WO2017170361A1 - Fluid pressure cylinder - Google Patents

Fluid pressure cylinder Download PDF

Info

Publication number
WO2017170361A1
WO2017170361A1 PCT/JP2017/012323 JP2017012323W WO2017170361A1 WO 2017170361 A1 WO2017170361 A1 WO 2017170361A1 JP 2017012323 W JP2017012323 W JP 2017012323W WO 2017170361 A1 WO2017170361 A1 WO 2017170361A1
Authority
WO
WIPO (PCT)
Prior art keywords
cushion
ring
piston rod
fluid pressure
pressure cylinder
Prior art date
Application number
PCT/JP2017/012323
Other languages
French (fr)
Japanese (ja)
Inventor
靖仁 高井
Original Assignee
Kyb株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyb株式会社 filed Critical Kyb株式会社
Priority to CN201780019665.9A priority Critical patent/CN108779789B/en
Priority to DE112017001603.7T priority patent/DE112017001603T5/en
Publication of WO2017170361A1 publication Critical patent/WO2017170361A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/48Arrangements for providing different damping effects at different parts of the stroke
    • F16F9/49Stops limiting fluid passage, e.g. hydraulic stops or elastomeric elements inside the cylinder which contribute to changes in fluid damping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/20Other details, e.g. assembly with regulating devices
    • F15B15/22Other details, e.g. assembly with regulating devices for accelerating or decelerating the stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/20Other details, e.g. assembly with regulating devices
    • F15B15/22Other details, e.g. assembly with regulating devices for accelerating or decelerating the stroke
    • F15B15/222Other details, e.g. assembly with regulating devices for accelerating or decelerating the stroke having a piston with a piston extension or piston recess which throttles the main fluid outlet as the piston approaches its end position

Definitions

  • the present invention relates to a fluid pressure cylinder.
  • JP2012-172893A discloses a fluid pressure cylinder having a cushion mechanism.
  • the cushion mechanism disclosed in JP2012-172893A has a rod recess opened on the outer circumferential surface of the piston rod, a movable sleeve slidably fitted on the outer circumferential surface of the piston rod, and an opening on the inner circumferential surface of the sleeve of the movable sleeve.
  • the cushion mechanism is an operation in which the movable sleeve is directly discharged from the rod chamber to the supply / discharge port when the movable sleeve comes into contact with the cylinder head in the vicinity of the stroke end during the extension operation.
  • the flow of the fluid is switched to the flow of the working fluid flowing out to the supply / discharge port through the slit and the rod recess.
  • the piston rod is smoothly decelerated by the resistance applied to the flow of the working fluid passing through the slit, and the cushion function is exhibited.
  • the movable sleeve and the piston rod are moved relative to each other in the vicinity of the stroke end during the extension operation to exert a cushion function, and the movable sleeve and the piston rod are moved together during the contraction operation.
  • the movable sleeve is supported by a spring provided in the rod chamber.
  • the present invention aims to reduce the size of the fluid pressure cylinder.
  • a fluid pressure cylinder is a cylinder tube, a piston rod inserted into the cylinder tube, and connected to the tip of the piston rod, and the inside of the cylinder tube is divided into a rod side chamber and a bottom side chamber.
  • a piston a cushion provided on the outer periphery of the piston rod and decelerating the piston rod in the vicinity of a stroke end during extension operation; a supply / exhaust passage communicating with the rod side chamber and through which a working fluid supplied to and discharged from the rod side chamber passes; A contact portion that is provided on the tube and abuts against the cushion portion near the stroke end during the extension operation, and the cushion portion includes a cushion ring that abuts the contact portion near the stroke end during the extension operation, and a piston rod.
  • FIG. 1 is a cross-sectional view of a fluid pressure cylinder according to a first embodiment of the present invention.
  • FIG. 2 is an enlarged cross-sectional view showing a cushion portion of the fluid pressure cylinder according to the first embodiment of the present invention.
  • FIG. 3A is a plan view showing a cushion ring of the fluid pressure cylinder according to the first embodiment of the present invention.
  • FIG. 3B is a plan view showing a modification of the cushion ring of the fluid pressure cylinder according to the first embodiment of the present invention.
  • FIG. 4 is an enlarged cross-sectional view showing the cushion portion of the fluid pressure cylinder according to the first embodiment of the present invention, and is a view showing the length of the regulation pin.
  • FIG. 5 is an enlarged cross-sectional view showing the cushion portion of the fluid pressure cylinder according to the first embodiment of the present invention, showing a state where the piston rod is in the vicinity of the stroke end during the extension operation.
  • FIG. 6 is an enlarged cross-sectional view showing the cushion portion of the fluid pressure cylinder according to the first embodiment of the present invention, and shows a state in which the relative movement of the cushion ring with respect to the piston rod is allowed.
  • FIG. 7 is an enlarged cross-sectional view showing a cushion portion of the fluid pressure cylinder according to the first embodiment of the present invention, and is a view showing a state of contraction operation from the stroke end of the extension operation.
  • FIG. 8 is an enlarged cross-sectional view showing the cushion portion of the fluid pressure cylinder according to the first embodiment of the present invention, and shows a state where the regulation pin faces the annular groove.
  • FIG. 9 is an enlarged cross-sectional view showing the cushion portion of the fluid pressure cylinder according to the first embodiment of the present invention, and shows a modification in which the cushion passage is formed in the cushion ring.
  • FIG. 10 is an enlarged cross-sectional view showing the cushion portion of the fluid pressure cylinder according to the first embodiment of the present invention, and shows a modification in which the cushion passage is formed in the piston rod.
  • FIG. 11 is an enlarged cross-sectional view showing the cushion portion of the fluid pressure cylinder according to the first embodiment of the present invention, and shows a first modification in which the cushion passage is formed in the contact portion.
  • FIG. 12 is an enlarged cross-sectional view showing a cushion portion of the fluid pressure cylinder according to the first embodiment of the present invention, and shows a second modification in which the cushion passage is formed in the contact portion.
  • FIG. 13 is an enlarged cross-sectional view showing a cushion portion of a fluid pressure cylinder according to the second embodiment of the present invention.
  • FIG. 14 is an enlarged cross-sectional view showing a cushion portion of a fluid pressure cylinder according to the second embodiment of the present invention, and shows a first modification of the regulating ring.
  • FIG. 15 is an enlarged cross-sectional view showing a cushion portion of a fluid pressure cylinder according to a second embodiment of the present invention, and shows a second modification of the regulating ring.
  • FIG. 16 is an enlarged cross-sectional view showing a cushion portion of a fluid pressure cylinder according to a second embodiment of the present invention, showing a state where the piston rod is in the vicinity of the stroke end during the extension operation.
  • FIG. 17 is an enlarged cross-sectional view showing a cushion portion of a fluid pressure cylinder according to a second embodiment of the present invention, and shows a state where relative movement of the cushion ring with respect to the piston rod is allowed.
  • FIG. 18 is an enlarged cross-sectional view showing a cushion portion of a fluid pressure cylinder according to a third embodiment of the present invention.
  • FIG. 19 is a plan view showing an expansion / contraction ring of the fluid pressure cylinder according to the third embodiment of the present invention.
  • FIG. 20 is an enlarged cross-sectional view showing a cushion portion of a fluid pressure cylinder according to a third embodiment of the present invention, showing a state where the piston rod is in the vicinity of the stroke end during the extension operation.
  • FIG. 21 is an enlarged cross-sectional view showing a cushion portion of a fluid pressure cylinder according to a third embodiment of the present invention, and is a view showing a state in which the contraction operation is performed from the stroke end of the extension operation.
  • FIG. 22 is a cross-sectional view showing a fluid pressure cylinder according to a comparative example of the present invention.
  • a fluid pressure cylinder according to an embodiment of the present invention will be described with reference to the drawings.
  • a fluid pressure cylinder is a hydraulic cylinder which drives hydraulic oil as a working fluid is demonstrated.
  • the hydraulic cylinder 100 As shown in FIG. 1, the hydraulic cylinder 100 according to the first embodiment includes a cylindrical cylinder tube 10, a piston rod 20 inserted into the cylinder tube 10, and a tip of the piston rod 20. A piston 30 that slides along the inner peripheral surface and a cushion portion 40 provided on the outer periphery of the piston rod 20 are provided.
  • the interior of the cylinder tube 10 is partitioned by the piston 30 into two fluid pressure chambers, a rod side chamber 1 and a bottom side chamber 2.
  • the hydraulic cylinder 100 is expanded and contracted by the hydraulic pressure guided from the hydraulic source (working fluid pressure source) to the rod side chamber 1 or the bottom side chamber 2.
  • the space between the inner periphery of the cylinder tube 10 and the outer periphery of the piston 30 is sealed by a seal member (not shown). Thereby, the communication between the rod side chamber 1 and the bottom side chamber 2 between the inner periphery of the cylinder tube 10 and the outer periphery of the piston 30 is blocked.
  • the inner peripheral surface of the cylinder tube 10 includes a sliding surface 11 on which the piston 30 slides, a large-diameter surface 12 formed with an inner diameter larger than the sliding surface 11, and the sliding surface 11 and the large-diameter surface 12. And an inner circumferential step portion 13 formed therebetween.
  • the large diameter surface 12 is formed continuously from the opening 10 ⁇ / b> A at one end of the cylinder tube 10.
  • the inner circumferential step 13 is formed with a tapered surface 13 ⁇ / b> A that decreases in inner diameter from the large-diameter surface 12 toward the sliding surface 11.
  • the cylinder tube 10 is provided with a cylindrical cylinder head 50 that seals the opening 10A at one end and slidably supports the piston rod 20.
  • the cylinder head 50 has a contact portion 51 that contacts the cushion portion 40 in the vicinity of the stroke end of the piston rod 20 during the extension operation.
  • the contact portion 51 is formed in a cylindrical shape and is inserted inside the cylinder tube 10.
  • the cylinder head 50 is fastened to the cylinder tube 10 via a plurality of fastening bolts (not shown) arranged in the circumferential direction.
  • the bush 55, the sub seal 56, the main seal 57, and the dust seal 58 are interposed on the inner periphery of the cylinder head 50.
  • the cylinder head 50 is formed with a supply / discharge port 3 communicating with a hydraulic pressure source.
  • the cylinder head 50 defines a supply / exhaust passage 4 that communicates the supply / exhaust port 3 and the rod side chamber 1 with the piston rod 20 by a passage groove 50 ⁇ / b> A formed on the inner peripheral surface.
  • the hydraulic oil is supplied / discharged from the supply / discharge port 3 to the rod side chamber 1 through the supply / discharge passage 4.
  • the piston rod 20 includes a main body portion 21 that is in sliding contact with the inner periphery of the cylinder head 50, a small diameter portion 22 that has a smaller outer diameter than the main body portion 21, and an annular shape that is formed between the main body portion 21 and the small diameter portion 22. It has a stepped portion 23 and a threaded portion 24 formed at the tip of the piston rod 20 to which the piston 30 is fastened.
  • annular groove 25 as a recess is formed in the small diameter portion 22 at a position adjacent to the step portion 23.
  • the annular groove 25 has a groove taper portion 25A that is connected to the outer peripheral surface of the small-diameter portion 22 and has a depth that decreases toward the piston 30 side.
  • the piston 30 is screwed into the threaded portion 24 of the piston rod 20 and fastened to the piston rod 20 with a predetermined tightening force.
  • the cushion part 40 is provided on the outer periphery of the small diameter part 22 of the piston rod 20 and between the step part 23 and the piston 30 in the axial direction.
  • the cushion portion 40 includes a cushion ring 41 that defines a cushion passage 42 that provides resistance to the passing hydraulic oil, and a small diameter in the piston rod 20 that is locked to the cushion ring 41.
  • a restriction pin 45 as a restriction part for restricting relative movement of the cushion ring 41 with respect to the piston rod 20 in a state where a part thereof is accommodated in the annular groove 25 of the part 22.
  • the cushion ring 41 is slidably fitted into the small diameter portion 22 of the piston rod 20 as shown in FIG.
  • the cushion ring 41 is formed so that the outer diameter is smaller than the inner diameter of the sliding surface 11 of the cylinder tube 10.
  • a plurality of cushion passages 42 are defined by a plurality of through holes penetrating in the axial direction.
  • the cushion passage 42 communicates the rod side chamber 1 and the supply / discharge passage 4 even when the cushion ring 41 is in contact with the contact portion 51 (see FIG. 5). That is, the cushion passage 42 is formed so as to open at a position facing the supply / discharge passage 4 on the end face of the cushion ring 41 facing the cylinder head 50.
  • a plurality of radial grooves 46 extending in the radial direction and communicating with the cushion passage 42 are formed on the end face of the cushion ring 41 facing the piston 30.
  • the radial groove 46 may not be communicated with the cushion passage 42 and may be formed at a position shifted from the cushion passage 42 as shown in FIG. 3B. Further, the radial groove 46 may open on the outer peripheral surface of the cushion ring 41. As described above, at least a part of the radial groove 46 is formed on the end face of the cushion ring 41 facing the piston 30 in the cushion ring 41, and guides the pressure of the hydraulic oil to separate the cushion ring 41 and the piston 30. As long as it is formed so as to promote, it can be formed in an arbitrary shape. 2 and 4 to 8, the cushion passage 42 and the radial groove 46 are schematically shown by broken lines.
  • the cushion ring 41 is formed with an insertion hole 47 that opens to the inner peripheral surface and the outer peripheral surface. As shown in FIG. 2, the regulation pin 45 is inserted into the insertion hole 47 of the cushion ring 41 and passes through the inner and outer peripheral surfaces of the cushion ring 41 in the radial direction. The restriction pin 45 is inserted into the insertion hole 47 so as to be movable in the radial direction of the cushion ring 41.
  • the length L of the restriction pin 45 is longer than the radial width W1 of the annular space between the small diameter portion 22 of the piston rod 20 and the sliding surface 11 of the cylinder tube 10.
  • the regulation pin 45 moves toward the radially outer side of the cylinder tube 10 in a state of facing the sliding surface 11 of the cylinder tube 10, and the end portion 45A of the regulation pin 45 on the radially outer side of the cylinder tube 10 is moved.
  • the state in which the end portion 45 ⁇ / b> B of the restriction pin 45 on the radially inner side is accommodated in the annular groove 25 is maintained.
  • the escape of the regulation pin 45 from the annular groove 25 is regulated. Therefore, the cushion ring 41 is held by the piston rod 20 by the restriction pin 45, and the relative movement of the cushion ring 41 and the piston rod 20 in the axial direction is restricted.
  • restrictive relative movement in the axial direction includes restricting relative movement between the cushion ring 41 and the piston rod 20 while the restriction pin 45 is housed in the annular groove 25. It is not intended to restrict the movement of the restriction pin 45 from the annular groove 25 and relative movement.
  • the length of the regulation pin 45 is shorter than the radial width W2 of the annular space defined between the large diameter surface 12 of the cylinder tube 10 and the small diameter portion 22 of the piston rod 20 (see FIG. 4). Therefore, when the regulation pin 45 is opposed to the large-diameter surface 12 of the cylinder tube 10, the restriction pin 45 moves radially outward so that the radially inner end 45 ⁇ / b> B can escape from the annular groove 25 (see FIG. 5). ). When the restricting pin 45 moves radially outward, the radially inner end 45B escapes from the annular groove 25, and the holding of the cushion ring 41 by the piston rod 20 is released. Thereby, the relative movement of the cushion ring 41 and the piston rod 20 in the axial direction is allowed. Further, in the state where the cushion ring 41 and the contact portion 51 are in contact, the restriction pin 45 is provided with an axial gap between the inner peripheral step portion 13 as shown in FIGS. 5 and 6.
  • the timing at which the restriction pin 45 faces the large diameter surface 12 is slightly smaller than the timing at which the cushion ring 41 and the contact portion 51 contact each other. Configured to be faster.
  • the radially inner end 45B of the regulating pin 45 escapes from the annular groove 25, and the holding of the cushion ring 41 by the piston rod 20 is released. Thereby, relative movement of the piston rod 20 in the extending direction with respect to the cushion ring 41 is allowed.
  • the groove taper portion 25A formed in the annular groove 25 moves the regulating pin 45 in the radial direction along with the movement of the piston rod 20 in the extending direction from the state in which the cushion ring 41 and the contact portion 51 are in contact. It corresponds to an escape guide portion that is pushed outward to escape from the annular groove 25.
  • the radial groove 46 is mainly formed through the gap between the supply / discharge passage 4, the contact portion 51 and the cushion ring 41, and the gap between the outer periphery of the cushion ring 41 and the inner peripheral surface of the cylinder tube 10.
  • the pressure of the hydraulic oil is guided and acts on the end face of the piston 30.
  • the cushion ring 41 and the piston 30 are separated from each other, and the piston rod 20 moves relative to the cushion ring 41 in the contracting direction.
  • the radial groove 46 functions as a pressure introducing groove, and promotes the separation between the cushion ring 41 and the piston 30 during the contraction operation.
  • the restriction pin 45 is unlocked from the inner circumferential step portion 13 of the cylinder tube 10, and the radially inner end portion 45 ⁇ / b> B is accommodated in the annular groove 25 of the piston rod 20 again.
  • the cushion ring 41 held again by the piston rod 20 moves in the contracting direction together with the piston rod 20.
  • the taper surface 13A of the inner circumferential step 13 is moved radially inward with the movement of the piston rod 20 in the contracting direction from the state where the cushion ring 41 and the contact portion 51 are in contact. It corresponds to an accommodation guide portion that is pushed out and accommodated in the annular groove 25.
  • the relative movement of the cushion ring 41 with respect to the piston rod 20 is restricted by the restriction pin 45, so that the cushion ring 41 and the piston rod 20 extend in the extending direction until the contact with the contact portion 51. Move to. In the vicinity of the stroke end during the extension operation, the cushion ring 41 is brought into contact with the contact portion 51 and the relative movement with the piston rod 20 is allowed, so that the cushion function is exhibited. Further, in the hydraulic cylinder 100, since the restriction pin 45 is accommodated again in the piston rod 20 during the contraction operation, the cushion ring 41 can be held again by the piston rod 20 and moved together with the piston rod 20 in the contraction direction.
  • the cushion portion 40 and the piston rod 20 can be moved relative to each other when the cushion function is exerted, and can be moved together with the piston rod 20 in the contracting direction during the contracting operation. Therefore, the overall length of the hydraulic cylinder 100 can be shortened and downsized.
  • a pressure difference may occur between the inside and the outside of the spring, particularly when the spring contracts and the axial gap between the wires becomes small. If the spring breaks due to such a pressure difference, the operation of the cushion portion 40 becomes unstable, and the cushion function may not be stably exhibited.
  • the hydraulic cylinder 100 does not provide a spring in the rod side chamber 1 and supports the cushion ring 41 by the restriction pin 45, the occurrence of a situation in which the cushion function is not stably exhibited due to breakage of the spring is prevented. Can do.
  • the hydraulic cylinder 400 according to the comparative example includes a cylindrical cushion bearing 340 provided on the outer periphery of the piston rod 20 and a bearing receiving portion 351 that allows the cushion bearing 340 to enter near the end of the extension stroke.
  • the cushion passage 342 is formed by the cushion bearing 340 entering the inside of the bearing receiving portion 351 near the end of the extension stroke.
  • a cushion pressure corresponding to the resistance applied by the cushion passage 342 acts on the rod side chamber 1.
  • the pressure receiving area of the piston 30 on which the cushion pressure acts corresponds to the area between the outer periphery of the cushion bearing 340 and the outer periphery of the piston 30.
  • the pressure receiving area of the cushion pressure is the outer periphery of the small diameter portion 22 of the piston rod 20 and the outer periphery of the piston 30. Corresponds to the area between. For this reason, the pressure receiving area of the hydraulic cylinder 100 can be made larger by the cross-sectional integral of the cushion bearing 340 than the pressure receiving area of the hydraulic cylinder 400 according to the comparative example. Therefore, in the hydraulic cylinder 100, even if the same cushion performance is exhibited, the pressure receiving area is increased, so that the cushion pressure can be made smaller than that of the hydraulic cylinder 400. Since the cushion pressure can be reduced, in the hydraulic cylinder 100, the strength of the cylinder tube 10, the piston 30, and the cylinder head 50 that receive the cushion pressure may be relatively small, and the manufacturing cost can be reduced.
  • the cushion bearing 340 may be sandwiched in the axial direction by the step portion 23 of the piston rod 20 and the piston 30 screwed to the piston rod 20.
  • the supply / discharge passage 4 and the rod side chamber 1 communicate with each other through the cushion passage 342 until the cushion bearing 340 comes out of the bearing receiving portion 351.
  • the flow area of the hydraulic oil is suddenly expanded, and sudden pressure fluctuations and fluctuations in the operating speed (moving speed of the piston 30) occur in the rod side chamber 1. May cause abnormal noise.
  • the cushion ring 41 and the contact portion 51 are quickly separated and the supply / exhaust passage 4 and the rod side chamber 1 directly communicate with each other. Occurrence of abnormal noise or the like due to speed fluctuation can be prevented.
  • the cushion bearing 340 is provided with a gap in the axial direction between the step portion 23 of the piston rod 20 and the piston 30 screwed to the piston rod 20 (so-called Floating support structure).
  • a groove is formed on the outer peripheral surface of the piston rod 20, and a cushion seal having a joint gap may be provided in the groove of the piston rod 20.
  • the hydraulic oil in the rod side chamber 1 exerts a cushion function by imparting resistance to the hydraulic oil by the cushion passage 342 and the joint gap of the cushion seal.
  • the cushion performance of the hydraulic cylinder 400 can be easily adjusted by adjusting the size of the joint gap with the cushion bearing 340 in common.
  • the cushion performance can be easily adjusted by adjusting the size of the cushion passage 42. Therefore, it is not necessary to form the cushion seal and the groove of the piston rod 20 that accommodates the cushion seal. . Therefore, in the hydraulic cylinder 100, the cushion performance can be easily adjusted, and the number of processing steps can be reduced, so that the manufacturing cost can be further reduced.
  • the cushion passage 42 is a through hole formed in the cushion ring 41.
  • the cushion passage 42 may be formed in an orifice plug that is detachably attached to the cushion ring 41.
  • the cushion performance can be easily adjusted, and the cushion ring 41 can be used in common, thereby reducing the manufacturing cost. be able to.
  • the number of orifice plugs and sealing plugs attached to the cushion ring 41 can be arbitrarily changed. The cushion performance may be adjusted.
  • the cushion passage 42 may be a single through hole. Furthermore, the cushion passage 42 may not be a through hole.
  • an annular passage defined by the outer peripheral surface of the piston rod 20 and the inner peripheral surface of the cushion ring 41 may be used as the cushion passage 42.
  • the cushion passage 42 may be a slit formed on the end surface of the cushion ring 41 facing the contact portion 51.
  • the cushion passage 42 is preferably formed in the cushion ring 41. Since the cushion ring 41 is smaller than the piston rod 20 and the cylinder head 50 and has a size that is easy to process, the cushion passage 42 can be easily formed with high accuracy. However, the cushion passage 42 may be formed in the piston rod 20, for example, as shown in FIG. As shown in FIGS. 11 and 12, the cushion passage 42 may be a passage or slit formed in the contact portion 51.
  • the recess does not have to be the annular groove 25 and can be formed in any shape as long as it can accommodate the regulation pin 45.
  • the recess may be a recess formed in a part in the circumferential direction, instead of an annular shape over the entire circumference of the piston rod 20.
  • a plurality of restriction pins 45 may be provided. By providing the plurality of restricting pins 45, the force acting on each restricting pin 45 when being locked to the annular groove 25 or the inner circumferential step portion 13 can be dispersed.
  • the escape guide portion is the groove taper portion 25 ⁇ / b> A of the annular groove 25 of the piston rod 20, and the accommodation guide portion is the taper surface 13 ⁇ / b> A of the inner circumferential step portion 13 of the cylinder tube 10.
  • the escape guide portion and the accommodation guide portion may be formed on the restriction pin 45, respectively.
  • the escape guide portion and the accommodation guide portion may be formed in each of the regulation pin 45, the annular groove 25, and the inner circumferential step portion 13.
  • the escape guide part and the accommodation guide part are not limited to the tapered surface, and may be any one that presses and pushes out the regulating pin 45 in the radial direction as the piston rod 20 moves, and may be, for example, a curved surface.
  • the radially outer end 45A and the inner end 45B of the restriction pin 45 may be formed in a hemispherical shape, and the spherical surfaces of the ends 45A and 45B may be used as the escape guide portion and the accommodation guide portion.
  • the cushion ring 41 is held by the piston rod 20 by the restriction pin 45, so that a spring for supporting the cushion ring 41 is not provided in the rod side chamber 1, and in the vicinity of the stroke end during the extension operation, The cushion function is demonstrated. Therefore, the hydraulic cylinder 100 can be reduced in size.
  • the hydraulic cylinder 100 does not need to provide a spring for supporting the cushion ring 41 in the rod side chamber 1, the operation of the cushion portion 40 is prevented from becoming unstable due to breakage of the spring, and the cushion is stably cushioned. Function can be demonstrated.
  • the hydraulic cylinder 100 does not define the cushion passage 341 by the cushion bearing 340 entering the bearing receiving portion 351, a cushion seal inside the cushion bearing 340 is not necessary, and the manufacturing cost can be reduced. Further, it is possible to prevent the generation of abnormal noise when the cushion bearing 340 comes out of the bearing receiving portion 351.
  • the pressure receiving area for receiving the cushion pressure in the cylinder head 50 and the piston 30 can be increased as compared with the case where the cushion passage 341 is defined by the cushion bearing 340. it can. For this reason, cushion pressure can be reduced and the cylinder tube 10, the cylinder head 50, and piston 30 can be formed in comparatively low intensity
  • the restricting portion is the restricting pin 45 that passes through the inner and outer peripheral surfaces of the cushion ring 41.
  • the hydraulic cylinder 200 according to the second embodiment has a pair of restriction rings 145 provided on the outer periphery and the inner periphery of the cushion ring 141, respectively, in the hydraulic cylinder 100 according to the first embodiment. Is different.
  • the outer peripheral surface and the inner peripheral surface of the cushion ring 141 of the hydraulic cylinder 200 are provided with an outer peripheral groove 141A and an inner peripheral groove 141B formed in an annular shape, respectively.
  • the cushion ring 141 is formed with a cushion passage 42 and a radial groove 46 as in the first embodiment, and has a plurality of main passages 142 with less resistance to the flow of hydraulic oil than the cushion passage 42. Is formed.
  • the main passage 142 is blocked by the contact portion 51 (see FIG. 16). 13 to 17, only the single main passage 142 is shown, and the others are not shown.
  • the plurality of main passages 142 only need to be configured so that the resistance applied to the flow of hydraulic oil is smaller than that of the cushion passage 42 as a whole.
  • the pair of regulating rings 145 includes an outer peripheral ring 145A provided in the outer peripheral groove 141A of the cushion ring 141 and an inner peripheral ring 145B provided in the inner peripheral groove 141B.
  • the outer ring 145A and the inner ring 145B are each formed in a C-ring shape that has a gap (not shown) and can be expanded and contracted.
  • the outer ring 145A and the inner ring 145B may be made of metal such as a snap ring or may be made of resin.
  • the outer ring 145A and the inner ring 145B have a circular cross section as shown in FIG. 13, but the present invention is not limited to this, and other cross sectional shapes (for example, a rectangular shape shown in FIG. 14). It may have. Further, as shown in FIG.
  • biasing members 145C and 145D such as rubber and spring are provided between the outer ring 145A and the outer groove 141A and between the inner ring 145B and the inner groove 141B, and the outer ring 145A. May be urged radially outward, and the inner ring 145B may be urged radially inward.
  • the outer ring 145A is in contact with the inner circumferential surface of the cylinder tube 10, and further expansion is restricted by the inner circumferential surface of the cylinder tube 10.
  • the outer peripheral ring 145A has a shape that protrudes radially outward from the outer peripheral groove 141A in a free state, and is compressed by being radially contracted by the inner peripheral surface of the cylinder tube 10 to cause the outer peripheral groove 141A. Is housed.
  • the inner ring 145B contacts the outer circumferential surface of the piston rod 20, and further contraction is restricted by the outer circumferential surface of the piston rod 20.
  • the inner ring 145B is shaped so as to protrude radially inward from the inner groove 141B in a free state, and is pressed radially outward by the outer peripheral surface of the piston rod 20 to expand the inner periphery. It is accommodated in the groove 141B.
  • the outer peripheral ring 145A contacts the inner peripheral surface of the cylinder tube 10, and the inner peripheral ring 145B contacts the outer peripheral surface of the piston rod 20. Therefore, the rod side chamber 1 is partitioned into a first rod side chamber 1A and a second rod side chamber 1B by the cushion portion 140.
  • the first rod side chamber 1 ⁇ / b> A and the second rod side chamber 1 ⁇ / b> B communicate with each other through the main passage 142 of the cushion ring 141.
  • the inner peripheral part of the inner ring 145B is accommodated in the annular groove 25 of the piston rod 20, and the cushion ring 141 is held by the piston rod 20. More specifically, the inner ring 145B accommodated in the inner groove 141B in a state of being expanded by the outer peripheral surface of the piston rod 20 is restricted from escaping from the annular groove 25 by the elastic force in the contracting direction. The Thereby, the state in which the cushion ring 141 is held by the piston rod 20 is maintained, and the relative movement in the axial direction between the cushion ring 141 and the piston rod 20 is restricted.
  • the outer peripheral ring 145 ⁇ / b> A of the cushion portion 140 faces the large-diameter surface 12 of the cylinder tube 10, and the cushion ring 141 is the contact portion of the cylinder head 50. 51 abuts.
  • the cushion oil is provided by the amount of axial clearance between the outer ring 145A and the inner step 13 by the hydraulic oil guided from the supply / discharge passage 4.
  • Both 141 and the piston rod 20 move in the contraction direction. Thereby, the cushion ring 141 and the contact portion 51 are separated from each other, and the supply / discharge passage 4 and the first rod side chamber 1A are directly communicated with each other.
  • the pressure of the hydraulic fluid guided from the supply / discharge passage 4 is guided to the radial groove 46 through the first rod side chamber 1A, the main passage 142, and the second rod side chamber 1B, and acts on the end face of the piston 30.
  • the cushion ring 141 and the piston 30 are separated from each other, and the piston rod 20 moves relative to the cushion ring 141 in the contracting direction.
  • the contact between the inner peripheral ring 145B and the annular groove 25 is a line contact.
  • the force which escapes the inner peripheral ring 145B from the annular groove 25 is provided. It can be dispersed and the durability can be improved.
  • the restricting portion is a pair of restricting rings (an outer ring 145A and an inner ring 145B), but instead of this, the biasing members 145C and 145D (see FIG. 15) are used in the radial direction.
  • One or a plurality of spheres (steel balls or the like) that are urged to the outside and the inside may be used as the restricting portion.
  • the restricting portion is the restricting pin 45 that passes through the inner and outer peripheral surfaces of the cushion ring 41.
  • the restricting portion of the hydraulic cylinder 300 according to the third embodiment is a single expansion / contraction ring 245 that is provided adjacent to the cushion ring 241 and has an abutment gap 245A and can be expanded / contracted. This is different from the hydraulic cylinder 100 according to the first embodiment.
  • the cushion ring 241 of the hydraulic cylinder 300 is provided between the stepped portion 23 of the piston rod 20 and the expansion / contraction ring 245.
  • a cushion passage 242 and a radial groove 46 are formed in the cushion ring 241 as in the first embodiment, and an annular central recess 243 is formed radially inward at the end face facing the expansion / contraction ring 245.
  • the cushion passage 242 is formed in communication with the space inside the central recess 243.
  • the central recess 243 opens on the end surface of the cushion ring 241 facing the expansion / contraction ring 245 and opens on the inner peripheral surface of the cushion ring 241.
  • the expansion / contraction ring 245 adjacent in the axial direction functions as a pressing member that prevents the orifice plug from coming off from the cushion ring 241.
  • the expansion / contraction ring 245 is formed in a C-ring shape having a joint gap 245 ⁇ / b> A that can be expanded / contracted.
  • the inner peripheral portion is accommodated in the annular groove 25 as shown in FIG. A gap is formed in
  • the outer diameter of the central step 246 is formed to be smaller than the inner diameter of the central recess 243 of the cushion ring 241 when the expansion / contraction ring 245 is accommodated in the annular groove 25. Therefore, in the state where the expansion / contraction ring 245 is accommodated in the annular groove 25, a radial gap is provided between the central recess 243 of the cushion ring 241 and the central step 246 of the expansion / contraction ring 245. Further, when the cushion ring 241 and the expansion / contraction ring 245 are in contact with each other, the central step portion 246 forms a gap in the axial direction without contacting the central concave portion 243. Therefore, the cushion passage 242 communicates with the joint gap 245A (see FIG. 19) of the expansion / contraction ring 245 through the radial gap and the axial gap between the central step 246 and the central recess 243.
  • the center step 246 contacts the center recess 243 of the cushion ring 241.
  • the center step 246 of the expansion / contraction ring 245 contacts the central recess 243 of the cushion ring 241, thereby preventing the center of the expansion / contraction ring 245 from being shifted from the center of the piston rod 20.
  • the central recess 243 of the cushion ring 241 exhibits a centering function that prevents the centering of the expansion / contraction ring 245 accompanying expansion and stabilizes the slidability between the expansion / contraction ring 245 and the cushion ring 241.
  • the expansion / contraction ring 245 In a state where the expansion / contraction ring 245 faces the sliding surface 11 of the cylinder tube 10, the expansion / contraction ring 245 is accommodated in the annular groove 25 of the piston rod 20 so that the cushion ring 241 is sandwiched between the stepped portion 23 of the piston rod 20. 241 is locked. Thereby, the cushion ring 241 is held by the piston rod 20.
  • the expansion / contraction ring 245 has an outer diameter smaller than the inner diameter of the sliding surface 11 when the inner peripheral surface is in contact with the annular groove 25 (the state shown in FIG. 18).
  • the expansion / contraction ring 245 has an outer diameter that is larger than the inner diameter of the sliding surface 11 and smaller than the inner diameter of the large-diameter surface 12 in a state where it has escaped from the annular groove 25 (the state shown in FIG. In a state where the inner peripheral surface of the expansion / contraction ring 245 contacts the annular groove 25, a gap is formed between the outer peripheral surface of the expansion / contraction ring 245 and the sliding surface 11 of the cylinder tube 10.
  • the expansion / contraction ring 245 faces the large-diameter surface 12 of the cylinder tube 10
  • the expansion / contraction ring 245 is allowed to expand by the large-diameter surface 12, and the expansion / contraction ring 245 can escape from the annular groove 25. Therefore, as shown in FIG. 20, the cushion ring 241 is released from the holding by the piston rod 20 when the expansion / contraction ring 245 expands and escapes from the annular groove 25.
  • the expansion / contraction ring 245 of the cushion portion 40 faces the large-diameter surface 12 of the cylinder tube 10, and the cushion ring 241 contacts the contact portion 51 of the cylinder head 50.
  • the hydraulic oil in the rod side chamber 1 becomes a gap in the radial direction between the joint gap 245A of the expansion / contraction ring 245 and the central step 246 of the expansion / contraction ring 245 and the central recess 243 of the cushion ring 241. And the axial clearance and is guided to the cushion passage 242.
  • the hydraulic oil in the rod side chamber 1 is guided to the supply / discharge passage 4 and the supply / discharge port 3 through the cushion passage 242 and is discharged from the rod side chamber 1. Therefore, a cushion pressure corresponding to the resistance applied by the cushion passage 242 acts on the rod side chamber 1. In this way, the cushioning action in the vicinity of the extension stroke end of the piston rod 20 is exhibited.
  • the cushion oil is provided by an amount corresponding to the axial clearance between the expansion / contraction ring 245 and the inner circumferential step portion 13 by the hydraulic oil guided from the supply / discharge passage 4.
  • Both 241 and the piston rod 20 move in the contraction direction. Accordingly, as shown in FIG. 21, the cushion ring 241 and the contact portion 51 are separated from each other, and the supply / discharge passage 4 and the first rod side chamber 1A are directly communicated with each other.
  • the pressure of the hydraulic oil guided from the supply / discharge passage 4 is guided to the radial groove 46 through the joint gap 245A of the rod side chamber 1 and the expansion / contraction ring 245 and acts on the end face of the piston 30.
  • the cushion ring 241 and the piston 30 are separated from each other, and the piston rod 20 moves relative to the cushion ring 241 in the contracting direction.
  • the expansion / contraction ring 245 When the piston rod 20 moves in the contraction direction until the expansion / contraction ring 245 faces the annular groove 25 of the piston rod 20, the expansion / contraction ring 245 is pressed radially inward by the tapered surface 13 ⁇ / b> A of the inner circumferential step portion 13 and its own. It contracts by the elastic force and is accommodated in the annular groove 25. As a result, the engagement between the expansion / contraction ring 245 and the inner circumferential step portion 13 of the cylinder tube 10 is released, and the expansion / contraction ring 245 is accommodated again in the annular groove 25 of the piston rod 20. In this way, the cushion ring 241 held again by the piston rod 20 moves in the contracting direction together with the piston rod 20.
  • the expansion / contraction ring 245 is formed in the annular groove 25 as compared with the first embodiment. It is possible to disperse the force of escaping from the environment and improve the durability.
  • the hydraulic cylinders 100, 200, and 300 are connected to a cylinder tube 10, a piston rod 20 inserted into the cylinder tube 10, and a tip of the piston rod 20, and divide the inside of the cylinder tube 10 into a rod side chamber 1 and a bottom side chamber 2.
  • the piston 30, the cushion portions 40, 140, 240 that are provided on the outer periphery of the piston rod 20 and decelerate the piston rod 20 near the stroke end during the extension operation, and the operation that communicates with the rod side chamber 1 and is supplied to and discharged from the rod side chamber 1.
  • Cushion rings 41, 141, 241 that contact the contact portion 51 near the stroke end of the hour A restricting portion (a restricting pin 45, a pair of restricting rings 145, restricting relative movement of the cushion rings 41, 141, 241 with respect to the piston rod 20 while being accommodated in an annular groove 25 formed on the outer peripheral surface of the piston rod 20.
  • the inner peripheral surface of the cylinder tube 10 includes a sliding surface 11 on which the piston 30 slides, a large-diameter surface 12 that has a larger inner diameter than the sliding surface 11,
  • the restricting portion (the restricting pin 45, the pair of restricting rings 145, and the expansion / contraction ring 245) is restricted from coming out of the annular groove 25 by contact with the sliding surface 11, and faces the large diameter surface 12. Thus, escape from the annular groove 25 is allowed.
  • the hydraulic oil discharged from the rod side chamber 1 is guided to the supply / discharge passage 4 through the cushion passages 42 and 242, and the cushion function for decelerating the piston rod 20 is exhibited.
  • the relative movement of the cushion rings 41, 141, 241 with respect to the piston rod 20 is restricted by the restriction portions (the restriction pins 45, the pair of restriction rings 145, the expansion / contraction ring 245), thereby the cushion rings 41, 141, 241.
  • the cushion function is exhibited in the vicinity of the stroke end during the extension operation. Therefore, the fluid pressure cylinders 100, 200, and 300 can be reduced in size.
  • the cushion rings 41, 141, and 241 and the contact portion 51 are provided in at least one of the restriction portion (the restriction pin 45, the pair of restriction rings 145, the expansion / contraction ring 245) or the annular groove 25.
  • the restricting portion (the restricting pin 45, the inner peripheral ring 145B, the expansion / contraction ring 245) is pressed radially outward to escape from the annular groove 25.
  • a tapered portion 25A is formed.
  • the restriction portion (the restriction pin 45, the inner peripheral ring 145 B, expansion / contraction)
  • the ring 245) can surely escape from the annular groove 25.
  • the inner peripheral surface of the cylinder tube 10 further includes an inner peripheral step 13 formed between the sliding surface 11 and the large-diameter surface 12. At least one of the pin 45, the outer ring 145A, the expansion / contraction ring 245) or the inner step 13 is in the contraction direction of the piston rod 20 from the state in which the cushion rings 41, 141, 241 and the contact portion 51 are in contact.
  • an accommodation guide portion is formed in which the restriction portions (restriction pin 45, outer ring 145A, expansion / contraction ring 245) are pressed radially inward to be accommodated in the annular groove 25.
  • the restriction portions (the restriction pin 45, the outer ring 145 ⁇ / b> A, the expansion / contraction ring). 245) can be reliably accommodated in the annular groove 25, and the piston rod 20 can be moved in the contraction direction.
  • the restriction portion (the restriction pin 45, the outer ring 145 ⁇ / b> A, the expansion / contraction ring 245) and the inner step portion 13. A gap in the axial direction is formed between them.
  • the cushion passages 42, 242 may be formed as orifice plugs that are detachably provided in the cushion rings 41, 141, 241.
  • the cushion performance can be easily adjusted by exchanging the orifice plug.
  • the restricting portion is a restricting pin 45 that is inserted through the outer peripheral surface and the inner peripheral surface of the cushion ring 41 and is movable in the radial direction.
  • the restricting portions are provided on the outer periphery and the inner periphery of the cushion ring 141, respectively, and a pair of restricting rings 145 (an outer ring 145A and an inner ring 145B) are formed so as to be able to expand and contract. It is.
  • the restricting portion is an expansion / contraction ring 245 provided adjacent to the cushion ring 241 in the axial direction and having a joint gap 245A so as to be expandable / contractible.
  • the cushion ring 241 has a central recess 243 formed on the inner side of the end surface facing the expansion / contraction ring 245, and the expansion / contraction ring 245 has a central step 246 inserted into the central recess 243.
  • a radial gap is formed between the central recess 243 and the central step 246, and the expansion / contraction ring 245 expands to form the annular groove 25.
  • the central step 246 contacts the central recess 243.
  • the expansion / contraction ring 245 can be expanded while being aligned by contacting the central recess 243 of the cushion ring 241 and the central step 246 of the expansion / contraction ring 245. Therefore, the slidability between the cushion ring 41 and the expansion / contraction ring 245 can be stabilized.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Actuator (AREA)
  • Fluid-Damping Devices (AREA)

Abstract

A hydraulic cylinder (100) is provided with: a cushion section (40) for reducing the speed of a piston rod (20) near the stroke end of the extension movement thereof; and a contact section 51 with which the cushion section (40) comes in contact near the stroke end of the extension movement. The cushion section (40) has: a cushion ring (41) for defining a cushion passage (42); and a restriction pin (45) for restricting the movement of the cushion ring (41) relative to the piston rod (20) while being accommodated within an annular groove (25) formed in the outer peripheral surface of the piston rod (20). When the cushion ring (41) and the contact section (51) come in contact with each other near the stroke end of the extension movement, the restriction pin (45) comes out of the annular groove (25) to permit the movement of the cushion ring (41) relative to the piston rod (20), and hydraulic oil in a rod-side chamber (1) is discharged from a supply and discharge passage (4) through a cushion passage (42).

Description

流体圧シリンダFluid pressure cylinder
 本発明は、流体圧シリンダに関するものである。 The present invention relates to a fluid pressure cylinder.
 JP2012-172693Aには、クッション機構を有する流体圧シリンダが開示されている。JP2012-172693Aに開示されるクッション機構は、ピストンロッドの外周面に開口するロッド凹部と、ピストンロッドの外周面に摺動可能に嵌合する可動スリーブと、可動スリーブのスリーブ内周面に開口する溝状のスリットと、可動スリーブをピストンから離れてシリンダヘッドに向かう方向に付勢するスプリングと、を有する。 JP2012-172893A discloses a fluid pressure cylinder having a cushion mechanism. The cushion mechanism disclosed in JP2012-172893A has a rod recess opened on the outer circumferential surface of the piston rod, a movable sleeve slidably fitted on the outer circumferential surface of the piston rod, and an opening on the inner circumferential surface of the sleeve of the movable sleeve. A groove-like slit, and a spring that urges the movable sleeve away from the piston toward the cylinder head.
 JP2012-172693Aに開示される流体圧シリンダでは、クッション機構は、伸長作動時のストロークエンド付近で可動スリーブがシリンダヘッドに当接することによって、ロッド室から直に給排口へと流出していた作動流体の流れが、スリット及びロッド凹部を通って給排口へと流出する作動流体の流れに切り換えられる。これにより、スリットを通過する作動流体の流れに付与する抵抗によってピストンロッドを円滑に減速させて、クッション機能が発揮される。 In the fluid pressure cylinder disclosed in JP2012-172893A, the cushion mechanism is an operation in which the movable sleeve is directly discharged from the rod chamber to the supply / discharge port when the movable sleeve comes into contact with the cylinder head in the vicinity of the stroke end during the extension operation. The flow of the fluid is switched to the flow of the working fluid flowing out to the supply / discharge port through the slit and the rod recess. Thereby, the piston rod is smoothly decelerated by the resistance applied to the flow of the working fluid passing through the slit, and the cushion function is exhibited.
 JP2012-172693Aに開示される流体圧シリンダでは、伸長作動時のストローク端付近で可動スリーブとピストンロッドを相対移動させてクッション機能を発揮し、収縮作動時には可動スリーブとピストンロッドとを共に移動させるために、ロッド室内に設けられるスプリングによって可動スリーブを支持している。 In the fluid pressure cylinder disclosed in JP2012-172893A, the movable sleeve and the piston rod are moved relative to each other in the vicinity of the stroke end during the extension operation to exert a cushion function, and the movable sleeve and the piston rod are moved together during the contraction operation. The movable sleeve is supported by a spring provided in the rod chamber.
 しかしながら、この流体圧シリンダのようにロッド側室内にスプリングを設けると、その分全長が長くなり流体圧シリンダが大型化する。 However, if a spring is provided in the rod side chamber like this fluid pressure cylinder, the entire length becomes longer and the fluid pressure cylinder becomes larger.
 本発明は、流体圧シリンダを小型化することを目的とする。 The present invention aims to reduce the size of the fluid pressure cylinder.
 本発明のある態様によれば、流体圧シリンダであって、シリンダチューブと、シリンダチューブに挿入されるピストンロッドと、ピストンロッドの先端に連結されシリンダチューブ内をロッド側室とボトム側室とに区画するピストンと、ピストンロッドの外周に設けられ伸長作動時のストローク端付近でピストンロッドを減速させるクッション部と、ロッド側室に連通しロッド側室に給排される作動流体が通過する給排通路と、シリンダチューブに設けられ伸長作動時のストローク端付近でクッション部が当接する当接部と、を備え、クッション部は、伸長作動時のストローク端付近で当接部に当接するクッションリングと、ピストンロッドの外周面に形成される凹部に収容された状態でピストンロッドに対するクッションリングの相対移動を規制する規制部と、を有し、伸長作動時のストローク端付近でクッションリングと当接部とが当接するのに伴い、給排通路とロッド側室との直接の連通がクッションリングにより遮断されると共に規制部が凹部から脱出してピストンロッドに対するクッションリングの相対移動が許容され、通過する作動流体に抵抗を付与するクッション通路を通じてロッド側室の作動流体が給排通路から排出される。 According to an aspect of the present invention, a fluid pressure cylinder is a cylinder tube, a piston rod inserted into the cylinder tube, and connected to the tip of the piston rod, and the inside of the cylinder tube is divided into a rod side chamber and a bottom side chamber. A piston, a cushion provided on the outer periphery of the piston rod and decelerating the piston rod in the vicinity of a stroke end during extension operation; a supply / exhaust passage communicating with the rod side chamber and through which a working fluid supplied to and discharged from the rod side chamber passes; A contact portion that is provided on the tube and abuts against the cushion portion near the stroke end during the extension operation, and the cushion portion includes a cushion ring that abuts the contact portion near the stroke end during the extension operation, and a piston rod. Relative transfer of the cushion ring with respect to the piston rod while being accommodated in the recess formed on the outer peripheral surface And a direct communication between the supply / exhaust passage and the rod side chamber is blocked by the cushion ring as the cushion ring and the contact portion come into contact with each other near the stroke end during the extension operation. At the same time, the restricting portion escapes from the recess and the cushion ring is allowed to move relative to the piston rod, and the working fluid in the rod side chamber is discharged from the supply / discharge passage through the cushion passage that provides resistance to the passing working fluid.
図1は、本発明の第1実施形態に係る流体圧シリンダの断面図である。FIG. 1 is a cross-sectional view of a fluid pressure cylinder according to a first embodiment of the present invention. 図2は、本発明の第1実施形態に係る流体圧シリンダのクッション部を示す拡大断面図である。FIG. 2 is an enlarged cross-sectional view showing a cushion portion of the fluid pressure cylinder according to the first embodiment of the present invention. 図3Aは、本発明の第1実施形態に係る流体圧シリンダのクッションリングを示す平面図である。FIG. 3A is a plan view showing a cushion ring of the fluid pressure cylinder according to the first embodiment of the present invention. 図3Bは、本発明の第1実施形態に係る流体圧シリンダのクッションリングの変形例を示す平面図である。FIG. 3B is a plan view showing a modification of the cushion ring of the fluid pressure cylinder according to the first embodiment of the present invention. 図4は、本発明の第1実施形態に係る流体圧シリンダのクッション部を示す拡大断面図であり、規制ピンの長さを示す図である。FIG. 4 is an enlarged cross-sectional view showing the cushion portion of the fluid pressure cylinder according to the first embodiment of the present invention, and is a view showing the length of the regulation pin. 図5は、本発明の第1実施形態に係る流体圧シリンダのクッション部を示す拡大断面図であり、ピストンロッドが伸長作動時のストローク端付近にある状態を示す。FIG. 5 is an enlarged cross-sectional view showing the cushion portion of the fluid pressure cylinder according to the first embodiment of the present invention, showing a state where the piston rod is in the vicinity of the stroke end during the extension operation. 図6は、本発明の第1実施形態に係る流体圧シリンダのクッション部を示す拡大断面図であり、ピストンロッドに対するクッションリングの相対移動が許容された状態を示す。FIG. 6 is an enlarged cross-sectional view showing the cushion portion of the fluid pressure cylinder according to the first embodiment of the present invention, and shows a state in which the relative movement of the cushion ring with respect to the piston rod is allowed. 図7は、本発明の第1実施形態に係る流体圧シリンダのクッション部を示す拡大断面図であり、伸長作動のストローク端から収縮作動する状態を示す図である。FIG. 7 is an enlarged cross-sectional view showing a cushion portion of the fluid pressure cylinder according to the first embodiment of the present invention, and is a view showing a state of contraction operation from the stroke end of the extension operation. 図8は、本発明の第1実施形態に係る流体圧シリンダのクッション部を示す拡大断面図であり、規制ピンが環状溝に対向した状態を示す。FIG. 8 is an enlarged cross-sectional view showing the cushion portion of the fluid pressure cylinder according to the first embodiment of the present invention, and shows a state where the regulation pin faces the annular groove. 図9は、本発明の第1実施形態に係る流体圧シリンダのクッション部を示す拡大断面図であり、クッション通路がクッションリングに形成される変形例を示す。FIG. 9 is an enlarged cross-sectional view showing the cushion portion of the fluid pressure cylinder according to the first embodiment of the present invention, and shows a modification in which the cushion passage is formed in the cushion ring. 図10は、本発明の第1実施形態に係る流体圧シリンダのクッション部を示す拡大断面図であり、クッション通路がピストンロッドに形成される変形例を示す。FIG. 10 is an enlarged cross-sectional view showing the cushion portion of the fluid pressure cylinder according to the first embodiment of the present invention, and shows a modification in which the cushion passage is formed in the piston rod. 図11は、本発明の第1実施形態に係る流体圧シリンダのクッション部を示す拡大断面図であり、クッション通路が当接部に形成される第1変形例を示す。FIG. 11 is an enlarged cross-sectional view showing the cushion portion of the fluid pressure cylinder according to the first embodiment of the present invention, and shows a first modification in which the cushion passage is formed in the contact portion. 図12は、本発明の第1実施形態に係る流体圧シリンダのクッション部を示す拡大断面図であり、クッション通路が当接部に形成される第2変形例を示す。FIG. 12 is an enlarged cross-sectional view showing a cushion portion of the fluid pressure cylinder according to the first embodiment of the present invention, and shows a second modification in which the cushion passage is formed in the contact portion. 図13は、本発明の第2実施形態に係る流体圧シリンダのクッション部を示す拡大断面図である。FIG. 13 is an enlarged cross-sectional view showing a cushion portion of a fluid pressure cylinder according to the second embodiment of the present invention. 図14は、本発明の第2実施形態に係る流体圧シリンダのクッション部を示す拡大断面図であり、規制リングの第1変形例を示す。FIG. 14 is an enlarged cross-sectional view showing a cushion portion of a fluid pressure cylinder according to the second embodiment of the present invention, and shows a first modification of the regulating ring. 図15は、本発明の第2実施形態に係る流体圧シリンダのクッション部を示す拡大断面図であり、規制リングの第2変形例を示す。FIG. 15 is an enlarged cross-sectional view showing a cushion portion of a fluid pressure cylinder according to a second embodiment of the present invention, and shows a second modification of the regulating ring. 図16は、本発明の第2実施形態に係る流体圧シリンダのクッション部を示す拡大断面図であり、ピストンロッドが伸長作動時のストローク端付近にある状態を示す。FIG. 16 is an enlarged cross-sectional view showing a cushion portion of a fluid pressure cylinder according to a second embodiment of the present invention, showing a state where the piston rod is in the vicinity of the stroke end during the extension operation. 図17は、本発明の第2実施形態に係る流体圧シリンダのクッション部を示す拡大断面図であり、ピストンロッドに対するクッションリングの相対移動が許容された状態を示す。FIG. 17 is an enlarged cross-sectional view showing a cushion portion of a fluid pressure cylinder according to a second embodiment of the present invention, and shows a state where relative movement of the cushion ring with respect to the piston rod is allowed. 図18は、本発明の第3実施形態に係る流体圧シリンダのクッション部を示す拡大断面図である。FIG. 18 is an enlarged cross-sectional view showing a cushion portion of a fluid pressure cylinder according to a third embodiment of the present invention. 図19は、本発明の第3実施形態に係る流体圧シリンダの拡縮リングを示す平面図である。FIG. 19 is a plan view showing an expansion / contraction ring of the fluid pressure cylinder according to the third embodiment of the present invention. 図20は、本発明の第3実施形態に係る流体圧シリンダのクッション部を示す拡大断面図であり、ピストンロッドが伸長作動時のストローク端付近にある状態を示す。FIG. 20 is an enlarged cross-sectional view showing a cushion portion of a fluid pressure cylinder according to a third embodiment of the present invention, showing a state where the piston rod is in the vicinity of the stroke end during the extension operation. 図21は、本発明の第3実施形態に係る流体圧シリンダのクッション部を示す拡大断面図であり、伸長作動のストローク端から収縮作動する状態を示す図である。FIG. 21 is an enlarged cross-sectional view showing a cushion portion of a fluid pressure cylinder according to a third embodiment of the present invention, and is a view showing a state in which the contraction operation is performed from the stroke end of the extension operation. 図22は、本発明の比較例に係る流体圧シリンダを示す断面図である。FIG. 22 is a cross-sectional view showing a fluid pressure cylinder according to a comparative example of the present invention.
 以下、図面を参照して、本発明の実施形態に係る流体圧シリンダについて説明する。以下では、流体圧シリンダが作動油を作動流体として駆動する油圧シリンダである場合について説明する。 Hereinafter, a fluid pressure cylinder according to an embodiment of the present invention will be described with reference to the drawings. Below, the case where a fluid pressure cylinder is a hydraulic cylinder which drives hydraulic oil as a working fluid is demonstrated.
 (第1実施形態)
 第1実施形態に係る油圧シリンダ100は、図1に示すように、筒状のシリンダチューブ10と、シリンダチューブ10に挿入されるピストンロッド20と、ピストンロッド20の先端に連結されシリンダチューブ10の内周面に沿って摺動するピストン30と、ピストンロッド20の外周に設けられるクッション部40と、を備える。
(First embodiment)
As shown in FIG. 1, the hydraulic cylinder 100 according to the first embodiment includes a cylindrical cylinder tube 10, a piston rod 20 inserted into the cylinder tube 10, and a tip of the piston rod 20. A piston 30 that slides along the inner peripheral surface and a cushion portion 40 provided on the outer periphery of the piston rod 20 are provided.
 シリンダチューブ10の内部は、ピストン30によってロッド側室1とボトム側室2との2つの流体圧室に仕切られる。油圧シリンダ100は、油圧源(作動流体圧源)からロッド側室1またはボトム側室2に導かれる作動油圧によって伸縮作動する。シリンダチューブ10の内周とピストン30の外周との間は、シール部材(図示省略)によって封止される。これにより、シリンダチューブ10の内周とピストン30の外周との間を通じたロッド側室1とボトム側室2との連通が遮断される。 The interior of the cylinder tube 10 is partitioned by the piston 30 into two fluid pressure chambers, a rod side chamber 1 and a bottom side chamber 2. The hydraulic cylinder 100 is expanded and contracted by the hydraulic pressure guided from the hydraulic source (working fluid pressure source) to the rod side chamber 1 or the bottom side chamber 2. The space between the inner periphery of the cylinder tube 10 and the outer periphery of the piston 30 is sealed by a seal member (not shown). Thereby, the communication between the rod side chamber 1 and the bottom side chamber 2 between the inner periphery of the cylinder tube 10 and the outer periphery of the piston 30 is blocked.
 シリンダチューブ10の内周面は、ピストン30が摺動する摺動面11と、摺動面11よりも大きな内径で形成される大径面12と、摺動面11と大径面12との間に形成される内周段差部13と、を有する。大径面12は、シリンダチューブ10の一端の開口部10Aから連続して形成される。内周段差部13には、大径面12から摺動面11に向かうにつれ内径が小さくなるテーパ面13Aが形成される。 The inner peripheral surface of the cylinder tube 10 includes a sliding surface 11 on which the piston 30 slides, a large-diameter surface 12 formed with an inner diameter larger than the sliding surface 11, and the sliding surface 11 and the large-diameter surface 12. And an inner circumferential step portion 13 formed therebetween. The large diameter surface 12 is formed continuously from the opening 10 </ b> A at one end of the cylinder tube 10. The inner circumferential step 13 is formed with a tapered surface 13 </ b> A that decreases in inner diameter from the large-diameter surface 12 toward the sliding surface 11.
 シリンダチューブ10には、一端の開口部10Aを封止すると共にピストンロッド20を摺動自在に支持する円筒状のシリンダヘッド50が設けられる。シリンダヘッド50は、伸長作動時のピストンロッド20のストローク端付近でクッション部40に当接する当接部51を有する。当接部51は、円筒状に形成されシリンダチューブ10の内側に挿入される。シリンダヘッド50は、周方向に並ぶ複数の締結ボルト(図示省略)を介してシリンダチューブ10に締結される。 The cylinder tube 10 is provided with a cylindrical cylinder head 50 that seals the opening 10A at one end and slidably supports the piston rod 20. The cylinder head 50 has a contact portion 51 that contacts the cushion portion 40 in the vicinity of the stroke end of the piston rod 20 during the extension operation. The contact portion 51 is formed in a cylindrical shape and is inserted inside the cylinder tube 10. The cylinder head 50 is fastened to the cylinder tube 10 via a plurality of fastening bolts (not shown) arranged in the circumferential direction.
 シリンダヘッド50の内周には、ブッシュ55、サブシール56、メインシール57、及びダストシール58が介装される。 The bush 55, the sub seal 56, the main seal 57, and the dust seal 58 are interposed on the inner periphery of the cylinder head 50.
 ブッシュ55がピストンロッド20の外周面に摺接することにより、ピストンロッド20がシリンダチューブ10の軸方向に移動するように支持される。 When the bush 55 is in sliding contact with the outer peripheral surface of the piston rod 20, the piston rod 20 is supported so as to move in the axial direction of the cylinder tube 10.
 シリンダヘッド50には、油圧源に連通する給排口3が形成される。シリンダヘッド50は、内周面に形成される通路溝50Aによってピストンロッド20との間で、給排口3とロッド側室1とを連通する給排通路4を区画する。給排口3から給排通路4を通じて、ロッド側室1に作動油が給排される。 The cylinder head 50 is formed with a supply / discharge port 3 communicating with a hydraulic pressure source. The cylinder head 50 defines a supply / exhaust passage 4 that communicates the supply / exhaust port 3 and the rod side chamber 1 with the piston rod 20 by a passage groove 50 </ b> A formed on the inner peripheral surface. The hydraulic oil is supplied / discharged from the supply / discharge port 3 to the rod side chamber 1 through the supply / discharge passage 4.
 ピストンロッド20は、シリンダヘッド50の内周と摺接する本体部21と、本体部21より外径が小さく形成される小径部22と、本体部21と小径部22の間に形成される環状の段差部23と、ピストンロッド20の先端に形成されピストン30が締結されるねじ部24と、を有する。 The piston rod 20 includes a main body portion 21 that is in sliding contact with the inner periphery of the cylinder head 50, a small diameter portion 22 that has a smaller outer diameter than the main body portion 21, and an annular shape that is formed between the main body portion 21 and the small diameter portion 22. It has a stepped portion 23 and a threaded portion 24 formed at the tip of the piston rod 20 to which the piston 30 is fastened.
 図1及び図2に示すように、小径部22には、段差部23に隣接する位置に凹部としての環状溝25が形成される。環状溝25は、小径部22の外周面に接続されピストン30側に向かうにつれ深さが小さくなる溝テーパ部25Aを有する。 As shown in FIGS. 1 and 2, an annular groove 25 as a recess is formed in the small diameter portion 22 at a position adjacent to the step portion 23. The annular groove 25 has a groove taper portion 25A that is connected to the outer peripheral surface of the small-diameter portion 22 and has a depth that decreases toward the piston 30 side.
 ピストン30は、ピストンロッド20のねじ部24に螺合し、所定の締め付け力によってピストンロッド20に締結される。 The piston 30 is screwed into the threaded portion 24 of the piston rod 20 and fastened to the piston rod 20 with a predetermined tightening force.
 クッション部40は、ピストンロッド20の小径部22の外周であって、段差部23とピストン30との軸方向の間に設けられる。クッション部40は、図2及び図3Aに示すように、通過する作動油に抵抗を付与するクッション通路42を画成するクッションリング41と、クッションリング41に係止されると共にピストンロッド20における小径部22の環状溝25に一部が収容された状態で、ピストンロッド20に対するクッションリング41の相対移動を規制する規制部としての規制ピン45と、を有する。 The cushion part 40 is provided on the outer periphery of the small diameter part 22 of the piston rod 20 and between the step part 23 and the piston 30 in the axial direction. As shown in FIGS. 2 and 3A, the cushion portion 40 includes a cushion ring 41 that defines a cushion passage 42 that provides resistance to the passing hydraulic oil, and a small diameter in the piston rod 20 that is locked to the cushion ring 41. And a restriction pin 45 as a restriction part for restricting relative movement of the cushion ring 41 with respect to the piston rod 20 in a state where a part thereof is accommodated in the annular groove 25 of the part 22.
 クッションリング41は、図2に示すように、ピストンロッド20の小径部22に摺動可能に嵌合する。クッションリング41は、外径がシリンダチューブ10の摺動面11の内径よりも小さく形成される。 The cushion ring 41 is slidably fitted into the small diameter portion 22 of the piston rod 20 as shown in FIG. The cushion ring 41 is formed so that the outer diameter is smaller than the inner diameter of the sliding surface 11 of the cylinder tube 10.
 クッションリング41には、図2及び図3Aに示すように、軸方向に貫通する複数の貫通孔によって複数のクッション通路42が画成される。クッション通路42は、クッションリング41が当接部51に当接した状態においても、ロッド側室1と給排通路4とを連通する(図5参照)。つまり、クッション通路42は、クッションリング41におけるシリンダヘッド50に対向する端面において、給排通路4に臨む位置に開口するように形成される。 In the cushion ring 41, as shown in FIGS. 2 and 3A, a plurality of cushion passages 42 are defined by a plurality of through holes penetrating in the axial direction. The cushion passage 42 communicates the rod side chamber 1 and the supply / discharge passage 4 even when the cushion ring 41 is in contact with the contact portion 51 (see FIG. 5). That is, the cushion passage 42 is formed so as to open at a position facing the supply / discharge passage 4 on the end face of the cushion ring 41 facing the cylinder head 50.
 クッション通路42を通過する作動油の流れには、抵抗が付与される。作動油がクッション通路42を通過することにより、ロッド側室1にはクッション圧が作用する。これにより、油圧シリンダ100では、伸長ストローク端付近で伸長速度が減速するクッション作用が発揮される。 Resistance is applied to the flow of hydraulic oil passing through the cushion passage 42. When the hydraulic oil passes through the cushion passage 42, a cushion pressure acts on the rod side chamber 1. As a result, the hydraulic cylinder 100 exhibits a cushioning action that reduces the extension speed near the end of the extension stroke.
 また、クッションリング41においてピストン30に対向する端面には、径方向に延びて、それぞれクッション通路42に連通する複数の径方向溝46が形成される。径方向溝46に作動油の圧力が導かれることにより、後述するような収縮作動時におけるクッションリング41とピストン30との当接状態からの離間が促される。 Further, a plurality of radial grooves 46 extending in the radial direction and communicating with the cushion passage 42 are formed on the end face of the cushion ring 41 facing the piston 30. When the pressure of the hydraulic oil is guided to the radial groove 46, the separation from the contact state between the cushion ring 41 and the piston 30 during the contraction operation as described later is promoted.
 なお、径方向溝46は、図3Bに示すように、クッション通路42とは連通せず、クッション通路42からずれた位置に形成されてもよい。また、径方向溝46は、クッションリング41の外周面に開口してもよい。このように、径方向溝46は、少なくとも一部がクッションリング41におけるピストン30に対向するクッションリング41の端面に形成されて、作動油の圧力を導いてクッションリング41とピストン30との離間を促すように形成される限りは、任意の形状に形成することができる。なお、図2、図4~8では、クッション通路42及び径方向溝46を模式的に破線で示している。 It should be noted that the radial groove 46 may not be communicated with the cushion passage 42 and may be formed at a position shifted from the cushion passage 42 as shown in FIG. 3B. Further, the radial groove 46 may open on the outer peripheral surface of the cushion ring 41. As described above, at least a part of the radial groove 46 is formed on the end face of the cushion ring 41 facing the piston 30 in the cushion ring 41, and guides the pressure of the hydraulic oil to separate the cushion ring 41 and the piston 30. As long as it is formed so as to promote, it can be formed in an arbitrary shape. 2 and 4 to 8, the cushion passage 42 and the radial groove 46 are schematically shown by broken lines.
 クッションリング41には、内周面及び外周面に開口する挿通孔47が形成される。規制ピン45は、図2に示すように、クッションリング41の挿通孔47に挿入されクッションリング41の内周面及び外周面を径方向に挿通する。規制ピン45は、クッションリング41の径方向へ移動自在に挿通孔47に挿入される。 The cushion ring 41 is formed with an insertion hole 47 that opens to the inner peripheral surface and the outer peripheral surface. As shown in FIG. 2, the regulation pin 45 is inserted into the insertion hole 47 of the cushion ring 41 and passes through the inner and outer peripheral surfaces of the cushion ring 41 in the radial direction. The restriction pin 45 is inserted into the insertion hole 47 so as to be movable in the radial direction of the cushion ring 41.
 図4に示すように、規制ピン45の長さLは、ピストンロッド20の小径部22とシリンダチューブ10の摺動面11との間の環状空間の径方向幅W1よりも長い。 4, the length L of the restriction pin 45 is longer than the radial width W1 of the annular space between the small diameter portion 22 of the piston rod 20 and the sliding surface 11 of the cylinder tube 10.
 これにより、規制ピン45は、シリンダチューブ10の摺動面11に対向した状態においてシリンダチューブ10の径方向外側に向けて移動し、シリンダチューブ10の径方向外側における規制ピン45の端部45Aが摺動面11に当接した際には、径方向内側における規制ピン45の端部45Bが環状溝25内に収容される状態が維持される。このため、環状溝25からの規制ピン45の脱出が規制される。よって、規制ピン45によりクッションリング41がピストンロッド20に保持され、クッションリング41とピストンロッド20との軸方向の相対移動が規制される。なお、「軸方向の相対移動が規制」されるとは、規制ピン45が環状溝25内に収容された状態のままでのクッションリング41とピストンロッド20との相対移動を規制することを含むものではなく、規制ピン45が環状溝25から脱出して相対移動することを規制する意味である。 Thereby, the regulation pin 45 moves toward the radially outer side of the cylinder tube 10 in a state of facing the sliding surface 11 of the cylinder tube 10, and the end portion 45A of the regulation pin 45 on the radially outer side of the cylinder tube 10 is moved. When contacting the sliding surface 11, the state in which the end portion 45 </ b> B of the restriction pin 45 on the radially inner side is accommodated in the annular groove 25 is maintained. For this reason, the escape of the regulation pin 45 from the annular groove 25 is regulated. Therefore, the cushion ring 41 is held by the piston rod 20 by the restriction pin 45, and the relative movement of the cushion ring 41 and the piston rod 20 in the axial direction is restricted. Note that “restricting relative movement in the axial direction” includes restricting relative movement between the cushion ring 41 and the piston rod 20 while the restriction pin 45 is housed in the annular groove 25. It is not intended to restrict the movement of the restriction pin 45 from the annular groove 25 and relative movement.
 また、規制ピン45の長さは、シリンダチューブ10の大径面12とピストンロッド20の小径部22との間で区画される環状空間の径方向幅W2よりも短い(図4参照)。よって、規制ピン45は、シリンダチューブ10の大径面12に対向した状態では、径方向外側に移動して径方向内側の端部45Bが環状溝25から脱出可能な状態となる(図5参照)。規制ピン45が径方向外側に移動すると、径方向内側の端部45Bは環状溝25から脱出し、ピストンロッド20によるクッションリング41の保持が解除される。これにより、クッションリング41とピストンロッド20との軸方向の相対移動が許容される。また、規制ピン45は、クッションリング41と当接部51とが当接した状態では、図5及び図6に示すように、内周段差部13との間で軸方向の隙間が設けられる。 Further, the length of the regulation pin 45 is shorter than the radial width W2 of the annular space defined between the large diameter surface 12 of the cylinder tube 10 and the small diameter portion 22 of the piston rod 20 (see FIG. 4). Therefore, when the regulation pin 45 is opposed to the large-diameter surface 12 of the cylinder tube 10, the restriction pin 45 moves radially outward so that the radially inner end 45 </ b> B can escape from the annular groove 25 (see FIG. 5). ). When the restricting pin 45 moves radially outward, the radially inner end 45B escapes from the annular groove 25, and the holding of the cushion ring 41 by the piston rod 20 is released. Thereby, the relative movement of the cushion ring 41 and the piston rod 20 in the axial direction is allowed. Further, in the state where the cushion ring 41 and the contact portion 51 are in contact, the restriction pin 45 is provided with an axial gap between the inner peripheral step portion 13 as shown in FIGS. 5 and 6.
 次に、油圧シリンダ100の動作について説明する。 Next, the operation of the hydraulic cylinder 100 will be described.
 ボトム側室2に油圧源が連通し、ロッド側室1にタンク(図示省略)が連通すると、ボトム側室2に作動油が供給され、ロッド側室1内の作動油はタンクに排出される。このため、油圧シリンダ100は伸長作動する。 When a hydraulic pressure source communicates with the bottom side chamber 2 and a tank (not shown) communicates with the rod side chamber 1, hydraulic oil is supplied to the bottom side chamber 2, and the hydraulic oil in the rod side chamber 1 is discharged to the tank. For this reason, the hydraulic cylinder 100 is extended.
 図2に示すように、伸長作動時において、クッション部40の規制ピン45がシリンダチューブ10の摺動面11に対向した状態では、規制ピン45は、径方向外側への移動が摺動面11によって規制される。このため、規制ピン45の径方向内側の端部45Bは、環状溝25に収容される状態が維持される。言い換えれば、規制ピン45の径方向内側の端部45Bが環状溝25の底部から小径部22に向かって溝テーパ部25Aを乗り越えようとしても、先に径方向外側の端部45Aが摺動面11に当接するため、規制ピン45が環状溝25から脱出することがない。よって、この状態では、クッションリング41がピストンロッド20に保持される状態が維持され、クッション部40はピストンロッド20と共に伸長方向へ移動する。ピストンロッド20の伸長方向への移動に伴い、ロッド側室1の作動油は、給排通路4に直接導かれて、給排口3を通じて排出される。 As shown in FIG. 2, when the restriction pin 45 of the cushion portion 40 faces the sliding surface 11 of the cylinder tube 10 during the extension operation, the movement of the restriction pin 45 toward the radially outer side is the sliding surface 11. Regulated by. For this reason, the end portion 45 </ b> B on the radially inner side of the restriction pin 45 is maintained in a state of being accommodated in the annular groove 25. In other words, even if the radially inner end 45B of the restricting pin 45 tries to get over the groove taper portion 25A from the bottom of the annular groove 25 toward the small diameter portion 22, the radially outer end 45A first slides. 11, the restriction pin 45 does not escape from the annular groove 25. Therefore, in this state, the state in which the cushion ring 41 is held by the piston rod 20 is maintained, and the cushion portion 40 moves in the extending direction together with the piston rod 20. As the piston rod 20 moves in the extending direction, the hydraulic oil in the rod side chamber 1 is directly guided to the supply / discharge passage 4 and discharged through the supply / discharge port 3.
 油圧シリンダ100の伸長作動によって、ピストンロッド20が図5に示すような伸長ストローク端付近まで移動すると、規制ピン45がシリンダチューブ10の大径面12に対向すると共に、クッションリング41がシリンダヘッド50の当接部51へ当接する。クッションリング41と当接部51とが当接すると、給排通路4とロッド側室1との直接の連通が遮断される。 When the piston rod 20 moves to the vicinity of the end of the extension stroke as shown in FIG. 5 due to the extension operation of the hydraulic cylinder 100, the restriction pin 45 faces the large diameter surface 12 of the cylinder tube 10 and the cushion ring 41 moves to the cylinder head 50. The contact part 51 is contacted. When the cushion ring 41 and the contact portion 51 come into contact, direct communication between the supply / discharge passage 4 and the rod-side chamber 1 is blocked.
 なお、油圧シリンダ100では、ピストンロッド20が伸長方向へ移動する過程において、規制ピン45が大径面12に対向するタイミングは、クッションリング41と当接部51とが当接するタイミングよりもわずかに早くなるように構成される。 In the hydraulic cylinder 100, in the process of moving the piston rod 20 in the extending direction, the timing at which the restriction pin 45 faces the large diameter surface 12 is slightly smaller than the timing at which the cushion ring 41 and the contact portion 51 contact each other. Configured to be faster.
 クッションリング41と当接部51とが当接した状態からピストンロッド20が伸長方向へさらに移動すると、規制ピン45は、環状溝25の溝テーパ部25Aによって案内されて径方向外側へ押し出されて移動する。この際、大径面12は、規制ピン45に接触して規制ピン45の移動を規制することがなく、径方向外側への規制ピン45の移動を許容する。 When the piston rod 20 further moves in the extending direction from the state where the cushion ring 41 and the contact portion 51 are in contact with each other, the restriction pin 45 is guided by the groove taper portion 25A of the annular groove 25 and is pushed out radially outward. Moving. At this time, the large diameter surface 12 does not come into contact with the restriction pin 45 and restricts the movement of the restriction pin 45 and allows the restriction pin 45 to move outward in the radial direction.
 よって、図6に示すように、規制ピン45の径方向内側の端部45Bが環状溝25から脱出してピストンロッド20によるクッションリング41の保持が解除される。これにより、クッションリング41に対する伸長方向へのピストンロッド20の相対移動が許容される。このように、環状溝25に形成される溝テーパ部25Aが、クッションリング41と当接部51とが当接する状態からのピストンロッド20の伸長方向への移動に伴い、規制ピン45を径方向外側に押し出して環状溝25から脱出させる脱出案内部に相当する。 Accordingly, as shown in FIG. 6, the radially inner end 45B of the regulating pin 45 escapes from the annular groove 25, and the holding of the cushion ring 41 by the piston rod 20 is released. Thereby, relative movement of the piston rod 20 in the extending direction with respect to the cushion ring 41 is allowed. As described above, the groove taper portion 25A formed in the annular groove 25 moves the regulating pin 45 in the radial direction along with the movement of the piston rod 20 in the extending direction from the state in which the cushion ring 41 and the contact portion 51 are in contact. It corresponds to an escape guide portion that is pushed outward to escape from the annular groove 25.
 ピストンロッド20がさらに伸長方向へ移動すると、クッションリング41とピストン30との間のロッド側室1の作動油は、クッション通路42を通じて給排通路4及び給排口3(図1参照)に導かれロッド側室1から排出される。クッション通路42を通過する作動油の流れには抵抗が付与されるため、ロッド側室1にはクッション通路42によって付与される抵抗に応じたクッション圧が作用する。このようにして、ピストンロッド20の伸長ストローク端付近におけるクッション機能が発揮される。 When the piston rod 20 further moves in the extending direction, the hydraulic oil in the rod side chamber 1 between the cushion ring 41 and the piston 30 is guided to the supply / discharge passage 4 and the supply / discharge port 3 (see FIG. 1) through the cushion passage 42. It is discharged from the rod side chamber 1. Since resistance is applied to the flow of the hydraulic oil passing through the cushion passage 42, a cushion pressure corresponding to the resistance applied by the cushion passage 42 acts on the rod side chamber 1. Thus, the cushion function in the vicinity of the extension stroke end of the piston rod 20 is exhibited.
 ロッド側室1に油圧源が連通し、ボトム側室2にタンクが連通すると、ロッド側室1に作動油が供給され、ボトム側室2内の作動油はタンクに排出される。このため、油圧シリンダ100は収縮作動する。 When the hydraulic pressure source communicates with the rod side chamber 1 and the tank communicates with the bottom side chamber 2, the hydraulic oil is supplied to the rod side chamber 1, and the hydraulic oil in the bottom side chamber 2 is discharged to the tank. For this reason, the hydraulic cylinder 100 is contracted.
 クッションリング41にピストン30が当接した伸長ストローク端から収縮作動する際には、まず、給排通路4から導かれる作動油によって、規制ピン45と内周段差部13との軸方向隙間分だけ、クッションリング41とピストンロッド20とが共に収縮方向に移動する。このように、規制ピン45と内周段差部13との間に軸方向隙間が設けられることにより、伸長ストローク端からの収縮作動において、速やかにクッションリング41と当接部51とを離間させ、給排通路4とロッド側室1とを直接連通させることができる。これにより、ロッド側室1に作動油が速やかに流入して、収縮作動時の応答性が確保される。 When the contraction operation is performed from the end of the extension stroke at which the piston 30 is in contact with the cushion ring 41, first, the hydraulic oil guided from the supply / exhaust passage 4 is used for the axial clearance between the regulation pin 45 and the inner circumferential step portion 13. Both the cushion ring 41 and the piston rod 20 move in the contraction direction. Thus, by providing an axial gap between the regulation pin 45 and the inner circumferential step portion 13, in the contraction operation from the end of the extension stroke, the cushion ring 41 and the contact portion 51 are quickly separated, The supply / discharge passage 4 and the rod side chamber 1 can be directly communicated with each other. As a result, the hydraulic oil quickly flows into the rod side chamber 1 to ensure the responsiveness during the contraction operation.
 クッションリング41及びピストンロッド20が規制ピン45と内周段差部13との軸方向隙間分だけ収縮方向に移動すると、図7に示すように、規制ピン45と内周段差部13とが当接する。この際、規制ピン45の径方向内側の端部45Bは、ピストンロッド20の小径部22の外周面に摺接するため、規制ピン45は径方向内側へそれ以上移動することができない。つまり、径方向外側の端部45Aがシリンダチューブ10の摺動面11に向かって内周段差部13を乗り越えることがない。このため、クッションリング41は規制ピン45によってシリンダチューブ10の内周段差部13に係止される。この状態では、主に給排通路4、当接部51とクッションリング41との間の隙間、及びクッションリング41の外周とシリンダチューブ10の内周面との間の隙間を通じて径方向溝46に作動油の圧力が導かれてピストン30の端面に作用する。これにより、クッションリング41とピストン30とが離間して、ピストンロッド20がクッションリング41に対して収縮方向へ相対移動する。このように、径方向溝46が圧力導入溝として機能して、収縮作動時におけるクッションリング41とピストン30との離間を促す。径方向溝46が設けられることで、作動油の圧力によって規制ピン45がシリンダチューブ10の内周段差部13に押し付けられて、規制ピン45及び内周段差部13が破損することを防止できる。 When the cushion ring 41 and the piston rod 20 are moved in the contraction direction by the axial clearance between the restriction pin 45 and the inner peripheral step portion 13, the restriction pin 45 and the inner peripheral step portion 13 come into contact with each other as shown in FIG. . At this time, since the end portion 45B on the radially inner side of the restriction pin 45 is in sliding contact with the outer peripheral surface of the small diameter portion 22 of the piston rod 20, the restriction pin 45 cannot move further inward in the radial direction. That is, the radially outer end 45 </ b> A does not get over the inner circumferential step 13 toward the sliding surface 11 of the cylinder tube 10. For this reason, the cushion ring 41 is locked to the inner circumferential step 13 of the cylinder tube 10 by the restriction pin 45. In this state, the radial groove 46 is mainly formed through the gap between the supply / discharge passage 4, the contact portion 51 and the cushion ring 41, and the gap between the outer periphery of the cushion ring 41 and the inner peripheral surface of the cylinder tube 10. The pressure of the hydraulic oil is guided and acts on the end face of the piston 30. Thereby, the cushion ring 41 and the piston 30 are separated from each other, and the piston rod 20 moves relative to the cushion ring 41 in the contracting direction. In this way, the radial groove 46 functions as a pressure introducing groove, and promotes the separation between the cushion ring 41 and the piston 30 during the contraction operation. By providing the radial groove 46, it is possible to prevent the restriction pin 45 from being pressed against the inner circumferential step 13 of the cylinder tube 10 by the pressure of the hydraulic oil, and the regulation pin 45 and the inner circumferential step 13 from being damaged.
 図8に示すように、規制ピン45の径方向内側の端部45Bがピストンロッド20の環状溝25に対向するまでピストンロッド20が収縮方向へ移動すると、規制ピン45はシリンダチューブ10の径方向内側への移動が許容される。クッションリング41がロッド側室1に供給される作動油の流体力を受けることにより、規制ピン45は、径方向外側の端部45Aが内周段差部13のテーパ面13Aに案内されて径方向内側へ押し出される。これにより、規制ピン45は、シリンダチューブ10の内周段差部13との係止が解除されると共に、径方向内側の端部45Bがピストンロッド20の環状溝25に再び収容される。このようにしてピストンロッド20に再び保持されるクッションリング41は、ピストンロッド20と共に収縮方向へ移動する。このように、内周段差部13のテーパ面13Aが、クッションリング41と当接部51とが当接する状態からのピストンロッド20の収縮方向への移動に伴い、規制ピン45を径方向内側に押し出して環状溝25内に収容する収容案内部に相当する。 As shown in FIG. 8, when the piston rod 20 moves in the contraction direction until the radially inner end 45 </ b> B of the restriction pin 45 faces the annular groove 25 of the piston rod 20, the restriction pin 45 moves in the radial direction of the cylinder tube 10. Inward movement is allowed. When the cushion ring 41 receives the fluid force of the hydraulic oil supplied to the rod side chamber 1, the restricting pin 45 has a radially outer end 45 </ b> A guided by the tapered surface 13 </ b> A of the inner circumferential stepped portion 13, and the radially inner side. Pushed out. As a result, the restriction pin 45 is unlocked from the inner circumferential step portion 13 of the cylinder tube 10, and the radially inner end portion 45 </ b> B is accommodated in the annular groove 25 of the piston rod 20 again. In this way, the cushion ring 41 held again by the piston rod 20 moves in the contracting direction together with the piston rod 20. In this way, the taper surface 13A of the inner circumferential step 13 is moved radially inward with the movement of the piston rod 20 in the contracting direction from the state where the cushion ring 41 and the contact portion 51 are in contact. It corresponds to an accommodation guide portion that is pushed out and accommodated in the annular groove 25.
 以上のように、油圧シリンダ100では、規制ピン45によってピストンロッド20に対するクッションリング41の相対移動が規制されることにより、当接部51に当接するまではクッションリング41がピストンロッド20と共に伸長方向へ移動する。伸長作動時のストローク端付近では、クッションリング41が当接部51に当接しピストンロッド20との相対移動が許容されることでクッション機能が発揮される。また、油圧シリンダ100では、収縮作動時には規制ピン45がピストンロッド20に再び収容されるため、クッションリング41をピストンロッド20に再び保持させてピストンロッド20と共に収縮方向へ移動させることができる。よって、ロッド側室1にスプリングを設けなくとも、クッション機能の発揮時にはクッション部40とピストンロッド20とを相対移動させ、収縮作動時にはピストンロッド20と共に収縮方向に移動させることができる。したがって、油圧シリンダ100の全長を短くして小型化することができる。 As described above, in the hydraulic cylinder 100, the relative movement of the cushion ring 41 with respect to the piston rod 20 is restricted by the restriction pin 45, so that the cushion ring 41 and the piston rod 20 extend in the extending direction until the contact with the contact portion 51. Move to. In the vicinity of the stroke end during the extension operation, the cushion ring 41 is brought into contact with the contact portion 51 and the relative movement with the piston rod 20 is allowed, so that the cushion function is exhibited. Further, in the hydraulic cylinder 100, since the restriction pin 45 is accommodated again in the piston rod 20 during the contraction operation, the cushion ring 41 can be held again by the piston rod 20 and moved together with the piston rod 20 in the contraction direction. Therefore, without providing a spring in the rod side chamber 1, the cushion portion 40 and the piston rod 20 can be moved relative to each other when the cushion function is exerted, and can be moved together with the piston rod 20 in the contracting direction during the contracting operation. Therefore, the overall length of the hydraulic cylinder 100 can be shortened and downsized.
 また、ロッド側室1にスプリングを設けると、特にスプリングが収縮して線材間の軸方向の隙間が小さくなった場合には、スプリングの内側と外側で圧力差が生じることがある。このような圧力差によってスプリングが折損すると、クッション部40の動作が不安定になり、安定してクッション機能が発揮できなくなるおそれがある。これに対し、油圧シリンダ100は、ロッド側室1にスプリングを設けず、規制ピン45によってクッションリング41を支持するため、スプリングの折損によってクッション機能が安定して発揮されないという事態の発生を防止することができる。 Also, when a spring is provided in the rod side chamber 1, a pressure difference may occur between the inside and the outside of the spring, particularly when the spring contracts and the axial gap between the wires becomes small. If the spring breaks due to such a pressure difference, the operation of the cushion portion 40 becomes unstable, and the cushion function may not be stably exhibited. On the other hand, since the hydraulic cylinder 100 does not provide a spring in the rod side chamber 1 and supports the cushion ring 41 by the restriction pin 45, the occurrence of a situation in which the cushion function is not stably exhibited due to breakage of the spring is prevented. Can do.
 ここで、本発明の理解を容易にするために、図22を参照して、比較例に係る油圧シリンダ400について説明する。油圧シリンダ100と同一の構成については、同一の符号を付して説明を省略する。 Here, in order to facilitate understanding of the present invention, a hydraulic cylinder 400 according to a comparative example will be described with reference to FIG. About the same structure as the hydraulic cylinder 100, the same code | symbol is attached | subjected and description is abbreviate | omitted.
 比較例に係る油圧シリンダ400は、ピストンロッド20の外周に設けられる筒状のクッションベアリング340と、伸長ストローク端付近でクッションベアリング340の進入を許容するベアリング受容部351と、を備える。 The hydraulic cylinder 400 according to the comparative example includes a cylindrical cushion bearing 340 provided on the outer periphery of the piston rod 20 and a bearing receiving portion 351 that allows the cushion bearing 340 to enter near the end of the extension stroke.
 油圧シリンダ400では、伸長ストローク端付近でクッションベアリング340がベアリング受容部351の内側に進入することにより、クッション通路342が形成される。ロッド側室1の作動油がクッション通路342を通じて排出されることで、ロッド側室1にはクッション通路342によって付与される抵抗に応じたクッション圧が作用する。油圧シリンダで400では、クッション圧が作用するピストン30の受圧面積は、クッションベアリング340の外周とピストン30の外周との間の面積に相当する。 In the hydraulic cylinder 400, the cushion passage 342 is formed by the cushion bearing 340 entering the inside of the bearing receiving portion 351 near the end of the extension stroke. As the hydraulic oil in the rod side chamber 1 is discharged through the cushion passage 342, a cushion pressure corresponding to the resistance applied by the cushion passage 342 acts on the rod side chamber 1. In the hydraulic cylinder 400, the pressure receiving area of the piston 30 on which the cushion pressure acts corresponds to the area between the outer periphery of the cushion bearing 340 and the outer periphery of the piston 30.
 これに対し、本実施形態に係る油圧シリンダ100は、比較例の様なクッションベアリング340を備えていないため、クッション圧の受圧面積は、ピストンロッド20の小径部22の外周とピストン30の外周との間の面積に相当する。このため、油圧シリンダ100の受圧面積は、比較例に係る油圧シリンダ400の受圧面積よりも、クッションベアリング340の断面積分だけ大きくすることができる。よって、油圧シリンダ100では、同じクッション性能を発揮する場合であっても、受圧面積が大きくなるため、油圧シリンダ400よりもクッション圧を小さくすることができる。クッション圧を小さくすることができるため、油圧シリンダ100では、クッション圧を受けるシリンダチューブ10、ピストン30、シリンダヘッド50の強度が比較的小さくてもよく、製造コストを低減させることができる。 On the other hand, since the hydraulic cylinder 100 according to the present embodiment does not include the cushion bearing 340 as in the comparative example, the pressure receiving area of the cushion pressure is the outer periphery of the small diameter portion 22 of the piston rod 20 and the outer periphery of the piston 30. Corresponds to the area between. For this reason, the pressure receiving area of the hydraulic cylinder 100 can be made larger by the cross-sectional integral of the cushion bearing 340 than the pressure receiving area of the hydraulic cylinder 400 according to the comparative example. Therefore, in the hydraulic cylinder 100, even if the same cushion performance is exhibited, the pressure receiving area is increased, so that the cushion pressure can be made smaller than that of the hydraulic cylinder 400. Since the cushion pressure can be reduced, in the hydraulic cylinder 100, the strength of the cylinder tube 10, the piston 30, and the cylinder head 50 that receive the cushion pressure may be relatively small, and the manufacturing cost can be reduced.
 また、クッションベアリング340を備える油圧シリンダ400では、クッションベアリング340がピストンロッド20の段差部23とピストンロッド20にねじ締結されるピストン30とによって軸方向に挟持されるものがある。このような油圧シリンダ400の伸長ストローク端からの収縮作動時では、ベアリング受容部351からクッションベアリング340が抜け出るまでは、クッション通路342を通じて給排通路4とロッド側室1が連通する。クッションベアリング340がベアリング受容部351から抜け出る際には、作動油の流路面積が急激に拡大することとなり、ロッド側室1に急激な圧力変動及び作動速度(ピストン30の移動速度)の変動が生じて異音等が発生するおそれがある。これに対し、本実施形態に係る油圧シリンダ100では、速やかにクッションリング41と当接部51とが離間して給排通路4とロッド側室1とが直接連通するため、急激な圧力変動及び作動速度変動に起因する異音等の発生を防止することができる。 Further, in the hydraulic cylinder 400 including the cushion bearing 340, the cushion bearing 340 may be sandwiched in the axial direction by the step portion 23 of the piston rod 20 and the piston 30 screwed to the piston rod 20. In such a contraction operation from the end of the extension stroke of the hydraulic cylinder 400, the supply / discharge passage 4 and the rod side chamber 1 communicate with each other through the cushion passage 342 until the cushion bearing 340 comes out of the bearing receiving portion 351. When the cushion bearing 340 comes out of the bearing receiving portion 351, the flow area of the hydraulic oil is suddenly expanded, and sudden pressure fluctuations and fluctuations in the operating speed (moving speed of the piston 30) occur in the rod side chamber 1. May cause abnormal noise. On the other hand, in the hydraulic cylinder 100 according to the present embodiment, the cushion ring 41 and the contact portion 51 are quickly separated and the supply / exhaust passage 4 and the rod side chamber 1 directly communicate with each other. Occurrence of abnormal noise or the like due to speed fluctuation can be prevented.
 また、クッションベアリング340を備える油圧シリンダ400では、クッションベアリング340がピストンロッド20の段差部23とピストンロッド20にねじ締結されるピストン30との間に軸方向の隙間を持って設けられるもの(いわゆるフローティング支持構造)がある。このような油圧シリンダ400では、ピストンロッド20の外周面に溝を形成し、合口隙間を有するクッションシールがピストンロッド20の溝内に設けられることがある。この油圧シリンダ400では、ロッド側室1の作動油がクッション通路342及びクッションシールの合口隙間によって作動油に抵抗を付与してクッション機能を発揮する。また、クッションベアリング340の内側にクッションシールが設けられる場合には、クッションベアリング340を共通にして合口隙間の大きさを調整することにより、油圧シリンダ400のクッション性能を容易に調整することができる。 In the hydraulic cylinder 400 including the cushion bearing 340, the cushion bearing 340 is provided with a gap in the axial direction between the step portion 23 of the piston rod 20 and the piston 30 screwed to the piston rod 20 (so-called Floating support structure). In such a hydraulic cylinder 400, a groove is formed on the outer peripheral surface of the piston rod 20, and a cushion seal having a joint gap may be provided in the groove of the piston rod 20. In the hydraulic cylinder 400, the hydraulic oil in the rod side chamber 1 exerts a cushion function by imparting resistance to the hydraulic oil by the cushion passage 342 and the joint gap of the cushion seal. When a cushion seal is provided inside the cushion bearing 340, the cushion performance of the hydraulic cylinder 400 can be easily adjusted by adjusting the size of the joint gap with the cushion bearing 340 in common.
 これに対し、油圧シリンダ100では、クッション通路42の大きさを調整することで容易にクッション性能の調整ができるため、クッションシールと当該クッションシールを収容するピストンロッド20の溝の形成が不要になる。よって、油圧シリンダ100では、クッション性能を容易に調整できると共に、加工工数が低減されるため製造コストをさらに低減することができる。 On the other hand, in the hydraulic cylinder 100, the cushion performance can be easily adjusted by adjusting the size of the cushion passage 42. Therefore, it is not necessary to form the cushion seal and the groove of the piston rod 20 that accommodates the cushion seal. . Therefore, in the hydraulic cylinder 100, the cushion performance can be easily adjusted, and the number of processing steps can be reduced, so that the manufacturing cost can be further reduced.
 次に、第1実施形態の変形例について説明する。 Next, a modification of the first embodiment will be described.
 上記第1実施形態では、クッション通路42は、クッションリング41に形成される貫通孔である。これに代えて、クッション通路42は、クッションリング41に着脱可能に取り付けられるオリフィスプラグに形成されるものでもよい。この場合には、径が異なるクッション通路42が形成される複数のオリフィスプラグを用意することで、クッション性能を容易に調整できると共に、クッションリング41を共通化することができるため製造コストを低減することができる。また、クッション通路42が形成されるオリフィスプラグと、クッション通路42が形成されない封止プラグと、を用意して、クッションリング41に取り付けられるオリフィスプラグ及び封止プラグの数を任意に変更することでクッション性能を調整してもよい。 In the first embodiment, the cushion passage 42 is a through hole formed in the cushion ring 41. Instead of this, the cushion passage 42 may be formed in an orifice plug that is detachably attached to the cushion ring 41. In this case, by preparing a plurality of orifice plugs in which the cushion passages 42 having different diameters are prepared, the cushion performance can be easily adjusted, and the cushion ring 41 can be used in common, thereby reducing the manufacturing cost. be able to. Also, by preparing an orifice plug in which the cushion passage 42 is formed and a sealing plug in which the cushion passage 42 is not formed, the number of orifice plugs and sealing plugs attached to the cushion ring 41 can be arbitrarily changed. The cushion performance may be adjusted.
 また、クッション通路42は、単一の貫通孔であってもよい。さらに、クッション通路42は、貫通孔でなくてもよい。例えば、ピストンロッド20の外周面とクッションリング41の内周面とによって画成される環状の通路をクッション通路42としてもよい。また、図9に示すように、クッション通路42は、当接部51に対向するクッションリング41の端面に形成されるスリットであってもよい。 Further, the cushion passage 42 may be a single through hole. Furthermore, the cushion passage 42 may not be a through hole. For example, an annular passage defined by the outer peripheral surface of the piston rod 20 and the inner peripheral surface of the cushion ring 41 may be used as the cushion passage 42. Further, as shown in FIG. 9, the cushion passage 42 may be a slit formed on the end surface of the cushion ring 41 facing the contact portion 51.
 また、クッション通路42は、クッションリング41に形成されることが望ましい。クッションリング41は、ピストンロッド20やシリンダヘッド50と比較して、小型であり、加工しやすいサイズであるため、精度良く容易にクッション通路42を形成することができる。しかしながら、クッション通路42は、例えば、図10に示すように、ピストンロッド20に形成されるものでもよい。また、図11や図12に示すように、クッション通路42は、当接部51に形成される通路やスリットでもよい。 The cushion passage 42 is preferably formed in the cushion ring 41. Since the cushion ring 41 is smaller than the piston rod 20 and the cylinder head 50 and has a size that is easy to process, the cushion passage 42 can be easily formed with high accuracy. However, the cushion passage 42 may be formed in the piston rod 20, for example, as shown in FIG. As shown in FIGS. 11 and 12, the cushion passage 42 may be a passage or slit formed in the contact portion 51.
 また、凹部は、環状溝25でなくてもよく、規制ピン45を収容するものであれば、任意の形状に形成することができる。例えば、凹部は、ピストンロッド20の全周にわたる環状のものではなく、周方向の一部に形成される窪みでもよい。また、規制ピン45は複数設けてもよい。複数の規制ピン45が設けられることにより、環状溝25や内周段差部13に係止される際に各規制ピン45に作用する力を分散することができる。 Further, the recess does not have to be the annular groove 25 and can be formed in any shape as long as it can accommodate the regulation pin 45. For example, the recess may be a recess formed in a part in the circumferential direction, instead of an annular shape over the entire circumference of the piston rod 20. A plurality of restriction pins 45 may be provided. By providing the plurality of restricting pins 45, the force acting on each restricting pin 45 when being locked to the annular groove 25 or the inner circumferential step portion 13 can be dispersed.
 また、上記第1実施形態では、脱出案内部は、ピストンロッド20の環状溝25の溝テーパ部25Aであり、収容案内部は、シリンダチューブ10の内周段差部13のテーパ面13Aである。これに対し、脱出案内部及び収容案内部は、それぞれ規制ピン45に形成されてもよい。また、脱出案内部及び収容案内部は、規制ピン45と環状溝25及び内周段差部13とのそれぞれに形成されてもよい。さらに、脱出案内部及び収容案内部は、テーパ面に限らず、ピストンロッド20の移動に伴い規制ピン45を径方向に押圧して押し出すものであればよく、例えば曲面であってもよい。例えば、規制ピン45の径方向外側の端部45A及び内側の端部45Bをそれぞれ半球形状に形成し、それぞれの端部45A,45Bの球面を脱出案内部及び収容案内部としてもよい。 In the first embodiment, the escape guide portion is the groove taper portion 25 </ b> A of the annular groove 25 of the piston rod 20, and the accommodation guide portion is the taper surface 13 </ b> A of the inner circumferential step portion 13 of the cylinder tube 10. On the other hand, the escape guide portion and the accommodation guide portion may be formed on the restriction pin 45, respectively. Further, the escape guide portion and the accommodation guide portion may be formed in each of the regulation pin 45, the annular groove 25, and the inner circumferential step portion 13. Furthermore, the escape guide part and the accommodation guide part are not limited to the tapered surface, and may be any one that presses and pushes out the regulating pin 45 in the radial direction as the piston rod 20 moves, and may be, for example, a curved surface. For example, the radially outer end 45A and the inner end 45B of the restriction pin 45 may be formed in a hemispherical shape, and the spherical surfaces of the ends 45A and 45B may be used as the escape guide portion and the accommodation guide portion.
 以上の第1実施形態によれば、以下に示す効果を奏する。 According to the above 1st Embodiment, there exists the effect shown below.
 油圧シリンダ100では、伸長作動時のストローク端付近でクッションリング41が当接部51に当接すると、給排通路4とロッド側室1との直接の連通が遮断される。クッションリング41と当接部51とが当接した状態からピストンロッド20が伸長方向へさらに移動しようとすると、規制ピン45によって規制されていたピストンロッド20とクッションリング41との相対移動が許容される。よって、伸長作動のストローク端付近において、ロッド側室1から排出される作動油は、クッション通路42を通じて給排通路4へ導かれ、ピストンロッド20を減速させるクッション機能が発揮される。このように、クッションリング41が規制ピン45によってピストンロッド20に保持されることにより、クッションリング41を支持するためのスプリングをロッド側室1に設けなくても、伸長作動時のストローク端付近において、クッション機能が発揮される。したがって、油圧シリンダ100を小型化することができる。 In the hydraulic cylinder 100, when the cushion ring 41 comes into contact with the contact portion 51 near the stroke end during the extension operation, direct communication between the supply / discharge passage 4 and the rod side chamber 1 is blocked. When the piston rod 20 further moves in the extending direction from the state where the cushion ring 41 and the contact portion 51 are in contact with each other, the relative movement between the piston rod 20 and the cushion ring 41 that is restricted by the restriction pin 45 is allowed. The Therefore, in the vicinity of the stroke end of the extension operation, the hydraulic oil discharged from the rod side chamber 1 is guided to the supply / discharge passage 4 through the cushion passage 42, and a cushion function for decelerating the piston rod 20 is exhibited. As described above, the cushion ring 41 is held by the piston rod 20 by the restriction pin 45, so that a spring for supporting the cushion ring 41 is not provided in the rod side chamber 1, and in the vicinity of the stroke end during the extension operation, The cushion function is demonstrated. Therefore, the hydraulic cylinder 100 can be reduced in size.
 また、油圧シリンダ100は、クッションリング41を支持するためのスプリングをロッド側室1に設けなくてよいため、スプリングの折損によりクッション部40の動作が不安定になることが防止され、安定してクッション機能を発揮することができる。 Further, since the hydraulic cylinder 100 does not need to provide a spring for supporting the cushion ring 41 in the rod side chamber 1, the operation of the cushion portion 40 is prevented from becoming unstable due to breakage of the spring, and the cushion is stably cushioned. Function can be demonstrated.
 また、油圧シリンダ100は、ベアリング受容部351に進入するクッションベアリング340によってクッション通路341を区画するものではないため、クッションベアリング340の内側のクッションシールが不要となり、製造コストを低減することができる。また、クッションベアリング340がベアリング受容部351から抜け出る際の異音の発生も防止することができる。 Further, since the hydraulic cylinder 100 does not define the cushion passage 341 by the cushion bearing 340 entering the bearing receiving portion 351, a cushion seal inside the cushion bearing 340 is not necessary, and the manufacturing cost can be reduced. Further, it is possible to prevent the generation of abnormal noise when the cushion bearing 340 comes out of the bearing receiving portion 351.
 また、油圧シリンダ100は、クッションベアリング340が不要であるため、クッションベアリング340によってクッション通路341を区画する場合と比較して、シリンダヘッド50及びピストン30においてクッション圧を受ける受圧面積を大きくすることができる。このため、クッション圧を低減して、シリンダチューブ10やシリンダヘッド50、ピストン30を比較的低い強度に形成することができる。したがって、製造コストを低減することができる。 Further, since the hydraulic cylinder 100 does not require the cushion bearing 340, the pressure receiving area for receiving the cushion pressure in the cylinder head 50 and the piston 30 can be increased as compared with the case where the cushion passage 341 is defined by the cushion bearing 340. it can. For this reason, cushion pressure can be reduced and the cylinder tube 10, the cylinder head 50, and piston 30 can be formed in comparatively low intensity | strength. Therefore, the manufacturing cost can be reduced.
 (第2実施形態)
 次に、図13から図17を参照して本発明の第2実施形態に係る油圧シリンダ200について説明する。以下では、上記第1実施形態と異なる点を中心に説明し、上記第1実施形態の油圧シリンダ100と同一の構成には同一の符号を付して説明を省略する。
(Second Embodiment)
Next, a hydraulic cylinder 200 according to a second embodiment of the present invention will be described with reference to FIGS. Below, it demonstrates centering on a different point from the said 1st Embodiment, the same code | symbol is attached | subjected to the structure same as the hydraulic cylinder 100 of the said 1st Embodiment, and description is abbreviate | omitted.
 上記第1実施形態では、規制部は、クッションリング41の内周面及び外周面を挿通する規制ピン45である。 In the first embodiment, the restricting portion is the restricting pin 45 that passes through the inner and outer peripheral surfaces of the cushion ring 41.
 これに対し、第2実施形態に係る油圧シリンダ200の規制部は、クッションリング141の外周及び内周にそれぞれ設けられる一対の規制リング145である点において、上記第1実施形態に係る油圧シリンダ100とは相違する。 In contrast, the hydraulic cylinder 200 according to the second embodiment has a pair of restriction rings 145 provided on the outer periphery and the inner periphery of the cushion ring 141, respectively, in the hydraulic cylinder 100 according to the first embodiment. Is different.
 図13に示すように、油圧シリンダ200のクッションリング141の外周面及び内周面には、それぞれ環状に形成される外周溝141A及び内周溝141Bが設けられる。また、クッションリング141には、上記第1実施形態と同様にクッション通路42及び径方向溝46が形成されると共に、クッション通路42よりも作動油の流れに付与する抵抗が小さい複数のメイン通路142が形成される。メイン通路142は、クッションリング141が当接部51に当接すると、当接部51によって塞がれる(図16参照)。なお、図13~図17では、単一のメイン通路142のみを図示し、その他は図示を省略する。複数のメイン通路142は、少なくとも全体として、作動油の流れに付与する抵抗がクッション通路42よりも小さくなるように構成されていればよい。 As shown in FIG. 13, the outer peripheral surface and the inner peripheral surface of the cushion ring 141 of the hydraulic cylinder 200 are provided with an outer peripheral groove 141A and an inner peripheral groove 141B formed in an annular shape, respectively. Further, the cushion ring 141 is formed with a cushion passage 42 and a radial groove 46 as in the first embodiment, and has a plurality of main passages 142 with less resistance to the flow of hydraulic oil than the cushion passage 42. Is formed. When the cushion ring 141 contacts the contact portion 51, the main passage 142 is blocked by the contact portion 51 (see FIG. 16). 13 to 17, only the single main passage 142 is shown, and the others are not shown. The plurality of main passages 142 only need to be configured so that the resistance applied to the flow of hydraulic oil is smaller than that of the cushion passage 42 as a whole.
 一対の規制リング145は、クッションリング141の外周溝141A内に設けられる外周リング145Aと、内周溝141B内に設けられる内周リング145Bと、を有する。 The pair of regulating rings 145 includes an outer peripheral ring 145A provided in the outer peripheral groove 141A of the cushion ring 141 and an inner peripheral ring 145B provided in the inner peripheral groove 141B.
 外周リング145A及び内周リング145Bは、それぞれ合口隙間(図示省略)を有し拡縮可能なCリング状に形成される。外周リング145A及び内周リング145Bは、スナップリング等の金属製のものでもよく、樹脂製のものでもよい。また、本実施形態では、外周リング145A及び内周リング145Bは、図13に示すように、断面が円形であるが、これに限らず、その他の断面形状(例えば、図14に示す四角形状)を有するものでもよい。また、図15に示すように、外周リング145Aと外周溝141Aの間及び内周リング145Bと内周溝141Bとの間にゴムやばねなどの付勢部材145C,145Dを設けて、外周リング145Aを径方向外側に付勢し、内周リング145Bを径方向内側に付勢してもよい。 The outer ring 145A and the inner ring 145B are each formed in a C-ring shape that has a gap (not shown) and can be expanded and contracted. The outer ring 145A and the inner ring 145B may be made of metal such as a snap ring or may be made of resin. In the present embodiment, the outer ring 145A and the inner ring 145B have a circular cross section as shown in FIG. 13, but the present invention is not limited to this, and other cross sectional shapes (for example, a rectangular shape shown in FIG. 14). It may have. Further, as shown in FIG. 15, biasing members 145C and 145D such as rubber and spring are provided between the outer ring 145A and the outer groove 141A and between the inner ring 145B and the inner groove 141B, and the outer ring 145A. May be urged radially outward, and the inner ring 145B may be urged radially inward.
 外周リング145Aは、シリンダチューブ10の内周面に接触し、シリンダチューブ10の内周面によってそれ以上の拡張が規制される。言い換えれば、外周リング145Aは、自由状態では外周溝141Aから径方向外側にはみ出すような形状のものであり、シリンダチューブ10の内周面によって径方向内側に押圧されて収縮することで外周溝141Aに収容される。 The outer ring 145A is in contact with the inner circumferential surface of the cylinder tube 10, and further expansion is restricted by the inner circumferential surface of the cylinder tube 10. In other words, the outer peripheral ring 145A has a shape that protrudes radially outward from the outer peripheral groove 141A in a free state, and is compressed by being radially contracted by the inner peripheral surface of the cylinder tube 10 to cause the outer peripheral groove 141A. Is housed.
 内周リング145Bは、ピストンロッド20の外周面に接触し、ピストンロッド20の外周面によってそれ以上の収縮が規制される。言い換えれば、内周リング145Bは、自由状態では内周溝141Bから径方向内側にはみ出すような形状のものであり、ピストンロッド20の外周面によって径方向外側に押圧されて拡張することで内周溝141Bに収容される。 The inner ring 145B contacts the outer circumferential surface of the piston rod 20, and further contraction is restricted by the outer circumferential surface of the piston rod 20. In other words, the inner ring 145B is shaped so as to protrude radially inward from the inner groove 141B in a free state, and is pressed radially outward by the outer peripheral surface of the piston rod 20 to expand the inner periphery. It is accommodated in the groove 141B.
 油圧シリンダ200では、外周リング145Aがシリンダチューブ10の内周面に接触し、内周リング145Bがピストンロッド20の外周面に接触する。このため、クッション部140によってロッド側室1が第1ロッド側室1Aと第2ロッド側室1Bとに区画される。第1ロッド側室1Aと第2ロッド側室1Bとは、クッションリング141のメイン通路142によって連通する。 In the hydraulic cylinder 200, the outer peripheral ring 145A contacts the inner peripheral surface of the cylinder tube 10, and the inner peripheral ring 145B contacts the outer peripheral surface of the piston rod 20. Therefore, the rod side chamber 1 is partitioned into a first rod side chamber 1A and a second rod side chamber 1B by the cushion portion 140. The first rod side chamber 1 </ b> A and the second rod side chamber 1 </ b> B communicate with each other through the main passage 142 of the cushion ring 141.
 外周リング145Aがシリンダチューブ10の摺動面11に対向する状態では、内周リング145Bの内周部分がピストンロッド20の環状溝25に収容され、クッションリング141がピストンロッド20に保持される。より具体的には、ピストンロッド20の外周面により拡張された状態で内周溝141Bに収容される内周リング145Bは、その収縮する方向への弾性力によって環状溝25からの脱出が規制される。これにより、クッションリング141がピストンロッド20に保持される状態が維持され、クッションリング141とピストンロッド20との軸方向の相対移動が規制される。 When the outer ring 145A faces the sliding surface 11 of the cylinder tube 10, the inner peripheral part of the inner ring 145B is accommodated in the annular groove 25 of the piston rod 20, and the cushion ring 141 is held by the piston rod 20. More specifically, the inner ring 145B accommodated in the inner groove 141B in a state of being expanded by the outer peripheral surface of the piston rod 20 is restricted from escaping from the annular groove 25 by the elastic force in the contracting direction. The Thereby, the state in which the cushion ring 141 is held by the piston rod 20 is maintained, and the relative movement in the axial direction between the cushion ring 141 and the piston rod 20 is restricted.
 図13に示すように、伸長作動時において、クッション部140がシリンダチューブ10の摺動面11に対向した状態では、内周リング145Bが環状溝25に収容される状態が維持される。このため、クッションリング141がピストンロッド20に保持される状態が維持される。よって、外周リング145Aがシリンダチューブ10の摺動面11に摺接しながらクッションリング141がピストンロッド20と共に伸長方向へ移動する。ピストンロッド20の移動に伴い、第1ロッド側室1Aの作動油は、給排通路4に直接導かれて、給排口3を通じて排出される。 As shown in FIG. 13, when the cushion portion 140 is opposed to the sliding surface 11 of the cylinder tube 10 during the extension operation, the state where the inner peripheral ring 145B is accommodated in the annular groove 25 is maintained. For this reason, the state in which the cushion ring 141 is held by the piston rod 20 is maintained. Therefore, the cushion ring 141 moves in the extending direction together with the piston rod 20 while the outer ring 145A is in sliding contact with the sliding surface 11 of the cylinder tube 10. With the movement of the piston rod 20, the hydraulic oil in the first rod side chamber 1 </ b> A is directly guided to the supply / discharge passage 4 and discharged through the supply / discharge port 3.
 ピストンロッド20が図16に示すような伸長ストローク端付近まで移動すると、クッション部140の外周リング145Aがシリンダチューブ10の大径面12に対向すると共に、クッションリング141がシリンダヘッド50の当接部51へ当接する。 When the piston rod 20 moves to the vicinity of the extension stroke end as shown in FIG. 16, the outer peripheral ring 145 </ b> A of the cushion portion 140 faces the large-diameter surface 12 of the cylinder tube 10, and the cushion ring 141 is the contact portion of the cylinder head 50. 51 abuts.
 収縮された状態で外周溝141Aに収容される外周リング145Aは、大径面12に対向すると弾性力によって拡張して大径面12に接触する。クッションリング141と当接部51とが当接すると、給排通路4と第1ロッド側室1Aとの直接の連通が遮断される。また、当接部51によってメイン通路142が塞がれるため、メイン通路142を通じた第2ロッド側室1Bと給排通路4との連通も遮断される。 When the outer peripheral ring 145A accommodated in the outer peripheral groove 141A in a contracted state is opposed to the large diameter surface 12, it expands by an elastic force and comes into contact with the large diameter surface 12. When the cushion ring 141 and the contact portion 51 come into contact with each other, direct communication between the supply / discharge passage 4 and the first rod side chamber 1A is blocked. Further, since the main passage 142 is blocked by the contact portion 51, the communication between the second rod side chamber 1B and the supply / discharge passage 4 through the main passage 142 is also blocked.
 クッションリング141と当接部51とが当接した状態からピストンロッド20がさらに伸長方向へ移動すると、内周リング145Bは、環状溝25の溝テーパ部25Aによって案内されて径方向外側に押圧される。これにより、図17に示すように、収縮方向への弾性力に抗して内周リング145Bが拡張され環状溝25から脱出する。よって、ピストンロッド20によるクッションリング141の保持が解除され、クッションリング141に対する伸長方向へのピストンロッド20の相対移動が許容される。 When the piston rod 20 further moves in the extending direction from the state in which the cushion ring 141 and the contact portion 51 are in contact with each other, the inner peripheral ring 145B is guided by the groove taper portion 25A of the annular groove 25 and pressed outward in the radial direction. The As a result, as shown in FIG. 17, the inner peripheral ring 145 </ b> B is expanded against the elastic force in the contraction direction and escapes from the annular groove 25. Accordingly, the holding of the cushion ring 141 by the piston rod 20 is released, and the relative movement of the piston rod 20 in the extending direction with respect to the cushion ring 141 is allowed.
 ピストンロッド20がさらに伸長方向へ移動すると、第2ロッド側室1Bの作動油がクッション通路42を通じて給排通路4及び給排口3に導かれ排出される。よって、第2ロッド側室1にはクッション通路42によって付与される抵抗に応じたクッション圧が作用する。このようにして、ピストンロッド20の伸長ストローク端付近におけるクッション機能が発揮される。 When the piston rod 20 further moves in the extending direction, the hydraulic oil in the second rod side chamber 1B is guided to the supply / discharge passage 4 and the supply / discharge port 3 through the cushion passage 42 and discharged. Therefore, a cushion pressure corresponding to the resistance applied by the cushion passage 42 acts on the second rod side chamber 1. Thus, the cushion function in the vicinity of the extension stroke end of the piston rod 20 is exhibited.
 伸長ストローク端から収縮作動する際には、上記第1実施形態と同様に、給排通路4から導かれる作動油によって、外周リング145Aと内周段差部13との軸方向隙間分だけ、クッションリング141とピストンロッド20とが共に収縮方向に移動する。これにより、クッションリング141と当接部51とが離間して、給排通路4と第1ロッド側室1Aとが直接連通する。 When the contraction operation is performed from the end of the extended stroke, as in the first embodiment, the cushion oil is provided by the amount of axial clearance between the outer ring 145A and the inner step 13 by the hydraulic oil guided from the supply / discharge passage 4. Both 141 and the piston rod 20 move in the contraction direction. Thereby, the cushion ring 141 and the contact portion 51 are separated from each other, and the supply / discharge passage 4 and the first rod side chamber 1A are directly communicated with each other.
 クッションリング141及びピストンロッド20が外周リング145Aと内周段差部13との軸方向隙間分だけ収縮方向に移動すると、外周リング145Aと内周段差部13とが当接する。この際、外周リング145Aは、拡張方向への弾性力によって内周段差部13と係止する状態が維持され、シリンダチューブ10の摺動面11に向かって内周段差部13を乗り越えることがない。このため、クッションリング141は外周リング145Aを介して内周段差部13に係止される。よって、給排通路4から導かれる作動油の圧力は、第1ロッド側室1A、メイン通路142、及び第2ロッド側室1Bを通じて径方向溝46に導かれ、ピストン30の端面に作用する。これにより、クッションリング141とピストン30とが離間して、ピストンロッド20がクッションリング141に対して収縮方向へ相対移動する。 When the cushion ring 141 and the piston rod 20 move in the contraction direction by the axial clearance between the outer ring 145A and the inner step 13, the outer ring 145A and the inner step 13 come into contact with each other. At this time, the outer ring 145 </ b> A is maintained in a state of being locked with the inner circumferential step 13 by the elastic force in the expansion direction, and does not get over the inner circumferential step 13 toward the sliding surface 11 of the cylinder tube 10. . For this reason, the cushion ring 141 is locked to the inner peripheral step 13 through the outer ring 145A. Therefore, the pressure of the hydraulic fluid guided from the supply / discharge passage 4 is guided to the radial groove 46 through the first rod side chamber 1A, the main passage 142, and the second rod side chamber 1B, and acts on the end face of the piston 30. As a result, the cushion ring 141 and the piston 30 are separated from each other, and the piston rod 20 moves relative to the cushion ring 141 in the contracting direction.
 内周リング145Bがピストンロッド20の環状溝25に対向するまでピストンロッド20が収縮方向へ移動すると、内周リング145Bは弾性力によって収縮して環状溝25に収容される。また、クッションリング141は、ピストンロッド20の段差部23に当接する。これに伴い、ピストンロッド20がさらに収縮方向へ移動するとクッションリング141も共に収縮方向へ移動しようとする。このため、拡張方向への弾性力に抗して外周リング145Aが内周段差部13のテーパ面13Aによって径方向内側に押圧されて収縮する。これにより、外周リング145Aとシリンダチューブ10の内周段差部13との係止が解除されて、クッションリング141がピストンロッド20と共に収縮方向へ移動する。 When the piston rod 20 moves in the contracting direction until the inner peripheral ring 145B faces the annular groove 25 of the piston rod 20, the inner peripheral ring 145B is contracted by elastic force and is accommodated in the annular groove 25. Further, the cushion ring 141 abuts on the step portion 23 of the piston rod 20. Accordingly, when the piston rod 20 further moves in the contraction direction, the cushion ring 141 also tries to move in the contraction direction. For this reason, the outer peripheral ring 145 </ b> A is pressed radially inward by the tapered surface 13 </ b> A of the inner peripheral stepped portion 13 against the elastic force in the expansion direction and contracts. As a result, the engagement between the outer peripheral ring 145A and the inner peripheral step 13 of the cylinder tube 10 is released, and the cushion ring 141 moves together with the piston rod 20 in the contracting direction.
 以上の第2実施形態によれば、上記第1実施形態と同様の効果を奏する。 According to the second embodiment described above, the same effects as in the first embodiment can be obtained.
 また、油圧シリンダ200では、内周リング145Bの内周全体が環状溝25に収容されるため、内周リング145Bと環状溝25との接触は、線接触のようになる。このため、規制ピン45の径方向内側の端部45Bと環状溝25とが点接触のように接触する上記第1実施形態と比較して、内周リング145Bを環状溝25から脱出させる力を分散でき、耐久性を向上させることができる。 Further, in the hydraulic cylinder 200, since the entire inner periphery of the inner peripheral ring 145B is accommodated in the annular groove 25, the contact between the inner peripheral ring 145B and the annular groove 25 is a line contact. For this reason, compared with the said 1st Embodiment with which the edge part 45B of the radial inside of the control pin 45 and the annular groove 25 contact like a point contact, the force which escapes the inner peripheral ring 145B from the annular groove 25 is provided. It can be dispersed and the durability can be improved.
 なお、上記第2実施形態では、規制部は、一対の規制リング(外周リング145A及び内周リング145B)であるが、これに代えて、付勢部材145C,145D(図15参照)によって径方向の外側及び内側にそれぞれ付勢される一又は複数の球体(スチールボールなど)を規制部として用いてもよい。 In the second embodiment, the restricting portion is a pair of restricting rings (an outer ring 145A and an inner ring 145B), but instead of this, the biasing members 145C and 145D (see FIG. 15) are used in the radial direction. One or a plurality of spheres (steel balls or the like) that are urged to the outside and the inside may be used as the restricting portion.
 (第3実施形態)
 次に、図18から図21を参照して本発明の第3実施形態に係る油圧シリンダ300について説明する。以下では、上記第1実施形態と異なる点を中心に説明し、上記第1実施形態の油圧シリンダ100と同一の構成には同一の符号を付して説明を省略する。
(Third embodiment)
Next, a hydraulic cylinder 300 according to a third embodiment of the present invention will be described with reference to FIGS. Below, it demonstrates centering on a different point from the said 1st Embodiment, the same code | symbol is attached | subjected to the structure same as the hydraulic cylinder 100 of the said 1st Embodiment, and description is abbreviate | omitted.
 上記第1実施形態では、規制部は、クッションリング41の内周面及び外周面を挿通する規制ピン45である。 In the first embodiment, the restricting portion is the restricting pin 45 that passes through the inner and outer peripheral surfaces of the cushion ring 41.
 これに対し、第3実施形態に係る油圧シリンダ300の規制部は、クッションリング241に隣接して設けられ合口隙間245Aを有して拡縮可能に形成される単一の拡縮リング245である点において、上記第1実施形態に係る油圧シリンダ100とは相違する。 In contrast, the restricting portion of the hydraulic cylinder 300 according to the third embodiment is a single expansion / contraction ring 245 that is provided adjacent to the cushion ring 241 and has an abutment gap 245A and can be expanded / contracted. This is different from the hydraulic cylinder 100 according to the first embodiment.
 図18に示すように、油圧シリンダ300のクッションリング241は、ピストンロッド20の段差部23と拡縮リング245とに挟まれて設けられる。クッションリング241には、上記第1実施形態と同様にクッション通路242及び径方向溝46が形成されると共に、拡縮リング245に対向する端面における径方向内側に環状の中央凹部243が形成される。クッション通路242は、中央凹部243の内側の空間に連通して形成される。中央凹部243は、拡縮リング245に対向するクッションリング241の端面に開口すると共に、クッションリング241の内周面に開口する。なお、クッションリング241に着脱されるオリフィスプラグにクッション通路242が形成される場合には、軸方向に隣接する拡縮リング245がクッションリング241からのオリフィスプラグの抜けを防止する押さえ部材として機能する。 As shown in FIG. 18, the cushion ring 241 of the hydraulic cylinder 300 is provided between the stepped portion 23 of the piston rod 20 and the expansion / contraction ring 245. A cushion passage 242 and a radial groove 46 are formed in the cushion ring 241 as in the first embodiment, and an annular central recess 243 is formed radially inward at the end face facing the expansion / contraction ring 245. The cushion passage 242 is formed in communication with the space inside the central recess 243. The central recess 243 opens on the end surface of the cushion ring 241 facing the expansion / contraction ring 245 and opens on the inner peripheral surface of the cushion ring 241. When the cushion passage 242 is formed in the orifice plug attached to and detached from the cushion ring 241, the expansion / contraction ring 245 adjacent in the axial direction functions as a pressing member that prevents the orifice plug from coming off from the cushion ring 241.
 拡縮リング245は、図19に示すように、合口隙間245Aを有し拡縮可能なCリング状に形成される。拡縮リング245は、シリンダチューブ10の摺動面11に対向する状態(図18に示す状態)では、図19に示すように、内周部分が環状溝25に収容され摺動面11との間に隙間を形成する。 As shown in FIG. 19, the expansion / contraction ring 245 is formed in a C-ring shape having a joint gap 245 </ b> A that can be expanded / contracted. In the state where the expansion / contraction ring 245 faces the sliding surface 11 of the cylinder tube 10 (the state shown in FIG. 18), the inner peripheral portion is accommodated in the annular groove 25 as shown in FIG. A gap is formed in
 クッションリング241に対向する拡縮リング245の端面には、図18及び図19に示すように、拡縮リング245がクッションリング241に接触した状態で中央凹部243の内側に挿入される中央段部246が形成される。 On the end face of the expansion / contraction ring 245 facing the cushion ring 241, as shown in FIGS. 18 and 19, there is a central step 246 that is inserted inside the central recess 243 while the expansion / contraction ring 245 is in contact with the cushion ring 241. It is formed.
 中央段部246の外径は、拡縮リング245が環状溝25に収容された状態において、クッションリング241の中央凹部243の内径よりも小さくなるように形成される。よって、拡縮リング245が環状溝25に収容された状態では、クッションリング241の中央凹部243と拡縮リング245の中央段部246との間には、径方向に隙間が設けられる。また、クッションリング241と拡縮リング245とが接触した状態では、中央段部246は、中央凹部243に接触せずに軸方向に隙間を形成する。よって、クッション通路242は、中央段部246と中央凹部243との間の径方向隙間及び軸方向隙間を通じて、拡縮リング245の合口隙間245A(図19参照)に連通する。 The outer diameter of the central step 246 is formed to be smaller than the inner diameter of the central recess 243 of the cushion ring 241 when the expansion / contraction ring 245 is accommodated in the annular groove 25. Therefore, in the state where the expansion / contraction ring 245 is accommodated in the annular groove 25, a radial gap is provided between the central recess 243 of the cushion ring 241 and the central step 246 of the expansion / contraction ring 245. Further, when the cushion ring 241 and the expansion / contraction ring 245 are in contact with each other, the central step portion 246 forms a gap in the axial direction without contacting the central concave portion 243. Therefore, the cushion passage 242 communicates with the joint gap 245A (see FIG. 19) of the expansion / contraction ring 245 through the radial gap and the axial gap between the central step 246 and the central recess 243.
 拡縮リング245が拡張すると、中央段部246はクッションリング241の中央凹部243に接触する。このように拡縮リング245の中央段部246がクッションリング241の中央凹部243に接触することにより、拡縮リング245の中心がピストンロッド20の中心とずれることが防止される。つまり、クッションリング241の中央凹部243は、拡張に伴う拡縮リング245の芯ぶれを防止して、拡縮リング245とクッションリング241との摺動性を安定させる調心機能を発揮する。 When the expansion / contraction ring 245 expands, the center step 246 contacts the center recess 243 of the cushion ring 241. As described above, the center step 246 of the expansion / contraction ring 245 contacts the central recess 243 of the cushion ring 241, thereby preventing the center of the expansion / contraction ring 245 from being shifted from the center of the piston rod 20. In other words, the central recess 243 of the cushion ring 241 exhibits a centering function that prevents the centering of the expansion / contraction ring 245 accompanying expansion and stabilizes the slidability between the expansion / contraction ring 245 and the cushion ring 241.
 拡縮リング245は、シリンダチューブ10の摺動面11に対向する状態では、ピストンロッド20の環状溝25に収容されてピストンロッド20の段差部23との間でクッションリング241を挟むようにクッションリング241に係止される。これにより、クッションリング241がピストンロッド20に保持される。拡縮リング245は、内周面が環状溝25に接触する状態(図18に示す状態)における外径が摺動面11の内径よりも小さい。また、拡縮リング245は、環状溝25から脱出した状態(図20に示す状態)における外径が、摺動面11の内径よりも大きく、大径面12の内径よりも小さい。拡縮リング245の内周面が環状溝25に接触する状態では、拡縮リング245の外周面とシリンダチューブ10の摺動面11との間には、隙間が形成される。 In a state where the expansion / contraction ring 245 faces the sliding surface 11 of the cylinder tube 10, the expansion / contraction ring 245 is accommodated in the annular groove 25 of the piston rod 20 so that the cushion ring 241 is sandwiched between the stepped portion 23 of the piston rod 20. 241 is locked. Thereby, the cushion ring 241 is held by the piston rod 20. The expansion / contraction ring 245 has an outer diameter smaller than the inner diameter of the sliding surface 11 when the inner peripheral surface is in contact with the annular groove 25 (the state shown in FIG. 18). In addition, the expansion / contraction ring 245 has an outer diameter that is larger than the inner diameter of the sliding surface 11 and smaller than the inner diameter of the large-diameter surface 12 in a state where it has escaped from the annular groove 25 (the state shown in FIG. In a state where the inner peripheral surface of the expansion / contraction ring 245 contacts the annular groove 25, a gap is formed between the outer peripheral surface of the expansion / contraction ring 245 and the sliding surface 11 of the cylinder tube 10.
 図18に示すように、拡縮リング245がシリンダチューブ10の摺動面11に対向する状態では、摺動面11によって拡縮リング245の拡張が規制され、環状溝25からの拡縮リング245の脱出が規制される。 As shown in FIG. 18, when the expansion / contraction ring 245 faces the sliding surface 11 of the cylinder tube 10, the expansion of the expansion / contraction ring 245 is restricted by the sliding surface 11, and the expansion / contraction ring 245 escapes from the annular groove 25. Be regulated.
 拡縮リング245がシリンダチューブ10の大径面12に対向する状態では、大径面12により拡縮リング245の拡張が許容され、環状溝25からの拡縮リング245の脱出が可能な状態となる。よって、図20に示すように、クッションリング241は、拡縮リング245が拡張して環状溝25から脱出することでピストンロッド20による保持が解除される。 When the expansion / contraction ring 245 faces the large-diameter surface 12 of the cylinder tube 10, the expansion / contraction ring 245 is allowed to expand by the large-diameter surface 12, and the expansion / contraction ring 245 can escape from the annular groove 25. Therefore, as shown in FIG. 20, the cushion ring 241 is released from the holding by the piston rod 20 when the expansion / contraction ring 245 expands and escapes from the annular groove 25.
 伸長作動時において、図18に示すように、クッション部240がシリンダチューブ10の摺動面11に対向した状態では、クッション部240の拡縮リング245の拡張が摺動面11によって規制される。このため、拡縮リング245が環状溝25に収容される状態が維持される。よって、クッションリング241は、ピストンロッド20に保持される状態が維持され、ピストンロッド20と共に伸長方向へ移動する。ピストンロッド20の移動に伴い、ロッド側室1の作動油は、給排通路4に直接導かれて、給排口3を通じて排出される。 18, when the cushion portion 240 faces the sliding surface 11 of the cylinder tube 10 during the extension operation, the expansion of the expansion / contraction ring 245 of the cushion portion 240 is restricted by the sliding surface 11. For this reason, the state in which the expansion / contraction ring 245 is accommodated in the annular groove 25 is maintained. Therefore, the cushion ring 241 is maintained in the state where it is held by the piston rod 20 and moves in the extending direction together with the piston rod 20. As the piston rod 20 moves, the hydraulic oil in the rod side chamber 1 is directly guided to the supply / discharge passage 4 and discharged through the supply / discharge port 3.
 ピストンロッド20が伸長ストローク端付近まで移動すると、クッション部40の拡縮リング245がシリンダチューブ10の大径面12に対向すると共に、クッションリング241がシリンダヘッド50の当接部51へ当接する。 When the piston rod 20 moves to the vicinity of the extension stroke end, the expansion / contraction ring 245 of the cushion portion 40 faces the large-diameter surface 12 of the cylinder tube 10, and the cushion ring 241 contacts the contact portion 51 of the cylinder head 50.
 クッションリング241と当接部51とが当接すると、給排通路4とロッド側室1との直接の連通が遮断される。 When the cushion ring 241 and the contact portion 51 come into contact with each other, direct communication between the supply / discharge passage 4 and the rod side chamber 1 is blocked.
 クッションリング241と当接部51とが当接した状態からピストンロッド20がさらに伸長方向へ移動すると、図20に示すように、拡縮リング245は、環状溝25の溝テーパ部25Aによって案内されて径方向外側に押圧される。これにより、拡縮リング245が拡張して環状溝25から脱出する。よって、ピストンロッド20によるクッションリング241の保持が解除され、クッションリング241に対する伸長方向へのピストンロッド20の相対移動が許容される。 When the piston rod 20 further moves in the extending direction from the state where the cushion ring 241 and the contact portion 51 are in contact, the expansion / contraction ring 245 is guided by the groove taper portion 25A of the annular groove 25 as shown in FIG. It is pressed radially outward. Thereby, the expansion / contraction ring 245 expands and escapes from the annular groove 25. Accordingly, the holding of the cushion ring 241 by the piston rod 20 is released, and the relative movement of the piston rod 20 in the extending direction with respect to the cushion ring 241 is allowed.
 ピストンロッド20が伸長方向へさらに移動すると、ロッド側室1の作動油が拡縮リング245の合口隙間245Aと、拡縮リング245の中央段部246とクッションリング241の中央凹部243との間の径方向隙間及び軸方向隙間と、を通じてクッション通路242に導かれる。ロッド側室1の作動油は、クッション通路242を通じて給排通路4及び給排口3に導かれロッド側室1から排出される。したがって、ロッド側室1にはクッション通路242によって付与される抵抗に応じたクッション圧が作用する。このようにして、ピストンロッド20の伸長ストローク端付近におけるクッション作用が発揮される。 When the piston rod 20 further moves in the extending direction, the hydraulic oil in the rod side chamber 1 becomes a gap in the radial direction between the joint gap 245A of the expansion / contraction ring 245 and the central step 246 of the expansion / contraction ring 245 and the central recess 243 of the cushion ring 241. And the axial clearance and is guided to the cushion passage 242. The hydraulic oil in the rod side chamber 1 is guided to the supply / discharge passage 4 and the supply / discharge port 3 through the cushion passage 242 and is discharged from the rod side chamber 1. Therefore, a cushion pressure corresponding to the resistance applied by the cushion passage 242 acts on the rod side chamber 1. In this way, the cushioning action in the vicinity of the extension stroke end of the piston rod 20 is exhibited.
 伸長ストローク端から収縮作動する際には、上記第1実施形態と同様に、給排通路4から導かれる作動油によって、拡縮リング245と内周段差部13との軸方向隙間分だけ、クッションリング241とピストンロッド20とが共に収縮方向に移動する。これにより、図21に示すように、クッションリング241と当接部51とが離間して、給排通路4と第1ロッド側室1Aとが直接連通する。 When the contraction operation is performed from the end of the extension stroke, as in the first embodiment, the cushion oil is provided by an amount corresponding to the axial clearance between the expansion / contraction ring 245 and the inner circumferential step portion 13 by the hydraulic oil guided from the supply / discharge passage 4. Both 241 and the piston rod 20 move in the contraction direction. Accordingly, as shown in FIG. 21, the cushion ring 241 and the contact portion 51 are separated from each other, and the supply / discharge passage 4 and the first rod side chamber 1A are directly communicated with each other.
 クッションリング241及びピストンロッド20が拡縮リング245と内周段差部13との軸方向隙間分だけ収縮方向に移動すると、拡縮リング245と内周段差部13とが当接する。この際、拡縮リング245は、内周面がピストンロッド20の小径部22に対向するため、収縮することができない(図20参照)。拡縮リング245がシリンダチューブ10の摺動面11に向かって内周段差部13を乗り越えることがないため、クッションリング241は拡縮リング245を介して内周段差部13に係止される。 When the cushion ring 241 and the piston rod 20 move in the contraction direction by the axial clearance between the expansion / contraction ring 245 and the inner peripheral step portion 13, the expansion / contraction ring 245 and the inner peripheral step portion 13 come into contact with each other. At this time, the expansion / contraction ring 245 cannot contract because the inner peripheral surface faces the small diameter portion 22 of the piston rod 20 (see FIG. 20). Since the expansion / contraction ring 245 does not get over the inner peripheral step 13 toward the sliding surface 11 of the cylinder tube 10, the cushion ring 241 is locked to the inner peripheral step 13 through the expansion / contraction ring 245.
 よって、給排通路4から導かれる作動油の圧力は、ロッド側室1及び拡縮リング245の合口隙間245Aを通じて径方向溝46に導かれピストン30の端面に作用する。これにより、クッションリング241とピストン30とが離間して、ピストンロッド20がクッションリング241に対して収縮方向へ相対移動する。 Therefore, the pressure of the hydraulic oil guided from the supply / discharge passage 4 is guided to the radial groove 46 through the joint gap 245A of the rod side chamber 1 and the expansion / contraction ring 245 and acts on the end face of the piston 30. Thereby, the cushion ring 241 and the piston 30 are separated from each other, and the piston rod 20 moves relative to the cushion ring 241 in the contracting direction.
 拡縮リング245がピストンロッド20の環状溝25に対向するまでピストンロッド20が収縮方向へ移動すると、拡縮リング245は、内周段差部13のテーパ面13Aによって径方向内側に押圧されると共に自身の弾性力によって収縮して環状溝25に収容される。これにより、拡縮リング245とシリンダチューブ10の内周段差部13との係止が解除されて、拡縮リング245がピストンロッド20の環状溝25に再び収容される。このようにしてピストンロッド20に再び保持されるクッションリング241は、ピストンロッド20と共に収縮方向へ移動する。 When the piston rod 20 moves in the contraction direction until the expansion / contraction ring 245 faces the annular groove 25 of the piston rod 20, the expansion / contraction ring 245 is pressed radially inward by the tapered surface 13 </ b> A of the inner circumferential step portion 13 and its own. It contracts by the elastic force and is accommodated in the annular groove 25. As a result, the engagement between the expansion / contraction ring 245 and the inner circumferential step portion 13 of the cylinder tube 10 is released, and the expansion / contraction ring 245 is accommodated again in the annular groove 25 of the piston rod 20. In this way, the cushion ring 241 held again by the piston rod 20 moves in the contracting direction together with the piston rod 20.
 以上の第3実施形態によれば、上記第1実施形態と同様の効果を奏する。 According to the third embodiment described above, the same effects as in the first embodiment can be obtained.
 また、上記第2実施形態と同様に、油圧シリンダ300では、拡縮リング245の内周全体が環状溝25に収容されるため、上記第1実施形態と比較して、拡縮リング245を環状溝25から脱出させる力を分散でき、耐久性を向上させることができる。 Similarly to the second embodiment, in the hydraulic cylinder 300, since the entire inner periphery of the expansion / contraction ring 245 is accommodated in the annular groove 25, the expansion / contraction ring 245 is formed in the annular groove 25 as compared with the first embodiment. It is possible to disperse the force of escaping from the environment and improve the durability.
 以下、本発明の実施形態の構成、作用、及び効果をまとめて説明する。 Hereinafter, the configuration, operation, and effect of the embodiment of the present invention will be described together.
 油圧シリンダ100,200,300は、シリンダチューブ10と、シリンダチューブ10に挿入されるピストンロッド20と、ピストンロッド20の先端に連結されシリンダチューブ10内をロッド側室1とボトム側室2とに区画するピストン30と、ピストンロッド20の外周に設けられ伸長作動時のストローク端付近でピストンロッド20を減速させるクッション部40,140,240と、ロッド側室1に連通しロッド側室1に給排される作動流体が通過する給排通路4と、シリンダチューブ10に設けられ伸長作動時のストローク端付近でクッション部40が当接する当接部51と、を備え、クッション部40,140,240が、伸長作動時のストローク端付近で当接部51に当接するクッションリング41,141,241と、ピストンロッド20の外周面に形成される環状溝25に収容された状態でピストンロッド20に対するクッションリング41,141,241の相対移動を規制する規制部(規制ピン45、一対の規制リング145、拡縮リング245)と、を有し、伸長作動時のストローク端付近でクッションリング41,141,241と当接部51とが当接するのに伴い、給排通路4とロッド側室1との直接の連通がクッションリング41,141,241によって遮断されると共に規制部(規制ピン45、一対の規制リング145、拡縮リング245)が環状溝25から脱出してピストンロッド20に対するクッションリング41,141,241の相対移動が許容され、通過する作動油に抵抗を付与するクッション通路42,242を通じてロッド側室1の作動油が給排通路4から排出される。 The hydraulic cylinders 100, 200, and 300 are connected to a cylinder tube 10, a piston rod 20 inserted into the cylinder tube 10, and a tip of the piston rod 20, and divide the inside of the cylinder tube 10 into a rod side chamber 1 and a bottom side chamber 2. The piston 30, the cushion portions 40, 140, 240 that are provided on the outer periphery of the piston rod 20 and decelerate the piston rod 20 near the stroke end during the extension operation, and the operation that communicates with the rod side chamber 1 and is supplied to and discharged from the rod side chamber 1. A supply / discharge passage 4 through which the fluid passes, and a contact portion 51 provided in the cylinder tube 10 and in contact with the cushion portion 40 in the vicinity of the stroke end during the extension operation, and the cushion portions 40, 140, and 240 are extended. Cushion rings 41, 141, 241 that contact the contact portion 51 near the stroke end of the hour A restricting portion (a restricting pin 45, a pair of restricting rings 145, restricting relative movement of the cushion rings 41, 141, 241 with respect to the piston rod 20 while being accommodated in an annular groove 25 formed on the outer peripheral surface of the piston rod 20. Expansion / contraction ring 245), and as the cushion rings 41, 141, 241 and the contact portion 51 come into contact with each other in the vicinity of the stroke end during the extension operation, the supply / discharge passage 4 and the rod side chamber 1 directly The communication is blocked by the cushion rings 41, 141, 241, and the restricting portions (the restricting pin 45, the pair of restricting rings 145, the expansion / contraction ring 245) escape from the annular groove 25, and the cushion rings 41, 141, 241 with respect to the piston rod 20. Is allowed to move through the cushion passages 42 and 242 that provide resistance to the passing hydraulic fluid. Hydraulic oil de-side chamber 1 is discharged from the supply and discharge passage 4.
 また、油圧シリンダ100,200,300では、シリンダチューブ10の内周面は、ピストン30が摺動する摺動面11と、摺動面11よりも大きな内径に形成される大径面12と、を有し、規制部(規制ピン45、一対の規制リング145、拡縮リング245)は、摺動面11との当接によって環状溝25からの脱出が規制され、大径面12に対向することにより環状溝25からの脱出が許容される。 In the hydraulic cylinders 100, 200, and 300, the inner peripheral surface of the cylinder tube 10 includes a sliding surface 11 on which the piston 30 slides, a large-diameter surface 12 that has a larger inner diameter than the sliding surface 11, The restricting portion (the restricting pin 45, the pair of restricting rings 145, and the expansion / contraction ring 245) is restricted from coming out of the annular groove 25 by contact with the sliding surface 11, and faces the large diameter surface 12. Thus, escape from the annular groove 25 is allowed.
 これらの構成では、伸長作動時のストローク端付近でクッション部40,140,240が当接部51に当接すると、給排通路4とロッド側室1との直接の連通が遮断される。クッション部40,140,240と当接部51とが当接した状態からピストンロッド20が伸長方向へさらに移動しようとすると、規制部(規制ピン45、一対の規制リング145、拡縮リング245)によって規制されていたピストンロッド20とクッションリング41,141,241との相対移動が許容される。よって、伸長作動のストローク端付近において、ロッド側室1から排出される作動油は、クッション通路42,242を通じて給排通路4へ導かれ、ピストンロッド20を減速させるクッション機能が発揮される。このように、ピストンロッド20に対するクッションリング41,141,241の相対移動が規制部(規制ピン45、一対の規制リング145、拡縮リング245)によって規制されることにより、クッションリング41,141,241を支持するためのスプリングをロッド側室1に設けなくても、伸長作動時のストローク端付近において、クッション機能が発揮される。したがって、流体圧シリンダ100,200,300を小型化することができる。 In these configurations, when the cushion portions 40, 140, 240 abut on the abutment portion 51 near the stroke end during the extension operation, direct communication between the supply / discharge passage 4 and the rod side chamber 1 is blocked. When the piston rod 20 further moves in the extending direction from the state in which the cushion portions 40, 140, 240 and the contact portion 51 are in contact, the restriction portions (the restriction pin 45, the pair of restriction rings 145, and the expansion / contraction ring 245). The relative movement between the regulated piston rod 20 and the cushion rings 41, 141, 241 is allowed. Therefore, in the vicinity of the stroke end of the extension operation, the hydraulic oil discharged from the rod side chamber 1 is guided to the supply / discharge passage 4 through the cushion passages 42 and 242, and the cushion function for decelerating the piston rod 20 is exhibited. As described above, the relative movement of the cushion rings 41, 141, 241 with respect to the piston rod 20 is restricted by the restriction portions (the restriction pins 45, the pair of restriction rings 145, the expansion / contraction ring 245), thereby the cushion rings 41, 141, 241. Even if the rod side chamber 1 is not provided with a spring for supporting it, the cushion function is exhibited in the vicinity of the stroke end during the extension operation. Therefore, the fluid pressure cylinders 100, 200, and 300 can be reduced in size.
 また、油圧シリンダ100,200,300では、規制部(規制ピン45、一対の規制リング145、拡縮リング245)または環状溝25の少なくとも一方には、クッションリング41,141,241と当接部51とが当接する状態からのピストンロッド20の伸長方向への移動に伴い、規制部(規制ピン45、内周リング145B、拡縮リング245)を径方向外側に押圧して環状溝25から脱出させる溝テーパ部25Aが形成される。 Further, in the hydraulic cylinders 100, 200, and 300, the cushion rings 41, 141, and 241 and the contact portion 51 are provided in at least one of the restriction portion (the restriction pin 45, the pair of restriction rings 145, the expansion / contraction ring 245) or the annular groove 25. In accordance with the movement of the piston rod 20 in the extending direction from the state of contact with the groove, the restricting portion (the restricting pin 45, the inner peripheral ring 145B, the expansion / contraction ring 245) is pressed radially outward to escape from the annular groove 25. A tapered portion 25A is formed.
 この構成によれば、クッションリング41,141,241と当接部51とが当接する状態からのピストンロッド20の伸長方向への移動に伴い、規制部(規制ピン45、内周リング145B、拡縮リング245)を環状溝25から確実に脱出させることができる。 According to this configuration, with the movement of the piston rod 20 in the extending direction from the state in which the cushion rings 41, 141, 241 and the contact portion 51 are in contact with each other, the restriction portion (the restriction pin 45, the inner peripheral ring 145 B, expansion / contraction) The ring 245) can surely escape from the annular groove 25.
 また、油圧シリンダ100,200,300では、シリンダチューブ10の内周面は、摺動面11と大径面12との間に形成される内周段差部13をさらに有し、規制部(規制ピン45、外周リング145A、拡縮リング245)または内周段差部13の少なくとも一方には、クッションリング41,141,241と当接部51とが当接する状態からのピストンロッド20の収縮方向への移動に伴い、規制部(規制ピン45、外周リング145A、拡縮リング245)を径方向内側に押圧して環状溝25に収容させる収容案内部が形成される。 Further, in the hydraulic cylinders 100, 200, and 300, the inner peripheral surface of the cylinder tube 10 further includes an inner peripheral step 13 formed between the sliding surface 11 and the large-diameter surface 12. At least one of the pin 45, the outer ring 145A, the expansion / contraction ring 245) or the inner step 13 is in the contraction direction of the piston rod 20 from the state in which the cushion rings 41, 141, 241 and the contact portion 51 are in contact. Accompanying the movement, an accommodation guide portion is formed in which the restriction portions (restriction pin 45, outer ring 145A, expansion / contraction ring 245) are pressed radially inward to be accommodated in the annular groove 25.
 この構成によれば、クッションリング41,141,241と当接部51とが当接する状態からのピストンロッド20の収縮方向への移動に伴い、規制部(規制ピン45、外周リング145A、拡縮リング245)を確実に環状溝25に収容させて、ピストンロッド20を収縮方向へ移動させることができる。 According to this configuration, with the movement of the piston rod 20 in the contracting direction from the state in which the cushion rings 41, 141, 241 and the contact portion 51 are in contact, the restriction portions (the restriction pin 45, the outer ring 145 </ b> A, the expansion / contraction ring). 245) can be reliably accommodated in the annular groove 25, and the piston rod 20 can be moved in the contraction direction.
 また、油圧シリンダ100,200,300では、クッションリング41と当接部51とが当接した状態において、規制部(規制ピン45、外周リング145A、拡縮リング245)と内周段差部13との間には、軸方向の隙間が形成される。 Further, in the hydraulic cylinders 100, 200, and 300, when the cushion ring 41 and the contact portion 51 are in contact with each other, the restriction portion (the restriction pin 45, the outer ring 145 </ b> A, the expansion / contraction ring 245) and the inner step portion 13. A gap in the axial direction is formed between them.
 この構成では、伸長ストローク端からの収縮作動時において、速やかに給排通路4とロッド側室1とが連通する。したがって、収縮作動開始時の応答性を確保することができる。 In this configuration, the supply / exhaust passage 4 and the rod side chamber 1 quickly communicate with each other during the contraction operation from the extension stroke end. Therefore, the responsiveness at the start of the contraction operation can be ensured.
 また、油圧シリンダ100,200,300では、クッション通路42,242は、クッションリング41,141,241に着脱可能に設けられるオリフィスプラグに形成されてもよい。 Further, in the hydraulic cylinders 100, 200, 300, the cushion passages 42, 242 may be formed as orifice plugs that are detachably provided in the cushion rings 41, 141, 241.
 この構成によれば、オリフィスプラグを交換することにより、クッション性能の調整を容易に行うことができる。 According to this configuration, the cushion performance can be easily adjusted by exchanging the orifice plug.
 また、油圧シリンダ100では、規制部は、クッションリング41の外周面と内周面とを挿通し径方向に移動自在に設けられる規制ピン45である。 In the hydraulic cylinder 100, the restricting portion is a restricting pin 45 that is inserted through the outer peripheral surface and the inner peripheral surface of the cushion ring 41 and is movable in the radial direction.
 また、油圧シリンダ200では、規制部は、それぞれクッションリング141の外周及び内周に設けられ合口隙間を有して拡縮可能に形成される一対の規制リング145(外周リング145A及び内周リング145B)である。 Further, in the hydraulic cylinder 200, the restricting portions are provided on the outer periphery and the inner periphery of the cushion ring 141, respectively, and a pair of restricting rings 145 (an outer ring 145A and an inner ring 145B) are formed so as to be able to expand and contract. It is.
 また、油圧シリンダ300では、規制部は、クッションリング241に軸方向に隣接して設けられ合口隙間245Aを有して拡縮可能に形成される拡縮リング245である。 Further, in the hydraulic cylinder 300, the restricting portion is an expansion / contraction ring 245 provided adjacent to the cushion ring 241 in the axial direction and having a joint gap 245A so as to be expandable / contractible.
 また、油圧シリンダ300では、クッションリング241は、拡縮リング245に対向する端面の内側に形成される中央凹部243を有し、拡縮リング245は、中央凹部243に挿入される中央段部246を有し、拡縮リング245がピストンロッド20の環状溝25に収容された状態では、中央凹部243と中央段部246との間には径方向隙間が形成され、拡縮リング245が拡張して環状溝25から脱出した状態では、中央段部246が中央凹部243に接触する。 In the hydraulic cylinder 300, the cushion ring 241 has a central recess 243 formed on the inner side of the end surface facing the expansion / contraction ring 245, and the expansion / contraction ring 245 has a central step 246 inserted into the central recess 243. In the state in which the expansion / contraction ring 245 is accommodated in the annular groove 25 of the piston rod 20, a radial gap is formed between the central recess 243 and the central step 246, and the expansion / contraction ring 245 expands to form the annular groove 25. In the state of having escaped from the center step 246, the central step 246 contacts the central recess 243.
 この構成では、クッションリング241の中央凹部243と拡縮リング245の中央段部246とが接触することにより、拡縮リング245が調心されつつ拡張することができる。したがって、クッションリング41と拡縮リング245との摺動性を安定させることができる。 In this configuration, the expansion / contraction ring 245 can be expanded while being aligned by contacting the central recess 243 of the cushion ring 241 and the central step 246 of the expansion / contraction ring 245. Therefore, the slidability between the cushion ring 41 and the expansion / contraction ring 245 can be stabilized.
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。 The embodiment of the present invention has been described above. However, the above embodiment only shows a part of application examples of the present invention, and the technical scope of the present invention is limited to the specific configuration of the above embodiment. Absent.
 本願は2016年3月31日に日本国特許庁に出願された特願2016-72428に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。 This application claims priority based on Japanese Patent Application No. 2016-72428 filed with the Japan Patent Office on March 31, 2016, the entire contents of which are incorporated herein by reference.

Claims (10)

  1.  流体圧シリンダであって、
     シリンダチューブと、
     前記シリンダチューブに挿入されるピストンロッドと、
     前記ピストンロッドの先端に連結され前記シリンダチューブ内をロッド側室とボトム側室とに区画するピストンと、
     前記ピストンロッドの外周に設けられ伸長作動時のストローク端付近で前記ピストンロッドを減速させるクッション部と、
     前記ロッド側室に連通し前記ロッド側室に給排される作動流体が通過する給排通路と、
     前記シリンダチューブに設けられ伸長作動時のストローク端付近で前記クッション部が当接する当接部と、を備え、
     前記クッション部は、伸長作動時のストローク端付近で前記当接部に当接するクッションリングと、前記ピストンロッドの外周面に形成される凹部に収容された状態で前記ピストンロッドに対する前記クッションリングの相対移動を規制する規制部と、を有し、
     伸長作動時のストローク端付近で前記クッションリングと前記当接部とが当接するのに伴い、前記給排通路と前記ロッド側室との直接の連通が前記クッションリングによって遮断されると共に前記規制部が前記凹部から脱出して前記ピストンロッドに対する前記クッションリングの相対移動が許容され、通過する作動流体に抵抗を付与するクッション通路を通じて前記ロッド側室の作動流体が前記給排通路から排出される流体圧シリンダ。
    A fluid pressure cylinder,
    A cylinder tube;
    A piston rod inserted into the cylinder tube;
    A piston connected to the tip of the piston rod and dividing the cylinder tube into a rod side chamber and a bottom side chamber;
    A cushion portion provided on the outer periphery of the piston rod for decelerating the piston rod in the vicinity of a stroke end during extension operation;
    A supply / discharge passage through which the working fluid communicated with the rod side chamber passes through the rod side chamber;
    A contact portion provided in the cylinder tube and in contact with the cushion portion near the stroke end at the time of extension operation;
    The cushion portion is a cushion ring that contacts the contact portion in the vicinity of the stroke end during the extension operation, and a relative position of the cushion ring relative to the piston rod in a state of being accommodated in a recess formed on the outer peripheral surface of the piston rod. And a regulation unit that regulates movement,
    As the cushion ring and the contact portion abut near the stroke end during the extension operation, direct communication between the supply / exhaust passage and the rod side chamber is blocked by the cushion ring and the restricting portion is A hydraulic cylinder that escapes from the recess and allows the relative movement of the cushion ring with respect to the piston rod, and discharges the working fluid in the rod-side chamber from the supply / discharge passage through a cushion passage that provides resistance to the working fluid passing therethrough. .
  2.  請求項1に記載の流体圧シリンダであって、
     前記シリンダチューブの内周面は、前記ピストンが摺動する摺動面と、前記摺動面よりも大きな内径に形成される大径面と、を有し、
     前記規制部は、前記摺動面との当接によって前記凹部からの脱出が規制され、前記大径面に対向することにより前記凹部からの脱出が許容される流体圧シリンダ。
    The fluid pressure cylinder according to claim 1,
    The inner peripheral surface of the cylinder tube has a sliding surface on which the piston slides, and a large-diameter surface formed with an inner diameter larger than the sliding surface,
    The restricting portion is a fluid pressure cylinder in which escape from the recess is restricted by contact with the sliding surface, and escape from the recess is allowed by facing the large-diameter surface.
  3.  請求項1に記載の流体圧シリンダであって、
     前記規制部または前記凹部の少なくとも一方には、前記クッションリングと前記当接部とが当接する状態からの前記ピストンロッドの伸長方向への移動に伴い、前記規制部を径方向外側に押し出して前記凹部から脱出させる脱出案内部が形成される流体圧シリンダ。
    The fluid pressure cylinder according to claim 1,
    At least one of the restricting portion or the recessed portion is pushed out radially outwardly with the movement of the piston rod in the extending direction from the state where the cushion ring and the abutting portion are in contact with each other. A fluid pressure cylinder in which an escape guide is provided to escape from the recess.
  4.  請求項2に記載の流体圧シリンダであって、
     前記シリンダチューブの内周面は、前記摺動面と前記大径面との間に形成される内周段差部をさらに有し、
     前記規制部または前記内周段差部の少なくとも一方には、前記クッションリングと前記当接部とが当接する状態からの前記ピストンロッドの収縮方向への移動に伴い、前記規制部を径方向内側に押し出して前記凹部に収容させる収容案内部が形成される流体圧シリンダ。
    The fluid pressure cylinder according to claim 2,
    The inner peripheral surface of the cylinder tube further includes an inner peripheral stepped portion formed between the sliding surface and the large diameter surface,
    At least one of the restricting portion and the inner circumferential step portion is configured to move the restricting portion radially inward as the piston rod moves in a contracting direction from a state in which the cushion ring and the abutting portion abut. A fluid pressure cylinder in which an accommodation guide is formed to be pushed out and accommodated in the recess.
  5.  請求項4に記載の流体圧シリンダであって、
     前記クッションリングと前記当接部とが当接した状態において、前記規制部と前記内周段差部との間には、軸方向の隙間が形成される流体圧シリンダ。
    The fluid pressure cylinder according to claim 4,
    A fluid pressure cylinder in which an axial gap is formed between the restriction portion and the inner circumferential step portion in a state where the cushion ring and the contact portion are in contact.
  6.  請求項1に記載の流体圧シリンダであって、
     前記クッション通路は、前記クッションリングに着脱可能に設けられるオリフィスプラグに形成される流体圧シリンダ。
    The fluid pressure cylinder according to claim 1,
    The cushion passage is a fluid pressure cylinder formed in an orifice plug detachably provided on the cushion ring.
  7.  請求項1に記載の流体圧シリンダであって、
     前記規制部は、前記クッションリングの外周面と内周面とを挿通し径方向に移動自在に設けられる規制ピンである流体圧シリンダ。
    The fluid pressure cylinder according to claim 1,
    The restricting portion is a fluid pressure cylinder that is a restricting pin that is inserted through an outer peripheral surface and an inner peripheral surface of the cushion ring and is movable in a radial direction.
  8.  請求項1に記載の流体圧シリンダであって、
     前記規制部は、それぞれ前記クッションリングの外周及び内周に設けられ拡縮可能に形成される一対の規制リングである流体圧シリンダ。
    The fluid pressure cylinder according to claim 1,
    The said restriction | limiting part is a fluid pressure cylinder which is a pair of regulation ring provided in the outer periphery and inner periphery of the said cushion ring, respectively, and being formed so that expansion / contraction is possible.
  9.  請求項1に記載の流体圧シリンダであって、
     前記規制部は、前記クッションリングに軸方向に隣接して設けられ合口隙間を有して拡縮可能に形成される拡縮リングである流体圧シリンダ。
    The fluid pressure cylinder according to claim 1,
    The restricting portion is a fluid pressure cylinder that is an expansion / contraction ring provided adjacent to the cushion ring in the axial direction and having an abutment gap so as to be expandable / contractible.
  10.  請求項9に記載の流体圧シリンダであって、
     前記クッションリングは、前記拡縮リングに対向する端面の内側に形成される中央凹部を有し、
     前記拡縮リングは、前記中央凹部に挿入される中央段部を有し、
     前記拡縮リングが前記ピストンロッドの前記凹部に収容された状態では、前記中央凹部と前記中央段部との間には径方向隙間が形成され、
     前記拡縮リングが拡張して前記凹部から脱出した状態では、前記中央段部が前記中央凹部に接触する流体圧シリンダ。
    The fluid pressure cylinder according to claim 9,
    The cushion ring has a central recess formed on the inner side of the end surface facing the expansion / contraction ring,
    The expansion / contraction ring has a central step portion inserted into the central recess,
    In the state where the expansion / contraction ring is accommodated in the concave portion of the piston rod, a radial gap is formed between the central concave portion and the central step portion,
    A fluid pressure cylinder in which the central step portion contacts the central concave portion when the expansion / contraction ring expands and escapes from the concave portion.
PCT/JP2017/012323 2016-03-31 2017-03-27 Fluid pressure cylinder WO2017170361A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780019665.9A CN108779789B (en) 2016-03-31 2017-03-27 Fluid pressure cylinder
DE112017001603.7T DE112017001603T5 (en) 2016-03-31 2017-03-27 FLUID PRESSURE CYLINDER

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016072428A JP6255440B2 (en) 2016-03-31 2016-03-31 Fluid pressure cylinder
JP2016-072428 2016-03-31

Publications (1)

Publication Number Publication Date
WO2017170361A1 true WO2017170361A1 (en) 2017-10-05

Family

ID=59965588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/012323 WO2017170361A1 (en) 2016-03-31 2017-03-27 Fluid pressure cylinder

Country Status (4)

Country Link
JP (1) JP6255440B2 (en)
CN (1) CN108779789B (en)
DE (1) DE112017001603T5 (en)
WO (1) WO2017170361A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7323103B2 (en) * 2020-07-22 2023-08-08 Smc株式会社 hydraulic cylinder

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60125404A (en) * 1983-12-12 1985-07-04 Kayaba Ind Co Ltd Cushion device of cylinder

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4009639A (en) * 1973-08-09 1977-03-01 Kayabakogyo-Kabushiki-Kaisha Hydraulic swing motor
EP1001174A4 (en) * 1998-05-29 2005-12-14 Hitachi Construction Machinery Hydraulic cylinder
KR20040072846A (en) * 2003-02-11 2004-08-19 현대모비스 주식회사 Damper
CN101761520A (en) * 2010-02-06 2010-06-30 楼天汝 Pressure-reducing cushioning oil cylinder
JP5730058B2 (en) * 2011-02-17 2015-06-03 Kyb−Ys株式会社 Fluid pressure cylinder
JP5789456B2 (en) * 2011-09-06 2015-10-07 カヤバ工業株式会社 Fluid pressure cylinder
CA2900787C (en) * 2013-02-13 2020-02-25 Messier-Dowty Inc. Modular actuator with snubbing arrangement
CN203743126U (en) * 2013-12-30 2014-07-30 中船重工中南装备有限责任公司 Double-floating-buffer hydraulic cylinder
JP2016072428A (en) 2014-09-30 2016-05-09 株式会社ディスコ Holding method for wafer
CN105090159A (en) * 2015-08-29 2015-11-25 济南大学 Low-friction and quick-start hydraulic cylinder based on flutter mechanism

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60125404A (en) * 1983-12-12 1985-07-04 Kayaba Ind Co Ltd Cushion device of cylinder

Also Published As

Publication number Publication date
CN108779789A (en) 2018-11-09
CN108779789B (en) 2020-07-14
JP2017180780A (en) 2017-10-05
DE112017001603T5 (en) 2018-12-13
JP6255440B2 (en) 2017-12-27

Similar Documents

Publication Publication Date Title
CN105940239B (en) Controllable vibration damper for motor vehicle
US20070062368A1 (en) Lock mechanism for use with fluid pressure-operated apparatus
KR20180014164A (en) Integral Check-Relief Valve
WO2011099402A1 (en) Fluid pressure cylinder
KR20010022434A (en) Hydraulic cylinder
KR20180081514A (en) Coupling element for coupling a pressure medium line
US7712482B2 (en) Pressure-reducing valve
WO2017170361A1 (en) Fluid pressure cylinder
KR101596176B1 (en) Hydraulic pressure cylinder
US4465097A (en) Coupling
JP6275459B2 (en) Fluid pressure cylinder
KR20180069028A (en) Fluid pressure device and method of manufacturing the same
US10451093B2 (en) Fluid pressure cylinder
JP2019035459A (en) Spool valve
US10133282B2 (en) Shuttle valve with durable soft seal
KR20170116024A (en) Fluid pressure cylinder
JP2006146776A (en) Pressure reducing valve
JP7116646B2 (en) damper
JP2009234491A (en) Master cylinder
JP2005220926A (en) Oil lock structure
WO2019044115A1 (en) Master cylinder
JP2008014359A (en) Piston structure
US8001884B2 (en) Swivel motor
JP2019199954A (en) Fluid pressure cylinder
JP7479807B2 (en) Valves and Construction Machinery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17774898

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17774898

Country of ref document: EP

Kind code of ref document: A1