組み換えプラスミドpTV118NphaCABを調製した。
 続いて、大腸菌BW25113をリン酸カルシウム法により形質転換し、β-ケトチオラーゼ、アセトアセチルCoAレダクターゼ、ポリヒドロキシアルカン酸合成酵素が発現した形質転換体を得た。
 得られた形質転換体を、2重量%グルコース及びアンピシリン含有LB培地を用いて、180rpmで撹拌しながら、30℃で48時間培養した。あらかじめLB培地に最終濃度として3容量%となる量の化合物A~Cのいずれかを添加した。
 培養上清を回収し、塩酸で処理したサンプルを調製した。サンプルについて3-ヒドロキシブタン酸の量を定量キット(和光純薬社、AUTOKIT 3-HB)で測定した。結果を表3に示す。
Example 9
In the same manner as in Example 1, R.I. DNA encoding β-ketothiolase from R. eutropha, R. DNA encoding acetoacetyl-CoA reductase from R. eutropha; A recombinant plasmid pTV118NphaCAB containing DNA encoding a polyhydroxyalkanoate synthase derived from R. eutropha was prepared.
Subsequently, E. coli BW25113 was transformed by the calcium phosphate method to obtain a transformant expressing β-ketothiolase, acetoacetyl CoA reductase, and polyhydroxyalkanoate synthase.
The obtained transformant was cultured at 30 ° C. for 48 hours while stirring at 180 rpm using LB medium containing 2 wt% glucose and ampicillin. Any one of compounds A to C in an amount of 3% by volume as a final concentration was previously added to the LB medium.
The culture supernatant was collected and a sample treated with hydrochloric acid was prepared. The amount of 3-hydroxybutanoic acid in the sample was measured with a quantification kit (Wako Pure Chemical Industries, AUTOKIT 3-HB). The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
《実施例10》
 本実施例では、LB培地への炭素源の添加についての効果を検討した。
 実施例1と同様にして、大腸菌BW25113をリン酸カルシウム法により形質転換し、プロピオニルCoAトランスフェラーゼ、β-ケトチオラーゼ、アセトアセチルCoAレダクターゼ、ST/FS/QK変異酵素が発現した形質転換体(ST/FS/QK大腸菌)を得た。培地は、最終濃度として5容量%となるようジエチレングリコールが添加され、また20g/Lとなるようグルコース又はキシロースが添加された100mg/Lアンピシリン含有LB培地を準備した。
 続いて、上記得られたST/FS/QK大腸菌を、グルコース又はキシロースが添加された上記2種類の培地で180rpmで撹拌しながら、30℃で48時間培養した。
 培養終了後、培養上清を回収し、実施例1、2と同様に分析した。結果を表4に示す。
Example 10
In this example, the effect of adding a carbon source to the LB medium was examined.
In the same manner as in Example 1, E. coli BW25113 was transformed by the calcium phosphate method, and a transformant (ST / FS / QK) in which propionyl CoA transferase, β-ketothiolase, acetoacetyl CoA reductase, ST / FS / QK mutant enzyme was expressed. E. coli) was obtained. As the medium, LB medium containing 100 mg / L ampicillin was prepared, to which diethylene glycol was added to a final concentration of 5% by volume and glucose or xylose was added to a concentration of 20 g / L.
Subsequently, the obtained ST / FS / QK E. coli was cultured at 30 ° C. for 48 hours while stirring at 180 rpm in the above-mentioned two types of media supplemented with glucose or xylose.
After completion of the culture, the culture supernatant was collected and analyzed in the same manner as in Examples 1 and 2. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 キシロースを炭素源として用いた場合、オリゴマーに含まれる乳酸が97mol%に増加した。 When xylose was used as a carbon source, lactic acid contained in the oligomer increased to 97 mol%.
《実施例11》
 本実施例では、大腸菌として、2つの遺伝子欠損(Δpfla及びΔdld)変異株JWMB1を用いて、培養を行った。
 大腸菌としてJWMB1株を用いたことを除いては、実施例10の操作を繰り返した。結果を表5に示す。
Example 11
In this example, culture was performed using two gene-deficient (Δpfla and Δdld) mutants JWMB1 as E. coli.
The procedure of Example 10 was repeated except that JWMB1 strain was used as E. coli. The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 大腸菌としてJWMB1株を、そして炭素源としてキシロースを用いた場合、培地中に分泌されるオリゴマー量が8.1±2.9g/Lに増加し、オリゴマー中の乳酸の比率も97±1mol%と高くなった。 When JWMB1 strain was used as E. coli and xylose was used as the carbon source, the amount of oligomer secreted into the medium increased to 8.1 ± 2.9 g / L, and the ratio of lactic acid in the oligomer was 97 ± 1 mol%. It became high.
 本発明のアルコール終止ポリエステル、及び本発明のポリエステルの製造方法により得られたポリエステルは、生分解性材料の原料として用いることができる。
 以上、本発明を特定の態様に沿って説明したが、当業者に自明の変法や改良は本発明の範囲に含まれる。
The alcohol-terminated polyester of the present invention and the polyester obtained by the method for producing the polyester of the present invention can be used as raw materials for biodegradable materials.
As mentioned above, although this invention was demonstrated along the specific aspect, the modification and improvement obvious to those skilled in the art are contained in the scope of the present invention.

Claims (11)

  1.  末端に分子量300以下のアルコール残基を有するアルコール終止ポリエステル。 An alcohol-terminated polyester having an alcohol residue with a molecular weight of 300 or less at the end.
  2.  前記ポリエステルが、α-ヒドロキシ酸及び/又はβ-ヒドロキシ酸からなるポリエステルである、請求項1に記載のアルコール終止ポリエステル。 The alcohol-terminated polyester according to claim 1, wherein the polyester is a polyester comprising an α-hydroxy acid and / or a β-hydroxy acid.
  3.  前記α-ヒドロキシ酸及び/又はβ-ヒドロキシ酸が、乳酸及び/又は3-ヒドロキシブタン酸である、請求項2に記載のアルコール終止ポリエステル。 The alcohol-terminated polyester according to claim 2, wherein the α-hydroxy acid and / or β-hydroxy acid is lactic acid and / or 3-hydroxybutanoic acid.
  4.  ポリエステルの平均繰り返し単位数が2~12である、請求項1~3のいずれか一項に記載のアルコール終止ポリエステル。 The alcohol-terminated polyester according to any one of claims 1 to 3, wherein the average number of repeating units of the polyester is 2 to 12.
  5.  平均乳酸含有率が70モル%~100モル%である、請求項3又は4に記載のアルコール終止ポリエステル。 The alcohol-terminated polyester according to claim 3 or 4, wherein the average lactic acid content is 70 mol% to 100 mol%.
  6.  ポリエステル生産能を有する微生物を、分子量300以下のアルコールを含む培地で培養することを特徴とする、ポリエステルの製造方法。 A method for producing polyester, comprising culturing a microorganism capable of producing polyester in a medium containing an alcohol having a molecular weight of 300 or less.
  7.  前記ポリエステルが、α-ヒドロキシ酸及び/又はβ-ヒドロキシ酸からなるポリエステルである、請求項6に記載のポリエステルの製造方法。 The method for producing a polyester according to claim 6, wherein the polyester is a polyester comprising an α-hydroxy acid and / or a β-hydroxy acid.
  8.  前記α-ヒドロキシ酸及び/又はβ-ヒドロキシ酸が、乳酸及び/又は3-ヒドロキシブタン酸である、請求項7に記載のポリエステルの製造方法。 The method for producing a polyester according to claim 7, wherein the α-hydroxy acid and / or β-hydroxy acid is lactic acid and / or 3-hydroxybutanoic acid.
  9.  前記ポリエステルの一部又は全部が微生物から分泌される、請求項6~8のいずれか一項に記載のポリエステルの製造方法。 The method for producing a polyester according to any one of claims 6 to 8, wherein a part or all of the polyester is secreted from microorganisms.
  10.  ポリエステルの平均繰り返し単位数が2~12である、請求項6~9のいずれか一項に記載のポリエステルの製造方法。 The method for producing a polyester according to any one of claims 6 to 9, wherein the average number of repeating units of the polyester is 2 to 12.
  11.  前記ポリエステルが、ポリエステルの末端に分子量300以下のアルコール残基を有するアルコール終止ポリエステルを含む、請求項6~10のいずれか一項に記載のポリエステルの製造方法。 The method for producing a polyester according to any one of claims 6 to 10, wherein the polyester comprises an alcohol-terminated polyester having an alcohol residue having a molecular weight of 300 or less at the terminal of the polyester.
PCT/JP2017/012431 2016-03-29 2017-03-27 Alcohol-terminated polyester and polyester production method WO2017170423A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018508000A JP7149473B2 (en) 2016-03-29 2017-03-27 Alcohol-terminated polyester and method for producing polyester

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-065122 2016-03-29
JP2016065122 2016-03-29
JP2016161023 2016-08-19
JP2016-161023 2016-08-19

Publications (1)

Publication Number Publication Date
WO2017170423A1 true WO2017170423A1 (en) 2017-10-05

Family

ID=59965587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/012431 WO2017170423A1 (en) 2016-03-29 2017-03-27 Alcohol-terminated polyester and polyester production method

Country Status (2)

Country Link
JP (1) JP7149473B2 (en)
WO (1) WO2017170423A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7383264B2 (en) 2018-09-28 2023-11-20 株式会社カネカ Resin composition and molded product thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06284892A (en) * 1992-05-14 1994-10-11 Yoshiharu Doi Production of polyester
JPH07316273A (en) * 1994-05-24 1995-12-05 Toyobo Co Ltd Acid-terminal-blocked polylactic acid
WO1997007153A1 (en) * 1995-08-14 1997-02-27 University Of Massachusetts Medical Center Methods of controlling microbial polyester structure
US5994478A (en) * 1997-04-21 1999-11-30 Monsanto Company Hydroxy-terminated polyhydroxyalkanoates
JP2001247482A (en) * 1999-01-28 2001-09-11 Mitsui Chemicals Inc Hydroxy acid-based oligomer medicinal composition
US20060280721A1 (en) * 2003-06-03 2006-12-14 The Gov Of Usa Represented By Secretary Of Dpt Of Nutritional supplements and therapeutic compositions comprising (r)-3- hydroxybutyrate derivatives
JP2009207420A (en) * 2008-03-04 2009-09-17 Tokyo Institute Of Technology Method for producing polyhydroxyalkanoate copolymer using methanol as raw material
JP2011200153A (en) * 2010-03-25 2011-10-13 Toyota Motor Corp Recombinant microorganism and method for producing aliphatic polyester by using the same
JP2015029484A (en) * 2013-08-05 2015-02-16 国立大学法人東京工業大学 Method for producing low molecular weight polyhydroxyalkanoic acid

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06284892A (en) * 1992-05-14 1994-10-11 Yoshiharu Doi Production of polyester
JPH07316273A (en) * 1994-05-24 1995-12-05 Toyobo Co Ltd Acid-terminal-blocked polylactic acid
WO1997007153A1 (en) * 1995-08-14 1997-02-27 University Of Massachusetts Medical Center Methods of controlling microbial polyester structure
US5994478A (en) * 1997-04-21 1999-11-30 Monsanto Company Hydroxy-terminated polyhydroxyalkanoates
JP2001247482A (en) * 1999-01-28 2001-09-11 Mitsui Chemicals Inc Hydroxy acid-based oligomer medicinal composition
US20060280721A1 (en) * 2003-06-03 2006-12-14 The Gov Of Usa Represented By Secretary Of Dpt Of Nutritional supplements and therapeutic compositions comprising (r)-3- hydroxybutyrate derivatives
JP2009207420A (en) * 2008-03-04 2009-09-17 Tokyo Institute Of Technology Method for producing polyhydroxyalkanoate copolymer using methanol as raw material
JP2011200153A (en) * 2010-03-25 2011-10-13 Toyota Motor Corp Recombinant microorganism and method for producing aliphatic polyester by using the same
JP2015029484A (en) * 2013-08-05 2015-02-16 国立大学法人東京工業大学 Method for producing low molecular weight polyhydroxyalkanoic acid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7383264B2 (en) 2018-09-28 2023-11-20 株式会社カネカ Resin composition and molded product thereof

Also Published As

Publication number Publication date
JP7149473B2 (en) 2022-10-07
JPWO2017170423A1 (en) 2019-02-07

Similar Documents

Publication Publication Date Title
Mohapatra et al. Bacillus and biopolymer: prospects and challenges
Wang et al. Biosynthesis of polyhydroxyalkanoate homopolymers by Pseudomonas putida
Moorkoth et al. Production and characterization of poly (3-hydroxy butyrate-co-3 hydroxyvalerate)(PHBV) by a novel halotolerant mangrove isolate
Gao et al. Polyhydroxyalkanoates as a source of chemicals, polymers, and biofuels
Tripathi et al. Pseudomonas putida KT2442 as a platform for the biosynthesis of polyhydroxyalkanoates with adjustable monomer contents and compositions
Zhang et al. Engineering of Ralstonia eutropha for the production of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) from glucose
EP2377945B1 (en) Method for production of polylactate using recombinant microorganism
Andler et al. Synthesis of polyhydroxyalkanoates through the biodegradation of poly (cis-1, 4-isoprene) rubber
Steinbüchel et al. Biosynthesis of polyesters in bacteria and recombinant organisms
CN102066560B (en) Method for production of polyester copolymer using genetically modified microorganism
Yang et al. Microbial production of lactate‐containing polyesters
CN104755623A (en) Process for preparing polyhydroxyalkanoates (PHA) on oil substrate
Yamano et al. Polyamide 4 with long-chain fatty acid groups–Suppressing the biodegradability of biodegradable polymers
Baba et al. Evaluation of environmental degradability based on the number of methylene units in poly (butylene n-alkylenedionate)
WO2012165131A1 (en) Novel marine microorganism, and method for producing polyhydroxyalkanoate
Utsunomia et al. Microbial secretion of lactate-enriched oligomers for efficient conversion into lactide: a biological shortcut to polylactide
Furutate et al. Biosynthesis and characterization of novel polyhydroxyalkanoate copolymers consisting of 3-hydroxy-2-methylbutyrate and 3-hydroxyhexanoate
Esposito et al. Enhanced production of biobased, biodegradable, Poly (3-hydroxybutyrate) using an unexplored marine bacterium Pseudohalocynthiibacter aestuariivivens, isolated from highly polluted coastal environment
KR101518040B1 (en) A Method for producing poly hydroxybutyrate―co―hydroxyvalerate with High 3-hydroxy valerate Content using propionyl―coA transferase gene from Ralstonia eutropha
WO2017170423A1 (en) Alcohol-terminated polyester and polyester production method
EP2963119A1 (en) Production method for copolymer polyhydroxyalkanoate using genetically modified strain of fatty acid -oxidation pathway
JP2011527367A (en) Polymerization method of glycolic acid using microorganisms
Song et al. Production of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) from cottonseed oil and valeric acid in batch culture of Ralstonia sp. strain JC-64
JP2013042697A (en) Variant polyhydroxyalkanoic acid-coupled protein and production method of polyhydroxyalkanoic acid using the same
Mohapatra et al. Polyhydroxyalkanoates: the green polymer

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018508000

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17774960

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17774960

Country of ref document: EP

Kind code of ref document: A1