WO2017170264A1 - Skeleton specifying system, skeleton specifying method, and computer program - Google Patents

Skeleton specifying system, skeleton specifying method, and computer program Download PDF

Info

Publication number
WO2017170264A1
WO2017170264A1 PCT/JP2017/012139 JP2017012139W WO2017170264A1 WO 2017170264 A1 WO2017170264 A1 WO 2017170264A1 JP 2017012139 W JP2017012139 W JP 2017012139W WO 2017170264 A1 WO2017170264 A1 WO 2017170264A1
Authority
WO
WIPO (PCT)
Prior art keywords
point
human body
model
skeleton
points
Prior art date
Application number
PCT/JP2017/012139
Other languages
French (fr)
Japanese (ja)
Inventor
和人 林
豊 瀬戸
Original Assignee
株式会社3D body Lab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社3D body Lab filed Critical 株式会社3D body Lab
Priority to JP2018509264A priority Critical patent/JPWO2017170264A1/en
Publication of WO2017170264A1 publication Critical patent/WO2017170264A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/107Measuring physical dimensions, e.g. size of the entire body or parts thereof
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T13/00Animation
    • G06T13/203D [Three Dimensional] animation
    • G06T13/403D [Three Dimensional] animation of characters, e.g. humans, animals or virtual beings

Definitions

  • the present invention provides a human body model according to the physique of a subject, and in particular, using an anatomical human body model including a skeleton model and a muscle model in stages, the model at each stage is attached to the body of the subject.
  • the human body model providing system that automatically deforms in response to the human body model, the skeletal identification system and the skeletal identification that can verify the posture of the human body without specifying X-rays or MRI.
  • the present invention relates to a method and a computer program.
  • a human body model corresponding to a physique of a subject is generated using various measurement results related to the physique of the subject.
  • a human body model showing an external outline shape of a human body prepared in advance is deformed based on measurement results (height, chest measurement, dimensions of each part, etc.) related to the physique of the subject. It is disclosed.
  • Patent Document 3 it is shown that a skeleton model is derived from data indicating the height, weight, and outer shape of a subject (subject) (see FIG. 13 of Patent Document 3).
  • Patent Document 4 shows that the deformation process is performed so that the shape of the internal tissue (muscle, fat, etc.) of the deformed human body model based on the polygon mesh is approximated to the shape of the individual internal tissue. (See FIGS. 1, 7, and 8 of Patent Document 4).
  • Patent Document 5 standard skeleton model data indicating a skeleton according to age, sex, etc. is prepared in advance, and the standard skeleton model data etc. is appropriately used using software for editing the shape, etc. It is shown that the user manually corrects.
  • a human body model is also presented using a compositional measurement result of a subject.
  • Patent Document 6 shows that fat weight and lean body weight are obtained from the results of measurement based on the bioelectrical impedance method, and the obtained weights are displayed on a human body model (Patent Document). 6 (see FIG. 6).
  • Patent Document 7 discloses that the result of measuring a subject using a body composition meter (biological information: fat mass, visceral fat mass, muscle mass, etc.) is represented by a human image (Patent Document). 7 see FIGS. 9 to 11).
  • a homology model is generated based on a plurality of points obtained by measurement with a three-dimensional measuring instrument, and the coordinate values of each joint in the human skeleton are included using the generated homology model. It is disclosed that joint position data BD is generated by calculation (see paragraph 0139 of Patent Document 8). Furthermore, in the following Patent Document 9, a joint position candidate is calculated from a distance image, and based on the calculated joint position candidate and its likelihood, a final joint position is determined and a human body posture is estimated. Is disclosed.
  • the coordinate data of the lowest point of the sacrum is obtained from the three-dimensional image information about the human body obtained from the MRI (magnetic resonance image) imaging device, and is set as a reference point to create a three-dimensional coordinate system. To be disclosed.
  • Patent Document 11 a principal axis analysis is performed on body shape data obtained by using a non-contact three-dimensional scanner of a three-dimensional surveying method, and a posture axis representing a tendency of the subject's body shape (See paragraphs 0023 to 0027 of Patent Document 11).
  • Patent Document 12 each part of a patient is labeled and scanned to obtain position data, and the deviation from the vertical alignment and the distance from the vertical axis are obtained (FIG. 13 of Patent Document 12). (See FIG. 13 of Patent Document 12), which also discloses exercise and stretch associated with posture deviation.
  • Non-Patent Document 1 proposes a 3D human anatomy app that can present the anatomical structure of the human body at a desired angle, desired magnification, etc. in three dimensions, such as the skeletal level and the muscle level.
  • JP 2002-183758 A Japanese Patent Laid-Open No. 10-49045 JP 11-192214 A JP 2013-89123 A JP-A-4-195476 JP 2001-321350 A JP 2014-18444 A JP 2011-180790 A JP2015-167008A JP 2002-186588 A JP 2016-1235856 A JP-T-2004-512919 Japanese Patent Laid-Open No. 2005-301 "teamLabBody" -3D Motion Human Anatomy, the world's first 3D human anatomy app that reproduces the movements and forms of living humans ", [online], [Search on March 16, 2016], Internet ⁇ URL: http : //www.teamlabbody.com/3dnote-jp/>
  • Patent Documents 1, 2, 6, and 7 described above all represent a human body model that reflects the measurement results of the subject.
  • muscles are superimposed on the skeleton model.
  • the contents of Patent Documents 1, 2, 6, and 7 cannot be used. There is.
  • Patent Document 3 does not actually measure the muscle mass and fat mass of the extremities (left and right arms, left and right legs) and trunk of the subject, but numerically analyzes muscle and fat using various databases such as a weight DB. Therefore, there is a problem that it is impossible to provide a model reflecting the subject's actual muscle attachment and fat attachment.
  • the polygon data about the shape of muscle and fat disclosed in Patent Document 3 is based on the human body shape based on the wire frame model, a schematic model showing a simplified human body shape is generated. Stay on. Since Patent Document 4 is based on a numerical human body model, there is a problem that a model corresponding to the individual body of the subject cannot be provided.
  • Patent Documents 3, 4, 6, and 7 the way of expressing the fat in the human body model is as shown in FIG. 6 of Patent Document 6 and FIGS. As described above, it is only an amount to add fat to the peripheral contour of the human body model, for example, by placing fat on the muscle model of Non-Patent Document 1 described above, and a model in which such fat is arranged, There is a problem that Patent Documents 3, 4, 6, and 7 cannot cope with expressing the amount of fat. In particular, when the amount of fat measured is less than the standard, it is generally difficult to visually represent the state of fat less than the standard with a human body model.
  • Non-Patent Document 1 in the case of showing an anatomical human body model in which muscles and the like are superimposed on the skeleton model, the skeleton model and the model at the stage where the muscles are arranged according to the measurement result of the subject, etc. As described above, when a model is deformed at each stage, there is a problem that it is difficult to ensure consistency between models at different stages.
  • Patent Documents 8 and 9 described above.
  • Patent Document 8 described above since a homologous model is once generated from the three-dimensional measurement result, and the coordinate value of each joint in the human skeleton is obtained by calculation using the homologous model, generation of the homologous model is essential.
  • the posture axis is obtained by principal component analysis from a plurality of points on the measurement target surface obtained by three-dimensional measurement or the like, so posture verification is an analysis from the surface of the human body.
  • posture verification cannot be performed based on the state of the skeleton inside the human body. This problem is the same in Patent Documents 12 and 13 described above. Since the subject is photographed and the posture is verified based on the surface position and shape of the human body, the skeleton position inside the human body is specified. Not.
  • the present invention has been made in view of such circumstances, and a human body model providing system, a human body model deformation system, and a human body model deformation system that can automatically perform deformation according to a measurement result of a subject with respect to a muscle model having muscles superimposed on a skeleton model It is an object to provide a method and a computer program.
  • the present invention also provides a human body that can visually represent the case where the amount of fat is greater than the standard or less than the standard in accordance with the measurement result of the subject even at the stage of the fat model having fat superimposed on the muscle model. It is an object to provide a model providing system, a human body model transformation method, and a computer program.
  • the present invention provides a skeleton model, a muscle model, or a fat model prepared in a state where a plurality of types are set in advance according to the physique type, and the set skeleton model, muscle model, or fat model
  • an object of the present invention is to provide a skeletal identification system, a skeleton identification method, and a computer program that can identify the position of each skeleton point in the human body.
  • the present invention provides a skeletal identification system that can identify a position from each point of a deformed skeleton model by using a deformable skeleton model for a place where it is difficult to specify the position of the skeleton point using a point table.
  • Another object is to provide a skeleton identification method and a computer program.
  • An object of the present invention is to identify a skeleton identification system, a skeleton identification method, and a computer program that can verify the posture of a human body measured by a three-dimensional measuring device based on the position of the identified skeleton point. To do.
  • the human body model providing system is a human body model providing system that performs deformation processing of a human body model indicating a physique based on information relating to a physical measurement result of a subject.
  • a human body model providing system that performs deformation processing of a human body model indicating a physique based on information relating to a physical measurement result of a subject.
  • Including a skeletal model corresponding to the skeleton and a muscle model corresponding to the muscle covering the skeleton model, and means for obtaining a numerical value relating to the muscle mass in a specific part of the subject's body, and the obtained numeric value relating to the muscle mass is standard If the value is smaller than the standard, the means for deforming the muscle model so that the muscle portion related to the specific part in the muscle model is thicker, and And a means for deforming the muscle model so that a muscle portion related to the specific part in the skin is thinned.
  • the system for providing a human body model provides a means for acquiring a numerical value related to visceral fat in the trunk of a subject, and when the acquired numerical value related to visceral fat is larger than a standard, an abdominal region in the muscle model is thick. It is characterized by providing with the means to deform
  • the human body model includes a fat model corresponding to fat covering the muscle model, and when the muscle model is deformed, the fat model is tracked following the deformation of the muscle model. It is characterized by comprising means for deforming.
  • the human body model providing system provides a means for acquiring a numerical value related to a subcutaneous fat mass in a specific part of a subject's body, and if the acquired numerical value related to the subcutaneous fat mass is larger than a standard, the fat model in the fat model And a means for deforming the fat model so that a fat portion corresponding to the specific part is thickened.
  • the fat model corresponds to the specific part in the fat model. Means for making the color of the surface portion darker than the reference color.
  • the human body model providing system includes means for making the color of the surface portion corresponding to the specific part in the fat model lighter than the reference color when the numerical value related to the acquired subcutaneous fat mass is smaller than the standard. It is characterized by that.
  • the fat of the fat model corresponding to the specific part in the fat model is transmitted and the muscle of the muscle model is reflected. And a means for changing the portion.
  • the human body model providing system includes, as the skeleton model, a standard skeleton model, a first skeleton model in which the dimensions of the limbs are shorter than the standard skeleton model, and the standard skeleton model.
  • a second skeletal model in which the dimensions of the limbs are increased, and the muscle model includes a standard muscle model corresponding to the standard skeleton model and a first muscle model corresponding to the first skeleton model.
  • a second muscle model corresponding to the second skeletal model a means for obtaining a measurement result relating to the physique of the subject, the standard skeleton model, the first skeleton model based on the obtained measurement result Means for specifying any one of the skeletal model and the second skeleton model, and the muscle model corresponding to the specified skeleton model is deformed.
  • the human body model providing system includes, as the skeleton model, a standard skeleton model, a first skeleton model in which the dimensions of the limbs are shorter than the standard skeleton model, and the standard skeleton model.
  • the fat model includes a standard fat model corresponding to the standard skeleton model and a first fat model corresponding to the first skeleton model.
  • a second fat model corresponding to the second skeletal model a means for acquiring a measurement result relating to the physique of the subject, the standard skeleton model, the first skeleton model based on the acquired measurement result Means for specifying any one of the skeletal model and the second skeletal model, wherein the fat model corresponding to the specified skeletal model is deformed.
  • the human body model providing system includes a means for acquiring a measurement result related to the physique of a subject, and deforms the specified skeleton model so as to enlarge or reduce the skeleton model in a similar manner based on the acquired measurement result. And means for deforming the muscle model following the deformation of the skeleton model when the skeleton model is deformed.
  • the skeleton model has a deformation base point, and corresponds to the deformation base point from a plurality of vertices related to the physique of the subject included in the information related to the physical measurement result of the subject.
  • Means for identifying the corresponding point, means for identifying the direction from the joint nearest to the deformation base point to the corresponding point in the skeleton model, and the direction of the bone portion including the deformation base point and connected to the joint Means for changing the angle of the bone part around the joint so as to be in the same direction as the length of the bone part so that the deformation base point of the bone part whose angle has been changed coincides with the corresponding point.
  • the corresponding part of the bone part in the muscle model is shaped in accordance with the deformation of the bone part of the skeleton model.
  • it comprises a means for deforming the muscle model.
  • the human body model deformation method is a human body model deformation method in which the human body model processing apparatus performs deformation processing of a human body model indicating a physique based on information related to a physical measurement result of a subject.
  • the human body model processing apparatus performs deformation processing of a human body model indicating a physique based on information related to a physical measurement result of a subject.
  • the step of acquiring a numerical value related to the muscle mass at a specific part of the body of the subject, and the acquired numerical value relating to the muscle mass as a standard When the comparison is larger, the step of deforming the muscle model so that the muscle portion related to the specific part in the muscle model becomes thicker, and the numerical value related to the acquired muscle mass is smaller than the standard, And a step of deforming the muscle model so that a muscle portion related to the specific part is thinned.
  • a computer program according to the present invention is a computer program for causing a computer to perform deformation processing of a human body model indicating a physique based on information related to a physical measurement result of a subject.
  • the computer Including a skeletal model and a muscle model corresponding to the muscle covering the skeletal model, the computer acquiring a numerical value related to the muscle mass at a specific part of the subject's body, and the acquired numerical value relating to the muscle mass as a standard
  • the step of deforming the muscle model so that the muscle portion related to the specific part in the muscle model becomes thicker, and the numerical value related to the acquired muscle mass is smaller than the standard Performing the step of deforming the muscle model so that a muscle portion related to the specific part is thinned. Characterized in that to.
  • the present invention provides a skeleton identification system that identifies the state of the skeleton of a human body based on the three-dimensional coordinate values of a plurality of points on the surface of the human body obtained by measuring the human body with a three-dimensional measuring instrument.
  • a point table indicating points on the human body corresponding to the skeletal points for each skeleton point, and a deformation point including a deformation base point corresponding to each of the plurality of skeleton points of the point table and including a target point having a three-dimensional coordinate value
  • the points on the human body surface corresponding to each of the plurality of skeletal points Is determined for each skeleton point and based on the three-dimensional coordinate values of the points on the human body surface specified for each skeleton point.
  • Means for identifying the three-dimensional coordinate value means for deforming the skeleton model such that the deformation base point corresponding to the skeleton point matches the three-dimensional coordinate value identified by the skeleton point, and the deformed skeleton Means for specifying the position of the target point based on a three-dimensional coordinate value of the target point included in the model.
  • the point table includes pelvic points as specific skeleton points, and points on the human body surface on the front side and the rear side of the human body corresponding to the pelvic points, the pelvic points 3D coordinate values of the surface of the human body corresponding to the front side of the human body and the average value of the 3D coordinate values of the surface of the human body corresponding to the back side of the pelvis corresponding to the 3D coordinates of the pelvic point Means for calculating as a value is provided.
  • the skeleton model includes a pelvic angle line corresponding to a lumbosacral angle related to the pelvic point, and the pelvic angle line included in the deformed skeleton model intersects with a line parallel to the thickness direction of the human body.
  • a means for specifying an angle is provided.
  • the three-dimensional coordinate value includes a coordinate value in a human body width direction, a human body height direction, and a human body thickness direction
  • the point table includes a spine point as a specific skeleton point
  • the human body surface point corresponding to the spine point indicates the human body surface points on the front side and the back side of the human body
  • the human body surface point on the front side corresponding to the spine point has coordinate values in the width direction of the human body
  • the human body surface point on the front side of the human body has coordinate values in the height direction of the human body
  • the human body surface point on the back side of the human body corresponding to the spine point has Means for calculating the average value of the coordinate values in the height direction of the body as the coordinate values in the height direction of
  • the spine point includes a first spine point corresponding to the lumbar spine and a second spine point corresponding to the substernal position
  • the skeletal model includes the anterior lumbar spine related to the first spine point.
  • the first anterior line and the second anterior line included in the deformed skeleton model including the first anterior line corresponding to the heel angle and the second anterior line corresponding to the lumbar lordosis angle related to the second spine point Means is provided for identifying a lumbar lordosis angle by a heel line.
  • the spine point further includes a third spine point above the second spine point, and the skeletal model corresponds to a thoracic vertebra kyphosis angle related to the second spine point.
  • the posterior thoracic vertebra by the first posterior and second posterior lines included in the deformed skeleton model, including the first posterior line and the second posterior ridge corresponding to the thoracic vertebra posterior angle related to the third spine point A means for specifying the heel angle is provided.
  • the point table includes a neck point as a specific skeleton point, and points on the human body surface on the front and rear sides of the human body as points on the human body surface corresponding to the neck point, The three-dimensional coordinate value of the point on the human body surface on the front side of the human body corresponding to the neck point, and the average value of the three-dimensional coordinate value of the point on the human body surface on the rear side of the human body corresponding to the neck point, A means for calculating the three-dimensional coordinate value of the point is provided.
  • the point table includes, as specific skeleton points, upper neck points above the neck points, and points on the left and right sides of the human body corresponding to the upper neck points.
  • the average of the three-dimensional coordinate value of the human body surface point on the left side of the human body corresponding to the upper neck point, and the three-dimensional coordinate value of the human body surface point on the right side of the human body corresponding to the upper neck point A means for calculating a value as a three-dimensional coordinate value of the upper neck point is provided.
  • the skeletal model includes a first cervical lordosis line corresponding to the cervical lordosis angle related to the neck point and a second cervical vertebrae position corresponding to the cervical lordosis angle related to the upper neck point.
  • the apparatus includes a means for specifying a cervical lordosis angle by a first cervical lordosis line and a second cervical vertebra lordosis included in the deformed skeletal model.
  • the skeletal model includes each point corresponding to the greater femoral trochanter, the kneecap, and the ankle as target points, and the deformed skeletal model corresponds to the greater femoral trochanter and the kneecap that have been located.
  • the position of the femur line connecting the two points is specified by means of specifying the three-dimensional coordinate values of the points corresponding to the greater femoral trochanter and the kneecap and the deformed skeleton model.
  • Means for specifying a tibial line connecting both points corresponding to the kneecap and ankle based on the respective three-dimensional coordinate values of the points corresponding to the kneecap and the ankle, and the identified femoral line and tibial line are And means for specifying an intersecting angle.
  • the skeletal model includes points corresponding to the greater femoral trochanter and the kneecap as the target points in the left and right feet, respectively,
  • the length of the femoral line connecting both points according to the kneecap is determined based on the respective three-dimensional coordinate values of the femoral trochanter and each point corresponding to the kneecap for each of the left and right feet.
  • a means for calculating, a means for calculating the difference between the lengths of the left and right femoral lines, a means for acquiring the height of the human body obtained by three-dimensional measurement, and the calculated left and right femoral lines for the acquired height Means for calculating the ratio of the difference in length of the body, means for comparing the calculated ratio with the femoral line reference ratio, and means for determining the status of the left and right hip bones based on the comparison result.
  • the present invention includes means for acquiring a captured image of a human body measured by a three-dimensional measuring device, and means for generating screen information relating to a screen including a specified angle in the human body of the acquired captured image. It is characterized by.
  • the present invention relates to a determination table including a reference angle related to the specified angle and a symptom related to a human body condition according to a comparison result with the reference angle, and compares the specified angle with a reference angle included in the determination table. And means for determining a symptom based on the result of comparison with a reference angle based on the determination table.
  • the present invention includes a point table indicating points on the surface of the human body corresponding to a plurality of skeleton points in the human body for each skeleton point, and a deformation base point corresponding to each of the plurality of skeleton points of the point table and a three-dimensional coordinate value
  • the skeletal identification system having a deformable skeleton model including the target point has a human skeleton status based on the three-dimensional coordinate values of a plurality of points on the human surface obtained by measuring the human body with a three-dimensional measuring instrument.
  • a point on the human body surface corresponding to each of a plurality of skeleton points is selected from a plurality of points on the human body surface obtained by the measurement of the three-dimensional measuring device based on the point table.
  • the step of specifying for each point and the three-dimensional coordinate value of the point on the human body surface specified for each skeleton point Identifying a three-dimensional coordinate value of the skeleton, deforming the skeleton model so that a deformation base point corresponding to the skeleton point matches the identified three-dimensional coordinate value of the skeleton point, And a step of specifying the position of the target point based on a three-dimensional coordinate value of the target point included in the skeleton model.
  • the present invention includes a point table indicating points on the surface of the human body corresponding to a plurality of skeleton points in the human body for each skeleton point, and a deformation base point corresponding to each of the plurality of skeleton points of the point table and a three-dimensional coordinate value Identify the skeleton of the human body based on the three-dimensional coordinate values of multiple points on the surface of the human body obtained by measuring the human body with a three-dimensional measuring device in a computer having a deformable skeleton model that includes the target points.
  • the computer corresponds to each of a plurality of skeletal points from a plurality of points on the surface of the human body obtained by the measurement of the three-dimensional measuring device based on the point table.
  • the muscle model including the muscle covering the skeletal model
  • the muscle part corresponding to the specific part is thickened, If it is smaller than the standard, the muscle part corresponding to the specific part is made thinner, so that the deformation reflecting the result measured by the subject can be performed even at the stage of the muscle model.
  • the abdominal region is thickened in the muscle model, so the amount of visceral fat in the subject is also increased in the muscle model stage. It will be possible to reflect the corresponding weight.
  • visceral fat is added to the viscera covered with muscles, unlike subcutaneous fat that overlays muscles. Therefore, it becomes possible to express such a situation at the stage of the muscle model in which the muscle is placed on the skeleton model.
  • the fat model when the muscle model is deformed with respect to the fat model including fat covering the muscle model, the fat model is also deformed following the shape of the muscle model.
  • the fat model can be expressed reflecting the situation, and consistency between the muscle model and the fat model can be secured.
  • the fat part of the fat model corresponding to the specific part is thickened.
  • the part with can be expressed in a fat model in shape. That is, since the subcutaneous fat is added between the muscle and the skin, the measured amount of fat is expressed as the thickness indicating the subcutaneous fat at the stage of the fat model. It is possible to anatomically express how the subcutaneous fat is attached in a configuration that matches the compositional situation.
  • the surface part of the fat model corresponding to the specific part
  • the color of the fat model also makes it possible to determine the location with subcutaneous fat, in the fat model. It is easier to recognize how to apply subcutaneous fat.
  • the surface part of the fat model corresponding to the specific part Since the color of the skin is lighter than the reference color, it is possible to visually represent the case where the amount of fat that is difficult to express with the conventional human body model is small, with the degree of surface color thinness in the fat model.
  • the range of expression of fat (subcutaneous fat) can be expanded.
  • the fat part of the fat model corresponding to the specific part is transmitted and the muscle of the muscle model is reflected.
  • a new expression method called “transparency” is introduced, and a fat model that is difficult to express with a conventional human body model can be visually expressed with a fat model.
  • a total of three types of skeletal models are prepared according to the dimensions of the limbs, and a total of three types of muscle models corresponding to these three types of skeletal models are also prepared. From the measurement results, first, a matching skeletal model was identified from among the three types of skeletal models, and the muscle model corresponding to the identified skeletal model was deformed. Even if it is deformed, it becomes easy to ensure consistency with the skeleton model that is the base of the muscle model, and an anatomical human body model that is balanced as a whole can be provided.
  • a total of three types of skeletal models are prepared according to the dimensions of the limbs, and a total of three types of fat models corresponding to these three types of skeletal models are also prepared. From the measurement results, first, a matching skeletal model was identified from among the three types of skeletal models, and the fat model corresponding to the identified skeletal model was deformed. Even if it is deformed, it is easy to ensure consistency with the skeleton model that is the base of the fat model, and an anatomical human body model that is balanced as a whole can be provided.
  • the skeleton model is enlarged or reduced in a similar manner based on the measurement result relating to the physique of the subject, and the muscle model is deformed following the deformation of the skeleton model.
  • the skeleton model is deformed to an appropriate size according to the appropriate dimensions, and the muscle model is also deformed according to the deformation of the skeletal model. It becomes easy to do.
  • the corresponding point corresponding to the deformation standard of the skeleton model is identified from the measured numerical values of the plurality of vertices on the body surface of the subject, and the skeleton part of the skeleton model is matched with the identified corresponding point. Since the skeleton model is deformed in detail according to the physique of the subject, and the muscle model is also deformed according to the deformation of the skeleton model, each anatomical model is The physical condition of the subject can be shown in detail, the physical condition of the subject can be anatomically discriminated through each model, and the results of training by exercise, diet, etc. of the subject can be visually confirmed with the human body model according to the present invention. It becomes possible to confirm.
  • the deformable skeleton model including the deformation base point and the target point from the three-dimensional coordinate value of the target point included in the skeleton model deformed based on the three-dimensional coordinate value calculated for the skeleton point of the point table, Since the position of the target point is specified, the positions of points other than the skeleton points specified in the point table can be specified.
  • the skeletal points specified in the point table are basically easy to specify from the points on the human surface obtained by three-dimensional measurement (for example, the point where the skin is thin and the bone is easy to specify) )
  • the target point whose position is to be specified is included in the skeleton model, so that the position of the target point changes following the deformation of the skeleton model. Therefore, the required position of the skeleton inside the human body can be specified.
  • the pelvis point is included in the point table as a specific skeleton point, and the three-dimensional coordinate value of the pelvic point is obtained by the point on the human body surface on the front side and the rear side obtained by the three-dimensional measurement. Since it is calculated from the average value of each three-dimensional coordinate value, even if it is a pelvic point inside the human body, the three-dimensional coordinate value that specifies the position of the pelvic point can be measured by three-dimensional measurement without using a homologous model etc. It is obtained arithmetically from the three-dimensional coordinate values of the obtained points on the human body surface.
  • the deformable skeletal model since the deformable skeletal model includes a pelvic angle line corresponding to the lumbosacral angle related to the pelvic point, when the skeletal model is deformed, the inclination of the pelvic angle line also changes with the deformation.
  • the angle related to the pelvis of the human body that has been subjected to the three-dimensional measurement can be obtained based on the pelvic angle line of the deformed skeleton model, and the pelvis situation can be verified by the obtained angle related to the pelvis.
  • the spine point is included in the point table as a specific skeleton point, and the three-dimensional coordinate values of the spine point are obtained by calculating the three-dimensional measurement on the front and back sides of the human body surface. Since each three-dimensional coordinate value is calculated according to each direction of the human body, the spine point is also calculated arithmetically from the three-dimensional coordinate value of the surface of the human body obtained by three-dimensional measurement without using a homologous model etc. It will be required.
  • the spine when the human body is viewed from the side, the spine is located closer to the back of the human body, so in the thickness direction of the human body, the distance between the coordinate values in the thickness direction of the human body that the points on the front and back sides of the human body have Since the coordinate value of the point divided by this ratio is calculated as the coordinate of the spine point in the thickness direction of the human body, the position corresponding to the actual spine location in the human body can be specified.
  • the spine point includes the first spine point corresponding to the lumbar spine and the second spine point corresponding to the substernal position
  • the deformable skeleton model includes the lumbar spine related to the first spine point. Since the first anterior line according to the anteversion angle and the second anterior line according to the lumbar lordosis angle related to the second spine point are included, when the skeleton model is deformed, the first anterior Since the inclination of the heel line and the second anterior line also changes, the anterior degree of the lumbar vertebrae of the human body that performed the three-dimensional measurement can also be obtained based on the deformed skeletal model. The situation of the lumbar spine can be verified.
  • the deformable skeletal model has the first posterior vertebral angle corresponding to the thoracic kyphosis angle related to the second spine point.
  • the skeleton model is deformed because the pelvic line and the second posterior line corresponding to the thoracic vertebra dorsum angle relating to the third spine point are included, the deformation of the first posterior line and the second posterior line is accompanied by the deformation.
  • the posterior degree of the thoracic vertebra of the human body that performed the 3D measurement can also be obtained based on the deformed skeletal model, and the situation of the thoracic vertebra can be verified by the obtained thoracic kyphosis angle .
  • a neck point is included in the point table as a specific skeleton point, and the three-dimensional coordinate value of the neck point is determined on the front side and the rear side of the human body obtained by the three-dimensional measurement. Since the point is calculated by the average value of the three-dimensional coordinate values of the point, the neck point can also be calculated arithmetically from the three-dimensional coordinate value of the surface of the human body obtained by three-dimensional measurement without using a homologous model etc. It becomes like this.
  • the upper cervical point above the cervical point is included in the point table as a specific skeleton point, but the location related to such an upper cervical point is based on three-dimensional measurement from the front of the human body. Since it is hidden by the jaw in the scan, the 3D coordinate value of the upper neck point is specified from the left and right points of the human body from the points on the human surface by 3D measurement, so the neck location hidden by the jaw The three-dimensional coordinate value of the upper neck point is calculated mathematically.
  • the deformable skeletal model includes the first cervical lordosis line corresponding to the cervical lordosis angle related to the cervical point and the second cervical vertebra corresponding to the cervical lordosis angle related to the upper cervical point Since the anteversion line is included, if the skeletal model is deformed, the inclination of the first cervical vertebral line and the second cervical vertebral line changes with the deformation, so the front of the cervical vertebra The degree of heel is also obtained based on the deformed skeletal model, and the situation of the cervical vertebra can be verified by the obtained cervical lordosis angle.
  • the femoral line that connects the greater femoral trochanter and the kneecap, and the tibial line that connects the kneecap and ankle are identified, Since the angle at which the femoral line and the tibial line cross each other is calculated, it is possible to confirm the situation of the foot that is difficult to obtain from the skeleton point defined by the point table from the calculated angle.
  • the ratio of the length of the left and right femur lines is calculated and compared with the femoral line reference ratio, and the left and right hip bones (the left and right walls of the pelvis are formed based on the comparison result). Since the situation of the pair of left and right bones) is determined, it is possible to confirm the situation of the left and right hipbones that are difficult to determine from the skeletal points defined in the point table.
  • a screen including the calculated angle is generated, so in the generated image, the situation at the skeleton location to be verified is It becomes possible to confirm the objective value of the angle together with the captured image.
  • the specified angle is compared with the reference angle included in the determination table, and the symptoms included in the determination table are determined based on the comparison result. It becomes possible to objectively determine even the symptoms related to the skeleton or posture of the human body, which is useful for ensuring a proper posture of the human body.
  • the muscle part corresponding to the specific part is made thicker or thinner depending on the numerical value relating to the muscle mass in the specific part of the subject's body. Even in a model in which muscles are arranged on the skeleton of a human body, the state of the subject's muscles can be expressed, and the user (subject etc.) can anatomically confirm how the subject's muscles are attached.
  • the abdominal part of the muscle model is thickened, so the weight according to the amount of the visceral fat of the subject is anatomically determined. It can be expressed at the stage of the muscle model, and the user (subject etc.) can confirm how the visceral fat is attached etc. as distinguished from the subcutaneous fat.
  • the fat model when the muscle model is deformed, the fat model also deforms in shape following the deformation, so the thickness or thinness of the muscle model can be reflected at the fat model stage, and the subject The state of muscles can be confirmed anatomically even at the fat model stage.
  • the fat part of the fat model corresponding to the specific part is thickened according to the numerical value relating to the amount of subcutaneous fat in the specific part of the subject's body. It can be expressed in shape at the stage of a fat model, and it can be distinguished from visceral fat and anatomically confirmed how subcutaneous fat is attached.
  • the color of the surface portion of the fat model corresponding to the specific part Is made darker than the reference color, so that in addition to the shape representation by the thickness of the fat model, the portion with the subcutaneous fat can be visually represented by the shade of the color, making it easier to see how the subcutaneous fat is attached.
  • the color of the surface portion of the fat model corresponding to the specific part Is thinner than the reference color, so it is possible to visually express the state of low fat, which was difficult to express with a conventional human body model, with the thin color of the surface of the fat model. ) Can be confirmed anatomically how subcutaneous fat is attached.
  • the fat part of the fat model corresponding to the specific part is transmitted and the muscle of the muscle model is reflected.
  • the new way of expressing the permeation of the subcutaneous fat can visually represent how to apply the fat, which is difficult to express with a conventional human body model.
  • a total of three types of skeletal models are prepared according to the length of the limbs, and a total of three types of muscle models corresponding to these three types of skeletal models are also prepared. Since the specified muscle model is deformed from a total of three types of skeletal models and muscle models, even if the muscle model is deformed, consistency between the muscle model and the corresponding skeleton model is maintained. An anatomical human body model that can be maintained and has a shape relationship that does not fail between the models can be presented to the user.
  • a total of three types of skeleton models are prepared according to the length of the limbs, and a total of three types of fat models corresponding to these three types of skeleton models are also prepared. Since the specified fat model is deformed from a total of three types of skeletal models and fat models, even if the fat model is deformed, the consistency of the fat model with the corresponding skeleton model is maintained. An anatomical human body model that can be maintained and has a shape relationship that does not fail between the models can be presented to the user.
  • the skeleton model is enlarged or reduced in a similar manner according to the measurement result relating to the physique of the subject, and the muscle model is deformed following the deformation of the skeleton model.
  • the muscle model can also be shown in an appropriate size that fits the subject's body size, and each anatomical model sized to the subject's physique dimensions It can be confirmed in the removed state.
  • a corresponding point corresponding to the deformation standard of the skeleton model is identified from among a plurality of vertices related to the physique (body surface) of the subject, and the skeleton model is matched with the identified corresponding point. Since the angle and length of the skeletal part is deformed, the shape of the skeletal model can be finely adjusted according to the physique of the subject, and the shape of the muscle model can also be adjusted appropriately according to the shape adjustment of the skeletal model.
  • the actual physique can be expressed in detail by each anatomical model, so that users (subjects, etc.) can anatomically confirm the results of the exercises, diets, etc. of the subject with the human body model according to the present invention. It can also be used to raise the user's awareness of training such as exercise and diet.
  • a deformable skeleton model is used, and the target point whose position is to be specified is included in the skeleton model, so that the position of the target point changes following the deformation of the skeleton model.
  • the required position of the skeleton inside the human body that has been subjected to the three-dimensional measurement can also be specified, which is useful for confirming the state of the skeleton of the human body without using X-rays or MRI.
  • the pelvis point is included in the point table as a specific skeleton point, and the three-dimensional coordinate value of the pelvic point is obtained by the point on the human body surface on the front side and the rear side obtained by the three-dimensional measurement. Since it is calculated from the average value of each three-dimensional coordinate value it has, even if it is a pelvic point inside the human body, the three-dimensional coordinate value of the required part of the pelvis is obtained without using X-rays or MRI, etc. The position can be specified.
  • the deformable skeleton model includes a pelvic angle line corresponding to the lumbosacral angle related to the pelvic point, and when the skeletal model is deformed, the inclination of the pelvic angle line also changes with the deformation.
  • the angle related to the pelvis of the human body that has been subjected to the three-dimensional measurement is obtained based on the pelvic angle line of the deformed skeleton model.
  • the spine point is included in the point table as a specific skeleton point, and the three-dimensional coordinate values of the spine point are obtained by calculating the three-dimensional measurement on the front and back sides of the human body surface. Since each 3D coordinate value is calculated according to each direction of the human body, the position of the required part of the spine inside the human body can also be calculated from the third order of the points on the surface of the human body obtained by 3D measurement without using a homologous model etc. It is obtained from the original coordinate value.
  • the deformable skeleton model includes the first anterior line corresponding to the lumbar lordosis angle corresponding to the first spine point corresponding to the lumbar spine, and the second spine point corresponding to the substernal position.
  • the skeleton model When the skeleton model is deformed, including the first foreline corresponding to the lumbar foreangle angle, the inclination of the first foreline and the second foreline changes with the deformation.
  • the degree of lordosis of the lumbar vertebrae of the human body that was performed is also obtained based on the deformed skeleton model.
  • the deformable skeletal model includes the first posterior ridge corresponding to the thoracic kyphosis angle related to the second spine point, and the thoracic kyphosis related to the third spine point above the second spine point.
  • the skeletal model is deformed including the second hail line corresponding to the angle, the inclination of the first hail line and the second hail line changes with the deformation, so that the three-dimensional measurement of the human body that performed the three-dimensional measurement
  • the posterior degree of the thoracic vertebra is also obtained based on the deformed skeleton model.
  • a neck point is included in the point table as a specific skeleton point, and the three-dimensional coordinate value of the neck point is determined on the front side and the rear side of the human body obtained by the three-dimensional measurement. Since the point is calculated from the average value of the three-dimensional coordinate values of the point, the neck point is also obtained from the three-dimensional coordinate value of the point on the surface of the human body obtained by three-dimensional measurement without using a homologous model or the like. Further, in the present invention, since the three-dimensional coordinate value is specified from the left and right points of the human body for the upper neck point above the neck point, the upper neck point that becomes the neck portion hidden by the jaw is determined. A three-dimensional coordinate value is also obtained.
  • the deformable skeletal model includes the first cervical lordosis line corresponding to the cervical lordosis angle related to the cervical point and the second cervical vertebra corresponding to the cervical lordosis angle related to the upper cervical point
  • the skeletal model is deformed including the anterior line, the inclination of the first cervical lordosis line and the second cervical vertebral line changes with the deformation. The degree is also obtained based on the deformed skeleton model.
  • the femoral line connecting the greater femoral trochanter and the kneecap and the tibial line connecting the kneecap and the ankle are specified from the deformed skeleton model, and the angle at which the femoral line and the tibial line intersect is calculated. Therefore, the situation of the foot which is difficult to obtain from the skeleton point specified by the point table can be confirmed from the calculated angle, which is useful for making a determination such as O-leg or X-leg.
  • the ratio of the length is calculated and compared with the femoral line reference ratio. Since the situation of the hipbone is determined, it is possible to confirm the situation of the left and right hipbones that are difficult to determine from the skeletal points defined in the point table.
  • the angle specifying image including the calculated angle is generated in the captured image of the human body acquired along with the three-dimensional measurement, the situation at the target skeletal part is objectively called the angle.
  • the value can be confirmed together with the captured image of the human body.
  • the calculated angle is compared with the reference angle included in the determination table, and the symptoms included in the determination table are determined based on the comparison result. It is possible to objectively determine the symptoms of the human body that have been performed, and to help the human body secure an appropriate posture.
  • FIG. 1 It is the schematic which shows the structure of the health management system containing the human body model provision system which concerns on embodiment of this invention. It is a block diagram which shows the whole structure of a health care system. It is a block diagram which shows the main internal structures of an arithmetic unit.
  • A) is the schematic which shows an example of an initial screen
  • (b) is the schematic which shows an example of a measurement start screen.
  • A) is a schematic diagram showing an example of a measurement preparation screen
  • (b) is a schematic diagram showing an example of a screen during measurement
  • (c) is a schematic diagram showing an example of a measurement end screen. It is a chart which shows an example of the contents of a standard value table.
  • FIG. 1 It is a block diagram which shows the main internal structures of the server apparatus which comprises a human body model provision system. It is a chart which shows an example of the contents of a member database. It is a graph which shows the range relevant to each model for men in a human body model table.
  • (A) is the schematic which shows the deformation
  • (b) is the schematic which shows the deformation
  • FIG. 1 It is the schematic which shows the condition where a muscle model and a fat model expand or contract following the similar expansion or contraction of a skeletal model.
  • A is a schematic diagram showing an example of a plurality of deformation base points provided in a skeleton model
  • (b) is a schematic diagram showing an example of a plurality of deformation base points provided in a muscle model
  • (c) is a plurality of examples provided in a fat model.
  • Schematic showing examples of deformation base points It is a chart which shows the contents of a point table. It is a chart which shows the contents of a model numerical value table. It is a flowchart which shows a series of processing procedures of the human body model deformation
  • (A) (b) is the schematic which shows the deformation
  • (A)-(c) is the schematic which shows the deformation
  • FFA femoral tibial angle
  • FIGS. 1 and 2 are schematic views showing an overall configuration as an example of the health management system 1 according to the present embodiment.
  • This health management system 1 is a system in which the human body model providing system 50 according to the present invention is connected to the human body measuring system 5 via the network NW, and the physical measurement of the subject H sent from the human body measuring system 5 is performed. The result is obtained, and a human body model (see FIGS. 21 to 23) having a form corresponding to the obtained measurement result is provided.
  • the subject H can check the anatomical human body model provided by the human body model providing system 50 using the communication terminal 3 after the measurement.
  • the tablet which shows a communication function is shown in FIGS. 1 and 2 as the communication terminal 3, in addition to the tablet, a portable communication terminal such as a smartphone, or a personal computer having a communication function (notebook personal computer, desktop personal computer, etc.) Can also be used.
  • the human body measuring system 5 that measures the user who is the subject H performs a required physical measurement by combining the body composition meter 10 and the three-dimensional measuring device 20, and processes the measured data by the measurement processing device 30. It has become. Membership registration is required to use the health management system 1 of the present embodiment. To register as a member, a business that manages the use of the health management system 1 such as the user's name, nickname, password, and email address. The business entity issues a user ID for identifying the user who has registered as a member. Information on the user registered as a member, measurement results of the user, and the like are accumulated in a member database 60 of the human body model providing system 50.
  • the human body measurement system 5 will be described first, and then the human body model providing system 50 will be described.
  • the body composition meter 10 included in the human body measurement system 5 in the health management system 1 is a device (first measuring device) that performs measurement related to the composition of the subject H.
  • the body composition meter 10 performs measurement on the whole body of the subject H and measurement on a specific part.
  • Physical measurement items on the whole body include body weight, body fat percentage, fat mass, muscle mass, body water content, and the like.
  • As physical measurement items for a specific part there are body fat percentage, muscle mass, fat mass, and the like.
  • the specific part in the measurement target is the left arm, right arm, trunk, left leg, right leg, and the measurement of fat in the trunk (torso) includes measurement of visceral fat and measurement of subcutaneous fat, Subcutaneous fat is measured for the remaining limbs (left and right arms, left and right legs).
  • the body composition meter 10 includes a base-like main body portion 11 on which the subject H is placed, and a left grip portion 12 a and a right grip portion 12 b that are gripped by both hands of the subject H,
  • the left grip portion 12a and the right grip portion 12b are connected by left and right connection lines 13a and 13b.
  • a measurement electrode portion that comes into contact with the sole of the subject H is provided at the place where the subject H is placed on the upper surface of the main body 11.
  • measurement electrode portions are also provided on the surfaces of the left and right grip portions 12 a and 12 b. It has been.
  • the body composition meter 10 connects the main body 11 to the measurement processing device 30 through the first connection line 14.
  • the body composition meter 10 starts measuring each item described above, Complete the measurement in 15 seconds.
  • the body composition meter 10 sends a measurement result including the measured numerical value or the like from the main body 11 to the measurement processing device 30 via the first connection line 14.
  • the three-dimensional measuring device 20 included in the human body measuring system 5 is a device (second measuring device) capable of measuring three-dimensional data (OBJ data) of a measurement object, and a total of three columnar portions 21 and 22. , 23. These three columnar parts 21, 22, and 23 are arranged around the body part 11 of the body composition meter 10 described above at positions corresponding to the vertices of the triangle so as to form a triangle in plan view. The three-dimensional measurement is performed in synchronization with the measurement by the composition meter 10.
  • Each of the columnar portions 21, 22, and 23 includes a plurality of laser beam emitting units 21a, 22a, and 23a and scanning status acquisition units 21b, 22b, and 23b, and emits laser beams from the respective laser beam emitting units 21a, 22a, and 23a. Then, the measurement object is scanned, and the scanned state is imaged and detected by the scanning state acquisition units 21b, 22b, and 23b.
  • the three-dimensional measuring instrument 20 connects the columnar portions 21, 22, and 23 to the measurement processing device 30 through three-dimensional measurement connection lines 24a, 24b, and 24c.
  • the three-dimensional measuring instrument 20 Laser beam is emitted from each of the laser beam emitting portions 21a, 22a, and 23a of the columnar portions 21, 22, and 23 to start measurement, and the detection and measurement of the scanning state of the laser beam is completed in about 2 seconds from the start of measurement.
  • the measurement result (OBJ data) including the numerical value is sent to the measurement processing device 30.
  • the measurement processing device 30 calculates various dimension values related to the measurement object based on the numerical results (OBJ data, information regarding the position of each part of the human body) sent from the three-dimensional measuring device 20, and calculates various dimension values.
  • the measurement processing device 30 constitutes a part of the three-dimensional measuring device 20.
  • the various dimension values that can be obtained by the measurement processing device 30 through the calculation process include the overall dimensions of the measurement object, the body surface area, the body volume, the length of the arbitrary part, the perimeter of the arbitrary part, and the like.
  • subject H is the subject to be measured physically, in addition to the height of the human body, the length of each arm that is a specific part of the human body (the length of the sleeve), the wrist circumference, and the arm circumference (Maximum circumference), trunk length (sitting height), waist circumference, chest circumference, and hip circumference, length for each leg (inseam length), ankle circumference, and Items related to the physique of subject H, such as the circumference of the thigh (maximum circumference), etc.
  • the left and right shoulder widths, neckline, etc. are measured (in addition, the left and right shoulder widths, neckline, etc. are also measured). As shown in FIG. 1, since the subject H opens his / her leg at the time of measurement, the measured value becomes smaller than the actual height by the amount of opening his / her leg, so the height is multiplied by a predetermined ratio in the measurement processing device 30. To perform automatic correction.
  • the above-described three columnar portions 21, 22, and 23 are arranged at the apexes of a triangle to perform a three-dimensional measurement using a known three-dimensional distance measurement method (the principle of triangulation) using the principle of triangulation.
  • the surface of the measurement object is scanned with the laser light emitted from the laser light emitting portions 21a, 22a, and 23a, and the scanning state is imaged by the scanning state obtaining portions 21b, 22b, and 23b, and the columnar portions 21, 22 are scanned.
  • 23 based on the relationship between the position of the triangle and the point of the scanning position of the laser beam in the image captured by the scanning status acquisition unit 21b, 22b, 23b, etc.
  • the intersection point is composed of three-dimensional coordinates (X-axis corresponding to one direction in the horizontal plane, Y-axis corresponding to the direction orthogonal to the X-axis in the horizontal plane, X-axis and Z-axis corresponding to the vertical direction orthogonal to the Y-axis. Coordinate) Thereby obtaining an open position.
  • the three-dimensional measuring device 20 measures a human body (subject H) in three dimensions
  • the position of about 30,000 points on the surface of the human body is obtained as a numerical value of three-dimensional coordinate values, and these three-dimensional measurements are performed.
  • Each point is numbered so that it can be identified (the first point to about 30,000th point exist), and the measurement result (OBJ) is the correspondence between each number and the three-dimensional coordinate value.
  • the X, Y, and Z axes constituting the three-dimensional coordinate system related to the three-dimensional coordinate value are set such that the X-axis direction matches the width direction of the human body.
  • the direction is matched with the height direction of the human body, and the Z-axis direction is matched with the thickness direction of the human body. Therefore, for example, when the human body is viewed from the front, it is mainly expressed in the XY coordinate system, and when the human body is viewed from the lateral direction, it is mainly expressed in the YZ coordinate system.
  • FIG. 3 is a block diagram showing the main configuration of the measurement processing device 30.
  • a computer having a connection function with each measuring instrument 10, 20 and a communication function via the network NW is used, and FIG. 3 shows a case where the computer is used. The structure of is shown.
  • the measurement processing apparatus 30 is configured by connecting various devices and the like to the CPU 30a that performs overall control and various processes by an internal connection line 30h.
  • the various devices and the like include an external device connection unit 30b and a communication unit 30c.
  • ROM 30d, RAM 30e, display input / output interface 30f, and storage unit 30g are examples of the measurement processing device 30.
  • the external device connection unit 30b is a connection interface (for example, a USB serial interface) that can send various signals, information, and the like bidirectionally according to various standards (for example, standards such as the IEEE system).
  • the external device connection unit 30b is connected to the measuring devices 10 and 20 to acquire the measurement results of the measuring devices 10 and 20, and to send a measurement start instruction to the measuring devices 10 and 20. I have to.
  • the communication unit 30c conforms to a required communication standard corresponding to a communication device connected to the network NW (for example, a LAN module), a communication line L and required communication equipment (not shown, for example, a router or the like). By connecting to the network NW via the network, communication with the human body model providing system 50 is enabled.
  • the ROM 30d stores a program that defines the basic processing contents of the CPU 30a, and the RAM 30e temporarily stores contents, files, and the like accompanying the processing of the CPU 30a.
  • the display input / output interface 30f is an interface to which the display device 35 is connected by the connection line 36. Since the display device 35 of the present embodiment includes the display screen 35a having a touch screen function, the display input / output interface 30f is displayed on the display screen 35a. In addition to outputting each screen data corresponding to various screens, processing of receiving an operation content by touch on the display screen 35a and sending the received operation content to the CPU 30a is also performed.
  • the storage unit 30g is a storage device configured by an HDD (Hard Disc Drive) or an SSD (Solid State Drive), and is a program such as a basic program P1, a three-dimensional measurement program P2, a composition measurement program P3, and a measurement management program P4.
  • a screen data table T1, a reference value table T2, and the like are stored. Each program will be described later. First, the tables (screen data table T1, reference value table T2) will be described.
  • the screen data table T1 stores a plurality of various screen data for displaying the screen contents shown in FIGS.
  • FIG. 4 (a) shows a state in which the initial screen 40 is displayed on the display screen 35a by outputting the initial screen data stored in the screen data table T1 to the display device 35.
  • the initial screen 40 is the first screen presented in the human body measurement system 5, and the text “Enter your user ID and password and select the decision button” is placed at the top of the screen. Below the text, a user ID input field 40a, a password input field 40b, and a selectable determination button 40c are arranged.
  • the initial screen 40 is provided with a selectable keyboard field 40d at the bottom of the screen. By sequentially selecting a desired key in the keyboard field 40d, each of the user ID input field 40a and the password input field 40b is displayed. It is designed to input alphanumeric characters according to the selected key.
  • the selection operation (login operation) of the enter button 40c is performed in a state where alphanumeric characters (user ID, password) are respectively input in the user ID input column 40a and the password input column 40b, the input alphanumeric characters (user ID and user ID and password) are performed.
  • Password is transmitted from the display device 35 to the measurement processing device 30, and the measurement processing device 30 transmits the input content (user ID and password) to the human body model providing system 50.
  • the measurement processing device 30 is logged in for measurement. It becomes.
  • FIG. 4B shows that the measurement start screen data stored in the screen data table T1 is output to the display device 35 after the login for measurement is completed, so that the measurement start screen 41 is displayed on the display screen 35a.
  • a text “Select a measurement start button when ready” and a selectable measurement start button 41a are arranged below the text.
  • the selection operation of the measurement start button 41a on the measurement start screen 41 is performed, the fact that the measurement start button 41a is selected is sent from the display device 35 to the measurement processing device 30.
  • a text “Start measurement 10 seconds after selection of the selection start button” is arranged to alert the user (subject H).
  • Such text is arranged because the measurement by the three-dimensional measuring device 20 is required for a predetermined time (about 2 seconds) and the subject H is required to stand still in a predetermined posture. If 3D measurement is performed immediately after 41a is selected, it is impossible to secure a stationary state in a predetermined posture, so that a test subject H can create a posture suitable for measurement by adding a preparation time of 10 seconds. ing.
  • FIG. 5A shows a state in which the measurement preparation screen 42 is displayed on the display screen 35a by outputting the measurement preparation screen data stored in the screen data table T1 to the display device 35.
  • FIG. The measurement preparation screen 42 is displayed when the measurement start button 41a is selected on the measurement start screen 41 of FIG. 4B, and the preparation countdown column 42a is displayed below the text “until measurement starts”. The text “Please adjust your posture” is placed below it.
  • the preparation countdown column 42a displays the number of seconds counted down every second from 10 seconds.
  • FIG. 5B shows a state in which the measuring screen 43 is displayed on the display screen 35a by outputting the measuring screen data stored in the screen data table T1 to the display device 35.
  • the measurement-in-progress screen 43 is a measurement preparation screen 42 in FIG. 5A and is displayed when the countdown progresses to 0 seconds, and is displayed below the text “measuring”.
  • a measurement countdown column 43a is provided, and below that, a text “Please maintain posture” is arranged.
  • the measurement countdown column 42a displays the number of seconds counted down every 15 seconds from 15 seconds in accordance with the measurement time of the body composition meter 10.
  • FIG. 5 (c) shows a state where the measurement end screen 44 is displayed on the display screen 35a by outputting the measurement end screen data stored in the screen data table T1 to the display device 35.
  • FIG. The measurement end screen 44 is a screen 43 during measurement shown in FIG. 5B, which is displayed when the countdown progresses to 0 seconds, and is displayed below the text “measurement end”. The text “Thank you for your work. Please relax. Please wait for a while until the result is obtained.” Is placed. Note that, after the measurement end screen 44 is displayed, a result screen showing the measured numerical values for the measurement items is displayed on the display screen 35a.
  • FIG. 6 shows a reference value table T2 stored in the storage unit 30g.
  • the reference value table T2 stores numerical values (reference values) for determining the levels relating to the measured muscles and fats.
  • a plurality of reference values for determining the muscle level and the fat level are stored for each specific part in five specific parts including the left arm, right arm, left leg, right leg, and trunk (muscle determination). And a plurality of reference values for fat determination, respectively).
  • the reference value table T2 includes a plurality of reference numerical values of the first to ninth reference values as a plurality of reference values for muscle determination regarding each specific part (left arm, right arm, left leg, right leg, and trunk). Similarly, a plurality of reference numerical values called first to ninth reference values are included as the plurality of reference values for fat determination.
  • the numerical values of the first to ninth reference values include “first reference value ⁇ second reference value ⁇ third reference value ⁇ fourth reference value ⁇ fifth reference value ⁇ seventh reference value ⁇ eighth A magnitude relationship of “reference value ⁇ 9th reference value” is established.
  • a total of 9 levels are determined as the muscle level and the fat level.
  • the nine levels in total are explained in the case of muscle.
  • the standard is set to “0” level, and the levels with less muscle mass than the standard are “ ⁇ 1”, “ ⁇ 2”, “ ⁇ 3”, “ ⁇ ” 4 ”depending on the level of the small amount, such as“ +1 ”,“ +2 ”,“ +3 ”,“ +4 ”, and so on.
  • a total of four levels are distinguished according to the degree.
  • the standard is set to “0”, and the level where the amount of fat is smaller than the standard is distinguished in four stages, “ ⁇ 1”, “ ⁇ 2”, “ ⁇ 3”, and “ ⁇ 4”.
  • Levels with a greater amount of fat than the standard are distinguished in a total of four stages: “+1”, “+2”, “+3”, and “+4”.
  • a specific example of the level classification for the muscle will be described in the case of the left arm. If the measured value of the muscle mass of the left arm is less than the first reference value, “ ⁇ 4”, the second reference value above the first reference time. If it is less than “ ⁇ 3”, “ ⁇ 2” if it is greater than or equal to the second reference value and less than the third reference value, “ ⁇ 1” if it is greater than or equal to the third reference value and less than the fourth reference value, greater than or equal to the fourth reference time “0” if it is less than the fifth reference value, “+1” if it is not less than the fifth reference value and less than the sixth reference value, “+2” if it is not less than the sixth reference value and less than the seventh reference value, and the seventh reference value If it is less than the eighth reference value, it is determined as “+3”, and if it is greater than or equal to the eighth reference value and less than the ninth reference value, it is determined as “+4” (the same applies to the measured muscle mass of other specific parts).
  • level classification for fat will be described in the case of the left arm. If the measured fat amount of the left arm is less than the first reference value, “ ⁇ 4”, the second reference value is equal to or greater than the first reference time. If it is less than “ ⁇ 3”, “ ⁇ 2” if it is greater than or equal to the second reference value and less than the third reference value, “ ⁇ 1” if it is greater than or equal to the third reference value and less than the fourth reference value, greater than or equal to the fourth reference time “0” if it is less than the fifth reference value, “+1” if it is not less than the fifth reference value and less than the sixth reference value, “+2” if it is not less than the sixth reference value and less than the seventh reference value, and the seventh reference value If it is less than the eighth reference value, it is determined as “+3”, and if it is greater than or equal to the eighth reference value and less than the ninth reference value, it is determined as “+4” (the same applies to the fat amount measured in other specific parts).
  • reference values for visceral fat As shown in FIG. 6, in the trunk, in addition to the normal values for fat (first to ninth reference values for subcutaneous fat), reference values for visceral fat (first to ninth reference values). Value) is stored in the reference value table T2, and in the trunk, level determination can be performed for two types of fats: normal fat (subcutaneous fat) and visceral fat (in terms of the amount of visceral fat). This level determination is the same as in the case of the subcutaneous fat described above).
  • the basic program P1 corresponds to an operating system that defines basic processing performed by the CPU 30a in order to cause the measurement processing device 30 to function as a general computer.
  • This basic program P1 includes the above-described basic program P1. It includes an input / output function such as a signal through the external device connection unit 30b, a communication function through the communication unit 30c, and a display function / operation reception function through the display input / output interface 30f.
  • the three-dimensional measurement program P2 uses a numerical value (XYZ coordinate values of a plurality of detected vertices) included in the measurement result sent from the three-dimensional measuring device 20, and uses the above-described triangulation principle. It is specified that the CPU 30a performs processing for calculating numerical values related to the measurement items (height, length of each limb, etc.) of the subject H by the three-dimensional distance measurement method.
  • the composition measurement program P3 obtains measurement values related to fat or muscle sent from the body composition meter 10, and for specific parts (the trunk and limbs), the measurement values are stored in the reference value table of FIG. By comparing with a reference value stored in T2, a process for determining which level of the measured muscle mass and fat mass corresponds to a total of 9 levels is also defined. As described above, the nine levels are indicated by “ ⁇ 4” to “+4”, the standard is “0”, and the muscle mass increases as the negative value increases from “0”. Or it represents that the amount of fat decreases, and also indicates that the amount of muscle or fat increases as the positive value increases from “0”.
  • the measurement management program P4 defines the contents of various processes performed by the CPU 30a with respect to general processes in the human body measurement system 5. Specifically, programming that causes the CPU 30a to perform various processes such as displaying various screens on the display device 35, processing related to member authentication of a registered user, processing corresponding to a user operation, processing for sending measurement results to the human body model providing system 50, and the like. The content of the measurement management program P4 is included.
  • the process of displaying the initial screen 40 of FIG. 4A is performed, and when the measurement processing device 30 (CPU 30a) acquires the user ID input through the initial screen 40, the acquired user ID.
  • the measurement management program process P4 defines that inquiry information for inquiring whether or not is registered to the human body model providing system 50.
  • a user ID input screen indicating that the user ID is input again is displayed.
  • the measurement management program process P4 defines the process to be displayed.
  • the measurement processing device 30 receives a reply indicating that it has been registered from the human body model providing system 50 in response to the transmission of the inquiry information, the display processing of the measurement start screen 41 in FIG.
  • the measurement management program process P4 defines what to do.
  • the selection operation of the measurement start button 41a is accepted on the measurement start screen 41, the display process of the measurement preparation screen 42 in FIG. 5A is performed, and if 10 seconds have elapsed from the selection operation of the measurement start button 41a.
  • the measurement management program process P4 defines that a measurement start instruction is transmitted to the body composition meter 10 and the three-dimensional measuring device 20.
  • the measurement management program process P4 defines that, when the display of the measurement end screen 44 is switched and the calculation results are arranged, the result screen showing the numerical values of the calculation results is displayed.
  • the measurement management program process P4 also defines that the arithmetic unit (CPU 30a) performs processing for transmitting a level determination result (a numerical value indicating a level) and information including a user ID) to the human body model providing system 50 based on the measurement result. To do.
  • the human body model providing system 50 by transmitting information related to the measurement result to the human body model providing system 50, a series of processes related to the measurement of the subject H of the human body measuring system 5 including the measurement processing device 30 is once completed, and thereafter, the human body measuring system At 5, the system waits for the next measurement.
  • the human body model providing system 50 that receives the measurement result from the human body model providing system 50 starts processing for providing an anatomical human body model corresponding to the subject who has performed the measurement in response to the reception of the measurement result. become.
  • FIG. 7 is a block diagram showing the main internal configuration of the human body model providing system 50.
  • the human body model providing system 50 according to the present embodiment is constructed by a general server computer (server device). However, the system is configured by combining a plurality of server devices and database devices by performing distributed processing or the like. It is of course possible to construct a system (for example, a system is constructed by combining a server device that mainly performs processing related to provision of a human body model and a database server device that mainly performs processing related to a database that stores member data of registered members. Can be assumed).
  • the human body model providing system 50 (corresponding to a human body model processing apparatus) is configured by connecting various devices and the like to the MPU 50a that performs overall control and various processes by an internal connection line 50h.
  • the communication module 50b is a communication device corresponding to a connection module with the network NW and conforms to a required communication standard (for example, a LAN module).
  • the communication module 50b is connected to the network NW via required communication equipment (not shown, for example, a router or the like), and enables communication with the measurement processing device 30, the communication terminal 3, and the like.
  • the human body model providing system 50 acquires the physical measurement result (various information related to the measurement result) of the subject H by the communication module 50b.
  • the RAM 50c temporarily stores contents and files associated with the processing of the MPU 50a
  • the ROM 50d stores programs and the like that define the basic processing contents of the MPU 50a.
  • the input interface 50e is connected to a keyboard 50i, a mouse, and the like that receive operation instructions from a system administrator or the like.
  • the output interface 50f is connected to a display 50j (display output device), and outputs the contents accompanying the processing of the MPU 50a to the display 50j so that the system administrator can check the current processing contents and the like. .
  • the storage unit 50g stores a database, a program, a table, and the like. Specifically, the storage unit 50g stores a member database 60 as a database, stores a server program P10 and a model modification program P11, and stores them as a table. Stores the human body model table 70, the point table 80, the model numerical value table 85, and the like. In order to install the model deformation program P11 in the storage unit 10g, it is conceivable to store the model deformation program P11 in a storage medium such as an optical disk and install it in the storage unit 50g through the storage medium.
  • a storage medium such as an optical disk
  • FIG. 8 shows an example of the contents of the member database 60 stored in the storage unit 50g.
  • the member's name, nickname, mail address, and data for each day (body composition meter 10 and A numerical value indicating each measurement result of the three-dimensional measuring device 20, data indicating a human body model obtained based on the measurement result, and the like (not shown in FIG. 8) are stored in the member database 60. , Gender, password, etc. are also stored).
  • the user field of the member database 60 increases due to the new user's membership registration, and when the member user leaves, the user field of the user is deleted, and each time each user performs measurement, Measurement date data is stored in the measurement data column, and the contents of the member database 60 are updated at any time due to these factors.
  • the server program P1 in the program P1 stored in the storage unit 50g prescribes various processes according to the operating system for the server computer, and the MPU 50a performs processes based on the prescription contents, so that the human body
  • the model providing system 50 fulfills each function as a server computer (server device).
  • the model transformation program P11 defines main processes related to the present invention, and includes processes related to member authentication, processes for generating a human body model according to measurement results, processes for distributing the generated human body model, and the like.
  • FIG. 9 shows a part of the contents of the human body model table 70, and FIG. 9 shows the range of the human body model for men (details of the human body model for women will be described later).
  • a human body model is not generated from scratch, but a base human body model is prepared, and the prepared human body model is used as the subject H model.
  • a human body model corresponding to the physique and body of the subject is provided by appropriately performing deformation or the like according to the measurement result.
  • the human body model table 70 stores human body model data prepared in advance for each gender, specifies the gender of the logged-in user (subject) from the member data table 60, and determines which model data to use for the male and female MPU 50a. Judgment.
  • the human body model of this embodiment includes an anatomical display by including a skeleton model, a muscle model, and a fat model.
  • the human body model table 70 includes three types of models: a skeleton model 71, a muscle model 72, and a fat model 73 that constitute the human body model.
  • the standard pattern 70a in which the ratio of the length dimension of the limbs to the height (the ratio of the sleeve length, the ratio of the crotch) is standard for each model, ) About 95% shorter than the standard pattern 70a and the second pattern 70c about 105% longer than the standard pattern 70a.
  • the skeleton model 71 is a model indicating a skeleton, and a standard skeleton model 71a corresponding to the standard pattern 70a, a first skeleton model 71b corresponding to the first pattern 70b, and a second skeleton corresponding to the second pattern 70c.
  • Model 71c is included.
  • the muscle model 72 also includes a standard muscle model 72a corresponding to the standard pattern 70a, a first muscle model 72b corresponding to the first pattern 70b, and a second muscle 70 corresponding to the second pattern 70c.
  • the fat model 73 includes a standard fat model 73a corresponding to the standard pattern 70a, a first fat model 73b corresponding to the first pattern 70b, and a second fat corresponding to the second pattern 70c.
  • a model 73c is included.
  • These skeletal model 71, muscle model 72, and fat model 73 are combined into one set as a human body model for each pattern. That is, as the standard pattern 70a, the standard skeleton model 71a, the muscle model 72a, and the fat model 73a are associated with each other to form one set (combination). Similarly, as the first pattern 70b, The skeleton model 71b, the muscle model 72b, and the fat model 73b are associated with each other to form one set, and the second skeleton model 71c, the muscle model 72c, and the fat model 73c are associated with each other as the second pattern 70c. Is one set.
  • Each of the skeleton model 71, the muscle model 72, and the fat model 73 is formed so as to be capable of three-dimensional display, and each model is similar to the model shown in the 3D human anatomy app according to Non-Patent Document 1 described above.
  • an operation for example, swipe operation
  • each model can be confirmed from a desired angle, and a required portion of each model can be enlarged or reduced by a required operation (for example, a pinch device). ing.
  • each of the skeleton model 71, the muscle model 72, and the fat model 73 is formed with a texture that is deformable in shape.
  • the skeleton model 71 (standard skeleton model 71a, first skeleton model 71b, second skeleton model 71c) representing the skeleton of the human body can be deformed to be enlarged or reduced in a similar manner, Even at the level of multiple bone parts (bones) that make up the bone, it is possible to enlarge or reduce the length dimension, change the angle change around the joint in the skeleton, etc., and thereby also allow partial deformation of the skeleton It has become.
  • Each of the skeleton model 71, the muscle model 72, and the fat model 73 has numerical values corresponding to their physiques, and these numerical values are shown for each model in the model numerical value table 85.
  • the muscle model 72 (standard muscle model 72a, first muscle model 72b, second muscle model 72c) representing the muscles of the human body is the skeleton model (standard skeleton model 71a, first skeleton model 71b).
  • the second skeleton model 71c) has a muscle (muscle texture) covering the texture surface, and the texture surface is colored with red or pink.
  • the muscle model 72 can also be deformed in shape, but there are two ways of deformation, that is, when the skeleton model 71 is deformed following the above-described deformation and when the muscle model is deformed alone. There is a way.
  • the muscle of the muscle model 72 is formed with a sheet-like texture having a certain thickness representing the muscle, and when the skeleton model 71 is enlarged or reduced in a similar manner as described above, it follows such deformation.
  • the texture of the muscle is stretched and expanded or reduced in size.
  • the muscle model 72 follows such partial deformation, The texture is made to stretch and deform.
  • the muscle model 72 of the present embodiment has a configuration in which the muscles of the face part, the hand part, and the foot part are omitted.
  • the specific part is in units of specific parts (left arm, right arm, left leg, right leg, and trunk).
  • the thickness dimension of the muscle is deformed so that the muscle portion (the thickness of the muscle texture) is thickened or thinned according to the level determined by the measurement result (FIG. 10A). Shows an example in which the muscles of the left arm become thicker, and FIG. 10B shows an example in which the muscles of the left arm become thinner. Since the muscle model 72 is formed with a texture having a certain thickness, when the thickness dimension is reduced, the muscle model 72 is deformed so as to reduce the thickness of the texture, so that the skeleton model is eroded. It can't happen.
  • the fat model 73 (standard fat model 73a, first fat model 73b, second fat model 73c) representing the fat of the human body is the muscle model 72 (standard muscle model 72a, first muscle model) described above.
  • 72b and the second muscle model 72c) are formed in a form having fat (a texture of fat), and the texture surface is provided with a shade of yellow or ocher as a reference color.
  • the fat model 73 can also be deformed in terms of shape.
  • the deformation method is the same as in the case of the muscle model 72. There are two ways of deformation in the case of deformation.
  • the fat of the fat model 73 is also formed with a sheet-like texture having a predetermined thickness indicating fat, but the thickness itself is thinner than that of the muscle model 72.
  • the fat model 73 causes the fat texture to deform following such deformation. It is built in.
  • the fat model 73 also has a fat part corresponding to the deformed specific part of the muscle model 72. The fat texture is stretched and deformed so as to be deformed thick or thin so as to follow.
  • the fat model 73 of the present embodiment has a configuration in which muscles of the face part, the hand part, and the foot part are omitted.
  • the thickness of the fat part of the specific part in units of the specific part (left arm, right arm, left leg, right leg, and trunk). It is possible to deform the dimensions so as to increase the thickness according to the determined level. Furthermore, when the fat model 73 is deformed to increase the thickness dimension of the specific part, the hue of the surface part of the specific part thickened (the hue of the reference color) is gradually increased according to the degree of thickening. As described above, the texture of the fat model 73 is built. Note that the fat of the fat model 73 is arranged so as to be in close contact with the surface of the muscle model 72, so that the muscle shape of the muscle model 72 is easily reflected in the fat.
  • thinning the fat portion of the specific part of the fat model 73 according to the determined level is because the fat model 73 is formed with a thin texture as described above. It is only possible to make it thinner than the level, and making it thinner at a higher level means that the surface color of the target specific part (the color of the reference color) is thinned and the level of further thinning is shown. The transparency of the fat portion at a specific site is gradually increased. For example, if the determination level relating to subcutaneous fat is “ ⁇ 1” which is smaller than the standard “0”, the fat portion of the specific part is deformed to be thinned by one step, and the color of the surface of the fat portion is changed.
  • FIG. 13 shows an outline of similar enlargement or reduction deformation of the above-described human body models (skeleton model 71, muscle model 72, fat model 73).
  • a skeleton model corresponding to the skeleton in the human body model When 71 (for example, standard skeleton model 71a) is enlarged or reduced based on a measurement result (for example, a measurement dimension according to height) related to the physique of subject H, the set is associated with the skeleton model 71.
  • the muscle model for example, the standard muscle model 72a
  • the fat model 73 (for example, the standard fat model 73a) is similarly enlarged or reduced.
  • Such follow-up deformation between the models can be performed by enlarging or reducing at the same rate.
  • the skeletal model 71 (for example, the standard skeletal model 71a) has a dimension of 170.58 cm as a height representing its physique (see the model numerical value table in FIG. 16). If the height of the body is about 179.1 cm, the entire skeletal model 71 is similarly enlarged and deformed by 1.05 times (179.1 / 170.58) according to the measurement result of the subject.
  • the muscle model 72 (for example, the standard muscle model 72a) and the fat model 73 (for example, the standard fat model 73a) are also subjected to the process of enlarging the whole by 1.05 times, thereby performing the following expansion deformation. I have to.
  • the skeleton model 71 for example, the standard skeleton model 71a
  • the muscle model 72 for example, the standard muscular model 72a
  • the fat model 73 for example, the standard fat model 73a
  • each model is provided with a plurality of points (deformation base points) that are the base points of deformation.
  • FIG. 14A to 14C schematically show representative examples of a plurality of deformation base points in each model.
  • FIG. 14A shows deformation base points P1 to P14 showing some of the plurality of deformation base points in the standard skeleton model 71a.
  • the deformation base point P1 is the head apex.
  • the deformation base point P2 is the right shoulder
  • the deformation base point P3 is the left shoulder
  • the deformation base point P4 is the right elbow
  • the deformation base point P5 is the left elbow
  • the deformation base point P6 is the right hand tip (the third finger of the middle finger).
  • deformation base point P7 is the tip of the left hand (third joint of the middle finger)
  • deformation base point P8 is the spine at the center of the waist
  • deformation base point P9 is the right pelvis
  • deformation base point P10 is the left pelvis
  • deformation base point P11 is the right knee
  • deformation base point P12 Is the left knee
  • the deformation base point P13 is the tip of the right foot
  • the deformation base point P14 is the tip of the left foot.
  • Each of these deformation base points P1 to P14 has a coordinate value in the XYZ coordinate system.
  • Each of the deformation base points P1 to P14 is a representative example of the deformation base point, and actually there are more points (see the point table 80 in FIG. 15).
  • FIG. 14B shows a plurality of deformation base points P1 ′ to P14 ′ in the standard muscle model 72a associated with the standard skeleton model 71a shown in FIG. 14A, and these deformation base points P1′ ⁇ P14 ′ is a point corresponding to the deformation base points P1 to P14 of the standard skeleton model 71a of FIG.
  • the muscle model 72 of the present embodiment has a configuration in which the muscles of the face part, the hand part, and the foot part are omitted, so that the muscles corresponding to the face part, the hand part, and the foot part shown in the figure.
  • the deformation base points P1 ′, P6 ′, P7 ′, P13 ′, and P14 ′ in the model 72 become virtual deformation base points.
  • FIG. 14C shows a plurality of deformation base points P1 ′′ to the standard fat model 73a associated with the standard skeleton model 71a shown in FIG. 14A and the standard muscle model 72a shown in FIG. P14 ′′
  • these deformation base points P1 ′′ to P14 ′′ are the deformation base points P1 to P14 of the standard skeleton model 71a of FIG. 14A and the deformation base points P1 ′ of the standard muscle model 72a of FIG. 14B.
  • the point corresponds to ⁇ P14 '.
  • the fat model 73 of the present embodiment has a configuration in which the muscles of the face part, the hand part, and the foot part are omitted, the fat corresponding to the face part, the hand part, and the foot part shown in the figure.
  • the deformation base points P1 ′′, P6 ′′, P7 ′′, P13 ′′, P14 ′′ in the model 73 become virtual deformation base points.
  • the right shoulder deformation base point P2 'of the standard muscle model 72a corresponding to the right shoulder deformation base point P2 and the right shoulder of the standard fat model 73a.
  • the texture around the deformation base point freely expands and contracts according to deformation (enlargement or reduction). It is built like that.
  • the follow-up deformation of the standard fat model when the standard muscle model 72a of FIG. 14B is partially deformed is performed in the same manner as described above.
  • the coordinate values of the deformation base point P8 ′′ of the standard fat model 73a corresponding to the deformation base point P8 ′ are also (X, Y, Z).
  • FIG. 15 shows an example of the contents of the point table 80 stored in the storage unit 50g of FIG.
  • the point table 80 shows the correspondence between the deformation base point of the skeleton model 71 and the number of each point included in the measurement result of the subject's three-dimensional measuring device 20. That is, since the number of points on the surface of the skin of the subject H measured by the three-dimensional measuring device 20 reaches about 30,000 points, the deformation of the skeleton model 71 is performed when the skeleton model 71 is deformed according to the measurement result of the subject H. Since it is necessary to specify which of the approximately 30,000 points the base point is to be moved, the point table 80 defines a correspondence for such specification.
  • a stretched portion (a portion where the muscle and fat are not basically covered and the skin covers the bone) is selected even from above the skin. Therefore, even if the measurement result of the subject H is on the surface of the skin, it is made less susceptible to the influence of muscles and fats so that it can correspond to the skeleton model.
  • the point table 80 defines that the head vertex as the deformation base point of the skeleton model 71 corresponds to the 3225th point in the measurement result of the three-dimensional measuring device 20. If the XYZ coordinate value of the head vertex corresponds to the XYZ coordinate value of the 3225th point (corresponding to the corresponding point) and there is a deviation between them, the head vertex of the skeleton model 71 is equivalent to the deviation of the coordinate value. Is moved to the 3225th point.
  • the measurement result point (XYZ coordinate value) associated with the deformation base point (XYZ coordinate value) of the skeleton model 71 may be associated with a plurality of points in addition to one case. Is a point having an average value of XYZ coordinate values of a plurality of points as a corresponding point, and the XYZ coordinate value (a numerical value indicating a three-dimensional position) of the corresponding point is associated with the XYZ coordinate value of the deformation base point. Will be.
  • the right shoulder as the deformation base point is the 10166th point when viewed from the right (view on the YZ plane), the 2055th point when viewed from the front (view on the XY plane), When viewed from the rear direction (view on the XY plane), the 14829th point is associated with a total of three points.
  • the MPU 50a calculates the numerical values of the average XYZ coordinate values of the 10166th point, the 2055th point, and the 14829th point, and a point having the calculated average XYZ coordinate value is specified as the corresponding point.
  • the average XYZ coordinate value of the corresponding point corresponds to the XYZ coordinate value of the right shoulder deformation base point, and if there is a deviation between them, the right shoulder deformation base point is moved toward the corresponding point so that they match.
  • the MPU 50a performs the processing to be performed.
  • FIG. 16 shows an example of the contents of the model numerical value table 85 stored in the storage unit 50g of FIG.
  • the model numerical value table 85 stores numerical values corresponding to each part of each human body model (a skeleton model, a muscle model, and a fat model of each pattern for men and women) stored in the human body model table 70 shown in FIG.
  • FIG. 16 shows a range in which numerical values corresponding to each part of the human body model corresponding to the male standard pattern 70a are stored.
  • the model numerical value table 85 includes numerical values corresponding to the first pattern 70b and the second pattern 70c for males, and numerical values corresponding to each pattern for females.
  • Each numerical value stored in the model numerical value table 85 is an average value for each pattern based on a statistically obtained numerical value, and is obtained from an average height numerical value, an inseam numerical value, an arm length numerical value, and the like.
  • the crotch ratio (the ratio of the left and right average length of the foot to the height), the sleeve length ratio (the ratio of the left and right average length of the arm to the height), and the like are stored. This is used when a pattern is specified from among the patterns 70a to 70c, and when the degree of enlargement or reduction of the model of the specified pattern is specified.
  • model deformation program 11 stored in the storage unit 50g will be described.
  • Specific programming contents of the model deformation program P11 include processing relating to member authentication, processing for providing a human body model corresponding to the measurement result, and the like.
  • the human body model providing system 50 receives inquiry information related to member authentication including the user ID and password from the measurement processing device 30 as processing related to member authentication, the user ID and password included in the received inquiry information are registered as members. It is determined whether or not it is included in the database 60. When the user ID and password are included in the member database 60, the MPU 50a performs a process of returning a response indicating registration to the measurement processing device 30. When the user ID and password are not included, the MPU 50a does not register (not registered). A process of returning a response of “Membership” to the measurement processing device 30 is performed.
  • the measurement data column of the member database 60 is associated with the user ID included in the received data.
  • the measurement result is stored together with the reception date and time (or measurement date and time).
  • FIG. 17 shows the transformation of the human body model stored in the human body model table 70 in order to provide the human body model corresponding to the assumed result as the main processing of the present invention in the processing prescribed by the model transformation program P11.
  • the MPU 50a performs a series of processes for deforming the human body model according to the measurement result of the subject H.
  • the human model according to the measurement result of the subject H is not generated from scratch, but the human body model of each pattern stored in the human body model table 70 (see FIG. 9) described above is used.
  • generating generating by deforming the stored human body model
  • a human body model corresponding to the subject can be provided smoothly. Note that the processing by the MPU 50a shown in the flowchart of FIG. 17 is started in response to the human body model providing system 50 acquiring the measurement result sent from the measurement processing device 30.
  • the standard pattern 70a of the human body model table 70 in FIG. 9, the first pattern 70b having a short limb, and the second pattern 70c having a long limb are selected.
  • the MPU 50a performs processing for specifying which one to use.
  • the measurement result sent from the measurement processing device 30 includes the physique of the subject H such as the height of the subject H, the length of the left arm, the length of the right arm, the length of the left leg, and the length of the right leg. Since the dimensional numerical values shown are included, the sleeve length ratio and the crotch ratio of the subject H are calculated from these dimensional numerical values (calculating the ratio relating to the limb dimensions), and the model of FIG.
  • the MPU 50a specifies the closest sleeve length ratio and inseam ratio of the same surname stored in the numerical value table 85, and specifies a pattern corresponding to the specified sleeve length ratio and inseam ratio as the pattern of the subject H.
  • a human body model (a set of skeleton model, muscle model, and fat model) corresponding to the specified pattern is measured as shown in FIG.
  • the MPU 50a performs a process of enlarging or reducing in a similar manner according to the measurement result related to the physique.
  • the MPU 50a is similar to the human body model (skeleton model, muscle model, and fat model) of the male standard pattern 70a stored in the human body model table 70 at about 1.04 times as shown in FIG. Expand to.
  • the MPU 50a similarly reduces the human body model of the male standard pattern 70a stored in the human body model table 70 by about 0.97 times as shown in FIG.
  • step S3 the MPU 50a performs a process of partially deforming the skeleton model 71 (for example, the standard skeleton model 71a) in the similarly expanded or reduced human body model.
  • This partial deformation is measured by obtaining XYZ coordinate values of points (corresponding points) with numbers corresponding to a plurality of deformation base points (for example, deformation base points of the standard skeleton model 71) included in the point table 80 of FIG.
  • a part of the skeleton model 71 is partially deformed by performing a process of specifying the point included in the result and moving the XYZ coordinate value of the deformation base point to the measured XYZ coordinate value of the point of the specified number.
  • a change base point P20 (indicated by a black circle in the figure) of the left pelvis of the skeleton of the skeleton model 71 (corresponding to a deformable bone capable of deforming a polygon shape) is a point p1 of a specific number corresponding to the change base point (see FIG. In the middle, it is indicated by a white circle and moved to the corresponding point specified from the point table 80 in Fig. 15, and by the movement, the left pelvis texture portion B1 in the vicinity of the change base point P20 (enclosed by a broken line in Fig. 18B) And the skeleton model 71 is partially deformed.
  • FIG. 19 (a) to 19 (c) show a bone portion H1 (in FIG. 19, the left upper arm) including the deformation base point P30 (the deformation base point P30 of the left elbow) in the skeleton model 71 (for example, the standard skeleton model 71a).
  • Bone H1 (corresponding to deforming bone) is changed in angle around joint C1 (left shoulder joint C1 in FIG. 19) closest to the center of the body, and then the length dimension is extended. An example of partial deformation is shown.
  • the left elbow deformation base point P30 (indicated by a black circle in the figure) is a point p2 having a specific number as a movement destination (indicated by a white circle in the figure).
  • the XYZ coordinate value of the deformation base point P30 is the specific number in the state shown in FIG. 19A.
  • the bone portion H1 of the upper arm extends in an unnaturally bent state. To prevent such a problem, as shown in FIG.
  • the angle of the bone portion H1 of the upper arm is rotated around the joint C1 that is closest to the center of the body of the deformation base point P30.
  • the direction of the vector of the virtual straight line K10 from the center of the shoulder joint C1 to the point p2 with a specific number (corresponding to the direction from the center of the shoulder joint C1 to the point p2) is specified.
  • the angle of the bone portion H1 relative to the shoulder joint C1 is changed by rotating the bone portion H1 of the left upper arm around the shoulder joint C1 so that the virtual line K1 overlaps the virtual straight line K10 and has the same direction. To do.
  • the muscle model combined as a set of the skeleton model 71 following the deformation of the skeleton model 71 (for example, the standard skeleton model 71a) in the step S3 described above.
  • the MPU 50a performs a process of deforming the 72 (for example, the standard muscle model 72a) and the fat model 73 (for example, the standard fat model 73a).
  • the corresponding deformation base points (see FIG. 14) in the muscle model 72 and the fat model 73 are equal to the numerical values of the XYZ coordinate values obtained by moving the deformation base points of the skeletal model 71, respectively.
  • Process to move By performing the process of step S4, the basic shapes of the muscle model 72 and the fat model 73 are in conformity with the shape of the subject's own skeleton.
  • the muscle model 72 (for example, the standard muscle model 72a) is determined based on the level (“ ⁇ 4” to “+4”) of the trunk visceral fat included in the measurement result. Based on the numerical value), a process of deforming the abdominal part so as to be thick or thin is performed.
  • FIG. 20 shows an image in which the abdominal region of the standard muscle model 72a is thickly deformed according to the level of visceral fat (a diagram on the YZ plane when the human body model is viewed from the left).
  • the abdominal region becomes thicker or thinner.
  • the abdominal part is thickened when the numerical value of the judgment level is larger than the standard “0”, and the thickened part is when the level of the visceral fat of the trunk is “+1”.
  • the front line L1 extends in the direction indicated by the black arrow in the figure (the belly protrudes forward) at a position where the dimension W of the part (the length dimension in the Z-axis direction in the case of the standard “0”) is about 1.03 times. Curve) to move in the direction).
  • the line L10 shown with a dashed-dotted line in FIG. 20 shows the outline of the front side of the muscle model 72a after deform
  • the front line L1 is curved and deformed to move in the direction of the black arrow in the figure to a position where the dimension W is about 1.06 times. If “+3”, the front line L1 is curved and deformed to move in the direction of the black arrow at a position where the dimension W is about 1.09 times. If the level is "+4", the dimension W is about 1.12 times. The front line L1 is curved and deformed so as to move in the direction of the black arrow at a position where
  • the abdominal region is thinned when the level of visceral fat in the trunk is “ ⁇ 4” to “ ⁇ 1” which is smaller than the standard “0”, and depends on the abdominal region of the muscle model 72. Since the portion of the skeletal model 71 is just a hollow portion below the sternum and ribs, the abdominal portion of the muscle model 72 can be finely deformed according to the determination level.
  • the anterior line L1 is shown at a position where the size W of the abdominal part of the muscle model 72a is about 0.98 times. It is curved and deformed so as to move in the direction of the white arrow inside (the direction in which the belly retracts).
  • the line L20 shown with a dashed-two dotted line in FIG. 20 shows the outline of the front side of the muscle model 72a after deform
  • the front line L1 is curved and deformed to move in the direction of the white arrow at a position where the dimension W is about 0.94 times. If the level is” -4 ", the dimension W is about 0.92 times.
  • the front line L1 is curved and deformed so as to move in the direction of the white arrow in the figure at a position where When the visceral fat level is “0”, the abdominal region of the muscle model 72 is not deformed.
  • magnifications used for thickening (1.03, 1.06, 1.09, 1.12) and the magnifications used for thinning (0.98, 0.96,. 94, 0.92) is an example, and other values can of course be applied according to the system specifications and the like.
  • the above numerical values are used by default, and statistically The default value may be changed as needed based on the numerical value (the same applies to each numerical value used in the modification based on each determination level described later).
  • the muscle model 72 (for example, the standard muscle model 72a) is determined for the muscle mass of a specific part (left arm, right arm, left leg, right leg, and trunk) included in the measurement result. Based on the level (“ ⁇ 4” to “+4”, which corresponds to a numerical value related to muscle mass), a process of deforming the muscle portion related to each specific part so as to be thick or thin is performed. Note that the case where the level is “0” is standard, and the portion of “0” is not deformed in the stage of S6.
  • the determination level in the specific part is “+1” to “+4” that is larger than the standard “0”
  • the upper arm and the forearm are deformed so that the muscular portions are thickened (the left arm is deformed so that the width w1 is large.
  • the width w1 indicates a dimension in the case of “0”).
  • the determination level is “+1”, it is deformed so as to be thick at about 1.05 times the width w1, and if it is “+2”, it is thick at about 1.1 times the width w1.
  • it is “+3” it is deformed to be thick at about 1.15 times the width w1, and if it is “+4”, it is deformed to be thick at about 1.2 times the width w1.
  • the determination level is “ ⁇ 1” to “ ⁇ 4”, which is smaller than the standard “0”, as shown in FIG. Deformation (so that the width w1 of the left arm is reduced).
  • the determination level is “ ⁇ 1”, it is deformed so as to become thin at about 0.96 times the width w1, and if it is “ ⁇ 2”, it becomes thin at about 0.92 times the width w1.
  • it is “ ⁇ 3”, it is deformed to be thinned at about 0.88 times the width w1, and if it is “+4”, it is deformed to be thinned at about 0.84 times the width w1.
  • the fat model 73 (combined as a set of the muscle model 72) follows the deformation of the muscle model 72 (for example, the standard muscle model 72a) in the steps S5 and S6 described above.
  • the MPU 50a performs a process of deforming the standard fat model 73a).
  • the abdominal part of the fat model 73 is also deformed (the amount of movement of the XYZ coordinate value of the abdominal part of the muscle model is similarly changed.
  • the corresponding specific part of the fat model 73 is moved and deformed by the numerical value of the XYZ coordinate value associated with the deformation of the specific part of the muscle model 72 in the stage of S6.
  • the basic shape of the fat model 73 becomes a shape along the way the subject's own muscle is attached.
  • the deformation process is performed following the deformation of the skeletal model 71 in the step S4, and the deformation process is performed following the deformation of the muscle model 72 in the step S7.
  • the follow-up deformation process of the fat model 73 in the step S4 is omitted, and the deformation amount accompanying the deformation of the skeleton model 71 and the muscle model 72 is collectively reflected in the step S7.
  • the follow-up deformation process may be performed at a time.
  • the fat model 73 (for example, the standard muscle model 73a) is obtained from the fat amount (subcutaneous fat) of a specific part (left arm, right arm, left leg, right leg, and trunk) included in the measurement result. Based on the level (“ ⁇ 4” to “+4”, which corresponds to a numerical value related to the amount of fat) determined for the amount), a process of deforming the fat portion related to each specific part to be thicker or thinner is performed, or A treatment that changes the quality of the surface of the fat portion is performed.
  • the determination level in the specific part is “+1” to “+4” from the standard “0”, the upper arm and the forearm of the specific part.
  • the fat part is deformed to be thick.
  • the determination level is “+1”
  • the width is changed to be thick w10
  • “+2” the width is changed to be thick w11 (w11> w10), and “+3” is set. If there is, it is deformed to be thick so that the width is w12 (w12> w11), and if it is “+4”, it is deformed to be thick so that the width is w13 (w13> w12).
  • the fat model 73 becomes an element that distinguishes how fat is attached even if the hue is different.
  • the fat part thickness of the specific part is set in one step (for example, a ratio of 0.97 times). In addition to performing the thinning process, the process of making the surface of the fat portion lighter than “0” is performed. If the determination level is “ ⁇ 2”, the color of the surface portion (for example, the upper arm and the forearm portion) corresponding to the specific part is changed to be lighter than in the case of “ ⁇ 1”, and is changed to “ ⁇ 3”.
  • the texture itself that forms the fat part of the specific part is changed so that it is slightly transmitted (changes so that it becomes translucent), and when it becomes “ ⁇ 4”, the permeability of the fat part is further increased,
  • the muscle model 72 covered with fat of the fat model 73 is changed so that the muscles are seen through.
  • step S9 of the flowchart data indicating the human body model (the deformed skeleton model 71, the deformed muscle model 72, the deformed fat model 73) deformed through the above-described processing is obtained from the subject H who has measured the data.
  • the MPU 50a performs a process of storing together with the date of measurement date in the measurement data column of the member database 60 shown in FIG.
  • the data indicating the human body model stored in the member database 60 can be read and displayed on the communication terminal 3 by making a browsing request to the human body model providing system 50 using the communication terminal 3 shown in FIGS. Such a process related to reading is also included in the process defined by the model deformation program P11.
  • the human body model providing system 50 performs a login process for data browsing, and the sent user ID and password are registered in the member database 60. If it is, the login state is entered, and the latest human body model data in the login state is read from the member database 60 and transmitted to the communication terminal 3 in the login state. Note that the login state of the communication terminal 3 is continued until a logoff operation is sent from the communication terminal 3.
  • a human body model browsing program capable of displaying a human body model is installed in advance in the communication terminal 3 described above.
  • the human body model browsing program is started and the human body model data ( Skeleton model data corresponding to the skeleton, muscle model data corresponding to the muscle, and fat model data corresponding to the fat), the anatomical human body model is displayed based on the received human body model data. Can do.
  • the activated human body model browsing program includes a menu bar having items related to display at one corner of the screen. By performing a model switching operation in this menu bar, the display on the skeleton model 71 and the top of the skeleton model 71 are displayed. The display in the state where the muscle model 72 is arranged on the skeleton model 71 and the display in the state where the fat model 73 is arranged on the muscle model 72 arranged on the skeletal model 71 can be appropriately switched.
  • FIG. 21 shows a human body model in a skeletal state based on a skeleton model 71 generated by the communication terminal 3 based on the received human body model data (for example, a model obtained by transforming the standard skeleton model 71a according to the measurement result of the subject H).
  • the state displayed on the display screen 3a of the communication terminal 3 is shown.
  • FIG. 22 is a muscle model 72 generated by the communication terminal 3 based on the received human body model data (for example, a model obtained by transforming the standard muscle model 72a according to the measurement result of the subject H), and the skeletal model 71.
  • FIG. 23 shows a fat model 73 (for example, a model obtained by deforming a standard muscle model 72a according to the measurement result of the subject H) generated by the communication terminal 3 based on the received human body model data.
  • positioned above may be displayed on the display screen 3a of the communication terminal 3 is shown.
  • the subject H can grasp the shape of his / her skeleton in the display state of FIG. 21, for example, by switching the display state in FIGS. 23. Furthermore, the manner of fat attachment can be confirmed anatomically in the display state of FIG. 23, and the effects of exercise or diet are not shown from the appearance of the body, but as shown in FIGS. There is a merit that can be confirmed at the muscle level or fat level inside the body.
  • the communication terminal 3 Can display a human body model from a desired angle by swiping operation (if a personal computer or the like is used as the communication terminal 3).
  • an operating device such as a mouse
  • the human body model shown in FIGS. 21 to 23 can be appropriately enlarged or reduced by a pinch operation of the display screen 3a (when a personal computer or the like is used as the communication terminal 3, an operation device such as a mouse can be used. (Enables enlargement or reduction operation)
  • the communication terminal 3 can also display the measurement values of the body composition meter 10 and the three-dimensional measuring device 20, and the measurement values sent from the human body model providing system 50 can be displayed. It is also possible to display each numerical value and display each numerical value related to a plurality of measurement dates in a graph, and it is possible to check a time-series change or the like by the graph display.
  • the description is basically based on a male human body model.
  • a fat model based on subcutaneous fat in the female trunk.
  • the processing relating to the above includes the contents different from those of the male human body model described above, and is otherwise basically the same.
  • the processing relating to how to handle the breast based on subcutaneous fat in the trunk of a female fat model will be described below.
  • FIG. 24 shows a female fat model 76 in the human body model table 70.
  • the female fat model 76 is also a standard fat model 76a corresponding to the standard pattern 70a, a first fat model 76b corresponding to the first pattern 70b, and a second pattern.
  • the amount of fat (subcutaneous fat) in the trunk (torso) includes the amount of the breast. Then, it is considered that the subcutaneous fat corresponding to the breast is attached to the trunk, and the trunk is formed thicker than the actual female subject. In order to avoid the occurrence of such a situation, when the subject is a woman, the MPU 50a performs a process specific to the female in the deformation process of the fat model 76.
  • FIG. 25 shows a female fat reference table 90 that is referred to in order to perform processing specific to a female.
  • a female fat reference table 90 is also stored in the storage unit 50g of the human body model providing system 50 shown in FIG. It will be.
  • the cup value in the female fat reference table 90 means a dimensional difference between the chest circumference obtained from the measurement value (OBJ data) of the three-dimensional measuring instrument 20 and the underbust, and the statistical average dimension of the female breast circumference. Is 81.3 cm and the average size of the underbust is 70.4 cm, so the average size of the cup value is 10.9 cm. In the present embodiment, by using the average size of the cup value of 10.9 cm, the distribution of the fat amount of the trunk to the breast and the part other than the breast is determined.
  • the determination level is “+1”. ”To“ +4 ”“ plus level ”, case level“ 0 ”“ standard level ”, judgment level“ ⁇ 1 ”to“ -4 ”“ minus level ”(female fat) (See the leftmost column of the lookup table 90). Each of these three levels is divided into three categories according to the cup value.
  • cup value obtained by the measured value is less than 10.9 cm, it is “small”, and the cup value is 10.9 cm or more and 17 When it is less than 5 cm, it is classified as “medium”, and when the cup value is 17.5 cm or more, it is classified as “large”.
  • the MPU 50a follows the female fat reference table 90, and the trunk of the fat model 76 is other than the breast. If the cup value is “medium” at “plus level”, the whole body will be thickened, and if the cup value is “large” at “plus level” The deformation that enlarges only the breast is performed.
  • the MPU 50a follows the female fat reference table 90, and the trunk of the fat model 76 If the cup value is “medium” at “standard level”, the transformation value is not applied and the cup value is set at “standard level”. If “L” is “large”, the breast is deformed to be a little larger, and the part other than the breast is thinned a little.
  • the MPU 50a follows the female fat reference table 90, and the trunk of the fat model 76 If the cup value is “medium” at the “minus level” and the cup value is “medium”, the whole body is thinned and the “minus level” is applied. If the cup value is “large”, the breast is not deformed, and the part other than the breast is thinned.
  • a calculation formula for obtaining a deformation rate when deforming the breast, and a deformation rate when deforming a portion other than the breast in the trunk is also defined in the female fat reference table 90.
  • the deformation rate of the breast is calculated from Formula A
  • the deformation rate of the trunk other than the breast is calculated from Formula E.
  • the formula A is (cup value / 10.9) ⁇ (judgment level value / 4) ⁇ 100
  • the formula E is (10.9 / cup value) ⁇ (judgment level value / 4) ⁇ 100.
  • the deformation rate of the breast is calculated from the formula B, and the deformation rate of the trunk other than the breast is calculated from the formula F.
  • the formula B is (cup value / 10.9) ⁇ 0.1 ⁇ 100
  • the formula F is 227 (original texture formation value, alpha value) ⁇ (10.9 / cup value) (decimal number). Rounded down below).
  • the cup value of “standard level” is “small”
  • the deformation rate of the breast is calculated from Formula C
  • the deformation rate of the trunk other than the breast is calculated from Formula G.
  • the formula C is (1 ⁇ (cup value / 10.9)) ⁇ 0.1 ⁇ 100
  • the formula G is (10.9 / cup value) ⁇ 0.1 ⁇ 100.
  • the deformation rate of the breast is calculated from Formula D
  • the deformation rate of the trunk other than the breast is calculated from Formula H.
  • Formula D is (10.9 / cup value) ⁇ (judgment level value ⁇ ( ⁇ 1) / 4) ⁇ 100
  • Formula H is 227 (original texture formation value, alpha value) ⁇ (10. 9 / cup value) ⁇ (1 ⁇ (judgment level value ⁇ ( ⁇ 1) / 4) (rounded to the nearest decimal)
  • the contents of the female fat reference table 90 described above, the contents of the mathematical expressions A to H described above, and the like Is an example, and it is of course possible to change the contents as appropriate according to the specifications of the system, changes in statistical values, and the like.
  • the human body model having a shape corresponding to the measurement result of the subject H is provided so as to be anatomically confirmable.
  • the subjects can visually confirm the changes in muscle mass due to strength training, etc., or the decrease in fat mass due to diet exercise, etc. It is done.
  • the present invention is not limited to the above-described embodiment, and various modifications can be considered.
  • the values “ ⁇ 4” to “+4” indicating the determination level are obtained by the measurement processing device 30 based on the measurement result from the body composition meter 10 in the above description, but the body composition meter 10 itself If the level can be determined, the body composition meter 10 may obtain the determination level to reduce the processing load on the measurement processing device 30.
  • the level determination processing can be performed by the human body model providing system 50 instead of being performed by the measurement processing device 30. In this case, the measurement processing device 30 uses the calculation result from the body composition meter 10 as a result. Then, the data is transmitted to the human body model providing system 50 as it is, and the human body model providing system 50 determines the level from the received calculation result.
  • the determination level stage is not limited to “ ⁇ 4” to “+4”.
  • “ ⁇ 3” to “+3” or “ ⁇ 2” to “+2” is used.
  • the steps may be made fine like “ ⁇ 5” to “+5” or “ ⁇ 6” to “+6”. Is changed, the step of deforming the muscle model 72, the fat model 73, etc. is also made rough or fine according to the changed step.
  • the degree of similar expansion or contraction is performed according to the ratio of the length dimension of the limbs to the height (the ratio of the sleeve length, the ratio of the crotch).
  • the ratio may not be a value for the height, but may be a ratio for the length from the joint under the neck to the foot, excluding the length of the face from the height.
  • the ratio of the sleeve length or inseam is excluded by excluding such a variation (person's face).
  • it is preferable in that the physique situation can be expressed more accurately.
  • the body composition meter 10 and the three-dimensional measuring device 20 are linked to perform measurement simultaneously.
  • the measurement results may be transmitted to the human body model providing system 50.
  • the human body model providing system 50 obtains the physical measurement results necessary for providing the human body model. Any form may be used, and any measuring instrument may be used.
  • the measurement processing device 30 shown in FIG. 1 has the function of the human body model providing system 50, and the measurement processing device 30 uses the human body model providing system 50 described above. You may make it perform the process of.
  • the subject H in the measurement state as shown in FIG. 1 is imaged and the captured image is displayed on the above human body model.
  • the relationship between the appearance of the subject H and the anatomical human body model inside the human body may be presented to the user.
  • the captured image of the subject is displayed so as to be superimposed on the fat model so that the human body model can be seen by changing the transparency, or the captured image is used as a background, and the captured image is displayed on the captured image.
  • the skeleton model 71, the muscle model 72, and the fat model 73 may be sequentially stacked.
  • the skeleton model 71, the muscle model 72, and the fat model 73 do not use a three-dimensional model, but use a two-dimensional model to display angles.
  • the change function or the like may be omitted.
  • prepare a skeletal model that shows the skeleton by layer, a muscle model that shows muscle, and a fat model that shows fat, and layer the muscle model on the skeleton model in layers A model in which the skeleton is covered with muscles is presented, and a model in which the muscles are covered with fat can be presented by overlaying a fat model on the model in this state with a layer.
  • the fat model may be omitted, and the human body model may be configured by the skeleton model 71 and the muscle model 72.
  • a whole body model is provided.
  • it is not necessary to provide a whole body model, and a specific part (left arm, right arm, left leg, right leg, or body) If it is necessary to provide an anatomical human body model only for one of the trunks, the above-described processing is performed on the necessary part to provide a human body model for the necessary part (for example, only the left arm). It is also possible to make the specifications.
  • the various modifications described above can be combined as appropriate.
  • the second embodiment presents the screens (posture verification screens 100, 110, 120, and 130) as shown in FIGS. 26 to 29 to the user, so that the three-dimensional measurement can be performed without performing the verification using the X-ray or MRI.
  • the state of the skeleton of the human body (subject) performed is specified based on the three-dimensional coordinate values of a plurality of points on the surface of the human body obtained by three-dimensional measurement, so that the posture of the subject can be verified.
  • the system configuration (hardware configuration) of the second embodiment is the same as the health management system 1 described in the first embodiment, and the health management system 1 includes functions such as skeletal condition identification and posture verification. The feature is that it can be made to.
  • the second embodiment will be described.
  • the same reference numerals as those in the first embodiment are used for the same components as the first embodiment.
  • the health management system 1 includes a skeletal identification system, specifically, a three-dimensional possessed by a plurality of points on the surface of a human body obtained by measurement with a three-dimensional measuring device 20.
  • the human body model providing system 50 that acquires measurement results such as coordinate values (OBJ data, etc., including the user ID of the user who performed the three-dimensional measurement) via the measurement processing device 30 also serves as the skeletal identification system. It has become a thing. Therefore, a computer (for example, a server computer) that constructs the human body model providing system 50 functions as the skeleton specifying system 50 ′ of the second embodiment.
  • FIG. 30 is a block diagram showing the main internal configuration of the skeleton identification system 50 ′ of the second embodiment.
  • the skeletal identification system 50 ′ corresponds to the human body model providing system 50 of the first embodiment, and therefore has an internal configuration similar to that of the human body model providing system 50 (see FIG. 7). ing.
  • the skeletal identification system 50 ′ is constructed by a general computer (for example, a server computer), but a system is constructed by combining a plurality of server computers and database devices. It is also possible to do. Similar to the human body model providing system 50 of FIG. 7, the skeletal identification system 50 ′ includes an MPU 50a ′, a communication module 50b ′, a RAM 50c ′, a ROM 50d ′, an input interface 50e ′, an output interface 50f ′, a storage unit 50g ′, and the like. The internal connection line 50h ′ is connected, and what is stored in the storage unit 50g ′ is different from the first embodiment.
  • the storage unit 50g ′ stores a member database 60, a server program P10, a model transformation program P110, a human body model table 70, a point table 800, a model numerical value table 85, a determination table 95, an analysis table 96, and the like.
  • the model deformation program P110 is obtained by adding processing related to skeleton identification according to the second embodiment to the model deformation program P11 of the first embodiment (details will be described later).
  • the member database 60, the server program P10, the human body model table 70, the model numerical value table 85, etc., which are basically stored in the storage unit 50g ′, are basically the same as those in the first embodiment, but the human body model table 70 (see FIG. 9).
  • the deformable skeleton models 71a to 71c included in (1) include target points having three-dimensional coordinates for use in posture verification in addition to the representative deformation base points P1 to P14 and the like. Yes.
  • FIG. 31 shows a part (foot part) of a skeleton model 71a that represents an example of target points used for posture verification.
  • the skeleton model 71a of Example 2 includes points P100 and 101 (Daitehshi_L, Daitehshi_R) corresponding to the left and right femoral trochanters as target points, points P102 and 103 (Hizagashira_L, Hizagashira_R) corresponding to the left and right kneecaps, Points P104 and 105 (Ashikubi_L, Ashikubi_R) corresponding to the ankle under the tibia are included.
  • Each of these points P100 to P105 is a point that becomes a center point (fulcrum) of the joint when moving the bone, and has characteristics different from the deformation base points P1 to P14 and the like, and is used for posture verification. Therefore, it is a point to be embedded in the skeleton model 71a in advance.
  • the origin of the coordinate values is the midpoint between the left and right feet.
  • the points P100 to P105 described above change their positions, and the positions change, so that the X, Y, The coordinate value of Z also changes.
  • the X, Y, and Z coordinate values of the points P100 to P105 that have changed following the deformation of the skeletal model 71a are the greater trochanters of the left and right femurs in the human body of the subject that is the subject of the three-dimensional measurement,
  • the position of the point corresponding to the kneecap and the ankle under the tibia is represented, and from the position of these points, as described later, the foot is an O leg or an X leg, and the left and right hipbones are tilted forward or backward.
  • the skeleton model 71a of the second embodiment also includes angle lines constituting a pelvic angle (lumbosacral angle or sacral inclination angle), lumbar lordosis angle, thoracic kyphosis angle, and cervical vertebral angle.
  • FIG. 32 shows lines L100 to L107 constituting the above-described angles of the skeleton model 71a.
  • the pelvic angle (lumbosacral angle or sacral angle) is an angle corresponding to the line L100 and the pelvic angle line L101, and means an angle at which these lines L100, 101 intersect.
  • the line L100 is a line parallel to the Z axis
  • the pelvic angle line L101 is a line parallel to the upper surface of the sacrum (corresponding to a skeleton location related to hips described later)
  • a mathematical expression representing the pelvis angle line L101 (a mathematical expression indicating the inclination of the pelvis angle line L101) is predetermined (the same applies to other angle lines).
  • the lumbar lordosis angle is an angle according to the first anterior line L102 and the second anterior line L103, and means the angle at which these lines L102, 103 intersect.
  • the first anterior line L102 is a line parallel to the joint surface (upper surface or lower surface, corresponding to a skeletal portion related to spine described later) of the lowermost fifth lumbar vertebra among a total of five lumbar vertebrae.
  • a line L103 is a line parallel to the joint surface (upper or lower surface, corresponding to a lower skeletal portion related to spine 2 described later) of the uppermost first lumbar vertebra among the total of five lumbar vertebrae.
  • the thoracic vertebra kyphosis angle is an angle corresponding to the first posterior heel line L104 and the second posterior heel line L105, and means an angle at which these lines L104, 105 intersect.
  • the first posterior line L104 is a line parallel to the joint surface (upper surface or lower surface, corresponding to the upper skeleton portion related to spine 2 described later) of the lowermost thoracic vertebra among the 12 thoracic vertebrae
  • the 2 posterior saddle line L105 is a line parallel to the joint surface (upper surface or lower surface, corresponding to a skeletal portion related to spine 3 described later) of the uppermost first thoracic vertebra among the total 12 thoracic vertebrae.
  • the cervical lordosis angle is an angle corresponding to the first cervical lordosis line L106 and the second cervical vertebra lordosis line L107, and means an angle at which these lines L106 and 107 intersect.
  • the first cervical vertebral lordosis line L106 is a line parallel to the joint surface (upper surface or lower surface, corresponding to a skeletal portion related to neck_1 described later) of the lowermost cervical vertebra among a total of seven cervical vertebrae
  • the cervical lordosis line L107 is a line parallel to the joint surface (upper surface or lower surface, corresponding to a skeleton portion related to neck_3 described later) of the uppermost first cervical vertebra among the total seven cervical vertebrae.
  • the standard skeleton model 71a is described.
  • the first pattern skeleton model 71b in which the dimensions of the limbs (dimensions of the limbs) are shortened by about 95% compared to the standard type, and the dimensions of the limbs (
  • the second pattern skeleton model 71c in which the dimensions of the limbs are about 105% longer than the standard type, the deformation base points P1 to P14 and the like, the points P100 to 105 and the like, and the angle lines L101 as described above. To L107 and the like.
  • point table 800 stored in the storage unit 50g ′ of FIG. 30 is partially different from the point table 80 (see FIG. 15) of the first embodiment, and the determination table 95, and The analysis table 96 and the like are tables newly stored in the second embodiment.
  • the point table 800 according to the second embodiment is basically similar to the point table 80 according to the first embodiment (see FIG. 15).
  • a specific human body location skeleton
  • the points on the surface of the human body obtained by the three-dimensional measurement corresponding to the skeletal points (points at the skeletal location) are shown for each skeleton point. Note that the points on the surface of the human body obtained by the three-dimensional measurement have three-dimensional coordinate values based on the three-dimensional coordinate system.
  • each skeleton point included in the point table 800 corresponds to the deformation base points P1 to P14 and the like included in the skeleton models 71a to 71c described above.
  • the point table 800 is different from the point table 80 of the first embodiment in that the number of specific human body parts (skeleton points) is increased in order to enable detailed verification of the state of the skeleton, and for the purpose of posture verification.
  • human body parts such as shoulder ridges are included, and a remarks column is provided to describe how to specify (calculate) the X, Y, Z coordinate values, and the coordinate values are determined according to the characteristics of each skeleton point. It is asking for.
  • a name (referred to as a bone name) for each skeleton point is also defined so that the skeleton point can be distinguished in each process.
  • FIG. 35 shows a bone model 810 conceptually showing the positional relationship between each skeleton point (corresponding to a bone) according to the bone name.
  • the bone model 810 has the head bone name as the head vertex and corresponds to the upper neck (corresponding to the upper neck point).
  • the upper neck (neck_3) corresponds to the skeletal location related to the second cervical lordosis line L107 according to the cervical lordosis angle shown in FIG. 32
  • the lower neck (neck_1) is the first cervical vertebra according to the cervical lordosis angle It corresponds to the skeleton part related to the forefront line L106.
  • the bone model 810 is a RightShoulder for the right clavicle, LeftShoulder for the left clavicle, RightArm for the right shoulder, LeftArm for the left shoulder, RightForeArm for the right elbow, LeftForeArm for the left elbow, RightHand_1 for the right wrist, LeftHand_1 for the right wrist (middle finger)
  • the third joint) is RightHand_2 and the left hand tip neck (middle finger third joint) is LeftHand_2, and it is constructed from the clavicle through the shoulder and arm to the tip of the hand.
  • the bone model 810 has spine 2 at the top of the spine at the center of the left and right scapula (corresponding to the third spine point), spine 1 at the center of the spine below the sternum (corresponding to the second spine point), and the center position of the waist
  • the lower spine (corresponding to the first spine point) is spine
  • the pelvic center (corresponding to the pelvic point) is hips
  • the right hip joint is RightUpLeg
  • the left hip joint is LeftUpLeg.
  • the pelvic center (hips) corresponds to the skeletal part related to the pelvic angle line L101 corresponding to the lumbosacral angle shown in FIG. 32, and is located at the parent (center, origin) of all skeletal points (corresponding to bones). Become.
  • the lower part of the spine corresponds to the skeletal part (center part of the waist) related to the first anterior line L102 according to the lumbar lordosis angle shown in FIG.
  • the spine 1 (corresponding to the second spine point) is a skeletal location (sternal bone) related to the second lordosis line L103 corresponding to the lumbar lordosis angle shown in FIG. Corresponds to the lower position).
  • the upper part of the spine (spine2, corresponding to the third spine point) corresponds to the skeletal part (the central part of the scapula) related to the second posterior heel line L105 according to the thoracic vertebra kyphosis angle shown in FIG.
  • the bone model 810 has a leg portion with the right knee as RightLeg, the left knee as LeftLeg, the right ankle as RightFoot, the left ankle as LeftFoot, the right leg tip as RightTooBase_1, and the left leg tip as LeftTooBase_1.
  • the point table 800 of FIGS. 33 and 34 indicates that the skeleton points correspond to points on the human body surface obtained by measuring with the three-dimensional measuring device 20. .
  • the skeleton point included in the point table 800 of FIGS. 33 and 34 as in the case of the point table 80 of FIG.
  • the part where the skin covers the bone is basically selected.
  • a three-dimensional measurement point corresponding to each skeleton point included in the point table 800 and a method of calculating each coordinate value (specific method) will be described in detail using typical skeleton points as an example.
  • the point table 800 uses the X, Y, and Z coordinates of the upper neck (neck_3, corresponding to the upper neck point) and the middle neck (neck_2) as the skeleton points, and the X, Y, and Z coordinates of the points on the left and right sides of the human body. It is shown in the remarks column that the average value (the coordinate value of the point that becomes the center of the left and right points) is used.
  • the upper neck (neck_3) located above the middle neck (neck_2) has a 4692th point on the left side of the human body and a 2560th point on the right side of the human body among a plurality of points obtained by three-dimensional measurement.
  • the average value of the X-coordinate value of the 4692th point and the X-coordinate value of the 2560th point is calculated based on the calculation method described in the remarks column. ),
  • the average value of the Y coordinate value of the 4692th point and the Y coordinate value of the 2560th point is calculated as the Y coordinate value of the upper neck (neck_3), and the Z coordinate of the 4692th point.
  • the average value of the Z coordinate value of the value and the 2560th point is calculated as the Z coordinate value of the upper neck (neck_3).
  • the remarks column of the point table 800 shows that the middle part of the neck (neck_2) is the same as the method of calculating the X, Y, and Z coordinate values of the upper neck part (neck_3) described above.
  • the average X coordinate value of the 19717th point on the left side of the human body and the X coordinate value of the 11300th point on the right side of the human body associated with the middle part (neck_2) is calculated as the X coordinate value of the middle part (neck_2).
  • the average value of the Y coordinate value of the 19717th point on the left side and the Y coordinate value of the 11300th point on the right side of the human body is calculated as the Y coordinate value of the neck (neck_2), and the Z717 of the 19717th point on the left side of the human body
  • the average value of the coordinate value and the Z coordinate value of the 11300th point on the right side of the human body is calculated as the Z coordinate value of the neck (neck_2).
  • the lower neck (neck_1, equivalent to the neck point) located below the upper neck (neck_3) and the middle neck (neck_2) is not covered by the jaw when viewed from the front, and is measured in three dimensions.
  • the remarks column of the point table 800 includes an average value of the X, Y, and Z coordinates of the points on the front and back sides of the human body (the coordinate value of the point that is the center of the front and back points). It is shown as a calculation method. That is, the point table 800 indicates that the 3570th point on the front side of the human body and the 924th point on the rear side of the human body among the plurality of points obtained by the three-dimensional measurement correspond to the lower neck (neck_1).
  • the average value of the X coordinate value of the 3570th point and the X coordinate value of the 924th point is calculated as the X coordinate value of the lower neck (neck_1), and the Y coordinate value of the 3570th point and the 924th point
  • the average value of the Y coordinate values is calculated as the Y coordinate value of the lower neck (neck_1)
  • the average value of the Z coordinate value of the 3570th point and the Z coordinate value of the 924th point is the Z coordinate value of the lower neck (neck_1).
  • Is calculated as The Z coordinate value of the lower neck (neck_1) obtained by such a calculation method is a specific ratio of 1: 1 between the Z coordinate value of the 3570th point and the Z coordinate value of the 924th point. It can also be said that it is the coordinate value of the dividing point (the same applies when calculating the Z coordinate value of another skeleton point).
  • the point table 800 indicates in the remarks column that the X, Y, and Z coordinates of the right clavicle (RightShoulder) and the left clavicle (LeftShoulder) are specified from the coordinate values of the front point and the upper point. . That is, the point table 800 indicates that the right shoulder (RightShoulder) corresponds to the 2998th point on the front side of the human body and the 776th point on the upper side of the human body among the plurality of points obtained by the three-dimensional measurement.
  • the X and Y coordinate values of the 2988th point are specified as the X and Y coordinate values of the right collarbone (RightShoulder) according to the method of specifying the coordinate values described in the remarks column, and the 2998th point on the front side of the human body.
  • the average value of the Z coordinate value and the 776th Z coordinate value is specified as the Z coordinate value of the right clavicle (RightShoulder). This particular method is the same for the left clavicle (LeftShoulder).
  • the point table 800 stipulates how to obtain the coordinate values that are basically the same as those of the lower neck (neck_1) described above, but the shoulder width increases between men and women. In consideration of this, the point corresponding to each gender of the subject is different. That is, the point table 800 shows the 8017th point on the front side of the human body and the 3448th point on the rear side of the human body as the points on the human body surface obtained by the three-dimensional measurement corresponding to the right shoulder (RightArm).
  • the 2055th point on the front side of the human body and the 14829th point on the back side of the human body are shown, and the points on the surface of the human body obtained by three-dimensional measurement corresponding to the left shoulder (LeftArm)
  • the 16419th point and the 5575th point on the back side of the human body are shown, and in the case of a woman, the 4189th point on the front side of the human body and the 23237th point on the back side of the human body are shown.
  • the point table 800 is the case of the lower neck (neck_1) described above as a point on the human body surface obtained by three-dimensional measurement corresponding to the upper spine (spine2), the middle spine (spine1), and the lower spine (spine). Similarly, the points on the front and rear sides of the human body are shown.
  • the coordinate value is calculated in the same way as the case of the lower neck (neck_1) described above with respect to the X and Y coordinate values. The value indicates that the coordinate value of a point obtained by dividing a point before and after the human body by a specific ratio is calculated.
  • the upper spine (spine2), the middle spine (spine1), and the lower spine (spine) correspond to the spine points.
  • the point table 800 shows the 3202nd point on the front side of the human body and the 8010th point on the back side of the human body.
  • the average value of the X-coordinate values of the 8010th point (the coordinate value of the center point between both points in the X-coordinate) is calculated as the X-coordinate value of the upper spine (spine2).
  • the average value of the Y coordinate value of the 1st point and the Y coordinate value of the 8010th point is calculated as the Y coordinate value of the upper spine (spine2) Is done.
  • the point table 800 for the Z coordinate value indicates that the point dividing the 3202nd point on the front side of the human body and the 8010th point on the back side of the human body at a ratio of 6: 4 is the upper part of the spine (spine2 ) Is calculated as a Z coordinate value.
  • the coordinate value of the point divided by the ratio of 6: 4 is used instead of the average value.
  • the spine around the center of the left and right shoulder blades is the thickness of the human body. This is because the position between the front surface and the back surface of the human body is located at a position closer to the back divided in a ratio of 6: 4 from the front surface to the rear surface.
  • the point table 800 shows the 26141th point on the front side of the human body and the 26358th point on the back side of the human body.
  • the average value of the X coordinate value of the point and the X coordinate value of the 26358th point on the back side of the human body is the X coordinate of the spine center (spine1)
  • the average value of the Y-coordinate value of the 26141st point and the Y-coordinate value of the 26358th point on the back side of the human body is calculated as a value.
  • the point table 800 divides the point between the 26141th point on the front side of the human body and the 26358th point on the back side of the human body at a ratio of 7: 3. ) Is calculated as a Z coordinate value.
  • the coordinate value of the point divided by 7: 3 is used in the actual human body, and the spine at the position below the sternum is between the front surface of the human body and the rear surface of the human body. This is because it exists in a portion divided at a ratio of 7: 3 from the front surface to the rear surface.
  • the point table 800 shows the 26259th point on the front side of the human body and the 11860th point on the back side of the human body as points obtained by the three-dimensional measurement corresponding to the lower spine (spine)
  • the 26259th point The average value of the X coordinate value of the point and the X coordinate value of the 11860th point (the coordinate value of the center point between both points in the X coordinate) is calculated as the X coordinate value of the lower spine.
  • the average value of the Y coordinate value of the 26259th point and the Y coordinate value of the 11860th point is the Y coordinate value of the lower spine.
  • the point table 800 for the Z-coordinate value indicates that a point that divides the 26259th point on the front side of the human body and the 11860th point on the back side of the human body at a ratio of 6: 4.
  • the coordinate value of the point divided by 6: 4 is used because the spine around the center position of the waist in the human body is in the thickness direction of the human body, It is because it is located in the place near the back which divided between the surface of the surface and the surface of a human body from the front side surface to the back side surface in the ratio of 6: 4.
  • the spine in the actual human body is a uniform part in the human body in the thickness direction of the human body (Z coordinate direction)
  • the ratio of the spine in the human body can be reflected in the specific processing of the skeleton because it is divided by the ratio described above.
  • the point table 800 corresponds to the points before and after the human body (the front side of the human body) as the corresponding points as in the case of the lower neck (neck_1) described above. 6602th point and 26148th point on the back side of the human body), and the calculation method of the coordinate value in the remarks column is similar to the case of the neck lower part (neck_1) described above.
  • the average coordinate value of the X, Y, and Z coordinate values is used.
  • the point table 800 shows corresponding points among a plurality of points obtained by the three-dimensional measurement for portions other than the skeleton points (deformation base points) in order to ensure posture verification and the like. Yes.
  • the point table 800 shows only one 15645th point as a three-dimensional measurement point corresponding to the right earlobe, shows only one 24044th point as a three-dimensional measurement point corresponding to the left earlobe, Only one 11232th point is shown as the three-dimensional measurement point corresponding to the peak, and only one 19645th point is shown as the three-dimensional measurement point corresponding to the left shoulder peak.
  • the point table 800 shows only one 3225th point as a three-dimensional measurement point corresponding to a head vertex that is a skeleton point.
  • the skeleton points having only one corresponding point include the right pelvis (RightDownScale2) and the left pelvis (LeftDownScale2), and the point table 800 is 14386 as a three-dimensional measurement point corresponding to the right pelvis (RightDownScale2).
  • the 22nd point is shown as a three-dimensional measurement point corresponding to the left pelvis (LeftDownScale2).
  • the determination table 95 defines the contents for determining the presence / absence of an abnormality with respect to the situation of each skeletal location from the three-dimensional coordinate values of the skeleton points and the three-dimensional coordinate values of the target points (P1 to P5) of the skeleton model. Yes.
  • the contents of the determination table 95 shown in FIG. 36 are defined for posture verification items (verification points) when the human body is viewed from the front direction. "Difference from the top”, “2: Difference between both feet from the greater trochanter to the kneecap”, “3: Difference between both feet from the kneecap to the ankle”, “4: Height of left and right shoulder ridges” "5: Difference in height between left and right pelvises” and “6: Knee joint valgus angle”.
  • Deviation between the center of gravity Y-axis line and the top of the head is to detect the right and left inclination of the entire body, and is included in the point table 800 in a two-dimensional plane constituted by an XY coordinate system.
  • the difference (cm) between the X coordinate value of the head vertex and the X coordinate value of the center of gravity Y-axis line is calculated.
  • the center-of-gravity Y-axis line is a line parallel to the Y-coordinate axis (Y-axis) through a skeleton point related to the pelvic center (hips) included in the point table 800.
  • the threshold value for objective verification is also defined in the determination table 95, and a threshold value of 1.7 is set for the numerical value of the ratio (%) of the difference (cm) calculated with respect to the height (cm) of the subject. I have to. It is normal if the above difference ratio is in the range of plus or minus 1.7, and when it exceeds 1.7 (plus), the whole body is tilted to the left, and the above difference ratio is below -1.7 When (minus), the determination table 95 defines that it is determined that the whole body is inclined to the right.
  • “2: Difference between both feet from the greater femoral trochanter to the kneecap” corresponds to the point P100 (Daitehshi_L) corresponding to the greater femoral trochanter shown in the skeleton model 71a of FIG.
  • the length (cm) of a line connecting the points P102 (Hizagashira_L) (referred to as the left femoral line), the point P101 (Daitehshi_R) corresponding to the right femoral trochanter, and the point P103 corresponding to the right kneecap It means the difference from the length (cm) of the line connecting the (Hizagashira_R) (referred to as the right femur line).
  • the left femoral line is an X, Y, Z coordinate value of the point P100 (Daitehshi_L) corresponding to the greater trochanter of the left femur contained in the deformed skeleton model, and a point P102 (Hizagashira_L) corresponding to the left kneecap ) Is identified as a line connecting both points P100, 102, and accordingly, the length (cm) of the left femoral line is also determined as X, It is calculated three-dimensionally based on the Y and Z coordinate values.
  • the right femoral line is the same as the left femoral line described above, and the X, Y, and Z coordinate values of the point P101 (Daitehshi_R) corresponding to the right greater trochanter and the point P103 corresponding to the right kneecap Based on the X, Y, and Z coordinate values of (Hizagashira_R), the line is specified as a line connecting both points P101 and 103, and accordingly, the length (cm) of the right femoral line is also calculated for both points P101 and 103. It is calculated three-dimensionally based on the X, Y, and Z coordinate values.
  • the difference (cm) between the two obtained by subtracting the calculated length of the left femoral line from the calculated length of the right femoral line is calculated.
  • the threshold value for objective verification based on the calculated difference is also defined in the determination table 95. As in the case of “1: Deviation between the center of gravity Y-axis line and the top of the head” described above, the subject. A threshold value of 1.7 is set for the numerical value of the calculated difference ratio (%) with respect to the height of the child.
  • the decision table 95 specifies that the anteversion or the left hipbone (the bone that forms the right wall of the pelvis) is posterior (or both the right anteversion and the left anteversion).
  • the left hipbone is anteversion, or the right hipbone is anteversion (or left anteversion and right
  • the determination table 95 defines that it is determined that both of the bones are tilted backward.
  • the length of the left femur line is subtracted from the length of the back of the right femur to determine the forward inclination of the left hipbone or the backward inclination of the right hipbone.
  • Reverse the calculation method and subtract the length of the right femoral line from the length of the left femoral spine to determine whether the left hipbone is tilted backward or the right hipbone is tilted forward it is possible to define the table 95 (in the determination table 95, other portions where the left and right lengths and angles are determined are also possible).
  • “3: Difference between both knee feet to ankle height” refers to the point P102 (Hizagashira_L) corresponding to the left kneecap shown in the skeleton model 71a of FIG. 31 and the point corresponding to the ankle under the left tibia
  • a length (cm) of a line connecting P104 (Ashikubi_L) (referred to as the left tibial line), a point P103 (Hizagashira_R) corresponding to the right kneecap, and a point P105 (Ashikubi_R) corresponding to the ankle under the right tibia Is the difference from the length (cm) of the line (referred to as the right tibial line).
  • the left tibial line is a point P102 (Hizagashira_L) corresponding to the left kneecap included in the deformed skeleton model and a point P104 (Ashikubi_L) corresponding to the ankle under the left tibia, as in the above-described left femoral line.
  • the length (cm) of the left tibial line is also determined as the X, Y of both points P102, 104 based on the respective X, Y, Z coordinate values of , Three-dimensionally calculated based on the Z coordinate value.
  • the right tibial line also has the X, Y, Z coordinate values of the point P103 (Hizagashira_R) corresponding to the right kneecap and the point P105 (Ashikubi_R) corresponding to the ankle under the right tibia included in the deformed skeleton model. And the length (cm) of the right tibial line is three-dimensionally determined based on the X, Y, and Z coordinate values of both points P103 and 105. Calculated.
  • the difference (cm) between the two obtained by subtracting the calculated length of the left tibial line from the calculated length of the right tibial line is calculated.
  • the threshold value for objective verification based on the calculated difference is also defined in the determination table 95, and 1.1 is a threshold value with respect to the numerical value of the calculated difference ratio (%) with respect to the subject's height. I have to.
  • “4: Difference in height between left and right shoulder peaks” is to detect the inclination of the left and right shoulders, and in the two-dimensional plane configured with the XY coordinate system, the height of the right shoulder peaks included in the point table 800. It means a calculated value (cm) obtained by subtracting the Y coordinate value of the left shoulder peak from the Y coordinate value.
  • the determination table 95 sets 1.1 as the threshold for the numerical value of the ratio (%) of the calculated value (cm) to the height (cm) of the subject. If the ratio of the calculated value is within the range of plus or minus 1.1 with respect to this threshold value, it is normal. When the ratio exceeds 1.1, the shoulder is inclined to the left, and the ratio of the calculated value is The determination table 95 defines that it is determined that the shoulder is inclined to the right when the value is less than 1.1.
  • “5: Difference in the height of the left and right pelvises” is to detect the degree of right and left tilt in the pelvis, and the right pelvis (RightDownScale2) included in the point table 800 in a two-dimensional plane composed of an XY coordinate system.
  • the determination table 95 indicates the ratio (%) of the calculated value (cm) to the height (cm) of the subject as in the case of “4: difference in height between left and right shoulder peaks”.
  • a numerical value of 1.1 is used as the threshold value.
  • the ratio of the calculated value is within a range of plus or minus 1.1 with respect to this threshold, it is normal.
  • the ratio exceeds 1.1, the pelvis is inclined to the left, and the ratio of the calculated value is
  • the determination table 95 defines that it is determined that the pelvis is inclined to the right when the value is less than 1.1.
  • knee valgus angle means the left femoral line specified in the above “2: difference between both feet from the greater femoral trochanter to the kneecap” (or The right thighbone line) and the left tibial line (or right tibial line) specified in the above “3: Difference between both feet in the height from the kneecap to the ankle” means an angle.
  • This angle is specified (calculated) as an angle outside the body at a location where two lines intersect on a two-dimensional plane constituted by an XY coordinate system. This angle is called the femoral tibia angle FTA (Femorotibial angle), and the normal range is 174 to 178 degrees.
  • the determination table 95 defines two angles of 170 degrees and 180 degrees as threshold values. If the calculated angle is within the range of 170 degrees to 180 degrees, the judgment table 95 is normal. (Valgus knee) If the angle is 180 degrees or more, it is defined that the leg is determined as an O-leg (varus knee).
  • the contents of the determination table 95 shown in FIG. 37 are defined for posture verification items (verification points) when the human body is viewed from the side, when viewed from above, and when viewed from below.
  • Verification points when viewed from the horizontal direction include “1: centroid Y axis line and ear divergence”, “2: centroid Y axis line and knee divergence”, “3: pelvic front / rear tilt angle”, “4 : Spine angle of thoracic vertebra site, “5: spine angle of lumbar site”, and “6: neck curvature angle”.
  • “1: divergence between the center of gravity Y-axis line and the ear” is to detect the degree of inclination before and after the posture of the human body, and in a two-dimensional plane constituted by the YZ coordinate system, The difference (cm) between the Z coordinate value of the earlobe included in the point table 800 (the right earlobe when viewed from the right lateral direction and the left earlobe when viewed from the left lateral direction) and the Z coordinate value of the center of gravity Y-axis line. It is to be calculated.
  • the determination table 95 sets 2.3 as a threshold value for the numerical value of the ratio (%) of the calculated difference (cm) to the subject's height (cm). With respect to this threshold, it is normal if the ratio of the above difference is within the range of plus or minus 2.3, and when it is above 2.3 and plus, the posture tilts forward and below 2.3 and minus In some cases, the determination table 95 defines that the posture is determined to be tilted backward.
  • the determination table 95 sets 1.1 as a threshold value for the numerical value of the ratio (%) of the calculated difference (cm) to the subject's height (cm). With respect to this threshold value, it is normal if the ratio of the above difference is within a range of plus or minus 1.1, and when it exceeds 1.1 and is positive, the posture tilts forward, below 1.1 and minus In some cases, the determination table 95 defines that the posture is determined to be tilted backward.
  • the pelvic angle line L101 (a line corresponding to the lumbosacral angle relating to the pelvic center (hips)) of the model 71a (deformed skeleton model) means an angle at which the line intersects the line L100.
  • the determination table 95 defines an angle of 30 degrees as a pelvis reference angle (a numerical value of 30 degrees is an example), and defines a plus / minus 10 degrees as a posture verification threshold.
  • the specified angle is compared with the pelvis reference angle, and as a result of comparison, the specified angle is plus or minus 10 degrees with respect to the pelvis reference angle.
  • the determination table 95 defines that it is normal if it is within the range of, pelvic forward tilt when it exceeds the normal upper limit of 10 degrees from the pelvic reference angle, and pelvic backward tilt when it falls below -10 degrees of the normal lower limit. To do.
  • “4: Backbone angle of thoracic vertebrae” when viewed from the side is to detect the degree of kyphosis (thoracic vertebra) kyphosis based on an error from the reference angle, and is composed of the YZ coordinate system. In the two-dimensional plane, it means an angle at which the first posterior limb line L104 and the second posterior limb line L105 intersect with the spine middle part (spine1) of the skeleton model 71a (skeleton model after deformation) shown in FIG.
  • the determination table 95 defines an angle of 40 degrees as the thoracic kyphosis reference angle (a numerical value of 40 degrees is an example), and defines an upper limit value of 10 degrees and a lower limit value of 0 degrees as posture verification thresholds.
  • the specified angle is compared with the thoracic posterior reference angle, and as a result of comparison, the specified angle is If it is in the range of plus 10 degrees from the posterior rib reference angle, it is determined to be normal, if it exceeds the upper limit of normal 10 degrees from the thoracic vertebra posterior reference angle, it is determined to be a dorsum (thoracic vertebrae), and if it is less than 0 degrees, it is determined to be a flat back.
  • the determination table 95 defines that.
  • “5: Backbone angle of lumbar vertebrae” when viewed from the side is to detect the degree of lordosis of the vertebral column (lumbar vertebrae) from the error from the reference angle, and is composed of the YZ coordinate system. In the two-dimensional plane, it means an angle at which the first lordosis line L102 and the second anteversion line L103 intersect with the lower spine of the skeleton model 71a (skeleton model after deformation) shown in FIG.
  • the determination table 95 defines an angle of 45 degrees as the lumbar lordosis reference angle (a numerical value of 45 degrees is an example), and also defines plus or minus 10 degrees as a posture verification threshold.
  • the specified angle is compared with the lumbar lordosis reference angle. Normal if it is within the range of plus or minus 10 degrees with respect to the anterior reference angle, lumbar flatness is above the upper limit of normal 10 degrees above the reference angle of the lumbar vertebra, and abdominal protrusion is below -10 degrees of the lower limit of normal Is determined in the determination table 95.
  • “6: Neck bending angle” when viewed from the side direction is to detect the degree of bending of the front and rear of the neck from the error from the reference angle, and in a two-dimensional plane constituted by the YZ coordinate system.
  • 32 means an angle at which the first cervical lordosis line L106 and the second cervical vertebra lordosis line L107 intersect with each other at the lower neck portion (neck_1) of the skeleton model 71a (skeleton model after deformation) shown in FIG.
  • the determination table 95 defines an angle of 30 degrees as a cervical lordosis reference angle (a numerical value of 30 degrees is an example, and it is preferable to define a numerical value in the range of 30 to 35 degrees), and a threshold value for posture verification
  • the upper limit value is 10 degrees and the lower limit value is -15 degrees.
  • the determination table 95 defines that it is determined that it is a straight neck when the value is below.
  • “1: Difference between left and right clavicle angles” when looking down from the top is to verify the torsion of the front and rear of both shoulders by determining the difference from the reference angle of the left and right clavicle angles.
  • an angle relating to the left clavicle (LeftShoulder) and the right clavicle (RightShoulder) included in the point table 800 is specified, and the specified angle is compared with a reference clavicle angle.
  • the determination table 95 defines plus or minus 5 degrees for each of the left and right collarbones as a threshold for posture verification.
  • the determination table 95 stipulates that if the shoulder is twisted to the left and both the angles related to the left and right collarbones are larger than the reference collarbone angle by 5 degrees or more, the shoulder is judged to be twisted to the right.
  • “2: Left / right rotation angle of the neck” when looking down from above is to verify the left / right twist of the neck, and in the two-dimensional plane formed by the XZ coordinate system, the upper part of the neck included in the point table 800
  • the angle related to (neck_3) is specified.
  • the angle between the line connecting the left and right earlobe included in the point table 800 and the line parallel to the axis related to the X coordinate is specified, The identified angle is compared with the reference neck angle.
  • the determination table 95 defines 10 degrees as a posture verification threshold value. Normal if the angle of the specified neck upper part (neck_3) is within a range of plus or minus 10 degrees relative to the reference neck angle.
  • the determination table 95 defines that the neck is determined to be left-handed when the angle according to) is smaller than the reference neck angle by 10 degrees or less.
  • “1: Shoulder angle relative to waist” when looking up from below is to verify the torsion of the shoulder waist (detecting the shoulder angle relative to the waist), and in a two-dimensional plane composed of the XZ coordinate system
  • the angle difference between the angle that the line connecting the left and right shoulder peaks included in the point table 800 intersects the X axis and the angle that the line connecting the left and right pelvis intersects the X axis is calculated, and the calculated angle difference is compared with the reference angle.
  • the determination table 95 defines 10 degrees as a posture verification threshold value.
  • the determination table 95 defines that it is determined that the twist is left-handed.
  • “2: front-back difference of kneecap” is for verifying the front-back difference of the knee, and in the two-dimensional plane constituted by the XZ coordinate system,
  • the Z coordinate value of the point P102 (Hizagashira_L) corresponding to the left kneecap is subtracted from the Z coordinate value of the point P103 (Hizagashira_R) corresponding to the kneecap.
  • the determination table 95 defines a threshold value for objective verification based on the subtracted value, and 1.1 is set as the threshold value with respect to the numerical value of the ratio (%) of the subtracted value with respect to the subject's height. Yes.
  • the determination table 95 defines that it is determined to be before.
  • FIG. 39 shows a part of the contents of the analysis table 96 stored in the storage unit 50g ′ of the skeleton identification system 50 ′.
  • the analysis table 96 includes, for each main “related symptom” determined by the determination table 95 shown in FIGS. 36 and 37 described above, “symptom explanation”, “effect on health”, “cause / feature”, “treatment / feature”.
  • the contents of items such as “training” and “reference image” are stored.
  • Each item included in the related symptom of the analysis table 96 is linked to each item of the related symptom in the determination table 95. Therefore, when the item of the related symptom is determined based on the determination table 95, the determination is made.
  • the contents of the analysis table 96 linked to the related symptom items can be specified.
  • “(1) Whole body anteversion” or “(2) Whole body anteversion” in the analysis table 96 is “1: centroid Y axis line and ear divergence” and “ 2: Linked to the item of related symptoms such as “whole tilt of the whole body” or “back tilt of the whole body” determined by “deviation of the Y-axis of the center of gravity and the knee”.
  • “(3) Tummy protrusion” in the analysis table 96 is linked to an item of a related symptom “tummy protrusion” determined by “5: spine angle of lumbar portion” when the human body is viewed from the side in the determination table 95. is doing.
  • “(6) Shoulder right twist” or “(7) Shoulder left twist” of the analysis table 96 is “1: Difference between left and right collarbone angles” when the human body is looked down from above in the determination table 95. Is linked to the item of the related symptom “right shoulder twist” or “left shoulder twist”.
  • “(8) back of the thoracic vertebra (back of the thoracic vertebra)” or “(9) flat back” is determined in the determination table 95 by “4: spine angle of the thoracic vertebra portion” when the human body is viewed from the side. Link to the item of the related symptom of “back of the thoracic vertebra” or “flat back”.
  • Lumbar flatness of the analysis table 96 is linked to an item of the related symptom “Lumbar vertebra flatness” determined by “5: spine angle of lumbar vertebra part” when the human body is viewed from the side in the determination table 95. is doing.
  • pelvic forward tilt or “(12) pelvic backward tilt” of the analysis table 96 is determined by “3: pelvic front / rear tilt angle” when the human body is viewed from the side in the determination table 95.
  • Linked to the related symptom items “Pelvic tilt” or “Pelvic tilt”.
  • Pelvic left / right inclination” of the analysis table 96 is “left inclination of the pelvis” determined by “5: difference in height of the left and right pelvis” or “when the human body is viewed from the front” or “ Linked to the related symptom item "Pelvic right tilt”.
  • “(16) X leg” and “(17) O leg” in the analysis table 96 are determined in the determination table 95 based on “6: Knee joint valgus angle” when the human body is viewed from the front. Linked to the item of the related symptom "X leg” or “O leg”. “(18) Left / right acetabular forward / backward tilt” in the analysis table 96 is determined by "3: pelvic forward / backward tilt” when the human body is viewed from the side in the determination table 95. Or linked to the related symptom item "Pelvic tilt”.
  • “(19) Neck twist” in the analysis table 96 is “Neck right twist” or “Neck twist” determined by “2: Left / right rotation angle of the neck” when the human body is looked down from above in the determination table 95. Linked to the related symptom item "Left twist” Then, “(20) Knee front / rear difference” in the analysis table 96 is determined by “2: Knee head front / rear difference” when the human body is looked up from below in the determination table 95. Linked to the related symptom item "Left knee is front”.
  • the item “Cause / Characteristic” includes “uneven muscle strength in front and back of the body (because the balance of muscles in the front and back of the body deteriorates, causing the pelvis to tilt forward and backward), and sitting in a bad posture. , Standing, walking, often wearing high heels, and lying on the prone face.
  • the contents of “treatment / training” include “preparation exercise for back pain stretch by releasing a fascia such as tennis ball, fascia release around the pelvis supporting the waist, and fascia release around the thigh”. .
  • the programming contents defined by the model transformation program P110 (corresponding to a computer program) of the second embodiment will be described.
  • the model deformation program P110 of the second embodiment corresponds to the position specification of the skeletal points and the like, the determination of the presence or absence of abnormality, the posture verification of the subject (human body), and the image presented to the user
  • the contents of processing performed by the MPU 50a ′ regarding the generation of image information and the like are defined.
  • the skeletal identification system 50 ′ determines the three-dimensional coordinate values of each skeleton point and the like according to the point table 800 shown in FIGS.
  • the model transformation program P110 defines that the MPU 50a ′ performs the specifying (calculating) process.
  • the measurement result sent from the measurement processing device 30 relates to the length of the subject in addition to the three-dimensional coordinate values of a plurality of points (approximately 30,000 points) on the human body surface by three-dimensional measurement.
  • Numerical data, and a captured image of the subject obtained by imaging with the scanning status acquisition units 21b, 22b, and 23b of the three-dimensional measuring device 20 during the three-dimensional measurement (a captured image of the human body viewed from the front, the human body in the horizontal direction A captured image viewed from above, a captured image looking down from the upper side of the human body, a captured image looking up from the lower side of the human body, a captured image viewed from the rear side, etc.).
  • the MPU 50a ′ for the detection location in the determination table 95 of FIGS. 36 and 37 that can verify the determination of the presence / absence of abnormality without using the skeleton model.
  • the model transformation program P110 defines that the related symptom determination process is performed.
  • the skeletal model is deformed, and the MPU 50a ′ refers to the determination table 95 to identify related symptoms based on the deformed skeleton model.
  • the skeleton model is deformed first from the human body model table 70 in a skeleton of a pattern (standard pattern, first pattern, or second pattern) according to the subject.
  • the model is specified, and the specified skeleton model is enlarged or reduced in a similar manner according to the measured height dimension of the subject, and each deformation base point of the enlarged or reduced skeleton model is a corresponding skeleton.
  • the processing content is to transform the skeleton model so as to coincide with the point (the skeleton point for which the three-dimensional coordinate value is obtained).
  • the MPU 50a ′ calculates points P100 and 101 (Daitehshi_L, Daitehshi_R) according to the left and right femoral trochanters shown in FIG. , Hizagashira_R), the three-dimensional coordinate values of the target points P104 and 105 (Ashikubi_L, Ashikubi_R) corresponding to the ankles under the left and right tibia are specified.
  • the three-dimensional coordinate values of these points P100 to P105 “2: difference between both feet from the greater femoral trochanter to the kneecap” when the human body in the determination table 95 is viewed from the front direction.
  • the MPU 50 a ′ identifies related symptoms such as “disparity” and “2: front-back difference of the kneecap” when the human body is looked up from below.
  • the subject's pelvic angle (lumbosacral angle), lumbar lordosis angle, thoracic kyphosis angle, and cervical vertebrae
  • the heel angle is specified, and based on the specified angle, “3: anteroposterior tilt angle of the pelvis”, “5: spine angle of the lumbar portion”, “4: spine angle of the thoracic portion”, and “6”
  • the model transformation program P110 defines that the MPU 50a ′ performs the related symptom specifying process for the detected part such as “: neck bending angle”.
  • the MPU 50a ′ first specifies (calculates) the length or the angle for each detected location based on the definition of the determination table 95.
  • a ratio of the specified (calculated) length to the height of the subject is calculated, and the calculated ratio is a threshold value or a reference ratio (for example, femoral line reference) defined by the determination table 95
  • the MPU 50a ' is determined to be normal and exceeds the upper limit threshold. In this case, or when the value falls below the threshold lower limit, the content of the related symptom (the content of the abnormality) defined by the determination table 95 is determined for each case.
  • the specified (calculated) angle is compared with the reference angle specified by the determination table 95, and the result of comparison is determined with respect to the reference angle. If the table 95 is within the threshold range defined, the MPU 50a 'is determined to be normal, and if it exceeds the threshold upper limit or falls below the threshold lower limit, the contents of the related symptoms defined by the determination table 95 (abnormal Content) is determined for each case.
  • the MPU 50a ′ performs the process of specifying the item of the analysis table 95 linked to the related symptom for the detected location where the content of the related symptom (content of abnormality) is determined. Regulates.
  • the model transformation program P110 defines that the MPU 50a ′ generates screen information related to the posture verification screens shown in FIGS.
  • FIG. 40 shows a screen (referred to as a skeleton model screen) showing a skeleton model in the second embodiment.
  • a switching button for switching the display content to the posture verification screen shown in FIGS. 75a is provided to be selectable.
  • the screen shown in FIG. 40 is displayed on the display screen 3a of the communication terminal 3 and the switch button 75a is selected, the display is switched to the display of the horizontal direction verification screen 100 when the human body shown in FIG.
  • the screen information related to the screen of FIG. 40 is created.
  • an imaging model screen (screen showing a captured image of the subject), a skeleton model screen, a muscle model screen (screen showing a muscle model), a fat model screen (screen showing a fat model).
  • An imaging button 75b, a skeleton button 75c, a muscle button 75d, and a fat button 75e for switching display contents are arranged so that any one of the buttons can be selected, and any one of the buttons 75b to 75e is selected. It is built so that the display can be switched to a desired screen when the user appropriately selects.
  • the horizontal posture verification screen 100 shown in FIG. 26 specifies each detected portion in the captured image (captured image obtained by viewing the human body from the side) included in the measurement result sent from the measurement processing device 30 with the above-described processing.
  • the MPU 50 a ′ generates screen information for displaying such a lateral orientation verification screen 100 on the communication terminal 3.
  • a captured image 101 obtained by viewing the human body obtained from the measurement processing device 30 from the side is arranged at the center of the screen, and a center of gravity Y-axis line L200 passing through the center of gravity of the human body related to the captured image is drawn.
  • the earlobe (left earlobe 101e) for which the three-dimensional coordinates are specified by the above processing and the earlobe line L201 passing through the center of gravity are drawn.
  • a pelvic arrow line 102 indicating an inclination corresponding to the pelvis is drawn at the pelvic part 101a of the captured image, and a pelvic angle box 102a in which the numerical value of the pelvic angle (lumbosacral angle) specified by the above processing is written Arranged in the vicinity of the line 102.
  • a lumbar arrow line 103 indicating an inclination corresponding to the lumbar vertebra is drawn on the lumbar portion 101 b of the captured image, and a lumbar angle box 103 a in which the numerical value of the lumbar lordosis angle specified by the above processing is written is displayed on the lumbar arrow line 103. Place in the vicinity.
  • a thoracic vertebrae arrow line 104 indicating an inclination corresponding to the thoracic vertebra is drawn on the spine portion of the thoracic vertebral portion 101c in the captured image, and a thoracic vertebra angle box 104a in which the numerical value of the thoracic kyphosis angle specified in the above processing is described Arranged in the vicinity of the line 104.
  • a cervical vertebra arrow line 105 indicating an inclination corresponding to the cervical vertebra is drawn at the neck portion 101d of the captured image, and a cervical vertebra angle box 105a in which a numerical value of the cervical lordosis angle specified by the above-described processing is described Place in the vicinity of
  • an earlobe arrow line 106 is drawn from the center of gravity Y-axis line L200 to the left earlobe 101e, and the earlobe divergence describing the length of the divergence between the center-of-gravity Y-axis line L200 and the ear (left earlobe 101e) specified in the above processing.
  • a box 106a is placed in the vicinity of the earlobe arrow line 106.
  • a knee arrow line 106 is drawn from the center-of-gravity Y-axis line L200 to the left knee 101f, and the knee divergence box indicates the length of divergence between the center-of-gravity Y-axis line L200 and the knee (left knee 101f) specified in the above processing.
  • each of the arrow lines 102 to 107 and the boxes 102 a to 107 with numerical values in the target portion in the captured image together with the captured image of the subject the user can see from the lateral direction of the human body.
  • the horizontal posture verification screen 100 has a first switching button 155 for switching the display to the model screen of FIG. 40 on the lower left side of the screen and a second switching button for switching the display to the analysis screen 160 shown in FIG. 150 are arranged to be selectable. Further, the horizontal verification screen 100 has a front button 151, a horizontal button 152, an upper button 153, and a lower button 154 arranged so that any one can be selected at the lower right side of the screen, and when the front button 151 is selected.
  • the display is switched to the forward posture verification screen 110 in FIG. 27.
  • the horizontal button 152 is selected, the display is switched to the horizontal posture verification screen 110 in FIG. 26, and when the upper button 153 is selected, the display in FIG.
  • the display switches to the orientation verification screen 120 in the direction and the lower button 154 is selected the display switches to the orientation verification screen 130 in the downward direction in FIG. 29 (the outline of the selected button in the figure is (Shown in solid line).
  • FIG. 27 shows the posture verification screen 110 in the forward direction, and for each detected location in the captured image (captured image viewed from the front of the human body) included in the measurement result sent from the measurement processing device 30 with the above-described processing.
  • the MPU 50a ′ generates screen information for displaying the forward verification screen 110 on the communication terminal 3 including the specified (calculated) angle, length, line indicating the center of gravity Y-axis line, and the like. Will do.
  • a captured image 111 obtained by viewing the human body obtained from the measurement processing device 30 from the front is arranged in the center of the screen, and a center of gravity Y-axis line L200 passing through the center of gravity of the human body related to the captured image is drawn.
  • the head top line 111a that specifies the three-dimensional coordinates by the above processing and the head top line L202 passing through the center of gravity are drawn.
  • the parietal part deviation box 202a which described the length of deviation from the gravity center Y-axis line L200 to the parietal part 111a is arrange
  • a pelvic height box 112a in which a pelvic arrow line 112 indicating an inclination corresponding to the left and right pelvis is drawn on the waist portion 111b of the captured image 111 and a numerical value of a difference in height between the left and right pelvis specified by the above processing is described. Is placed in the vicinity of the pelvic arrow line 112.
  • a shoulder height indicating the difference between the heights of the left and right shoulder peaks identified by the above processing is drawn on the shoulder portion 111c of the captured image while drawing a double shoulder arrow line 113 indicating an inclination corresponding to the left and right shoulder peaks.
  • the box 113a is arranged in the vicinity of the double shoulder arrow line 113.
  • the left and right femoral arrow lines 114 and 115 are drawn on the left and right thighs 111d and 111e, respectively, and the numerical value of the difference between the lengths of the left and right femoral lines specified in the above processing is described.
  • a bone length box 115a is placed in the vicinity of one femoral line 115.
  • left and right tibial arrow lines 116 and 117 are drawn on the left and right tibial portions 111f and 111g, respectively, and the tibial length box in which the numerical value of the difference in length between the left and right tibial lines specified in the above processing is written.
  • 117a is arranged in the vicinity of one tibial line 117.
  • a left knee angle box 118 indicating the angle at which the thighbone lines 114 and 115 of the left foot and the tibial lines 116 and 117 specified by the above processing intersect is arranged at the left knee location of the captured image, and the femur of the right foot
  • the buttons 150 to 155 are also arranged on the forward posture verification screen 110 as in the horizontal posture verification screen 100. By presenting the forward posture verification screen 110 having such a configuration to the user, the user can confirm his / her posture, the state of the skeleton, etc. at a glance when viewed from the front of the human body.
  • FIG. 28 shows the posture verification screen 120 in the upward direction.
  • the captured image (captured image obtained by looking down on the human body) included in the measurement result sent from the measurement processing device 30 is detected for each detection location.
  • the MPU 50 a ′ generates screen information for displaying such an upward posture verification screen 120 on the communication terminal 3.
  • a captured image 121 obtained by looking down on the human body acquired from the measurement processing device 30 is arranged in the center of the screen, and shoulder arrow lines 122 that connect the left and right collarbones 121a and 121b and the shoulders 121c and 121d. , 123 are drawn, and shoulder angle boxes 122a, 123a indicating the twist angles of the left and right shoulders 121c, 121d specified in the above processing are arranged in the vicinity of the shoulder arrow lines 122, 123.
  • the upward verification screen 120 also includes buttons 150 to 155.
  • FIG. 29 shows a posture verification screen 130 in the downward direction.
  • the captured image included in the measurement result sent from the measurement processing device 30 (captured image looking up at the human body from the bottom) is detected for each detection location in the above-described processing.
  • the specified (calculated) angle, length, and the like are included, and the MPU 50 a ′ generates screen information for displaying such a downward posture verification screen 130 on the communication terminal 3.
  • a captured image 131 obtained by looking up the human body obtained from the measurement processing device 30 is arranged at the center of the screen, and a center of gravity Y-axis line L200 passing through the center of gravity of the human body related to the captured image is drawn.
  • the waist arrow line 132 connecting the left and right waists and the shoulder arrow line 133 connecting the left and right shoulders are drawn, and the waist-shoulder angle box 132a in which the angle between the waist and the shoulder is twisted is displayed in the waist arrow line 132 and the shoulder arrow line 133. Place in the vicinity.
  • buttons 150 to 155 are also arranged on the downward posture verification screen 130.
  • the downward posture verification screen 130 By presenting the downward posture verification screen 130 having such a configuration to the user, when the user looks up at the human body from below, the user can check his / her posture, the state of the skeleton, and the like at a glance.
  • FIG. 41A shows an analysis screen 160, which is displayed when the second switch button 150 is selected on each of the posture verification screens 100, 110, 120, 130 described above. It has a back analysis column 162, a pelvis analysis column 163, and a knee analysis column 164. In these analysis columns 161 to 164, the related symptom of each part specified by the above-described processing is described. When normal, it is blank, and when any related symptom is described, The column is selectable, and when the column is selected, the display is switched to an advice screen showing detailed information about the associated symptom. When a plurality of related symptoms occur in the same place, a plurality of related symptoms are written in one analysis column. Note that when the analysis screen 160 is swiped leftward, the screen returns to the previous display screen.
  • the advice screen 170 in this example relates to a straight neck, and the analysis screen 160 shown in FIG. The screen is displayed when the neck analysis column 161 indicated as straight neck is selected (the contents of the advice screen 170 are long, so FIG. 41 (a), FIG. 42 (a), (b) The desired location in the advice screen 170 can be displayed by scrolling the display screen 3a).
  • the advice screen 170 includes items described in the analysis table 96 shown in FIG. 39 such as “Description of symptoms”, “Effects on health”, “Cause / feature”, “Surgery / training”, “Reference image”, etc. It has become the arrangement. That is, the advice screen 170 includes a straight neck symptom explanation column 171, a health effect column 172, a cause column 173, and a training column 174, and the contents described in each of these columns 171 to 174 are the analysis table 96. It is extracted from the information stored about the straight neck. The images stored for the straight neck of the analysis table 96 are also used for the image 171 a arranged in the symptom explanation column 171 and the image 174 a arranged in the training column 174.
  • Such an advice screen 170 is also returned to the previous display screen (analysis screen 160) by swiping leftward. Note that the advice screen 170 has been described in the case of a straight neck, but information extracted from the analysis table 96 is also arranged in the case of other related symptoms.
  • the model transformation program P110 defines that the MPU 50a ′ performs the process of registering in the member database 60 (see FIG. 8) in association with the ID.
  • the model transformation program P110 defines that the MPU 50a ′ performs processing for transmitting the screen information according to the above and the like and various numerical information to the communication terminal 3 that has logged in.
  • FIG. 43 is a flowchart showing a method (corresponding to a skeleton specifying method) in which the outline of the procedure of the processing content defined by the model deformation program P110 described above is arranged.
  • the outline of the processing performed by the skeletal identification system 50 ′ (MPU 50a ′) is organized.
  • the human body surface corresponding to each skeletal point etc. from a plurality of points on the human body surface obtained by three-dimensional measurement.
  • three-dimensional coordinate values such as each skeleton point are specified (calculated) from the three-dimensional coordinate values of the specified points on the surface of the human body (S10).
  • the related symptom item that can be determined from the specified (calculated) three-dimensional coordinate values, the related symptom is determined (S11).
  • the skeleton specifying system 50 ′ deforms the skeleton model so that the deformation base point coincides with the three-dimensional coordinate value specified (calculated) of the skeleton point (S12).
  • the three-dimensional coordinate value of the target point included in the deformed skeleton model is specified (S13), and the target point is based on the three-dimensional coordinate value of the target point (such as points P100 to 105 shown in FIG. 31) included in the deformed skeleton model.
  • the remaining related symptoms other than those determined in the stage of S11 are determined by specifying the position of the angle and specifying the angle by the angle lines L101 to L107 (S14).
  • the skeletal identification system 50 ′ (MPU 50a ′) generates screen information for various screens based on the related symptoms determined in S11 and S14 (S15), and generates the generated screen information and the specified (calculated) value.
  • the information to be shown is registered in the member database 60 in association with the user ID of the subject (S16).
  • such a procedure is an example, and it is possible to change the procedure according to the specification or the like.
  • the determination process of S11 is performed at the stage of S14 together with the determination based on the deformation model. Is also possible.
  • FIG. 44 shows a main internal configuration of the communication terminal 3 that displays the above-described screens and the like.
  • the communication terminal 3 can be a mobile communication terminal such as a tablet or a smartphone, a personal computer having a communication function (notebook personal computer, desktop personal computer, etc.), and the like.
  • FIG. 44 shows a configuration in the case of a tablet).
  • a mobile communication terminal such as a smartphone or a personal computer having a communication function (notebook personal computer, desktop personal computer, etc.) is used as the communication terminal 3, the components related to the present invention correspond to the configuration shown in FIG. Will be.
  • the communication terminal 3 is connected to a CPU 3b (processor 3b) that performs overall control and various processes, via an internal connection line 3k, a communication module 3c (corresponding to communication means), a RAM 3d, a ROM 3e, an input / output interface 3f, and a storage unit. (Equivalent to storage means) 3g and other various devices are connected.
  • the communication module 3c performs wireless communication processing via the network according to the control of the CPU 3b.
  • the RAM 3d temporarily stores contents, files, and the like associated with the processing of the CPU 3b, and also stores screen information and various numerical information sent from the skeleton specifying system 50 '.
  • the ROM 3e stores a program that defines the basic processing contents of the CPU 3b, and also stores identification information (UID) that identifies the communication terminal 3. This UID is communicated by the communication module 3c described above (when transmitted, it is included in the transmission content (for example, transmission is performed by including the UID in the header of the transmission packet).
  • the input / output interface 3f is connected to a display screen 3a having a rectangular panel screen having a touch panel function, and various screens generated by control processing of the CPU 3b (screens shown in FIGS. 26 to 29, 40 to 42, etc.) Is output to the display screen 3a, whereby the output screen content is displayed on the display screen 3a.
  • the input / output interface 3f also performs processing for sending various operation contents received by the user touching or swiping the surface of the display screen 3a to the CPU 3b. It should be noted that the operation content received by the user touching the surface of the display screen 3a changes appropriately according to the displayed screen content.
  • the storage unit 3g stores (installs) programs such as the OS program P200, the human body verification application P201, and other various applications, and also stores various data.
  • the OS program P200 is a basic program corresponding to an operating system, and defines the processing of the CPU 3b for the communication terminal 3 to function as a kind of computer.
  • One of the basic processes defined by the OS program P200 is to display a home screen on the display screen 3a. In this home screen, icons corresponding to various applications installed in the storage unit 3g. Etc. is also due to the process defined by the OS program P200.
  • the human body verification application P201 stored in the storage unit 3g is an application program (computer program) for displaying contents for the user who has performed the three-dimensional measurement to confirm the measurement result.
  • the human body verification application P201 defines a control process of the CPU 3b for displaying the contents related to the measurement result, and when started, a login screen that first accepts input of a user ID and password (or passcode) for login Is displayed on the display screen 3a.
  • the CPU 3b transmits a login request including the received user ID and password to the skeleton identification system 50 ′. Processing will be performed.
  • screen information and various numerical information are received from the skeletal identification system 50 ′ along with the transmission of the login request, the received information is stored in the RAM 3 d and model screen information (for example, skeleton model screen included in the received information).
  • the CPU 3b generates a skeleton model screen based on the screen information for displaying the image and displays the generated skeleton model screen on the display screen 3a (see FIG. 40).
  • the CPU 3b performs processing for display output on the display screen 3a. For example, when the selection operation of the muscle button 75d is accepted, a muscle model screen is generated based on the model screen information stored in the RAM 3d and displayed on the display screen 3a.
  • the CPU 3b displays the figure based on the screen information stored in the RAM 3d.
  • the horizontal posture verification screen 100 shown in FIG. 26 is generated and displayed on the display screen 3a.
  • the CPU 3b When the selection operation of the front button 151 is accepted on the displayed horizontal posture verification screen 100, the CPU 3b generates the forward posture verification screen 110 shown in FIG. 27 based on the screen information stored in the RAM 3d. Then, the display screen 3a is displayed and output.
  • the CPU 3b displays the upward posture verification screen 120 shown in FIG. 28 based on the screen information stored in the RAM 3d. A process of generating and displaying on the display screen 3a is performed. Further, when the selection operation of the lower button 154 is accepted on the displayed horizontal posture verification screen 100, the CPU 3b displays the downward posture verification screen 130 shown in FIG. 29 based on the screen information stored in the RAM 3d.
  • a process of generating and displaying on the display screen 3a is performed.
  • the display can be switched to any of the posture verification screens 100 to 130 in the user's desired direction, and the user's own posture can be visually confirmed from each direction.
  • the objective verification can be performed by a numerical value indicating the angle or length in the screen.
  • the screen information stored in the RAM 3d is displayed. Based on this, the CPU 3b performs a process of generating the analysis screen 160 shown in FIG. 41 (a) and displaying it on the display screen 3a.
  • the CPU 3b displays “Explanation of Symptoms” according to the related symptom targeted for the selection operation. ”,“ Effect on health ”,“ cause / feature ”,“ treatment / training ”,“ reference image ”, etc.
  • FIG. 41 (b), FIG. 42 (a) The advice screen 170 shown in (b) is generated and displayed on the display screen 3a. Through such an advice screen 170, the user can confirm detailed information about a specific abnormal matter, which is useful for solving the abnormal matter.
  • Example 2 it is not limited to the content mentioned above, Various modifications can be assumed.
  • the content of the point table 800 shown in FIGS. 33 and 34 is an example, and the number of skeleton points and the like included in the point table 800 can be appropriately increased or decreased according to the specifications.
  • the Z coordinate values of the skeleton points and the like included in the point table 800 there is a technique for obtaining a point that divides the Z coordinate values of the front and rear points of the corresponding human body surface by a specific ratio, but the specification is simplified. In some cases, as in the case of obtaining the X coordinate value or the Y coordinate value, an average value of points before and after the human body surface may be used.
  • the numerical value of the reference angle used for determining the presence or absence of abnormality is other than the numerical value described above. It is also possible to use.
  • the cervical lordosis angle has a certain range such as an average value of 30 to 35 degrees, and therefore, the reference angle for the cervical vertebra lordosis angle is any value within the range of 30 to 35 degrees. Is preferred.
  • the pelvic angle is determined using a line parallel to the lower surface of the sacral base of the skeletal model and a first anterior line L102 (a line parallel to the joint surface of the fifth lumbar vertebra). In this case, it is preferable to use 40 degrees as the numerical value of the reference angle.
  • Example 2 mainly focuses on the specification of the skeleton and the verification of the posture, the body composition meter 10 described in Example 1 is omitted, the processing relating to the muscle model and the fat model is omitted, and the specification is simplified. It is also possible.
  • the posture verification screens 100 to 130 displayed on the communication terminal 3 are not limited to the forms shown in FIGS. 26 to 29, and other forms are also conceivable.
  • the size of the display screen 3a is smaller than that of the tablet (about 4 to 6 inches), so each verification screen for a small screen size is generated. You may make it show.
  • 45 (a) and 45 (b) show posture verification screens 200 and 210 for a small size such as a smartphone.
  • 45A shows a lateral posture verification screen 200
  • FIG. 45B shows a forward posture verification screen 210.
  • the horizontal posture verification screen 200 in FIG. 45A arranges the captured image 101 in the horizontal direction of the subject, but the horizontal posture verification screen 100 in FIG.
  • the angle box 102a and the like indicating the included angles are not included, and the center of gravity Y-axis line L200 and the like are omitted.
  • the posture verification screen 200 in the horizontal direction in FIG. 45 (a) is provided with selectable abnormality marks 201 to 203 at locations determined to be abnormal in the above-described related symptom determination.
  • abnormality marks 201 to 203 are attached to the waist, shoulders, and knees.
  • a left button 250, a right button 251, a front button 252, an upper button 253, and a lower button 254 are arranged at the top of the screen so that any one button can be selected.
  • the left button 250 is selected when displaying the posture verification screen from the left direction.
  • the right button 251 displays the posture verification screen from the right direction
  • the front button 222 indicates the posture verification screen from the front direction.
  • the upper button 253 is for displaying the posture verification screen from above
  • the lower button 254 is for displaying the posture verification screen from below.
  • These buttons 250 to 254 are for each direction.
  • the posture verification screen is also provided (in the figure, the area around the selected button is indicated by a thick solid line).
  • FIG. 45 (b) is a screen displayed when the front posture verification screen 210 and the front button 252 are selected, and the captured image 111 of the subject's front direction is arranged on the screen.
  • the angle box, the center of gravity Y-axis line L200, etc. are omitted, while abnormal marks 211, 212, and 213 are attached to the waist, shoulder, and knee (right knee) that are determined to be abnormal. is doing.
  • the posture verification screens 200 and 210 in FIGS. 45 (a) and 45 (b) only have an abnormality mark at a location where an abnormality is determined in the captured images 101 and 111 of the subject. Even if there is, it is possible to confirm the location determined to be abnormal at a glance.
  • 46 (a) and 46 (b) show the enlarged verification screens 300 and 310, and when the abnormal mark selection operation included in the posture verification screens 200 and 210 of FIGS. 45 (a) and 45 (b) described above is performed. Is displayed.
  • the horizontal enlargement verification screen 300 magnifies and arranges the waist portion of the captured image 101, and also shows the numerical value 301 of the angle specified by the above-described processing, and also shows the angle line L300 indicating the condition of the pelvis.
  • the horizontal enlargement verification screen 300 includes a text box 302, an advice button 303, and a return button 304 at the bottom of the screen.
  • the CPU 3b reads information (such as information stored in the analysis table 96) corresponding to the related symptom determined by the above-described processing from the RAM 3d, and indicates the information in text. Specifically, FIG. 46A shows that the pelvis is tilted forward and the pelvis is tilted forward 15 degrees from the reference angle. Further, the advice button 303 is selectable. When the selection operation of the advice button 303 is accepted, the advice screen having contents corresponding to the forward tilt of the pelvis (FIGS. 41B, 42A, and B) is displayed. The CPU switches the display to the advice screen 170). When the return button 304 is selected, the display is returned to the posture verification screen 200 in FIG.
  • information such as information stored in the analysis table 96
  • the CPU 3b is stored in the RAM 3d when the selection operation of the abnormal mark 212 attached to the shoulder is accepted in the posture verification screen 210 of FIG. 45B. Is generated based on the screen information to be displayed, switched from the posture verification screen 210 and displayed.
  • the enlarged verification screen 310 in the forward direction arranges an enlarged display centered on the shoulder portion of the captured image 111, shows the numerical value 311 of the length specified by the above-described processing, and also indicates the shoulder reference line L310 and the shoulder. An angle line L311 indicating the degree of inclination is also shown.
  • the forward expansion verification screen 310 includes a text box 312, an advice button 313, and a return button 314 at the lower part of the screen, like the horizontal expansion verification screen 300 described above.
  • a text box 312 an advice button 313, and a return button 314 at the lower part of the screen, like the horizontal expansion verification screen 300 described above.
  • each of the other verification surfaces 100 to 130, 200, 210, 300, and 312 described above is configured by arranging captured images and adding various arrows, numerical values, and angles.
  • the model image of either the model or the fat model may be arranged, and in particular, when a skeleton model is arranged, objective information such as various arrows, numerical values, angles, etc. can be used while visually checking the skeleton state. It is preferable because details can be confirmed.
  • the present invention provides an anatomical human body model composed of a skeletal model, a muscle model, and a fat model having a shape corresponding to the measurement result of the subject. It can be suitably used for the purpose of confirmation and the like, and can also be suitably used for verification of the posture of the subject.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Dentistry (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Processing Or Creating Images (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Image Generation (AREA)
  • Image Processing (AREA)
  • Instructional Devices (AREA)

Abstract

[Problem] To make it possible, without the use of an x-ray or MRI, to verify the state of the skeleton of a human body with results of three-dimensional measurement. [Solution] From multiple points on the human body surface obtained by a three-dimensional measurement, points are specified that are used as three-dimensional coordinate values of skeleton points corresponding to a specific skeleton locations of the body, and three-dimensional coordinate values of each skeleton point are calculated from the three-dimensional coordinate values of the specified points. Further, a skeleton model, in which target points are embedded in advance, is deformed on the basis of the skeleton points, and the positions of the skeleton locations, where the target points of the skeleton model are embedded, are specified with the three-dimensional coordinate values of the target points on the deformed skeleton model. This makes it possible to verify the state of the skeleton from positions of the identified skeleton locations.

Description

骨格特定システム、骨格特定方法、及びコンピュータプログラムSkeletal identification system, skeleton identification method, and computer program
 本発明は、被験者の体格に応じた人体モデルを提供するものであり、特に骨格モデル及び筋肉モデル等を段階的に含む解剖的な人体モデルを用いて、各段階のモデルを被験者の体付きに応じて自動変形するようにした人体モデル提供システム等に加えて、レントゲン又はMRI等を用いずに人体の骨格の状況を特定できるようにして、姿勢の検証も可能にした骨格特定システム、骨格特定方法、及びコンピュータプログラムに関する。 The present invention provides a human body model according to the physique of a subject, and in particular, using an anatomical human body model including a skeleton model and a muscle model in stages, the model at each stage is attached to the body of the subject. In addition to the human body model providing system that automatically deforms in response to the human body model, the skeletal identification system and the skeletal identification that can verify the posture of the human body without specifying X-rays or MRI. The present invention relates to a method and a computer program.
 従来から、被験者の体格に関する各種測定結果を用いて、被験者の体格に応じた人体モデルを生成することが行われている。例えば、下記の特許文献1、2では、予め準備していた人体の外観的な輪郭形状を示す人体モデルを、被験者の体格に係る測定結果(身長、胸囲、各部の寸法等)に基づき変形することが開示されている。また、下記の特許文献3では、対象者(被験者)の身長、体重、外形を示すデータから骨格モデルを導出することが示されており(特許文献3の図13等参照)、さらに、重量に関するデータベースに示される重量分布等によって、筋肉モデルを付加した数値モデルを作成すること、筋肉や脂肪の形状についてのポリゴンデータを付加した人体に関するポリゴンモデルを得ること(特許文献3の図39、40等参照)等についても開示される。さらに、下記の特許文献4では、ポリゴンメッシュに基づく変形人体モデルの内部組織(筋肉、脂肪等の組織)の形状を、個人の内部組織の形状に近似するように変形処理を施すことが示される(特許文献4の図1、7、8等参照)。 Conventionally, a human body model corresponding to a physique of a subject is generated using various measurement results related to the physique of the subject. For example, in the following Patent Documents 1 and 2, a human body model showing an external outline shape of a human body prepared in advance is deformed based on measurement results (height, chest measurement, dimensions of each part, etc.) related to the physique of the subject. It is disclosed. Further, in Patent Document 3 below, it is shown that a skeleton model is derived from data indicating the height, weight, and outer shape of a subject (subject) (see FIG. 13 of Patent Document 3). A numerical model with a muscle model added is created based on the weight distribution shown in the database, etc., and a polygon model related to the human body with polygon data on muscle and fat shapes added is obtained (FIGS. 39, 40, etc. of Patent Document 3). Etc.) are also disclosed. Further, Patent Document 4 below shows that the deformation process is performed so that the shape of the internal tissue (muscle, fat, etc.) of the deformed human body model based on the polygon mesh is approximated to the shape of the individual internal tissue. (See FIGS. 1, 7, and 8 of Patent Document 4).
 なお、下記の特許文献5では、年齢別、性別などに応じた骨格等を示す標準骨格モデルデータ等を準備しておき、形状等を編集するソフトウェアを用いて、標準骨格モデルデータ等を適宜、ユーザが手作業で修正することが示される。一方、被験者の組成的な測定結果を用いて、人体モデルを提示することも行われている。例えば、下記の特許文献6では、生体電気インピーダンス法に基づいて測定した結果より、脂肪重量及び除脂肪重量等を求め、これらの求めた重量等を人体モデルで表示することが示される(特許文献6の図6参照)。また、下記の特許文献7では、体組成計を用いて被験者を測定した結果(生体情報:脂肪量、内臓脂肪量、筋肉量等)を人体的な画像で表すことが開示される(特許文献7の図9~11等参照)。 In addition, in the following Patent Document 5, standard skeleton model data indicating a skeleton according to age, sex, etc. is prepared in advance, and the standard skeleton model data etc. is appropriately used using software for editing the shape, etc. It is shown that the user manually corrects. On the other hand, a human body model is also presented using a compositional measurement result of a subject. For example, Patent Document 6 below shows that fat weight and lean body weight are obtained from the results of measurement based on the bioelectrical impedance method, and the obtained weights are displayed on a human body model (Patent Document). 6 (see FIG. 6). Patent Document 7 below discloses that the result of measuring a subject using a body composition meter (biological information: fat mass, visceral fat mass, muscle mass, etc.) is represented by a human image (Patent Document). 7 see FIGS. 9 to 11).
 さらに、下記の特許文献8では、三次元測定器により測定で得られた複数の点に基づき、相同モデルを生成し、その生成した相同モデルを用いて人体の骨格における各関節の座標値を含む関節位置データBDを演算により生成することが開示される(特許文献8の段落0139等参照)。さらにまた、下記の特許文献9では、距離画像から関節位置候補を算出し、算出した関節位置候補と、その尤度とを元に、最終的な関節位置を決定して人体の姿勢を推定することが開示される。そして、下記の特許文献10では、MRI(磁気共鳴画像)撮像装置から得られる人体に関する3次元画像情報から、仙骨最下点の座標データを求めて基準点に設定して、立体座標系を作成することが開示される。 Furthermore, in the following Patent Document 8, a homology model is generated based on a plurality of points obtained by measurement with a three-dimensional measuring instrument, and the coordinate values of each joint in the human skeleton are included using the generated homology model. It is disclosed that joint position data BD is generated by calculation (see paragraph 0139 of Patent Document 8). Furthermore, in the following Patent Document 9, a joint position candidate is calculated from a distance image, and based on the calculated joint position candidate and its likelihood, a final joint position is determined and a human body posture is estimated. Is disclosed. In Patent Document 10 below, the coordinate data of the lowest point of the sacrum is obtained from the three-dimensional image information about the human body obtained from the MRI (magnetic resonance image) imaging device, and is set as a reference point to create a three-dimensional coordinate system. To be disclosed.
 また、下記の特許文献11では、三次元測量方式の非接触3次元スキャナなどを利用して得た身体形状データに対して主成分分析を行って、対象者の身体形状の傾向を表す姿勢軸を特定することが開示される(特許文献11の段落0023~0027等参照)。さらに、下記の特許文献12では、患者の各部に標識を付して走査を行うことで位置データを得て、垂直アライメントからの偏向、垂直軸からの距離を求めると共に(特許文献12の図13参照)、姿勢偏差に関連付けられるエクササイズおよびストレッチを提示することも開示される(特許文献12の図13参照)。そして、下記の特許文献13では、被験者を撮像した姿勢画像の左肩や右肩等の各部位の位置を指定し、その指定した各部位の座標位置を比較演算して姿勢情報を生成し、体の姿勢を分析して、運動療法メニューを含む診断結果の内容と共に分析結果を提示することを開示する(特許文献13の段落0055~57等の記載、図5、7等参照)。 Further, in the following Patent Document 11, a principal axis analysis is performed on body shape data obtained by using a non-contact three-dimensional scanner of a three-dimensional surveying method, and a posture axis representing a tendency of the subject's body shape (See paragraphs 0023 to 0027 of Patent Document 11). Further, in Patent Document 12 below, each part of a patient is labeled and scanned to obtain position data, and the deviation from the vertical alignment and the distance from the vertical axis are obtained (FIG. 13 of Patent Document 12). (See FIG. 13 of Patent Document 12), which also discloses exercise and stretch associated with posture deviation. And in patent document 13 below, the position of each part such as the left shoulder and the right shoulder of the posture image obtained by imaging the subject is designated, and the coordinate position of each designated part is compared and calculated to generate posture information. Is disclosed to present the analysis result together with the contents of the diagnosis result including the exercise therapy menu (see paragraphs 0055 to 57 of Patent Document 13, etc., see FIGS. 5 and 7).
 さらに近時においては、人体を骨格レベル、筋肉レベルというように、各レベルで三次元的に所望の角度、所望の倍率等で人体の解剖的な構成を提示できるようにした3D人体解剖アプリが提供されている(非特許文献1参照)。 Recently, there is a 3D human anatomy app that can present the anatomical structure of the human body at a desired angle, desired magnification, etc. in three dimensions, such as the skeletal level and the muscle level. Provided (see Non-Patent Document 1).
特開2002-183758号公報JP 2002-183758 A 特開平10-49045号公報Japanese Patent Laid-Open No. 10-49045 特開平11-192214号公報JP 11-192214 A 特開2013-89123号公報JP 2013-89123 A 特開平4-195476号公報JP-A-4-195476 特開2001-321350号公報JP 2001-321350 A 特開2014-18444号公報JP 2014-18444 A 特開2011-180790号公報JP 2011-180790 A 特開2015-167008号公報JP2015-167008A 特開2002-186588号公報JP 2002-186588 A 特開2016-1235856号公報JP 2016-1235856 A 特表2004-512919号公報JP-T-2004-512919 特開2005-301号公報Japanese Patent Laid-Open No. 2005-301
 上述した特許文献1、2、6、7の内容は、いずれも被験者の測定結果を反映した人体モデルを表したものであるが、上述した非特許文献1のように、骨格モデルに筋肉を重ねるように配置した解剖的な筋肉モデルに対して、被験者の測定した結果を反映できるように筋肉モデルの形状を変形することまでは、特許文献1、2、6、7の内容で対応できないという問題がある。 The contents of Patent Documents 1, 2, 6, and 7 described above all represent a human body model that reflects the measurement results of the subject. However, as in Non-Patent Document 1 described above, muscles are superimposed on the skeleton model. Until the deformed shape of the muscle model can be reflected on the anatomical muscle model arranged in such a manner as to reflect the measurement result of the subject, the contents of Patent Documents 1, 2, 6, and 7 cannot be used. There is.
 また、特許文献3は、被験者における四肢(左右腕、左右脚)及び体幹部の筋肉量、脂肪量を実際に測定するのではなく、重量DB等の各種データベースを用いて数値的に筋肉及び脂肪のモデルを得るので、被験者の実際の筋肉の付き方、脂肪の付き方を反映したモデルを提供できないという問題がある。なお、特許文献3で開示される筋肉や脂肪の形状についてのポリゴンデータは、ワイヤーフレームモデルをベースとした人体形状に基づくものであるから、簡素化した人体形状を示す概要的なモデルを生成するに留まっている。特許文献4は、数値人体モデルに基づくものであるから、被験者の個々の体つきに応じたモデルまでは提供できないという問題がある。 Further, Patent Document 3 does not actually measure the muscle mass and fat mass of the extremities (left and right arms, left and right legs) and trunk of the subject, but numerically analyzes muscle and fat using various databases such as a weight DB. Therefore, there is a problem that it is impossible to provide a model reflecting the subject's actual muscle attachment and fat attachment. In addition, since the polygon data about the shape of muscle and fat disclosed in Patent Document 3 is based on the human body shape based on the wire frame model, a schematic model showing a simplified human body shape is generated. Stay on. Since Patent Document 4 is based on a numerical human body model, there is a problem that a model corresponding to the individual body of the subject cannot be provided.
 さらに、脂肪については、上述した特許文献3、4、6、7で言及されているが、人体モデルにおける脂肪の表し方としては特許文献6の図6、特許文献7の図9、10等のように、人体モデルの周囲輪郭に脂肪を示す分を付加する程度にすぎず、例えば、上述した非特許文献1の筋肉モデルの上に脂肪を配置し、このような脂肪を配置したモデルで、脂肪の量を表現するようなことまでは、特許文献3、4、6、7で対応できないという問題がある。特に、測定された脂肪の量が標準より少ない場合、標準より少ない脂肪の状態を人体モデルで視覚的に表現するのは一般に困難である。 Furthermore, although the fat is mentioned in the above-mentioned Patent Documents 3, 4, 6, and 7, the way of expressing the fat in the human body model is as shown in FIG. 6 of Patent Document 6 and FIGS. As described above, it is only an amount to add fat to the peripheral contour of the human body model, for example, by placing fat on the muscle model of Non-Patent Document 1 described above, and a model in which such fat is arranged, There is a problem that Patent Documents 3, 4, 6, and 7 cannot cope with expressing the amount of fat. In particular, when the amount of fat measured is less than the standard, it is generally difficult to visually represent the state of fat less than the standard with a human body model.
 さらにまた、非特許文献1のように、骨格モデルに筋肉等を重ねた解剖的な人体モデルを示す場合で、被験者の測定結果に合わせて、骨格モデル、及び筋肉を配置した段階のモデル等のように、段階ごとにモデルを変形すると、段階の異なるモデル間で整合性を確保するのも困難になるという問題がある。 Furthermore, as shown in Non-Patent Document 1, in the case of showing an anatomical human body model in which muscles and the like are superimposed on the skeleton model, the skeleton model and the model at the stage where the muscles are arranged according to the measurement result of the subject, etc. As described above, when a model is deformed at each stage, there is a problem that it is difficult to ensure consistency between models at different stages.
 一方、人体の骨格の状況を調べるには一般に、レントゲン又はMRIが使用されるが、レントゲンは短時間であるが被爆の問題があり、またMRIは設備に対する費用が高額になる等の問題がある。レントゲン又はMRIを用いずに、人体の骨格の状況を確認する仕方としては、上述した特許文献8、9等がある。上述した特許文献8では、三次元測定結果から一旦、相同モデルを生成し、その相同モデルを用いて、人体の骨格における各関節の座標値を演算で求めることから、相同モデルの生成が必須となり、各関節の座標値を求める処理において、相同モデルを生成する処理負担が生じると共に、演算で得られる各関節の座標値に対し、相同モデルの影響が入り込み、関節座長値の演算結果に、折角行った三次元測定の結果が反映されにくいという問題がある。 On the other hand, X-rays or MRI are generally used to examine the state of the human skeleton, but X-rays have a problem of exposure although they are in a short time, and MRI has problems such as high costs for equipment. . As methods for confirming the state of the human skeleton without using X-rays or MRI, there are Patent Documents 8 and 9 described above. In Patent Document 8 described above, since a homologous model is once generated from the three-dimensional measurement result, and the coordinate value of each joint in the human skeleton is obtained by calculation using the homologous model, generation of the homologous model is essential. In the process of obtaining the coordinate value of each joint, there is a processing burden to generate a homologous model, and the influence of the homologous model enters the coordinate value of each joint obtained by the calculation, and the calculation result of the joint seat length value There is a problem that the result of the three-dimensional measurement performed is difficult to be reflected.
 そして、上述した特許文献9では、距離画像から関節位置候補を算出すると共に、尤度を用いて最終的な関節位置を決定するので、関節位置の決定に対し、三次元測定を用いるのでは無く、画像中の各画素に奥行き方向の距離情報が所定のスケーリングで記録された距離画像(例えば、CG等により作成された画像。特許文献9の段落0013参照)を用いるので、得られる関節位置の精度が、距離画像に含まれる距離情報に左右される問題があり、この問題は、演算に用いる尤度の影響により助長されやすくなる。 And in patent document 9 mentioned above, while calculating a joint position candidate from a distance image and determining a final joint position using likelihood, it does not use three-dimensional measurement for determination of a joint position. Since a distance image (for example, an image created by CG or the like; see paragraph 0013 of Patent Document 9) in which distance information in the depth direction is recorded at a predetermined scaling for each pixel in the image is used. There is a problem that the accuracy depends on the distance information included in the distance image, and this problem is easily promoted by the influence of the likelihood used in the calculation.
 また、人体の姿勢検証について、上述した特許文献11では、三次元測定等で得られた測定対象表面の複数の点から主成分分析により姿勢軸を求めるので、姿勢検証は人体表面からの分析となり、人体内部の骨格の状況に基づいて姿勢検証を行えないという問題がある。この問題は、上述した特許文献12、13でも同様であり、被験者を撮影して人体の表面的な位置及び形状等に基づいて姿勢を検証するので、人体の内部の骨格位置の特定までは行っていない。 Regarding the posture verification of the human body, in Patent Document 11 described above, the posture axis is obtained by principal component analysis from a plurality of points on the measurement target surface obtained by three-dimensional measurement or the like, so posture verification is an analysis from the surface of the human body. There is a problem that posture verification cannot be performed based on the state of the skeleton inside the human body. This problem is the same in Patent Documents 12 and 13 described above. Since the subject is photographed and the posture is verified based on the surface position and shape of the human body, the skeleton position inside the human body is specified. Not.
 本発明は、斯かる事情に鑑みてなされたものであり、骨格モデルに重ねる筋肉を有する筋肉モデルについて、被験者の測定結果に合わせた変形を自動で行えるようにした人体モデル提供システム、人体モデル変形方法、及びコンピュータプログラムを提供することを目的とする。 The present invention has been made in view of such circumstances, and a human body model providing system, a human body model deformation system, and a human body model deformation system that can automatically perform deformation according to a measurement result of a subject with respect to a muscle model having muscles superimposed on a skeleton model It is an object to provide a method and a computer program.
 また、本発明は、筋肉モデルに重ねる脂肪を有する脂肪モデルの段階でも、被験者の測定結果に応じて、脂肪量が標準より多い場合、又は標準より少ない場合を視覚的に表現できるようにした人体モデル提供システム、人体モデル変形方法、及びコンピュータプログラムを提供することを目的とする。 The present invention also provides a human body that can visually represent the case where the amount of fat is greater than the standard or less than the standard in accordance with the measurement result of the subject even at the stage of the fat model having fat superimposed on the muscle model. It is an object to provide a model providing system, a human body model transformation method, and a computer program.
 さらに、本発明は、骨格モデル、筋肉モデル又は脂肪モデルをそれぞれ、体格的なタイプに合わせて複数種類を予めセットにした状態で準備しておき、セットにした骨格モデル、筋肉モデル又は脂肪モデルについて連携的に変形処理を行うことで、ある一つの段階でモデルの変形を行っても、他の段階のモデルとの間で整合性を確保できるようにした人体モデル提供システム、人体モデル変形方法、及びコンピュータプログラムを提供することを目的とする。 Furthermore, the present invention provides a skeleton model, a muscle model, or a fat model prepared in a state where a plurality of types are set in advance according to the physique type, and the set skeleton model, muscle model, or fat model A human body model providing system, a human body model deformation method, which can ensure consistency with a model at another stage even if the model is deformed at one stage by performing deformation processing in cooperation with each other, And to provide a computer program.
 さらにまた、本発明は、三次元測定器で得られた人体表面の複数の点と、人体の骨格における各骨格ポイントとの関係を示すポイントテーブルを用いることで、レントゲン又はMRI等を使用しなくても、人体における各骨格ポイントの位置を特定できるようにした骨格特定システム、骨格特定方法、及びコンピュータプログラムを提供することを目的とする。
 また、本発明は、ポイントテーブルを用いて骨格ポイントの位置を特定しにくい箇所について、変形可能な骨格モデルを用いることで、変形した骨格モデルの各ポイントから位置を特定できるようにした骨格特定システム、骨格特定方法、及びコンピュータプログラムを提供することを目的とする。
 そして、本発明は、特定した骨格ポイントの位置に基づき、三次元測定器で測定された人体の姿勢を検証できるようにした骨格特定システム、骨格特定方法、及びコンピュータプログラムを特定することを目的とする。
Furthermore, the present invention uses a point table indicating the relationship between a plurality of points on the surface of the human body obtained by a three-dimensional measuring instrument and each skeletal point in the skeleton of the human body, so that X-rays or MRIs are not used. However, an object of the present invention is to provide a skeletal identification system, a skeleton identification method, and a computer program that can identify the position of each skeleton point in the human body.
In addition, the present invention provides a skeletal identification system that can identify a position from each point of a deformed skeleton model by using a deformable skeleton model for a place where it is difficult to specify the position of the skeleton point using a point table. Another object is to provide a skeleton identification method and a computer program.
An object of the present invention is to identify a skeleton identification system, a skeleton identification method, and a computer program that can verify the posture of a human body measured by a three-dimensional measuring device based on the position of the identified skeleton point. To do.
 上記課題を解決するために本発明に係る人体モデル提供システムは、被験者の身体的な測定結果に係る情報に基づき、体格を示す人体モデルの変形処理を行う人体モデル提供システムにおいて、前記人体モデルは、骨格に応じた骨格モデル及び、その骨格モデルを覆う筋肉に応じた筋肉モデルを含み、被験者の体の特定部位における筋肉量に係る数値を取得する手段と、取得した筋肉量に係る数値が標準に比べて大きい場合、前記筋肉モデルにおける前記特定部位に係る筋肉部分が太くなるように、前記筋肉モデルを変形する手段と、取得した筋肉量に係る数値が標準に比べて小さい場合、前記筋肉モデルにおける前記特定部位に係る筋肉部分が細くなるように、前記筋肉モデルを変形する手段とを備えることを特徴とする。 In order to solve the above problems, the human body model providing system according to the present invention is a human body model providing system that performs deformation processing of a human body model indicating a physique based on information relating to a physical measurement result of a subject. Including a skeletal model corresponding to the skeleton and a muscle model corresponding to the muscle covering the skeleton model, and means for obtaining a numerical value relating to the muscle mass in a specific part of the subject's body, and the obtained numeric value relating to the muscle mass is standard If the value is smaller than the standard, the means for deforming the muscle model so that the muscle portion related to the specific part in the muscle model is thicker, and And a means for deforming the muscle model so that a muscle portion related to the specific part in the skin is thinned.
 本発明に係る人体モデル提供システムは、被験者の体幹部における内臓脂肪に係る数値を取得する手段と、取得した内臓脂肪に係る数値が標準に比べて大きい場合、前記筋肉モデルにおける腹の部位が太くなるように、前記筋肉モデルを変形する手段と備えることを特徴とする。 The system for providing a human body model according to the present invention provides a means for acquiring a numerical value related to visceral fat in the trunk of a subject, and when the acquired numerical value related to visceral fat is larger than a standard, an abdominal region in the muscle model is thick. It is characterized by providing with the means to deform | transform the said muscle model.
 本発明に係る人体モデル提供システムは、前記人体モデルが、前記筋肉モデルを覆う脂肪に応じた脂肪モデルを含み、前記筋肉モデルを変形した場合、前記筋肉モデルの変形に追従して前記脂肪モデルを変形する手段を備えることを特徴とする。 In the human body model providing system according to the present invention, the human body model includes a fat model corresponding to fat covering the muscle model, and when the muscle model is deformed, the fat model is tracked following the deformation of the muscle model. It is characterized by comprising means for deforming.
 本発明に係る人体モデル提供システムは、被験者の体の特定部位における皮下脂肪量に係る数値を取得する手段と、取得した皮下脂肪量に係る数値が標準に比べて大きい場合、前記脂肪モデルにおける前記特定部位に応じた脂肪部分が太くなるように、前記脂肪モデルを変形する手段とを備えることを特徴とする。 The human body model providing system according to the present invention provides a means for acquiring a numerical value related to a subcutaneous fat mass in a specific part of a subject's body, and if the acquired numerical value related to the subcutaneous fat mass is larger than a standard, the fat model in the fat model And a means for deforming the fat model so that a fat portion corresponding to the specific part is thickened.
 本発明に係る人体モデル提供システムは、前記脂肪モデルの表面には、基準色が付けてあり、取得した皮下脂肪量に係る数値が標準に比べて大きい場合、前記脂肪モデルにおける前記特定部位に応じた表面部分の色を前記基準色より濃くする手段を備えることを特徴とする。 In the human body model providing system according to the present invention, when the surface of the fat model is provided with a reference color, and the obtained numerical value related to the amount of subcutaneous fat is larger than the standard, the fat model corresponds to the specific part in the fat model. Means for making the color of the surface portion darker than the reference color.
 本発明に係る人体モデル提供システムは、取得した皮下脂肪量に係る数値が標準に比べて小さい場合、前記脂肪モデルにおける前記特定部位に応じた表面部分の色を前記基準色より薄くする手段を備えることを特徴とする。 The human body model providing system according to the present invention includes means for making the color of the surface portion corresponding to the specific part in the fat model lighter than the reference color when the numerical value related to the acquired subcutaneous fat mass is smaller than the standard. It is characterized by that.
 本発明に係る人体モデル提供システムは、取得した皮下脂肪量に係る数値が標準に比べて小さい場合、前記脂肪モデルにおける前記特定部位に応じた脂肪部分を透過して前記筋肉モデルの筋肉が映るように、前記部分を変化させる手段を備えることを特徴とする。 In the human body model providing system according to the present invention, when the obtained numerical value related to the amount of subcutaneous fat is smaller than the standard, the fat of the fat model corresponding to the specific part in the fat model is transmitted and the muscle of the muscle model is reflected. And a means for changing the portion.
 本発明に係る人体モデル提供システムは、前記骨格モデルには、標準の骨格モデルと、前記標準の骨格モデルに比べて四肢の寸法を短くした第1の骨格モデルと、前記標準の骨格モデルに比べて四肢の寸法を長くした第2の骨格モデルとがあり、前記筋肉モデルには、前記標準の骨格モデルに対応する標準の筋肉モデルと、前記第1の骨格モデルに対応する第1の筋肉モデルと、前記第2の骨格モデルに対応する第2の筋肉モデルとがあり、被験者の体格に係る測定結果を取得する手段と、取得した測定結果に基づき、前記標準の骨格モデル、前記第1の骨格モデル、及び前記第2の骨格モデルの中から、いずれか一つを特定する手段とを備え、特定した骨格モデルに対応する筋肉モデルについて変形するようにしてあることを特徴とする。 The human body model providing system according to the present invention includes, as the skeleton model, a standard skeleton model, a first skeleton model in which the dimensions of the limbs are shorter than the standard skeleton model, and the standard skeleton model. A second skeletal model in which the dimensions of the limbs are increased, and the muscle model includes a standard muscle model corresponding to the standard skeleton model and a first muscle model corresponding to the first skeleton model. And a second muscle model corresponding to the second skeletal model, a means for obtaining a measurement result relating to the physique of the subject, the standard skeleton model, the first skeleton model based on the obtained measurement result Means for specifying any one of the skeletal model and the second skeleton model, and the muscle model corresponding to the specified skeleton model is deformed.
 本発明に係る人体モデル提供システムは、前記骨格モデルには、標準の骨格モデルと、前記標準の骨格モデルに比べて四肢の寸法を短くした第1の骨格モデルと、前記標準の骨格モデルに比べて四肢の寸法を長くした第2の骨格モデルとがあり、前記脂肪モデルには、前記標準の骨格モデルに対応する標準の脂肪モデルと、前記第1の骨格モデルに対応する第1の脂肪モデルと、前記第2の骨格モデルに対応する第2の脂肪モデルとがあり、被験者の体格に係る測定結果を取得する手段と、取得した測定結果に基づき、前記標準の骨格モデル、前記第1の骨格モデル、及び前記第2の骨格モデルの中から、いずれか一つを特定する手段とを備え、特定した骨格モデルに対応する脂肪モデルについて変形するようにしてあることを特徴とする。 The human body model providing system according to the present invention includes, as the skeleton model, a standard skeleton model, a first skeleton model in which the dimensions of the limbs are shorter than the standard skeleton model, and the standard skeleton model. And the fat model includes a standard fat model corresponding to the standard skeleton model and a first fat model corresponding to the first skeleton model. And a second fat model corresponding to the second skeletal model, a means for acquiring a measurement result relating to the physique of the subject, the standard skeleton model, the first skeleton model based on the acquired measurement result Means for specifying any one of the skeletal model and the second skeletal model, wherein the fat model corresponding to the specified skeletal model is deformed.
 本発明に係る人体モデル提供システムは、被験者の体格に係る測定結果を取得する手段と、取得した測定結果に基づき、前記骨格モデルを相似的に拡大又は縮小するように、特定した骨格モデルを変形する手段と、前記骨格モデルを変形した場合、前記骨格モデルの変形に追従して前記筋肉モデルを変形する手段とを備えることを特徴とする。 The human body model providing system according to the present invention includes a means for acquiring a measurement result related to the physique of a subject, and deforms the specified skeleton model so as to enlarge or reduce the skeleton model in a similar manner based on the acquired measurement result. And means for deforming the muscle model following the deformation of the skeleton model when the skeleton model is deformed.
 本発明に係る人体モデル提供システムは、前記骨格モデルが変形基点を有し、被験者の身体的な測定結果に係る情報に含まれる被験者の体格に係る複数の頂点の中から、前記変形基点に対応する対応点を特定する手段と、前記骨格モデルにおける前記変形基点の直近の関節から前記対応点へ向かう方向を特定する手段と、前記変形基点を含むと共に前記関節に繋がる骨部分が、特定した方向と同じ向きになるように、前記関節を中心に前記骨部分の角度を変更する手段と、角度を変更した前記骨部分の前記変形基点が前記対応点に一致するように、前記骨部分の長さを変形する手段と、前記骨格モデルの前記骨部分を変形した場合、前記骨格モデルの前記骨部分の変形に追従して、前記筋肉モデルにおける前記骨部分の該当箇所が形状的に変化するように、前記筋肉モデルを変形する手段とを備えることを特徴とする。 In the human body model providing system according to the present invention, the skeleton model has a deformation base point, and corresponds to the deformation base point from a plurality of vertices related to the physique of the subject included in the information related to the physical measurement result of the subject. Means for identifying the corresponding point, means for identifying the direction from the joint nearest to the deformation base point to the corresponding point in the skeleton model, and the direction of the bone portion including the deformation base point and connected to the joint Means for changing the angle of the bone part around the joint so as to be in the same direction as the length of the bone part so that the deformation base point of the bone part whose angle has been changed coincides with the corresponding point. And when the bone part of the skeleton model is deformed, the corresponding part of the bone part in the muscle model is shaped in accordance with the deformation of the bone part of the skeleton model. As reduction, characterized in that it comprises a means for deforming the muscle model.
 本発明に係る人体モデル変形方法は、人体モデル処理装置が、被験者の身体的な測定結果に係る情報に基づき、体格を示す人体モデルの変形処理を行う人体モデル変形方法において、前記人体モデルは、骨格に応じた骨格モデル及び、その骨格モデルを覆う筋肉に応じた筋肉モデルを含み、被験者の体の特定部位における筋肉量に係る数値を取得するステップと、取得した筋肉量に係る数値が標準に比べて大きい場合、前記筋肉モデルにおける前記特定部位に係る筋肉部分が太くなるように、前記筋肉モデルを変形するステップと、取得した筋肉量に係る数値が標準に比べて小さい場合、前記筋肉モデルにおける前記特定部位に係る筋肉部分が細くなるように、前記筋肉モデルを変形するステップとを備えることを特徴とする。 The human body model deformation method according to the present invention is a human body model deformation method in which the human body model processing apparatus performs deformation processing of a human body model indicating a physique based on information related to a physical measurement result of a subject. Including a skeletal model corresponding to the skeleton and a muscle model corresponding to the muscle covering the skeleton model, the step of acquiring a numerical value related to the muscle mass at a specific part of the body of the subject, and the acquired numerical value relating to the muscle mass as a standard When the comparison is larger, the step of deforming the muscle model so that the muscle portion related to the specific part in the muscle model becomes thicker, and the numerical value related to the acquired muscle mass is smaller than the standard, And a step of deforming the muscle model so that a muscle portion related to the specific part is thinned.
 本発明に係るコンピュータプログラムは、コンピュータに、被験者の身体的な測定結果に係る情報に基づき、体格を示す人体モデルの変形処理を行わせるためのコンピュータプログラムにおいて、前記人体モデルは、骨格に応じた骨格モデル及び、その骨格モデルを覆う筋肉に応じた筋肉モデルを含み、前記コンピュータに、被験者の体の特定部位における筋肉量に係る数値を取得するステップと、取得した筋肉量に係る数値が標準に比べて大きい場合、前記筋肉モデルにおける前記特定部位に係る筋肉部分が太くなるように、前記筋肉モデルを変形するステップと、取得した筋肉量に係る数値が標準に比べて小さい場合、前記筋肉モデルにおける前記特定部位に係る筋肉部分が細くなるように、前記筋肉モデルを変形するステップとを実行させることを特徴とする。 A computer program according to the present invention is a computer program for causing a computer to perform deformation processing of a human body model indicating a physique based on information related to a physical measurement result of a subject. Including a skeletal model and a muscle model corresponding to the muscle covering the skeletal model, the computer acquiring a numerical value related to the muscle mass at a specific part of the subject's body, and the acquired numerical value relating to the muscle mass as a standard When the comparison is larger, the step of deforming the muscle model so that the muscle portion related to the specific part in the muscle model becomes thicker, and the numerical value related to the acquired muscle mass is smaller than the standard, Performing the step of deforming the muscle model so that a muscle portion related to the specific part is thinned. Characterized in that to.
 また、本発明は、人体を三次元測定器で測定したことで得られる人体表面の複数の点が有する三次元座標値に基づき人体の骨格の状況を特定する骨格特定システムにおいて、人体における複数の骨格ポイントに対応する人体表面の点を、骨格ポイントごとに示すポイントテーブルと、前記ポイントテーブルの複数の骨格ポイントのそれぞれに対応する変形基点を含むと共に、三次元座標値を有する対象点を含む変形可能な骨格モデルを記憶する手段と、前記ポイントテーブルに基づいて、三次元測定器の測定で得られた人体表面の複数の点の中から、複数の骨格ポイントのそれぞれに対応する人体表面の点を、骨格ポイントごとに特定する手段と、骨格ポイントごとに特定した人体表面の点が有する三次元座標値に基づき、前記骨格ポイントの三次元座標値を特定する手段と、前記骨格ポイントの特定した三次元座標値に、前記骨格ポイントに対応する変形基点が一致するように、前記骨格モデルを変形する手段と、変形した前記骨格モデルに含まれる対象点が有する三次元座標値に基づき前記対象点の位置を特定する手段とを備えることを特徴とする。 In addition, the present invention provides a skeleton identification system that identifies the state of the skeleton of a human body based on the three-dimensional coordinate values of a plurality of points on the surface of the human body obtained by measuring the human body with a three-dimensional measuring instrument. A point table indicating points on the human body corresponding to the skeletal points for each skeleton point, and a deformation point including a deformation base point corresponding to each of the plurality of skeleton points of the point table and including a target point having a three-dimensional coordinate value Based on the means for storing possible skeletal models and a plurality of points on the surface of the human body obtained by the measurement of the three-dimensional measuring device based on the point table, the points on the human body surface corresponding to each of the plurality of skeletal points Is determined for each skeleton point and based on the three-dimensional coordinate values of the points on the human body surface specified for each skeleton point. Means for identifying the three-dimensional coordinate value, means for deforming the skeleton model such that the deformation base point corresponding to the skeleton point matches the three-dimensional coordinate value identified by the skeleton point, and the deformed skeleton Means for specifying the position of the target point based on a three-dimensional coordinate value of the target point included in the model.
 本発明は、前記ポイントテーブルが、特定の骨格ポイントとして骨盤ポイントを含むと共に、前記骨盤ポイントに対応する人体表面の点として、人体前側及び後側における人体表面の点を示しており、前記骨盤ポイントに対応する人体前側における人体表面の点が有する三次元座標値、及び前記骨盤ポイントに対応する人体後側における人体表面の点が有する三次元座標値の平均値を、前記骨盤ポイントの三次元座標値として算出する手段を備えることを特徴とする。
 また、本発明は、前記骨格モデルが、前記骨盤ポイントに係る腰仙角に応じた骨盤角度線を含み、変形した骨格モデルに含まれる骨盤角度線が、人体の厚み方向に平行な線と交わる角度を特定する手段を備えることを特徴とする。
In the present invention, the point table includes pelvic points as specific skeleton points, and points on the human body surface on the front side and the rear side of the human body corresponding to the pelvic points, the pelvic points 3D coordinate values of the surface of the human body corresponding to the front side of the human body and the average value of the 3D coordinate values of the surface of the human body corresponding to the back side of the pelvis corresponding to the 3D coordinates of the pelvic point Means for calculating as a value is provided.
Further, according to the present invention, the skeleton model includes a pelvic angle line corresponding to a lumbosacral angle related to the pelvic point, and the pelvic angle line included in the deformed skeleton model intersects with a line parallel to the thickness direction of the human body. A means for specifying an angle is provided.
 本発明は、前記三次元座標値が、人体の幅方向、人体の高さ方向、及び人体の厚み方向の座標値を含み、前記ポイントテーブルは、特定の骨格ポイントとして背骨ポイントを含むと共に、前記背骨ポイントに対応する人体表面の点として、人体前側及び後側における人体表面の点を示しており、前記背骨ポイントに対応する人体前側における人体表面の点が有する人体の幅方向の座標値、及び前記背骨ポイントに対応する人体後側における人体表面の点が有する人体の幅方向の座標値の平均値を、前記背骨ポイントにおける人体の幅方向の座標値として算出する手段と、前記背骨ポイントに対応する人体前側における人体表面の点が有する人体の高さ方向の座標値、及び前記背骨ポイントに対応する人体後側における人体表面の点が有する人体の高さ方向の座標値の平均値を、前記背骨ポイントにおける人体の高さ方向の座標値として算出する手段と、前記背骨ポイントに対応する人体前側における人体表面の点が有する人体の厚み方向の座標値、及び前記背骨ポイントに対応する人体後側における人体表面の点が有する人体の厚み方向の座標値の間を、特定の比率で分ける点の座標値を、前記背骨ポイントにおける人体の厚み方向の座標値として算出する手段とを備えることを特徴とする。 In the present invention, the three-dimensional coordinate value includes a coordinate value in a human body width direction, a human body height direction, and a human body thickness direction, and the point table includes a spine point as a specific skeleton point, and The human body surface point corresponding to the spine point indicates the human body surface points on the front side and the back side of the human body, the human body surface point on the front side corresponding to the spine point has coordinate values in the width direction of the human body, and A means for calculating a coordinate value in the width direction of the human body at a point on the human body surface on the back side of the human body corresponding to the spine point as a coordinate value in the width direction of the human body at the spine point; and corresponding to the spine point The human body surface point on the front side of the human body has coordinate values in the height direction of the human body, and the human body surface point on the back side of the human body corresponding to the spine point has Means for calculating the average value of the coordinate values in the height direction of the body as the coordinate values in the height direction of the human body at the spine point, and the thickness direction of the human body possessed by a point on the front side of the human body corresponding to the spine point And a coordinate value of a point that divides the coordinate value in the thickness direction of the human body possessed by a point on the human body surface on the back side of the human body corresponding to the spine point with a specific ratio, the thickness of the human body at the spine point Means for calculating the coordinate value of the direction.
 本発明は、前記背骨ポイントには、腰椎に応じた第1背骨ポイント、及び胸骨下位置に応じた第2背骨ポイントが含まれており、前記骨格モデルは、前記第1背骨ポイントに係る腰椎前弯角度に応じた第1前弯線、及び前記第2背骨ポイントに係る腰椎前弯角度に応じた第2前弯線を含み、変形した骨格モデルに含まれる第1前弯線及び第2前弯線による腰椎前弯角度を特定する手段を備えることを特徴とする。
 また、本発明は、前記背骨ポイントには更に、上記第2背骨ポイントより上方の第3背骨ポイントが含まれており、前記骨格モデルは、前記第2背骨ポイントに係る胸椎後弯角度に応じた第1後弯線、及び前記第3背骨ポイントに係る胸椎後弯角度に応じた第2後弯線を含み、変形した骨格モデルに含まれる第1後弯線及び第2後弯線による胸椎後弯角度を特定する手段を備えることを特徴とする。
In the present invention, the spine point includes a first spine point corresponding to the lumbar spine and a second spine point corresponding to the substernal position, and the skeletal model includes the anterior lumbar spine related to the first spine point. The first anterior line and the second anterior line included in the deformed skeleton model including the first anterior line corresponding to the heel angle and the second anterior line corresponding to the lumbar lordosis angle related to the second spine point Means is provided for identifying a lumbar lordosis angle by a heel line.
Further, according to the present invention, the spine point further includes a third spine point above the second spine point, and the skeletal model corresponds to a thoracic vertebra kyphosis angle related to the second spine point. The posterior thoracic vertebra by the first posterior and second posterior lines included in the deformed skeleton model, including the first posterior line and the second posterior ridge corresponding to the thoracic vertebra posterior angle related to the third spine point A means for specifying the heel angle is provided.
 本発明は、前記ポイントテーブルが、特定の骨格ポイントとして首骨ポイントを含むと共に、前記首骨ポイントに対応する人体表面の点として、人体前側及び後側における人体表面の点を示しており、前記首骨ポイントに対応する人体前側における人体表面の点が有する三次元座標値、及び前記首骨ポイントに対応する人体後側における人体表面の点が有する三次元座標値の平均値を、前記首骨ポイントの三次元座標値として算出する手段を備えることを特徴とする。 In the present invention, the point table includes a neck point as a specific skeleton point, and points on the human body surface on the front and rear sides of the human body as points on the human body surface corresponding to the neck point, The three-dimensional coordinate value of the point on the human body surface on the front side of the human body corresponding to the neck point, and the average value of the three-dimensional coordinate value of the point on the human body surface on the rear side of the human body corresponding to the neck point, A means for calculating the three-dimensional coordinate value of the point is provided.
 本発明は、前記ポイントテーブルが、特定の骨格ポイントとして、前記首骨ポイントより上方の上方首骨ポイントを含むと共に、前記上方首骨ポイントに対応する人体左側及び右側における人体表面の点を示すようにしてあり、前記上方首骨ポイントに対応する人体左側における人体表面の点が有する三次元座標値、及び前記上方首骨ポイントに対応する人体右側における人体表面の点が有する三次元座標値の平均値を、前記上方首骨ポイントの三次元座標値として算出する手段を備えることを特徴とする。
 また、本発明は、前記骨格モデルが、前記首骨ポイントに係る頸椎前弯角度に応じた第1頸椎前弯線、及び前記上方首骨ポイントに係る頸椎前弯角度に応じた第2頸椎前弯線を含み、変形した骨格モデルに含まれる第1頸椎前弯線及び第2頸椎前弯線による頸椎前弯角度を特定する手段を備えることを特徴とする。
According to the present invention, the point table includes, as specific skeleton points, upper neck points above the neck points, and points on the left and right sides of the human body corresponding to the upper neck points. The average of the three-dimensional coordinate value of the human body surface point on the left side of the human body corresponding to the upper neck point, and the three-dimensional coordinate value of the human body surface point on the right side of the human body corresponding to the upper neck point A means for calculating a value as a three-dimensional coordinate value of the upper neck point is provided.
Further, according to the present invention, the skeletal model includes a first cervical lordosis line corresponding to the cervical lordosis angle related to the neck point and a second cervical vertebrae position corresponding to the cervical lordosis angle related to the upper neck point. The apparatus includes a means for specifying a cervical lordosis angle by a first cervical lordosis line and a second cervical vertebra lordosis included in the deformed skeletal model.
 本発明は、前記骨格モデルは対象点として、大腿骨大転子、膝頭、及び足首に応じた各点を含み、変形した前記骨格モデルで、位置を特定した大腿骨大転子及び膝頭に応じた両方の点を結ぶ大腿骨線を、前記大腿骨大転子及び前記膝頭に応じた各点が有するそれぞれの三次元座標値に基づき特定する手段と、変形した前記骨格モデルで、位置を特定した膝頭及び足首に応じた両方の点を結ぶ脛骨線を、前記膝頭及び前記足首に応じた各点が有するそれぞれの三次元座標値に基づき特定する手段と、特定した大腿骨線及び脛骨線が交わる角度を特定する手段とを備えることを特徴とする。 In the present invention, the skeletal model includes each point corresponding to the greater femoral trochanter, the kneecap, and the ankle as target points, and the deformed skeletal model corresponds to the greater femoral trochanter and the kneecap that have been located. The position of the femur line connecting the two points is specified by means of specifying the three-dimensional coordinate values of the points corresponding to the greater femoral trochanter and the kneecap and the deformed skeleton model. Means for specifying a tibial line connecting both points corresponding to the kneecap and ankle based on the respective three-dimensional coordinate values of the points corresponding to the kneecap and the ankle, and the identified femoral line and tibial line are And means for specifying an intersecting angle.
 本発明は、前記骨格モデルは対象点として、大腿骨大転子及び膝頭に応じた各点を左右の足のそれぞれに含み、変形した前記骨格モデルで、位置を特定した大腿骨大転子及び膝頭に応じた両方の点を結ぶ大腿骨線の長さを、前記大腿骨大転子及び前記膝頭に応じた各点が有するそれぞれの三次元座標値に基づき、左右の足のそれぞれに対して算出する手段と、左右の大腿骨線の長さの差を算出する手段と、三次元測定により得られる人体の身長を取得する手段と、取得した身長に対して、算出した左右の大腿骨線の長さの差の割合を算出する手段と、算出した割合を、大腿骨線基準割合と比較する手段と、比較した結果に基づき、左右の寛骨の状況を判定する手段とを備えることを特徴とする。 In the present invention, the skeletal model includes points corresponding to the greater femoral trochanter and the kneecap as the target points in the left and right feet, respectively, The length of the femoral line connecting both points according to the kneecap is determined based on the respective three-dimensional coordinate values of the femoral trochanter and each point corresponding to the kneecap for each of the left and right feet. A means for calculating, a means for calculating the difference between the lengths of the left and right femoral lines, a means for acquiring the height of the human body obtained by three-dimensional measurement, and the calculated left and right femoral lines for the acquired height Means for calculating the ratio of the difference in length of the body, means for comparing the calculated ratio with the femoral line reference ratio, and means for determining the status of the left and right hip bones based on the comparison result. Features.
 本発明は、三次元測定器で測定される人体の撮像画像を取得する手段と、取得した撮像画像の人体の中に、特定した角度を含む画面に係る画面情報を生成する手段とを備えることを特徴とする。
 本発明は、特定した角度に係る基準角度、及び前記基準角度との比較結果に応じた人体の状況に係る症状を含む判定テーブルと、特定した角度を、前記判定テーブルに含まれる基準角度と比較する手段と、基準角度と比較した結果より、前記判定テーブルに基づき症状を判定する手段とを備えることを特徴とする。
The present invention includes means for acquiring a captured image of a human body measured by a three-dimensional measuring device, and means for generating screen information relating to a screen including a specified angle in the human body of the acquired captured image. It is characterized by.
The present invention relates to a determination table including a reference angle related to the specified angle and a symptom related to a human body condition according to a comparison result with the reference angle, and compares the specified angle with a reference angle included in the determination table. And means for determining a symptom based on the result of comparison with a reference angle based on the determination table.
 本発明は、人体における複数の骨格ポイントに対応する人体表面の点を骨格ポイントごとに示すポイントテーブル、及び前記ポイントテーブルの複数の骨格ポイントのそれぞれに対応する変形基点を含むと共に三次元座標値を有する対象点を含む変形可能な骨格モデルを有する骨格特定システムが、人体を三次元測定器で測定したことで得られる人体表面の複数の点が有する三次元座標値に基づき人体の骨格の状況を特定する骨格特定方法において、前記ポイントテーブルに基づいて、三次元測定器の測定で得られた人体表面の複数の点の中から、複数の骨格ポイントのそれぞれに対応する人体表面の点を、骨格ポイントごとに特定するステップと、骨格ポイントごとに特定した人体表面の点が有する三次元座標値に基づき、前記骨格ポイントの三次元座標値を特定するステップと、前記骨格ポイントの特定した三次元座標値に、前記骨格ポイントに対応する変形基点が一致するように、前記骨格モデルを変形するステップと、変形した前記骨格モデルに含まれる対象点が有する三次元座標値に基づき前記対象点の位置を特定するステップとを備えることを特徴とする。 The present invention includes a point table indicating points on the surface of the human body corresponding to a plurality of skeleton points in the human body for each skeleton point, and a deformation base point corresponding to each of the plurality of skeleton points of the point table and a three-dimensional coordinate value The skeletal identification system having a deformable skeleton model including the target point has a human skeleton status based on the three-dimensional coordinate values of a plurality of points on the human surface obtained by measuring the human body with a three-dimensional measuring instrument. In the skeletal specifying method for specifying, a point on the human body surface corresponding to each of a plurality of skeleton points is selected from a plurality of points on the human body surface obtained by the measurement of the three-dimensional measuring device based on the point table. The step of specifying for each point and the three-dimensional coordinate value of the point on the human body surface specified for each skeleton point Identifying a three-dimensional coordinate value of the skeleton, deforming the skeleton model so that a deformation base point corresponding to the skeleton point matches the identified three-dimensional coordinate value of the skeleton point, And a step of specifying the position of the target point based on a three-dimensional coordinate value of the target point included in the skeleton model.
 本発明は、人体における複数の骨格ポイントに対応する人体表面の点を骨格ポイントごとに示すポイントテーブル、及び前記ポイントテーブルの複数の骨格ポイントのそれぞれに対応する変形基点を含むと共に三次元座標値を有する対象点を含む変形可能な骨格モデルを有するコンピュータに、人体を三次元測定器で測定したことで得られる人体表面の複数の点が有する三次元座標値に基づき人体の骨格の状況を特定する処理を行わせるためのコンピュータプログラムにおいて、前記コンピュータに、前記ポイントテーブルに基づいて、三次元測定器の測定で得られた人体表面の複数の点の中から、複数の骨格ポイントのそれぞれに対応する人体表面の点を、骨格ポイントごとに特定するステップと、骨格ポイントごとに特定した人体表面の点が有する三次元座標値に基づき、前記骨格ポイントの三次元座標値を特定するステップと、前記骨格ポイントの特定した三次元座標値に、前記骨格ポイントに対応する変形基点が一致するように、前記骨格モデルを変形するステップと、変形した前記骨格モデルに含まれる対象点が有する三次元座標値に基づき前記対象点の位置を特定するステップと実行させることを特徴とする。 The present invention includes a point table indicating points on the surface of the human body corresponding to a plurality of skeleton points in the human body for each skeleton point, and a deformation base point corresponding to each of the plurality of skeleton points of the point table and a three-dimensional coordinate value Identify the skeleton of the human body based on the three-dimensional coordinate values of multiple points on the surface of the human body obtained by measuring the human body with a three-dimensional measuring device in a computer having a deformable skeleton model that includes the target points. In the computer program for performing processing, the computer corresponds to each of a plurality of skeletal points from a plurality of points on the surface of the human body obtained by the measurement of the three-dimensional measuring device based on the point table. Identifying points on the human body surface for each skeleton point and the human body surface identified for each skeleton point Based on the three-dimensional coordinate value possessed by the point, the step of specifying the three-dimensional coordinate value of the skeleton point and the three-dimensional coordinate value specified by the skeleton point so that the deformation base point corresponding to the skeleton point matches, A step of deforming the skeleton model; and a step of specifying a position of the target point based on a three-dimensional coordinate value of a target point included in the deformed skeleton model.
 本発明にあっては、骨格モデルを覆う筋肉を含む筋肉モデルについて、被験者の体の特定部位における筋肉量に係る数値が標準に比べて大きければ、その特定部位に応じた筋肉部分を太くし、標準に比べて小さければ、その特定部位に応じた筋肉部分を細くするので、筋肉モデルの段階でも、被験者の測定した結果を反映した変形を行えるようになる。それにより、解剖的に人体の骨格に筋肉を配置したような場合でも、被験者の筋肉の状態を反映させたモデルを示すことが可能となり、被験者の筋肉の付き方を解剖的に示すときに役立てられる。 In the present invention, for the muscle model including the muscle covering the skeletal model, if the numerical value related to the muscle mass in the specific part of the subject's body is larger than the standard, the muscle part corresponding to the specific part is thickened, If it is smaller than the standard, the muscle part corresponding to the specific part is made thinner, so that the deformation reflecting the result measured by the subject can be performed even at the stage of the muscle model. This makes it possible to show a model that reflects the state of the subject's muscles even when the muscles are anatomically placed on the human skeleton, which is useful when showing the subject's muscles anatomically. It is done.
 本発明にあっては、被験者の体幹部における内臓脂肪に係る数値が標準に比べて大きい場合、筋肉モデルにおいて、腹の部位を太くするので、筋肉モデルの段階でも、被験者の内臓脂肪の量に応じた太り具合を反映できるようになる。すなわち、内臓脂肪は、筋肉の上に重なるよう付く皮下脂肪と異なり、筋肉で覆われる内臓に付加するものであることから、内臓脂肪が多いときは、腹筋に応じた部位にて、体の中から筋肉を外方へ押し上げるような状況になるので、このような状況を骨格モデルの上に筋肉を配置する筋肉モデルの段階で表現できるようになる。 In the present invention, when the value related to the visceral fat in the trunk of the subject is larger than the standard, the abdominal region is thickened in the muscle model, so the amount of visceral fat in the subject is also increased in the muscle model stage. It will be possible to reflect the corresponding weight. In other words, visceral fat is added to the viscera covered with muscles, unlike subcutaneous fat that overlays muscles. Therefore, it becomes possible to express such a situation at the stage of the muscle model in which the muscle is placed on the skeleton model.
 本発明にあっては、筋肉モデルを覆う脂肪を含む脂肪モデルについて、筋肉モデルを変形すると、それに追従して脂肪モデルも形状的に変形するようにしたので、筋肉モデルの太さ又は細さの状況も反映して脂肪モデルを表現できるようになり、筋肉モデルと、脂肪モデルとの間で整合性を確保できるようになる。 In the present invention, when the muscle model is deformed with respect to the fat model including fat covering the muscle model, the fat model is also deformed following the shape of the muscle model. The fat model can be expressed reflecting the situation, and consistency between the muscle model and the fat model can be secured.
 本発明にあっては、被験者の体の特定部位における皮下脂肪量に係る数値が標準に比べて大きければ、その特定部位に応じた脂肪モデルの脂肪部分を太くするので、被験者の実際の皮下脂肪が付いている箇所を、形状的に脂肪モデルで表現できるようになる。すなわち、皮下脂肪は、筋肉と皮膚との間に付加するものであることから、測定された脂肪の量を、脂肪モデルの段階で、皮下脂肪を示す太さとして表すことにより、実際の人体の組成的な状況と合致した構成にて皮下脂肪の付き方を解剖的に表現できるようになる。 In the present invention, if the numerical value related to the amount of subcutaneous fat in a specific part of the subject's body is larger than the standard, the fat part of the fat model corresponding to the specific part is thickened. The part with can be expressed in a fat model in shape. That is, since the subcutaneous fat is added between the muscle and the skin, the measured amount of fat is expressed as the thickness indicating the subcutaneous fat at the stage of the fat model. It is possible to anatomically express how the subcutaneous fat is attached in a configuration that matches the compositional situation.
 本発明にあっては、脂肪モデルの表面に基準色を付けて、被験者の体の特定部位における皮下脂肪量に係る数値が標準に比べて大きければ、その特定部位に応じた脂肪モデルの表面部分の色を基準色より濃くするので、脂肪モデルの太さによる形状的な表現に加えて、視覚的な色の濃淡によっても、皮下脂肪の付いている箇所を判別できるようになり、脂肪モデルにおける皮下脂肪の付き方が一段と見分けやすくなる。 In the present invention, if the reference color is attached to the surface of the fat model and the numerical value relating to the amount of subcutaneous fat in the specific part of the subject's body is larger than the standard, the surface part of the fat model corresponding to the specific part In addition to the shape representation of the fat model's thickness, the color of the fat model also makes it possible to determine the location with subcutaneous fat, in the fat model. It is easier to recognize how to apply subcutaneous fat.
 本発明にあっては、脂肪モデルの表面に基準色を付けて、被験者の体の特定部位における皮下脂肪量に係る数値が標準に比べて小さければ、その特定部位に応じた脂肪モデルの表面部分の色を基準色より薄くするので、従来の人体モデルでは表現が困難であった脂肪の付き方が少ない場合を、脂肪モデルにおける表面の色の薄さの程度で視覚的に表すことが可能となり、従来に比べて脂肪(皮下脂肪)の付き方の表現の巾を広げられる。 In the present invention, if the reference color is attached to the surface of the fat model and the numerical value relating to the amount of subcutaneous fat in the specific part of the subject's body is smaller than the standard, the surface part of the fat model corresponding to the specific part Since the color of the skin is lighter than the reference color, it is possible to visually represent the case where the amount of fat that is difficult to express with the conventional human body model is small, with the degree of surface color thinness in the fat model. Compared to conventional methods, the range of expression of fat (subcutaneous fat) can be expanded.
 本発明にあっては、被験者の体の特定部位における皮下脂肪量に係る数値が標準に比べて小さければ、その特定部位に応じた脂肪モデルの脂肪部分が透過して前記筋肉モデルの筋肉が映るようにするので、透過具合という新たな表現方法を導入して、従来の人体モデルでは表現が困難であった脂肪の付き方が少ない場合を脂肪モデルにて視覚的に表現できるようになる。 In the present invention, if the numerical value relating to the amount of subcutaneous fat in a specific part of the body of the subject is smaller than the standard, the fat part of the fat model corresponding to the specific part is transmitted and the muscle of the muscle model is reflected. As a result, a new expression method called “transparency” is introduced, and a fat model that is difficult to express with a conventional human body model can be visually expressed with a fat model.
 本発明にあっては、四肢の寸法の具合に合わせて計3種類の骨格モデルを準備すると共に、これら計3種類の骨格モデルに対応する計3種類の筋肉モデルも準備し、被験者の体格に係る測定結果から、まず、計3種類の骨格モデルの中からマッチする骨格モデルを特定し、そして、その特定した骨格モデルに対応する筋肉モデルに対して変形を施すようにしたので、筋肉モデルを変形しても、その筋肉モデルのベースとなる骨格モデルとの整合性を確保しやすくなり、全体としてバランスの取れた解剖的な人体モデルを提供できるようになる。 In the present invention, a total of three types of skeletal models are prepared according to the dimensions of the limbs, and a total of three types of muscle models corresponding to these three types of skeletal models are also prepared. From the measurement results, first, a matching skeletal model was identified from among the three types of skeletal models, and the muscle model corresponding to the identified skeletal model was deformed. Even if it is deformed, it becomes easy to ensure consistency with the skeleton model that is the base of the muscle model, and an anatomical human body model that is balanced as a whole can be provided.
 本発明にあっては、四肢の寸法の具合に合わせて計3種類の骨格モデルを準備すると共に、これら計3種類の骨格モデルに対応する計3種類の脂肪モデルも準備し、被験者の体格に係る測定結果から、まず、計3種類の骨格モデルの中からマッチする骨格モデルを特定し、そして、その特定した骨格モデルに対応する脂肪モデルに対して変形を施すようにしたので、脂肪モデルを変形しても、その脂肪モデルのベースとなる骨格モデルとの間で整合性を確保しやすくなり、全体としてバランスの取れた解剖的な人体モデルを提供できるようになる。 In the present invention, a total of three types of skeletal models are prepared according to the dimensions of the limbs, and a total of three types of fat models corresponding to these three types of skeletal models are also prepared. From the measurement results, first, a matching skeletal model was identified from among the three types of skeletal models, and the fat model corresponding to the identified skeletal model was deformed. Even if it is deformed, it is easy to ensure consistency with the skeleton model that is the base of the fat model, and an anatomical human body model that is balanced as a whole can be provided.
 本発明にあっては、被験者の体格に係る測定結果に基づき、骨格モデルを相似的に拡大又は縮小し、そのような骨格モデルの変形に追従して筋肉モデルを変形するので、被験者の概要的な寸法に合わせて骨格モデルが適切なサイズに変形すると共に、その骨格モデルの変形に合わせて筋肉モデルも変形するようになり、各モデル各で整合性の取れた変形を被験者の体格に応じて容易に行えるようになる。 In the present invention, the skeleton model is enlarged or reduced in a similar manner based on the measurement result relating to the physique of the subject, and the muscle model is deformed following the deformation of the skeleton model. The skeleton model is deformed to an appropriate size according to the appropriate dimensions, and the muscle model is also deformed according to the deformation of the skeletal model. It becomes easy to do.
 本発明にあっては、被験者の体表面に係る複数の頂点の測定数値から、骨格モデルの変形基準に対応する対応点を特定し、その特定した対応点に一致するように骨格モデルの骨格部分の角度及び長さを変形するので、被験者の体格に応じて細やかに骨格モデルが変形し、また、その骨格モデルの変形に合わせて筋肉モデルも変形するので、解剖的な各モデルが、被験者の実際の体つきを細やかに示すようになり、被験者の身体的な状況を、解剖的に各モデルを通じて判別でき、被験者のエクササイズ、ダイエット等によるトレーニングの成果等を、本発明による人体モデルで視覚的に確認できるようになる。 In the present invention, the corresponding point corresponding to the deformation standard of the skeleton model is identified from the measured numerical values of the plurality of vertices on the body surface of the subject, and the skeleton part of the skeleton model is matched with the identified corresponding point. Since the skeleton model is deformed in detail according to the physique of the subject, and the muscle model is also deformed according to the deformation of the skeleton model, each anatomical model is The physical condition of the subject can be shown in detail, the physical condition of the subject can be anatomically discriminated through each model, and the results of training by exercise, diet, etc. of the subject can be visually confirmed with the human body model according to the present invention. It becomes possible to confirm.
 本発明では、変形基点及び対象点を含む変形可能な骨格モデルを用いて、ポイントテーブルの骨格ポイントについて算出した三次元座標値に基づき変形した骨格モデルに含まれる対象点の三次元座標値から、対象点の位置を特定するので、ポイントテーブルで規定される骨格ポイント以外の点も位置を特定できるようになる。すなわち、ポイントテーブルで規定される骨格ポイントは基本的に、三次元測定で得られた人体表面の点から特定しやすい箇所になるが(例えば、皮膚の厚みが少なくて骨を特定しやすい箇所など)、本発明のように、変形可能な骨格モデルを用いれば、位置を特定したい対象点を骨格モデルに含ませておくことで、骨格モデルの変形に追従して、その対象点も位置が変わることから、人体内部の骨格の所要位置も特定できるようになる。 In the present invention, using the deformable skeleton model including the deformation base point and the target point, from the three-dimensional coordinate value of the target point included in the skeleton model deformed based on the three-dimensional coordinate value calculated for the skeleton point of the point table, Since the position of the target point is specified, the positions of points other than the skeleton points specified in the point table can be specified. In other words, the skeletal points specified in the point table are basically easy to specify from the points on the human surface obtained by three-dimensional measurement (for example, the point where the skin is thin and the bone is easy to specify) ) If a deformable skeleton model is used as in the present invention, the target point whose position is to be specified is included in the skeleton model, so that the position of the target point changes following the deformation of the skeleton model. Therefore, the required position of the skeleton inside the human body can be specified.
 本発明にあっては、特定の骨格ポイントとして骨盤ポイントをポイントテーブルに含ませて、その骨盤ポイントの三次元座標値を、三次元測定で得られた人体前側及び後側における人体表面の点が有する各三次元座標値の平均値から算出するので、人体内部の骨盤ポイントであっても、その骨盤ポイントの位置を特定する三次元座標値を、相同モデル等を用いることなく、三次元測定で得られる人体表面の点の三次元座標値から算術的に求められるようになる。 In the present invention, the pelvis point is included in the point table as a specific skeleton point, and the three-dimensional coordinate value of the pelvic point is obtained by the point on the human body surface on the front side and the rear side obtained by the three-dimensional measurement. Since it is calculated from the average value of each three-dimensional coordinate value, even if it is a pelvic point inside the human body, the three-dimensional coordinate value that specifies the position of the pelvic point can be measured by three-dimensional measurement without using a homologous model etc. It is obtained arithmetically from the three-dimensional coordinate values of the obtained points on the human body surface.
 本発明にあっては、変形可能な骨格モデルが骨盤ポイントに係る腰仙角に応じた骨盤角度線を含むので、骨格モデルを変形すると、その変形に伴って、骨盤角度線の傾きも変わることから、三次元測定を行った人体の骨盤に係る角度を、変形した骨格モデルの骨盤角度線に基づき求められるようになり、求めた骨盤に係る角度により、骨盤の状況も検証できるようになる。 In the present invention, since the deformable skeletal model includes a pelvic angle line corresponding to the lumbosacral angle related to the pelvic point, when the skeletal model is deformed, the inclination of the pelvic angle line also changes with the deformation. Thus, the angle related to the pelvis of the human body that has been subjected to the three-dimensional measurement can be obtained based on the pelvic angle line of the deformed skeleton model, and the pelvis situation can be verified by the obtained angle related to the pelvis.
 本発明にあっては、特定の骨格ポイントとして背骨ポイントをポイントテーブルに含ませて、その背骨ポイントの三次元座標値を、三次元測定で得られた人体前側及び後側における人体表面の点が有する各三次元座標値により、人体の各方向に応じて算出するので、背骨ポイントも、相同モデル等を用いることなく、三次元測定で得られる人体表面の点の三次元座標値から算術的に求められるようになる。すなわち、人体を横から見た場合、背骨は人体の背中寄りに位置するので、人体の厚み方向においては、人体前後側における人体表面の点が有する人体の厚み方向の座標値の間を、特定の比率で分ける点の座標値を、背骨ポイントの人体の厚み方向の座標として算出するので、人体内における実際の背骨箇所に応じた位置を特定できるようになる。 In the present invention, the spine point is included in the point table as a specific skeleton point, and the three-dimensional coordinate values of the spine point are obtained by calculating the three-dimensional measurement on the front and back sides of the human body surface. Since each three-dimensional coordinate value is calculated according to each direction of the human body, the spine point is also calculated arithmetically from the three-dimensional coordinate value of the surface of the human body obtained by three-dimensional measurement without using a homologous model etc. It will be required. In other words, when the human body is viewed from the side, the spine is located closer to the back of the human body, so in the thickness direction of the human body, the distance between the coordinate values in the thickness direction of the human body that the points on the front and back sides of the human body have Since the coordinate value of the point divided by this ratio is calculated as the coordinate of the spine point in the thickness direction of the human body, the position corresponding to the actual spine location in the human body can be specified.
 本発明にあっては、背骨ポイントとして、腰椎に応じた第1背骨ポイント、及び胸骨下位置に応じた第2背骨ポイントを含ませると共に、変形可能な骨格モデルが、第1背骨ポイントに係る腰椎前弯角度に応じた第1前弯線、及び第2背骨ポイントに係る腰椎前弯角度に応じた第2前弯線を含むので、骨格モデルを変形すると、その変形に伴って、第1前弯線及び第2前弯線の傾きも変わることから、三次元測定を行った人体の腰椎の前弯度合も、変形した骨格モデルに基づき求められるようになり、求めた腰椎前弯角度により、腰椎の状況も検証できるようになる。 In the present invention, the spine point includes the first spine point corresponding to the lumbar spine and the second spine point corresponding to the substernal position, and the deformable skeleton model includes the lumbar spine related to the first spine point. Since the first anterior line according to the anteversion angle and the second anterior line according to the lumbar lordosis angle related to the second spine point are included, when the skeleton model is deformed, the first anterior Since the inclination of the heel line and the second anterior line also changes, the anterior degree of the lumbar vertebrae of the human body that performed the three-dimensional measurement can also be obtained based on the deformed skeletal model. The situation of the lumbar spine can be verified.
 本発明にあっては、背骨ポイントとして、第2背骨ポイントより上方の第3背骨ポイントを含ませると共に、変形可能な骨格モデルが、第2背骨ポイントに係る胸椎後弯角度に応じた第1後弯線、及び第3背骨ポイントに係る胸椎後弯角度に応じた第2後弯線を含むので、骨格モデルを変形すると、その変形に伴って、第1後弯線及び第2後弯線の傾きも変わることから、三次元測定を行った人体の胸椎の後弯度合も、変形した骨格モデルに基づき求められるようになり、求めた胸椎後弯角度により、胸椎の状況も検証できるようになる。 In the present invention, as the spine point, the third spine point above the second spine point is included, and the deformable skeletal model has the first posterior vertebral angle corresponding to the thoracic kyphosis angle related to the second spine point. As the skeleton model is deformed because the pelvic line and the second posterior line corresponding to the thoracic vertebra dorsum angle relating to the third spine point are included, the deformation of the first posterior line and the second posterior line is accompanied by the deformation. Since the tilt also changes, the posterior degree of the thoracic vertebra of the human body that performed the 3D measurement can also be obtained based on the deformed skeletal model, and the situation of the thoracic vertebra can be verified by the obtained thoracic kyphosis angle .
 本発明にあっては、特定の骨格ポイントとして首骨ポイントをポイントテーブルに含ませて、その首骨ポイントの三次元座標値を、三次元測定で得られた人体前側及び後側における人体表面の点が有する各三次元座標値の平均値により算出するので、首骨ポイントも、相同モデル等を用いることなく、三次元測定で得られる人体表面の点の三次元座標値から算術的に求められるようになる。 In the present invention, a neck point is included in the point table as a specific skeleton point, and the three-dimensional coordinate value of the neck point is determined on the front side and the rear side of the human body obtained by the three-dimensional measurement. Since the point is calculated by the average value of the three-dimensional coordinate values of the point, the neck point can also be calculated arithmetically from the three-dimensional coordinate value of the surface of the human body obtained by three-dimensional measurement without using a homologous model etc. It becomes like this.
 本発明にあっては、特定の骨格ポイントとして首骨ポイントより上方の上方首骨ポイントをポイントテーブルに含ませるが、このような上方首骨ポイントに係る箇所は、人体前方からの三次元測定によるスキャンでは顎により隠れた状態となるので、三次元測定による人体表面の点の中から、人体左側及び右側の点から上方首骨ポイントの三次元座標値を特定するので、顎で隠れた首箇所となる上方首骨ポイントの三次元座標値も算術的に求められるようになる。 In the present invention, the upper cervical point above the cervical point is included in the point table as a specific skeleton point, but the location related to such an upper cervical point is based on three-dimensional measurement from the front of the human body. Since it is hidden by the jaw in the scan, the 3D coordinate value of the upper neck point is specified from the left and right points of the human body from the points on the human surface by 3D measurement, so the neck location hidden by the jaw The three-dimensional coordinate value of the upper neck point is calculated mathematically.
 本発明にあっては、変形可能な骨格モデルが、首骨ポイントに係る頸椎前弯角度に応じた第1頸椎前弯線、及び上方首骨ポイントに係る頸椎前弯角度に応じた第2頸椎前弯線を含むので、骨格モデルを変形すると、その変形に伴って、第1頸椎前弯線及び第2頸椎前弯線の傾きも変わることから、三次元測定を行った人体の頸椎の前弯度合も、変形した骨格モデルに基づき求められるようになり、求めた頸椎前弯角度により、頸椎の状況も検証できるようになる。 In the present invention, the deformable skeletal model includes the first cervical lordosis line corresponding to the cervical lordosis angle related to the cervical point and the second cervical vertebra corresponding to the cervical lordosis angle related to the upper cervical point Since the anteversion line is included, if the skeletal model is deformed, the inclination of the first cervical vertebral line and the second cervical vertebral line changes with the deformation, so the front of the cervical vertebra The degree of heel is also obtained based on the deformed skeletal model, and the situation of the cervical vertebra can be verified by the obtained cervical lordosis angle.
 本発明では、変形した骨格モデルから位置を特定した大腿骨大転子、膝頭、及び足首について、大腿骨大転子及び膝頭を結ぶ大腿骨線、並びに膝頭及び足首を結ぶ脛骨線を特定し、これら大腿骨線と脛骨線が交わる角度を算出するので、ポイントテーブルで規定される骨格ポイントから得にくい足の状況も、算出した角度から確認できるようになる。 In the present invention, for the greater femoral trochanter, kneecap, and ankle identified from the deformed skeletal model, the femoral line that connects the greater femoral trochanter and the kneecap, and the tibial line that connects the kneecap and ankle are identified, Since the angle at which the femoral line and the tibial line cross each other is calculated, it is possible to confirm the situation of the foot that is difficult to obtain from the skeleton point defined by the point table from the calculated angle.
 本発明にあっては、左右の大腿骨線の長さの割合を算出して、大腿骨線基準割合と比較し、比較の結果に基づき、左右の寛骨(骨盤の左右の壁を形成する左右一対の骨)の状況を判定するので、ポイントテーブルで規定される骨格ポイントから判定しにくい左右の寛骨の状況を確認できるようになる。 In the present invention, the ratio of the length of the left and right femur lines is calculated and compared with the femoral line reference ratio, and the left and right hip bones (the left and right walls of the pelvis are formed based on the comparison result). Since the situation of the pair of left and right bones) is determined, it is possible to confirm the situation of the left and right hipbones that are difficult to determine from the skeletal points defined in the point table.
 本発明にあっては、三次元測定に伴って取得した人体の撮像画像の中に、算出した角度を含む画面を生成するので、その生成した画像で、検証対象となる骨格箇所における状況を、撮像画像と共に角度という客観的な値で確認できるようになる。 In the present invention, in the captured image of the human body acquired along with the three-dimensional measurement, a screen including the calculated angle is generated, so in the generated image, the situation at the skeleton location to be verified is It becomes possible to confirm the objective value of the angle together with the captured image.
 本発明にあっては、特定した角度を、判定テーブルに含まれる基準角度と比較し、その比較の結果に基づいて判定テーブルに含まれる症状を判定するので、最終的に三次元測定を行った人体の骨格又は姿勢等に関する症状までを客観的に判定できるようになり、人体が適正な姿勢を確保するのに役立てられる。 In the present invention, the specified angle is compared with the reference angle included in the determination table, and the symptoms included in the determination table are determined based on the comparison result. It becomes possible to objectively determine even the symptoms related to the skeleton or posture of the human body, which is useful for ensuring a proper posture of the human body.
 本発明にあっては、骨格モデルを筋肉で覆う筋肉モデルについて、被験者の体の特定部位における筋肉量に係る数値に応じて、その特定部位に応じた筋肉部分を太く又は細くするので、解剖的に人体の骨格に筋肉を配置したモデルでも、被験者の筋肉の状態を表現でき、ユーザ(被験者等)は解剖的に被験者の筋肉の付き方等を確認できる。 In the present invention, for the muscle model that covers the skeletal model with muscles, the muscle part corresponding to the specific part is made thicker or thinner depending on the numerical value relating to the muscle mass in the specific part of the subject's body. Even in a model in which muscles are arranged on the skeleton of a human body, the state of the subject's muscles can be expressed, and the user (subject etc.) can anatomically confirm how the subject's muscles are attached.
 本発明にあっては、被験者の体幹部における内臓脂肪に係る数値が標準に比べて大きい場合、筋肉モデルの腹の部位を太くするので、被験者の内臓脂肪の量に応じた太り具合を解剖的に筋肉モデルの段階で表現でき、皮下脂肪と区別して、ユーザ(被験者等)は内臓脂肪の付き方等を確認できる。 In the present invention, when the numerical value related to the visceral fat in the trunk of the subject is larger than the standard, the abdominal part of the muscle model is thickened, so the weight according to the amount of the visceral fat of the subject is anatomically determined. It can be expressed at the stage of the muscle model, and the user (subject etc.) can confirm how the visceral fat is attached etc. as distinguished from the subcutaneous fat.
 本発明にあっては、筋肉モデルを変形すると、その変形に追従して、脂肪モデルも形状的に変形するので、筋肉モデルの太さ又は細さの状況が脂肪モデルの段階において反映でき、被験者の筋肉の状況を脂肪モデルの段階でも解剖的に確認できる。 In the present invention, when the muscle model is deformed, the fat model also deforms in shape following the deformation, so the thickness or thinness of the muscle model can be reflected at the fat model stage, and the subject The state of muscles can be confirmed anatomically even at the fat model stage.
 本発明にあっては、被験者の体の特定部位における皮下脂肪量に係る数値に応じて、その特定部位に応じた脂肪モデルの脂肪部分を太くするので、被験者の実際の皮下脂肪による太り具合を、脂肪モデルの段階で形状的に表現でき、内臓脂肪と区別して、皮下脂肪の付き方を解剖的に確認できる。 In the present invention, the fat part of the fat model corresponding to the specific part is thickened according to the numerical value relating to the amount of subcutaneous fat in the specific part of the subject's body. It can be expressed in shape at the stage of a fat model, and it can be distinguished from visceral fat and anatomically confirmed how subcutaneous fat is attached.
 本発明にあっては、基準色を付した脂肪モデルで、被験者の体の特定部位における皮下脂肪量に係る数値が標準に比べて大きければ、その特定部位に応じた脂肪モデルの表面部分の色を基準色より濃くするので、脂肪モデルの太さによる形状的な表現に加えて、色の濃淡により皮下脂肪の付いている箇所を視覚的に表現でき、皮下脂肪の付き方を一段と見やすくできる。 In the present invention, in the fat model with the reference color, if the value relating to the subcutaneous fat amount in a specific part of the subject's body is larger than the standard, the color of the surface portion of the fat model corresponding to the specific part Is made darker than the reference color, so that in addition to the shape representation by the thickness of the fat model, the portion with the subcutaneous fat can be visually represented by the shade of the color, making it easier to see how the subcutaneous fat is attached.
 本発明にあっては、基準色を付した筋肉モデルで、被験者の体の特定部位における皮下脂肪量に係る数値が標準に比べて小さければ、その特定部位に応じた脂肪モデルの表面部分の色を基準色より薄くするので、従来の人体モデルでは表現が困難であった脂肪が少ない状態を、脂肪モデルの表面の色の薄さで視覚的に表現でき、色という要素を通じて、ユーザ(被験者等)は解剖的に皮下脂肪の付き方を確認できる。 In the present invention, in the muscle model with the reference color, if the numerical value relating to the amount of subcutaneous fat in a specific part of the subject's body is smaller than the standard, the color of the surface portion of the fat model corresponding to the specific part Is thinner than the reference color, so it is possible to visually express the state of low fat, which was difficult to express with a conventional human body model, with the thin color of the surface of the fat model. ) Can be confirmed anatomically how subcutaneous fat is attached.
 本発明にあっては、被験者の体の特定部位における皮下脂肪量に係る数値が標準に比べて小さければ、その特定部位に応じた脂肪モデルの脂肪部分が透過して前記筋肉モデルの筋肉が映るようにするので、皮下脂肪の付き方について透過具合という新たな表現の仕方により、従来の人体モデルでは表現が困難であった脂肪の付き方を視覚的に表現できる。 In the present invention, if the numerical value relating to the amount of subcutaneous fat in a specific part of the body of the subject is smaller than the standard, the fat part of the fat model corresponding to the specific part is transmitted and the muscle of the muscle model is reflected. As a result, the new way of expressing the permeation of the subcutaneous fat can visually represent how to apply the fat, which is difficult to express with a conventional human body model.
 本発明にあっては、四肢の寸法の長さの程度により計3種類の骨格モデルを準備し、これら計3種類の骨格モデルに対応する計3種類の筋肉モデルも準備して、被験者の体格に合うものを計3種類の骨格モデル及び筋肉モデルから特定し、その特定した筋肉モデルを変形するので、筋肉モデルを変形しても、その筋肉モデルが対応する骨格モデルとの間で整合性を維持でき、各モデル間で破綻しない形状関係を確保した解剖的な人体モデルをユーザに提示できる。 In the present invention, a total of three types of skeletal models are prepared according to the length of the limbs, and a total of three types of muscle models corresponding to these three types of skeletal models are also prepared. Since the specified muscle model is deformed from a total of three types of skeletal models and muscle models, even if the muscle model is deformed, consistency between the muscle model and the corresponding skeleton model is maintained. An anatomical human body model that can be maintained and has a shape relationship that does not fail between the models can be presented to the user.
 本発明にあっては、四肢の寸法の長さの程度により計3種類の骨格モデルを準備し、これら計3種類の骨格モデルに対応する計3種類の脂肪モデルも準備して、被験者の体格に合うものを計3種類の骨格モデル及び脂肪モデルから特定し、その特定した脂肪モデルを変形するので、脂肪モデルを変形しても、その脂肪モデルが対応する骨格モデルとの関係で整合性を維持でき、各モデル間で破綻しない形状関係を確保した解剖的な人体モデルをユーザに提示できる。 In the present invention, a total of three types of skeleton models are prepared according to the length of the limbs, and a total of three types of fat models corresponding to these three types of skeleton models are also prepared. Since the specified fat model is deformed from a total of three types of skeletal models and fat models, even if the fat model is deformed, the consistency of the fat model with the corresponding skeleton model is maintained. An anatomical human body model that can be maintained and has a shape relationship that does not fail between the models can be presented to the user.
 本発明にあっては、被験者の体格に係る測定結果に応じて骨格モデルを相似的に拡大又は縮小し、そのような骨格モデルの変形に追従して筋肉モデルを変形するので、骨格モデルを被験者の体格に合った適切なサイズで示すことできると共に、筋肉モデルも被験者の体つきに合った適切なサイズで示すことができ、被験者の体格寸法に合わせたサイズの解剖的な各モデルを整合性の取れた状態で確認することができる。 In the present invention, the skeleton model is enlarged or reduced in a similar manner according to the measurement result relating to the physique of the subject, and the muscle model is deformed following the deformation of the skeleton model. The muscle model can also be shown in an appropriate size that fits the subject's body size, and each anatomical model sized to the subject's physique dimensions It can be confirmed in the removed state.
 本発明にあっては、被験者の体格(体表面)に係る複数の頂点の中から、骨格モデルの変形基準に対応する対応点を特定し、その特定した対応点に一致するように骨格モデルの骨格部分の角度及び長さを変形するので、被験者の体格に応じて細やかに骨格モデルの形状を調整でき、また、その骨格モデルの形状調整に合わせて筋肉モデルも適宜、形状を調整でき、被験者の実際の体格を解剖的な各モデルで細やかに表現でき、それにより、ユーザ(被験者等)は、被験者のエクササイズ、ダイエット等による体に表れる成果等を、本発明による人体モデルで解剖的に確認でき、エクササイズ、ダイエット等のトレーニングを行うことに対するユーザの意識付けを高めることにも役立てられる。 In the present invention, a corresponding point corresponding to the deformation standard of the skeleton model is identified from among a plurality of vertices related to the physique (body surface) of the subject, and the skeleton model is matched with the identified corresponding point. Since the angle and length of the skeletal part is deformed, the shape of the skeletal model can be finely adjusted according to the physique of the subject, and the shape of the muscle model can also be adjusted appropriately according to the shape adjustment of the skeletal model. The actual physique can be expressed in detail by each anatomical model, so that users (subjects, etc.) can anatomically confirm the results of the exercises, diets, etc. of the subject with the human body model according to the present invention. It can also be used to raise the user's awareness of training such as exercise and diet.
 本発明では、変形可能な骨格モデルを用いると共に、位置を特定したい対象点を骨格モデルに含ませておくことで、骨格モデルの変形に追従して、その対象点も位置が変わるので、その位置の変わった対象点に基づき、三次元測定を行った人体内部の骨格の所要位置も特定でき、レントゲン又はMRI等を用いなくても、人体の骨格の状況を確認するのに役立てられる。 In the present invention, a deformable skeleton model is used, and the target point whose position is to be specified is included in the skeleton model, so that the position of the target point changes following the deformation of the skeleton model. Based on the changed target point, the required position of the skeleton inside the human body that has been subjected to the three-dimensional measurement can also be specified, which is useful for confirming the state of the skeleton of the human body without using X-rays or MRI.
 本発明にあっては、特定の骨格ポイントとして骨盤ポイントをポイントテーブルに含ませて、その骨盤ポイントの三次元座標値を、三次元測定で得られた人体前側及び後側における人体表面の点が有する各三次元座標値の平均値から算出するので、人体内部の骨盤ポイントであっても、レントゲン又はMRI等を用いずに、骨盤の所要箇所の三次元座標値を得て、その所要箇所の位置を特定できる。 In the present invention, the pelvis point is included in the point table as a specific skeleton point, and the three-dimensional coordinate value of the pelvic point is obtained by the point on the human body surface on the front side and the rear side obtained by the three-dimensional measurement. Since it is calculated from the average value of each three-dimensional coordinate value it has, even if it is a pelvic point inside the human body, the three-dimensional coordinate value of the required part of the pelvis is obtained without using X-rays or MRI, etc. The position can be specified.
 本発明にあっては、変形可能な骨格モデルが骨盤ポイントに係る腰仙角に応じた骨盤角度線を含み、骨格モデルを変形すると、その変形に伴って、骨盤角度線の傾きも変わることから、三次元測定を行った人体の骨盤に係る角度を、変形した骨格モデルの骨盤角度線に基づき求められる。 In the present invention, the deformable skeleton model includes a pelvic angle line corresponding to the lumbosacral angle related to the pelvic point, and when the skeletal model is deformed, the inclination of the pelvic angle line also changes with the deformation. The angle related to the pelvis of the human body that has been subjected to the three-dimensional measurement is obtained based on the pelvic angle line of the deformed skeleton model.
 本発明にあっては、特定の骨格ポイントとして背骨ポイントをポイントテーブルに含ませて、その背骨ポイントの三次元座標値を、三次元測定で得られた人体前側及び後側における人体表面の点が有する各三次元座標値により、人体の各方向に応じて算出するので、人体内部の背骨の所要箇所の位置も、相同モデル等を用いることなく、三次元測定で得られる人体表面の点の三次元座標値から求められる。
 また、本発明にあっては、変形可能な骨格モデルが、腰椎に応じた第1背骨ポイントに係る腰椎前弯角度に応じた第1前弯線、及び胸骨下位置に応じた第2背骨ポイントに係る腰椎前弯角度に応じた第1前弯線を含み、骨格モデルを変形すると、その変形に伴って、第1前弯線及び第2前弯線の傾きも変わることから、三次元測定を行った人体の腰椎の前弯度合も、変形した骨格モデルに基づき求められる。
In the present invention, the spine point is included in the point table as a specific skeleton point, and the three-dimensional coordinate values of the spine point are obtained by calculating the three-dimensional measurement on the front and back sides of the human body surface. Since each 3D coordinate value is calculated according to each direction of the human body, the position of the required part of the spine inside the human body can also be calculated from the third order of the points on the surface of the human body obtained by 3D measurement without using a homologous model etc. It is obtained from the original coordinate value.
In the present invention, the deformable skeleton model includes the first anterior line corresponding to the lumbar lordosis angle corresponding to the first spine point corresponding to the lumbar spine, and the second spine point corresponding to the substernal position. When the skeleton model is deformed, including the first foreline corresponding to the lumbar foreangle angle, the inclination of the first foreline and the second foreline changes with the deformation. The degree of lordosis of the lumbar vertebrae of the human body that was performed is also obtained based on the deformed skeleton model.
 本発明にあっては、変形可能な骨格モデルが、第2背骨ポイントに係る胸椎後弯角度に応じた第1後弯線、及び第2背骨ポイントより上方の第3背骨ポイントに係る胸椎後弯角度に応じた第2後弯線を含み、骨格モデルを変形すると、その変形に伴って、第1後弯線及び第2後弯線の傾きも変わることより、三次元測定を行った人体の胸椎の後弯度合も、変形した骨格モデルに基づき求められる。 In the present invention, the deformable skeletal model includes the first posterior ridge corresponding to the thoracic kyphosis angle related to the second spine point, and the thoracic kyphosis related to the third spine point above the second spine point. When the skeletal model is deformed including the second hail line corresponding to the angle, the inclination of the first hail line and the second hail line changes with the deformation, so that the three-dimensional measurement of the human body that performed the three-dimensional measurement The posterior degree of the thoracic vertebra is also obtained based on the deformed skeleton model.
 本発明にあっては、特定の骨格ポイントとして首骨ポイントをポイントテーブルに含ませて、その首骨ポイントの三次元座標値を、三次元測定で得られた人体前側及び後側における人体表面の点が有する各三次元座標値の平均値により算出するので、首骨ポイントも、相同モデル等を用いることなく、三次元測定で得られる人体表面の点の三次元座標値から求められる。
 また、本発明にあっては、首骨ポイントより上方の上方首骨ポイントについて、人体左側及び右側の点から三次元座標値を特定するので、顎で隠れた首箇所となる上方首骨ポイントの三次元座標値も求められる。
In the present invention, a neck point is included in the point table as a specific skeleton point, and the three-dimensional coordinate value of the neck point is determined on the front side and the rear side of the human body obtained by the three-dimensional measurement. Since the point is calculated from the average value of the three-dimensional coordinate values of the point, the neck point is also obtained from the three-dimensional coordinate value of the point on the surface of the human body obtained by three-dimensional measurement without using a homologous model or the like.
Further, in the present invention, since the three-dimensional coordinate value is specified from the left and right points of the human body for the upper neck point above the neck point, the upper neck point that becomes the neck portion hidden by the jaw is determined. A three-dimensional coordinate value is also obtained.
 本発明にあっては、変形可能な骨格モデルが、首骨ポイントに係る頸椎前弯角度に応じた第1頸椎前弯線、及び上方首骨ポイントに係る頸椎前弯角度に応じた第2頸椎前弯線を含み、骨格モデルを変形すると、その変形に伴って、第1頸椎前弯線及び第2頸椎前弯線の傾きも変わることから、三次元測定を行った人体の頸椎の前弯度合も、変形した骨格モデルに基づき求められる。 In the present invention, the deformable skeletal model includes the first cervical lordosis line corresponding to the cervical lordosis angle related to the cervical point and the second cervical vertebra corresponding to the cervical lordosis angle related to the upper cervical point When the skeletal model is deformed including the anterior line, the inclination of the first cervical lordosis line and the second cervical vertebral line changes with the deformation. The degree is also obtained based on the deformed skeleton model.
 本発明にあっては、大腿骨大転子及び膝頭を結ぶ大腿骨線、並びに膝頭及び足首を結ぶ脛骨線を変形した骨格モデルから特定し、これら大腿骨線と脛骨線が交わる角度を算出するので、ポイントテーブルで規定される骨格ポイントから得にくい足の状況も、算出した角度から確認でき、O脚又はX脚のような判定を行うことに役立てられる。
 また、本発明にあっては、変形した骨格モデルに基づき特定した左右の大腿骨線について、長さの割合を算出して、大腿骨線基準割合と比較し、比較の結果に基づき、左右の寛骨の状況を判定するので、ポイントテーブルで規定される骨格ポイントから判定しにくい左右の寛骨の状況までも確認できる。
In the present invention, the femoral line connecting the greater femoral trochanter and the kneecap and the tibial line connecting the kneecap and the ankle are specified from the deformed skeleton model, and the angle at which the femoral line and the tibial line intersect is calculated. Therefore, the situation of the foot which is difficult to obtain from the skeleton point specified by the point table can be confirmed from the calculated angle, which is useful for making a determination such as O-leg or X-leg.
Further, in the present invention, for the left and right femur lines identified based on the deformed skeleton model, the ratio of the length is calculated and compared with the femoral line reference ratio. Since the situation of the hipbone is determined, it is possible to confirm the situation of the left and right hipbones that are difficult to determine from the skeletal points defined in the point table.
 本発明にあっては、三次元測定に伴って取得した人体の撮像画像の中に、算出した角度を含む角度特定画像を生成するので、対象となる骨格箇所における状況を、角度という客観的な値で人体の撮像画像と共に確認できる。
 また、本発明にあっては、算出した角度を、判定テーブルに含まれる基準角度と比較し、その比較の結果に基づいて判定テーブルに含まれる症状を判定するので、最終的に三次元測定を行った人体の症状までを客観的に判定でき、人体が適正な姿勢を確保するのに役立てられる。
In the present invention, since the angle specifying image including the calculated angle is generated in the captured image of the human body acquired along with the three-dimensional measurement, the situation at the target skeletal part is objectively called the angle. The value can be confirmed together with the captured image of the human body.
In the present invention, the calculated angle is compared with the reference angle included in the determination table, and the symptoms included in the determination table are determined based on the comparison result. It is possible to objectively determine the symptoms of the human body that have been performed, and to help the human body secure an appropriate posture.
本発明の実施形態に係る人体モデル提供システムを含む健康管理システムの構成を示す概略図である。It is the schematic which shows the structure of the health management system containing the human body model provision system which concerns on embodiment of this invention. 健康管理システムの全体的な構成を示すブロック図である。It is a block diagram which shows the whole structure of a health care system. 演算装置の主要な内部構成を示すブロック図である。It is a block diagram which shows the main internal structures of an arithmetic unit. (a)は初期画面の一例を示す概略図であり、(b)は測定開始画面の一例を示す概略図である。(A) is the schematic which shows an example of an initial screen, (b) is the schematic which shows an example of a measurement start screen. (a)は測定準備画面の一例を示す概略図であり、(b)は測定中画面の一例を示す概略図であり、(c)は測定終了画面の一例を示す概略図である。(A) is a schematic diagram showing an example of a measurement preparation screen, (b) is a schematic diagram showing an example of a screen during measurement, and (c) is a schematic diagram showing an example of a measurement end screen. 基準値テーブルの中身の一例を示す図表である。It is a chart which shows an example of the contents of a standard value table. 人体モデル提供システムを構成するサーバ装置の主要な内部構成を示すブロック図である。It is a block diagram which shows the main internal structures of the server apparatus which comprises a human body model provision system. 会員データベースの中身の一例を示す図表である。It is a chart which shows an example of the contents of a member database. 人体モデルテーブルにおける男性用の各モデルに関連する範囲を示す図表である。It is a graph which shows the range relevant to each model for men in a human body model table. (a)は筋肉モデルの左上腕を太くする変形を示す概略図、(b)は筋肉モデルの左上腕を細くする変形を示す概略図である。(A) is the schematic which shows the deformation | transformation which makes the left upper arm of a muscle model thick, (b) is the schematic which shows the deformation | transformation which makes the left upper arm of a muscle model thin. 脂肪モデルの左上腕を太くする変形を示す概略図である。It is the schematic which shows the deformation | transformation which thickens the left upper arm of a fat model. 脂肪モデルの左上腕を細くする変形、色を薄くする変化、透過度を増す変化を示す概略図である。It is the schematic which shows the deformation | transformation which thins the left upper arm of a fat model, the change which makes a color light, and the change which increases the transmittance | permeability. 骨格モデルの相似的な拡大又は縮小に追従して、筋肉モデル及び脂肪モデルが拡大又は縮小する状況を示す概略図である。It is the schematic which shows the condition where a muscle model and a fat model expand or contract following the similar expansion or contraction of a skeletal model. (a)は骨格モデルに設けられる複数の変形基点の例を示す概略図、(b)は筋肉モデルに設けられる複数の変形基点の例を示す概略図、(c)は脂肪モデルに設けられる複数の変形基点の例を示す概略図(A) is a schematic diagram showing an example of a plurality of deformation base points provided in a skeleton model, (b) is a schematic diagram showing an example of a plurality of deformation base points provided in a muscle model, and (c) is a plurality of examples provided in a fat model. Schematic showing examples of deformation base points ポイントテーブルの中身を示す図表である。It is a chart which shows the contents of a point table. モデル数値テーブルの中身を示す図表である。It is a chart which shows the contents of a model numerical value table. 人体モデル変形方法の一連の処理手順を示すフローチャートである。It is a flowchart which shows a series of processing procedures of the human body model deformation | transformation method. (a)(b)は、骨格モデルの左骨盤の変形状況を示す概略図である。(A) (b) is the schematic which shows the deformation | transformation condition of the left pelvis of a skeleton model. (a)~(c)は、骨格モデルの左上腕骨の変形状況を示す概略図である。(A)-(c) is the schematic which shows the deformation | transformation condition of the left humerus of a skeleton model. 筋肉モデルの腹の部位において、内臓脂肪による変形状況を示す概略図である。It is the schematic which shows the deformation | transformation condition by visceral fat in the site | part of the belly of a muscle model. 骨格モデルを通信端末で表示した状態を示す概略図である。It is the schematic which shows the state which displayed the skeleton model with the communication terminal. 骨格モデルを筋肉モデルで覆う人体モデルを通信端末で表示した状態を示す概略図である。It is the schematic which shows the state which displayed the human body model which covers a skeletal model with a muscle model with the communication terminal. 骨格モデルを覆った筋肉モデルを更に脂肪モデルで覆う人体モデルを通信端末で表示した状態を示す概略図である。It is the schematic which shows the state which displayed on the communication terminal the human body model which covers the muscle model which covered the skeletal model further with a fat model. 人体モデルテーブルにおける女性用の脂肪モデルに関連する範囲を示す図表である。It is a graph which shows the range relevant to the fat model for women in a human body model table. 女性脂肪参照テーブルの中身の一例を示す図表である。It is a chart which shows an example of the contents of a female fat reference table. 横方向の姿勢検証画面を示す概略図である。It is the schematic which shows the attitude | position verification screen of a horizontal direction. 前方向の姿勢検証画面を示す概略図である。It is the schematic which shows the attitude | position verification screen of a front direction. 上方向の姿勢検証画面を示す概略図である。It is the schematic which shows the attitude | position verification screen of an upward direction. 下方向の姿勢検証画面を示す概略図である。It is the schematic which shows the attitude | position verification screen of a downward direction. 骨格特定システムの主要な内部構成を示すブロック図である。It is a block diagram which shows the main internal structures of a skeleton specific system. 骨格モデルの足部等に含まれる対象点を示す概略図である。It is the schematic which shows the target point contained in the leg | foot part etc. of a skeleton model. 骨格モデルにおける腰仙角、腰椎前弯角度、胸椎後弯角度、及び頸椎前弯角度を示す概略図である。It is a schematic diagram showing a lumbosacral angle, a lumbar lordosis angle, a thoracic kyphosis angle, and a cervical vertebral angle in a skeletal model. 実施例2のポイントテーブルの一部の中身を示す図表である。It is a chart which shows the contents of a part of point table of Example 2. 実施例2のポイントテーブルの他部の中身を示す図表である。It is a graph which shows the content of the other part of the point table of Example 2. 骨格ポイントの位置関係を示す概略図である。It is the schematic which shows the positional relationship of a skeleton point. 判定テーブルの一部の中身を示す図表である。It is a chart which shows the contents of a part of judgment table. 判定テーブルの他部の中身を示す図表である。It is a chart which shows the contents of the other part of a judgment table. 大腿骨線及び脛線による大腿脛骨角(FTA)を示す概略図である。It is the schematic which shows the femoral tibial angle (FTA) by a femoral line and a tibial line. 分析テーブルの概要を示す図表である。It is a chart which shows the outline of an analysis table. 骨格モデル画面を示す概略図である。It is the schematic which shows a skeleton model screen. (a)は分析画面を示す概略図、(b)はアドバイス画面の一部を示す概略図である。(A) is the schematic which shows an analysis screen, (b) is the schematic which shows a part of advice screen. (a)(b)はアドバイス画面の他部を示す概略図である。(A) (b) is the schematic which shows the other part of an advice screen. 骨格特定システムによる骨格特定方法の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of the skeleton identification method by a skeleton identification system. 通信端末の主要な内部構成を示すブロック図である。It is a block diagram which shows the main internal structures of a communication terminal. (a)は変形例の横方向の姿勢検証画面を示す概略図、(b)は変形例の前方向の姿勢検証画面を示す概略図である。(A) is the schematic which shows the attitude verification screen of the horizontal direction of a modification, (b) is the schematic which shows the attitude verification screen of the front direction of a modification. (a)は横方向の拡大検証画面を示す概略図、(b)は前方向の拡大検証画面を示す概略図である。(A) is the schematic which shows the expansion verification screen of a horizontal direction, (b) is the schematic which shows the expansion verification screen of the front direction.
 図1、2は、本実施形態に係る健康管理システム1の一例となる全体的な構成を示す概略図である。この健康管理システム1は、本発明に係る人体モデル提供システム50を、ネットワークNWを介して人体測定システム5と接続したものとなっており、人体測定システム5から送られる被験者Hの身体的な測定結果を取得して、その取得した測定結果に応じた形態の人体モデル(図21~23参照)を提供するものになっている。被験者H等は、測定後、通信端末3を用いて、人体モデル提供システム50が提供する解剖的な人体モデルを確認可能になっている。なお、通信端末3として、図1、2では通信機能を示すタブレットを示すが、タブレット以外にも、スマートフォンのような携帯通信端末、又は通信機能を有するパソコン(ノート型パソコン、デスクトップ型パソコン等)も使用できる。 1 and 2 are schematic views showing an overall configuration as an example of the health management system 1 according to the present embodiment. This health management system 1 is a system in which the human body model providing system 50 according to the present invention is connected to the human body measuring system 5 via the network NW, and the physical measurement of the subject H sent from the human body measuring system 5 is performed. The result is obtained, and a human body model (see FIGS. 21 to 23) having a form corresponding to the obtained measurement result is provided. The subject H can check the anatomical human body model provided by the human body model providing system 50 using the communication terminal 3 after the measurement. In addition, although the tablet which shows a communication function is shown in FIGS. 1 and 2 as the communication terminal 3, in addition to the tablet, a portable communication terminal such as a smartphone, or a personal computer having a communication function (notebook personal computer, desktop personal computer, etc.) Can also be used.
 被験者Hであるユーザを測定する人体測定システム5は、体組成計10及び三次元測定器20を組み合わせて所要の身体的な測定を行い、測定されたデータを測定処理装置30で処理するようになっている。本実施形態の健康管理システム1を利用するには、会員登録が必要であり、会員登録するには、ユーザの氏名、ニックネーム、パスワード、メールアドレス等を、健康管理システム1の利用を管理する事業体に提出することになり、事業体は、会員登録をしたユーザについて、ユーザを識別するユーザIDを発行する。会員登録したユーザの情報及びユーザの測定結果等は、人体モデル提供システム50が有する会員データベース60に蓄積される。以下、まず人体測定システム5について説明し、それから人体モデル提供システム50について説明していく。 The human body measuring system 5 that measures the user who is the subject H performs a required physical measurement by combining the body composition meter 10 and the three-dimensional measuring device 20, and processes the measured data by the measurement processing device 30. It has become. Membership registration is required to use the health management system 1 of the present embodiment. To register as a member, a business that manages the use of the health management system 1 such as the user's name, nickname, password, and email address. The business entity issues a user ID for identifying the user who has registered as a member. Information on the user registered as a member, measurement results of the user, and the like are accumulated in a member database 60 of the human body model providing system 50. Hereinafter, the human body measurement system 5 will be described first, and then the human body model providing system 50 will be described.
 健康管理システム1の中の人体測定システム5が有する体組成計10は、被験者Hの組成に係る測定を行う装置(第1測定器)である。この体組成計10は、被験者Hの体全体に対する測定と、特定部位に対する測定を行い、体全体に対する身体的な測定項目としては、体重、体脂肪率、脂肪量、筋肉量、体水分量等があり、特定部位に対する身体的な測定項目としては、体脂肪率、筋肉量、脂肪量等がある。測定対象における特定部位は、左腕、右腕、体幹部、左脚、右脚になっており、体幹部(胴体部)における脂肪の測定については、内臓脂肪の測定と、皮下脂肪の測定を含み、残りの四肢(左右腕、左右脚)については皮下脂肪を測定する。 The body composition meter 10 included in the human body measurement system 5 in the health management system 1 is a device (first measuring device) that performs measurement related to the composition of the subject H. The body composition meter 10 performs measurement on the whole body of the subject H and measurement on a specific part. Physical measurement items on the whole body include body weight, body fat percentage, fat mass, muscle mass, body water content, and the like. As physical measurement items for a specific part, there are body fat percentage, muscle mass, fat mass, and the like. The specific part in the measurement target is the left arm, right arm, trunk, left leg, right leg, and the measurement of fat in the trunk (torso) includes measurement of visceral fat and measurement of subcutaneous fat, Subcutaneous fat is measured for the remaining limbs (left and right arms, left and right legs).
 体組成計10は、図1に示すように、被験者Hが載る台状の本体部11並びに被験者Hの両手で把持される左グリップ部12a及び右グリップ部12bを具備し、本体部11と、左グリップ部12a及び右グリップ部12bは、左右接続線13a、13bで接続される。本体部11の上面の被験者Hの載置箇所には、被験者Hの足裏と接触する測定電極部を設けられており、同様に、左右グリップ部12a、12bの表面にも測定電極部が設けられている。また体組成計10は、本体部11を、第1接続線14により測定処理装置30と接続する。 As shown in FIG. 1, the body composition meter 10 includes a base-like main body portion 11 on which the subject H is placed, and a left grip portion 12 a and a right grip portion 12 b that are gripped by both hands of the subject H, The left grip portion 12a and the right grip portion 12b are connected by left and right connection lines 13a and 13b. A measurement electrode portion that comes into contact with the sole of the subject H is provided at the place where the subject H is placed on the upper surface of the main body 11. Similarly, measurement electrode portions are also provided on the surfaces of the left and right grip portions 12 a and 12 b. It has been. The body composition meter 10 connects the main body 11 to the measurement processing device 30 through the first connection line 14.
 体組成計10は、第1接続線14を介して測定処理装置30から送られてくる測定開始指示が本体部11に入力されると、上述した各項目の測定を開始し、測定開始から約15秒で測定を完了する。体組成計10は、測定した数値等を含む測定結果を、第1接続線14を介して、本体部11から測定処理装置30へ送る。 When the measurement start instruction sent from the measurement processing device 30 via the first connection line 14 is input to the main body unit 11, the body composition meter 10 starts measuring each item described above, Complete the measurement in 15 seconds. The body composition meter 10 sends a measurement result including the measured numerical value or the like from the main body 11 to the measurement processing device 30 via the first connection line 14.
 一方、人体測定システム5が有する三次元測定器20は、測定対象物の三次元データ(OBJデータ)の測定が可能な装置(第2測定器)であり、計三本の柱状部21、22、23を有する。これら三本の柱状部21、22、23は、上述した体組成計10の本体部11の周囲を、平面視で三角形を構成するように、三角形の各頂点となる位置にそれぞれ配置され、体組成計10による測定と同期して三次元測定を行うようになっている。各柱状部21、22、23は複数のレーザ光出射部21a、22a、23a及び走査状況取得部21b、22b、23bを具備し、各レーザ光出射部21a、22a、23aからレーザ光を出射して測定対象物を走査すると共に、走査した状況を走査状況取得部21b、22b、23bで撮像して検知する。三次元測定器20は、各柱状部21、22、23を、三次元測定用接続線24a、24b、24cで測定処理装置30と接続している。 On the other hand, the three-dimensional measuring device 20 included in the human body measuring system 5 is a device (second measuring device) capable of measuring three-dimensional data (OBJ data) of a measurement object, and a total of three columnar portions 21 and 22. , 23. These three columnar parts 21, 22, and 23 are arranged around the body part 11 of the body composition meter 10 described above at positions corresponding to the vertices of the triangle so as to form a triangle in plan view. The three-dimensional measurement is performed in synchronization with the measurement by the composition meter 10. Each of the columnar portions 21, 22, and 23 includes a plurality of laser beam emitting units 21a, 22a, and 23a and scanning status acquisition units 21b, 22b, and 23b, and emits laser beams from the respective laser beam emitting units 21a, 22a, and 23a. Then, the measurement object is scanned, and the scanned state is imaged and detected by the scanning state acquisition units 21b, 22b, and 23b. The three-dimensional measuring instrument 20 connects the columnar portions 21, 22, and 23 to the measurement processing device 30 through three-dimensional measurement connection lines 24a, 24b, and 24c.
 三次元測定器20は、三次元測定用接続線24a、24b、24cを介して測定処理装置30から送られてくる測定開始指示が、各柱状部21、22、23へ入力されると、各柱状部21、22、23の各レーザ光出射部21a、22a、23aからレーザ光を出射して測定を開始し、測定開始から約2秒でレーザ光の走査状況の検知測定を完了し、測定した数値を含む測定結果(OBJデータ)を、測定処理装置30へ送る。 When the measurement start instruction sent from the measurement processing device 30 via the three-dimensional measurement connection lines 24a, 24b, and 24c is input to the columnar portions 21, 22, and 23, the three-dimensional measuring instrument 20 Laser beam is emitted from each of the laser beam emitting portions 21a, 22a, and 23a of the columnar portions 21, 22, and 23 to start measurement, and the detection and measurement of the scanning state of the laser beam is completed in about 2 seconds from the start of measurement. The measurement result (OBJ data) including the numerical value is sent to the measurement processing device 30.
 測定処理装置30では、三次元測定器20から送られてきた数値結果(OBJデータ、人体の各部の位置に関する情報)に基づき測定対象物に関する各種寸法値を算出しており、各種寸法値を算出する部分において、測定処理装置30は三次元測定器20の一部を構成している。 The measurement processing device 30 calculates various dimension values related to the measurement object based on the numerical results (OBJ data, information regarding the position of each part of the human body) sent from the three-dimensional measuring device 20, and calculates various dimension values. In this part, the measurement processing device 30 constitutes a part of the three-dimensional measuring device 20.
 測定処理装置30が、算出処理により得ることのできる各種寸法値としては、測定対象物の全体寸法、体表面積、体容積、任意部の長さ、任意部の周囲長等がある。被験者Hという人体を身体的に測定対象にするときは、人体の身長に加えて、人体の特定部位である各腕についての長さ(袖丈の長さ)、手首の周囲長及び腕の周囲長(最大周囲長)、体幹部の長さ(座高)、ウエストの周囲長、胸囲の周囲長、及び臀部の周囲長、各脚についての長さ(股下の長さ)、足首の周囲長、及び太ももの周囲長(最大周囲長)等と云った被験者Hの体格に係る項目を測定する(その他、左右の肩幅、襟ぐり等も測定)。なお、図1に示すように、被験者Hは測定時に足を開くので、足を開いた分、実際の身長より測定値が小さくなるので、身長については、測定処理装置30において所定の比率を乗じて、自動補正を行う。 The various dimension values that can be obtained by the measurement processing device 30 through the calculation process include the overall dimensions of the measurement object, the body surface area, the body volume, the length of the arbitrary part, the perimeter of the arbitrary part, and the like. When subject H is the subject to be measured physically, in addition to the height of the human body, the length of each arm that is a specific part of the human body (the length of the sleeve), the wrist circumference, and the arm circumference (Maximum circumference), trunk length (sitting height), waist circumference, chest circumference, and hip circumference, length for each leg (inseam length), ankle circumference, and Items related to the physique of subject H, such as the circumference of the thigh (maximum circumference), etc. are measured (in addition, the left and right shoulder widths, neckline, etc. are also measured). As shown in FIG. 1, since the subject H opens his / her leg at the time of measurement, the measured value becomes smaller than the actual height by the amount of opening his / her leg, so the height is multiplied by a predetermined ratio in the measurement processing device 30. To perform automatic correction.
 なお、上述した三本の柱状部21、22、23を三角形の各頂点に配置して三次元測定する方法は、三角測量の原理を用いた公知の三次元距離計測手法(三角測量の原理)により、レーザ光出射部21a、22a、23aから出射するレーザ光で測定対象物の表面を走査し、その走査状況を、走査状況取得部21b、22b、23bで撮像して、柱状部21、22、23を三角形の位置と、走査状況取得部21b、22b、23bで撮像した画像におけるレーザ光の走査位置のポイント等との関係に基づき、測定対象物の各表面のポイント(表面をメッシュにした交点)を三次元座標上(水平面の一方向に応じたX軸、水平面においてX軸と直交する方向に応じたY軸、X軸及びY軸に直交する垂直方向に応じたZ軸で構成される座標)に展開した位置を求めることになる。 The above-described three columnar portions 21, 22, and 23 are arranged at the apexes of a triangle to perform a three-dimensional measurement using a known three-dimensional distance measurement method (the principle of triangulation) using the principle of triangulation. Thus, the surface of the measurement object is scanned with the laser light emitted from the laser light emitting portions 21a, 22a, and 23a, and the scanning state is imaged by the scanning state obtaining portions 21b, 22b, and 23b, and the columnar portions 21, 22 are scanned. , 23 based on the relationship between the position of the triangle and the point of the scanning position of the laser beam in the image captured by the scanning status acquisition unit 21b, 22b, 23b, etc. The intersection point is composed of three-dimensional coordinates (X-axis corresponding to one direction in the horizontal plane, Y-axis corresponding to the direction orthogonal to the X-axis in the horizontal plane, X-axis and Z-axis corresponding to the vertical direction orthogonal to the Y-axis. Coordinate) Thereby obtaining an open position.
 三次元測定器20は、人体(被験者H)を三次元測定する場合、人体の表面上の約3万のポイントについての位置を三次元座標値の数値で求めており、これら三次元測定される各ポイントは、それぞれを識別できるように番号が付されており(1番目のポイント~約3万番目のポイントが存在する)、各番号と三次元座標値が対応づけたものが測定結果(OBJデータ)に含まれる。なお、三次元座標値に係る三次元座標系を構成するX、Y、Z軸について、本実施形態では図1に示すように、X軸方向を人体の幅方向に一致させており、Y軸方向を人体の身長方向に一致させており、Z軸方向を人体の厚み方向に一致させている。そのため、例えば人体を正面から見た場合、主にXY座標系で表現されることになり、人体を横方向から見た場合、主にYZ座標系で表現される。 When the three-dimensional measuring device 20 measures a human body (subject H) in three dimensions, the position of about 30,000 points on the surface of the human body is obtained as a numerical value of three-dimensional coordinate values, and these three-dimensional measurements are performed. Each point is numbered so that it can be identified (the first point to about 30,000th point exist), and the measurement result (OBJ) is the correspondence between each number and the three-dimensional coordinate value. Data). In this embodiment, as shown in FIG. 1, the X, Y, and Z axes constituting the three-dimensional coordinate system related to the three-dimensional coordinate value are set such that the X-axis direction matches the width direction of the human body. The direction is matched with the height direction of the human body, and the Z-axis direction is matched with the thickness direction of the human body. Therefore, for example, when the human body is viewed from the front, it is mainly expressed in the XY coordinate system, and when the human body is viewed from the lateral direction, it is mainly expressed in the YZ coordinate system.
 図3は、測定処理装置30の主要構成を示したブロック図である。本実施形態の測定処理装置30としては、各測定器10、20との接続機能、及びネットワークNWを介した通信機能等を具備したコンピュータを用いており、図3は、そのコンピュータを用いた場合の構成を示している。測定処理装置30は、全体的な制御及び各種処理を行うCPU30aに、各種デバイス等を内部接続線30hで接続したものになっており、各種デバイス等には、外部機器接続部30b、通信部30c、ROM30d、RAM30e、表示入出力インタフェース30f、及び記憶部30g等がある。 FIG. 3 is a block diagram showing the main configuration of the measurement processing device 30. As the measurement processing apparatus 30 of the present embodiment, a computer having a connection function with each measuring instrument 10, 20 and a communication function via the network NW is used, and FIG. 3 shows a case where the computer is used. The structure of is shown. The measurement processing apparatus 30 is configured by connecting various devices and the like to the CPU 30a that performs overall control and various processes by an internal connection line 30h. The various devices and the like include an external device connection unit 30b and a communication unit 30c. ROM 30d, RAM 30e, display input / output interface 30f, and storage unit 30g.
 外部機器接続部30bは、各種規格(例えば、IEEE系などの規格)に準じた双方向で各種信号、情報等を送ることが可能な接続インタフェース(例えば、USB系のシリアルインタフェース)であり、本実施形態では、この外部機器接続部30bで各測定器10、20と接続して、各測定器10、20の測定結果を取得すると共に、各測定器10、20への測定開始指示を送るようにしている。 The external device connection unit 30b is a connection interface (for example, a USB serial interface) that can send various signals, information, and the like bidirectionally according to various standards (for example, standards such as the IEEE system). In the embodiment, the external device connection unit 30b is connected to the measuring devices 10 and 20 to acquire the measurement results of the measuring devices 10 and 20, and to send a measurement start instruction to the measuring devices 10 and 20. I have to.
 通信部30cは、ネットワークNWとの接続通信デバイスに相当する所要の通信規格に応じたものであり(例えばLANモジュール)、通信線L及び所要の通信機器(図示は省略。例えばルータ等が該当)を介してネットワークNWと接続することで、人体モデル提供システム50との通信を可能にしている。 The communication unit 30c conforms to a required communication standard corresponding to a communication device connected to the network NW (for example, a LAN module), a communication line L and required communication equipment (not shown, for example, a router or the like). By connecting to the network NW via the network, communication with the human body model providing system 50 is enabled.
 ROM30dは、CPU30aの基本的な処理内容を規定したプログラム等を記憶するものであり、RAM30eは、CPU30aの処理に伴う内容、ファイル等を一時的に記憶するものである。表示入出力インタフェース30fは、接続線36で表示装置35が接続されるインタフェースであり、本実施形態の表示装置35は、タッチスクリーン機能を具備する表示スクリーン35aを有するので、表示スクリーン35aに表示させる各種画面に応じた各画面データを出力することに加えて、表示スクリーン35aでのタッチによる操作内容の入力を受け付けて、その受け付けた操作内容をCPU30aへ送る処理等も行う。 The ROM 30d stores a program that defines the basic processing contents of the CPU 30a, and the RAM 30e temporarily stores contents, files, and the like accompanying the processing of the CPU 30a. The display input / output interface 30f is an interface to which the display device 35 is connected by the connection line 36. Since the display device 35 of the present embodiment includes the display screen 35a having a touch screen function, the display input / output interface 30f is displayed on the display screen 35a. In addition to outputting each screen data corresponding to various screens, processing of receiving an operation content by touch on the display screen 35a and sending the received operation content to the CPU 30a is also performed.
 記憶部30gは、HDD(Hard Disc Drive)又はSSD(Solid State Drive)等により構成される記憶デバイスであり、基本プログラムP1、三次元測定プログラムP2、組成測定プログラムP3、及び測定管理プログラムP4といったプログラム、並びに画面データテーブルT1、基準値テーブルT2等を記憶する。各プログラムの説明を後にして、先ず、テーブル(画面データテーブルT1、基準値テーブルT2)について説明する。画面データテーブルT1は、図4、5等に示す画面内容を表示装置35で表示させるための各種画面データを複数格納したものである。 The storage unit 30g is a storage device configured by an HDD (Hard Disc Drive) or an SSD (Solid State Drive), and is a program such as a basic program P1, a three-dimensional measurement program P2, a composition measurement program P3, and a measurement management program P4. In addition, a screen data table T1, a reference value table T2, and the like are stored. Each program will be described later. First, the tables (screen data table T1, reference value table T2) will be described. The screen data table T1 stores a plurality of various screen data for displaying the screen contents shown in FIGS.
 図4(a)は、画面データテーブルT1に格納された中の初期画面データが表示装置35に出力されることで、表示スクリーン35aに初期画面40が表示された状態を示す。初期画面40は、人体測定システム5において、最初に提示される画面であり、画面上部に「ユーザID、パスワードを入力し、決定ボタンを選択してください。」というテキストが配置されると共に、そのテキストの下方に、ユーザID入力欄40a、パスワード入力欄40b、及び選択可能な決定ボタン40cが配置されている。そして、初期画面40は、画面下方に、選択可能なキーボード欄40dを設けており、このキーボード欄40dの所望のキーを順次選択することで、ユーザID入力欄40a及びパスワード入力欄40bのそれぞれに、選択されたキーに応じた英数字が入力されるように作り込まれている。 FIG. 4 (a) shows a state in which the initial screen 40 is displayed on the display screen 35a by outputting the initial screen data stored in the screen data table T1 to the display device 35. FIG. The initial screen 40 is the first screen presented in the human body measurement system 5, and the text “Enter your user ID and password and select the decision button” is placed at the top of the screen. Below the text, a user ID input field 40a, a password input field 40b, and a selectable determination button 40c are arranged. The initial screen 40 is provided with a selectable keyboard field 40d at the bottom of the screen. By sequentially selecting a desired key in the keyboard field 40d, each of the user ID input field 40a and the password input field 40b is displayed. It is designed to input alphanumeric characters according to the selected key.
 ユーザID入力欄40a及びパスワード入力欄40bに英数字(ユーザID、パスワード)がそれぞれ入力された状態で決定ボタン40cの選択操作(ログイン操作)が行われると、入力された英数字(ユーザID及びパスワード)が、表示装置35から測定処理装置30へ送られ、測定処理装置30は入力内容(ユーザID及びパスワード)を人体モデル提供システム50へ送信する。なお、このような測定用ログイン操作の結果、人体モデル提供システム50から、会員として登録されている旨の回答が測定処理装置30へ送られると、測定処理装置30は測定のためにログインした状態となる。 When the selection operation (login operation) of the enter button 40c is performed in a state where alphanumeric characters (user ID, password) are respectively input in the user ID input column 40a and the password input column 40b, the input alphanumeric characters (user ID and user ID and password) are performed. Password) is transmitted from the display device 35 to the measurement processing device 30, and the measurement processing device 30 transmits the input content (user ID and password) to the human body model providing system 50. As a result of such a login operation for measurement, when an answer indicating that the user is registered as a member is sent from the human body model providing system 50 to the measurement processing device 30, the measurement processing device 30 is logged in for measurement. It becomes.
 図4(b)は、測定のためのログインが完了して、画面データテーブルT1に格納された中の測定開始画面データが表示装置35に出力されることで、表示スクリーン35aに測定開始画面41が表示された状態を示す。測定開始画面41は、「準備ができたら、測定開始ボタンを選択してください。」というテキストと、そのテキストの下方に、選択可能な測定開始ボタン41aを配置している。測定開始画面41の測定開始ボタン41aの選択操作が行われると、測定開始ボタン41aの選択された旨が、表示装置35から測定処理装置30へ送られる。 FIG. 4B shows that the measurement start screen data stored in the screen data table T1 is output to the display device 35 after the login for measurement is completed, so that the measurement start screen 41 is displayed on the display screen 35a. The state where is displayed. On the measurement start screen 41, a text “Select a measurement start button when ready” and a selectable measurement start button 41a are arranged below the text. When the selection operation of the measurement start button 41a on the measurement start screen 41 is performed, the fact that the measurement start button 41a is selected is sent from the display device 35 to the measurement processing device 30.
 なお、測定開始ボタン41aの下方には、「選択開始ボタンの選択から、10秒後に測定を始めます。」というテキストを配置して、ユーザ(被験者H)に注意を促している。このようなテキストを配置しているのは、三次元測定器20による測定は、一定の時間(約2秒間)、被験者Hは、所定の姿勢で静止することが要求されるので、測定開始ボタン41aが選択されてから、即座に三次元測定を行うと、所定の姿勢で静止する状態を確保できないため、10秒の準備時間を入れることで、被験者Hが測定に適した姿勢をつくれるようにしている。 In addition, below the measurement start button 41a, a text “Start measurement 10 seconds after selection of the selection start button” is arranged to alert the user (subject H). Such text is arranged because the measurement by the three-dimensional measuring device 20 is required for a predetermined time (about 2 seconds) and the subject H is required to stand still in a predetermined posture. If 3D measurement is performed immediately after 41a is selected, it is impossible to secure a stationary state in a predetermined posture, so that a test subject H can create a posture suitable for measurement by adding a preparation time of 10 seconds. ing.
 図5(a)は、画面データテーブルT1に格納された中の測定準備画面データが表示装置35に出力されることで、表示スクリーン35aに測定準備画面42が表示された状態を示す。測定準備画面42は、図4(b)の測定開始画面41で、測定開始ボタン41aが選択された場合に表示されるものであり、「測定開始まで」というテキストの下方に、準備カウントダウン欄42aが設けられ、その下方には、「姿勢を整えてください。」というテキストが配置される。なお、準備カウントダウン欄42aは、10秒から1秒ごとにカウントダウンされていく秒数が表示される。 FIG. 5A shows a state in which the measurement preparation screen 42 is displayed on the display screen 35a by outputting the measurement preparation screen data stored in the screen data table T1 to the display device 35. FIG. The measurement preparation screen 42 is displayed when the measurement start button 41a is selected on the measurement start screen 41 of FIG. 4B, and the preparation countdown column 42a is displayed below the text “until measurement starts”. The text “Please adjust your posture” is placed below it. The preparation countdown column 42a displays the number of seconds counted down every second from 10 seconds.
 図5(b)は、画面データテーブルT1に格納された中の測定中画面データが表示装置35に出力されることで、表示スクリーン35aに測定中画面43が表示された状態を示す。測定中画面43は、図5(a)の測定準備画面42で、カウントダウンが進行して0秒になったときに、切り替わって表示される画面であり、「測定中」というテキストの下方に、測定カウントダウン欄43aが設けられ、その下方には、「姿勢を維持してください。」というテキストが配置される。なお、測定カウントダウン欄42aは、体組成計10の測定時間に合わせて15秒から1秒ごとにカウントダウンされていく秒数が表示される。 FIG. 5B shows a state in which the measuring screen 43 is displayed on the display screen 35a by outputting the measuring screen data stored in the screen data table T1 to the display device 35. The measurement-in-progress screen 43 is a measurement preparation screen 42 in FIG. 5A and is displayed when the countdown progresses to 0 seconds, and is displayed below the text “measuring”. A measurement countdown column 43a is provided, and below that, a text “Please maintain posture” is arranged. The measurement countdown column 42a displays the number of seconds counted down every 15 seconds from 15 seconds in accordance with the measurement time of the body composition meter 10.
 図5(c)は、画面データテーブルT1に格納された中の測定終了画面データが表示装置35に出力されることで、表示スクリーン35aに測定終了画面44が表示された状態を示す。測定終了画面44は、図5(b)の測定中画面43で、カウントダウンが進行して0秒になったときに、切り替わって表示されるものであり、「測定終了」というテキストの下方に、「お疲れ様でした。リラックスしてください。結果が出るまで、しばらくお待ちください。」というテキストが配置される。なお、測定終了画面44が表示されてしばらくすると、測定項目に対する測定数値を示す結果画面が表示スクリーン35aに表示される。 FIG. 5 (c) shows a state where the measurement end screen 44 is displayed on the display screen 35a by outputting the measurement end screen data stored in the screen data table T1 to the display device 35. FIG. The measurement end screen 44 is a screen 43 during measurement shown in FIG. 5B, which is displayed when the countdown progresses to 0 seconds, and is displayed below the text “measurement end”. The text “Thank you for your work. Please relax. Please wait for a while until the result is obtained.” Is placed. Note that, after the measurement end screen 44 is displayed, a result screen showing the measured numerical values for the measurement items is displayed on the display screen 35a.
 図6は、記憶部30gに記憶される基準値テーブルT2を示す。基準値テーブルT2は、測定された筋肉及び脂肪に関するレベルを判定するための数値(基準値)を格納したものである。本実施形態では左腕、右腕、左脚、右脚、及び体幹部という計5つの特定部位において、筋肉レベル及び脂肪レベルをそれぞれ判定するための複数の基準値を特定部位ごとに格納する(筋肉判定用、及び脂肪判定用の複数の基準値をそれぞれ格納)。 FIG. 6 shows a reference value table T2 stored in the storage unit 30g. The reference value table T2 stores numerical values (reference values) for determining the levels relating to the measured muscles and fats. In the present embodiment, a plurality of reference values for determining the muscle level and the fat level are stored for each specific part in five specific parts including the left arm, right arm, left leg, right leg, and trunk (muscle determination). And a plurality of reference values for fat determination, respectively).
 すなわち、各特定部位(左腕、右腕、左脚、右脚、及び体幹部)に関する筋肉判定用の複数の基準値として、基準値テーブルT2は第1~9基準値という複数の基準用数値を含み、同様に、脂肪判定用の複数の基準値として、第1~9基準値という複数の基準用数値を含む。なお、第1~9基準値の数値には「第1基準値<第2基準値<第3基準値<第4基準値<第5基準値<第6基準値<第7基準値<第8基準値<第9基準値」という大小関係が成立する。 That is, the reference value table T2 includes a plurality of reference numerical values of the first to ninth reference values as a plurality of reference values for muscle determination regarding each specific part (left arm, right arm, left leg, right leg, and trunk). Similarly, a plurality of reference numerical values called first to ninth reference values are included as the plurality of reference values for fat determination. The numerical values of the first to ninth reference values include “first reference value <second reference value <third reference value <fourth reference value <fifth reference value <seventh reference value <eighth A magnitude relationship of “reference value <9th reference value” is established.
 これは、筋肉レベル及び脂肪レベルとして本実施形態では、それぞれ計9段階のレベルを判定するためである。計9段階のレベルを、筋肉の場合で説明すると、標準を「0」レベルにしており、標準より筋肉の量が少ないレベルを「-1」、「-2」、「-3」、「-4」というように、少ない量の程度に応じて計4段階で区別し、標準より筋肉の量が多いレベルを「+1」、「+2」、「+3」、「+4」というように、多い量の程度に応じて計4段階で区別する。脂肪の場合も同様に、標準を「0」として、標準より脂肪の量が少ないレベルを「-1」、「-2」、「-3」、「-4」の計4段階で区別し、標準より脂肪の量が多いレベルを「+1」、「+2」、「+3」、「+4」の計4段階で区別する。 This is because in this embodiment, a total of 9 levels are determined as the muscle level and the fat level. The nine levels in total are explained in the case of muscle. The standard is set to “0” level, and the levels with less muscle mass than the standard are “−1”, “−2”, “−3”, “−” 4 ”depending on the level of the small amount, such as“ +1 ”,“ +2 ”,“ +3 ”,“ +4 ”, and so on. A total of four levels are distinguished according to the degree. Similarly, in the case of fat, the standard is set to “0”, and the level where the amount of fat is smaller than the standard is distinguished in four stages, “−1”, “−2”, “−3”, and “−4”. Levels with a greater amount of fat than the standard are distinguished in a total of four stages: “+1”, “+2”, “+3”, and “+4”.
 筋肉についてのレベルの区分けの具体例を、左腕の場合で説明すると、測定された左腕の筋肉量の数値が第1基準値未満であれば「-4」、第1基準時以上第2基準値未満であれば「-3」、第2基準値以上第3基準値未満であれば「-2」、第3基準値以上第4基準値未満であれば「-1」、第4基準時以上第5基準値未満であれば「0」、第5基準値以上第6基準値未満であれば「+1」、第6基準時以上第7基準値未満であれば「+2」、第7基準値以上第8基準値未満であれば「+3」、第8基準値以上第9基準値未満であれば「+4」と判定される(他の特定部位の測定された筋肉量についても同様)。 A specific example of the level classification for the muscle will be described in the case of the left arm. If the measured value of the muscle mass of the left arm is less than the first reference value, “−4”, the second reference value above the first reference time. If it is less than “−3”, “−2” if it is greater than or equal to the second reference value and less than the third reference value, “−1” if it is greater than or equal to the third reference value and less than the fourth reference value, greater than or equal to the fourth reference time “0” if it is less than the fifth reference value, “+1” if it is not less than the fifth reference value and less than the sixth reference value, “+2” if it is not less than the sixth reference value and less than the seventh reference value, and the seventh reference value If it is less than the eighth reference value, it is determined as “+3”, and if it is greater than or equal to the eighth reference value and less than the ninth reference value, it is determined as “+4” (the same applies to the measured muscle mass of other specific parts).
 また、脂肪についてのレベルの区分けの具体例を、左腕の場合で説明すると、測定された左腕の脂肪量が第1基準値未満であれば「-4」、第1基準時以上第2基準値未満であれば「-3」、第2基準値以上第3基準値未満であれば「-2」、第3基準値以上第4基準値未満であれば「-1」、第4基準時以上第5基準値未満であれば「0」、第5基準値以上第6基準値未満であれば「+1」、第6基準時以上第7基準値未満であれば「+2」、第7基準値以上第8基準値未満であれば「+3」、第8基準値以上第9基準値未満であれば「+4」と判定される(他の特定部位の測定された脂肪量についても同様)。上述した計9段階のレベルを表す数値は、特定部位の筋肉量又は脂肪量に係る数値を示す測定結果を意味する。 A specific example of level classification for fat will be described in the case of the left arm. If the measured fat amount of the left arm is less than the first reference value, “−4”, the second reference value is equal to or greater than the first reference time. If it is less than “−3”, “−2” if it is greater than or equal to the second reference value and less than the third reference value, “−1” if it is greater than or equal to the third reference value and less than the fourth reference value, greater than or equal to the fourth reference time “0” if it is less than the fifth reference value, “+1” if it is not less than the fifth reference value and less than the sixth reference value, “+2” if it is not less than the sixth reference value and less than the seventh reference value, and the seventh reference value If it is less than the eighth reference value, it is determined as “+3”, and if it is greater than or equal to the eighth reference value and less than the ninth reference value, it is determined as “+4” (the same applies to the fat amount measured in other specific parts). The numerical values representing the nine levels described above mean the measurement results indicating the numerical values related to the muscle mass or fat mass of the specific part.
 なお、図6に示すように、体幹部においては、通常の脂肪用の数値(皮下脂肪用の第1~第9基準値)に加えて、内臓脂肪用の基準値(第1~第9基準値)を基準値テーブルT2は格納しており、体幹部においては、通常の脂肪(皮下脂肪)と、内臓脂肪の二種類の脂肪についてレベル判定が行えるようにしている(内臓脂肪の脂肪量に係るレベル判定は、上述した皮下脂肪の場合と同様)。 As shown in FIG. 6, in the trunk, in addition to the normal values for fat (first to ninth reference values for subcutaneous fat), reference values for visceral fat (first to ninth reference values). Value) is stored in the reference value table T2, and in the trunk, level determination can be performed for two types of fats: normal fat (subcutaneous fat) and visceral fat (in terms of the amount of visceral fat). This level determination is the same as in the case of the subcutaneous fat described above).
 次に、図3の記憶部30gに記憶される各プログラムについて説明していく。まず、基本プログラムP1は、測定処理装置30を一般的なコンピュータとして機能させるために、CPU30aが行う基本的な処理を規定したオペレーティングシステムに相当するものであり、この基本プログラムP1には、上述した外部機器接続部30bを通じた信号等の入出力機能、通信部30cを通じた通信機能、及び表示入出力インタフェース30fを通じた表示機能・操作受付機能等を含んでいるものとする。 Next, each program stored in the storage unit 30g in FIG. 3 will be described. First, the basic program P1 corresponds to an operating system that defines basic processing performed by the CPU 30a in order to cause the measurement processing device 30 to function as a general computer. This basic program P1 includes the above-described basic program P1. It includes an input / output function such as a signal through the external device connection unit 30b, a communication function through the communication unit 30c, and a display function / operation reception function through the display input / output interface 30f.
 また、三次元測定プログラムP2は、三次元測定器20から送られてくる測定結果に含まれる数値(検知した複数の頂点のXYZ座標値)を用いて、上述した三角測量の原理を用いた公知の三次元距離計測手法により、被験者Hの測定項目(身長、各四肢の長さ等)に係る数値を算出する処理をCPU30aが行うことを規定したものになっている。 Further, the three-dimensional measurement program P2 uses a numerical value (XYZ coordinate values of a plurality of detected vertices) included in the measurement result sent from the three-dimensional measuring device 20, and uses the above-described triangulation principle. It is specified that the CPU 30a performs processing for calculating numerical values related to the measurement items (height, length of each limb, etc.) of the subject H by the three-dimensional distance measurement method.
 組成測定プログラムP3は、体組成計10から送られてくる脂肪又は筋肉に係る測定数値を取得すること、及び特定部位(体幹部、及び四肢)については、測定数値を、図6の基準値テーブルT2に格納される基準値と対比することで、測定された筋肉量、及び脂肪量が、計9段階のいずれのレベルに該当するかを判定する処理も規定する。なお、9段階のレベルは上述したように、「-4」~「+4」の段階で示され、「0」の段階が標準であり、「0」からマイナスの数値が大きくなるにつれて、筋肉量又は脂肪量が少なくなっていくことを表し、また、「0」からプラスの数値が大きくなるにつれて、筋肉量又は脂肪量が多くなっていくことを表す。 The composition measurement program P3 obtains measurement values related to fat or muscle sent from the body composition meter 10, and for specific parts (the trunk and limbs), the measurement values are stored in the reference value table of FIG. By comparing with a reference value stored in T2, a process for determining which level of the measured muscle mass and fat mass corresponds to a total of 9 levels is also defined. As described above, the nine levels are indicated by “−4” to “+4”, the standard is “0”, and the muscle mass increases as the negative value increases from “0”. Or it represents that the amount of fat decreases, and also indicates that the amount of muscle or fat increases as the positive value increases from “0”.
 測定管理プログラムP4は、人体測定システム5における全般的な処理に関して、CPU30aが行う各種処理の内容を規定したものである。具体的には、表示装置35に各種画面を表示する処理、登録ユーザの会員認証に関する処理、ユーザ操作に応じた対応処理、測定結果を人体モデル提供システム50へ送る処理等をCPU30aに行わせるプログラミング内容を測定管理プログラムP4は含んでいる。 The measurement management program P4 defines the contents of various processes performed by the CPU 30a with respect to general processes in the human body measurement system 5. Specifically, programming that causes the CPU 30a to perform various processes such as displaying various screens on the display device 35, processing related to member authentication of a registered user, processing corresponding to a user operation, processing for sending measurement results to the human body model providing system 50, and the like. The content of the measurement management program P4 is included.
 具体的には、まず、図4(a)の初期画面40を表示する処理を行い、この初期画面40を通じて入力されたユーザIDを測定処理装置30(CPU30a)が取得すると、その取得したユーザIDが登録されているか否かを問い合わせる旨の問合せ情報を人体モデル提供システム50へ送信することを測定管理プログラム処理P4は規定する。また、問合せ情報の送信に応じて、人体モデル提供システム50から、登録されていない旨の返信を測定処理装置30が受信すると、再度、ユーザIDの入力を行うことを示したユーザID入力画面を表示する処理を測定管理プログラム処理P4は規定する。 Specifically, first, the process of displaying the initial screen 40 of FIG. 4A is performed, and when the measurement processing device 30 (CPU 30a) acquires the user ID input through the initial screen 40, the acquired user ID. The measurement management program process P4 defines that inquiry information for inquiring whether or not is registered to the human body model providing system 50. In response to the transmission of the inquiry information, when the measurement processing device 30 receives a reply indicating that it has not been registered from the human body model providing system 50, a user ID input screen indicating that the user ID is input again is displayed. The measurement management program process P4 defines the process to be displayed.
 一方、問合せ情報の送信に応じて、人体モデル提供システム50から、登録されている旨の返信を測定処理装置30が受信すると、次に、図4(b)の測定開始画面41の表示処理を行うことを測定管理プログラム処理P4は規定する。また、その測定開始画面41で測定開始ボタン41aの選択操作を受け付けると、図5(a)の測定準備画面42の表示処理を行うと共に、測定開始ボタン41aの選択操作から10秒が経過すれば、体組成計10及び三次元測定器20へ測定開始指示を送信することを測定管理プログラム処理P4は規定する。 On the other hand, when the measurement processing device 30 receives a reply indicating that it has been registered from the human body model providing system 50 in response to the transmission of the inquiry information, the display processing of the measurement start screen 41 in FIG. The measurement management program process P4 defines what to do. When the selection operation of the measurement start button 41a is accepted on the measurement start screen 41, the display process of the measurement preparation screen 42 in FIG. 5A is performed, and if 10 seconds have elapsed from the selection operation of the measurement start button 41a. The measurement management program process P4 defines that a measurement start instruction is transmitted to the body composition meter 10 and the three-dimensional measuring device 20.
 そして、図5(b)の測定中画面43の表示処理を行い、体組成計10及び三次元測定器20の両方から測定結果を測定処理装置30(CPU30a)が受け取ると、図5(c)の測定終了画面44の表示に切り替えて、演算結果の整理が完了すると、その演算結果の各数値等を示す結果画面の表示処理を行うことを測定管理プログラム処理P4は規定する。また、測定結果に係る情報(体格及び体型に応じた各点のXYZ座標値、身長及び各特定部位の寸法に係る数値、脂肪(各特定部位の皮下脂肪及び体幹部の内臓脂肪)又は筋肉の測定結果に基づくレベル判定結果(レベルを示す数値)、及びユーザID等を含む情報)を人体モデル提供システム50へ送信する処理を演算装置(CPU30a)が行うことも、測定管理プログラム処理P4は規定する。 Then, the display process of the in-measurement screen 43 of FIG. 5B is performed, and when the measurement processing device 30 (CPU 30a) receives the measurement results from both the body composition meter 10 and the three-dimensional measuring device 20, FIG. The measurement management program process P4 defines that, when the display of the measurement end screen 44 is switched and the calculation results are arranged, the result screen showing the numerical values of the calculation results is displayed. Also, information related to measurement results (XYZ coordinate values of each point according to physique and body shape, numerical values related to height and dimensions of each specific part, fat (subcutaneous fat of each specific part and visceral fat of the trunk) or muscle The measurement management program process P4 also defines that the arithmetic unit (CPU 30a) performs processing for transmitting a level determination result (a numerical value indicating a level) and information including a user ID) to the human body model providing system 50 based on the measurement result. To do.
 なお、測定結果に係る情報を人体モデル提供システム50へ送信することで、測定処理装置30を含む人体測定システム5の被験者Hの測定に関する一連の処理は一旦完了し、これ以降については人体測定システム5では次回の測定を待つ状態になる。一方、人体モデル提供システム50から測定結果を受信する人体モデル提供システム50は、測定結果の受信に伴い、測定を行った被験者に応じた解剖的な人体モデルを提供するための処理を開始することになる。 In addition, by transmitting information related to the measurement result to the human body model providing system 50, a series of processes related to the measurement of the subject H of the human body measuring system 5 including the measurement processing device 30 is once completed, and thereafter, the human body measuring system At 5, the system waits for the next measurement. On the other hand, the human body model providing system 50 that receives the measurement result from the human body model providing system 50 starts processing for providing an anatomical human body model corresponding to the subject who has performed the measurement in response to the reception of the measurement result. become.
 図7は、人体モデル提供システム50の主要な内部構成を示すブロック図である。本実施形態の人体モデル提供システム50は、一般的なサーバコンピュータ(サーバ装置)で構築したものになっているが、分散処理等を行うことで複数のサーバ装置及びデータベース装置等を組み合わせてシステムを構築することも勿論可能である(例えば、人体モデルの提供に関する処理を主に行うサーバ装置、及び登録会員の会員データを格納するデータベースに関する処理を主に行うデータベースサーバ装置を組み合わせてシステムを構築することなどが想定できる)。 FIG. 7 is a block diagram showing the main internal configuration of the human body model providing system 50. The human body model providing system 50 according to the present embodiment is constructed by a general server computer (server device). However, the system is configured by combining a plurality of server devices and database devices by performing distributed processing or the like. It is of course possible to construct a system (for example, a system is constructed by combining a server device that mainly performs processing related to provision of a human body model and a database server device that mainly performs processing related to a database that stores member data of registered members. Can be assumed).
 人体モデル提供システム50(人体モデル処理装置に相当)は、全体的な制御及び各種処理を行うMPU50aに、各種デバイス等を内部接続線50hで接続したものになっており、各種デバイス等には、通信モジュール50b、RAM50c、ROM50d、入力インタフェース50e、出力インタフェース50f、及び記憶部50g等がある。 The human body model providing system 50 (corresponding to a human body model processing apparatus) is configured by connecting various devices and the like to the MPU 50a that performs overall control and various processes by an internal connection line 50h. There are a communication module 50b, a RAM 50c, a ROM 50d, an input interface 50e, an output interface 50f, a storage unit 50g, and the like.
 通信モジュール50bは、ネットワークNWとの接続モジュールに相当する通信デバイスであり、所要の通信規格に応じたものである(例えばLANモジュール)。通信モジュール50bは、所要の通信機器(図示は省略。例えばルータ等が該当)を介してネットワークNWと接続されており、測定処理装置30及び通信端末3等との通信を可能にする。なお、本実施形態において、人体モデル提供システム50は、被験者Hの身体的な測定結果(測定結果に係る各種情報)を、通信モジュール50bで取得することになる。 The communication module 50b is a communication device corresponding to a connection module with the network NW and conforms to a required communication standard (for example, a LAN module). The communication module 50b is connected to the network NW via required communication equipment (not shown, for example, a router or the like), and enables communication with the measurement processing device 30, the communication terminal 3, and the like. In the present embodiment, the human body model providing system 50 acquires the physical measurement result (various information related to the measurement result) of the subject H by the communication module 50b.
 RAM50cは、MPU50aの処理に伴う内容、ファイル等を一時的に記憶するものであり、ROM50dは、MPU50aの基本的な処理内容を規定したプログラム等を記憶するものである。入力インタフェース50eは、システム管理者等からの操作指示等を受け付けるキーボード50i、マウス等が接続されるものである。出力インタフェース50fは、ディスプレイ50j(表示出力装置)が接続されるものであり、MPU50aの処理に伴う内容をディスプレイ50jへ出力し、システム管理者等が現在の処理内容等を確認できるようにしている。 The RAM 50c temporarily stores contents and files associated with the processing of the MPU 50a, and the ROM 50d stores programs and the like that define the basic processing contents of the MPU 50a. The input interface 50e is connected to a keyboard 50i, a mouse, and the like that receive operation instructions from a system administrator or the like. The output interface 50f is connected to a display 50j (display output device), and outputs the contents accompanying the processing of the MPU 50a to the display 50j so that the system administrator can check the current processing contents and the like. .
 記憶部50gは、データベース、プログラム、及びテーブル等を記憶するものであり、具体的には、データベースとして会員データベース60を記憶し、プログラムとしてはサーバプログラムP10、モデル変形プログラムP11を記憶し、テーブルとしては、人体モデルテーブル70、ポイントテーブル80及びモデル数値テーブル85等を記憶する。なお、モデル変形プログラムP11を記憶部10gにインストールするには、光ディスク等の記憶媒体にモデル変形プログラムP11を記憶しておき、その記憶媒体を通じて、記憶部50gにインストールすること等が考えられる。 The storage unit 50g stores a database, a program, a table, and the like. Specifically, the storage unit 50g stores a member database 60 as a database, stores a server program P10 and a model modification program P11, and stores them as a table. Stores the human body model table 70, the point table 80, the model numerical value table 85, and the like. In order to install the model deformation program P11 in the storage unit 10g, it is conceivable to store the model deformation program P11 in a storage medium such as an optical disk and install it in the storage unit 50g through the storage medium.
 図8は、記憶部50gに記憶される会員データベース60の中身の一例を示し、ユーザ欄として、ユーザIDごとに、会員の氏名、ニックネーム、メールアドレス、及び各日のデータ(体組成計10及び三次元測定器20のそれぞれの測定結果を示す数値、測定結果に基づき得られた人体モデルを示すデータ等)が記憶される(なお、図8では示していないが、会員データベース60には、その他、性別、パスワード等も記憶される)。会員データベース60のユーザ欄は、新たなユーザの会員登録により増加し、会員ユーザが退会することで、そのユーザのユーザ欄が削除されることになり、また、各ユーザが測定を行うごとに、測定データ欄には測定日のデータが格納されるようになり、これらの要因により、会員データベース60の中身は随時、更新される。 FIG. 8 shows an example of the contents of the member database 60 stored in the storage unit 50g. As the user column, for each user ID, the member's name, nickname, mail address, and data for each day (body composition meter 10 and A numerical value indicating each measurement result of the three-dimensional measuring device 20, data indicating a human body model obtained based on the measurement result, and the like (not shown in FIG. 8) are stored in the member database 60. , Gender, password, etc. are also stored). The user field of the member database 60 increases due to the new user's membership registration, and when the member user leaves, the user field of the user is deleted, and each time each user performs measurement, Measurement date data is stored in the measurement data column, and the contents of the member database 60 are updated at any time due to these factors.
 記憶部50gに記憶されるプログラムP1の中のサーバプログラムP1は、サーバコンピュータ用のオペレーティングシステムに応じた各種処理を規定したものであり、この規定内容に基づいた処理をMPU50aが行うことで、人体モデル提供システム50は、サーバコンピュータ(サーバ装置)としての各機能を果たす。 The server program P1 in the program P1 stored in the storage unit 50g prescribes various processes according to the operating system for the server computer, and the MPU 50a performs processes based on the prescription contents, so that the human body The model providing system 50 fulfills each function as a server computer (server device).
 また、モデル変形プログラムP11は、本発明に関する主要な各処理を規定したものであり、会員認証に係る処理、測定結果に応じた人体モデルを生成する処理、生成した人体モデルを配信する処理等を、MPU50aが各種手段として行うことを規定した内容になっている。モデル変形プログラムP11の詳細は後述し、先に、各テーブル(人体モデルテーブル70、ポイントテーブル80、モデル数値テーブル85)について説明する。 The model transformation program P11 defines main processes related to the present invention, and includes processes related to member authentication, processes for generating a human body model according to measurement results, processes for distributing the generated human body model, and the like. The contents stipulate that the MPU 50a performs as various means. Details of the model transformation program P11 will be described later. First, each table (human body model table 70, point table 80, model numerical value table 85) will be described.
 図9は、人体モデルテーブル70の中身の一部を示し、図9に示すのは男性用の人体モデルの範囲である(女性用人体モデルの詳細については後述する)。本発明では、被験者Hの測定結果に応じた人体モデルを提供するにあたり、一から人体モデルを生成するのではなく、ベースとなる人体モデルを準備しておき、その準備した人体モデルを被験者Hの測定結果に応じて適宜、変形等を行うことで、被験者の体格及び体つきに応じた人体モデルを提供する。人体モデルテーブル70は、予め準備する人体モデルのデータを男女別に格納したものであり、ログイン中のユーザ(被験者)の性別を会員データテーブル60から特定し、男女いずれのモデルデータを用いるかをMPU50aが判断する。本実施形態の人体モデルは、骨格モデル、筋肉モデル、及び脂肪モデルを含んで構成することで、解剖的な表示を可能にしている。 FIG. 9 shows a part of the contents of the human body model table 70, and FIG. 9 shows the range of the human body model for men (details of the human body model for women will be described later). In the present invention, in providing a human body model according to the measurement result of the subject H, a human body model is not generated from scratch, but a base human body model is prepared, and the prepared human body model is used as the subject H model. A human body model corresponding to the physique and body of the subject is provided by appropriately performing deformation or the like according to the measurement result. The human body model table 70 stores human body model data prepared in advance for each gender, specifies the gender of the logged-in user (subject) from the member data table 60, and determines which model data to use for the male and female MPU 50a. Judgment. The human body model of this embodiment includes an anatomical display by including a skeleton model, a muscle model, and a fat model.
 人体モデルテーブル70の中身に関して、男性用人体モデルを例にして説明すると、まず、人体モデルテーブル70は、人体モデルを構成する骨格モデル71、筋肉モデル72、及び脂肪モデル73の三種類のモデルを含み、また、モデル毎に、統計的に身長に対する四肢の長さ寸法の比率(袖丈の比率、股下の比率)が標準である標準パターン70a、標準パターン70aに対して四肢の寸法(手足の寸法)を約95%短くした第1パターン70b、及び標準パターンル70aに対して四肢の寸法(手足の寸法)を約105%長くした第2パターン70cという計三種類のパターンを含む。 The contents of the human body model table 70 will be described by taking a male human body model as an example. First, the human body model table 70 includes three types of models: a skeleton model 71, a muscle model 72, and a fat model 73 that constitute the human body model. In addition, for each model, the standard pattern 70a in which the ratio of the length dimension of the limbs to the height (the ratio of the sleeve length, the ratio of the crotch) is standard for each model, ) About 95% shorter than the standard pattern 70a and the second pattern 70c about 105% longer than the standard pattern 70a.
 骨格モデル71は、骨格を示すモデルであり、標準パターン70aに応じた標準の骨格モデル71a、第1パターン70bに応じた第1の骨格モデル71b、及び第2パターン70cに応じた第2の骨格モデル71cを含む。また、筋肉モデル72も、骨格モデル71と同様に、標準パターン70aに応じた標準の筋肉モデル72a、第1パターン70bに応じた第1の筋肉モデル72b、及び第2パターン70cに応じた第2の筋肉モデル72cを含み、脂肪モデル73も、標準パターン70aに応じた標準の脂肪モデル73a、第1パターン70bに応じた第1の脂肪モデル73b、及び第2パターン70cに応じた第2の脂肪モデル73cを含む。 The skeleton model 71 is a model indicating a skeleton, and a standard skeleton model 71a corresponding to the standard pattern 70a, a first skeleton model 71b corresponding to the first pattern 70b, and a second skeleton corresponding to the second pattern 70c. Model 71c is included. Similarly to the skeletal model 71, the muscle model 72 also includes a standard muscle model 72a corresponding to the standard pattern 70a, a first muscle model 72b corresponding to the first pattern 70b, and a second muscle 70 corresponding to the second pattern 70c. The fat model 73 includes a standard fat model 73a corresponding to the standard pattern 70a, a first fat model 73b corresponding to the first pattern 70b, and a second fat corresponding to the second pattern 70c. A model 73c is included.
 これら各骨格モデル71、筋肉モデル72、脂肪モデル73は、人体モデルとしてパターン別に組み合わされる1つのセットになっている。すなわち、標準パターン70aとして、標準の骨格モデル71a、筋肉モデル72a、及び脂肪モデル73aが対応付けられて一つのセット(組合せ)になっており、以下同様に、第1パターン70bとして、第1の骨格モデル71b、筋肉モデル72b、及び脂肪モデル73bが対応付けられて一つのセットになっており、第2パターン70cとして、第2の骨格モデル71c、筋肉モデル72c、及び脂肪モデル73cが対応付けられて一つのセットになっている。 These skeletal model 71, muscle model 72, and fat model 73 are combined into one set as a human body model for each pattern. That is, as the standard pattern 70a, the standard skeleton model 71a, the muscle model 72a, and the fat model 73a are associated with each other to form one set (combination). Similarly, as the first pattern 70b, The skeleton model 71b, the muscle model 72b, and the fat model 73b are associated with each other to form one set, and the second skeleton model 71c, the muscle model 72c, and the fat model 73c are associated with each other as the second pattern 70c. Is one set.
 また、これらの各骨格モデル71、筋肉モデル72、脂肪モデル73は三次元表示が可能に形成されており、上述した非特許文献1に係る3D人体解剖アプリで示されるモデルと同様に、各モデルを回転させる操作(例えば、スワイプ操作)を行うことで、所望の角度から、各モデルを確認できると共に、各モデルの所要部分の拡大又は縮小も所要の操作(例えば、ピンチ装置)で可能になっている。 Each of the skeleton model 71, the muscle model 72, and the fat model 73 is formed so as to be capable of three-dimensional display, and each model is similar to the model shown in the 3D human anatomy app according to Non-Patent Document 1 described above. By performing an operation (for example, swipe operation) for rotating the model, each model can be confirmed from a desired angle, and a required portion of each model can be enlarged or reduced by a required operation (for example, a pinch device). ing.
 さらに、これらの各骨格モデル71、筋肉モデル72、脂肪モデル73は、形状的に変形可能なテクスチャで形成されている。例えば、人体の骨格を表す骨格モデル71(標準の骨格モデル71a、第1の骨格モデル71b、第2の骨格モデル71c)は、相似的に拡大又は縮小する変形が可能になっていると共に、骨格を構成する複数の骨部分(ボーン)のレベルでも長さ寸法の拡大又は縮小、骨格における関節を中心とした角度変化等の変形が可能になっており、それにより骨格の部分的な変形も可能になっている。なお、これらの各骨格モデル71、筋肉モデル72、脂肪モデル73は、それらの体格に応じた数値を有するものとなっており、それらの数値は、モデル数値テーブル85においてモデルごとに示される。 Further, each of the skeleton model 71, the muscle model 72, and the fat model 73 is formed with a texture that is deformable in shape. For example, the skeleton model 71 (standard skeleton model 71a, first skeleton model 71b, second skeleton model 71c) representing the skeleton of the human body can be deformed to be enlarged or reduced in a similar manner, Even at the level of multiple bone parts (bones) that make up the bone, it is possible to enlarge or reduce the length dimension, change the angle change around the joint in the skeleton, etc., and thereby also allow partial deformation of the skeleton It has become. Each of the skeleton model 71, the muscle model 72, and the fat model 73 has numerical values corresponding to their physiques, and these numerical values are shown for each model in the model numerical value table 85.
 また、人体の筋肉を表す筋肉モデル72(標準の筋肉モデル72a、第1の筋肉モデル72b、第2の筋肉モデル72c)は、上述した骨格モデル(標準の骨格モデル71a、第1の骨格モデル71b、第2の骨格モデル71c)を覆う筋肉(筋肉のテクスチャ)を有する形態で形成してあり、赤又はピンク色系統の色合いをテクスチャ表面に付したものになっている。筋肉モデル72も形状的に変形可能となっているが、変形の仕方としては、骨格モデル71の上述した変形に追従して変形する場合と、筋肉モデルが単独で変形する場合の二通りの変形の仕方が存在する。 The muscle model 72 (standard muscle model 72a, first muscle model 72b, second muscle model 72c) representing the muscles of the human body is the skeleton model (standard skeleton model 71a, first skeleton model 71b). The second skeleton model 71c) has a muscle (muscle texture) covering the texture surface, and the texture surface is colored with red or pink. The muscle model 72 can also be deformed in shape, but there are two ways of deformation, that is, when the skeleton model 71 is deformed following the above-described deformation and when the muscle model is deformed alone. There is a way.
 すなわち、筋肉モデル72の筋肉は、筋肉を表す一定の厚みを有するシート状のテクスチャで形成されており、骨格モデル71が、上述したように相似的に拡大又は縮小すると、そのような変形に追従するように、筋肉のテクスチャが伸縮して寸法的に拡大又は縮小するように作り込まれている。また、骨格モデル71が、上述したように部分的に寸法の拡大又は縮小、若しくは角度変化等の変形が行われると、筋肉モデル72は、そのような部分的な変形にも追従して、筋肉のテクスチャが伸縮変形するように作り込まれている。なお、本実施形態の筋肉モデル72は、顔部分、手先部分、及び足先部分の筋肉を省略した構成にしている。 That is, the muscle of the muscle model 72 is formed with a sheet-like texture having a certain thickness representing the muscle, and when the skeleton model 71 is enlarged or reduced in a similar manner as described above, it follows such deformation. Thus, the texture of the muscle is stretched and expanded or reduced in size. Further, when the skeleton model 71 is partially deformed such as enlarged or reduced in size or changed in angle as described above, the muscle model 72 follows such partial deformation, The texture is made to stretch and deform. Note that the muscle model 72 of the present embodiment has a configuration in which the muscles of the face part, the hand part, and the foot part are omitted.
 また、図10(a)(b)に示すように、筋肉モデル72が単独で変形する場合としては、特定部位(左腕、右腕、左脚、右脚、及び体幹部)の単位で、特定部位の太さ寸法を、測定結果により判定されたレベルに応じた程度に合わせて筋肉部分(筋肉のテクスチャの厚み)を太くする変形、又は細くする変形が可能になっている(図10(a)は左腕の筋肉が太くなる例を示し、図10(b)は左腕の筋肉が細くなる例を示す)。なお、筋肉モデル72は、一定の厚みのあるテクスチャで形成されているため、太さ寸法を細くする場合はテクスチャの厚みを薄くするように変形されるので、骨格モデルを侵食するようにまで変形することは生じ得ない。 In addition, as shown in FIGS. 10A and 10B, when the muscle model 72 is deformed alone, the specific part is in units of specific parts (left arm, right arm, left leg, right leg, and trunk). The thickness dimension of the muscle is deformed so that the muscle portion (the thickness of the muscle texture) is thickened or thinned according to the level determined by the measurement result (FIG. 10A). Shows an example in which the muscles of the left arm become thicker, and FIG. 10B shows an example in which the muscles of the left arm become thinner. Since the muscle model 72 is formed with a texture having a certain thickness, when the thickness dimension is reduced, the muscle model 72 is deformed so as to reduce the thickness of the texture, so that the skeleton model is eroded. It can't happen.
 さらに、人体の脂肪を表す脂肪モデル73(標準の脂肪モデル73a、第1の脂肪モデル73b、第2の脂肪モデル73c)は、上述した筋肉モデル72(標準の筋肉モデル72a、第1の筋肉モデル72b、第2の筋肉モデル72c)を覆う脂肪(脂肪のテクスチャ)を有する形態で形成してあり、黄又は黄土色系統の色合いを基準色としてテクスチャ表面に付したものになっている。脂肪モデル73も形状的に変形可能となっているが、変形の仕方としては、筋肉モデル72の場合と同様に、筋肉モデル72の上述した変形に追従して変形する場合と、脂肪モデル単体で変形する場合の二通りの変形の仕方が存在する。 Furthermore, the fat model 73 (standard fat model 73a, first fat model 73b, second fat model 73c) representing the fat of the human body is the muscle model 72 (standard muscle model 72a, first muscle model) described above. 72b and the second muscle model 72c) are formed in a form having fat (a texture of fat), and the texture surface is provided with a shade of yellow or ocher as a reference color. The fat model 73 can also be deformed in terms of shape. The deformation method is the same as in the case of the muscle model 72. There are two ways of deformation in the case of deformation.
 脂肪モデル73の脂肪も、脂肪を示す所定の厚みを有するシート状のテクスチャで形成されているが、厚み自体は、筋肉モデル72より薄くなっている。筋肉モデル72が、上述したように骨格モデル71に追従して相似的に拡大又は縮小するように変形した場合、脂肪モデル73は、脂肪のテクスチャが、そのような変形に追従して変形するように作り込まれている。また、筋肉モデル72の特定部位(四肢のいずれか、又は体幹部)の太さ寸法が太く又は細く変形した場合、脂肪モデル73も、その筋肉モデル72の変形した特定部位に応じた脂肪箇所が、追従するように太く又は細く変形するように、脂肪のテクチャが伸縮変形する。なお、本実施形態の脂肪モデル73は、顔部分、手先部分、及び足先部分の筋肉を省略した構成にしている。 The fat of the fat model 73 is also formed with a sheet-like texture having a predetermined thickness indicating fat, but the thickness itself is thinner than that of the muscle model 72. When the muscle model 72 is deformed to follow the skeleton model 71 and expand or contract similarly, as described above, the fat model 73 causes the fat texture to deform following such deformation. It is built in. Further, when the thickness dimension of the specific part (one of the limbs or the trunk) of the muscle model 72 is deformed to be thick or thin, the fat model 73 also has a fat part corresponding to the deformed specific part of the muscle model 72. The fat texture is stretched and deformed so as to be deformed thick or thin so as to follow. Note that the fat model 73 of the present embodiment has a configuration in which muscles of the face part, the hand part, and the foot part are omitted.
 また、図11に示すように、脂肪モデル73が単独で変形する場合としては、特定部位(左腕、右腕、左脚、右脚、及び体幹部)の単位で、特定部位の脂肪部分の太さ寸法を、判定されたレベルに応じた程度に合わせて太くする変形が可能になっている。さらに、脂肪モデル73において特定部位の太さ寸法を太くする変形を行った場合は、太くした特定部位の表面箇所の色合い(基準色の色合い)を、太くした度合いに応じて段階的に濃くするように、脂肪モデル73のテクスチャは作り込まれている。なお、脂肪モデル73の脂肪は、筋肉モデル72の表面に密着して覆うよう配置されるようになっており、そのため、筋肉モデル72の筋肉の形状を、脂肪に反映しやすくしている。 Also, as shown in FIG. 11, when the fat model 73 is deformed independently, the thickness of the fat part of the specific part in units of the specific part (left arm, right arm, left leg, right leg, and trunk). It is possible to deform the dimensions so as to increase the thickness according to the determined level. Furthermore, when the fat model 73 is deformed to increase the thickness dimension of the specific part, the hue of the surface part of the specific part thickened (the hue of the reference color) is gradually increased according to the degree of thickening. As described above, the texture of the fat model 73 is built. Note that the fat of the fat model 73 is arranged so as to be in close contact with the surface of the muscle model 72, so that the muscle shape of the muscle model 72 is easily reflected in the fat.
 一方、脂肪モデル73の特定部位の脂肪部分を、判定されたレベルに応じて細くすることは、上述したように脂肪モデル73は薄いテクスチャで形成されているので、図12に示すように、一段階程度しか細くすることができず、それ以上の段階で細くすることは、対象となる特定部位の表面の色合い(基準色の色合い)を薄くし、更に細くするレベルを示すことについては、対象となる特定部位の脂肪部分の透明度を段階的に増すようにしている。例えば、皮下脂肪に係る判定レベルが、標準の「0」より小さい「-1」であれば、特定部位の脂肪部分の寸法を一段階、細くする変形を行うと共に、その脂肪部分の表面の色合いを基準色(「0」の場合の表面の色)より一段階薄くし、判定レベルが「-2」であれば、特定部位の脂肪部分の表面の色合いを、更に一段階薄くし、判定レベルが「-3」であれば、特定部位の脂肪部分が半透明になるようにし、判定レベルが「-4」であれば、特定部位の脂肪部分の透明度(透過度)を高めて、脂肪モデルの下の層となる筋肉モデルの筋肉が映るように、テクスチャを作り込んでいる。 On the other hand, thinning the fat portion of the specific part of the fat model 73 according to the determined level is because the fat model 73 is formed with a thin texture as described above. It is only possible to make it thinner than the level, and making it thinner at a higher level means that the surface color of the target specific part (the color of the reference color) is thinned and the level of further thinning is shown. The transparency of the fat portion at a specific site is gradually increased. For example, if the determination level relating to subcutaneous fat is “−1” which is smaller than the standard “0”, the fat portion of the specific part is deformed to be thinned by one step, and the color of the surface of the fat portion is changed. Is one level lighter than the reference color (surface color in the case of “0”), and if the judgment level is “−2”, the surface of the fat portion of the specific part is further lightened by one stage and the judgment level If “−3”, the fat part of the specific part is made translucent, and if the determination level is “−4”, the transparency (transparency) of the fat part of the specific part is increased. The texture is built in so that the muscle of the muscle model below is reflected.
 図13は、上述した人体モデル(骨格モデル71、筋肉モデル72、脂肪モデル73)の相似的な拡大又は縮小の変形の概要を示しており、まず、人体モデルの中の骨格に応じた骨格モデル71(例えば、標準の骨格モデル71a)を、被験者Hの体格に係る測定結果(例えば、身長に準じた測定寸法)に基づき拡大又は縮小すると、その骨格モデル71に対応づけてセットになっている筋肉モデル(例えば、標準の筋肉モデル72a)は、骨格モデル71(標準の骨格モデル71a)の変形に追従して、同様に拡大又は縮小変形する。さらに、このような筋肉モデル72(標準の筋肉モデル72a)の変形に追従して、脂肪モデル73(例えば、標準の脂肪モデル73a)も同様に拡大又は縮小変形することになる。このような各モデル間での追従変形は、同率で拡大又は縮小することで可能となる。 FIG. 13 shows an outline of similar enlargement or reduction deformation of the above-described human body models (skeleton model 71, muscle model 72, fat model 73). First, a skeleton model corresponding to the skeleton in the human body model. When 71 (for example, standard skeleton model 71a) is enlarged or reduced based on a measurement result (for example, a measurement dimension according to height) related to the physique of subject H, the set is associated with the skeleton model 71. The muscle model (for example, the standard muscle model 72a) expands or contracts in the same manner following the deformation of the skeleton model 71 (standard skeleton model 71a). Further, following the deformation of the muscle model 72 (standard muscle model 72a), the fat model 73 (for example, the standard fat model 73a) is similarly enlarged or reduced. Such follow-up deformation between the models can be performed by enlarging or reducing at the same rate.
 例えば,骨格モデル71(例えば、標準の骨格モデル71a)は、その体格を表す身長として170.58cmの寸法を有し(図16のモデル数値テーブル参照)、一方、被験者Hの測定結果で、被験者の身長が約179.1cmであれば、被験者の測定結果に合わせて、骨格モデル71全体を1.05倍(179.1/170.58)で相似的に拡大変形することになり、この場合、筋肉モデル72(例えば、標準の筋肉モデル72a)及び脂肪モデル73(例えば、標準の脂肪モデル73a)もそれぞれ全体を1.05倍で拡大する処理を行うことで、追従した拡大変形を行うようにしている。また、骨格モデル71(例えば、標準の骨格モデル71a)を、被験者の測定結果に合わせて全体を0.95倍で相似的に縮小変形する場合、筋肉モデル72(例えば、標準の筋肉モデル72a)及び脂肪モデル73(例えば、標準の脂肪モデル73a)も、それぞれ全体を0.95倍に縮小する処理を行うことで、追従した縮小変形を行うようにしている。 For example, the skeletal model 71 (for example, the standard skeletal model 71a) has a dimension of 170.58 cm as a height representing its physique (see the model numerical value table in FIG. 16). If the height of the body is about 179.1 cm, the entire skeletal model 71 is similarly enlarged and deformed by 1.05 times (179.1 / 170.58) according to the measurement result of the subject. The muscle model 72 (for example, the standard muscle model 72a) and the fat model 73 (for example, the standard fat model 73a) are also subjected to the process of enlarging the whole by 1.05 times, thereby performing the following expansion deformation. I have to. Further, when the skeleton model 71 (for example, the standard skeleton model 71a) is deformed to be reduced in a similar manner by 0.95 times according to the measurement result of the subject, the muscle model 72 (for example, the standard muscular model 72a) And the fat model 73 (for example, the standard fat model 73a) is also subjected to a reduction deformation that follows by performing a process of reducing the whole by 0.95 times.
 また、骨格を示す骨格モデル71が部分的に寸法の拡大又は縮小するような変形を行えるようにするため、そして、そのような変形に追従して、筋肉を示す筋肉モデル72及び脂肪を示す脂肪モデル73が変形できるようにするために、各モデルには、変形の基点となる複数の点(変形基点)が設けられている。 In addition, in order to allow the skeleton model 71 indicating the skeleton to be deformed so that the size thereof is partially enlarged or reduced, and following the deformation, the muscle model 72 indicating the muscle and the fat indicating fat In order to allow the model 73 to be deformed, each model is provided with a plurality of points (deformation base points) that are the base points of deformation.
 図14(a)~(c)は、各モデルにおける複数の変形基点の代表例を概要的に示したものである。まず、図14(a)は標準の骨格モデル71aにおける複数の変形基点の中の一部を示す変形基点P1~P14を示す。変形基点P1は頭部頂点であり、以下、変形基点P2は右肩、変形基点P3は左肩、変形基点P4は右肘、変形基点P5は左肘、変形基点P6は右手先端(中指の第3関節)、変形基点P7は左手先端(中指の第3関節)、変形基点P8は腰中心の背骨、変形基点P9は右骨盤、変形基点P10は左骨盤、変形基点P11は右膝、変形基点P12は左膝、変形基点P13は右足先端、変形基点P14は左足先端になっている。これら各変形基点P1~P14は、XYZ座標系における座標値をそれぞれ有したものになっている。なお、各変形基点P1~P14は、変形基点の代表例であり、実際には、もう少し多くの点が存在する(図15のポイントテーブル80を参照)。 14A to 14C schematically show representative examples of a plurality of deformation base points in each model. First, FIG. 14A shows deformation base points P1 to P14 showing some of the plurality of deformation base points in the standard skeleton model 71a. The deformation base point P1 is the head apex. Hereinafter, the deformation base point P2 is the right shoulder, the deformation base point P3 is the left shoulder, the deformation base point P4 is the right elbow, the deformation base point P5 is the left elbow, and the deformation base point P6 is the right hand tip (the third finger of the middle finger). Joint), deformation base point P7 is the tip of the left hand (third joint of the middle finger), deformation base point P8 is the spine at the center of the waist, deformation base point P9 is the right pelvis, deformation base point P10 is the left pelvis, deformation base point P11 is the right knee, deformation base point P12 Is the left knee, the deformation base point P13 is the tip of the right foot, and the deformation base point P14 is the tip of the left foot. Each of these deformation base points P1 to P14 has a coordinate value in the XYZ coordinate system. Each of the deformation base points P1 to P14 is a representative example of the deformation base point, and actually there are more points (see the point table 80 in FIG. 15).
 また、図14(b)は、図14(a)に示す標準の骨格モデル71aに対応付けられる標準の筋肉モデル72aおける複数の変形基点P1′~P14′を示し、これらの変形基点P1′~P14′は、図14(a)の標準の骨格モデル71aの変形基点P1~P14に対応した点になっている。なお、本実施形態の筋肉モデル72は、顔部分、手先部分、及び足先部分の筋肉を省略した構成にしているので、図中に示す顔部分、手先部分、及び足先部分に応じた筋肉モデル72における変形基点P1′、P6′、P7′、P13′、P14′は仮想的な変形基点になる。 FIG. 14B shows a plurality of deformation base points P1 ′ to P14 ′ in the standard muscle model 72a associated with the standard skeleton model 71a shown in FIG. 14A, and these deformation base points P1′˜ P14 ′ is a point corresponding to the deformation base points P1 to P14 of the standard skeleton model 71a of FIG. Note that the muscle model 72 of the present embodiment has a configuration in which the muscles of the face part, the hand part, and the foot part are omitted, so that the muscles corresponding to the face part, the hand part, and the foot part shown in the figure. The deformation base points P1 ′, P6 ′, P7 ′, P13 ′, and P14 ′ in the model 72 become virtual deformation base points.
 さらに、図14(c)は、図14(a)に示す標準の骨格モデル71a及び図14(b)の標準の筋肉モデル72aに対応付けられる標準の脂肪モデル73aおける複数の変形基点P1″~P14″を示し、これらの変形基点P1″~P14″は、図14(a)の標準の骨格モデル71aの変形基点P1~P14及び図14(b)の標準の筋肉モデル72aの変形基点P1′~P14′に対応した点になっている。なお、本実施形態の脂肪モデル73は、顔部分、手先部分、及び足先部分の筋肉を省略した構成にしているので、図中に示す顔部分、手先部分、及び足先部分に応じた脂肪モデル73における変形基点P1″、P6″、P7″、P13″、P14″は仮想的な変形基点になる。 Further, FIG. 14C shows a plurality of deformation base points P1 ″ to the standard fat model 73a associated with the standard skeleton model 71a shown in FIG. 14A and the standard muscle model 72a shown in FIG. P14 ″, and these deformation base points P1 ″ to P14 ″ are the deformation base points P1 to P14 of the standard skeleton model 71a of FIG. 14A and the deformation base points P1 ′ of the standard muscle model 72a of FIG. 14B. The point corresponds to ~ P14 '. In addition, since the fat model 73 of the present embodiment has a configuration in which the muscles of the face part, the hand part, and the foot part are omitted, the fat corresponding to the face part, the hand part, and the foot part shown in the figure. The deformation base points P1 ″, P6 ″, P7 ″, P13 ″, P14 ″ in the model 73 become virtual deformation base points.
 図14(a)に示す標準の骨格モデル71aにおける部分的な変形の例として、右肩の変形基点P2が、被験者の測定結果に応じて、XYZ座標系において(X、Y、Z)=(3、4,4)という座標距離分だけ移動するように変形した状況を想定する。このような部分的な変形が標準の骨格モデル71aに生じた場合、この右肩の変形基点P2に対応する標準の筋肉モデル72aの右肩の変形基点P2′及び標準の脂肪モデル73aの右肩の変形基点P2″の座標値も同様に、(X、Y、Z)=(3、4,4)という座標距離分だけ移動するように変形することで、骨格モデル71aにおける部分的な変形処理に対しても追従変形を行えるようにしている。なお、このような部分的な変形処理を行った場合、その変形基点周辺のテクスチャは、変形(拡大又は縮小)に応じて自在に伸び縮みするように作り込まれている。 As an example of partial deformation in the standard skeleton model 71a shown in FIG. 14A, the right shoulder deformation base point P2 is (X, Y, Z) = (X, Y) in the XYZ coordinate system according to the measurement result of the subject. Assume a situation in which the robot is deformed so as to move by a coordinate distance of 3, 4, 4). When such a partial deformation occurs in the standard skeleton model 71a, the right shoulder deformation base point P2 'of the standard muscle model 72a corresponding to the right shoulder deformation base point P2 and the right shoulder of the standard fat model 73a. Similarly, the coordinate value of the deformation base point P2 ″ is also deformed so as to move by the coordinate distance of (X, Y, Z) = (3, 4, 4), whereby partial deformation processing in the skeleton model 71a is performed. In addition, when such partial deformation processing is performed, the texture around the deformation base point freely expands and contracts according to deformation (enlargement or reduction). It is built like that.
 また、図14(b)の標準の筋肉モデル72aが部分的に変形した場合の標準の脂肪モデルの追従変形も、上記と同様に行われる。例えば、標準の脂肪モデル72aにおける部分的な変形の例として、腰中心の背骨に応じた変形基点P8′が、被験者の測定結果に応じて、XYZ座標系において(X、Y、Z)=(0、0,6)という座標距離分だけ移動するように変形したと想定する。このような部分的な変形が標準の筋肉モデル72aに生じた場合、この変形基点P8′に対応する標準の脂肪モデル73aの変形基点P8″の座標値も同様に、(X、Y、Z)=(0、0,6)という座標距離分だけ移動するように変形することで、筋肉モデル72aにおける部分的な変形処理に対しても追従変形を行えるようにしている。 Further, the follow-up deformation of the standard fat model when the standard muscle model 72a of FIG. 14B is partially deformed is performed in the same manner as described above. For example, as an example of partial deformation in the standard fat model 72a, the deformation base point P8 ′ corresponding to the spine at the center of the waist is (X, Y, Z) = (in the XYZ coordinate system according to the measurement result of the subject. It is assumed that the robot has been deformed so as to move by a coordinate distance of 0, 0, 6). When such partial deformation occurs in the standard muscle model 72a, the coordinate values of the deformation base point P8 ″ of the standard fat model 73a corresponding to the deformation base point P8 ′ are also (X, Y, Z). By deforming so as to move by a coordinate distance of = (0, 0, 6), it is possible to perform follow-up deformation even for partial deformation processing in the muscle model 72a.
 なお、上述した変形に関する説明では、標準の人体モデル(標準の骨格モデル71a、筋肉モデル72a、脂肪モデル73a)の場合で説明したが、第1の人体モデル(第1の骨格モデル71b、筋肉モデル72b、脂肪モデル73b)及び第2の人体モデル(第2の骨格モデル71c、筋肉モデル72c、脂肪モデル73c)でも同様な変形に関する処理が可能となっている。 In the above description regarding the deformation, the case of the standard human body model (standard skeleton model 71a, muscle model 72a, fat model 73a) has been described. However, the first human body model (first skeleton model 71b, muscle model) is described. 72b, fat model 73b) and the second human body model (second skeleton model 71c, muscle model 72c, fat model 73c) can be processed similarly.
 図15は、図7の記憶部50gに記憶されるポイントテーブル80の中身の一例を示している。ポイントテーブル80は、骨格モデル71の変形基点と、被験者の三次元測定器20の測定結果に含まれる各ポイントの番号との対応関係を示すものになっている。すなわち、三次元測定器20で測定される被験者Hの皮膚の表面上のポイントは約3万点に至るので、被験者Hの測定結果に応じて骨格モデル71を変形するにあたり、骨格モデル71の変形基点を、約3万点の中のいずれのポイントを目指して移動させるかを特定する必要があるので、このような特定のための対応付けをポイントテーブル80は定めている。なお、ポイントテーブル80の中で規定される変形基点としては、皮膚の上からでも骨張った箇所(筋肉及び脂肪が基本的に覆わないで、皮膚が骨を覆うような箇所)が選ばれており、それにより、被験者Hの測定結果は皮膚の表面上であっても、筋肉及び脂肪の影響を受けにくくして、骨格モデルとの対応が取れるようにしている。 FIG. 15 shows an example of the contents of the point table 80 stored in the storage unit 50g of FIG. The point table 80 shows the correspondence between the deformation base point of the skeleton model 71 and the number of each point included in the measurement result of the subject's three-dimensional measuring device 20. That is, since the number of points on the surface of the skin of the subject H measured by the three-dimensional measuring device 20 reaches about 30,000 points, the deformation of the skeleton model 71 is performed when the skeleton model 71 is deformed according to the measurement result of the subject H. Since it is necessary to specify which of the approximately 30,000 points the base point is to be moved, the point table 80 defines a correspondence for such specification. In addition, as the deformation base point defined in the point table 80, a stretched portion (a portion where the muscle and fat are not basically covered and the skin covers the bone) is selected even from above the skin. Therefore, even if the measurement result of the subject H is on the surface of the skin, it is made less susceptible to the influence of muscles and fats so that it can correspond to the skeleton model.
 例えば、骨格モデル71の変形基点として頭部頂点は、三次元測定器20の測定結果の中の3225番目のポイントに対応することをポイントテーブル80は定めており、この場合は、骨格モデル71の頭部頂点のXYZ座標値が、3225番目のポイント(対応点に相当)のXYZ座標値に対応し,両者にずれがあれば、ずれている座標値の分だけ、骨格モデル71の頭部頂点を、3225番目のポイントへ移動する処理を行う。 For example, the point table 80 defines that the head vertex as the deformation base point of the skeleton model 71 corresponds to the 3225th point in the measurement result of the three-dimensional measuring device 20. If the XYZ coordinate value of the head vertex corresponds to the XYZ coordinate value of the 3225th point (corresponding to the corresponding point) and there is a deviation between them, the head vertex of the skeleton model 71 is equivalent to the deviation of the coordinate value. Is moved to the 3225th point.
 また、骨格モデル71の変形基点(XYZ座標値)に対応づけられる測定結果のポイント(XYZ座標値)は、1つの場合の他に、複数のポイントが対応づけられることがあり、このような場合は、複数のポイントのXYZ座標値の平均値を有する点が対応点となって、その対応点のXYZ座標値(三次元的な位置を示す数値)が、変形基点のXYZ座標値に対応付けられることになる。 In addition, the measurement result point (XYZ coordinate value) associated with the deformation base point (XYZ coordinate value) of the skeleton model 71 may be associated with a plurality of points in addition to one case. Is a point having an average value of XYZ coordinate values of a plurality of points as a corresponding point, and the XYZ coordinate value (a numerical value indicating a three-dimensional position) of the corresponding point is associated with the XYZ coordinate value of the deformation base point. Will be.
 例えば、変形基点として右肩は、右方向からの見た場合(YZ平面での視図)の10166番目のポイント、前方向から見た場合(XY平面での視図)の2055番目のポイント、及び後ろ方向から見た場合(XY平面での視図)の14829番目のポイントという計3つのポイントに対応付けられる。そして、この場合、10166番目のポイント、2055番目のポイント、及び14829番目のポイントの平均XYZ座標値の数値をMPU50aが算出し、その算出した平均XYZ座標値を有する点が対応点として特定されると共に、その対応点の平均XYZ座標値が、右肩の変形基点のXYZ座標値と対応し、両者にズレが存在すれば、一致するように、右肩の変形基点を対応点へ向けて移動する処理をMPU50aが行う。 For example, the right shoulder as the deformation base point is the 10166th point when viewed from the right (view on the YZ plane), the 2055th point when viewed from the front (view on the XY plane), When viewed from the rear direction (view on the XY plane), the 14829th point is associated with a total of three points. In this case, the MPU 50a calculates the numerical values of the average XYZ coordinate values of the 10166th point, the 2055th point, and the 14829th point, and a point having the calculated average XYZ coordinate value is specified as the corresponding point. At the same time, the average XYZ coordinate value of the corresponding point corresponds to the XYZ coordinate value of the right shoulder deformation base point, and if there is a deviation between them, the right shoulder deformation base point is moved toward the corresponding point so that they match. The MPU 50a performs the processing to be performed.
 また、図16は、図7の記憶部50gに記憶されるモデル数値テーブル85の中身の一例を示す。モデル数値テーブル85は、図9に示す人体モデルテーブル70に格納される各人体モデル(男性用及び女性用のそれぞれのパターンの骨格モデル、筋肉モデル、脂肪モデル)の各部に応じた数値を格納するものであり、図16では、男性の標準パターン70aに応じた人体モデルの各部に応じた数値が格納される範囲を示している。なお、モデル数値テーブル85は、図16では示していないが、男性の第1パターン70b及び第2パターン70cに応じた数値、並びに女性の各パターンに応じた数値も含んでいる。 FIG. 16 shows an example of the contents of the model numerical value table 85 stored in the storage unit 50g of FIG. The model numerical value table 85 stores numerical values corresponding to each part of each human body model (a skeleton model, a muscle model, and a fat model of each pattern for men and women) stored in the human body model table 70 shown in FIG. FIG. 16 shows a range in which numerical values corresponding to each part of the human body model corresponding to the male standard pattern 70a are stored. Although not shown in FIG. 16, the model numerical value table 85 includes numerical values corresponding to the first pattern 70b and the second pattern 70c for males, and numerical values corresponding to each pattern for females.
 モデル数値テーブル85が格納する各数値は、統計的に得られた数値に基づいたパターンごとの平均値であり、平均の身長の数値、股下の数値、及び腕長さの数値等より得られた股下割合(身長に対する足の左右平均長さが占める割合)、袖丈比率(身長に対する腕の左右平均長さが占める割合)等が格納されており、これらの数値は、被験者Hに応じたモデルのパターンを各パターン70a~70cの中から特定する場合、及び特定したパターンのモデルの拡大又は縮小する度合いを特定する場合などに用いられる。 Each numerical value stored in the model numerical value table 85 is an average value for each pattern based on a statistically obtained numerical value, and is obtained from an average height numerical value, an inseam numerical value, an arm length numerical value, and the like. The crotch ratio (the ratio of the left and right average length of the foot to the height), the sleeve length ratio (the ratio of the left and right average length of the arm to the height), and the like are stored. This is used when a pattern is specified from among the patterns 70a to 70c, and when the degree of enlargement or reduction of the model of the specified pattern is specified.
 次に、記憶部50gに記憶されるモデル変形プログラム11について説明していく。モデル変形プログラムP11の具体的なプログラミングの内容としては、会員認証に係る処理、測定結果に応じた人体モデルを提供する処理等が含まれる。 Next, the model deformation program 11 stored in the storage unit 50g will be described. Specific programming contents of the model deformation program P11 include processing relating to member authentication, processing for providing a human body model corresponding to the measurement result, and the like.
 会員認証に係る処理として、測定処理装置30からユーザID及びパスワードを含む会員認証に係る問合せ情報を人体モデル提供システム50(MPU50a)が受信すると、受信した問合せ情報に含まれるユーザID及びパスワードが会員データベース60に含まれるか否かを判断する。そして、ユーザID及びパスワードが会員データベース60に含まれる場合、MPU50aは、登録の旨の回答を測定処理装置30へ返信する処理を行い、また、含まれていない場合は、非登録の旨(非会員である旨)の回答を測定処理装置30へ返信する処理を行う。 When the human body model providing system 50 (MPU 50a) receives inquiry information related to member authentication including the user ID and password from the measurement processing device 30 as processing related to member authentication, the user ID and password included in the received inquiry information are registered as members. It is determined whether or not it is included in the database 60. When the user ID and password are included in the member database 60, the MPU 50a performs a process of returning a response indicating registration to the measurement processing device 30. When the user ID and password are not included, the MPU 50a does not register (not registered). A process of returning a response of “Membership” to the measurement processing device 30 is performed.
 また、測定処理装置30から送られてきたユーザIDを含む測定結果(測定結果に係る情報)を受信すると、会員データベース60の測定データの欄に、その受信した中に含まれるユーザIDに対応づけて、測定結果を受信日時(又は測定日時)と共に格納する処理を行う。 Further, when the measurement result including the user ID sent from the measurement processing device 30 (information related to the measurement result) is received, the measurement data column of the member database 60 is associated with the user ID included in the received data. The measurement result is stored together with the reception date and time (or measurement date and time).
 図17は、モデル変形プログラムP11が規定する処理の中で、本発明の主要な処理として、想定結果に応じた人体モデルを提供するために、人体モデルテーブル70に格納される人体モデルを変形する処理を示すフローチャートである。このフローチャート(人体モデル変形方法の中身を示すもの)に従って、MPU50aは、被験者Hの測定結果に応じた人体モデルを変形するための一連の処理を行う。本実施形態では、被験者Hの測定結果に応じた人定モデルを、一から生成するのではなく、上述した人体モデルテーブル70(図9参照)に格納される各パターンの人体モデルを利用して生成(格納されている人体モデルを変形することで生成)することで、スムーズに被験者に応じた人体モデルを提供できるようにしている。なお、図17のフローチャートに示すMPU50aによる処理は、測定処理装置30から送られた測定結果を、人体モデル提供システム50は取得したことに応じて開始されることになる。 FIG. 17 shows the transformation of the human body model stored in the human body model table 70 in order to provide the human body model corresponding to the assumed result as the main processing of the present invention in the processing prescribed by the model transformation program P11. It is a flowchart which shows a process. According to this flowchart (showing the contents of the human body model deformation method), the MPU 50a performs a series of processes for deforming the human body model according to the measurement result of the subject H. In this embodiment, the human model according to the measurement result of the subject H is not generated from scratch, but the human body model of each pattern stored in the human body model table 70 (see FIG. 9) described above is used. By generating (generating by deforming the stored human body model), a human body model corresponding to the subject can be provided smoothly. Note that the processing by the MPU 50a shown in the flowchart of FIG. 17 is started in response to the human body model providing system 50 acquiring the measurement result sent from the measurement processing device 30.
 最初のS1の段階で、測定処理装置30からの測定結果に基づき、図9の人体モデルテーブル70の標準パターン70a、手足が短めの第1パターン70b、手足が長めの第2パターン70cの中からいずれを用いるかを特定する処理をMPU50aは行う。具体的には、測定処理装置30から送られる測定結果には、被験者Hの身長、左腕の長さ、右腕の長さ、左脚の長さ、及び右脚の長さといった被験者Hの体格を示す寸法数値が含まれているので、これらの寸法数値から、被験者Hの袖丈比率及び股下比率を算出し(四肢の寸法に係る比率を算出)、その算出した数値に対して、図16のモデル数値テーブル85に格納される同姓の袖丈比率及び股下比率の中で最も近いものをMPU50aは特定し、その特定した袖丈比率及び股下比率に応じたパターンを、被験者Hのパターンとして特定する。 At the first stage S1, based on the measurement result from the measurement processing device 30, the standard pattern 70a of the human body model table 70 in FIG. 9, the first pattern 70b having a short limb, and the second pattern 70c having a long limb are selected. The MPU 50a performs processing for specifying which one to use. Specifically, the measurement result sent from the measurement processing device 30 includes the physique of the subject H such as the height of the subject H, the length of the left arm, the length of the right arm, the length of the left leg, and the length of the right leg. Since the dimensional numerical values shown are included, the sleeve length ratio and the crotch ratio of the subject H are calculated from these dimensional numerical values (calculating the ratio relating to the limb dimensions), and the model of FIG. The MPU 50a specifies the closest sleeve length ratio and inseam ratio of the same surname stored in the numerical value table 85, and specifies a pattern corresponding to the specified sleeve length ratio and inseam ratio as the pattern of the subject H.
 次のS2の段階で、特定したパターンに応じた人体モデル(一つのセットになった骨格モデル、筋肉モデル及び脂肪モデル)を、図13に示すように、被験者Hの測定された身長の寸法(体格に係る測定結果)に応じて、相似的に拡大又は縮小する処理をMPU50aは行う。 In the next step S2, a human body model (a set of skeleton model, muscle model, and fat model) corresponding to the specified pattern is measured as shown in FIG. The MPU 50a performs a process of enlarging or reducing in a similar manner according to the measurement result related to the physique.
 例えば、男性の被験者Hの身長が177.4cmであり、S1の段階で男性の標準パターンが特定されたとき、標準パターンの身長は図16のモデル数値テーブル85を参照すれば170.58cmであることから、この場合は、177.4/170.58という演算を行って、約1.04という比率が得られる。それにより、MPU50aは、人体モデルテーブル70に格納される男性の標準パターン70aの人体モデル(骨格モデル、筋肉モデル、及び脂肪モデル)を、図13に示すように、約1.04倍で相似的に拡大する。また、男性の被験者Hの身長が165.5cmであり、S1の段階で標準パターンが特定されたときは、165.5/170.58という演算を行って、約0.97という比率が得られる。それにより、MPU50aは、人体モデルテーブル70に格納される男性の標準パターン70aの人体モデルを、図13に示すように、約0.97倍で相似的に縮小する。 For example, when the height of the male subject H is 177.4 cm and the male standard pattern is specified in the stage of S1, the height of the standard pattern is 170.58 cm when referring to the model numerical value table 85 of FIG. Therefore, in this case, a calculation of 177.4 / 170.58 is performed, and a ratio of about 1.04 is obtained. Thereby, the MPU 50a is similar to the human body model (skeleton model, muscle model, and fat model) of the male standard pattern 70a stored in the human body model table 70 at about 1.04 times as shown in FIG. Expand to. Further, when the height of the male subject H is 165.5 cm and the standard pattern is specified in the stage of S1, the calculation of 165.5 / 170.58 is performed, and a ratio of about 0.97 is obtained. . Thereby, the MPU 50a similarly reduces the human body model of the male standard pattern 70a stored in the human body model table 70 by about 0.97 times as shown in FIG.
 そして、S3の段階で、相似的に拡大又は縮小した人体モデルの中の骨格モデル71(例えば、標準の骨格モデル71a)を部分的に変形する処理をMPU50aは行う。この部分的な変形は、図15のポイントテーブル80に含まれる複数の変形基点(例えば、標準の骨格モデル71の変形基点)が対応する番号のポイント(対応点)のXYZ座標値を取得した測定結果に含まれる中から特定し、その特定した番号のポイントの測定XYZ座標値へ変形基点のXYZ座標値が一致するように移動する処理を行って、骨格モデル71における部分的な変形を行う。 In step S3, the MPU 50a performs a process of partially deforming the skeleton model 71 (for example, the standard skeleton model 71a) in the similarly expanded or reduced human body model. This partial deformation is measured by obtaining XYZ coordinate values of points (corresponding points) with numbers corresponding to a plurality of deformation base points (for example, deformation base points of the standard skeleton model 71) included in the point table 80 of FIG. A part of the skeleton model 71 is partially deformed by performing a process of specifying the point included in the result and moving the XYZ coordinate value of the deformation base point to the measured XYZ coordinate value of the point of the specified number.
 図18(a)(b)は、骨格モデル71(例えば、標準の骨格モデル71a)を部分的に変形する処理の例を示す。骨格モデル71の骨盤の左骨盤(ポリゴン形状の変形が可能な変形用ボーンに相当。)の変更基点P20(図中、黒丸で示す)を、その変更基点が対応する特定番号のポイントp1(図中、白丸で示す。図15のポイントテーブル80から特定される対応点)へ移動させて、その移動により、変更基点P20の近傍の左骨盤のテクスチャ部分B1(図18(b)において破線で囲んだ箇所)が伸長して部分的に骨格モデル71が変形する。 18A and 18B show an example of processing for partially deforming the skeleton model 71 (for example, the standard skeleton model 71a). A change base point P20 (indicated by a black circle in the figure) of the left pelvis of the skeleton of the skeleton model 71 (corresponding to a deformable bone capable of deforming a polygon shape) is a point p1 of a specific number corresponding to the change base point (see FIG. In the middle, it is indicated by a white circle and moved to the corresponding point specified from the point table 80 in Fig. 15, and by the movement, the left pelvis texture portion B1 in the vicinity of the change base point P20 (enclosed by a broken line in Fig. 18B) And the skeleton model 71 is partially deformed.
 また、図19(a)~(c)は、骨格モデル71(例えば、標準の骨格モデル71a)において、変形基点P30(左肘の変形基点P30)を含む骨部分H1(図19では左上腕の骨部分H1。変形用ボーンに相当)を、体の中心側への直近となる関節C1(図19では左の肩関節C1)を中心に角度を変化させてから、長さ寸法を伸長して部分的に変形する例を示している。 19 (a) to 19 (c) show a bone portion H1 (in FIG. 19, the left upper arm) including the deformation base point P30 (the deformation base point P30 of the left elbow) in the skeleton model 71 (for example, the standard skeleton model 71a). Bone H1 (corresponding to deforming bone) is changed in angle around joint C1 (left shoulder joint C1 in FIG. 19) closest to the center of the body, and then the length dimension is extended. An example of partial deformation is shown.
 すなわち、図19(a)~(c)に示すように、左肘の変形基点P30(図中、黒丸で示す)は、移動先となる特定番号のポイントp2(図中、白丸で示す。図15のポイントテーブル80から特定される対応点)に対して、三次元的な方向のズレが大きいため、図19(a)に示す状態のままで、変形基点P30のXYZ座標値が、特定番号のポイントp2のXYZ座標値に一致するように変形すると、上腕の骨部分H1が不自然に曲がった状態で伸長することになるので、このような不具合を防ぐため、図19(b)に示すように、変形基点P30の体の中心側へ直近となる関節C1を中心に、上腕の骨部分H1の角度を回転するようにしている。 That is, as shown in FIGS. 19A to 19C, the left elbow deformation base point P30 (indicated by a black circle in the figure) is a point p2 having a specific number as a movement destination (indicated by a white circle in the figure). 15), the XYZ coordinate value of the deformation base point P30 is the specific number in the state shown in FIG. 19A. When deformed so as to coincide with the XYZ coordinate value of the point p2, the bone portion H1 of the upper arm extends in an unnaturally bent state. To prevent such a problem, as shown in FIG. Thus, the angle of the bone portion H1 of the upper arm is rotated around the joint C1 that is closest to the center of the body of the deformation base point P30.
 角度回転を行うには、まず、図19(a)に示すように、上腕の骨部分H1の骨端部の変形基点P30と、直近の左の肩関節C1の中心とを結ぶ仮想線K1のベクトルを求める。次に、肩関節C1の中心から特定番号のポイントp2へ向かう仮想直線K10のベクトルの方向(肩関節C1の中心からポイントp2へ向かう方向に相当)を特定する。それから、仮想線K1が、仮想直線K10と重なって方向が同じ向きになるように、肩関節C1を中心に左上腕の骨部分H1を回転させて、骨部分H1の肩関節C1に対する角度を変更する。 In order to perform the angle rotation, first, as shown in FIG. 19 (a), an imaginary line K1 connecting the deformation base point P30 of the end of the bone portion H1 of the upper arm and the center of the nearest left shoulder joint C1. Find a vector. Next, the direction of the vector of the virtual straight line K10 from the center of the shoulder joint C1 to the point p2 with a specific number (corresponding to the direction from the center of the shoulder joint C1 to the point p2) is specified. Then, the angle of the bone portion H1 relative to the shoulder joint C1 is changed by rotating the bone portion H1 of the left upper arm around the shoulder joint C1 so that the virtual line K1 overlaps the virtual straight line K10 and has the same direction. To do.
 図19(a)に示す角度変更を行うと、図19(b)(c)に示すように、肩関節C1から変更基点P30を結ぶ仮想線S1の延長線上にポイントp2が位置することになり、三次元的な方向のズレが解消される。この後は、上述した図18の場合と同様に、角度を変更した状態の骨部分H1を、変更基点P30が対応点のポイントp2へ一致するように、骨部分H1の長さを伸長するように変形する。なお、上述したS3の段階の説明は、図18、19に基づき、骨格モデル71について、部分的に長さを伸長する変形の場合で説明したが、長さを縮小する場合も同様であり、変形基点を対応点のポイントに一致するように移動する変形において、両者は同等の処理となる。 When the angle change shown in FIG. 19A is performed, as shown in FIGS. 19B and 19C, the point p2 is positioned on the extension line of the virtual line S1 connecting the change base point P30 from the shoulder joint C1. This eliminates the three-dimensional misalignment. Thereafter, as in the case of FIG. 18 described above, the length of the bone portion H1 is extended so that the bone portion H1 in the state of changing the angle matches the point p2 of the corresponding point. Transforms into The description of the stage of S3 described above is based on FIGS. 18 and 19 in the case of the deformation that partially extends the length of the skeleton model 71, but the same applies to the case of reducing the length. In the deformation in which the deformation base point is moved so as to coincide with the point of the corresponding point, both are equivalent processes.
 そして、図17に示すフローチャートにおけるS4の段階では、上述したS3の段階での骨格モデル71(例えば、標準の骨格モデル71a)の変形に追従して、その骨格モデル71のセットとして組み合わされる筋肉モデル72(例えば、標準の筋肉モデル72a)及び脂肪モデル73(例えば、標準の脂肪モデル73a)を変形する処理をMPU50aは行う。具体的には、S3の段階で、骨格モデル71の各変形基点を移動させたXYZ座標値の数値分だけ、筋肉モデル72及び脂肪モデル73におけるそれぞれの対応する各変形基点(図14参照)を移動させる処理を行う。このS4の段階の処理を行うことで、筋肉モデル72及び脂肪モデル73の基本的な形状が、被験者自身の骨格に準じた形状に沿うことになる。 In the step S4 in the flowchart shown in FIG. 17, the muscle model combined as a set of the skeleton model 71 following the deformation of the skeleton model 71 (for example, the standard skeleton model 71a) in the step S3 described above. The MPU 50a performs a process of deforming the 72 (for example, the standard muscle model 72a) and the fat model 73 (for example, the standard fat model 73a). Specifically, in S3, the corresponding deformation base points (see FIG. 14) in the muscle model 72 and the fat model 73 are equal to the numerical values of the XYZ coordinate values obtained by moving the deformation base points of the skeletal model 71, respectively. Process to move. By performing the process of step S4, the basic shapes of the muscle model 72 and the fat model 73 are in conformity with the shape of the subject's own skeleton.
 フローチャートのS5の段階では、筋肉モデル72(例えば、標準の筋肉モデル72a)を、測定結果に含まれる体幹部の内臓脂肪について判定されたレベル(「-4」~「+4」。内臓脂肪に係る数値に相当)に基づき、腹の部位が太く又は細くなるように変形する処理を行う。 In the step S5 of the flowchart, the muscle model 72 (for example, the standard muscle model 72a) is determined based on the level (“−4” to “+4”) of the trunk visceral fat included in the measurement result. Based on the numerical value), a process of deforming the abdominal part so as to be thick or thin is performed.
 図20は、内臓脂肪のレベルに応じて、標準の筋肉モデル72aの腹の部位を太く変形するイメージを示している(人体モデルを左から見たYZ平面での図)。図20において、筋肉モデル72aの前側の輪郭を示す前方ラインL1を厚み方向(Z軸方向に平行な方向)で前後に移動するように変形することで、腹の部位が太く又は細くなる。 FIG. 20 shows an image in which the abdominal region of the standard muscle model 72a is thickly deformed according to the level of visceral fat (a diagram on the YZ plane when the human body model is viewed from the left). In FIG. 20, by deforming the front line L1 indicating the front contour of the muscle model 72a so as to move back and forth in the thickness direction (direction parallel to the Z-axis direction), the abdominal region becomes thicker or thinner.
 腹の部位を太くするのは、判定レベルの数値が標準の「0」より大きい場合であり、太くする程度は、体幹部の内臓脂肪のレベルが「+1」であれば、筋肉モデル72aの腹の部位の寸法W(標準の「0」の場合のZ軸方向の長さ寸法)が、約1.03倍となる位置に、前方ラインL1を図中の黒矢印方向(腹が前方へ出っ張る方向)へ移動するように湾曲変形させる。なお、図20において一点鎖線で示すラインL10が、太くするように変形した後の筋肉モデル72aの前側の輪郭を示す。また、体幹部の内臓脂肪のレベルが「+2」であれば、寸法Wが約1.06倍となる位置に前方ラインL1を図中の黒矢印方向へ移動するに湾曲変形させ、レベルが「+3」であれば、寸法Wが約1.09倍となる位置に前方ラインL1を黒矢印方向へ移動するに湾曲変形させ、レベルが「+4」であれば、寸法Wが約1.12倍となる位置に前方ラインL1を黒矢印方向へ移動するに湾曲変形させる。 The abdominal part is thickened when the numerical value of the judgment level is larger than the standard “0”, and the thickened part is when the level of the visceral fat of the trunk is “+1”. The front line L1 extends in the direction indicated by the black arrow in the figure (the belly protrudes forward) at a position where the dimension W of the part (the length dimension in the Z-axis direction in the case of the standard “0”) is about 1.03 times. Curve) to move in the direction). In addition, the line L10 shown with a dashed-dotted line in FIG. 20 shows the outline of the front side of the muscle model 72a after deform | transforming so that it may become thick. Also, if the level of visceral fat in the trunk is “+2”, the front line L1 is curved and deformed to move in the direction of the black arrow in the figure to a position where the dimension W is about 1.06 times. If "+3", the front line L1 is curved and deformed to move in the direction of the black arrow at a position where the dimension W is about 1.09 times. If the level is "+4", the dimension W is about 1.12 times. The front line L1 is curved and deformed so as to move in the direction of the black arrow at a position where
 また、腹の部位を細くするのは、体幹部の内臓脂肪のレベルが、標準の「0」より小さい「-4」~「-1」の場合であり、筋肉モデル72の腹の部位に応じた骨格モデル71の部分は、丁度、胸骨及び肋骨の下方の空洞部分になることから、筋肉モデル72の腹の部位を判定レベルに応じて細く変形することが可能になる。 In addition, the abdominal region is thinned when the level of visceral fat in the trunk is “−4” to “−1” which is smaller than the standard “0”, and depends on the abdominal region of the muscle model 72. Since the portion of the skeletal model 71 is just a hollow portion below the sternum and ribs, the abdominal portion of the muscle model 72 can be finely deformed according to the determination level.
 細くする場合の程度は、体幹部の内臓脂肪のレベルが「-1」であれば、筋肉モデル72aの腹の部位の寸法Wが、約0.98倍となる位置に、前方ラインL1を図中の白矢印方向(腹が引っ込む方向)へ移動するように湾曲変形させる。なお、図20において二点鎖線で示すラインL20が、細くするように変形した後の筋肉モデル72aの前側の輪郭を示す。また、体幹部の内臓脂肪のレベルが「-2」であれば、寸法Wが約0.96倍となる位置に前方ラインL1を白矢印方向へ移動するに湾曲変形させ、レベルが「-3」であれば、寸法Wが約0.94倍となる位置に前方ラインL1を白矢印方向へ移動するに湾曲変形させ、レベルが「-4」であれば、寸法Wが約0.92倍となる位置に前方ラインL1を図中の白矢印方向へ移動するに湾曲変形させる。なお、内臓脂肪のレベルが「0」のときは、筋肉モデル72の腹の部位の変形は行わない。 When the level of visceral fat in the trunk is “−1”, the anterior line L1 is shown at a position where the size W of the abdominal part of the muscle model 72a is about 0.98 times. It is curved and deformed so as to move in the direction of the white arrow inside (the direction in which the belly retracts). In addition, the line L20 shown with a dashed-two dotted line in FIG. 20 shows the outline of the front side of the muscle model 72a after deform | transforming so that it may become thin. If the level of visceral fat in the trunk is “−2”, the front line L1 is curved and deformed to move in the direction of the white arrow to a position where the dimension W is about 0.96 times. ", The front line L1 is curved and deformed to move in the direction of the white arrow at a position where the dimension W is about 0.94 times. If the level is" -4 ", the dimension W is about 0.92 times. The front line L1 is curved and deformed so as to move in the direction of the white arrow in the figure at a position where When the visceral fat level is “0”, the abdominal region of the muscle model 72 is not deformed.
 また、上述した説明で太くする場合に用いた倍率(1.03、1.06、1.09、1.12)、及び細くする場合に用いた倍率(0.98、0.96、0.94、0.92)の各数値は一例であり、システムの仕様等に応じて、他の数値を適用することは勿論可能であり、また、デフォルトで上述した各数値を用いると共に、統計的に数値に基づき、随時デフォルト値を変更するようにしてもよい(後述する各判定レベルに基づく変形で用いる各数値についても同様)。 In the above description, the magnifications used for thickening (1.03, 1.06, 1.09, 1.12) and the magnifications used for thinning (0.98, 0.96,. 94, 0.92) is an example, and other values can of course be applied according to the system specifications and the like. In addition, the above numerical values are used by default, and statistically The default value may be changed as needed based on the numerical value (the same applies to each numerical value used in the modification based on each determination level described later).
 それから、フローチャートのS6の段階では、筋肉モデル72(例えば、標準の筋肉モデル72a)を、測定結果に含まれる特定部位(左腕、右腕、左脚、右脚、及び体幹部)の筋肉量について判定されたレベル(「-4」~「+4」。筋肉量に係る数値に相当)に基づき、各特定部位に係る筋肉部分が太く又は細くなるように変形する処理を行う。なお、レベルが「0」の場合が標準となり、「0」の部位についてはS6の段階で変形を行わない。 Then, in the step S6 of the flowchart, the muscle model 72 (for example, the standard muscle model 72a) is determined for the muscle mass of a specific part (left arm, right arm, left leg, right leg, and trunk) included in the measurement result. Based on the level (“−4” to “+4”, which corresponds to a numerical value related to muscle mass), a process of deforming the muscle portion related to each specific part so as to be thick or thin is performed. Note that the case where the level is “0” is standard, and the portion of “0” is not deformed in the stage of S6.
 具体的には、上述した図10(a)に示すように、特定部位(例えば、左腕)における判定レベルが、標準の「0」より大きい「+1」~「+4」である場合、特定部位の上腕及び前腕の筋肉部分が太くなるように変形する(左腕の幅w1が大きくなるように変形する。幅w1は「0」の場合の寸法を示す)。この場合、判定レベルが「+1」であれば、幅w1の約1.05倍で太くなるように変形し、以下、「+2」であれば幅w1の約1.1倍で太くなるように変形し、「+3」であれば幅w1の約1.15倍で太くなるように変形し、「+4」であれば幅w1の約1.2倍で太くなるように変形する。 Specifically, as shown in FIG. 10A described above, when the determination level in the specific part (for example, the left arm) is “+1” to “+4” that is larger than the standard “0”, The upper arm and the forearm are deformed so that the muscular portions are thickened (the left arm is deformed so that the width w1 is large. The width w1 indicates a dimension in the case of “0”). In this case, if the determination level is “+1”, it is deformed so as to be thick at about 1.05 times the width w1, and if it is “+2”, it is thick at about 1.1 times the width w1. If it is “+3”, it is deformed to be thick at about 1.15 times the width w1, and if it is “+4”, it is deformed to be thick at about 1.2 times the width w1.
 一方、判定レベルが、標準の「0」より小さい「-1」~「-4」である場合、図10(b)に示すように、特定部位の上腕及び前腕の筋肉部分が細くなるように(左腕の幅w1が小さくなるように)変形する。この場合、判定レベルが「-1」であれば、幅w1の約0.96倍で細くなるように変形し、以下、「-2」であれば幅w1の約0.92倍で細くなるように変形し、「-3」であれば幅w1の約0.88倍で細くなるように変形し、「+4」であれば幅w1の約0.84倍で細くなるように変形する。上述したS5、6の段階による筋肉モデル72の変形処理により、被験者Hの実際の筋肉の付き方を反映した筋肉モデル形状が得られる。 On the other hand, when the determination level is “−1” to “−4”, which is smaller than the standard “0”, as shown in FIG. Deformation (so that the width w1 of the left arm is reduced). In this case, if the determination level is “−1”, it is deformed so as to become thin at about 0.96 times the width w1, and if it is “−2”, it becomes thin at about 0.92 times the width w1. If it is “−3”, it is deformed to be thinned at about 0.88 times the width w1, and if it is “+4”, it is deformed to be thinned at about 0.84 times the width w1. By the deformation process of the muscle model 72 in the steps S5 and S6 described above, a muscle model shape reflecting the actual muscle attachment of the subject H is obtained.
 そして、フローチャートのS7の段階では、上述したS5、S6の段階での筋肉モデル72(例えば、標準の筋肉モデル72a)の変形に追従して、この筋肉モデル72のセットとして組み合わされる脂肪モデル73(例えば、標準の脂肪モデル73a)を変形する処理をMPU50aは行う。具体的には、S5の段階の腹の部位の変形に合わせて、脂肪モデル73の腹の部位も追従して変形し(筋肉モデルの腹の部位のXYZ座標値の移動量だけ、同様に脂肪モデル73の対応部位を移動変形する)、さらに、S6の段階で、筋肉モデル72の特定部位における変形に伴うXYZ座標値の数値分だけ、脂肪モデル73におけるそれぞれの対応する特定部位を移動変形させる処理を行う。このS7の段階の処理を行うことで、脂肪モデル73の基本的な形状が、被験者自身の筋肉の付き方に沿った形状になる。 In the step S7 of the flowchart, the fat model 73 (combined as a set of the muscle model 72) follows the deformation of the muscle model 72 (for example, the standard muscle model 72a) in the steps S5 and S6 described above. For example, the MPU 50a performs a process of deforming the standard fat model 73a). Specifically, in accordance with the deformation of the abdominal part in step S5, the abdominal part of the fat model 73 is also deformed (the amount of movement of the XYZ coordinate value of the abdominal part of the muscle model is similarly changed. Further, the corresponding specific part of the fat model 73 is moved and deformed by the numerical value of the XYZ coordinate value associated with the deformation of the specific part of the muscle model 72 in the stage of S6. Process. By performing the process in step S7, the basic shape of the fat model 73 becomes a shape along the way the subject's own muscle is attached.
 なお、図17に示すフローチャートにおいて、脂肪モデル73については、S4の段階で骨格モデル71の変形に追従して変形処理を行うと共に、S7の段階で筋肉モデル72の変形に追従して変形処理を行うようにしているが、S4の段階での脂肪モデル73の追従変形処理を省略し、S7の段階で、それまでの骨格モデル71及び筋肉モデル72の変形に伴う変形量を一括して反映するように、一度に追従変形処理を行ってもよい。 In the flowchart shown in FIG. 17, for the fat model 73, the deformation process is performed following the deformation of the skeletal model 71 in the step S4, and the deformation process is performed following the deformation of the muscle model 72 in the step S7. However, the follow-up deformation process of the fat model 73 in the step S4 is omitted, and the deformation amount accompanying the deformation of the skeleton model 71 and the muscle model 72 is collectively reflected in the step S7. As described above, the follow-up deformation process may be performed at a time.
 フローチャートのS8の段階では、脂肪モデル73(例えば、標準の筋肉モデル73a)を、測定結果に含まれる特定部位(左腕、右腕、左脚、右脚、及び体幹部)の脂肪量(皮下脂肪の量)について判定されたレベル(「-4」~「+4」。脂肪量に係る数値に相当)に基づき、各特定部位に係る脂肪部分が太く又は細くなるように変形する処理を行うか、又は脂肪部分の表面の質などが変化する処理を行う。 In the step S8 of the flowchart, the fat model 73 (for example, the standard muscle model 73a) is obtained from the fat amount (subcutaneous fat) of a specific part (left arm, right arm, left leg, right leg, and trunk) included in the measurement result. Based on the level (“−4” to “+4”, which corresponds to a numerical value related to the amount of fat) determined for the amount), a process of deforming the fat portion related to each specific part to be thicker or thinner is performed, or A treatment that changes the quality of the surface of the fat portion is performed.
 具体的には、上述した図11に示すように、特定部位(例えば、左腕)における判定レベルが、標準の「0」より「+1」~「+4」である場合、特定部位の上腕及び前腕の脂肪部分が太くなるように変形する。この場合、判定レベルが「+1」であれば、幅w10となるように太く変形し、以下、「+2」であれば幅w11(w11>w10)となるように太く変形し、「+3」であれば幅w12(w12>w11)となるように太く変形し、「+4」であれば幅w13(w13>w12)となるように太く変形する。 Specifically, as shown in FIG. 11 described above, when the determination level in the specific part (for example, the left arm) is “+1” to “+4” from the standard “0”, the upper arm and the forearm of the specific part. The fat part is deformed to be thick. In this case, if the determination level is “+1”, the width is changed to be thick w10, and if “+2”, the width is changed to be thick w11 (w11> w10), and “+3” is set. If there is, it is deformed to be thick so that the width is w12 (w12> w11), and if it is “+4”, it is deformed to be thick so that the width is w13 (w13> w12).
 さらに、太くする部分の表面の色合いが、「0」の場合の基準色より順次濃くなるように色づけする処理も合わせて行う。「+4」の場合が基準色に対して最も色合いが濃く、「+3」の場合が二番目に色が濃く、「+2」の場合が三番目に色合いが濃く、「+1」の場合が四番目に色合いが濃く、このような色合いに相違によっても、脂肪モデル73は脂肪の付き方を見分ける要素になる。 Furthermore, a process of coloring so that the surface color of the thickened portion is sequentially darker than the reference color in the case of “0” is also performed. “+4” is the darkest color relative to the reference color, “+3” is the second darkest color, “+2” is the third darkest color, and “+1” is the fourth. The fat model 73 becomes an element that distinguishes how fat is attached even if the hue is different.
 また、図12に示すように、特定部位(例えば、左腕)における判定レベルが「-1」であれば、特定部位の脂肪部分の太さを一段階(例えば、0.97倍の比率)で細くする処理を行うと共に、その脂肪部分の表面の色合いを「0」の場合より薄くする処理を行う。判定レベルが「-2」であれば、特定部位に応じた表面部分(例えば、上腕及び前腕の部分)の色を、「-1」の場合より薄くするように変化させ、「-3」になると、その特定部位の脂肪部分を形成するテクスチャ自体が少し透過するように変化させ(半透明になるように変化)、「-4」になると、更に、その脂肪部分の透過度を高めて、脂肪モデル73の脂肪で覆われる筋肉モデル72の筋肉が透けて映るように変化させる。このような細くする変形、色合いの変化、及び透過するように段階的に変化させることで、従来、図示が困難であった脂肪量が標準より少ない場合のレベルを、段階的に表現できるようにしている。 Also, as shown in FIG. 12, if the determination level at the specific part (for example, the left arm) is “−1”, the fat part thickness of the specific part is set in one step (for example, a ratio of 0.97 times). In addition to performing the thinning process, the process of making the surface of the fat portion lighter than “0” is performed. If the determination level is “−2”, the color of the surface portion (for example, the upper arm and the forearm portion) corresponding to the specific part is changed to be lighter than in the case of “−1”, and is changed to “−3”. Then, the texture itself that forms the fat part of the specific part is changed so that it is slightly transmitted (changes so that it becomes translucent), and when it becomes “−4”, the permeability of the fat part is further increased, The muscle model 72 covered with fat of the fat model 73 is changed so that the muscles are seen through. By making such thinning deformation, color change, and step-by-step change so that it can be transmitted, the level when the fat amount is less than the standard, which has been difficult to show in the past, can be expressed step-by-step. ing.
 最後に、フローチャートのS9の段階において、上述し処理を経て変形した人体モデル(変形した骨格モデル71、変形した筋肉モデル72、変形した脂肪モデル73)を示すデータを、測定を行った被験者HのユーザIDに対応付けて、図8に示す会員データベース60の測定データの欄に、測定日の日付と共に格納する処理をMPU50aは行う。 Finally, in the step S9 of the flowchart, data indicating the human body model (the deformed skeleton model 71, the deformed muscle model 72, the deformed fat model 73) deformed through the above-described processing is obtained from the subject H who has measured the data. In association with the user ID, the MPU 50a performs a process of storing together with the date of measurement date in the measurement data column of the member database 60 shown in FIG.
 会員データベース60に格納された人体モデルを示すデータは、図1、2に示す通信端末3を用いて、人体モデル提供システム50へ閲覧要求を行えば、読み出して通信端末3で表示することが可能になっており、このような読み出しに係る処理も、モデル変形プログラムP11が規定する処理の中に含まれる。 The data indicating the human body model stored in the member database 60 can be read and displayed on the communication terminal 3 by making a browsing request to the human body model providing system 50 using the communication terminal 3 shown in FIGS. Such a process related to reading is also included in the process defined by the model deformation program P11.
 すなわち、人体モデル提供システム50は、通信端末3からユーザID及びパスワードが送られてくると、データ閲覧についてのログイン処理を行うことになり、送られてきたユーザID及びパスワードが会員データベース60に登録されていると、ログイン状態となり、ログイン状態となった直近の人体モデルデータを会員データベース60から読み出して、ログイン状態になった通信端末3へ送信する処理を行うことになる。なお、通信端末3からログオフ操作が送られてくるまで、通信端末3のログイン状態は継続される。 That is, when the user ID and password are sent from the communication terminal 3, the human body model providing system 50 performs a login process for data browsing, and the sent user ID and password are registered in the member database 60. If it is, the login state is entered, and the latest human body model data in the login state is read from the member database 60 and transmitted to the communication terminal 3 in the login state. Note that the login state of the communication terminal 3 is continued until a logoff operation is sent from the communication terminal 3.
 上述した通信端末3には、人体モデルの表示が可能な人体モデル閲覧プログラムが予めインストールされているものとし、この人体モデル閲覧プログラムを起動して、人体モデル提供システム50から送られる人体モデルデータ(骨格に応じた骨格モデルのデータ、筋肉に応じた筋肉モデルのデータ、及び脂肪に応じた脂肪モデルのデータ)を受信すれば、受信した人体モデルデータに基づき、解剖的な人体モデルを表示することができる。 It is assumed that a human body model browsing program capable of displaying a human body model is installed in advance in the communication terminal 3 described above. The human body model browsing program is started and the human body model data ( Skeleton model data corresponding to the skeleton, muscle model data corresponding to the muscle, and fat model data corresponding to the fat), the anatomical human body model is displayed based on the received human body model data. Can do.
 起動した人体モデル閲覧プログラムは、画面の片隅に表示に関する項目を有するメニューバーを含んでおり、このメニューバーの中のモデル切替操作を行うことで、骨格モデル71での表示、骨格モデル71の上に筋肉モデル72を配置した状態での表示、及び骨格モデル71に配置された筋肉モデル72の上に脂肪モデル73を配置した状態での表示を適宜切り替えることが可能になっている。 The activated human body model browsing program includes a menu bar having items related to display at one corner of the screen. By performing a model switching operation in this menu bar, the display on the skeleton model 71 and the top of the skeleton model 71 are displayed. The display in the state where the muscle model 72 is arranged on the skeleton model 71 and the display in the state where the fat model 73 is arranged on the muscle model 72 arranged on the skeletal model 71 can be appropriately switched.
 図21は、受信した人体モデルデータに基づき通信端末3で生成される骨格モデル71(例えば、標準の骨格モデル71aを被験者Hの測定結果に応じて変形したモデル)による骨格状態の人体モデルを、通信端末3の表示スクリーン3aで表示した状態を示す。 FIG. 21 shows a human body model in a skeletal state based on a skeleton model 71 generated by the communication terminal 3 based on the received human body model data (for example, a model obtained by transforming the standard skeleton model 71a according to the measurement result of the subject H). The state displayed on the display screen 3a of the communication terminal 3 is shown.
 また、図22は、受信した人体モデルデータに基づき通信端末3で生成される筋肉モデル72(例えば、標準の筋肉モデル72aを被験者Hの測定結果に応じて変形したモデル)で、骨格モデル71を覆うように配置した状態の人体モデルを通信端末3の表示スクリーン3aで表示した状態を示す。 FIG. 22 is a muscle model 72 generated by the communication terminal 3 based on the received human body model data (for example, a model obtained by transforming the standard muscle model 72a according to the measurement result of the subject H), and the skeletal model 71. The state which displayed the human body model of the state arrange | positioned so that it might cover on the display screen 3a of the communication terminal 3 is shown.
 さらに、図23は、受信した人体モデルデータに基づき通信端末3で生成される脂肪モデル73(例えば、標準の筋肉モデル72aを被験者Hの測定結果に応じて変形したモデル)で、骨格モデル71の上に配置された筋肉モデル72を覆うように配置した状態の人体モデルを、通信端末3の表示スクリーン3aで表示した状態を示す。 Further, FIG. 23 shows a fat model 73 (for example, a model obtained by deforming a standard muscle model 72a according to the measurement result of the subject H) generated by the communication terminal 3 based on the received human body model data. The state which displayed the human body model of the state arrange | positioned so that the muscle model 72 arrange | positioned above may be displayed on the display screen 3a of the communication terminal 3 is shown.
 被験者H(ユーザ)は、図21~23の表示状態を適宜切り替えることで、例えば、図21の表示状態で自身の骨格の形状を把握でき、また、図22の表示状態で筋肉の付き方を確認でき、さらには図23の表示状態で脂肪の付き方なども解剖的に確認することでき、エクササイズ又はダイエットによる効果を、体の外観的な状態からではなく、図22、23に示すように体の内部における筋肉レベル又は脂肪レベルで確認できるメリットがある。 The subject H (user) can grasp the shape of his / her skeleton in the display state of FIG. 21, for example, by switching the display state in FIGS. 23. Furthermore, the manner of fat attachment can be confirmed anatomically in the display state of FIG. 23, and the effects of exercise or diet are not shown from the appearance of the body, but as shown in FIGS. There is a merit that can be confirmed at the muscle level or fat level inside the body.
 また、これら図21~23で示す人体モデルは、上述した従来の3D人体解剖アプリ(例えば、非特許文献1参照)の人体モデルと同様に、三次元的に生成されているため、通信端末3がタブレット、スマートフォンのようなタッチパネル操作の可能な表示スクリーン3aを具備していれば、スワイプ操作により、人体モデルを所望の角度から閲覧することが可能である(なお、通信端末3としてパソコン等を用いる場合は、マウス等の操作機器を用いることで、人体モデルの角度変化操作を可能にする)。さらに、図21~23で示す人体モデルは、表示スクリーン3aのピンチ操作で拡大又は縮小も適宜行える(通信端末3としてパソコン等を用いる場合は、マウス等の操作機器を用いることで、人体モデルの拡大又は縮小操作を可能にする) Since the human body model shown in FIGS. 21 to 23 is generated three-dimensionally, similar to the human body model of the above-described conventional 3D human body dissection application (see, for example, Non-Patent Document 1), the communication terminal 3 Can display a human body model from a desired angle by swiping operation (if a personal computer or the like is used as the communication terminal 3). When used, it is possible to change the angle of the human body model by using an operating device such as a mouse). Furthermore, the human body model shown in FIGS. 21 to 23 can be appropriately enlarged or reduced by a pinch operation of the display screen 3a (when a personal computer or the like is used as the communication terminal 3, an operation device such as a mouse can be used. (Enables enlargement or reduction operation)
 なお、通信端末3では、上述した人体モデルの表示の他に、体組成計10及び三次元測定器20の測定値の表示も可能になっており、人体モデル提供システム50から送られる測定値の各数値を表示すること、複数の測定日に関する各数値をグラフで表示することも可能になっており、グラフ表示により時系列的な変化等も確認できるようにしている。 In addition to the display of the human body model described above, the communication terminal 3 can also display the measurement values of the body composition meter 10 and the three-dimensional measuring device 20, and the measurement values sent from the human body model providing system 50 can be displayed. It is also possible to display each numerical value and display each numerical value related to a plurality of measurement dates in a graph, and it is possible to check a time-series change or the like by the graph display.
 なお、上述した説明では、基本的に男性の人体モデルに基づき説明を行ったが、女性の人体モデルの場合、体幹部に乳房が存在することから、女性の体幹部に皮下脂肪に基づく脂肪モデルに関する処理が、上述した男性の人体モデルの場合と異なった内容を含むことになり、それ以外は、基本的に同様である。女性の脂肪モデルの体幹部における皮下脂肪に基づく乳房の扱い方に関する処理について、以下に説明する。 In the above description, the description is basically based on a male human body model. However, in the case of a female human body model, there is a breast in the trunk, so a fat model based on subcutaneous fat in the female trunk. The processing relating to the above includes the contents different from those of the male human body model described above, and is otherwise basically the same. The processing relating to how to handle the breast based on subcutaneous fat in the trunk of a female fat model will be described below.
 図24は、人体モデルテーブル70の中の女性用の脂肪モデル76を示している。女性用の脂肪モデル76も、図9に示す男性用の人体モデルと同様に、標準パターン70aに対応した標準の脂肪モデル76a、第1パターン70bに対応した第1の脂肪モデル76b、第2パターン70cに対応した第2の脂肪モデル76cが存在する。女性の体幹部には乳房が存在することから、これらの女性用の脂肪モデル76(各パターンの脂肪モデル76a~76c)にも、皮下脂肪による乳房を形成したことが、男性の脂肪モデル73に対して、主な形状的な相違点になっている。 FIG. 24 shows a female fat model 76 in the human body model table 70. Similarly to the male human body model shown in FIG. 9, the female fat model 76 is also a standard fat model 76a corresponding to the standard pattern 70a, a first fat model 76b corresponding to the first pattern 70b, and a second pattern. There is a second fat model 76c corresponding to 70c. Since there is a breast in the female trunk, these female fat models 76 (fat models 76a to 76c of each pattern) also formed a breast by subcutaneous fat. On the other hand, it is a major difference in shape.
 体組成計10で、女性の被験者を測定した場合、体幹部(胴体部)における脂肪の量(皮下脂肪の量)には、乳房の分も含まれるので、上述した男性と同様な処理を行うと、乳房の分の皮下脂肪が、体幹部に付着したものとみなされて、体幹部が実際の女性の被験者より太く形成されるという事態が生じる。このような事態の発生を回避するため、被験者が女性の場合、脂肪モデル76の変形処理においては、女性特有の処理をMPU50aは行う。 When a female subject is measured with the body composition meter 10, the amount of fat (subcutaneous fat) in the trunk (torso) includes the amount of the breast. Then, it is considered that the subcutaneous fat corresponding to the breast is attached to the trunk, and the trunk is formed thicker than the actual female subject. In order to avoid the occurrence of such a situation, when the subject is a woman, the MPU 50a performs a process specific to the female in the deformation process of the fat model 76.
 図25は、女性特有の処理を行うために参照する女性脂肪参照テーブル90を示しており、このような女性脂肪参照テーブル90も図7に示す人体モデル提供システム50の記憶部50gに記憶されることになる。女性脂肪参照テーブル90の中のカップ値とは、三次元測定器20の測定値(OBJデータ)から得られる胸囲と、アンダーバストとの寸法差を意味し、統計的による女性の胸囲の平均寸法は81.3cm、アンダーバストの平均寸法は70.4cmであることから、カップ値の平均寸法は10.9cmとなる。本実施形態では、このカップ値の平均寸法10.9cmを利用することで、体幹部の脂肪の量について、乳房と、乳房以外の部分への配分を決定する。 FIG. 25 shows a female fat reference table 90 that is referred to in order to perform processing specific to a female. Such a female fat reference table 90 is also stored in the storage unit 50g of the human body model providing system 50 shown in FIG. It will be. The cup value in the female fat reference table 90 means a dimensional difference between the chest circumference obtained from the measurement value (OBJ data) of the three-dimensional measuring instrument 20 and the underbust, and the statistical average dimension of the female breast circumference. Is 81.3 cm and the average size of the underbust is 70.4 cm, so the average size of the cup value is 10.9 cm. In the present embodiment, by using the average size of the cup value of 10.9 cm, the distribution of the fat amount of the trunk to the breast and the part other than the breast is determined.
 具体的には、図25の女性脂肪参照テーブル90に示すように、測定結果に含まれる体幹部の内臓脂肪について判定されたレベル(「-4」~「+4」)について、判定レベルが「+1」~「+4」の「プラスレベル」、判例レベルが「0」の「標準レベル」、判定レベルが「-1」~「-4」の「マイナスレベル」の三種類のレベルに分ける(女性脂肪参照テーブル90の左端の列を参照)。これらの三種類のレベルごとに、カップ値により、三つの分類に分けるようにしており、測定値により得られるカップ値が10.9cm未満のときは「小」、カップ値が10.9cm以上17.5cm未満のときは「中」、カップ値が17.5cm以上のときは「大」と分類する。 Specifically, as shown in the female fat reference table 90 of FIG. 25, for the levels determined for the visceral fat of the trunk (“−4” to “+4”) included in the measurement result, the determination level is “+1”. ”To“ +4 ”“ plus level ”, case level“ 0 ”“ standard level ”, judgment level“ −1 ”to“ -4 ”“ minus level ”(female fat) (See the leftmost column of the lookup table 90). Each of these three levels is divided into three categories according to the cup value. When the cup value obtained by the measured value is less than 10.9 cm, it is “small”, and the cup value is 10.9 cm or more and 17 When it is less than 5 cm, it is classified as “medium”, and when the cup value is 17.5 cm or more, it is classified as “large”.
 そして、被験者の体幹部の皮下脂肪に係る測定結果が、「プラスレベル」でカップ値が「小」であれば、MPU50aは、女性脂肪参照テーブル90に従い、脂肪モデル76の体幹部については乳房以外の部分を太くする変形を行い、「プラスレベル」でカップ値が「中」であれば、体幹部を全体的に太くする変形を行い、「プラスレベル」でカップ値が「大」であれば、乳房のみを大きくする変形を行う。 If the measurement result related to the subcutaneous fat of the trunk of the subject is “plus level” and the cup value is “small”, the MPU 50a follows the female fat reference table 90, and the trunk of the fat model 76 is other than the breast. If the cup value is “medium” at “plus level”, the whole body will be thickened, and if the cup value is “large” at “plus level” The deformation that enlarges only the breast is performed.
 また、被験者の体幹部の皮下脂肪に係る測定結果が、「標準レベル」でカップ値が「小」であれば、MPU50aは、女性脂肪参照テーブル90に従い、脂肪モデル76の体幹部については、乳房を少し小さくする変形を行うと共に、乳房以外の部分を少し太くする変形を行い、「標準レベル」でカップ値が「中」であれば、特に変形処理を行わず、「標準レベル」でカップ値が「大」であれば、乳房を少し大きくする変形を行うと共に、乳房以外の部分を少し細くする変形を行う。 If the measurement result relating to the subcutaneous fat of the trunk of the subject is “standard level” and the cup value is “small”, the MPU 50a follows the female fat reference table 90, and the trunk of the fat model 76 If the cup value is “medium” at “standard level”, the transformation value is not applied and the cup value is set at “standard level”. If “L” is “large”, the breast is deformed to be a little larger, and the part other than the breast is thinned a little.
 さらに、被験者の体幹部の皮下脂肪に係る測定結果が、「マイナスレベル」でカップ値が「小」であれば、MPU50aは、女性脂肪参照テーブル90に従い、脂肪モデル76の体幹部については、乳房を小さくする変形を行うと共に、乳房以外の部分は特に変形を行わず、「マイナスレベル」でカップ値が「中」であれば、体幹部を全体的に細くする処理を行い、「マイナスレベル」でカップ値が「大」であれば、乳房を変形せずに、乳房以外の部分を細くする変形を行う。 Furthermore, if the measurement result relating to the subcutaneous fat of the trunk of the subject is “minus level” and the cup value is “small”, the MPU 50a follows the female fat reference table 90, and the trunk of the fat model 76 If the cup value is “medium” at the “minus level” and the cup value is “medium”, the whole body is thinned and the “minus level” is applied. If the cup value is “large”, the breast is not deformed, and the part other than the breast is thinned.
 なお、上述した「プラスレベル」、「標準レベル」、及び「マイナスレベル」において、乳房の変形を行う場合の変形率を求める計算式と、体幹部において乳房以外の部分を変形する場合の変形率を求める計算式も女性脂肪参照テーブル90にて規定されている。例えば、「プラスレベル」では、乳房の変形率は数式Aより算出し、乳房以外の体幹部の変形率は数式Eより算出する。数式Aは(カップ値/10.9)×(判定レベル値/4)×100であり、数式Eは(10.9/カップ値)×(判定レベル値/4)×100である。 It should be noted that, in the above-described “plus level”, “standard level”, and “minus level”, a calculation formula for obtaining a deformation rate when deforming the breast, and a deformation rate when deforming a portion other than the breast in the trunk. The calculation formula for obtaining is also defined in the female fat reference table 90. For example, in the “plus level”, the deformation rate of the breast is calculated from Formula A, and the deformation rate of the trunk other than the breast is calculated from Formula E. The formula A is (cup value / 10.9) × (judgment level value / 4) × 100, and the formula E is (10.9 / cup value) × (judgment level value / 4) × 100.
 また、「標準レベル」のカップ値が「中」及び「大」では、乳房の変形率は数式Bより算出し、乳房以外の体幹部の変形率は数式Fより算出する。数式Bは(カップ値/10.9)×0.1×100であり、数式Fは227(元来のテクスチャ形成に係る値,アルファ値)×(10.9/カップ値)である(小数以下四捨五入)。さらに、「標準レベル」のカップ値が「小」では、乳房の変形率は数式Cより算出し、乳房以外の体幹部の変形率は数式Gより算出する。数式Cは(1-(カップ値/10.9))×0.1×100であり、数式Gは(10.9/カップ値)×0.1×100である。 Also, when the cup value of “standard level” is “medium” and “large”, the deformation rate of the breast is calculated from the formula B, and the deformation rate of the trunk other than the breast is calculated from the formula F. The formula B is (cup value / 10.9) × 0.1 × 100, and the formula F is 227 (original texture formation value, alpha value) × (10.9 / cup value) (decimal number). Rounded down below). Further, when the cup value of “standard level” is “small”, the deformation rate of the breast is calculated from Formula C, and the deformation rate of the trunk other than the breast is calculated from Formula G. The formula C is (1− (cup value / 10.9)) × 0.1 × 100, and the formula G is (10.9 / cup value) × 0.1 × 100.
 さらに、「マイナスレベル」では、乳房の変形率は数式Dより算出し、乳房以外の体幹部の変形率は数式Hより算出する。数式Dは(10.9/カップ値)×(判定レベル値×(-1)/4)×100であり、数式Hは227(元来のテクスチャ形成に係る値,アルファ値)×(10.9/カップ値)×(1-(判定レベル値×(-1)/4)である(小数以下四捨五入)。なお、上述した女性脂肪参照テーブル90の中身及び上述した数式A~Hの中身等は一例であり、システムの仕様、統計値の変化等に応じて、適宜、これらの中身を変更することは勿論、可能である。 Furthermore, at the “minus level”, the deformation rate of the breast is calculated from Formula D, and the deformation rate of the trunk other than the breast is calculated from Formula H. Formula D is (10.9 / cup value) × (judgment level value × (−1) / 4) × 100, and Formula H is 227 (original texture formation value, alpha value) × (10. 9 / cup value) × (1− (judgment level value × (−1) / 4) (rounded to the nearest decimal) The contents of the female fat reference table 90 described above, the contents of the mathematical expressions A to H described above, and the like Is an example, and it is of course possible to change the contents as appropriate according to the specifications of the system, changes in statistical values, and the like.
 以上のように、本発明に係る人体モデル提供システム50では、被験者Hの測定結果に応じた形状の人体モデルを解剖的に確認可能に提供するので、筋肉の付き方、又は脂肪の付き方などを被験者が視覚的に確認でき、筋力トレーニング等による筋肉量の変化、またはダイエットエクササイズ等による脂肪量の低下を、詳細に把握でき、各種トレーニング、エクササイズ等を継続する意識付けを高めること等に役立てられる。 As described above, in the human body model providing system 50 according to the present invention, the human body model having a shape corresponding to the measurement result of the subject H is provided so as to be anatomically confirmable. The subjects can visually confirm the changes in muscle mass due to strength training, etc., or the decrease in fat mass due to diet exercise, etc. It is done.
 なお、本発明は、上述した実施形態に限定されるものではなく、様々な変形例が考えられる。例えば、判定レベルを示す「-4」~「+4」の値について、上述した説明では体組成計10からの測定結果に基づき測定処理装置30で求めるようにしていたが、体組成計10自身でレベル判定を行えるようであれば、体組成計10で判定レベルを求めるようにして、測定処理装置30の処理負担を低減してもよい。さらに、レベル判定処理は、測定処理装置30で行う替わりに、人体モデル提供システム50で行うようにすることも可能であり、この場合は、測定処理装置30は体組成計10からの演算結果を、そのまま人体モデル提供システム50へ送信し、人体モデル提供システム50では、受け取った演算結果からレベル判定を行うことになる。 It should be noted that the present invention is not limited to the above-described embodiment, and various modifications can be considered. For example, the values “−4” to “+4” indicating the determination level are obtained by the measurement processing device 30 based on the measurement result from the body composition meter 10 in the above description, but the body composition meter 10 itself If the level can be determined, the body composition meter 10 may obtain the determination level to reduce the processing load on the measurement processing device 30. Further, the level determination processing can be performed by the human body model providing system 50 instead of being performed by the measurement processing device 30. In this case, the measurement processing device 30 uses the calculation result from the body composition meter 10 as a result. Then, the data is transmitted to the human body model providing system 50 as it is, and the human body model providing system 50 determines the level from the received calculation result.
 また、判定レベルの段階も「-4」~「+4」に限定されるものではなく、仕様を簡易化するときは「-3」~「+3」又は「-2」~「+2」のように段階を荒くしてもよく、一方、仕様を詳細化するときは、「-5」~「+5」又は「-6」~「+6」のように段階を細かくしてもよく、このように段階を変更するときは、変更した段階に応じて、筋肉モデル72、脂肪モデル73等を変形する段階も同様に、荒く又は細かくすることになる。 In addition, the determination level stage is not limited to “−4” to “+4”. To simplify the specification, “−3” to “+3” or “−2” to “+2” is used. On the other hand, when the specification is refined, the steps may be made fine like “−5” to “+5” or “−6” to “+6”. Is changed, the step of deforming the muscle model 72, the fat model 73, etc. is also made rough or fine according to the changed step.
 さらに、図13に示すように相似的に拡大又は縮小するときの度合いは、身長に対する四肢の長さ寸法の比率(袖丈の比率、股下の比率)に応じて行うようにしたが、袖丈又は股下の比率は、身長に対する値ではなく、身長から顔の長さを除いた首下の関節から足までの長さに対する比率を用いるようにしてもよい。すなわち、人の顔の長さ(Y軸方向に沿った寸法)は、統計的にバラツキがあるため、このようなバラツキのある部分(人の顔)を除外して、袖丈又は股下の比率を算出すると、体格的な状況を、より正確に表すことができるという点で好適となる。 Furthermore, as shown in FIG. 13, the degree of similar expansion or contraction is performed according to the ratio of the length dimension of the limbs to the height (the ratio of the sleeve length, the ratio of the crotch). The ratio may not be a value for the height, but may be a ratio for the length from the joint under the neck to the foot, excluding the length of the face from the height. In other words, since the length of a person's face (dimension along the Y-axis direction) varies statistically, the ratio of the sleeve length or inseam is excluded by excluding such a variation (person's face). When calculated, it is preferable in that the physique situation can be expressed more accurately.
 また、上述した説明では、体組成計10と、三次元測定器20とを連携して同時的に測定を行うようにしたが、体組成計10及び三次元測定器20のそれぞれで単独で測定を行い、これらの測定結果を人体モデル提供システム50へ送信する仕様にしてもよい。本発明において必要なことは、人体モデルの提供に必要な身体的な測定結果を人体モデル提供システム50が取得することであり、必要な測定結果が得られるのであれば、被験者の測定の仕方は、どのような形態であっても良く、どのような測定器を用いても良い。 In the above description, the body composition meter 10 and the three-dimensional measuring device 20 are linked to perform measurement simultaneously. The measurement results may be transmitted to the human body model providing system 50. What is necessary in the present invention is that the human body model providing system 50 obtains the physical measurement results necessary for providing the human body model. Any form may be used, and any measuring instrument may be used.
 さらに、本発明のシステムをローカル的に構築する場合は、図1に示す測定処理装置30に、人体モデル提供システム50の機能を具備させて、測定処理装置30で、上述した人体モデル提供システム50の処理を行うようにしてもよい。 Furthermore, when constructing the system of the present invention locally, the measurement processing device 30 shown in FIG. 1 has the function of the human body model providing system 50, and the measurement processing device 30 uses the human body model providing system 50 described above. You may make it perform the process of.
 さらにまた、通信端末3での、人体モデルの表示の仕方の工夫としては、図1に示すような測定状態の被験者Hを撮像し、その撮像画像を、上述した人体モデルに重ねて表示することで、被験者Hの外観と、人体内部の解剖的な人体モデルとの関係をユーザに提示するようにしてもよい。この場合、被験者の撮像画像は、脂肪モデルの上に重ねるように表示して透過度を変化させて人体モデルを見せるようにすること、又は撮像画像を背景的に用いて、撮像画像の上に、骨格モデル71、筋肉モデル72、脂肪モデル73を順次重ねて配置するようにしてもよい。 Furthermore, as a device of how to display the human body model in the communication terminal 3, the subject H in the measurement state as shown in FIG. 1 is imaged and the captured image is displayed on the above human body model. Thus, the relationship between the appearance of the subject H and the anatomical human body model inside the human body may be presented to the user. In this case, the captured image of the subject is displayed so as to be superimposed on the fat model so that the human body model can be seen by changing the transparency, or the captured image is used as a background, and the captured image is displayed on the captured image. Alternatively, the skeleton model 71, the muscle model 72, and the fat model 73 may be sequentially stacked.
 また、本発明の仕様を簡易化する例としては、骨格モデル71、筋肉モデル72、及び脂肪モデル73には三次元的なモデルを用いるのでは無く、二次元的なモデルを用いて、表示角度の変更機能等を省略するようにしてもよい。このような二次元的なモデルを用いる場合は、レイヤー別に骨格を示す骨格モデル、筋肉を示す筋肉モデル、脂肪を示す脂肪モデルを準備しておき、骨格モデルに筋肉モデルをレイヤーで重ねることにより、骨格を筋肉で覆う状態のモデルを提示し、さらに、この状態のモデルに脂肪モデルをレイヤーで重ねることにより、筋肉を脂肪で覆う状態のモデルを提示する仕様にすることも可能である。さらには、脂肪の確認等が不要な用途の場合は、脂肪モデルを省略して、骨格モデル71及び筋肉モデル72で人体モデルを構成するようにしてもよい。 As an example of simplifying the specification of the present invention, the skeleton model 71, the muscle model 72, and the fat model 73 do not use a three-dimensional model, but use a two-dimensional model to display angles. The change function or the like may be omitted. When using such a two-dimensional model, prepare a skeletal model that shows the skeleton by layer, a muscle model that shows muscle, and a fat model that shows fat, and layer the muscle model on the skeleton model in layers, A model in which the skeleton is covered with muscles is presented, and a model in which the muscles are covered with fat can be presented by overlaying a fat model on the model in this state with a layer. Furthermore, in a case where the confirmation of fat or the like is unnecessary, the fat model may be omitted, and the human body model may be configured by the skeleton model 71 and the muscle model 72.
 さらにまた、上述した説明では、全身の人体モデルを提供するようにしていたが、用途によっては全身の人体モデルの提供が不要であり、特定部位(左腕、右腕、左脚、右脚、又は体幹部のいずれか)についてのみ、解剖的な人体モデルの提供が必要であれば、必要な部位について、上述した処理を行って、必要な部位(例えば、左腕のみ)についての人体モデルを提供するような仕様にすることも可能である。なお、上述した各種変形例は適宜組み合わせることも可能である。 Furthermore, in the above description, a whole body model is provided. However, depending on the application, it is not necessary to provide a whole body model, and a specific part (left arm, right arm, left leg, right leg, or body) If it is necessary to provide an anatomical human body model only for one of the trunks, the above-described processing is performed on the necessary part to provide a human body model for the necessary part (for example, only the left arm). It is also possible to make the specifications. The various modifications described above can be combined as appropriate.
 実施例2は、図26~29に示すような画面(姿勢検証画面100、110、120、130)をユーザに提示することで、レントゲン又はMRIを用いた検証を行うことなく、三次元測定を行った人体(被験者)の骨格の状況を、三次元測定で得られた人体表面の複数の点の三次元座標値に基づき特定し、被験者の姿勢等を検証できるようにしたものである。実施例2のシステム構成(ハードウェア構成)は、実施例1で説明した健康管理システム1と同様なものにしており、この健康管理システム1に、骨格状況の特定、姿勢検証等の機能を含ませるようにしたことが特徴になっている。以下、実施例2について説明するが、実施例2において実施例1と同じものについては、基本的に実施例1と同じ符号を用いる。 The second embodiment presents the screens ( posture verification screens 100, 110, 120, and 130) as shown in FIGS. 26 to 29 to the user, so that the three-dimensional measurement can be performed without performing the verification using the X-ray or MRI. The state of the skeleton of the human body (subject) performed is specified based on the three-dimensional coordinate values of a plurality of points on the surface of the human body obtained by three-dimensional measurement, so that the posture of the subject can be verified. The system configuration (hardware configuration) of the second embodiment is the same as the health management system 1 described in the first embodiment, and the health management system 1 includes functions such as skeletal condition identification and posture verification. The feature is that it can be made to. Hereinafter, the second embodiment will be described. In the second embodiment, the same reference numerals as those in the first embodiment are used for the same components as the first embodiment.
 健康管理システム1(図1、2参照)は、骨格特定システムを含むものになっており、具体的には三次元測定器20で測定したことで得られる人体表面の複数の点が有する三次元座標値等の測定結果(OBJデータ等。なお、三次元測定を行ったユーザのユーザIDも含まれる)を、測定処理装置30を介して取得する人体モデル提供システム50が、骨格特定システムを兼ねたものになっている。そのため、人体モデル提供システム50を構築するコンピュータ(例えば、サーバコンピュータ)が、実施例2の骨格特定システム50′として機能する。 The health management system 1 (see FIGS. 1 and 2) includes a skeletal identification system, specifically, a three-dimensional possessed by a plurality of points on the surface of a human body obtained by measurement with a three-dimensional measuring device 20. The human body model providing system 50 that acquires measurement results such as coordinate values (OBJ data, etc., including the user ID of the user who performed the three-dimensional measurement) via the measurement processing device 30 also serves as the skeletal identification system. It has become a thing. Therefore, a computer (for example, a server computer) that constructs the human body model providing system 50 functions as the skeleton specifying system 50 ′ of the second embodiment.
 図30は、実施例2の骨格特定システム50′の主要な内部構成を示すブロック図である。上述したように、骨格特定システム50′は、実施例1の人体モデル提供システム50に対応しており、それゆえ内部構成としては人体モデル提供システム50(図7参照)と同様な内部構成になっている。 FIG. 30 is a block diagram showing the main internal configuration of the skeleton identification system 50 ′ of the second embodiment. As described above, the skeletal identification system 50 ′ corresponds to the human body model providing system 50 of the first embodiment, and therefore has an internal configuration similar to that of the human body model providing system 50 (see FIG. 7). ing.
 すなわち、実施例2においても、実施例1と同様、骨格特定システム50′は一般的なコンピュータ(例えば、サーバコンピュータ)で構築されるが、複数のサーバコンピュータ及びデータベース装置等を組み合わせてシステムを構築することも可能である。骨格特定システム50′は、図7の人体モデル提供システム50と同様に、MPU50a′、通信モジュール50b′、RAM50c′、ROM50d′、入力インタフェース50e′、出力インタフェース50f′、及び記憶部50g′等を、内部接続線50h′で接続した構成になっており、記憶部50g′に記憶されるものについては、実施例1と異なる点がある。 That is, also in the second embodiment, as in the first embodiment, the skeletal identification system 50 ′ is constructed by a general computer (for example, a server computer), but a system is constructed by combining a plurality of server computers and database devices. It is also possible to do. Similar to the human body model providing system 50 of FIG. 7, the skeletal identification system 50 ′ includes an MPU 50a ′, a communication module 50b ′, a RAM 50c ′, a ROM 50d ′, an input interface 50e ′, an output interface 50f ′, a storage unit 50g ′, and the like. The internal connection line 50h ′ is connected, and what is stored in the storage unit 50g ′ is different from the first embodiment.
 記憶部50g′は、会員データベース60、サーバプログラムP10、モデル変形プログラムP110、人体モデルテーブル70、ポイントテーブル800、モデル数値テーブル85、判定テーブル95、及び分析テーブル96等を記憶する。モデル変形プログラムP110については、実施例1のモデル変形プログラムP11に対して、実施例2に応じた骨格特定に関する処理等が追加されたものになっている(詳細は後述)。 The storage unit 50g ′ stores a member database 60, a server program P10, a model transformation program P110, a human body model table 70, a point table 800, a model numerical value table 85, a determination table 95, an analysis table 96, and the like. The model deformation program P110 is obtained by adding processing related to skeleton identification according to the second embodiment to the model deformation program P11 of the first embodiment (details will be described later).
 記憶部50g′に記憶される中で、会員データベース60、サーバプログラムP10、人体モデルテーブル70、モデル数値テーブル85等は実施例1と基本的に同様であるが、人体モデルテーブル70(図9参照)に含まれる変形可能な骨格モデル71a~71cについては、代表的な変形基点P1~P14等を含むことに加えて、姿勢検証に用いるための三次元座標を有する対象点を含むものになっている。 The member database 60, the server program P10, the human body model table 70, the model numerical value table 85, etc., which are basically stored in the storage unit 50g ′, are basically the same as those in the first embodiment, but the human body model table 70 (see FIG. 9). The deformable skeleton models 71a to 71c included in (1) include target points having three-dimensional coordinates for use in posture verification in addition to the representative deformation base points P1 to P14 and the like. Yes.
 図31は、姿勢検証のために用いる対象点の一例を表した骨格モデル71aの一部(足部分)を示している。実施例2の骨格モデル71aは、対象点として左右の大腿骨大転子に応じた点P100、101(Daitehshi_L、Daitehshi_R)、左右の膝頭に応じた点P102、103(Hizagashira_L、Hizagashira_R)、左右の脛骨下の足首に応じた点P104、105(Ashikubi_L、Ashikubi_R)を含む。これらの各点P100~105(対象点)は、骨を動かす際の関節の中心点(支点)になるような点であり、変形基点P1~P14等とは異なる特性を有し、姿勢検証のため骨格モデル71aに予め埋め込んでおく点となる。 FIG. 31 shows a part (foot part) of a skeleton model 71a that represents an example of target points used for posture verification. The skeleton model 71a of Example 2 includes points P100 and 101 (Daitehshi_L, Daitehshi_R) corresponding to the left and right femoral trochanters as target points, points P102 and 103 (Hizagashira_L, Hizagashira_R) corresponding to the left and right kneecaps, Points P104 and 105 (Ashikubi_L, Ashikubi_R) corresponding to the ankle under the tibia are included. Each of these points P100 to P105 (target points) is a point that becomes a center point (fulcrum) of the joint when moving the bone, and has characteristics different from the deformation base points P1 to P14 and the like, and is used for posture verification. Therefore, it is a point to be embedded in the skeleton model 71a in advance.
 各点P100~105が有するX、Y、Z座標値の一例を示すと、左の大腿骨大転子(Daitehshi_L)の点P100は、(X、Y、Z)=(140.5,827.8、-6.3)であり、右の大腿骨大転子(Daitehshi_R)の点P101は、(X、Y、Z)=(-140.5,827.8、-6.3)であり、左の膝頭(Hizagashira_L)の点P102は、(X、Y、Z)=(82.5,440.1、-5.8)であり、右の膝頭(Hizagashira_R)の点P103は、(X、Y、Z)=(-82.5,440.1、-5.8)であり、左の足首(Ashikubi_L)の点P104は、(X、Y、Z)=(71.6,80.8、76.3)であり、右の足首(Ashikubi_R)の点P105は、(X、Y、Z)=(-71.6,80.8、76.3)である。なお、上記の座標値の原点は、左右足の中間点である。 An example of the X, Y, and Z coordinate values of each of the points P100 to P105 indicates that the point P100 of the left greater femoral trochanter (Daitehshi_L) is (X, Y, Z) = (140.5, 827. 8, −6.3) and the point P101 of the right femoral trochanter (Daitehshi_R) is (X, Y, Z) = (− 140.5, 827.8, −6.3) The point P102 of the left kneecap (Hizagashira_L) is (X, Y, Z) = (82.5, 440.1, −5.8), and the point P103 of the right kneecap (Hizagashira_R) is (X , Y, Z) = (− 82.5, 440.1, −5.8), and the point P104 of the left ankle (Ashikubi_L) is (X, Y, Z) = (71.6, 80. 8, 76.3), and the point P105 of the right ankle (Ashikubi_R) is (X, Y, Z) = (− 71.6, 80.8, 76.3). Note that the origin of the coordinate values is the midpoint between the left and right feet.
 上述した各点P100~105は、骨格モデル71aが実施例1で説明したように変形すると、それに追従して位置が変わり、位置が変わることで、上述した各点P100~105のX、Y、Zの座標値も変わる。このように骨格モデル71aの変形に追従して変わった各点P100~105のX、Y、Zの座標値が、三次元測定の対象となった被験者の人体における左右の大腿骨大転子、膝頭、脛骨下の足首に応じた点の位置を表すことになり、これらの点の位置から、後述するように、足がO脚又はX脚であるか、左右の寛骨の前傾又は後傾等を検証できるようになる。また、実施例2の骨格モデル71aは、骨盤角度(腰仙角又は仙骨傾斜角)、腰椎前弯角度、胸椎後弯角度、及び頸椎前弯角度を構成する各角度線も含んでいる。 When the skeleton model 71a is deformed as described in the first embodiment, the points P100 to P105 described above change their positions, and the positions change, so that the X, Y, The coordinate value of Z also changes. Thus, the X, Y, and Z coordinate values of the points P100 to P105 that have changed following the deformation of the skeletal model 71a are the greater trochanters of the left and right femurs in the human body of the subject that is the subject of the three-dimensional measurement, The position of the point corresponding to the kneecap and the ankle under the tibia is represented, and from the position of these points, as described later, the foot is an O leg or an X leg, and the left and right hipbones are tilted forward or backward. The inclination etc. can be verified. The skeleton model 71a of the second embodiment also includes angle lines constituting a pelvic angle (lumbosacral angle or sacral inclination angle), lumbar lordosis angle, thoracic kyphosis angle, and cervical vertebral angle.
 図32は、骨格モデル71aが有する上述した各角度を構成する各線L100~L107を示している。骨盤角度(腰仙角又は仙骨角度)は線L100及び骨盤角度線L101に応じた角度であり、これらの線L100、101が交わる角度を意味する。線L100はZ軸に平行な線であり、骨盤角度線L101は、仙骨の上面(後述のhipsに係る骨格箇所に相当)に平行な線になっており、骨格モデル71aのXYZ座標系での骨盤角度線L101を表す数式(骨盤角度線L101の傾き等を示す数式)が予め定められている(他の角度線も同様)。骨格モデル71aが変形すると、骨盤角度線L101の傾きも変わり、その変わった傾きを骨格角度線L101の数式に反映することで、変形後の骨格モデル71aの骨盤角度線L101の数式も求められるようになる(他の角度線L102~107も同様)。 FIG. 32 shows lines L100 to L107 constituting the above-described angles of the skeleton model 71a. The pelvic angle (lumbosacral angle or sacral angle) is an angle corresponding to the line L100 and the pelvic angle line L101, and means an angle at which these lines L100, 101 intersect. The line L100 is a line parallel to the Z axis, and the pelvic angle line L101 is a line parallel to the upper surface of the sacrum (corresponding to a skeleton location related to hips described later), and the skeleton model 71a in the XYZ coordinate system A mathematical expression representing the pelvis angle line L101 (a mathematical expression indicating the inclination of the pelvis angle line L101) is predetermined (the same applies to other angle lines). When the skeletal model 71a is deformed, the inclination of the pelvic angle line L101 also changes, and by reflecting the changed inclination in the mathematical expression of the skeletal angle line L101, the mathematical expression of the pelvic angle line L101 of the skeletal model 71a after deformation is also obtained. (The same applies to the other angle lines L102 to L107).
 腰椎前弯角度は第1前弯線L102及び第2前弯線L103に応じた角度であり、これらの線L102、103が交わる角度を意味する。第1前弯線L102は計5個の腰椎の中で最も下方の第5腰椎の接合面(上面又は下面、後述のspineに係る骨格箇所に相当)に平行な線であり、第2前弯線L103は計5個の腰椎の中で最も上方の第1腰椎の接合面(上面又は下面、後述のspine2に係る下方の骨格箇所に相当)に平行な線である。 The lumbar lordosis angle is an angle according to the first anterior line L102 and the second anterior line L103, and means the angle at which these lines L102, 103 intersect. The first anterior line L102 is a line parallel to the joint surface (upper surface or lower surface, corresponding to a skeletal portion related to spine described later) of the lowermost fifth lumbar vertebra among a total of five lumbar vertebrae. A line L103 is a line parallel to the joint surface (upper or lower surface, corresponding to a lower skeletal portion related to spine 2 described later) of the uppermost first lumbar vertebra among the total of five lumbar vertebrae.
 また、胸椎後弯角度は、第1後弯線L104及び第2後弯線L105に応じた角度であり、これらの線L104、105が交わる角度を意味する。第1後弯線L104は、計12個の胸椎の中で最も下方の第12胸椎の接合面(上面又は下面、後述のspine2に係る上方の骨格箇所に相当)に平行な線であり、第2後弯線L105は、計12個の胸椎の中で最も上方の第1胸椎の接合面(上面又は下面、後述のspine3に係る骨格箇所に相当)に平行な線である。 Further, the thoracic vertebra kyphosis angle is an angle corresponding to the first posterior heel line L104 and the second posterior heel line L105, and means an angle at which these lines L104, 105 intersect. The first posterior line L104 is a line parallel to the joint surface (upper surface or lower surface, corresponding to the upper skeleton portion related to spine 2 described later) of the lowermost thoracic vertebra among the 12 thoracic vertebrae, The 2 posterior saddle line L105 is a line parallel to the joint surface (upper surface or lower surface, corresponding to a skeletal portion related to spine 3 described later) of the uppermost first thoracic vertebra among the total 12 thoracic vertebrae.
 さらに、頸椎前弯角度は、第1頸椎前弯線L106及び第2頸椎前弯線L107に応じた角度であり、これらの線L106、107が交わる角度を意味する。第1頸椎前弯線L106は、計7個の頸椎の中で最も下方の第7頸椎の接合面(上面又は下面、後述のneck_1に係る骨格箇所に相当)に平行な線であり、第2頸椎前弯線L107は、計7個の頸椎の中で最も上方の第1頸椎の接合面(上面又は下面、後述のneck_3に係る骨格箇所に相当)に平行な線である。 Furthermore, the cervical lordosis angle is an angle corresponding to the first cervical lordosis line L106 and the second cervical vertebra lordosis line L107, and means an angle at which these lines L106 and 107 intersect. The first cervical vertebral lordosis line L106 is a line parallel to the joint surface (upper surface or lower surface, corresponding to a skeletal portion related to neck_1 described later) of the lowermost cervical vertebra among a total of seven cervical vertebrae, The cervical lordosis line L107 is a line parallel to the joint surface (upper surface or lower surface, corresponding to a skeleton portion related to neck_3 described later) of the uppermost first cervical vertebra among the total seven cervical vertebrae.
 なお、上記の説明では、標準型の骨格モデル71aで説明したが、四肢の寸法(手足の寸法)を標準型に比べて約95%短くした第1パターンの骨格モデル71b、及び四肢の寸法(手足の寸法)を標準型に比べて約105%長くした第2パターンの骨格モデル71cについても同様に、上記のような変形基点P1~P14等、各点P100~105等、及び各角度線L101~L107等を含むものになっている。 In the above description, the standard skeleton model 71a is described. However, the first pattern skeleton model 71b in which the dimensions of the limbs (dimensions of the limbs) are shortened by about 95% compared to the standard type, and the dimensions of the limbs ( Similarly, for the second pattern skeleton model 71c in which the dimensions of the limbs are about 105% longer than the standard type, the deformation base points P1 to P14 and the like, the points P100 to 105 and the like, and the angle lines L101 as described above. To L107 and the like.
 また、図30の記憶部50g′に記憶されるポイントテーブル800は、実施例1のポイントテーブル80(図15参照)と内容が一部異なったものになっており、また、判定テーブル95、及び分析テーブル96等は、実施例2で新たに記憶されたテーブルになっている。 Further, the point table 800 stored in the storage unit 50g ′ of FIG. 30 is partially different from the point table 80 (see FIG. 15) of the first embodiment, and the determination table 95, and The analysis table 96 and the like are tables newly stored in the second embodiment.
 図33及び34は、実施例2のポイントテーブル800を示している(テーブルの中身が長いので、図33及び34の二つの図に分けて示す)。実施例2のポイントテーブル800は基本的に実施例1のポイントテーブル80(図15参照)と同様に、三次元測定で得られた人体表面の複数の点の中で、特定の人体箇所(骨格箇所)における骨格ポイント(骨格箇所における点)に対応する三次元測定で得られた人体表面の点を、骨格ポイントごとに示すものになっている。なお、三次元測定で得られた人体表面の点は、三次元座標系に基づいた三次元座標値をそれぞれ有する。このような三次元座標系は、実施例1と同様であり、測定対象となる被験者Hの人体の幅方向(X軸座標に応じた方向)、人体の高さ方向(Y軸座標に応じた方向)、及び人体の厚み方向(Z軸座標に応じた方向)で構成される(図1参照)。また、ポイントテーブル800に含まれる各骨格ポイントは実施例1で説明したように、上述した骨格モデル71a~71cが有する変形基点P1~P14等と対応するものになっている。 33 and 34 show the point table 800 of the second embodiment (the contents of the table are long, and are shown separately in two figures of FIGS. 33 and 34). The point table 800 according to the second embodiment is basically similar to the point table 80 according to the first embodiment (see FIG. 15). Among a plurality of points on the surface of the human body obtained by three-dimensional measurement, a specific human body location (skeleton) The points on the surface of the human body obtained by the three-dimensional measurement corresponding to the skeletal points (points at the skeletal location) are shown for each skeleton point. Note that the points on the surface of the human body obtained by the three-dimensional measurement have three-dimensional coordinate values based on the three-dimensional coordinate system. Such a three-dimensional coordinate system is the same as that of the first embodiment, and the width direction of the human body of the subject H to be measured (direction according to the X-axis coordinates) and the height direction of the human body (according to the Y-axis coordinates). Direction) and the thickness direction of the human body (direction according to the Z-axis coordinates) (see FIG. 1). Further, as described in the first embodiment, each skeleton point included in the point table 800 corresponds to the deformation base points P1 to P14 and the like included in the skeleton models 71a to 71c described above.
 ポイントテーブル800が実施例1のポイントテーブル80と異なる内容としては、骨格の状況を細かく検証できるようにするため、特定の人体箇所(骨格ポイント)の数を増やしていると共に、姿勢検証用に耳たぶ及び肩峰等の人体箇所も含ませており、さらに、備考欄を設けて、X、Y、Z座標値の特定(算出)の仕方等を記し、各骨格ポイントの特性に応じて座標値を求められるようにしている。また、実施例2では、各処理で骨格ポイントを区別できるようにするため、各骨格ポイントについての名称(ボーン名と称す)も規定している。 The point table 800 is different from the point table 80 of the first embodiment in that the number of specific human body parts (skeleton points) is increased in order to enable detailed verification of the state of the skeleton, and for the purpose of posture verification. In addition, human body parts such as shoulder ridges are included, and a remarks column is provided to describe how to specify (calculate) the X, Y, Z coordinate values, and the coordinate values are determined according to the characteristics of each skeleton point. It is asking for. In the second embodiment, a name (referred to as a bone name) for each skeleton point is also defined so that the skeleton point can be distinguished in each process.
 図35は、ボーン名に応じた各骨格ポイント(ボーンに相当)の位置関係を概念的に示したボーンモデル810を示す。このボーンモデル810に基づき、骨格ポイントについて、ボーン名と人体の骨格における位置関係を説明すると、ボーンモデル810は、頭部頂点についてボーン名をheadにしており、首上部(上方首骨ポイントに相当)をneck_3、首中部をneck_2、首下部(首骨ポイントに相当)をneck_1にして首(頸椎)を構成する。首上部(neck_3)は、図32に示す頸椎前弯角度に応じた第2頸椎前弯線L107に係る骨格箇所に相当し、首下部(neck_1)は、頸椎前弯角度に応じた第1頸椎前弯線L106に係る骨格箇所に相当する。 FIG. 35 shows a bone model 810 conceptually showing the positional relationship between each skeleton point (corresponding to a bone) according to the bone name. Based on this bone model 810, regarding the skeleton point, the relationship between the bone name and the skeleton of the human body will be described. The bone model 810 has the head bone name as the head vertex and corresponds to the upper neck (corresponding to the upper neck point). ) Is neck_3, the middle neck is neck_2, and the lower neck (corresponding to the neck point) is neck_1 to form the neck (cervical vertebra). The upper neck (neck_3) corresponds to the skeletal location related to the second cervical lordosis line L107 according to the cervical lordosis angle shown in FIG. 32, and the lower neck (neck_1) is the first cervical vertebra according to the cervical lordosis angle It corresponds to the skeleton part related to the forefront line L106.
 また、ボーンモデル810は、右鎖骨をRightShoulder、左鎖骨をLeftShoulder、右肩をRightArm、左肩をLeftArm、右肘をRightForeArm、左肘をLeftForeArm、右手首をRightHand_1、左手首をLeftHand_1、右手先端(中指第三関節)をRightHand_2、左手先端首(中指第三関節)をLeftHand_2にして、鎖骨から肩及び腕を経て手の先端までを構成する。 The bone model 810 is a RightShoulder for the right clavicle, LeftShoulder for the left clavicle, RightArm for the right shoulder, LeftArm for the left shoulder, RightForeArm for the right elbow, LeftForeArm for the left elbow, RightHand_1 for the right wrist, LeftHand_1 for the right wrist (middle finger) The third joint) is RightHand_2 and the left hand tip neck (middle finger third joint) is LeftHand_2, and it is constructed from the clavicle through the shoulder and arm to the tip of the hand.
 さらに、ボーンモデル810は、左右肩甲骨の中心となる位置の背骨上部(第3背骨ポイントに相当)をspine2、胸骨下位置の背骨中部(第2背骨ポイントに相当)をspine1、ウエストの中心位置となる背骨下部(第1背骨ポイントに相当)をspine、骨盤中心(骨盤ポイントに相当)をhips、右股関節をRightUpLeg、左股関節をLeftUpLegとして、背骨及び骨盤等を構成する。なお、骨盤中心(hips)は、図32に示す腰仙角に応じた骨盤角度線L101に係る骨格箇所に相当し、全ての骨格ポイント(ボーンに相当)の親(中心、原点)の箇所になる。 Furthermore, the bone model 810 has spine 2 at the top of the spine at the center of the left and right scapula (corresponding to the third spine point), spine 1 at the center of the spine below the sternum (corresponding to the second spine point), and the center position of the waist The lower spine (corresponding to the first spine point) is spine, the pelvic center (corresponding to the pelvic point) is hips, the right hip joint is RightUpLeg, and the left hip joint is LeftUpLeg. Note that the pelvic center (hips) corresponds to the skeletal part related to the pelvic angle line L101 corresponding to the lumbosacral angle shown in FIG. 32, and is located at the parent (center, origin) of all skeletal points (corresponding to bones). Become.
 また、背骨下部(spine、第1背骨ポイントに相当)は、図32に示す腰椎前弯角度に応じた第1前弯線L102に関連した骨格箇所(ウエストの中心箇所)に相当し、背骨中部(spine1、第2背骨ポイントに相当)は、図32に示す腰椎前弯角度に応じた第2前弯線L103及び胸椎後弯角度に応じた第1後弯線L104に関連した骨格箇所(胸骨下位置の箇所)に相当する。さらに、背骨上部(spine2、第3背骨ポイントに相当)は、図32に示す胸椎後弯角度に応じた第2後弯線L105に係る骨格箇所(肩甲骨の中心の箇所)に相当する。 The lower part of the spine (spine, corresponding to the first spine point) corresponds to the skeletal part (center part of the waist) related to the first anterior line L102 according to the lumbar lordosis angle shown in FIG. The spine 1 (corresponding to the second spine point) is a skeletal location (sternal bone) related to the second lordosis line L103 corresponding to the lumbar lordosis angle shown in FIG. Corresponds to the lower position). Further, the upper part of the spine (spine2, corresponding to the third spine point) corresponds to the skeletal part (the central part of the scapula) related to the second posterior heel line L105 according to the thoracic vertebra kyphosis angle shown in FIG.
 そして、ボーンモデル810は、右膝をRightLeg、左膝をLeftLeg、右足首をRightFoot、左足首をLeftFoot、右脚先端をRightTooBase_1、左脚先端をLeftTooBase_1として、足部分を構成する。 The bone model 810 has a leg portion with the right knee as RightLeg, the left knee as LeftLeg, the right ankle as RightFoot, the left ankle as LeftFoot, the right leg tip as RightTooBase_1, and the left leg tip as LeftTooBase_1.
 上述したボーンモデル810の各骨格ポイントについて、図33、34のポイントテーブル800は、三次元測定器20で測定したことで得られる人体表面の点と対応することを、骨格ポイントごとに示している。なお、図33、34のポイントテーブル800が含む各骨格ポイントとしては、図15のポイントテーブル80の場合と同様、皮膚の上からでも骨張った箇所(筋肉及び脂肪が基本的に覆わないで、皮膚が骨を覆うような箇所)が基本的に選ばれている。以下に、ポイントテーブル800に含まれる各骨格ポイントに対応する三次元測定点、及び各座標値の算出の仕方(特定の仕方)について、代表的な骨格ポイントを例にして具体的に説明する。 For each skeleton point of the bone model 810 described above, the point table 800 of FIGS. 33 and 34 indicates that the skeleton points correspond to points on the human body surface obtained by measuring with the three-dimensional measuring device 20. . In addition, as each skeleton point included in the point table 800 of FIGS. 33 and 34, as in the case of the point table 80 of FIG. The part where the skin covers the bone) is basically selected. Hereinafter, a three-dimensional measurement point corresponding to each skeleton point included in the point table 800 and a method of calculating each coordinate value (specific method) will be described in detail using typical skeleton points as an example.
 ポイントテーブル800は、骨格ポイントとして、首上部(neck_3、上方首骨ポイントに相当)及び首中部(neck_2)のX、Y、Z座標を、人体の左右側の点の各X、Y、Z座標の平均値(左右の点の中心となる点の座標値)にすることを備考欄で示している。すなわち、首中部(neck_2)より上方に位置する首上部(neck_3)には、三次元測定で得られた複数の点の中の人体左側の4692番目となる点、及び人体右側の2560番目の点が対応することが、ポイントテーブル800で示されることから、備考欄の記載された算出方法より、4692番目の点のX座標値及び2560番目の点のX座標値の平均値が首上部(neck_3)のX座標値として算出され、4692番目の点のY座標値及び2560番目の点のY座標値の平均値が首上部(neck_3)のY座標値として算出され、4692番目の点のZ座標値及び2560番目の点のZ座標値の平均値が首上部(neck_3)のZ座標値として算出される。 The point table 800 uses the X, Y, and Z coordinates of the upper neck (neck_3, corresponding to the upper neck point) and the middle neck (neck_2) as the skeleton points, and the X, Y, and Z coordinates of the points on the left and right sides of the human body. It is shown in the remarks column that the average value (the coordinate value of the point that becomes the center of the left and right points) is used. In other words, the upper neck (neck_3) located above the middle neck (neck_2) has a 4692th point on the left side of the human body and a 2560th point on the right side of the human body among a plurality of points obtained by three-dimensional measurement. Since the point table 800 indicates that this corresponds, the average value of the X-coordinate value of the 4692th point and the X-coordinate value of the 2560th point is calculated based on the calculation method described in the remarks column. ), The average value of the Y coordinate value of the 4692th point and the Y coordinate value of the 2560th point is calculated as the Y coordinate value of the upper neck (neck_3), and the Z coordinate of the 4692th point. The average value of the Z coordinate value of the value and the 2560th point is calculated as the Z coordinate value of the upper neck (neck_3).
 首中部(neck_2)についても、上述した首上部(neck_3)のX、Y、Z座標値の算出の仕方と同様であることがポイントテーブル800の備考欄で示されており、ポイントテーブル800で首中部(neck_2)に対応付けられる人体左側の19717番目となる点のX座標値及び人体右側の11300番目の点のX座標値の平均値が首中部(neck_2)のX座標値として算出され、人体左側の19717番目となる点のY座標値及び人体右側の11300番目の点のY座標値の平均値が首中部(neck_2)のY座標値として算出され、人体左側の19717番目となる点のZ座標値及び人体右側の11300番目の点のZ座標値の平均値が首中部(neck_2)のZ座標値として算出される。 The remarks column of the point table 800 shows that the middle part of the neck (neck_2) is the same as the method of calculating the X, Y, and Z coordinate values of the upper neck part (neck_3) described above. The average X coordinate value of the 19717th point on the left side of the human body and the X coordinate value of the 11300th point on the right side of the human body associated with the middle part (neck_2) is calculated as the X coordinate value of the middle part (neck_2). The average value of the Y coordinate value of the 19717th point on the left side and the Y coordinate value of the 11300th point on the right side of the human body is calculated as the Y coordinate value of the neck (neck_2), and the Z717 of the 19717th point on the left side of the human body The average value of the coordinate value and the Z coordinate value of the 11300th point on the right side of the human body is calculated as the Z coordinate value of the neck (neck_2).
 一方、首上部(neck_3)及び首中部(neck_2)より下方に位置する首下部(neck_1、首骨ポイントに相当)は、人体を正面から見た場合、顎部分に覆われずに、三次元測定により前方から直接的にスキャンできることから、ポイントテーブル800の備考欄には、人体の前後側の点の各X、Y、Z座標の平均値(前後の点の中心となる点の座標値)になることが算出法として示されている。すなわちポイントテーブル800には、三次元測定で得られた複数の点の中の人体前側の3570番目の点、及び人体後側の924番目の点が首下部(neck_1)に対応することが示されるので、3570番目の点のX座標値及び924番目の点のX座標値の平均値が首下部(neck_1)のX座標値として算出され、3570番目の点のY座標値及び924番目の点のY座標値の平均値が首下部(neck_1)のY座標値として算出され、3570番目の点のZ座標値及び924番目の点のZ座標値の平均値が首下部(neck_1)のZ座標値として算出される。なお、このような算出の仕方で得られる首下部(neck_1)のZ座標値は、3570番目の点のZ座標値及び924番目の点のZ座標値の間を1対1の特定の比率で分ける点の座標値であると云うこともできる(他の骨格ポイントのZ座標値を算出する場合も同様)。 On the other hand, the lower neck (neck_1, equivalent to the neck point) located below the upper neck (neck_3) and the middle neck (neck_2) is not covered by the jaw when viewed from the front, and is measured in three dimensions. Can be directly scanned from the front, the remarks column of the point table 800 includes an average value of the X, Y, and Z coordinates of the points on the front and back sides of the human body (the coordinate value of the point that is the center of the front and back points). It is shown as a calculation method. That is, the point table 800 indicates that the 3570th point on the front side of the human body and the 924th point on the rear side of the human body among the plurality of points obtained by the three-dimensional measurement correspond to the lower neck (neck_1). Therefore, the average value of the X coordinate value of the 3570th point and the X coordinate value of the 924th point is calculated as the X coordinate value of the lower neck (neck_1), and the Y coordinate value of the 3570th point and the 924th point The average value of the Y coordinate values is calculated as the Y coordinate value of the lower neck (neck_1), and the average value of the Z coordinate value of the 3570th point and the Z coordinate value of the 924th point is the Z coordinate value of the lower neck (neck_1). Is calculated as The Z coordinate value of the lower neck (neck_1) obtained by such a calculation method is a specific ratio of 1: 1 between the Z coordinate value of the 3570th point and the Z coordinate value of the 924th point. It can also be said that it is the coordinate value of the dividing point (the same applies when calculating the Z coordinate value of another skeleton point).
 さらに、ポイントテーブル800は、右鎖骨(RightShoulder)及び左鎖骨(LeftShoulder)のX、Y、Z座標は、人体前側の点、上側の点の座標値から特定されることを備考欄で示している。すなわち、右鎖骨(RightShoulder)には、三次元測定で得られた複数の点の中の人体前側の2998番目の点、及び人体上側の776番目の点が対応することが、ポイントテーブル800で示されることから、備考欄の記載された座標値の特定の仕方より、2988番目の点のX、Y座標値が右鎖骨(RightShoulder)のX、Y座標値として特定され、人体前側の2998番目のZ座標値及び776番目のZ座標値の平均値が右鎖骨(RightShoulder)のZ座標値として特定される。このような特定の仕方は、左鎖骨(LeftShoulder)でも同様である。 Further, the point table 800 indicates in the remarks column that the X, Y, and Z coordinates of the right clavicle (RightShoulder) and the left clavicle (LeftShoulder) are specified from the coordinate values of the front point and the upper point. . That is, the point table 800 indicates that the right shoulder (RightShoulder) corresponds to the 2998th point on the front side of the human body and the 776th point on the upper side of the human body among the plurality of points obtained by the three-dimensional measurement. Therefore, the X and Y coordinate values of the 2988th point are specified as the X and Y coordinate values of the right collarbone (RightShoulder) according to the method of specifying the coordinate values described in the remarks column, and the 2998th point on the front side of the human body. The average value of the Z coordinate value and the 776th Z coordinate value is specified as the Z coordinate value of the right clavicle (RightShoulder). This particular method is the same for the left clavicle (LeftShoulder).
 そして、右肩(RightArm)及び左肩(LeftArm)については、基本的に上述した首下部(neck_1)と同様の座標値の求め方を、ポイントテーブル800は規定するが、男女間で肩幅は大きくなることを考慮して、被験者の性別ごとに対応する点を相違させている。すなわち、ポイントテーブル800は、右肩(RightArm)に対応する三次元測定で得られた人体表面の点として、男性の場合、人体前側の8017番目の点及び人体後側の3448番目の点を示し、女性の場合、人体前側の2055番目の点及び人体後側の14829番目の点を示し、左肩(LeftArm)に対応する三次元測定で得られた人体表面の点として、男性の場合、人体前側の16419番目の点及び人体後側の5575番目の点を示し、女性の場合、人体前側の4189番目の点及び人体後側の23237番目の点を示す。 For the right shoulder (RightArm) and the left shoulder (LeftArm), the point table 800 stipulates how to obtain the coordinate values that are basically the same as those of the lower neck (neck_1) described above, but the shoulder width increases between men and women. In consideration of this, the point corresponding to each gender of the subject is different. That is, the point table 800 shows the 8017th point on the front side of the human body and the 3448th point on the rear side of the human body as the points on the human body surface obtained by the three-dimensional measurement corresponding to the right shoulder (RightArm). In the case of women, the 2055th point on the front side of the human body and the 14829th point on the back side of the human body are shown, and the points on the surface of the human body obtained by three-dimensional measurement corresponding to the left shoulder (LeftArm) The 16419th point and the 5575th point on the back side of the human body are shown, and in the case of a woman, the 4189th point on the front side of the human body and the 23237th point on the back side of the human body are shown.
 また、ポイントテーブル800は、背骨上部(spine2)、背骨中部(spine1)、及び背骨下部(spine)に対応する三次元測定で得られた人体表面の点として、上述した首下部(neck_1)の場合と同様に、人体の前後側の点を示し、また、備考欄において座標値の算出の仕方もX、Y座標値については上述した首下部(neck_1)の場合と同様にしているが、Z座標値については、人体の前後の点の間を特定の比率で分けた点の座標値を算出することを示す。なお、背骨上部(spine2)、背骨中部(spine1)、及び背骨下部(spine)は、それぞれ背骨ポイントに相当する。 In addition, the point table 800 is the case of the lower neck (neck_1) described above as a point on the human body surface obtained by three-dimensional measurement corresponding to the upper spine (spine2), the middle spine (spine1), and the lower spine (spine). Similarly, the points on the front and rear sides of the human body are shown. In the remarks column, the coordinate value is calculated in the same way as the case of the lower neck (neck_1) described above with respect to the X and Y coordinate values. The value indicates that the coordinate value of a point obtained by dividing a point before and after the human body by a specific ratio is calculated. The upper spine (spine2), the middle spine (spine1), and the lower spine (spine) correspond to the spine points.
 背骨上部(spine2)に対応する三次元測定で得られた点として、ポイントテーブル800には、人体前側の3202番目の点、及び人体後側の8010番目の点が示されるので、3203番目の点のX座標値及び8010番目の点のX座標値の平均値(X座標において両方の点の間の中心となる点の座標値)が、背骨上部(spine2)のX座標値として算出され、3203番目の点のY座標値及び8010番目の点のY座標値の平均値(Y座標において両方の点の間の中心となる点の座標値)が、背骨上部(spine2)のY座標値として算出される。さらに、Z座標値についてポイントテーブル800は、備考欄にて、人体前側の3202番目の点、及び人体後側の8010番目の点の間を6:4の比率で分ける点を、背骨上部(spine2)のZ座標値として算出されることを示している。このようにZ座標値においては、平均値ではなく、6:4に比率で分ける点の座標値を用いるのは、実体の人体において、左右肩甲骨の中心となる辺りの背骨は、人体の厚み方向で、人体前側の表面と人体後側の表面の間を、前側表面から後側表面へ6:4の割合で分けた背中寄りの箇所に位置するからである。 As a point obtained by the three-dimensional measurement corresponding to the upper part of the spine (spine2), the point table 800 shows the 3202nd point on the front side of the human body and the 8010th point on the back side of the human body. And the average value of the X-coordinate values of the 8010th point (the coordinate value of the center point between both points in the X-coordinate) is calculated as the X-coordinate value of the upper spine (spine2). The average value of the Y coordinate value of the 1st point and the Y coordinate value of the 8010th point (the coordinate value of the center point between both points in the Y coordinate) is calculated as the Y coordinate value of the upper spine (spine2) Is done. Further, in the remarks column, the point table 800 for the Z coordinate value indicates that the point dividing the 3202nd point on the front side of the human body and the 8010th point on the back side of the human body at a ratio of 6: 4 is the upper part of the spine (spine2 ) Is calculated as a Z coordinate value. As described above, in the Z coordinate value, the coordinate value of the point divided by the ratio of 6: 4 is used instead of the average value. In the actual human body, the spine around the center of the left and right shoulder blades is the thickness of the human body. This is because the position between the front surface and the back surface of the human body is located at a position closer to the back divided in a ratio of 6: 4 from the front surface to the rear surface.
 また、背骨中部(spine1)に対応する三次元測定で得られた点として、ポイントテーブル800には、人体前側の26141番目の点、及び人体後側の26358番目の点が示されるので、26141番目の点のX座標値及び人体後側の26358番目の点のX座標値の平均値(X座標において両方の点の間の中心となる点の座標値)が、背骨中部(spine1)のX座標値として算出され、26141番目の点のY座標値及び人体後側の26358番目の点のY座標値の平均値(Y座標において両方の点の間の中心となる点の座標値)が、背骨上部(spine1)のY座標値として算出される。さらに、Z座標値についてポイントテーブル800は、備考欄にて、人体前側の26141番目の点、及び人体後側の26358番目の点の間を7:3の比率で分ける点を、背骨中部(spine1)のZ座標値として算出されることを示している。このようにZ座標値においては、7:3に比率で分ける点の座標値を用いるのは、実体の人体において、胸骨下位置の背骨は、人体前側の表面と人体後側の表面の間を、前側表面から後側表面へ7:3の割合で分けた箇所に存在するからである。 In addition, as the points obtained by the three-dimensional measurement corresponding to the spine middle portion (spine1), the point table 800 shows the 26141th point on the front side of the human body and the 26358th point on the back side of the human body. The average value of the X coordinate value of the point and the X coordinate value of the 26358th point on the back side of the human body (the coordinate value of the center point between both points in the X coordinate) is the X coordinate of the spine center (spine1) The average value of the Y-coordinate value of the 26141st point and the Y-coordinate value of the 26358th point on the back side of the human body (the coordinate value of the center point between both points in the Y coordinate) is calculated as a value. Calculated as the Y coordinate value of the upper part (spine1). Further, regarding the Z coordinate value, in the remarks column, the point table 800 divides the point between the 26141th point on the front side of the human body and the 26358th point on the back side of the human body at a ratio of 7: 3. ) Is calculated as a Z coordinate value. Thus, in the Z coordinate value, the coordinate value of the point divided by 7: 3 is used in the actual human body, and the spine at the position below the sternum is between the front surface of the human body and the rear surface of the human body. This is because it exists in a portion divided at a ratio of 7: 3 from the front surface to the rear surface.
 さらに、背骨下部(spine)に対応する三次元測定で得られた点として、ポイントテーブル800には、人体前側の26259番目の点、及び人体後側の11860番目の点が示されるので、26259番目の点のX座標値及び11860番目の点のX座標値の平均値(X座標において両方の点の間の中心となる点の座標値)が、背骨下部(spine)のX座標値として算出され、26259番目の点のY座標値及び11860番目の点のY座標値の平均値(Y座標において両方の点の間の中心となる点の座標値)が、背骨下部(spine)のY座標値として算出される。さらに、Z座標値についてポイントテーブル800は、備考欄にて、人体前側の26259番目の点、及び人体後側の11860番目の点の間を6:4の比率で分ける点を、背骨下部(spine)のZ座標値として算出されることを示している。このようにZ座標値においては、6:4に比率で分ける点の座標値を用いるのは、実体の人体において、ウエストの中心位置となる辺りの背骨は、人体の厚み方向で、人体前側の表面と人体後側の表面の間を、前側表面から後側表面へ6:4の割合で分けた背中寄りの箇所に位置するからである。 Furthermore, since the point table 800 shows the 26259th point on the front side of the human body and the 11860th point on the back side of the human body as points obtained by the three-dimensional measurement corresponding to the lower spine (spine), the 26259th point The average value of the X coordinate value of the point and the X coordinate value of the 11860th point (the coordinate value of the center point between both points in the X coordinate) is calculated as the X coordinate value of the lower spine. The average value of the Y coordinate value of the 26259th point and the Y coordinate value of the 11860th point (the coordinate value of the center point between both points in the Y coordinate) is the Y coordinate value of the lower spine. Is calculated as Further, in the remarks column, the point table 800 for the Z-coordinate value indicates that a point that divides the 26259th point on the front side of the human body and the 11860th point on the back side of the human body at a ratio of 6: 4. ) Is calculated as a Z coordinate value. Thus, in the Z coordinate value, the coordinate value of the point divided by 6: 4 is used because the spine around the center position of the waist in the human body is in the thickness direction of the human body, It is because it is located in the place near the back which divided between the surface of the surface and the surface of a human body from the front side surface to the back side surface in the ratio of 6: 4.
 以上のように、背骨上部(spine2)、背骨中部(spine1)、及び背骨下部(spine)については、実際の人体における背骨が、人体の厚み方向(Z座標方向)で人体内部の一様な箇所に位置しないことを考慮して、上述した比率で分けることから、実際の人体内における背骨の位置を骨格の特定の処理の際に反映できる。 As described above, for the upper part of the spine (spine2), the middle part of the spine (spine1), and the lower part of the spine (spine), the spine in the actual human body is a uniform part in the human body in the thickness direction of the human body (Z coordinate direction) In consideration of the fact that it is not positioned at the position, the ratio of the spine in the human body can be reflected in the specific processing of the skeleton because it is divided by the ratio described above.
 また、全ボーンの親となる骨盤中心(hips、骨盤ポイントに相当)について、ポイントテーブル800は、上述した首下部(neck_1)の場合と同様に、対応する点として人体の前後の点(人体前側の6602番目の点及び人体後側の26148番目の点)を示すと共に、備考欄における座標値の算出の仕方も、上述した首下部(neck_1)の場合と同様に、人体の前後の点の各X、Y、Z座標値の平均の座標値にしている。 As for the pelvic center (equivalent to hips, pelvic point), which is the parent of all bones, the point table 800 corresponds to the points before and after the human body (the front side of the human body) as the corresponding points as in the case of the lower neck (neck_1) described above. 6602th point and 26148th point on the back side of the human body), and the calculation method of the coordinate value in the remarks column is similar to the case of the neck lower part (neck_1) described above. The average coordinate value of the X, Y, and Z coordinate values is used.
 なお、ポイントテーブル800は、姿勢検証等を確実に行えるようにするため、骨格ポイント(変形基点)以外の箇所についても、三次元測定で得られた複数の点の中の対応する点を示している。具体例としてポイントテーブル800は、右耳たぶに対応する三次元測定点として15645番目の点を一つだけ示し、左耳たぶに対応する三次元測定点として24044番目の点を一つだけ示し、右肩峰に対応する三次元測定点として11232番目の点を一つだけ示し、左肩峰に対応する三次元測定点として19645番目の点を一つだけ示す。 In addition, the point table 800 shows corresponding points among a plurality of points obtained by the three-dimensional measurement for portions other than the skeleton points (deformation base points) in order to ensure posture verification and the like. Yes. As a specific example, the point table 800 shows only one 15645th point as a three-dimensional measurement point corresponding to the right earlobe, shows only one 24044th point as a three-dimensional measurement point corresponding to the left earlobe, Only one 11232th point is shown as the three-dimensional measurement point corresponding to the peak, and only one 19645th point is shown as the three-dimensional measurement point corresponding to the left shoulder peak.
 また、ポイントテーブル800は、骨格ポイントである頭部頂点(head)に対応する三次元測定点として3225番目の点を一つだけ示す。また、このような対応点が一つだけの骨格ポイントとしては、右骨盤(RightDownScale2)及び左骨盤(LeftDownScale2)があり、ポイントテーブル800は、右骨盤(RightDownScale2)に対応する三次元測定点として14386番目の点を示し、左骨盤(LeftDownScale2)に対応する三次元測定点として22798番目の点を示す。 Also, the point table 800 shows only one 3225th point as a three-dimensional measurement point corresponding to a head vertex that is a skeleton point. The skeleton points having only one corresponding point include the right pelvis (RightDownScale2) and the left pelvis (LeftDownScale2), and the point table 800 is 14386 as a three-dimensional measurement point corresponding to the right pelvis (RightDownScale2). The 22nd point is shown as a three-dimensional measurement point corresponding to the left pelvis (LeftDownScale2).
 図36、37は、図30の記憶部50g′に記憶される判定テーブル95の中身の概要を示す(テーブルの中身が長いので、図36及び37の二つの図に分けて示す)。判定テーブル95は骨格ポイントの三次元座標値及び骨格モデルの対象点(P1~P5)の三次元座標値等から、各骨格箇所の状況ついて異常の有無を判定する内容を規定したものになっている。 36 and 37 show an outline of the contents of the determination table 95 stored in the storage unit 50g ′ of FIG. 30 (the contents of the table are long, so that they are divided into two figures of FIGS. 36 and 37). The determination table 95 defines the contents for determining the presence / absence of an abnormality with respect to the situation of each skeletal location from the three-dimensional coordinate values of the skeleton points and the three-dimensional coordinate values of the target points (P1 to P5) of the skeleton model. Yes.
 図36に示す判定テーブル95の中身は、人体を前の方向から見た場合の姿勢検証項目(検証箇所)について規定したものになっており、検証箇所としては「1:重心Y軸ラインと頭頂部との乖離」、「2:大腿骨大転子から膝頭までの両足間の差」、「3:膝頭から足首までの高さの両足間の差」、「4:左右肩峰の高さの差」、「5:左右骨盤の高さの差」、及び「6:膝関節の外反角度」という項目がある。 The contents of the determination table 95 shown in FIG. 36 are defined for posture verification items (verification points) when the human body is viewed from the front direction. "Difference from the top", "2: Difference between both feet from the greater trochanter to the kneecap", "3: Difference between both feet from the kneecap to the ankle", "4: Height of left and right shoulder ridges" "5: Difference in height between left and right pelvises" and "6: Knee joint valgus angle".
 「1:重心Y軸ラインと頭頂部との乖離」とは、体全体の左右の傾斜度合を検出するものであり、XY座標系で構成される二次元平面において、ポイントテーブル800に含まれる頭部頂点(head)のX座標値と重心Y軸ラインのX座標値との差(cm)を算出するものとなっている。重心Y軸ラインとは、ポイントテーブル800が含む骨盤中心(hips)に係る骨格ポイントを通ってY座標の軸(Y軸)に平行な線である。また、客観的な検証を行うための閾値も、判定テーブル95は規定しており、被験者の身長(cm)に対する算出した差(cm)の割合(%)の数値に対し、1.7を閾値にしている。上記の差の割合がプラスマイナス1.7の範囲内であれば正常であり、1.7を超えるとき(プラス)は体全体が左に傾斜、上記の差の割合が-1.7を下回るとき(マイナス)は体全体が右に傾斜であると判定する旨を判定テーブル95は規定する。 “1: Deviation between the center of gravity Y-axis line and the top of the head” is to detect the right and left inclination of the entire body, and is included in the point table 800 in a two-dimensional plane constituted by an XY coordinate system. The difference (cm) between the X coordinate value of the head vertex and the X coordinate value of the center of gravity Y-axis line is calculated. The center-of-gravity Y-axis line is a line parallel to the Y-coordinate axis (Y-axis) through a skeleton point related to the pelvic center (hips) included in the point table 800. Further, the threshold value for objective verification is also defined in the determination table 95, and a threshold value of 1.7 is set for the numerical value of the ratio (%) of the difference (cm) calculated with respect to the height (cm) of the subject. I have to. It is normal if the above difference ratio is in the range of plus or minus 1.7, and when it exceeds 1.7 (plus), the whole body is tilted to the left, and the above difference ratio is below -1.7 When (minus), the determination table 95 defines that it is determined that the whole body is inclined to the right.
 「2:大腿骨大転子から膝頭までの両足間の差」とは、図31の骨格モデル71aで示した左の大腿骨大転子に応じた点P100(Daitehshi_L)と、左膝頭に応じた点P102(Hizagashira_L)を結ぶ線(左の大腿骨線と称す)の長さ(cm)と、右の大腿骨大転子に応じた点P101(Daitehshi_R)と、右膝頭に応じた点P103(Hizagashira_R)を結ぶ線(右の大腿骨線と称す)の長さ(cm)との差を意味する。 “2: Difference between both feet from the greater femoral trochanter to the kneecap” corresponds to the point P100 (Daitehshi_L) corresponding to the greater femoral trochanter shown in the skeleton model 71a of FIG. The length (cm) of a line connecting the points P102 (Hizagashira_L) (referred to as the left femoral line), the point P101 (Daitehshi_R) corresponding to the right femoral trochanter, and the point P103 corresponding to the right kneecap It means the difference from the length (cm) of the line connecting the (Hizagashira_R) (referred to as the right femur line).
 左の大腿骨線は、変形した後の骨格モデルに含まれる左の大腿骨大転子に応じた点P100(Daitehshi_L)のX、Y、Z座標値、及び左膝頭に応じた点P102(Hizagashira_L)のX、Y、Z座標値に基づき、両方の点P100、102を結ぶ線として特定され、それに伴い、左の大腿骨線の長さ(cm)も、両方の点P100、102のX、Y、Z座標値に基づいて三次元的に算出される。 The left femoral line is an X, Y, Z coordinate value of the point P100 (Daitehshi_L) corresponding to the greater trochanter of the left femur contained in the deformed skeleton model, and a point P102 (Hizagashira_L) corresponding to the left kneecap ) Is identified as a line connecting both points P100, 102, and accordingly, the length (cm) of the left femoral line is also determined as X, It is calculated three-dimensionally based on the Y and Z coordinate values.
 右の大腿骨線は、上述した左の大腿骨線と同様に、右の大腿骨大転子に応じた点P101(Daitehshi_R)のX、Y、Z座標値、及び右膝頭に応じた点P103(Hizagashira_R)のX、Y、Z座標値に基づき、両方の点P101、103を結ぶ線として特定され、それに伴い、右の大腿骨線の長さ(cm)も、両方の点P101、103のX、Y、Z座標値に基づいて三次元的に算出される。 The right femoral line is the same as the left femoral line described above, and the X, Y, and Z coordinate values of the point P101 (Daitehshi_R) corresponding to the right greater trochanter and the point P103 corresponding to the right kneecap Based on the X, Y, and Z coordinate values of (Hizagashira_R), the line is specified as a line connecting both points P101 and 103, and accordingly, the length (cm) of the right femoral line is also calculated for both points P101 and 103. It is calculated three-dimensionally based on the X, Y, and Z coordinate values.
 そして、算出した右の大腿骨線の長さから、算出した左の大腿骨線の長さを引いた両者の差(cm)を算出することになる。また、この算出した差に基づき客観的な検証を行うための閾値も、判定テーブル95は規定しており、上述した「1:重心Y軸ラインと頭頂部との乖離」の場合と同様、被験者の身長に対する算出した差の割合(%)の数値に対し、1.7を閾値にしている。上記の差の割合がプラスマイナス1.7の範囲内であれば正常であり、1.7を超えるとき(正のとき)は、右の寛骨(骨盤の右の壁を形成する骨)が前傾、又は左の寛骨(骨盤の右の壁を形成する骨)が後傾(若しくは、右の寛骨前傾及び左の寛骨後傾の両方)であると判定テーブル95は規定し、上記の差の割合が-1.7を下回るとき(負のとき)は、左の寛骨が前傾、又は右の寛骨が後傾(若しくは、左の寛骨前傾及び右の寛骨後傾の両方)であると判定する旨を判定テーブル95は規定する。なお、上記では、右の大腿骨背の長さから左の大腿骨線の長さを引いて、左の寛骨の前傾又は右の寛骨の後傾を判定するようにしているが、算出の仕方を逆にして、左の大腿骨背の長さから右の大腿骨線の長さを引いて、左の寛骨の後傾又は右の寛骨の前傾を判定するように判定テーブル95が規定することも勿論可能である(判定テーブル95において、左右の長さ、角度について判定する他の箇所についても同様に可能)。 Then, the difference (cm) between the two obtained by subtracting the calculated length of the left femoral line from the calculated length of the right femoral line is calculated. Further, the threshold value for objective verification based on the calculated difference is also defined in the determination table 95. As in the case of “1: Deviation between the center of gravity Y-axis line and the top of the head” described above, the subject. A threshold value of 1.7 is set for the numerical value of the calculated difference ratio (%) with respect to the height of the child. It is normal if the ratio of the above difference is within a range of plus or minus 1.7, and when it exceeds 1.7 (positive), the right hipbone (the bone that forms the right wall of the pelvis) The decision table 95 specifies that the anteversion or the left hipbone (the bone that forms the right wall of the pelvis) is posterior (or both the right anteversion and the left anteversion). When the above difference is less than -1.7 (negative), the left hipbone is anteversion, or the right hipbone is anteversion (or left anteversion and right The determination table 95 defines that it is determined that both of the bones are tilted backward. In the above, the length of the left femur line is subtracted from the length of the back of the right femur to determine the forward inclination of the left hipbone or the backward inclination of the right hipbone. Reverse the calculation method and subtract the length of the right femoral line from the length of the left femoral spine to determine whether the left hipbone is tilted backward or the right hipbone is tilted forward Of course, it is possible to define the table 95 (in the determination table 95, other portions where the left and right lengths and angles are determined are also possible).
 「3:膝頭から足首までの高さの両足間の差」とは、図31の骨格モデル71aで示した左膝頭に応じた点P102(Hizagashira_L)と、左の脛骨下の足首に応じた点P104(Ashikubi_L)を結ぶ線(左の脛骨線と称す)の長さ(cm)と、右膝頭に応じた点P103(Hizagashira_R)と、右の脛骨下の足首に応じた点P105(Ashikubi_R)とを結ぶ線(右の脛骨線と称す)の長さ(cm)との差を意味する。 “3: Difference between both knee feet to ankle height” refers to the point P102 (Hizagashira_L) corresponding to the left kneecap shown in the skeleton model 71a of FIG. 31 and the point corresponding to the ankle under the left tibia A length (cm) of a line connecting P104 (Ashikubi_L) (referred to as the left tibial line), a point P103 (Hizagashira_R) corresponding to the right kneecap, and a point P105 (Ashikubi_R) corresponding to the ankle under the right tibia Is the difference from the length (cm) of the line (referred to as the right tibial line).
 左の脛骨線は、上述した左の大腿骨線と同様に、変形後の骨格モデルに含まれる左膝頭に応じた点P102(Hizagashira_L)及び左の脛骨下の足首に応じた点P104(Ashikubi_L)のそれぞれのX、Y、Z座標値に基づき、両方の点P102、104を結ぶ線として特定されると共に、左の脛骨線の長さ(cm)も、両方の点P102、104のX、Y、Z座標値に基づいて三次元的に算出される。右の脛骨線も、変形後の骨格モデルに含まれる右膝頭に応じた点P103(Hizagashira_R)及び右の脛骨下の足首に応じた点P105(Ashikubi_R)のそれぞれのX、Y、Z座標値に基づき、両方の点P103、105を結ぶ線として特定されると共に、右の脛骨線の長さ(cm)も、両方の点P103、105のX、Y、Z座標値に基づいて三次元的に算出される。 The left tibial line is a point P102 (Hizagashira_L) corresponding to the left kneecap included in the deformed skeleton model and a point P104 (Ashikubi_L) corresponding to the ankle under the left tibia, as in the above-described left femoral line. And the length (cm) of the left tibial line is also determined as the X, Y of both points P102, 104 based on the respective X, Y, Z coordinate values of , Three-dimensionally calculated based on the Z coordinate value. The right tibial line also has the X, Y, Z coordinate values of the point P103 (Hizagashira_R) corresponding to the right kneecap and the point P105 (Ashikubi_R) corresponding to the ankle under the right tibia included in the deformed skeleton model. And the length (cm) of the right tibial line is three-dimensionally determined based on the X, Y, and Z coordinate values of both points P103 and 105. Calculated.
 そして、算出した右の脛骨線の長さから、算出した左の脛骨線の長さを引いた両者の差(cm)を算出することになる。また、この算出した差に基づき客観的な検証を行うための閾値も、判定テーブル95は規定しており、被験者の身長に対する算出した差の割合(%)の数値に対し、1.1を閾値にしている。 Then, the difference (cm) between the two obtained by subtracting the calculated length of the left tibial line from the calculated length of the right tibial line is calculated. Further, the threshold value for objective verification based on the calculated difference is also defined in the determination table 95, and 1.1 is a threshold value with respect to the numerical value of the calculated difference ratio (%) with respect to the subject's height. I have to.
 「4:左右肩峰の高さの差」とは、左右の肩の傾斜具合を検出するものであり、XY座標系で構成される二次元平面において、ポイントテーブル800に含まれる右肩峰のY座標値から左肩峰のY座標値を減算した算出値(cm)を意味する。この算出値について閾値に関し、判定テーブル95は、被験者の身長(cm)に対する算出値(cm)の割合(%)の数値に対し、1.1を閾値にしている。この閾値に対して、上記の算出値の割合がプラスマイナス1.1の範囲内であれば正常であり、1.1を超えるプラスのときは肩が左に傾斜、上記の算出値の割合が1.1を下回るマイナスのときは肩が右に傾斜であると判定する旨を判定テーブル95は規定する。 “4: Difference in height between left and right shoulder peaks” is to detect the inclination of the left and right shoulders, and in the two-dimensional plane configured with the XY coordinate system, the height of the right shoulder peaks included in the point table 800. It means a calculated value (cm) obtained by subtracting the Y coordinate value of the left shoulder peak from the Y coordinate value. Regarding the threshold for this calculated value, the determination table 95 sets 1.1 as the threshold for the numerical value of the ratio (%) of the calculated value (cm) to the height (cm) of the subject. If the ratio of the calculated value is within the range of plus or minus 1.1 with respect to this threshold value, it is normal. When the ratio exceeds 1.1, the shoulder is inclined to the left, and the ratio of the calculated value is The determination table 95 defines that it is determined that the shoulder is inclined to the right when the value is less than 1.1.
 「5:左右骨盤の高さの差」とは、骨盤における左右の傾斜具合を検出するものであり、XY座標系で構成される二次元平面において、ポイントテーブル800に含まれる右骨盤(RightDownScale2)のY座標値から左骨盤(LeftDownScale2)のY座標値を減算した算出値(cm)を意味する。この算出値について閾値に関し、判定テーブル95は、上述した「4:左右肩峰の高さの差」の場合と同様に、被験者の身長(cm)に対する算出値(cm)の割合(%)に対し、1.1という数値を閾値に用いている。この閾値に対して、上記の算出値の割合がプラスマイナス1.1の範囲内であれば正常であり、1.1を超えるプラスのときは骨盤が左に傾斜、上記の算出値の割合が1.1を下回るマイナスのときは骨盤が右に傾斜であると判定する旨を判定テーブル95は規定する。 “5: Difference in the height of the left and right pelvises” is to detect the degree of right and left tilt in the pelvis, and the right pelvis (RightDownScale2) included in the point table 800 in a two-dimensional plane composed of an XY coordinate system. Means a calculated value (cm) obtained by subtracting the Y coordinate value of the left pelvis (LeftDownScale2) from the Y coordinate value. Regarding the threshold value for this calculated value, the determination table 95 indicates the ratio (%) of the calculated value (cm) to the height (cm) of the subject as in the case of “4: difference in height between left and right shoulder peaks”. On the other hand, a numerical value of 1.1 is used as the threshold value. When the ratio of the calculated value is within a range of plus or minus 1.1 with respect to this threshold, it is normal. When the ratio exceeds 1.1, the pelvis is inclined to the left, and the ratio of the calculated value is The determination table 95 defines that it is determined that the pelvis is inclined to the right when the value is less than 1.1.
 「6:膝関節の外反角度」とは、図38に示すように、上記の「2:大腿骨大転子から膝頭までの両足間の差」で特定した左の大腿骨線(又は、右の大腿骨線)と、上記の「3:膝頭から足首までの高さの両足間の差」で特定した左の脛骨線(又は、右の脛骨線)とが交わる角度を意味する。この角度は、XY座標系で構成される二次元平面において、二つの線の交差する箇所における体の外側の角度として特定(算出)される。なお、この角度は大腿脛骨角FTA(Femorotibial angle)と称されており、正常範囲は174~178度とされている。判定テーブル95は、閾値として170度及び180度の二つの角度を規定しており、170度から180度の範囲内であれば正常であり、算出された角度が170度以下の場合はX脚(外反膝)、180度以上の場合はO脚(内反膝)と判定する旨を規定する。 As shown in FIG. 38, “6: knee valgus angle” means the left femoral line specified in the above “2: difference between both feet from the greater femoral trochanter to the kneecap” (or The right thighbone line) and the left tibial line (or right tibial line) specified in the above “3: Difference between both feet in the height from the kneecap to the ankle” means an angle. This angle is specified (calculated) as an angle outside the body at a location where two lines intersect on a two-dimensional plane constituted by an XY coordinate system. This angle is called the femoral tibia angle FTA (Femorotibial angle), and the normal range is 174 to 178 degrees. The determination table 95 defines two angles of 170 degrees and 180 degrees as threshold values. If the calculated angle is within the range of 170 degrees to 180 degrees, the judgment table 95 is normal. (Valgus knee) If the angle is 180 degrees or more, it is defined that the leg is determined as an O-leg (varus knee).
 図37に示す判定テーブル95の中身は、人体を横の方向から見た場合、上から見下ろした場合、及び下から見上げた場合の姿勢検証項目(検証箇所)について規定したものになっている。横の方向から見た場合の検証箇所としては「1:重心Y軸ラインと耳の乖離」、「2:重心Y軸ラインと膝の乖離」、「3:骨盤の前後傾斜角度」、「4:胸椎箇所の背骨角度」、「5:腰椎箇所の背骨角度」、及び「6:首の湾曲角度」という項目がある。また、上から見下ろした場合の検証箇所としては「1:左右の鎖骨角度の差」、「2:首の左右回転角度」という項目があり、下から見上げた場合の検証箇所としては「1:腰に対する肩の角度」、「2:膝頭の前後差」という項目がある。 The contents of the determination table 95 shown in FIG. 37 are defined for posture verification items (verification points) when the human body is viewed from the side, when viewed from above, and when viewed from below. Verification points when viewed from the horizontal direction include “1: centroid Y axis line and ear divergence”, “2: centroid Y axis line and knee divergence”, “3: pelvic front / rear tilt angle”, “4 : Spine angle of thoracic vertebra site, “5: spine angle of lumbar site”, and “6: neck curvature angle”. Further, as the verification portion when looking down from above, there are items of “1: difference between left and right clavicle angles” and “2: left and right rotation angle of neck”, and as the verification portion when looking up from below, “1: There are items of “the angle of the shoulder with respect to the waist” and “2: the front and back difference of the kneecap”.
 横の方向から見た場合の「1:重心Y軸ラインと耳の乖離」とは、人体の姿勢の前後の傾斜度合を検出するものであり、YZ座標系で構成される二次元平面において、ポイントテーブル800に含まれる耳たぶ(右の横方向からみた場合は右耳たぶ、左の横方向からみた場合は左耳たぶ)のZ座標値と重心Y軸ラインのZ座標値との差(cm)を算出するものとなっている。また、この算出した差に基づく検証のため、判定テーブル95は、被験者の身長(cm)に対する算出した差(cm)の割合(%)の数値に対し、2.3を閾値にしている。この閾値に対して、上記の差の割合がプラスマイナス2.3の範囲内であれば正常であり、2.3を上回ってプラスのときは姿勢が前傾、2.3を下回ってマイナスのときは姿勢が後傾であると判定する旨を判定テーブル95は規定する。 When viewed from the lateral direction, “1: divergence between the center of gravity Y-axis line and the ear” is to detect the degree of inclination before and after the posture of the human body, and in a two-dimensional plane constituted by the YZ coordinate system, The difference (cm) between the Z coordinate value of the earlobe included in the point table 800 (the right earlobe when viewed from the right lateral direction and the left earlobe when viewed from the left lateral direction) and the Z coordinate value of the center of gravity Y-axis line. It is to be calculated. In addition, for verification based on the calculated difference, the determination table 95 sets 2.3 as a threshold value for the numerical value of the ratio (%) of the calculated difference (cm) to the subject's height (cm). With respect to this threshold, it is normal if the ratio of the above difference is within the range of plus or minus 2.3, and when it is above 2.3 and plus, the posture tilts forward and below 2.3 and minus In some cases, the determination table 95 defines that the posture is determined to be tilted backward.
 横の方向から見た場合の「2:重心Y軸ラインと膝の乖離」とは、上記の「1:重心Y軸ラインと耳の乖離」の場合と同様に、人体の姿勢の前後の傾斜度合を検出するものであり、変形後の骨格モデルが含む左膝頭に応じた点P102(Hizagashira_L)又は右膝頭に応じた点P103(Hizagashira_R)が有するZ座標値と重心Y軸ラインのZ座標値との差(cm)を算出するものとなっている(YZ座標系で構成される二次元平面における差を算出)。そして、この算出した差に基づく検証のため、判定テーブル95は、被験者の身長(cm)に対する算出した差(cm)の割合(%)の数値に対し、1.1を閾値にしている。この閾値に対して、上記の差の割合がプラスマイナス1.1の範囲内であれば正常であり、1.1を上回ってプラスのときは姿勢が前傾、1.1を下回ってマイナスのときは姿勢が後傾であると判定する旨を判定テーブル95は規定する。 "2: Deviation between the center of gravity Y-axis line and the knee" when viewed from the horizontal direction is the inclination before and after the posture of the human body, as in the case of "1: Deviation between the center of gravity Y-axis line and the ear" above. The Z coordinate value of the point P102 (Hizagashira_L) corresponding to the left knee head included in the deformed skeleton model or the point P103 (Hizagashira_R) corresponding to the right knee head and the Z coordinate value of the center of gravity Y-axis line. The difference (cm) is calculated (calculates the difference in the two-dimensional plane constituted by the YZ coordinate system). For verification based on the calculated difference, the determination table 95 sets 1.1 as a threshold value for the numerical value of the ratio (%) of the calculated difference (cm) to the subject's height (cm). With respect to this threshold value, it is normal if the ratio of the above difference is within a range of plus or minus 1.1, and when it exceeds 1.1 and is positive, the posture tilts forward, below 1.1 and minus In some cases, the determination table 95 defines that the posture is determined to be tilted backward.
 横の方向から見た場合の「3:骨盤の前後傾斜角度」とは、骨盤の前後の傾斜度合を検出するものであり、YZ座標系で構成される二次元平面において、図32に示す骨格モデル71a(変形後の骨格モデル)の骨盤角度線L101(骨盤中心(hips)に係る腰仙角に応じた線)が、線L100と交わる角度を意味する。判定テーブル95は、骨盤基準角度として30度という角度を規定すると共に(30度という数値は一例)、姿勢検証用の閾値としてプラスマイナス10度を規定する。変形後の骨格モデルの骨盤角度線L101が、線L100と交わる角度を特定すると、その特定した角度を骨盤基準角度と比較し、比較の結果、特定した角度が骨盤基準角度に対しプラスマイナス10度の範囲内であれば正常、骨盤基準角度より正常上限の10度を上回る場合を骨盤前傾、正常下限の-10度を下回る場合を骨盤後傾でありと判定する旨を判定テーブル95は規定する。 “3: pelvic front / rear inclination angle” when viewed from the horizontal direction is to detect the degree of pelvic front / rear inclination, and in the two-dimensional plane constituted by the YZ coordinate system, the skeleton shown in FIG. The pelvic angle line L101 (a line corresponding to the lumbosacral angle relating to the pelvic center (hips)) of the model 71a (deformed skeleton model) means an angle at which the line intersects the line L100. The determination table 95 defines an angle of 30 degrees as a pelvis reference angle (a numerical value of 30 degrees is an example), and defines a plus / minus 10 degrees as a posture verification threshold. When the angle at which the pelvic angle line L101 of the skeleton model after deformation intersects with the line L100 is specified, the specified angle is compared with the pelvis reference angle, and as a result of comparison, the specified angle is plus or minus 10 degrees with respect to the pelvis reference angle. The determination table 95 defines that it is normal if it is within the range of, pelvic forward tilt when it exceeds the normal upper limit of 10 degrees from the pelvic reference angle, and pelvic backward tilt when it falls below -10 degrees of the normal lower limit. To do.
 横の方向から見た場合の「4:胸椎箇所の背骨角度」とは、基準角度からの誤差より、脊柱(胸椎)の後弯の度合を検出するものであり、YZ座標系で構成される二次元平面において、図32に示す骨格モデル71a(変形後の骨格モデル)の背骨中部(spine1)に係る第1後弯線L104及び第2後弯線L105が交わる角度を意味する。判定テーブル95は、胸椎後弯基準角度として40度という角度を規定すると共に(40度という数値は一例)、姿勢検証用の閾値として上限値10度及び下限値0度を規定する。変形後の骨格モデルの第1後弯線L104及び第2後弯線L105の交わる角度を特定すると、その特定した角度を胸椎後弯基準角度と比較し、比較の結果、特定した角度が、胸椎後弯基準角度からプラス10度の範囲であれば正常、胸椎後弯基準角度より正常上限の10度を上回る場合を猫背(胸椎前弯)、0度を下回る場合を平背であると判定する旨を判定テーブル95は規定する。 “4: Backbone angle of thoracic vertebrae” when viewed from the side is to detect the degree of kyphosis (thoracic vertebra) kyphosis based on an error from the reference angle, and is composed of the YZ coordinate system. In the two-dimensional plane, it means an angle at which the first posterior limb line L104 and the second posterior limb line L105 intersect with the spine middle part (spine1) of the skeleton model 71a (skeleton model after deformation) shown in FIG. The determination table 95 defines an angle of 40 degrees as the thoracic kyphosis reference angle (a numerical value of 40 degrees is an example), and defines an upper limit value of 10 degrees and a lower limit value of 0 degrees as posture verification thresholds. When the intersecting angle of the first posterior line L104 and the second posterior line L105 of the deformed skeleton model is specified, the specified angle is compared with the thoracic posterior reference angle, and as a result of comparison, the specified angle is If it is in the range of plus 10 degrees from the posterior rib reference angle, it is determined to be normal, if it exceeds the upper limit of normal 10 degrees from the thoracic vertebra posterior reference angle, it is determined to be a dorsum (thoracic vertebrae), and if it is less than 0 degrees, it is determined to be a flat back. The determination table 95 defines that.
 横の方向から見た場合の「5:腰椎箇所の背骨角度」とは、基準角度からの誤差より、脊柱(腰椎)の前弯の度合を検出するものであり、YZ座標系で構成される二次元平面において、図32に示す骨格モデル71a(変形後の骨格モデル)の背骨下部(spine)に係る第1前弯線L102及び第2前弯線L103が交わる角度を意味する。判定テーブル95は、腰椎前弯基準角度として45度という角度を規定すると共に(45度という数値は一例)、姿勢検証用の閾値としてプラスマイナス10度を規定する。変形後の骨格モデルの第1前弯線L102及び第2前弯線L103の交わる角度を特定すると、その特定した角度を腰椎前弯基準角度と比較し、比較の結果、特定した角度が、腰椎前弯基準角度に対しプラスマイナス10度の範囲内であれば正常、腰椎前弯基準角度より正常上限の10度を上回る場合を腰椎平坦、正常下限の-10度を下回る場合を腹部突出であると判定する旨を判定テーブル95は規定する。 “5: Backbone angle of lumbar vertebrae” when viewed from the side is to detect the degree of lordosis of the vertebral column (lumbar vertebrae) from the error from the reference angle, and is composed of the YZ coordinate system. In the two-dimensional plane, it means an angle at which the first lordosis line L102 and the second anteversion line L103 intersect with the lower spine of the skeleton model 71a (skeleton model after deformation) shown in FIG. The determination table 95 defines an angle of 45 degrees as the lumbar lordosis reference angle (a numerical value of 45 degrees is an example), and also defines plus or minus 10 degrees as a posture verification threshold. When the intersecting angle of the first anterior line L102 and the second anterior line L103 of the deformed skeleton model is specified, the specified angle is compared with the lumbar lordosis reference angle. Normal if it is within the range of plus or minus 10 degrees with respect to the anterior reference angle, lumbar flatness is above the upper limit of normal 10 degrees above the reference angle of the lumbar vertebra, and abdominal protrusion is below -10 degrees of the lower limit of normal Is determined in the determination table 95.
 横の方向から見た場合の「6:首の湾曲角度」とは、基準角度からの誤差より、首の前後の湾曲度合を検出するものであり、YZ座標系で構成される二次元平面において、図32に示す骨格モデル71a(変形後の骨格モデル)の首下部(neck_1)に係る第1頸椎前弯線L106及び第2頸椎前弯線L107が交わる角度を意味する。判定テーブル95は、頸椎前弯基準角度として30度という角度を規定すると共に(30度という数値は一例であり、30~35度の範囲で数値を規定することが好適)、姿勢検証用の閾値として上限値10度及び下限値-15度を規定する。変形後の骨格モデルの第1頸椎前弯線L106及び第2頸椎前弯線L107が交わる角度を特定すると、その特定した角度を頸椎前弯基準角度と比較し、比較の結果、特定した角度が頸椎前弯基準角度を中心にプラス10度及びマイナス15度の範囲内であれば正常、頸椎前弯基準角度より正常上限の10度を上回る場合をのけぞり(頸部後屈)、-15度を下回る場合をストレートネックであると判定する旨を判定テーブル95は規定する。 “6: Neck bending angle” when viewed from the side direction is to detect the degree of bending of the front and rear of the neck from the error from the reference angle, and in a two-dimensional plane constituted by the YZ coordinate system. 32 means an angle at which the first cervical lordosis line L106 and the second cervical vertebra lordosis line L107 intersect with each other at the lower neck portion (neck_1) of the skeleton model 71a (skeleton model after deformation) shown in FIG. The determination table 95 defines an angle of 30 degrees as a cervical lordosis reference angle (a numerical value of 30 degrees is an example, and it is preferable to define a numerical value in the range of 30 to 35 degrees), and a threshold value for posture verification The upper limit value is 10 degrees and the lower limit value is -15 degrees. When the angle at which the first cervical lordosis line L106 and the second cervical vertebra lordosis line L107 intersect in the skeletal model after deformation is specified, the specified angle is compared with the cervical lordosis reference angle. Normal if it is within the range of plus 10 degrees and minus 15 degrees around the cervical lordosis reference angle, the case of exceeding the upper limit of normal 10 degrees from the cervical lordosis reference angle (cervical backbend), -15 degrees The determination table 95 defines that it is determined that it is a straight neck when the value is below.
 上から見下ろした場合の「1:左右の鎖骨角度の差」とは、左右の鎖骨角度の基準角度からの差を求めることにより、両肩のそれぞれの前後の捻れを検証するものであり、XZ座標系で構成される二次元平面において、ポイントテーブル800に含まれる左鎖骨(LeftShoulder)及び右鎖骨(RightShoulder)に係る角度を特定し、その特定した角度を基準鎖骨角度と比較する。判定テーブル95は、姿勢検証用の閾値として左右の鎖骨それぞれにプラスマイナス5度を規定する。特定した左右鎖骨に係る角度と基準鎖骨角度を比較して、左右鎖骨に係る角度の両方が基準鎖骨角度に対しプラスマイナス5度の範囲内であれば正常、基準鎖骨角度より-5度以下で小さい場合、肩が左ねじれ、左右鎖骨に係る角度の両方が基準鎖骨角度より5度以上大きい場合、肩が右ねじれであると判定する旨を判定テーブル95は規定する。 “1: Difference between left and right clavicle angles” when looking down from the top is to verify the torsion of the front and rear of both shoulders by determining the difference from the reference angle of the left and right clavicle angles. In a two-dimensional plane constituted by the coordinate system, an angle relating to the left clavicle (LeftShoulder) and the right clavicle (RightShoulder) included in the point table 800 is specified, and the specified angle is compared with a reference clavicle angle. The determination table 95 defines plus or minus 5 degrees for each of the left and right collarbones as a threshold for posture verification. Compare the specified angle of the left and right clavicles with the reference clavicle angle, and if both the angles of the left and right clavicles are within plus or minus 5 degrees relative to the reference clavicle angle, normal, less than -5 degrees from the reference clavicle angle The determination table 95 stipulates that if the shoulder is twisted to the left and both the angles related to the left and right collarbones are larger than the reference collarbone angle by 5 degrees or more, the shoulder is judged to be twisted to the right.
 上から見下ろした場合の「2:首の左右回転角度」とは、首の左右の捻れを検証するものであり、XZ座標系で構成される二次元平面において、ポイントテーブル800に含まれる首上部(neck_3)に係る角度を特定するものであり、特定の仕方としては、ポイントテーブル800に含まれる左右の耳たぶを結ぶ線と、X座標に係る軸に平行な線との交わる角度を特定し、その特定した角度を基準首角度と比較する。判定テーブル95は、姿勢検証用の閾値として10度を規定する。特定した首上部(neck_3)に係る角度が、基準首角度に対しプラスマイナス10度の範囲内であれば正常、基準首角度より10度以上大きい場合、首が右ねじれ、特定した首上部(neck_3)に係る角度が、基準首角度より10度以下で小さい場合、首が左ねじれであると判定する旨を判定テーブル95は規定する。 “2: Left / right rotation angle of the neck” when looking down from above is to verify the left / right twist of the neck, and in the two-dimensional plane formed by the XZ coordinate system, the upper part of the neck included in the point table 800 The angle related to (neck_3) is specified. As a specific method, the angle between the line connecting the left and right earlobe included in the point table 800 and the line parallel to the axis related to the X coordinate is specified, The identified angle is compared with the reference neck angle. The determination table 95 defines 10 degrees as a posture verification threshold value. Normal if the angle of the specified neck upper part (neck_3) is within a range of plus or minus 10 degrees relative to the reference neck angle. If the angle is larger than the reference neck angle by 10 degrees or more, the neck is twisted to the right and the specified neck upper part (neck_3 The determination table 95 defines that the neck is determined to be left-handed when the angle according to) is smaller than the reference neck angle by 10 degrees or less.
 下から見上げた場合の「1:腰に対する肩の角度」とは、肩の腰のねじれを検証するものであり(腰に対する肩の角度を検出)、XZ座標系で構成される二次元平面において、ポイントテーブル800に含まれる左右肩峰を結ぶ線がX軸と交わる角度と、左右骨盤を結ぶ線がX軸と交わる角度との角度差を算出し、その算出した角度差を基準角度と比較する。判定テーブル95は、姿勢検証用の閾値として10度を規定する。算出した角度差が、基準角度に対してプラスマイナス10度の範囲内であれば正常、基準角度より10度以上大きい場合、腰が右ねじれ、基準首角度より10度以下で小さい場合、腰が左ねじれであると判定する旨を判定テーブル95は規定する。 “1: Shoulder angle relative to waist” when looking up from below is to verify the torsion of the shoulder waist (detecting the shoulder angle relative to the waist), and in a two-dimensional plane composed of the XZ coordinate system The angle difference between the angle that the line connecting the left and right shoulder peaks included in the point table 800 intersects the X axis and the angle that the line connecting the left and right pelvis intersects the X axis is calculated, and the calculated angle difference is compared with the reference angle. To do. The determination table 95 defines 10 degrees as a posture verification threshold value. Normal if the calculated angle difference is within a range of plus or minus 10 degrees with respect to the reference angle, if the waist is twisted to the right by 10 degrees or more, if the waist is twisted to the right, if the waist is less than 10 degrees below the reference neck angle, The determination table 95 defines that it is determined that the twist is left-handed.
 下から見上げた場合の「2:膝頭の前後差」とは、膝の前後差を検証するものであり、XZ座標系で構成される二次元平面において、図31の骨格モデル71aで示した右膝頭に応じた点P103(Hizagashira_R)のZ座標値から、左膝頭に応じた点P102(Hizagashira_L)のZ座標値を減算する。この減算した値に基づき客観的な検証を行うための閾値を、判定テーブル95は規定しており、被験者の身長に対する減算した値の割合(%)の数値に対して1.1を閾値にしている。上記の差の割合がプラスマイナス1.1の範囲内であれば正常であり、1.1を超えるプラスのときは、右膝が前、マイナス1.1を下回るマイナスのときは、左膝が前であると判定する旨を判定テーブル95は規定する。 When looking up from the bottom, “2: front-back difference of kneecap” is for verifying the front-back difference of the knee, and in the two-dimensional plane constituted by the XZ coordinate system, The Z coordinate value of the point P102 (Hizagashira_L) corresponding to the left kneecap is subtracted from the Z coordinate value of the point P103 (Hizagashira_R) corresponding to the kneecap. The determination table 95 defines a threshold value for objective verification based on the subtracted value, and 1.1 is set as the threshold value with respect to the numerical value of the ratio (%) of the subtracted value with respect to the subject's height. Yes. It is normal if the ratio of the above difference is within the range of plus or minus 1.1, when the plus is over 1.1, the right knee is forward, and when the minus is below minus 1.1, the left knee is The determination table 95 defines that it is determined to be before.
 図39は、骨格特定システム50′の記憶部50g′に記憶される分析テーブル96の一部の内容を示す。分析テーブル96は、上述した図36、37に示す判定テーブル95が判定する主な「関連症状」ごとに、「症状の説明」、「健康への影響」、「原因・特徴」、「施術・トレーニング」、「参考画像」等の項目について内容を格納したものである。分析テーブル96の関連症状に含まれる各項目は、判定テーブル95に関連症状の各項目とリンクしており、それゆえ、判定テーブル95に基づき、関連症状の項目が判定されると、その判定された関連症状の項目にリンクした分析テーブル96の内容(上述した症状の説明、健康への影響、原因・特徴、施術・トレーニング、参考画像等)が特定できるようになっている。 FIG. 39 shows a part of the contents of the analysis table 96 stored in the storage unit 50g ′ of the skeleton identification system 50 ′. The analysis table 96 includes, for each main “related symptom” determined by the determination table 95 shown in FIGS. 36 and 37 described above, “symptom explanation”, “effect on health”, “cause / feature”, “treatment / feature”. The contents of items such as “training” and “reference image” are stored. Each item included in the related symptom of the analysis table 96 is linked to each item of the related symptom in the determination table 95. Therefore, when the item of the related symptom is determined based on the determination table 95, the determination is made. The contents of the analysis table 96 linked to the related symptom items (explained symptom explanation, influence on health, cause / feature, treatment / training, reference image, etc.) can be specified.
 分析テーブル96が含む関連症状としては、「(1)全身前傾」、「(2)全身後傾」、「(3)おなか突出」、「(4)全身又は肩の左傾き」、「(5)全身又は肩の右傾き」、「(6)肩の右ねじれ」、「(7)肩の左ねじれ」、「(8)猫背(胸椎後弯)」、「(9)平背」、「(10)腰椎平坦」、「(11)骨盤前傾」、「(12)骨盤後傾」、「(13)骨盤左右傾斜」、「(14)ストレートネック」、「(15)のけぞり(頚部後屈)」、「(16)X脚」、「(17)O脚」、「(18)左右寛骨前傾・後傾」、「(19)首のねじれ」、「(20)膝の前後差」等がある。 Related symptoms included in the analysis table 96 include “(1) whole body anteversion”, “(2) whole body anteversion”, “(3) tummy protrusion”, “(4) whole body or shoulder left inclination”, “( "5) Whole body or shoulder right tilt", "(6) Shoulder right twist", "(7) Shoulder left twist", "(8) Cat's back (thoracic spine)", "(9) Flat back", “(10) Lumbar flat”, “(11) Pelvic tilt”, “(12) Pelvic tilt”, “(13) Pelvic tilt”, “(14) Straight neck”, “(15) Sliding (cervical) "Backward)", "(16) X leg", "(17) O leg", "(18) left and right hipbone forward and backward tilt", "(19) neck twist", "(20) knee There is a difference between before and after.
 分析テーブル96の「(1)全身前傾」又は「(2)全身後傾」は、判定テーブル95において、人体を横から見た場合の「1:重心Y軸ラインと耳の乖離」及び「2:重心Y軸ラインと膝の乖離」で判定される「全身の前傾」又は「全身の後傾」という関連症状の項目にリンクしている。分析テーブル96の「(3)おなか突出」は、判定テーブル95において、人体を横から見た場合の「5:腰椎箇所の背骨角度」で判定される「おなか突出」という関連症状の項目にリンクしている。分析テーブル96の「(4)全身又は肩の左傾き」又は「(5)全身又は肩の右傾き」は、判定テーブル95において、人体を前から見た場合の「1:重心Y軸ラインと頭頂部との乖離」で判定される「全身の左傾き」又は「全身の右傾き」、若しくは「4:左右肩峰の高さの差」で判定される「肩の左傾き」又は「肩の右傾き」という関連症状の項目にリンクしている。 “(1) Whole body anteversion” or “(2) Whole body anteversion” in the analysis table 96 is “1: centroid Y axis line and ear divergence” and “ 2: Linked to the item of related symptoms such as “whole tilt of the whole body” or “back tilt of the whole body” determined by “deviation of the Y-axis of the center of gravity and the knee”. “(3) Tummy protrusion” in the analysis table 96 is linked to an item of a related symptom “tummy protrusion” determined by “5: spine angle of lumbar portion” when the human body is viewed from the side in the determination table 95. is doing. “(4) Whole body or shoulder left tilt” or “(5) Whole body or shoulder right tilt” in the analysis table 96 is “1: center of gravity Y axis line when the human body is viewed from the front in the determination table 95. “Left of the whole body” or “Right of the whole body” determined by “deviation from the top of the head” or “Left of shoulder” or “shoulder” determined by “4: Difference in height between left and right shoulder ridges” Linked to the related symptom item "right slope of".
 また、分析テーブル96の「(6)肩の右ねじれ」又は「(7)肩の左ねじれ」は、判定テーブル95において、人体を上から見下ろした場合の「1:左右の鎖骨角度の差」で判定される「肩の右ねじれ」又は「肩の左ねじれ」という関連症状の項目にリンクしている。分析テーブル96の「(8)猫背(胸椎後弯)」又は「(9)平背」は、判定テーブル95において、人体を横から見た場合の「4:胸椎箇所の背骨角度」で判定される「猫背(胸椎後弯)」又は「平背」という関連症状の項目にリンクしている。分析テーブル96の「(10)腰椎平坦」は、判定テーブル95において、人体を横から見た場合の「5:腰椎箇所の背骨角度」で判定される「腰椎平坦」という関連症状の項目にリンクしている。 Further, “(6) Shoulder right twist” or “(7) Shoulder left twist” of the analysis table 96 is “1: Difference between left and right collarbone angles” when the human body is looked down from above in the determination table 95. Is linked to the item of the related symptom “right shoulder twist” or “left shoulder twist”. In the analysis table 96, “(8) back of the thoracic vertebra (back of the thoracic vertebra)” or “(9) flat back” is determined in the determination table 95 by “4: spine angle of the thoracic vertebra portion” when the human body is viewed from the side. Link to the item of the related symptom of “back of the thoracic vertebra” or “flat back”. “(10) Lumbar flatness” of the analysis table 96 is linked to an item of the related symptom “Lumbar vertebra flatness” determined by “5: spine angle of lumbar vertebra part” when the human body is viewed from the side in the determination table 95. is doing.
 さらに、分析テーブル96の「(11)骨盤前傾」又は「(12)骨盤後傾」は、判定テーブル95において、人体を横から見た場合の「3:骨盤の前後傾斜角度」で判定される「骨盤前傾」又は「骨盤後傾」という関連症状の項目にリンクしている。分析テーブル96の「(13)骨盤左右傾斜」は、判定テーブル95において、人体を前から見た場合の「5:左右骨盤の高さの差」で判定される「骨盤の左傾き」又は「骨盤の右傾き」という関連症状の項目にリンクしている。分析テーブル96の「(14)ストレートネック」又は「(15)のけぞり(頚部後屈)」は、判定テーブル95において、人体を横から見た場合の「6:首の湾曲角度」で判定される「ストレートネック」又は「のけぞり(頚部後屈)」という関連症状の項目にリンクしている。 Further, “(11) pelvic forward tilt” or “(12) pelvic backward tilt” of the analysis table 96 is determined by “3: pelvic front / rear tilt angle” when the human body is viewed from the side in the determination table 95. Linked to the related symptom items “Pelvic tilt” or “Pelvic tilt”. “(13) Pelvic left / right inclination” of the analysis table 96 is “left inclination of the pelvis” determined by “5: difference in height of the left and right pelvis” or “when the human body is viewed from the front” or “ Linked to the related symptom item "Pelvic right tilt". “(14) Straight neck” or “(15) Sliding (neck bending in the neck)” in the analysis table 96 is determined by “6: neck bending angle” when the human body is viewed from the side in the determination table 95. It is linked to the item of the related symptom "straight neck" or "sliding (neck bending back)".
 さらにまた、分析テーブル96の「(16)X脚」、「(17)O脚」は、判定テーブル95において、人体を前から見た場合の「6:膝関節の外反角度」で判定される「X脚」又は「O脚」という関連症状の項目にリンクしている。分析テーブル96の「(18)左右寛骨前傾・後傾」は、判定テーブル95において、人体を横から見た場合の「3:骨盤の前後傾斜角度」で判定される「骨盤前傾」又は「骨盤後傾」という関連症状の項目にリンクしている。分析テーブル96の「(19)首のねじれ」は、判定テーブル95において、人体を上から見下ろした場合の「2:首の左右回転角度」で判定される「首の右ねじれ」又は「首の左ねじれ」という関連症状の項目にリンクしている。そして、分析テーブル96の「(20)膝の前後差」は、判定テーブル95において、人体を下から見上げた場合の「2:膝頭の前後差」で判定される「右膝が前」又は「左膝が前」という関連症状の項目にリンクしている。 Furthermore, “(16) X leg” and “(17) O leg” in the analysis table 96 are determined in the determination table 95 based on “6: Knee joint valgus angle” when the human body is viewed from the front. Linked to the item of the related symptom "X leg" or "O leg". "(18) Left / right acetabular forward / backward tilt" in the analysis table 96 is determined by "3: pelvic forward / backward tilt" when the human body is viewed from the side in the determination table 95. Or linked to the related symptom item "Pelvic tilt". “(19) Neck twist” in the analysis table 96 is “Neck right twist” or “Neck twist” determined by “2: Left / right rotation angle of the neck” when the human body is looked down from above in the determination table 95. Linked to the related symptom item "Left twist" Then, “(20) Knee front / rear difference” in the analysis table 96 is determined by “2: Knee head front / rear difference” when the human body is looked up from below in the determination table 95. Linked to the related symptom item "Left knee is front".
 また、分析テーブル96の「関連症状」ごとに記される「症状の説明」、「健康への影響」、「原因・特徴」、「施術・トレーニング」という各項目に格納される内容の一例を、「(11)骨盤前傾」の場合で説明する。「(11)骨盤前傾」の関連症状の「症状の説明」という項目には「骨盤が前に傾いている状態。過度なものは「反り腰」とも呼ばれる。」という内容が格納されており、「健康への影響」という項目には「腰痛など体の痛み、お尻が出てしまう、代謝の悪化、前ももの張り(膝の痛み)、X脚」という内容が格納されている。また、「原因・特徴」という項目には「体の前後の筋力の不均等(体の前後の筋肉のバランスが悪くなることで骨盤の前傾や後傾が起こる)、悪い姿勢で座っている、立っている、歩いている、高いヒールをよく履く、うつ伏せで寝る習慣」という内容が格納されている。さらに、「施術・トレーニング」という項目には「テニスボールなどの筋膜リリースで腰痛ストレッチの準備運動、腰を支える骨盤周りの筋膜リリース、太もも周りの筋膜リリース」という内容が格納されている。 In addition, an example of the contents stored in each item of “Description of symptoms”, “Effects on health”, “Cause / feature”, “Surgery / training” written for each “related symptom” in the analysis table 96 The case of “(11) pelvic forward tilt” will be described. The item “Description of symptoms” in the related symptoms of “(11) pelvic anteversion” is “a state where the pelvis is inclined forward. ”Is stored, and the item“ effects on health ”includes“ body pain such as back pain, hips appear, metabolic deterioration, front tension (knee pain), X leg ” Is stored. The item “Cause / Characteristic” includes “uneven muscle strength in front and back of the body (because the balance of muscles in the front and back of the body deteriorates, causing the pelvis to tilt forward and backward), and sitting in a bad posture. , Standing, walking, often wearing high heels, and lying on the prone face. In addition, the contents of “treatment / training” include “preparation exercise for back pain stretch by releasing a fascia such as tennis ball, fascia release around the pelvis supporting the waist, and fascia release around the thigh”. .
 次に、実施例2のモデル変形プログラムP110(コンピュータプログラムに相当)が規定するプログラミング内容について説明していく。実施例2のモデル変形プログラムP110は、実施例1のプログラミング内容に加えて、骨格ポイント等の位置特定、異常の有無の判定、被験者(人体)の姿勢検証、及びユーザに提示する画像に応じた画像情報の生成等に関してMPU50a′が行う処理内容を規定している。 Next, the programming contents defined by the model transformation program P110 (corresponding to a computer program) of the second embodiment will be described. In addition to the programming contents of the first embodiment, the model deformation program P110 of the second embodiment corresponds to the position specification of the skeletal points and the like, the determination of the presence or absence of abnormality, the posture verification of the subject (human body), and the image presented to the user The contents of processing performed by the MPU 50a ′ regarding the generation of image information and the like are defined.
 まず、骨格特定システム50′は、測定処理装置30(図1参照)から送られてくる測定結果を受け取ると、図33、34に示すポイントテーブル800に従って、各骨格ポイント等の三次元座標値を特定(算出)する処理をMPU50a′が行うことを、モデル変形プログラムP110は規定する。なお、測定処理装置30から送られてくる測定結果には、三次元測定による人体表面の複数の点(約3万の点)の三次元座標値に加えて、被験者の身長等の長さに関する数値データ、及び三次元測定の際に三次元測定器20の走査状況取得部21b、22b、23bで撮像して得られた被験者の撮像画像(人体を前から見た撮像画像、人体を横方向から見た撮像画像、人体を上方向から見下ろした撮像画像、人体を下方向から見上げた撮像画像、人体を後方向から見た撮像画像等を含む各方向からの撮像画像)等が含まれる。 First, when receiving the measurement result sent from the measurement processing device 30 (see FIG. 1), the skeletal identification system 50 ′ determines the three-dimensional coordinate values of each skeleton point and the like according to the point table 800 shown in FIGS. The model transformation program P110 defines that the MPU 50a ′ performs the specifying (calculating) process. The measurement result sent from the measurement processing device 30 relates to the length of the subject in addition to the three-dimensional coordinate values of a plurality of points (approximately 30,000 points) on the human body surface by three-dimensional measurement. Numerical data, and a captured image of the subject obtained by imaging with the scanning status acquisition units 21b, 22b, and 23b of the three-dimensional measuring device 20 during the three-dimensional measurement (a captured image of the human body viewed from the front, the human body in the horizontal direction A captured image viewed from above, a captured image looking down from the upper side of the human body, a captured image looking up from the lower side of the human body, a captured image viewed from the rear side, etc.).
 各骨格ポイント等の三次元座標値の特定(算出)が完了すると、図36、37の判定テーブル95の中で、骨格モデルを用いずに異常有無の判定の検証を行える検出箇所について、MPU50a′が判定テーブル95に基づき、関連症状の判定処理を行うことをモデル変形プログラムP110は規定する。なお、骨格モデルを用いないで関連症状の判定処理となる検出箇所の例としては、人体を前の方向から見た場合の「1:重心Y軸ラインと頭頂部との乖離」、「4:左右肩峰の高さの差」、及び「5:左右骨盤の高さの差」等、人体を横の方向から見た場合の「1:重心Y軸ラインと耳の乖離」、並びに人体を下から見上げた場合の検証箇所としては「1:腰に対する肩の角度」等の項目がある。 When the identification (calculation) of the three-dimensional coordinate values of each skeleton point and the like is completed, the MPU 50a ′ for the detection location in the determination table 95 of FIGS. 36 and 37 that can verify the determination of the presence / absence of abnormality without using the skeleton model. Based on the determination table 95, the model transformation program P110 defines that the related symptom determination process is performed. In addition, as an example of the detection part used as the determination process of a related symptom without using a skeleton model, when the human body is seen from the front direction, “1: Deviation between Y-axis line of gravity center and top of head”, “4: "1: Difference between the center of gravity Y-axis line and the ear" when the human body is viewed from the side, such as "the difference in the height of the left and right shoulder ridges" and "5: the difference in the height of the left and right pelvis" There are items such as “1: shoulder angle with respect to the waist” as verification points when looking up from below.
 また、上述した項目以外については、実施例1の場合と同様に、骨格モデルの変形を行い、変形した骨格モデルに基づき、MPU50a′は、判定テーブル95を参照して関連症状を特定することになる。なお、骨格モデルの変形処理は、実施例1で説明したように、先ず、人体モデルテーブル70の中から、被験者に応じたパターン(標準パターン、第1パターン、第2パターンのいずれか)の骨格モデルを特定し、特定した骨格モデルを被験者の測定された身長の寸法に応じて、相似的に拡大又は縮小し、そのように拡大又は縮小した骨格モデルの各変形基点が、対応関係となる骨格ポイント(三次元座標値を求めた骨格ポイント)に一致するように骨格モデルを変形するという処理内容になる。 In addition to the items described above, as in the case of the first embodiment, the skeletal model is deformed, and the MPU 50a ′ refers to the determination table 95 to identify related symptoms based on the deformed skeleton model. Become. In addition, as described in the first embodiment, the skeleton model is deformed first from the human body model table 70 in a skeleton of a pattern (standard pattern, first pattern, or second pattern) according to the subject. The model is specified, and the specified skeleton model is enlarged or reduced in a similar manner according to the measured height dimension of the subject, and each deformation base point of the enlarged or reduced skeleton model is a corresponding skeleton. The processing content is to transform the skeleton model so as to coincide with the point (the skeleton point for which the three-dimensional coordinate value is obtained).
 上記のように変形した骨格モデルから、MPU50a′は、図31に示す左右の大腿骨大転子に応じた点P100、101(Daitehshi_L、Daitehshi_R)、左右の膝頭に応じた点P102、103(Hizagashira_L、Hizagashira_R)、左右の脛骨下の足首に応じた点P104、105(Ashikubi_L、Ashikubi_R)という対象点の三次元座標値を特定する。これらの点P100~105の三次元座標値の特定に伴って、判定テーブル95の中の人体を前の方向から見た場合の「2:大腿骨大転子から膝頭までの両足間の差」、「3:膝頭から足首までの高さの両足間の差」、及び「6:膝関節の外反角度」、人体を横の方向から見た場合の「2:重心Y軸ラインと膝の乖離」、並びに人体を下から見上げた場合の「2:膝頭の前後差」等の関連症状をMPU50a′は特定する。 From the skeleton model deformed as described above, the MPU 50a ′ calculates points P100 and 101 (Daitehshi_L, Daitehshi_R) according to the left and right femoral trochanters shown in FIG. , Hizagashira_R), the three-dimensional coordinate values of the target points P104 and 105 (Ashikubi_L, Ashikubi_R) corresponding to the ankles under the left and right tibia are specified. With the specification of the three-dimensional coordinate values of these points P100 to P105, “2: difference between both feet from the greater femoral trochanter to the kneecap” when the human body in the determination table 95 is viewed from the front direction. , “3: Difference between heights from the kneecap to the ankle” and “6: Knee joint valgus angle”, “2: Center of gravity Y axis line and knee when the human body is viewed from the side direction” The MPU 50 a ′ identifies related symptoms such as “disparity” and “2: front-back difference of the kneecap” when the human body is looked up from below.
 また、変形した骨格モデルの図32に示す各角度線L101~L107及びZ軸に平行な線L100より、被験者の骨盤角度(腰仙角)、腰椎前弯角度、胸椎後弯角度、及び頸椎前弯角度を特定し、その特定した角度に基づき、判定テーブル95の「3:骨盤の前後傾斜角度」、「5:腰椎箇所の背骨角度」、「4:胸椎箇所の背骨角度」、及び「6:首の湾曲角度」といった検出箇所について関連症状の特定処理をMPU50a′が行うことをモデル変形プログラムP110は規定する。 Further, from the angle lines L101 to L107 shown in FIG. 32 of the deformed skeleton model and the line L100 parallel to the Z axis, the subject's pelvic angle (lumbosacral angle), lumbar lordosis angle, thoracic kyphosis angle, and cervical vertebrae The heel angle is specified, and based on the specified angle, “3: anteroposterior tilt angle of the pelvis”, “5: spine angle of the lumbar portion”, “4: spine angle of the thoracic portion”, and “6” The model transformation program P110 defines that the MPU 50a ′ performs the related symptom specifying process for the detected part such as “: neck bending angle”.
 上述した関連症状の特定処理において、MPU50a′は、先ず、各検出箇所に対し、判定テーブル95の規定に基づき長さ又は角度を特定(算出)することになる。長さを特定(算出)した場合は、その特定(算出)した長さについて被験者の身長に対する割合を算出し、算出した割合を判定テーブル95が規定する閾値や基準割合(例えば、大腿骨線基準割合)と比較し、比較の結果、算出した割合が、基準割合に対して判定テーブル95が規定する閾値の範囲内に収まっている場合、MPU50a′は正常であると判定し、閾値上限を上回る場合、又は閾値下限を下回る場合、判定テーブル95が規定する関連症状の内容(異常の内容)を、それぞれの場合について判定する。 In the above-described related symptom specifying process, the MPU 50a ′ first specifies (calculates) the length or the angle for each detected location based on the definition of the determination table 95. When the length is specified (calculated), a ratio of the specified (calculated) length to the height of the subject is calculated, and the calculated ratio is a threshold value or a reference ratio (for example, femoral line reference) defined by the determination table 95 If the calculated ratio is within the threshold range defined by the determination table 95 with respect to the reference ratio, the MPU 50a 'is determined to be normal and exceeds the upper limit threshold. In this case, or when the value falls below the threshold lower limit, the content of the related symptom (the content of the abnormality) defined by the determination table 95 is determined for each case.
 また、判定テーブル95の規定に基づき角度を特定(算出)した場合は、その特定(算出)した角度を、判定テーブル95が規定する基準角度と比較し、比較の結果、基準角度に対して判定テーブル95が規定する閾値の範囲内に収まっている場合、MPU50a′は正常であると判定し、閾値上限を上回る場合又は閾値下限を下回る場合、判定テーブル95が規定する関連症状の内容(異常の内容)を、それぞれの場合について判定する。 When the angle is specified (calculated) based on the definition of the determination table 95, the specified (calculated) angle is compared with the reference angle specified by the determination table 95, and the result of comparison is determined with respect to the reference angle. If the table 95 is within the threshold range defined, the MPU 50a 'is determined to be normal, and if it exceeds the threshold upper limit or falls below the threshold lower limit, the contents of the related symptoms defined by the determination table 95 (abnormal Content) is determined for each case.
 さらに、MPU50a′は、上述したように関連症状の内容(異常の内容)を判定した検出箇所については、その関連症状にリンクする分析テーブル95の項目を特定する処理を行うことをモデル変形プログラムP110は規定する。上述した各種処理を完了すると、次に、図26~29に示す姿勢検証用の画面に係る画面情報をMPU50a′が生成することをモデル変形プログラムP110は規定する。 Further, as described above, the MPU 50a ′ performs the process of specifying the item of the analysis table 95 linked to the related symptom for the detected location where the content of the related symptom (content of abnormality) is determined. Regulates. When the above-described various processes are completed, the model transformation program P110 defines that the MPU 50a ′ generates screen information related to the posture verification screens shown in FIGS.
 図40は実施例2における骨格モデルを示す画面(骨格モデル画面と称す)を示し、実施例1と異なる内容として、表示内容を図26~29に示す姿勢検証用の画面に切り替えるための切替ボタン75aを選択可能に設けている。図40に示す画面が通信端末3の表示スクリーン3aで表示された状態で、切替ボタン75aが選択されると、図26に示す人体を横方向から見た横方向検証画面100の表示に切り替わるように、図40の画面に係る画面情報は作り込まれている。なお、図40の画面は、画面左側に、撮像モデル画面(被験者の撮像画像を示す画面)、骨格モデル画面、筋肉モデル画面(筋肉モデルを示す画面)、脂肪モデル画面(脂肪モデルを示す画面)に表示内容を切り替えるための撮像ボタン75b、骨格ボタン75c、筋肉ボタン75d、脂肪ボタン75eを、いずれか一つのボタンが選択可能となるように配置しており、ボタン75b~75eのいずれか一つをユーザが適宜選択することで、所望の画面に表示を切り替えられるように作り込まれている。 FIG. 40 shows a screen (referred to as a skeleton model screen) showing a skeleton model in the second embodiment. As a content different from the first embodiment, a switching button for switching the display content to the posture verification screen shown in FIGS. 75a is provided to be selectable. When the screen shown in FIG. 40 is displayed on the display screen 3a of the communication terminal 3 and the switch button 75a is selected, the display is switched to the display of the horizontal direction verification screen 100 when the human body shown in FIG. In addition, the screen information related to the screen of FIG. 40 is created. 40, on the left side of the screen, an imaging model screen (screen showing a captured image of the subject), a skeleton model screen, a muscle model screen (screen showing a muscle model), a fat model screen (screen showing a fat model). An imaging button 75b, a skeleton button 75c, a muscle button 75d, and a fat button 75e for switching display contents are arranged so that any one of the buttons can be selected, and any one of the buttons 75b to 75e is selected. It is built so that the display can be switched to a desired screen when the user appropriately selects.
 図26に示す横方向の姿勢検証画面100は、測定処理装置30から送られてくる測定結果に含まれる撮像画像(人体を横から見た撮像画像)に、上述した処理で各検出箇所について特定(算出)した角度、重心を示す線等を含むものになっており、このような横方向の姿勢検証画面100を通信端末3で表示するための画面情報をMPU50a′は生成することになる。 The horizontal posture verification screen 100 shown in FIG. 26 specifies each detected portion in the captured image (captured image obtained by viewing the human body from the side) included in the measurement result sent from the measurement processing device 30 with the above-described processing. The MPU 50 a ′ generates screen information for displaying such a lateral orientation verification screen 100 on the communication terminal 3.
 具体的な生成の仕方として、測定処理装置30から取得した人体を横から見た撮像画像101を画面中央に配置し、その撮像画像に係る人体の重心を通過する重心Y軸ラインL200を描くと共に、上記の処理で三次元座標を特定した耳たぶ(左耳たぶ101e)と重心を通る耳たぶラインL201を描く。また、撮像画像の骨盤箇所101aに、骨盤に応じた傾きを示す骨盤矢印線102を描くと共に、上記の処理で特定した骨盤角度(腰仙角)の数値を記した骨盤角度ボックス102aを骨盤矢印線102の近傍に配置する。 As a specific generation method, a captured image 101 obtained by viewing the human body obtained from the measurement processing device 30 from the side is arranged at the center of the screen, and a center of gravity Y-axis line L200 passing through the center of gravity of the human body related to the captured image is drawn. The earlobe (left earlobe 101e) for which the three-dimensional coordinates are specified by the above processing and the earlobe line L201 passing through the center of gravity are drawn. In addition, a pelvic arrow line 102 indicating an inclination corresponding to the pelvis is drawn at the pelvic part 101a of the captured image, and a pelvic angle box 102a in which the numerical value of the pelvic angle (lumbosacral angle) specified by the above processing is written Arranged in the vicinity of the line 102.
 そして、撮像画像の腰部箇所101bに、腰椎に応じた傾きを示す腰椎矢印線103を描くと共に、上記の処理で特定した腰椎前弯角度の数値を記した腰椎角度ボックス103aを腰椎矢印線103の近傍に配置する。さらに、撮像画像の胸椎箇所101cにおける背骨部分に、胸椎に応じた傾きを示す胸椎矢印線104を描くと共に、上記の処理で特定した胸椎後弯角度の数値を記した胸椎角度ボックス104aを胸椎矢印線104の近傍に配置する。さらにまた、撮像画像の首箇所101dに、頸椎に応じた傾きを示す頸椎矢印線105を描くと共に、上記の処理で特定した頸椎前弯角度の数値を記した頸椎角度ボックス105aを頸椎矢印線105の近傍に配置する。 Then, a lumbar arrow line 103 indicating an inclination corresponding to the lumbar vertebra is drawn on the lumbar portion 101 b of the captured image, and a lumbar angle box 103 a in which the numerical value of the lumbar lordosis angle specified by the above processing is written is displayed on the lumbar arrow line 103. Place in the vicinity. Furthermore, a thoracic vertebrae arrow line 104 indicating an inclination corresponding to the thoracic vertebra is drawn on the spine portion of the thoracic vertebral portion 101c in the captured image, and a thoracic vertebra angle box 104a in which the numerical value of the thoracic kyphosis angle specified in the above processing is described Arranged in the vicinity of the line 104. Furthermore, a cervical vertebra arrow line 105 indicating an inclination corresponding to the cervical vertebra is drawn at the neck portion 101d of the captured image, and a cervical vertebra angle box 105a in which a numerical value of the cervical lordosis angle specified by the above-described processing is described Place in the vicinity of
 また、重心Y軸ラインL200から左耳たぶ101eへ向かう耳たぶ矢印線106を描くと共に、上記の処理で特定した重心Y軸ラインL200と耳(左耳たぶ101e)との乖離の長さを記した耳たぶ乖離ボックス106aを耳たぶ矢印線106の近傍に配置する。さらに重心Y軸ラインL200から左膝101fへ向かう膝矢印線106を描くと共に、上記の処理で特定した重心Y軸ラインL200と膝(左膝101f)との乖離の長さを記した膝乖離ボックス107aを膝矢印線107の近傍に配置する。そして、上述した各角度ボックス102a~105a及び乖離ボックス106a、107aのボックス内部の色は、異常が発生している場合は例えば赤色、正常のときは水色といったように色を変えるようにしている(他の画面110、120、130でも同様)。このような各矢印線102~107及び数値を記した各ボックス102a~107を被験者の撮像画像と一緒に、撮像画像中の対象箇所に配置することで、ユーザは人体の横方向から見た場合において、一目で自分の姿勢、骨格の状況等を確認できると共に、異常の発生箇所も容易に把握できる(異常の発生箇所が複数でも、各異常発生箇所の把握が容易になる)。 Also, an earlobe arrow line 106 is drawn from the center of gravity Y-axis line L200 to the left earlobe 101e, and the earlobe divergence describing the length of the divergence between the center-of-gravity Y-axis line L200 and the ear (left earlobe 101e) specified in the above processing. A box 106a is placed in the vicinity of the earlobe arrow line 106. Further, a knee arrow line 106 is drawn from the center-of-gravity Y-axis line L200 to the left knee 101f, and the knee divergence box indicates the length of divergence between the center-of-gravity Y-axis line L200 and the knee (left knee 101f) specified in the above processing. 107a is arranged in the vicinity of the knee arrow line 107. The color of the angle boxes 102a to 105a and the deviation boxes 106a and 107a described above is changed to, for example, red when an abnormality has occurred, and light blue when normal. The same applies to the other screens 110, 120, and 130). By arranging each of the arrow lines 102 to 107 and the boxes 102 a to 107 with numerical values in the target portion in the captured image together with the captured image of the subject, the user can see from the lateral direction of the human body. In addition, it is possible to confirm the posture, the state of the skeleton, and the like at a glance, and it is possible to easily grasp the location where the abnormality has occurred (even if there are a plurality of locations where the abnormality has occurred, it is easy to grasp each abnormality occurrence location).
 また、横方向の姿勢検証画面100は、画面左側下方に図40のモデル画面に表示を切り替えるための第1切替ボタン155、及び図41に示す分析画面160に表示を切り替えるための第2切替ボタン150をそれぞれ選択可能に配置している。さらに、横方向検証画面100は、画面右側下方に、前ボタン151、横ボタン152、上ボタン153、下ボタン154をいずれか一つが選択可能に配置しており、前ボタン151が選択されると図27の前方向の姿勢検証画面110に表示が切り替わり、横ボタン152が選択されると図26の横方向の姿勢検証画面110に表示が切り替わり、上ボタン153が選択されると図28の上方向の姿勢検証画面120に表示が切り替わり、下ボタン154が選択されると図29の下方向の姿勢検証画面130に表示が切り替わるようになっている(図中、選択されているボタンの輪郭は実線で示している)。 The horizontal posture verification screen 100 has a first switching button 155 for switching the display to the model screen of FIG. 40 on the lower left side of the screen and a second switching button for switching the display to the analysis screen 160 shown in FIG. 150 are arranged to be selectable. Further, the horizontal verification screen 100 has a front button 151, a horizontal button 152, an upper button 153, and a lower button 154 arranged so that any one can be selected at the lower right side of the screen, and when the front button 151 is selected. The display is switched to the forward posture verification screen 110 in FIG. 27. When the horizontal button 152 is selected, the display is switched to the horizontal posture verification screen 110 in FIG. 26, and when the upper button 153 is selected, the display in FIG. When the display switches to the orientation verification screen 120 in the direction and the lower button 154 is selected, the display switches to the orientation verification screen 130 in the downward direction in FIG. 29 (the outline of the selected button in the figure is (Shown in solid line).
 図27は、前方向の姿勢検証画面110を示し、測定処理装置30から送られてくる測定結果に含まれる撮像画像(人体を前から見た撮像画像)に、上述した処理で各検出箇所について特定(算出)した角度、長さ、重心Y軸ラインを示す線等を含むものになっており、このような前方向検証画面110を通信端末3で表示するための画面情報をMPU50a′は生成することになる。 FIG. 27 shows the posture verification screen 110 in the forward direction, and for each detected location in the captured image (captured image viewed from the front of the human body) included in the measurement result sent from the measurement processing device 30 with the above-described processing. The MPU 50a ′ generates screen information for displaying the forward verification screen 110 on the communication terminal 3 including the specified (calculated) angle, length, line indicating the center of gravity Y-axis line, and the like. Will do.
 具体的な生成の仕方として、測定処理装置30から取得した人体を前から見た撮像画像111を画面中央に配置し、その撮像画像に係る人体の重心を通過する重心Y軸ラインL200を描くと共に、上記の処理で三次元座標を特定した頭頂部111aと重心を通る頭頂部ラインL202を描く。そして、重心Y軸ラインL200から頭頂部111aまでの乖離の長さを記した頭頂部乖離ボックス202aを頭頂部111aの近傍に配置する。また、撮像画像111の腰箇所111bに、左右骨盤に応じた傾きを示す骨盤矢印線112を描くと共に、上記の処理で特定した左右骨盤の高さの差の数値を記した骨盤高さボックス112aを骨盤矢印線112の近傍に配置する。 As a specific generation method, a captured image 111 obtained by viewing the human body obtained from the measurement processing device 30 from the front is arranged in the center of the screen, and a center of gravity Y-axis line L200 passing through the center of gravity of the human body related to the captured image is drawn. The head top line 111a that specifies the three-dimensional coordinates by the above processing and the head top line L202 passing through the center of gravity are drawn. And the parietal part deviation box 202a which described the length of deviation from the gravity center Y-axis line L200 to the parietal part 111a is arrange | positioned in the vicinity of the parietal part 111a. In addition, a pelvic height box 112a in which a pelvic arrow line 112 indicating an inclination corresponding to the left and right pelvis is drawn on the waist portion 111b of the captured image 111 and a numerical value of a difference in height between the left and right pelvis specified by the above processing is described. Is placed in the vicinity of the pelvic arrow line 112.
 そして、撮像画像の肩箇所111cに、左右肩峰に応じた傾きを示す両肩矢印線113を描くと共に、上記の処理で特定した左右肩峰の高さの差の数値を記した肩高さボックス113aを両肩矢印線113の近傍に配置する。また、左右の足の大腿部111d、111eのそれぞれに左右の大腿骨矢印線114、115を描くと共に、上記の処理で特定した左右の大腿骨線の長さの差の数値を記した大腿骨長さボックス115aを一方の大腿骨線115の近傍に配置する。さらに、左右の足の脛部111f、111gのそれぞれに左右の脛骨矢印線116、117を描くと共に、上記の処理で特定した左右の脛骨線の長さの差の数値を記した脛骨長さボックス117aを一方の脛骨線117の近傍に配置する。 Then, a shoulder height indicating the difference between the heights of the left and right shoulder peaks identified by the above processing is drawn on the shoulder portion 111c of the captured image while drawing a double shoulder arrow line 113 indicating an inclination corresponding to the left and right shoulder peaks. The box 113a is arranged in the vicinity of the double shoulder arrow line 113. Also, the left and right femoral arrow lines 114 and 115 are drawn on the left and right thighs 111d and 111e, respectively, and the numerical value of the difference between the lengths of the left and right femoral lines specified in the above processing is described. A bone length box 115a is placed in the vicinity of one femoral line 115. Further, the left and right tibial arrow lines 116 and 117 are drawn on the left and right tibial portions 111f and 111g, respectively, and the tibial length box in which the numerical value of the difference in length between the left and right tibial lines specified in the above processing is written. 117a is arranged in the vicinity of one tibial line 117.
 さらにまた、上記の処理で特定した左足の大腿骨線114、115と脛骨線116、117が交わる角度を記した左膝角度ボックス118を撮像画像の左膝箇所に配置すると共に、右足の大腿骨線と脛骨線が交わる角度を記した右膝角度ボックス119を撮像画像の右膝箇所111h、111iに配置する。なお、前方向の姿勢検証画面110も、横方向の姿勢検証画面100と同様に各ボタン150~155を配置している。このような構成の前方向の姿勢検証画面110をユーザに提示することで、ユーザは人体の前方向から見た場合において、一目で自分の姿勢、骨格の状況等を確認できる。 In addition, a left knee angle box 118 indicating the angle at which the thighbone lines 114 and 115 of the left foot and the tibial lines 116 and 117 specified by the above processing intersect is arranged at the left knee location of the captured image, and the femur of the right foot A right knee angle box 119 describing an angle at which the line and the tibial line intersect is arranged at the right knee locations 111h and 111i of the captured image. Note that the buttons 150 to 155 are also arranged on the forward posture verification screen 110 as in the horizontal posture verification screen 100. By presenting the forward posture verification screen 110 having such a configuration to the user, the user can confirm his / her posture, the state of the skeleton, etc. at a glance when viewed from the front of the human body.
 図28は、上方向の姿勢検証画面120を示し、測定処理装置30から送られてくる測定結果に含まれる撮像画像(人体を上から見下ろした撮像画像)に、上述した処理で各検出箇所について特定(算出)した角度線等を含むものになっており、このような上方向の姿勢検証画面120を通信端末3で表示するための画面情報をMPU50a′は生成することになる。 FIG. 28 shows the posture verification screen 120 in the upward direction. The captured image (captured image obtained by looking down on the human body) included in the measurement result sent from the measurement processing device 30 is detected for each detection location. The MPU 50 a ′ generates screen information for displaying such an upward posture verification screen 120 on the communication terminal 3.
 具体的な生成の仕方として、測定処理装置30から取得した人体を上から見下ろした撮像画像121を画面中央に配置すると共に、左右の鎖骨121a、121b、及び肩121c、121dを繋ぐ肩矢印線122、123を描くと共に、上記の処理で特定した左右の肩121c、121dの捻れの角度を記した肩角度ボックス122a、123aを肩矢印線122、123の近傍に配置する。また、首の捻れ状態を示す首捻れ矢印線124を描くと共に、上記の処理で特定した首の左又は右への捻れの角度を記した首角度ボックス124aを首捻れ矢印線124の近傍に配置する。なお、上方向検証画面120も、各ボタン150~155を配置している。このような構成の上方向の姿勢検証画面120をユーザに提示することで、ユーザは人体を上方向から見下ろした場合において、一目で自分の姿勢、骨格の状況等を確認できるようになる。 As a specific generation method, a captured image 121 obtained by looking down on the human body acquired from the measurement processing device 30 is arranged in the center of the screen, and shoulder arrow lines 122 that connect the left and right collarbones 121a and 121b and the shoulders 121c and 121d. , 123 are drawn, and shoulder angle boxes 122a, 123a indicating the twist angles of the left and right shoulders 121c, 121d specified in the above processing are arranged in the vicinity of the shoulder arrow lines 122, 123. In addition, a neck twist arrow line 124 indicating a twisted state of the neck is drawn, and a neck angle box 124a in which the angle of twist of the neck specified in the above processing is written to the left or right is arranged in the vicinity of the neck twist arrow line 124. To do. The upward verification screen 120 also includes buttons 150 to 155. By presenting the upward posture verification screen 120 having such a configuration to the user, when the user looks down on the human body from above, the user can check his / her posture, the state of the skeleton, and the like at a glance.
 図29は、下方向の姿勢検証画面130を示し、測定処理装置30から送られてくる測定結果に含まれる撮像画像(人体を下から見上げた撮像画像)に、上述した処理で各検出箇所について特定(算出)した角度、長さ等を含むものになっており、このような下方向の姿勢検証画面130を通信端末3で表示するための画面情報をMPU50a′は生成することになる。 FIG. 29 shows a posture verification screen 130 in the downward direction. The captured image included in the measurement result sent from the measurement processing device 30 (captured image looking up at the human body from the bottom) is detected for each detection location in the above-described processing. The specified (calculated) angle, length, and the like are included, and the MPU 50 a ′ generates screen information for displaying such a downward posture verification screen 130 on the communication terminal 3.
 具体的な生成の仕方として、測定処理装置30から取得した人体を下から見上げた撮像画像131を画面中央に配置し、その撮像画像に係る人体の重心を通過する重心Y軸ラインL200を描くと共に、左右の腰を繋ぐ腰矢印線132及び左右の肩を繋ぐ肩矢印線133を描くと共に、腰と肩の捻れの角度を記した腰肩角度ボックス132aを腰矢印線132及び肩矢印線133の近傍に配置する。また、左右の膝頭を繋ぐ膝矢印線134を描くと共に、左右の膝の前後差を記した膝前後差ボックス134aを膝矢印線134の近傍に配置する。なお、下方向の姿勢検証画面130も、各ボタン150~155を配置している。このような構成の下方向の姿勢検証画面130をユーザに提示することで、ユーザは人体を下から見上げた場合において、一目で自分の姿勢、骨格の状況等を確認できるようになる。 As a specific generation method, a captured image 131 obtained by looking up the human body obtained from the measurement processing device 30 is arranged at the center of the screen, and a center of gravity Y-axis line L200 passing through the center of gravity of the human body related to the captured image is drawn. The waist arrow line 132 connecting the left and right waists and the shoulder arrow line 133 connecting the left and right shoulders are drawn, and the waist-shoulder angle box 132a in which the angle between the waist and the shoulder is twisted is displayed in the waist arrow line 132 and the shoulder arrow line 133. Place in the vicinity. In addition, a knee arrow line 134 that connects the left and right knee heads is drawn, and a knee front / rear difference box 134 a that describes the front / rear difference of the left and right knees is disposed in the vicinity of the knee arrow line 134. Note that the buttons 150 to 155 are also arranged on the downward posture verification screen 130. By presenting the downward posture verification screen 130 having such a configuration to the user, when the user looks up at the human body from below, the user can check his / her posture, the state of the skeleton, and the like at a glance.
 図41(a)は分析画面160を示し、上述した各姿勢検証画面100、110、120、130において、第2切替ボタン150が選択された場合に表示されるものであり、首分析欄161、背中分析欄162、骨盤分析欄163、膝分析欄164を有する。これらの分析欄161~164には、上述した処理で特定された各部位の関連症状が記されるようになっており、正常である場合は空欄となり、何らかの関連症状が記されている場合、その欄は選択可能になっており、欄が選択された場合は、記された関連症状についての詳しい情報を示すアドバイス画面に表示が切り替わる。同じ箇所に複数の関連症状が生じている場合は、一つの分析欄に複数の関連症状が記されることになる。なお、分析画面160を左方向にスワイプすると、前の表示画面に戻るようになっている。 FIG. 41A shows an analysis screen 160, which is displayed when the second switch button 150 is selected on each of the posture verification screens 100, 110, 120, 130 described above. It has a back analysis column 162, a pelvis analysis column 163, and a knee analysis column 164. In these analysis columns 161 to 164, the related symptom of each part specified by the above-described processing is described. When normal, it is blank, and when any related symptom is described, The column is selectable, and when the column is selected, the display is switched to an advice screen showing detailed information about the associated symptom. When a plurality of related symptoms occur in the same place, a plurality of related symptoms are written in one analysis column. Note that when the analysis screen 160 is swiped leftward, the screen returns to the previous display screen.
 図41(b)、図42(a)、(b)は、アドバイス画面170の一例を示し、この一例のアドバイス画面170はストレートネックに関するものであり、図41(a)に示す分析画面160で、ストレートネックと記された首分析欄161が選択された場合に表示される画面になっている(アドバイス画面170の内容が長いので、図41(a)、図42(a)、(b)に分けており、表示スクリーン3aのスクロール操作により、アドバイス画面170の中の所望箇所を表示できる)。 41 (b), 42 (a), and (b) show an example of the advice screen 170. The advice screen 170 in this example relates to a straight neck, and the analysis screen 160 shown in FIG. The screen is displayed when the neck analysis column 161 indicated as straight neck is selected (the contents of the advice screen 170 are long, so FIG. 41 (a), FIG. 42 (a), (b) The desired location in the advice screen 170 can be displayed by scrolling the display screen 3a).
 アドバイス画面170は、図39に示す分析テーブル96に含まれる「症状の説明」、「健康への影響」、「原因・特徴」、「施術・トレーニング」、「参考画像」等の項目の記載事項を配置したものなっている。すなわち、アドバイス画面170は、ストレートネックに関する症状説明欄171、健康への影響欄172、原因欄173、及びトレーニング欄174を含み、これらの各欄171~174に記される内容は、分析テーブル96のストレートネックについて格納された情報から抽出されたものになっている。なお、症状説明欄171に配置される画像171a及びトレーニング欄174に配置される画像174aも、分析テーブル96のストレートネックについて格納された画像が用いられている。このようなアドバイス画面170も、左方向にスワイプすることで、前の表示画面(分析画面160)に戻るようになっている。なお、上記のアドバイス画面170は、ストレートネックの場合で説明したが、他の関連症状の場合も同様に、分析テーブル96の中から抽出された情報が配置されたものになる。 The advice screen 170 includes items described in the analysis table 96 shown in FIG. 39 such as “Description of symptoms”, “Effects on health”, “Cause / feature”, “Surgery / training”, “Reference image”, etc. It has become the arrangement. That is, the advice screen 170 includes a straight neck symptom explanation column 171, a health effect column 172, a cause column 173, and a training column 174, and the contents described in each of these columns 171 to 174 are the analysis table 96. It is extracted from the information stored about the straight neck. The images stored for the straight neck of the analysis table 96 are also used for the image 171 a arranged in the symptom explanation column 171 and the image 174 a arranged in the training column 174. Such an advice screen 170 is also returned to the previous display screen (analysis screen 160) by swiping leftward. Note that the advice screen 170 has been described in the case of a straight neck, but information extracted from the analysis table 96 is also arranged in the case of other related symptoms.
 上述したように生成した各種画面に応じた画面情報、上記処理で特定(算出)した数値(角度、長さ、割合等)、及び特定した関連症状などを、三次元測定を行ったユーザのユーザIDに対応づけて会員データベース60(図8参照)に登録する処理をMPU50a′が行うことを、モデル変形プログラムP110は規定する。そして、通信端末3からデータ閲覧についてのログイン要求があり、ログイン状態になると、ログインに係るユーザIDに対応づけて格納されている画面情報(モデル画面、各方向の検証画面、分析画面、アドバイス画面等に応じた画面情報)、及び各種数値情報等を、ログインを行った通信端末3へ送信する処理をMPU50a′が行うことを、モデル変形プログラムP110は規定する。 The user of the user who performed the three-dimensional measurement of the screen information corresponding to the various screens generated as described above, the numerical values (angle, length, ratio, etc.) specified (calculated) by the above processing, the specified related symptoms, etc. The model transformation program P110 defines that the MPU 50a ′ performs the process of registering in the member database 60 (see FIG. 8) in association with the ID. Then, when there is a login request for data browsing from the communication terminal 3 and the login state is entered, the screen information (model screen, verification screen in each direction, analysis screen, advice screen) stored in association with the user ID related to login The model transformation program P110 defines that the MPU 50a ′ performs processing for transmitting the screen information according to the above and the like and various numerical information to the communication terminal 3 that has logged in.
 図43は、上述したモデル変形プログラムP110が規定する処理内容の手順の概要を整理した方法(骨格特定方法に相当)を示すフローチャートである。このフローチャートに従って、骨格特定システム50′(MPU50a′)が行う処理の概要を整理すると、先ず、三次元測定で得られた人体表面の複数の点の中から、各骨格ポイント等に対応する人体表面の点をポイントテーブル800の規定に基づき特定すると共に、特定した人体表面の点が有する三次元座標値から、各骨格ポイント等の三次元座標値を特定(算出)し(S10)、次に、特定(算出)した三次元座標値から判定できる関連症状の項目については、関連症状の判定を行う(S11)。 FIG. 43 is a flowchart showing a method (corresponding to a skeleton specifying method) in which the outline of the procedure of the processing content defined by the model deformation program P110 described above is arranged. According to this flowchart, the outline of the processing performed by the skeletal identification system 50 ′ (MPU 50a ′) is organized. First, the human body surface corresponding to each skeletal point etc. from a plurality of points on the human body surface obtained by three-dimensional measurement. Are specified based on the provisions of the point table 800, and three-dimensional coordinate values such as each skeleton point are specified (calculated) from the three-dimensional coordinate values of the specified points on the surface of the human body (S10). For the related symptom item that can be determined from the specified (calculated) three-dimensional coordinate values, the related symptom is determined (S11).
 また、骨格特定システム50′(MPU50a′)は、骨格ポイントの特定(算出)した三次元座標値に変形基点が一致するように骨格モデルを変形する(S12)。その変形した骨格モデルが含む対象点の三次元座標値を特定し(S13)、その変形した骨格モデルが有する対象点(図31に示す点P100~105等)の三次元座標値に基づき対象点の位置を特定すると共に、各角度線L101~L107により角度の特定を行うことなどにより、S11の段階で判定した以外の残りの関連症状について判定を行う(S14)。 Also, the skeleton specifying system 50 ′ (MPU 50a ′) deforms the skeleton model so that the deformation base point coincides with the three-dimensional coordinate value specified (calculated) of the skeleton point (S12). The three-dimensional coordinate value of the target point included in the deformed skeleton model is specified (S13), and the target point is based on the three-dimensional coordinate value of the target point (such as points P100 to 105 shown in FIG. 31) included in the deformed skeleton model. The remaining related symptoms other than those determined in the stage of S11 are determined by specifying the position of the angle and specifying the angle by the angle lines L101 to L107 (S14).
 そして、骨格特定システム50′(MPU50a′)は、S11及びS14の判定した関連症状をふまえて、各種画面用の画面情報を生成し(S15)、生成した画面情報、特定(算出)した値を示す情報等を、被験者のユーザIDに対応づけて会員データベース60に登録することになる(S16)。なお、このような手順は一例であり、仕様等に応じて、手順を変更することは可能であり、例えば、S11の判定処理は、S14の段階で、変形モデルに基づく判定とあわせて行うことも可能である。 The skeletal identification system 50 ′ (MPU 50a ′) generates screen information for various screens based on the related symptoms determined in S11 and S14 (S15), and generates the generated screen information and the specified (calculated) value. The information to be shown is registered in the member database 60 in association with the user ID of the subject (S16). In addition, such a procedure is an example, and it is possible to change the procedure according to the specification or the like. For example, the determination process of S11 is performed at the stage of S14 together with the determination based on the deformation model. Is also possible.
 図44は、上述した各画面等の表示を行う通信端末3の主要な内部構成を示す。通信端末3としては、実施例1で説明したように、タブレット、スマートフォンのような携帯通信端末、通信機能を有するパソコン(ノート型パソコン、デスクトップ型パソコン等)などを用いることができ、一種のコンピュータに相当する(図44はタブレットの場合の構成を示す)。ただし、通信端末3として、スマートフォンのような携帯通信端末、通信機能を有するパソコン(ノート型パソコン、デスクトップ型パソコン等)を用いた場合でも、本発明に関する構成部分は、図44に示す構成に対応したものとなる。 FIG. 44 shows a main internal configuration of the communication terminal 3 that displays the above-described screens and the like. As described in the first embodiment, the communication terminal 3 can be a mobile communication terminal such as a tablet or a smartphone, a personal computer having a communication function (notebook personal computer, desktop personal computer, etc.), and the like. (FIG. 44 shows a configuration in the case of a tablet). However, even when a mobile communication terminal such as a smartphone or a personal computer having a communication function (notebook personal computer, desktop personal computer, etc.) is used as the communication terminal 3, the components related to the present invention correspond to the configuration shown in FIG. Will be.
 通信端末3は、全体的な制御及び各種処理を行うCPU3b(プロセッサ3b)に、内部接続線3kを介して、通信モジュール3c(通信手段に相当)、RAM3d、ROM3e、入出力インタフェース3f、記憶部(記憶手段に相当)3g等の各種デバイス等を接続したものになっている。 The communication terminal 3 is connected to a CPU 3b (processor 3b) that performs overall control and various processes, via an internal connection line 3k, a communication module 3c (corresponding to communication means), a RAM 3d, a ROM 3e, an input / output interface 3f, and a storage unit. (Equivalent to storage means) 3g and other various devices are connected.
 通信モジュール3cは、ネットワークを介した無線通信処理を、CPU3bの制御に従って行うものである。RAM3dは、CPU3bの処理に伴う内容、ファイル等を一時的に記憶すると共に、骨格特定システム50′から送られてくる画面情報及び各種数値情報等の記憶も行う。ROM3eは、CPU3bの基本的な処理内容を規定したプログラム等を記憶すると共に、通信端末3を識別する識別情報(UID)等も格納している。なお、このUIDは、上述した通信モジュール3cで通信(送信する際、送信内容に含まれるようになっている(例えば、送信パケットのヘッダ等にUIDを含めて送信が行われる)。 The communication module 3c performs wireless communication processing via the network according to the control of the CPU 3b. The RAM 3d temporarily stores contents, files, and the like associated with the processing of the CPU 3b, and also stores screen information and various numerical information sent from the skeleton specifying system 50 '. The ROM 3e stores a program that defines the basic processing contents of the CPU 3b, and also stores identification information (UID) that identifies the communication terminal 3. This UID is communicated by the communication module 3c described above (when transmitted, it is included in the transmission content (for example, transmission is performed by including the UID in the header of the transmission packet).
 入出力インタフェース3fは、タッチパネル機能を具備した長方形のパネル画面を有する表示スクリーン3aと接続されており、CPU3bの制御処理により生成された各種画面(図26~29、40~42等に示す画面)を表示スクリーン3aに出力する処理を行い、それにより、出力した画面内容が表示スクリーン3aに表示されることになる。また、入出力インタフェース3fは、表示スクリーン3aの表面をユーザがタッチ、スワイプ等することで受け付けた各種操作内容をCPU3bへ送る処理も行う。なお、ユーザが表示スクリーン3aの表面をタッチすることで受け付ける操作内容は、表示している画面内容に応じて適宜、変化する。 The input / output interface 3f is connected to a display screen 3a having a rectangular panel screen having a touch panel function, and various screens generated by control processing of the CPU 3b (screens shown in FIGS. 26 to 29, 40 to 42, etc.) Is output to the display screen 3a, whereby the output screen content is displayed on the display screen 3a. The input / output interface 3f also performs processing for sending various operation contents received by the user touching or swiping the surface of the display screen 3a to the CPU 3b. It should be noted that the operation content received by the user touching the surface of the display screen 3a changes appropriately according to the displayed screen content.
 記憶部3gは、OSプログラムP200、人体検証アプリP201、及びその他の各種アプリ等のプログラムを記憶(インストール)すると共に、各種データも記憶する。OSプログラムP200は、オペレーティングシステムに相当する基本プログラムであり、通信端末3が一種のコンピュータとして機能するためのCPU3bの処理を規定している。OSプログラムP200が規定する基本的な処理の一つとしては、表示スクリーン3aにホーム画面を表示することが挙げられ、このホーム画面においては、記憶部3gにインストールされている各種アプリに応じたアイコン等を配置することも、OSプログラムP200の規定する処理によるものとなっている。 The storage unit 3g stores (installs) programs such as the OS program P200, the human body verification application P201, and other various applications, and also stores various data. The OS program P200 is a basic program corresponding to an operating system, and defines the processing of the CPU 3b for the communication terminal 3 to function as a kind of computer. One of the basic processes defined by the OS program P200 is to display a home screen on the display screen 3a. In this home screen, icons corresponding to various applications installed in the storage unit 3g. Etc. is also due to the process defined by the OS program P200.
 記憶部3gに記憶される人体検証アプリP201は、三次元測定を行ったユーザがその測定結果を確認するための内容を表示するためのアプリケーションプログラム(コンピュータプログラム)である。人体検証アプリP201は、測定結果に係る内容を表示するためのCPU3bの制御処理を規定しており、起動すると、最初にログインのためのユーザID及びパスワード(又はパスコード)の入力を受け付けるログイン画面を表示スクリーン3aに表示するように作り込まれている。 The human body verification application P201 stored in the storage unit 3g is an application program (computer program) for displaying contents for the user who has performed the three-dimensional measurement to confirm the measurement result. The human body verification application P201 defines a control process of the CPU 3b for displaying the contents related to the measurement result, and when started, a login screen that first accepts input of a user ID and password (or passcode) for login Is displayed on the display screen 3a.
 ユーザID及びパスワードの入力を受け付けた状態で、ログイン画面に含まれるログインボタンの選択操作を受け付けると、CPU3bは、入力を受け付けたユーザID及びパスワードを含むログイン要求を骨格特定システム50′へ送信する処理を行うことになる。ログイン要求の送信に伴い、骨格特定システム50′から画面情報及び各種数値情報等を受信すると、受信した情報等をRAM3dに記憶すると共に、受信した情報に含まれるモデル画面情報(例えば、骨格モデル画面を表示するための画面情報)に基づき、CPU3bは骨格モデル画面を生成し、生成した骨格モデル画面を表示スクリーン3aに表示出飾する処理を行う(図40参照)。 When the selection operation of the login button included in the login screen is received in the state where the input of the user ID and the password is received, the CPU 3b transmits a login request including the received user ID and password to the skeleton identification system 50 ′. Processing will be performed. When screen information and various numerical information are received from the skeletal identification system 50 ′ along with the transmission of the login request, the received information is stored in the RAM 3 d and model screen information (for example, skeleton model screen included in the received information). The CPU 3b generates a skeleton model screen based on the screen information for displaying the image and displays the generated skeleton model screen on the display screen 3a (see FIG. 40).
 骨格モデル画面を表示スクリーン3aに表示した状態で、骨格ボタン75c以外の撮像ボタン75b、筋肉ボタン75d、又は脂肪ボタン75eのいずれか一つボタンの選択操作を受け付けると、受け付けた内容の画面を生成して表示スクリーン3aに表示出力する処理をCPU3bは行う。例えば、筋肉ボタン75dの選択操作を受け付けた場合は、RAM3dに記憶されるモデル画面情報に基づき、筋肉モデル画面を生成して表示スクリーン3aに表示出力することになる。 When the selection operation of any one of the imaging button 75b, the muscle button 75d, and the fat button 75e other than the skeleton button 75c is received in a state where the skeleton model screen is displayed on the display screen 3a, a screen with the received content is generated. Then, the CPU 3b performs processing for display output on the display screen 3a. For example, when the selection operation of the muscle button 75d is accepted, a muscle model screen is generated based on the model screen information stored in the RAM 3d and displayed on the display screen 3a.
 また、モデル画面(例えば、図40の骨格モデル画面)を表示スクリーン3aに表示している状態で、切替ボタン75aの選択操作を受け付けると、RAM3dに記憶される画面情報に基づき、CPU3bは、図26に示す横方向の姿勢検証画面100を生成し、表示スクリーン3aに表示出力する処理を行う。 Further, when the selection operation of the switching button 75a is accepted in a state where the model screen (for example, the skeleton model screen of FIG. 40) is displayed on the display screen 3a, the CPU 3b displays the figure based on the screen information stored in the RAM 3d. The horizontal posture verification screen 100 shown in FIG. 26 is generated and displayed on the display screen 3a.
 表示している横方向の姿勢検証画面100で、前ボタン151の選択操作を受け付けると、RAM3dに記憶される画面情報に基づき、CPU3bは、図27に示す前方向の姿勢検証画面110を生成し、表示スクリーン3aに表示出力する処理を行う。また、表示している横方向の姿勢検証画面100で、上ボタン153の選択操作を受け付けると、RAM3dに記憶される画面情報に基づき、CPU3bは、図28に示す上方向の姿勢検証画面120を生成し、表示スクリーン3aに表示出力する処理を行う。さらに、表示している横方向の姿勢検証画面100で、下ボタン154の選択操作を受け付けると、RAM3dに記憶される画面情報に基づき、CPU3bは、図29に示す下方向の姿勢検証画面130を生成し、表示スクリーン3aに表示出力する処理を行う。このように、各ボタン151~154のボタンを適宜操作することで、ユーザの所望の方向の姿勢検証画面100~130のいずれかに表示を切り替えることができ、各方向からユーザ自身の姿勢を視覚的に確認できると共に、画面内の角度又は長さを示す数値により客観的な検証も行えるようにしている。 When the selection operation of the front button 151 is accepted on the displayed horizontal posture verification screen 100, the CPU 3b generates the forward posture verification screen 110 shown in FIG. 27 based on the screen information stored in the RAM 3d. Then, the display screen 3a is displayed and output. When the selection operation of the upper button 153 is accepted on the displayed horizontal posture verification screen 100, the CPU 3b displays the upward posture verification screen 120 shown in FIG. 28 based on the screen information stored in the RAM 3d. A process of generating and displaying on the display screen 3a is performed. Further, when the selection operation of the lower button 154 is accepted on the displayed horizontal posture verification screen 100, the CPU 3b displays the downward posture verification screen 130 shown in FIG. 29 based on the screen information stored in the RAM 3d. A process of generating and displaying on the display screen 3a is performed. As described above, by appropriately operating the buttons 151 to 154, the display can be switched to any of the posture verification screens 100 to 130 in the user's desired direction, and the user's own posture can be visually confirmed from each direction. In addition, the objective verification can be performed by a numerical value indicating the angle or length in the screen.
 このような各方向の姿勢検証画面100~130のいずれかを表示スクリーン3aに表示している状態で、画面左下の第2切替ボタン150の選択操作を受け付けると、RAM3dに記憶される画面情報に基づき、CPU3bは、図41(a)に示す分析画面160を生成し、表示スクリーン3aに表示出力する処理を行う。そして分析画面160の各欄161~164の中で、何らかの関連症状が記載されている欄の選択操作を受け付けると、CPU3bは、その選択操作の対象となった関連症状に応じた「症状の説明」、「健康への影響」、「原因・特徴」、「施術・トレーニング」、及び「参考画像」等を、RAM3dに記憶される情報から読み出して、図41(b)、図42(a)、(b)に示すアドバイス画面170を生成し、表示スクリーン3aに表示出力する処理を行う。このようなアドバイス画面170を通じて、特定の異常事項についての詳細な情報をユーザが確認でき、異常事項の解消に役立てられる。 When a selection operation of the second switching button 150 at the lower left of the screen is received in a state where any of the orientation verification screens 100 to 130 in each direction is displayed on the display screen 3a, the screen information stored in the RAM 3d is displayed. Based on this, the CPU 3b performs a process of generating the analysis screen 160 shown in FIG. 41 (a) and displaying it on the display screen 3a. When accepting an operation for selecting a column in which any related symptom is described in each of the columns 161 to 164 of the analysis screen 160, the CPU 3b displays “Explanation of Symptoms” according to the related symptom targeted for the selection operation. ”,“ Effect on health ”,“ cause / feature ”,“ treatment / training ”,“ reference image ”, etc. are read out from the information stored in the RAM 3d, and FIG. 41 (b), FIG. 42 (a) The advice screen 170 shown in (b) is generated and displayed on the display screen 3a. Through such an advice screen 170, the user can confirm detailed information about a specific abnormal matter, which is useful for solving the abnormal matter.
 なお、実施例2については、上述した内容に限定されるものではなく、様々な変形例を想定することができる。例えば、図33、34に示すポイントテーブル800の中身は一例であり、仕様に応じて、ポイントテーブル800に含まれる骨格ポイント等の数は適宜、増減することも可能である。また、ポイントテーブル800に含まれる骨格ポイント等のZ座標値を求めるにあたり、対応する人体表面の前後の点のZ座標値を特定の比率で分ける点を求めるものがあるが、仕様を簡易にするときなどは、X座標値又はY座標値を求める場合と同様に、人体表面の前後の点の平均値を用いるようにしてもよい。 In addition, about Example 2, it is not limited to the content mentioned above, Various modifications can be assumed. For example, the content of the point table 800 shown in FIGS. 33 and 34 is an example, and the number of skeleton points and the like included in the point table 800 can be appropriately increased or decreased according to the specifications. Further, when obtaining the Z coordinate values of the skeleton points and the like included in the point table 800, there is a technique for obtaining a point that divides the Z coordinate values of the front and rear points of the corresponding human body surface by a specific ratio, but the specification is simplified. In some cases, as in the case of obtaining the X coordinate value or the Y coordinate value, an average value of points before and after the human body surface may be used.
 さらに、図32に示す各角度(骨盤角度、腰椎前弯角度、胸椎後弯角度、頸椎前弯角度)について、異常の有無を判定するのに用いる基準角度の数値は、上述した説明の数値以外を用いることも可能である。特に、頸椎前弯角度は、平均的な値は30から35度というように一定の範囲があるので、頸椎前弯角度に対する基準角度は、30から35度の範囲内のいずれかの数値を用いることが好適である。また、骨盤角度を判定するのは、腰仙角を用いる以外に、骨格モデルの仙骨底の下面に平行な線と、第1前弯線L102(第5腰椎の接合面に平行な線)との交わる角度で判定することも可能であり、この場合、基準角度の数値としては40度を用いることが好適である。 Further, for each angle shown in FIG. 32 (pelvic angle, lumbar lordosis angle, thoracic kyphosis angle, cervical lordosis angle), the numerical value of the reference angle used for determining the presence or absence of abnormality is other than the numerical value described above. It is also possible to use. In particular, the cervical lordosis angle has a certain range such as an average value of 30 to 35 degrees, and therefore, the reference angle for the cervical vertebra lordosis angle is any value within the range of 30 to 35 degrees. Is preferred. In addition to using the lumbosacral angle, the pelvic angle is determined using a line parallel to the lower surface of the sacral base of the skeletal model and a first anterior line L102 (a line parallel to the joint surface of the fifth lumbar vertebra). In this case, it is preferable to use 40 degrees as the numerical value of the reference angle.
 また、上述した例では、変形した骨格モデルを用いずに、ポイントテーブル800の骨格ポイント等の三次元座標値から異常の有無を判定した項目もあるが、これらの項目についても、骨格モデルにおける各箇所に判定用の対象点を予め含ませて、変形後の骨格モデルの対象点が有する三次元座標値から異常の有無を判定する仕様にすることも可能である。なお、実施例2は骨格の特定、姿勢の検証を主にするものなので、実施例1で説明した体組成計10を省略し、筋肉モデル及び脂肪モデルに関する処理を省いて、仕様を簡易にすることも可能である。 In the above-described example, there is an item in which the presence / absence of an abnormality is determined from a three-dimensional coordinate value such as a skeleton point of the point table 800 without using the deformed skeleton model. It is also possible to include a target point for determination in advance at the location and to determine whether there is an abnormality from the three-dimensional coordinate value of the target point of the deformed skeleton model. In addition, since Example 2 mainly focuses on the specification of the skeleton and the verification of the posture, the body composition meter 10 described in Example 1 is omitted, the processing relating to the muscle model and the fat model is omitted, and the specification is simplified. It is also possible.
 さらにまた、通信端末3に表示する各方向の姿勢検証画面100~130は、図26~29に示す形態に限定されるものではなく、他の形態も考えられる。例えば、通信端末3として、タブレットではなくスマートフォンを用いる場合、表示スクリーン3aのサイズもタブレットに比べて小さくなるので(約4~6インチのサイズ)、小さいスクリーンサイズ用の各検証画面を生成して提示するようにしてもよい。 Furthermore, the posture verification screens 100 to 130 displayed on the communication terminal 3 are not limited to the forms shown in FIGS. 26 to 29, and other forms are also conceivable. For example, when using a smartphone instead of a tablet as the communication terminal 3, the size of the display screen 3a is smaller than that of the tablet (about 4 to 6 inches), so each verification screen for a small screen size is generated. You may make it show.
 図45(a)(b)は、スマートフォンなどの小さいサイズ向けの姿勢検証画面200、210を示す。図45(a)は横方向の姿勢検証画面200であり、図45(b)は前方向の姿勢検証画面210である。 45 (a) and 45 (b) show posture verification screens 200 and 210 for a small size such as a smartphone. 45A shows a lateral posture verification screen 200, and FIG. 45B shows a forward posture verification screen 210. FIG.
 図45(a)の横方向の姿勢検証画面200は、被験者の横方向の撮像画像101を配置するが、画面内容が煩雑になるのを避けるため、図26の横方向の姿勢検証画面100に含まれる角度を記した角度ボックス102a等を含まないと共に、重心Y軸ラインL200等も省略したものになっている。その替わりに、図45(a)の横方向の姿勢検証画面200は、上述した関連症状の判定で、異常と判定した箇所に、異常マーク201~203を選択可能に付している。図45(a)に示す場合は、腰、肩、及び膝に異常が生じていると判定されたので、腰、肩、膝に異常マーク201~203が付されている。 The horizontal posture verification screen 200 in FIG. 45A arranges the captured image 101 in the horizontal direction of the subject, but the horizontal posture verification screen 100 in FIG. The angle box 102a and the like indicating the included angles are not included, and the center of gravity Y-axis line L200 and the like are omitted. Instead, the posture verification screen 200 in the horizontal direction in FIG. 45 (a) is provided with selectable abnormality marks 201 to 203 at locations determined to be abnormal in the above-described related symptom determination. In the case shown in FIG. 45 (a), since it is determined that an abnormality has occurred in the waist, shoulders, and knees, abnormality marks 201 to 203 are attached to the waist, shoulders, and knees.
 また、横方向の姿勢検証画面200は、画面上部に左ボタン250、右ボタン251、前ボタン252、上ボタン253、及び下ボタン254を、いずれか一つのボタンが選択可能に配置している。左ボタン250は左方向からの姿勢検証画面を表示する際に選択されるものであり、以下、右ボタン251は右方向からの姿勢検証画面の表示、前ボタン222は前方向からの姿勢検証画面の表示、上ボタン253は上方向からの姿勢検証画面の表示、下ボタン254は下方向からの姿勢検証画面の表示を行うためのものになっており、これらの各ボタン250~254は各方向の姿勢検証画面でも設けられている(図において、選択されているボタンの周囲は太い実線で示す)。 In the horizontal posture verification screen 200, a left button 250, a right button 251, a front button 252, an upper button 253, and a lower button 254 are arranged at the top of the screen so that any one button can be selected. The left button 250 is selected when displaying the posture verification screen from the left direction. Hereinafter, the right button 251 displays the posture verification screen from the right direction, and the front button 222 indicates the posture verification screen from the front direction. , The upper button 253 is for displaying the posture verification screen from above, and the lower button 254 is for displaying the posture verification screen from below. These buttons 250 to 254 are for each direction. The posture verification screen is also provided (in the figure, the area around the selected button is indicated by a thick solid line).
 図45(b)は前方向の姿勢検証画面210、前ボタン252が選択された場合に表示される画面であり、被験者の前方向の撮像画像111を画面内に配置するが、図27の前方向の姿勢検証画面110に比べて、角度ボックス及び重心Y軸ラインL200等を省略する一方、異常であると判定された腰、肩、膝(右膝)に異常マーク211、212、213を付している。このように図45(a)、(b)の姿勢検証画面200、210は、被験者の撮像画像101、111において、異常の判定された箇所に異常マークが付されるだけなので、小さいスクリーンサイズであっても、一目で異常と判定された箇所を確認できるようになっている。 FIG. 45 (b) is a screen displayed when the front posture verification screen 210 and the front button 252 are selected, and the captured image 111 of the subject's front direction is arranged on the screen. Compared to the orientation verification screen 110, the angle box, the center of gravity Y-axis line L200, etc. are omitted, while abnormal marks 211, 212, and 213 are attached to the waist, shoulder, and knee (right knee) that are determined to be abnormal. is doing. Thus, the posture verification screens 200 and 210 in FIGS. 45 (a) and 45 (b) only have an abnormality mark at a location where an abnormality is determined in the captured images 101 and 111 of the subject. Even if there is, it is possible to confirm the location determined to be abnormal at a glance.
 図46(a)(b)は、拡大検証画面300、310を示し、上述した図45(a)、(b)の姿勢検証画面200、210に含まれる異常マークの選択操作が行われた場合に表示されるものである。 46 (a) and 46 (b) show the enlarged verification screens 300 and 310, and when the abnormal mark selection operation included in the posture verification screens 200 and 210 of FIGS. 45 (a) and 45 (b) described above is performed. Is displayed.
 図46(a)の横方向の拡大検証画面300は、図45(a)の姿勢検証画面200において、腰に付された異常マーク201の選択操作を受け付けた場合に、CPU3bがRAM3dに記憶される画面情報に基づいて生成し、姿勢検証画面200から切り替えて表示出力するものである。この横方向の拡大検証画面300は、撮像画像101の腰部分を拡大して配置すると共に、上述した処理で特定した角度の数値301も示すと共に、骨盤の状況を示す角度線L300も示す。また、横方向の拡大検証画面300は、画面下方にテキストボックス302、アドバイスボタン303、及び戻るボタン304を含んでいる。 46A is stored in the RAM 3d when the selection operation of the abnormal mark 201 attached to the waist is accepted in the posture verification screen 200 of FIG. 45A. Generated based on the screen information to be displayed, switched from the posture verification screen 200, and displayed. The horizontal enlargement verification screen 300 magnifies and arranges the waist portion of the captured image 101, and also shows the numerical value 301 of the angle specified by the above-described processing, and also shows the angle line L300 indicating the condition of the pelvis. The horizontal enlargement verification screen 300 includes a text box 302, an advice button 303, and a return button 304 at the bottom of the screen.
 テキストボックス302は、上述した処理で判定された関連症状に応じた情報(分析テーブル96に格納された情報等)をRAM3dからCPU3bが読み出して、その情報をテキストで示すものである。具体的に図46(a)では、骨盤が前傾であること、骨盤が基準角度より15度前傾していることなどが記されている。また、アドバイスボタン303は選択可能なものであり、このアドバイスボタン303の選択操作を受け付けると、骨盤の前傾に応じた内容のアドバイス画面(図41(b)、42(a)(b)のアドバイス画面170参照)に、CPUは表示を切り替える。なお、戻るボタン304は選択されると、図45(a)の姿勢検証画面200に表示が戻るようになっている。 In the text box 302, the CPU 3b reads information (such as information stored in the analysis table 96) corresponding to the related symptom determined by the above-described processing from the RAM 3d, and indicates the information in text. Specifically, FIG. 46A shows that the pelvis is tilted forward and the pelvis is tilted forward 15 degrees from the reference angle. Further, the advice button 303 is selectable. When the selection operation of the advice button 303 is accepted, the advice screen having contents corresponding to the forward tilt of the pelvis (FIGS. 41B, 42A, and B) is displayed. The CPU switches the display to the advice screen 170). When the return button 304 is selected, the display is returned to the posture verification screen 200 in FIG.
 図46(b)の前方向の拡大検証画面310は、図45(b)の姿勢検証画面210において、肩に付された異常マーク212の選択操作を受け付けた場合に、CPU3bがRAM3dに記憶される画面情報に基づいて生成し、姿勢検証画面210から切り替えて表示出力するものである。この前方向の拡大検証画面310は、撮像画像111の肩部分を中心に拡大表示したものを配置すると共に、上述した処理で特定した長さの数値311を示すと共に、肩の基準線L310及び肩の傾き具合を示す角度線L311も示している。 46B, the CPU 3b is stored in the RAM 3d when the selection operation of the abnormal mark 212 attached to the shoulder is accepted in the posture verification screen 210 of FIG. 45B. Is generated based on the screen information to be displayed, switched from the posture verification screen 210 and displayed. The enlarged verification screen 310 in the forward direction arranges an enlarged display centered on the shoulder portion of the captured image 111, shows the numerical value 311 of the length specified by the above-described processing, and also indicates the shoulder reference line L310 and the shoulder. An angle line L311 indicating the degree of inclination is also shown.
 また、前方向の拡大検証画面310は、上述した横方向の拡大検証画面300と同様に、画面下方にテキストボックス312、アドバイスボタン313、及び戻るボタン314を含んでいる。このように、図46(a)(b)の拡大検証画面300、310を表示可能にすることで、小さいサイズの表示スクリーン3aであっても、関連症状の詳細(異常の具合)を異常発生箇所ごとに確実に把握できる。なお、上記では、前方向及び横方向の姿勢検証画面(拡大検証画面)で説明したが、勿論、上方向及び下方向の姿勢検証画面でも、図45、46に示す画面構成の適用が可能である。 The forward expansion verification screen 310 includes a text box 312, an advice button 313, and a return button 314 at the lower part of the screen, like the horizontal expansion verification screen 300 described above. As described above, by enabling the enlarged verification screens 300 and 310 of FIGS. 46A and 46B to be displayed, even if the display screen 3a has a small size, the details of the related symptoms (abnormality) occur abnormally. You can be sure of each location. In the above description, the forward and lateral posture verification screens (enlarged verification screens) have been described. Of course, the screen configurations shown in FIGS. 45 and 46 can also be applied to the upward and downward posture verification screens. is there.
 さらに、上述した各検証他面100~130、200、210、300、312は、撮像画像を配置して、各種矢印、数値、角度を付加する構成にしたが、配置するのは骨格モデル、筋肉モデル、脂肪モデルのいずれかのモデル画像を配置する仕様にしてもよく、特に、骨格モデルを配置した場合は、骨格の状況を視認しながら、各種矢印、数値、角度等の客観的な情報で詳細を確認できるので好適である。 Further, each of the other verification surfaces 100 to 130, 200, 210, 300, and 312 described above is configured by arranging captured images and adding various arrows, numerical values, and angles. The model image of either the model or the fat model may be arranged, and in particular, when a skeleton model is arranged, objective information such as various arrows, numerical values, angles, etc. can be used while visually checking the skeleton state. It is preferable because details can be confirmed.
 本発明は、被験者の測定結果に応じた形状の骨格モデル、筋肉モデル、及び脂肪モデルで構成される解剖的な人体モデルを提供するので、筋肉の付き方、脂肪の付き方等を視覚的に確認する用途等に対して好適に利用可能であると共に、被験者の姿勢検証にも好適に利用可能である。 The present invention provides an anatomical human body model composed of a skeletal model, a muscle model, and a fat model having a shape corresponding to the measurement result of the subject. It can be suitably used for the purpose of confirmation and the like, and can also be suitably used for verification of the posture of the subject.
 1 健康管理システム
 3 通信端末
 3a 表示スクリーン
 5 人体測定システム
 10 体組成計
 20 三次元測定器
 30 測定処理装置
 35 表示装置
 50 人体モデル提供システム
 50′ 骨格特定システム
 50a MPU50a
 60 会員データベース
 70 人体モデルテーブル
 71 (男性用の)骨格モデル
 72 (男性用の)筋肉モデル
 73 (男性用の)脂肪モデル
 76 (女性用の)脂肪モデル
 80 ポイントテーブル
 85 モデル数値テーブル
 90 女性脂肪参照テーブル
 95 検証判定テーブル
 96 分析テーブル
 100 横方向の姿勢検証画面
 110 前方向の姿勢検証画面
 120 上方向の姿勢検証画面
 130 下方向の姿勢検証画面
 160 分析画面
 170 アドバイス画面
 800 ポイントテーブル
 P2 三次元測定プログラム
 P3 組成測定プログラム
 P4 測定管理プログラム
 P11 モデル変形プログラム   
DESCRIPTION OF SYMBOLS 1 Health management system 3 Communication terminal 3a Display screen 5 Human body measurement system 10 Body composition meter 20 Three-dimensional measuring device 30 Measurement processing apparatus 35 Display apparatus 50 Human body model provision system 50 'Skeleton identification system 50a MPU50a
60 Member database 70 Human body model table 71 Skeletal model (for male) 72 Muscle model 73 (for male) Fat model 76 (for female) Fat model 80 Point table 85 Model numeric table 90 Female fat reference Table 95 Verification determination table 96 Analysis table 100 Lateral posture verification screen 110 Forward posture verification screen 120 Upward posture verification screen 130 Downward posture verification screen 160 Analysis screen 170 Advice screen 800 Point table P2 3D measurement program P3 Composition measurement program P4 Measurement management program P11 Model deformation program

Claims (15)

  1.  人体を三次元測定器で測定したことで得られる人体表面の複数の点が有する三次元座標値に基づき人体の骨格の状況を特定する骨格特定システムにおいて、
     人体における複数の骨格ポイントに対応する人体表面の点を、骨格ポイントごとに示すポイントテーブルと、
     前記ポイントテーブルの複数の骨格ポイントのそれぞれに対応する変形基点を含むと共に、三次元座標値を有する対象点を含む変形可能な骨格モデルを記憶する手段と、
     前記ポイントテーブルに基づいて、三次元測定器の測定で得られた人体表面の複数の点の中から、複数の骨格ポイントのそれぞれに対応する人体表面の点を、骨格ポイントごとに特定する手段と、
     骨格ポイントごとに特定した人体表面の点が有する三次元座標値に基づき、前記骨格ポイントの三次元座標値を特定する手段と、
     前記骨格ポイントの特定した三次元座標値に、前記骨格ポイントに対応する変形基点が一致するように、前記骨格モデルを変形する手段と、
     変形した前記骨格モデルに含まれる対象点が有する三次元座標値に基づき前記対象点の位置を特定する手段と
     を備えることを特徴とする骨格特定システム。
    In the skeletal identification system that identifies the status of the skeleton of the human body based on the three-dimensional coordinate values of a plurality of points on the surface of the human body obtained by measuring the human body with a three-dimensional measuring instrument,
    A point table showing points on the human body corresponding to a plurality of skeleton points in the human body for each skeleton point;
    Means for storing a deformable skeleton model including a deformation base point corresponding to each of a plurality of skeleton points of the point table and including a target point having a three-dimensional coordinate value;
    Means for identifying, for each skeleton point, a point on the human body surface corresponding to each of a plurality of skeleton points from a plurality of points on the human body surface obtained by measurement of a three-dimensional measuring device based on the point table; ,
    Means for specifying the three-dimensional coordinate value of the skeleton point based on the three-dimensional coordinate value of the point on the human body surface specified for each skeleton point;
    Means for deforming the skeleton model such that a deformation base point corresponding to the skeleton point matches the identified three-dimensional coordinate value of the skeleton point;
    A skeleton identification system comprising: means for identifying a position of the target point based on a three-dimensional coordinate value of a target point included in the deformed skeleton model.
  2.  前記ポイントテーブルは、特定の骨格ポイントとして骨盤ポイントを含むと共に、前記骨盤ポイントに対応する人体表面の点として、人体前側及び後側における人体表面の点を示しており、
     前記骨盤ポイントに対応する人体前側における人体表面の点が有する三次元座標値、及び前記骨盤ポイントに対応する人体後側における人体表面の点が有する三次元座標値の平均値を、前記骨盤ポイントの三次元座標値として算出する手段を備える請求項1に記載の骨格特定システム。
    The point table includes pelvic points as specific skeleton points, and points on the human body surface on the anterior and posterior sides of the human body as points on the human body surface corresponding to the pelvic points,
    The three-dimensional coordinate value of the point on the human body surface on the front side of the human body corresponding to the pelvic point, and the average value of the three-dimensional coordinate value of the point on the human body surface on the rear side of the human body corresponding to the pelvic point, The skeleton specifying system according to claim 1, further comprising means for calculating as a three-dimensional coordinate value.
  3.  前記骨格モデルは、前記骨盤ポイントに係る骨格箇所の腰仙角に応じた骨盤角度線を含み、
     変形した骨格モデルに含まれる骨盤角度線が、人体の厚み方向に平行な線と交わる角度を特定する手段を備える請求項2に記載の骨格特定システム。
    The skeletal model includes a pelvic angle line according to the lumbosacral angle of the skeletal location related to the pelvic point,
    The skeleton identification system according to claim 2, further comprising means for identifying an angle at which a pelvic angle line included in the deformed skeleton model intersects a line parallel to the thickness direction of the human body.
  4.  前記三次元座標値は、人体の幅方向、人体の高さ方向、及び人体の厚み方向の座標値を含み、
     前記ポイントテーブルは、特定の骨格ポイントとして背骨ポイントを含むと共に、前記背骨ポイントに対応する人体表面の点として、人体前側及び後側における人体表面の点を示しており、
     前記背骨ポイントに対応する人体前側における人体表面の点が有する人体の幅方向の座標値、及び前記背骨ポイントに対応する人体後側における人体表面の点が有する人体の幅方向の座標値の平均値を、前記背骨ポイントにおける人体の幅方向の座標値として算出する手段と、
     前記背骨ポイントに対応する人体前側における人体表面の点が有する人体の高さ方向の座標値、及び前記背骨ポイントに対応する人体後側における人体表面の点が有する人体の高さ方向の座標値の平均値を、前記背骨ポイントにおける人体の高さ方向の座標値として算出する手段と、
     前記背骨ポイントに対応する人体前側における人体表面の点が有する人体の厚み方向の座標値、及び前記背骨ポイントに対応する人体後側における人体表面の点が有する人体の厚み方向の座標値の間を、特定の比率で分ける点の座標値を、前記背骨ポイントにおける人体の厚み方向の座標値として算出する手段と
     を備える請求項1乃至請求項3のいずれか1項に記載の骨格特定システム。
    The three-dimensional coordinate value includes coordinate values in the width direction of the human body, the height direction of the human body, and the thickness direction of the human body,
    The point table includes a spine point as a specific skeletal point, and shows points on the human body surface on the front side and the back side of the human body as points on the human body surface corresponding to the spine point,
    The coordinate value in the width direction of the human body that the point on the human body surface on the front side of the human body corresponding to the spine point has, and the average value of the coordinate value in the width direction of the human body that the point on the human body surface on the back side of the human body corresponding to the spine point Means for calculating the coordinate value in the width direction of the human body at the spine point;
    The coordinate value in the height direction of the human body that the point on the human body surface on the front side of the human body corresponding to the spine point has, and the coordinate value in the height direction of the human body that the point on the human body surface on the back side of the human body corresponding to the spine point Means for calculating an average value as a coordinate value in the height direction of the human body at the spine point;
    Between the coordinate value in the thickness direction of the human body that the point on the human body surface on the front side of the human body corresponding to the spine point has, and the coordinate value in the thickness direction of the human body that the point on the human body surface on the back side of the human body corresponding to the spine point The skeletal identification system according to any one of claims 1 to 3, further comprising: means for calculating a coordinate value of a point divided by a specific ratio as a coordinate value in a thickness direction of the human body at the spine point.
  5.  前記背骨ポイントには、腰椎に応じた第1背骨ポイント、及び胸骨下位置に応じた第2背骨ポイントが含まれており、
     前記骨格モデルは、前記第1背骨ポイントに係る骨格箇所の腰椎前弯角度に応じた第1前弯線、及び前記第2背骨ポイントに係る骨格箇所の腰椎前弯角度に応じた第2前弯線を含み、
     変形した骨格モデルに含まれる第1前弯線及び第2前弯線による腰椎前弯角度を特定する手段を備える請求項4に記載の骨格特定システム。
    The spine point includes a first spine point according to the lumbar spine and a second spine point according to the substernal position,
    The skeletal model includes a first lordosis line corresponding to a lumbar lordosis angle of a skeletal location related to the first spine point and a second lordosis corresponding to a lumbar lordosis angle of the skeleton location related to the second spine point. Including lines,
    The skeletal identification system according to claim 4, further comprising means for identifying a lumbar lordosis angle by the first and second lordosis lines included in the deformed skeleton model.
  6.  前記背骨ポイントには更に、上記第2背骨ポイントより上方の第3背骨ポイントが含まれており、
     前記骨格モデルは、前記第2背骨ポイントに係る骨格箇所の胸椎後弯角度に応じた第1後弯線、及び前記第3背骨ポイントに係る骨格箇所の胸椎後弯角度に応じた第2後弯線を含み、
     変形した骨格モデルに含まれる第1後弯線及び第2後弯線による胸椎後弯角度を特定する手段を備える請求項5に記載の骨格特定システム。
    The spine point further includes a third spine point above the second spine point,
    The skeletal model includes a first kyphosis line corresponding to the thoracic vertebral kyphosis angle of the skeletal location related to the second spine point and a second posterior heel corresponding to the thoracic kyphosis angle of the skeleton location related to the third spine point. Including lines,
    The skeletal identification system according to claim 5, further comprising means for identifying a thoracic vertebral kyphosis angle by the first posterior and second posterior lines included in the deformed skeleton model.
  7.  前記ポイントテーブルは、特定の骨格ポイントとして首骨ポイントを含むと共に、前記首骨ポイントに対応する人体表面の点として、人体前側及び後側における人体表面の点を示しており、
     前記首骨ポイントに対応する人体前側における人体表面の点が有する三次元座標値、及び前記首骨ポイントに対応する人体後側における人体表面の点が有する三次元座標値の平均値を、前記首骨ポイントの三次元座標値として算出する手段を備える請求項1乃至請求項6に記載の骨格特定システム。
    The point table includes a neck point as a specific skeleton point, and points on the human body surface on the front side and the back side of the human body as points on the human body surface corresponding to the neck point,
    A three-dimensional coordinate value of a point on the human body surface on the front side of the human body corresponding to the neck point, and an average value of a three-dimensional coordinate value of a point on the human body surface on the rear side of the human body corresponding to the neck point The skeletal identification system according to any one of claims 1 to 6, further comprising means for calculating a three-dimensional coordinate value of a bone point.
  8.  前記ポイントテーブルは、特定の骨格ポイントとして、前記首骨ポイントより上方の上方首骨ポイントを含むと共に、前記上方首骨ポイントに対応する人体左側及び右側における人体表面の点を示すようにしてあり、
     前記上方首骨ポイントに対応する人体左側における人体表面の点が有する三次元座標値、及び前記上方首骨ポイントに対応する人体右側における人体表面の点が有する三次元座標値の平均値を、前記上方首骨ポイントの三次元座標値として算出する手段を備える請求項7に記載の骨格特定システム。
    The point table includes, as specific skeleton points, upper neck points above the neck points, and points on the human body left and right sides corresponding to the upper neck points,
    The three-dimensional coordinate value of the point on the human body surface on the left side of the human body corresponding to the upper neck point, and the average value of the three-dimensional coordinate value of the point on the human body surface on the right side of the human body corresponding to the upper neck point, The skeletal identification system according to claim 7, comprising means for calculating the three-dimensional coordinate value of the upper neck point.
  9.  前記骨格モデルは、前記首骨ポイントに係る骨格箇所の頸椎前弯角度に応じた第1頸椎前弯線、及び前記上方首骨ポイントに係る骨格箇所の頸椎前弯角度に応じた第2頸椎前弯線を含み、
     変形した骨格モデルに含まれる第1頸椎前弯線及び第2頸椎前弯線による頸椎前弯角度を特定する手段を備える請求項8に記載の骨格特定システム。
    The skeletal model includes a first cervical lordosis line corresponding to the cervical lordosis angle of the skeletal location related to the neck bone point, and a second cervical vertebra vertebrae corresponding to the cervical lordosis angle of the skeleton location related to the upper neck bone point Including shoreline,
    9. The skeletal identification system according to claim 8, further comprising means for identifying a cervical lordosis angle by the first cervical lordosis and the second cervical lordosis included in the deformed skeleton model.
  10.  前記骨格モデルは対象点として、大腿骨大転子、膝頭、及び足首に応じた各点を含み、
     変形した前記骨格モデルで、位置を特定した大腿骨大転子及び膝頭に応じた両方の点を結ぶ大腿骨線を、前記大腿骨大転子及び前記膝頭に応じた各点が有するそれぞれの三次元座標値に基づき特定する手段と、
     変形した前記骨格モデルで、位置を特定した膝頭及び足首に応じた両方の点を結ぶ脛骨線を、前記膝頭及び前記足首に応じた各点が有するそれぞれの三次元座標値に基づき特定する手段と、
     特定した大腿骨線及び脛骨線が交わる角度を特定する手段と
     を備える請求項1乃至請求項9に記載の骨格特定システム。
    The skeletal model includes each point corresponding to the greater femoral trochanter, kneecap, and ankle as target points,
    In the deformed skeleton model, each tertiary corresponding to each point corresponding to the greater femoral trochanter and the kneecap has a femoral line connecting both points corresponding to the greater femoral trochanter and the kneecap identified by the position. Means for identifying based on the original coordinate values;
    Means for identifying, on the deformed skeleton model, a tibial line connecting both points according to the kneecap and ankle whose positions are specified based on respective three-dimensional coordinate values of the points according to the kneecap and the ankle; ,
    The skeletal identification system according to any one of claims 1 to 9, further comprising: means for identifying an angle at which the identified femoral line and tibia line intersect.
  11.  前記骨格モデルは対象点として、大腿骨大転子及び膝頭に応じた各点を左右の足のそれぞれに含み、
     変形した前記骨格モデルで、位置を特定した大腿骨大転子及び膝頭に応じた両方の点を結ぶ大腿骨線の長さを、前記大腿骨大転子及び前記膝頭に応じた各点が有するそれぞれの三次元座標値に基づき、左右の足のそれぞれに対して算出する手段と、
     左右の大腿骨線の長さの差を算出する手段と、
     三次元測定により得られる人体の身長を取得する手段と、
     取得した身長に対して、算出した左右の大腿骨線の長さの差の割合を算出する手段と、
     算出した割合を、大腿骨線基準割合と比較する手段と、
     比較した結果に基づき、左右の寛骨の状況を判定する手段と
     を備える請求項1乃至請求項10に記載の骨格特定システム。
    The skeletal model includes each point corresponding to the greater trochanteric femur and the kneecap as a target point on each of the left and right feet,
    In the deformed skeleton model, each point corresponding to the greater femoral trochanter and the kneecap has a length of a femoral line connecting both points corresponding to the greater femoral trochanter and the identified kneecap. Means for calculating each of the left and right feet based on the respective three-dimensional coordinate values;
    Means for calculating the difference in length between the left and right femur lines;
    Means for obtaining the height of a human body obtained by three-dimensional measurement;
    Means for calculating the ratio of the difference between the calculated lengths of the left and right femur lines with respect to the acquired height;
    Means for comparing the calculated ratio with the femoral line reference ratio;
    The skeletal identification system according to any one of claims 1 to 10, further comprising: a unit that determines a situation of left and right hip bones based on a result of comparison.
  12.  三次元測定器で測定される人体の撮像画像を取得する手段と、
     取得した撮像画像の人体の中に、特定した角度を含む画面に係る画面情報を生成する手段と
     を備える請求項3、5、6、9、10のいずれか1項に記載の骨格特定システム。
    Means for acquiring a captured image of a human body measured by a three-dimensional measuring instrument;
    The skeleton identification system according to any one of claims 3, 5, 6, 9, and 10, further comprising: means for generating screen information relating to a screen including the identified angle in the human body of the acquired captured image.
  13.  特定した角度に係る基準角度、及び前記基準角度との比較結果に応じた人体の状況に係る症状を含む判定テーブルと、
     特定した角度を、前記判定テーブルに含まれる基準角度と比較する手段と、
     基準角度と比較した結果より、前記判定テーブルに基づき症状を判定する手段と
     を備える請求項3、5、6、9、10、12のいずれか1項に記載の骨格特定システム。
    A determination table including a reference angle related to the specified angle, and a symptom related to the state of the human body according to a comparison result with the reference angle;
    Means for comparing the identified angle with a reference angle included in the determination table;
    The skeletal identification system according to any one of claims 3, 5, 6, 9, 10, and 12, comprising means for determining a symptom based on the determination table based on a result of comparison with a reference angle.
  14.  人体における複数の骨格ポイントに対応する人体表面の点を骨格ポイントごとに示すポイントテーブル、及び前記ポイントテーブルの複数の骨格ポイントのそれぞれに対応する変形基点を含むと共に三次元座標値を有する対象点を含む変形可能な骨格モデルを有する骨格特定システムが、人体を三次元測定器で測定したことで得られる人体表面の複数の点が有する三次元座標値に基づき人体の骨格の状況を特定する骨格特定方法において、
     前記ポイントテーブルに基づいて、三次元測定器の測定で得られた人体表面の複数の点の中から、複数の骨格ポイントのそれぞれに対応する人体表面の点を、骨格ポイントごとに特定するステップと、
     骨格ポイントごとに特定した人体表面の点が有する三次元座標値に基づき、前記骨格ポイントの三次元座標値を特定するステップと、
     前記骨格ポイントの特定した三次元座標値に、前記骨格ポイントに対応する変形基点が一致するように、前記骨格モデルを変形するステップと、
     変形した前記骨格モデルに含まれる対象点が有する三次元座標値に基づき前記対象点の位置を特定するステップと
     を備えることを特徴とする骨格特定方法。
    A point table indicating points on the human body corresponding to a plurality of skeleton points in the human body for each skeleton point, and a target point having a three-dimensional coordinate value, including a deformation base point corresponding to each of the plurality of skeleton points of the point table A skeletal identification system that includes a deformable skeleton model that identifies the state of the human skeleton based on the three-dimensional coordinate values of multiple points on the human surface obtained by measuring the human body with a three-dimensional measuring instrument In the method
    Identifying a point on the human body surface corresponding to each of a plurality of skeleton points, for each skeleton point, from a plurality of points on the human body surface obtained by measurement with a three-dimensional measuring device based on the point table; ,
    Identifying a three-dimensional coordinate value of the skeleton point based on a three-dimensional coordinate value of a point on the human body surface identified for each skeleton point;
    Deforming the skeleton model such that the deformation base point corresponding to the skeleton point matches the specified three-dimensional coordinate value of the skeleton point;
    A step of specifying the position of the target point based on a three-dimensional coordinate value of a target point included in the deformed skeleton model.
  15.  人体における複数の骨格ポイントに対応する人体表面の点を骨格ポイントごとに示すポイントテーブル、及び前記ポイントテーブルの複数の骨格ポイントのそれぞれに対応する変形基点を含むと共に三次元座標値を有する対象点を含む変形可能な骨格モデルを有するコンピュータに、人体を三次元測定器で測定したことで得られる人体表面の複数の点が有する三次元座標値に基づき人体の骨格の状況を特定する処理を行わせるためのコンピュータプログラムにおいて、
     前記コンピュータに、
     前記ポイントテーブルに基づいて、三次元測定器の測定で得られた人体表面の複数の点の中から、複数の骨格ポイントのそれぞれに対応する人体表面の点を、骨格ポイントごとに特定するステップと、
     骨格ポイントごとに特定した人体表面の点が有する三次元座標値に基づき、前記骨格ポイントの三次元座標値を特定するステップと、
     前記骨格ポイントの特定した三次元座標値に、前記骨格ポイントに対応する変形基点が一致するように、前記骨格モデルを変形するステップと、
     変形した前記骨格モデルに含まれる対象点が有する三次元座標値に基づき前記対象点の位置を特定するステップと
     実行させることを特徴とするコンピュータプログラム。
    A point table indicating points on the human body corresponding to a plurality of skeleton points in the human body for each skeleton point, and a target point having a three-dimensional coordinate value, including a deformation base point corresponding to each of the plurality of skeleton points of the point table A computer having a deformable skeleton model that includes a three-dimensional coordinate value of a plurality of points on the surface of the human body obtained by measuring the human body with a three-dimensional measuring instrument, Computer program for
    In the computer,
    Identifying a point on the human body surface corresponding to each of a plurality of skeleton points, for each skeleton point, from a plurality of points on the human body surface obtained by measurement with a three-dimensional measuring device based on the point table; ,
    Identifying a three-dimensional coordinate value of the skeleton point based on a three-dimensional coordinate value of a point on the human body surface identified for each skeleton point;
    Deforming the skeleton model such that the deformation base point corresponding to the skeleton point matches the specified three-dimensional coordinate value of the skeleton point;
    And a step of specifying a position of the target point based on a three-dimensional coordinate value of a target point included in the deformed skeleton model.
PCT/JP2017/012139 2016-03-28 2017-03-24 Skeleton specifying system, skeleton specifying method, and computer program WO2017170264A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018509264A JPWO2017170264A1 (en) 2016-03-28 2017-03-24 Skeletal identification system, skeleton identification method, and computer program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2016/059946 2016-03-28
PCT/JP2016/059946 WO2017168525A1 (en) 2016-03-28 2016-03-28 System for providing human body model, method of the human body model deformation, and computer program

Publications (1)

Publication Number Publication Date
WO2017170264A1 true WO2017170264A1 (en) 2017-10-05

Family

ID=57145229

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/JP2016/059946 WO2017168525A1 (en) 2016-03-28 2016-03-28 System for providing human body model, method of the human body model deformation, and computer program
PCT/JP2016/081445 WO2017168805A1 (en) 2016-03-28 2016-10-24 Measurement information providing system, measurement information providing method, server device and computer program
PCT/JP2017/012139 WO2017170264A1 (en) 2016-03-28 2017-03-24 Skeleton specifying system, skeleton specifying method, and computer program

Family Applications Before (2)

Application Number Title Priority Date Filing Date
PCT/JP2016/059946 WO2017168525A1 (en) 2016-03-28 2016-03-28 System for providing human body model, method of the human body model deformation, and computer program
PCT/JP2016/081445 WO2017168805A1 (en) 2016-03-28 2016-10-24 Measurement information providing system, measurement information providing method, server device and computer program

Country Status (2)

Country Link
JP (4) JP6013669B1 (en)
WO (3) WO2017168525A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020077274A (en) * 2018-11-09 2020-05-21 株式会社ぐるなび Information processor, information processing method, and program
WO2021005708A1 (en) * 2019-07-09 2021-01-14 株式会社ソニー・インタラクティブエンタテインメント Skeleton model updating device, skeleton model updating method, and program
CN113205594A (en) * 2021-05-20 2021-08-03 合肥工业大学 STL-based bent pipe model skeleton extraction method and system
WO2021155373A1 (en) * 2020-01-31 2021-08-05 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for detection of musculoskeletal anomalies
WO2021166460A1 (en) * 2020-02-19 2021-08-26 本田技研工業株式会社 Information provision device, information provision method, and control program
JPWO2021166459A1 (en) * 2020-02-19 2021-08-26
CN113925497A (en) * 2021-10-22 2022-01-14 吉林大学 Automobile passenger riding posture extraction method based on binocular vision measurement system
WO2022054366A1 (en) * 2020-09-09 2022-03-17 高木 りか Posture evaluation program, posture evaluation device, posture evaluation method, and posture evaluation system
WO2023048347A1 (en) * 2021-09-27 2023-03-30 주식회사 넥스트도어 Apparatus for generating three-dimensional object model and method therefor
WO2023146169A1 (en) * 2022-01-26 2023-08-03 가톨릭대학교 산학협력단 Method and device for measuring femoral anterior angle and tibial torsion angle by using artificial intelligence

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6013669B1 (en) * 2016-03-28 2016-10-25 株式会社3D body Lab Human body model providing system, human body model transformation method, and computer program
JP6836038B2 (en) * 2016-09-07 2021-02-24 和人 林 Human body model providing system, human body model transformation method, and computer program
JP6574068B2 (en) * 2017-05-08 2019-09-11 株式会社3D body Lab Human body model providing system, human body model providing method, human body model providing device, display terminal device, human body model displaying method, and computer program
JP6577150B2 (en) * 2017-06-30 2019-09-18 株式会社3D body Lab Human body model display system, human body model display method, communication terminal device, and computer program
US11922649B2 (en) 2018-11-30 2024-03-05 Arithmer Inc. Measurement data calculation apparatus, product manufacturing apparatus, information processing apparatus, silhouette image generating apparatus, and terminal apparatus
JP6792273B2 (en) * 2019-04-26 2020-11-25 Arithmer株式会社 Dimension data calculation device, product manufacturing device, and silhouette image generation device
JP7330480B2 (en) * 2019-02-12 2023-08-22 株式会社タニタ Body shape data acquisition system and body shape data acquisition program
TWI694404B (en) * 2019-02-18 2020-05-21 麗寶大數據股份有限公司 User interface display mehotd
US11759151B2 (en) 2019-05-03 2023-09-19 The Board Of Trustees Of The University Of Alabama Body composition assessment using two-dimensional digital image analysis
CN110801204B (en) * 2019-11-12 2022-05-13 牛建华 Balance detection method based on human body frame
JP2022512262A (en) 2019-11-21 2022-02-03 ベイジン センスタイム テクノロジー デベロップメント カンパニー, リミテッド Image processing methods and equipment, image processing equipment and storage media
CN111105348A (en) 2019-12-25 2020-05-05 北京市商汤科技开发有限公司 Image processing method and apparatus, image processing device, and storage medium
JP6830557B1 (en) * 2020-03-13 2021-02-17 神保 幹夫 3D shape determination system and 3D shape determination device
CN117238039B (en) * 2023-11-16 2024-03-19 暗物智能科技(广州)有限公司 Multitasking human behavior analysis method and system based on top view angle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012120647A (en) * 2010-12-07 2012-06-28 Alpha Co Posture detection system
JP6013669B1 (en) * 2016-03-28 2016-10-25 株式会社3D body Lab Human body model providing system, human body model transformation method, and computer program

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3896665B2 (en) * 1998-01-05 2007-03-22 ソニー株式会社 How to create a numerical model for a vertebrate or a robot imitating it
JP4479069B2 (en) * 2000-06-30 2010-06-09 コニカミノルタホールディングス株式会社 Method and apparatus for generating shape model
JP4032885B2 (en) * 2002-08-29 2008-01-16 松下電工株式会社 Aging effect prediction human body model generation system
JP2005125059A (en) * 2003-09-30 2005-05-19 Yamato Scale Co Ltd Adipometer and program for estimating body fat percentage
JP3120546U (en) * 2005-03-31 2006-04-13 バイオスペース・カンパニー・リミテッド Body component analysis result sheet
JP5242260B2 (en) * 2008-07-01 2013-07-24 株式会社タニタ Body composition measuring device
JP5990820B2 (en) * 2012-07-19 2016-09-14 株式会社タニタ Biometric apparatus and body image creation program

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012120647A (en) * 2010-12-07 2012-06-28 Alpha Co Posture detection system
JP6013669B1 (en) * 2016-03-28 2016-10-25 株式会社3D body Lab Human body model providing system, human body model transformation method, and computer program

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020077274A (en) * 2018-11-09 2020-05-21 株式会社ぐるなび Information processor, information processing method, and program
JP7196548B2 (en) 2018-11-09 2022-12-27 株式会社ぐるなび Information processing device, information processing method and program
JP7102618B2 (en) 2019-07-09 2022-07-19 株式会社ソニー・インタラクティブエンタテインメント Skeleton model update device, skeleton model update method and program
WO2021005708A1 (en) * 2019-07-09 2021-01-14 株式会社ソニー・インタラクティブエンタテインメント Skeleton model updating device, skeleton model updating method, and program
JPWO2021005708A1 (en) * 2019-07-09 2021-01-14
US11845006B2 (en) 2019-07-09 2023-12-19 Sony Interactive Entertainment Inc. Skeleton model updating apparatus, skeleton model updating method, and program
WO2021155373A1 (en) * 2020-01-31 2021-08-05 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for detection of musculoskeletal anomalies
TWI789674B (en) * 2020-02-19 2023-01-11 日商本田技研工業股份有限公司 Information acquisition device, information acquisition method, and control program
JP7312309B2 (en) 2020-02-19 2023-07-20 本田技研工業株式会社 INFORMATION PROVIDING DEVICE, INFORMATION PROVIDING METHOD, AND CONTROL PROGRAM
JP7346701B2 (en) 2020-02-19 2023-09-19 本田技研工業株式会社 Information acquisition device, information acquisition method, and control program
WO2021166459A1 (en) * 2020-02-19 2021-08-26 本田技研工業株式会社 Information acquisition device, information acquisition method, and control program
WO2021166460A1 (en) * 2020-02-19 2021-08-26 本田技研工業株式会社 Information provision device, information provision method, and control program
JPWO2021166460A1 (en) * 2020-02-19 2021-08-26
JPWO2021166459A1 (en) * 2020-02-19 2021-08-26
JP2022045832A (en) * 2020-09-09 2022-03-22 高木 りか Posture evaluation program, posture evaluation apparatus, posture evaluation method, and posture evaluation system
WO2022054366A1 (en) * 2020-09-09 2022-03-17 高木 りか Posture evaluation program, posture evaluation device, posture evaluation method, and posture evaluation system
JP7379302B2 (en) 2020-09-09 2023-11-14 高木 りか A posture evaluation program, a posture evaluation device, a posture evaluation method, and a posture evaluation system.
CN113205594B (en) * 2021-05-20 2022-08-02 合肥工业大学 STL-based bent pipe model skeleton extraction method and system
CN113205594A (en) * 2021-05-20 2021-08-03 合肥工业大学 STL-based bent pipe model skeleton extraction method and system
WO2023048347A1 (en) * 2021-09-27 2023-03-30 주식회사 넥스트도어 Apparatus for generating three-dimensional object model and method therefor
CN113925497B (en) * 2021-10-22 2023-09-15 吉林大学 Binocular vision measurement system-based automobile passenger riding posture extraction method
CN113925497A (en) * 2021-10-22 2022-01-14 吉林大学 Automobile passenger riding posture extraction method based on binocular vision measurement system
WO2023146169A1 (en) * 2022-01-26 2023-08-03 가톨릭대학교 산학협력단 Method and device for measuring femoral anterior angle and tibial torsion angle by using artificial intelligence

Also Published As

Publication number Publication date
JPWO2017170264A1 (en) 2019-02-07
JPWO2017168525A1 (en) 2018-04-05
JP6526909B2 (en) 2019-06-05
JP2019198638A (en) 2019-11-21
WO2017168525A1 (en) 2017-10-05
JPWO2017168805A1 (en) 2019-02-07
WO2017168805A1 (en) 2017-10-05
JP6013669B1 (en) 2016-10-25

Similar Documents

Publication Publication Date Title
WO2017170264A1 (en) Skeleton specifying system, skeleton specifying method, and computer program
US20210338334A1 (en) Systems and methods for optimizing parameters of orthopaedic procedures
US20100312143A1 (en) Human body measurement system and information provision method using the same
JP6836038B2 (en) Human body model providing system, human body model transformation method, and computer program
List et al. Kinematics of the trunk and the lower extremities during restricted and unrestricted squats
Scheys et al. Personalized MR-based musculoskeletal models compared to rescaled generic models in the presence of increased femoral anteversion: effect on hip moment arm lengths
CN110353806A (en) Augmented reality navigation methods and systems for the operation of minimally invasive total knee replacement
US20100106475A1 (en) Biophysical virtual model database and applications
JP2011078728A (en) Body state evaluation unit, state estimation unit, step estimation unit, and health management system
CN104274183A (en) Motion information processing apparatus
KR102165429B1 (en) Body shape analysis method and apparatus
Bartels et al. Computed tomography-based joint locations affect calculation of joint moments during gait when compared to scaling approaches
JP6574068B2 (en) Human body model providing system, human body model providing method, human body model providing device, display terminal device, human body model displaying method, and computer program
JP6577150B2 (en) Human body model display system, human body model display method, communication terminal device, and computer program
JP2020000887A (en) Human body model providing system, human body model providing method, human body model providing device, display terminal device, human body model display method and computer program
Suderman The effect of curvature on neck muscle moment arms
Jackson Body segment inertial parameters of toddlers
McDonald et al. White Paper-Position, Posture, and Pose Definitions for 3D Body Processing
Nuzzi et al. Body measurement estimations using 3D scanner for individuals with severe motor impairments
Bradtmiller et al. 2.1 Traditional Anthropometry
KR20220014479A (en) Method of providing virtual reality contents to enable to correct posture of user in vehicle such as a bus
Balasubramanian Estimating Symmetry/Asymmetry in the Human Torso: A Novel Computational Method
JP2020009458A (en) Human body model display system, human body model display method, communication terminal, computer program
Vlaserou Pelvic tilt and Anterior Pelvic Plane inclination in normal individuals between different postures of daily life
D'Apuzzo Book of Abstracts 7th International Conference on 3D Body Scanning Technologies

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018509264

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17774801

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17774801

Country of ref document: EP

Kind code of ref document: A1