WO2017169978A1 - Method for producing purified feline erythropoietin - Google Patents

Method for producing purified feline erythropoietin Download PDF

Info

Publication number
WO2017169978A1
WO2017169978A1 PCT/JP2017/011217 JP2017011217W WO2017169978A1 WO 2017169978 A1 WO2017169978 A1 WO 2017169978A1 JP 2017011217 W JP2017011217 W JP 2017011217W WO 2017169978 A1 WO2017169978 A1 WO 2017169978A1
Authority
WO
WIPO (PCT)
Prior art keywords
fepo
solution
less
cat
water
Prior art date
Application number
PCT/JP2017/011217
Other languages
French (fr)
Japanese (ja)
Inventor
裕幸 渡邉
智 安達
健司 京極
康二朗 石黒
隆英 佐々木
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to JP2018509088A priority Critical patent/JP6920280B2/en
Publication of WO2017169978A1 publication Critical patent/WO2017169978A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/475Growth factors; Growth regulators
    • C07K14/505Erythropoietin [EPO]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology

Definitions

  • the present invention relates to a method for producing a purified feline-derived erythropoietin that can be used as an active ingredient in veterinary medicine.
  • Cats have long been an animal that has been attached to humans as pets, but recently, the status of being a member of human society has been established as an “animal as a companion, companion, partner”. On the other hand, it has been used as a laboratory animal in medicine, pharmacy, veterinary medicine, psychology, etc., and recently it has also been used for safety testing and efficacy testing of pharmaceuticals. Thus, in the situation where the social importance of cats is increasing, there is a high interest in cat diseases and infectious diseases, and effective treatment methods are desired. In recent years, pharmaceutical proteins have attracted attention in the treatment of cat diseases, and mainly human pharmaceutical proteins have been diverted. However, since the protein for human use has a different amino acid sequence from the in vivo protein inherent in cats, it may have different effects in vivo. In addition, differences in amino acid sequence can cause allergies, and worse, anaphylactoid symptoms. Therefore, since it cannot withstand high-frequency administration, development of a protein for pharmaceutical use inherent in cats is required.
  • Patent Document 1 a technique for producing a feline-derived erythropoietin that can be used for the treatment of diseases such as renal anemia as a feline-derived medicinal protein using transgenic birds.
  • Patent Documents 1 and 2 disclose a method of obtaining cat-derived erythropoietin from the egg white of transgenic birds that have been genetically modified to express cat-derived erythropoietin.
  • Patent Documents 1 and 2 in order to purify and recover cat-derived erythropoietin from egg white of transgenic birds, salting-out, adsorption column chromatography (blue sepharose chromatography, heparin chromatography, etc.), ion exchange column chromatography It is disclosed to purify the graph method, gel filtration column chromatography method, and antibody column method alone or in combination.
  • Example 9 of Patent Document 1 the egg white is diluted with water, adjusted to pH 5.0, stirred for 15 minutes or more, centrifuged, and then subjected to pretreatment to adjust the supernatant to pH 7.0.
  • egg white is diluted with a buffer as a pretreatment, adjusted to pH, then applied to a blue sepharose column, dialyzed, and fractionated with a cation exchange column (SP column). It is disclosed that after concentration, after treatment with a desalting column, feline erythropoietin having a purity of 99% or more is obtained by purification of an anion exchange column (DEAE Sepharose column).
  • Patent Document 3 discloses a method in which a variant of a cat-derived erythropoietin with a modified amino acid sequence is expressed using cells such as CHO (Chinese hamster ovary) cells and purified from the cell culture medium or cell lysate. ing. Examples of methods for purification include affinity chromatography, anion exchange chromatography, cation exchange chromatography and the like.
  • the culture supernatant of a cell expressing a variant of cat-derived erythropoietin was adjusted to pH 8.5, and phenylboronate chromatography, anion exchange chromatography and hydrophobic interaction chromatography were performed in this order. Performing and purifying a variant of cat-derived erythropoietin.
  • Example 24 of Patent Document 4 egg white of a transgenic chicken egg that produces human-derived erythropoietin is diluted with 3 volumes of 50 mM sodium acetate at pH 4.6, mixed, filtered, and separated. It has been disclosed to purify human erythropoietin using a cation exchange column.
  • Patent Document 5 as a method for culturing human-derived erythropoietin-producing mammalian cells and purifying and recovering human-derived erythropoietin from the culture supernatant, the first step of purification by dye affinity chromatography and the second step of purification by hydroxyapatite column are performed. A method is disclosed that performs a step and a third step of purification by cation exchange chromatography.
  • Patent Document 6 as a method for pretreating egg white for chromatographic treatment, an acid buffer of about 0.5 wt% to about 5 wt% with respect to the egg white is added to the egg white pool, and the pH is about A method of mixing the egg white and the acidic buffer so as to form a mixed egg white of 5 to 6.5 is disclosed.
  • Patent Document 6 discloses a buffer containing about 5M to about 6M sodium acetate as the acidic buffer.
  • Patent Documents 1 and 2 use blue sepharose chromatography.
  • the column used in blue sepharose chromatography is one in which dye molecules are immobilized on a carrier, but there is no risk that these molecules will be mixed into the purified feline erythropoietin product.
  • Patent Documents 4 and 5 do not describe any production and purification of cat-derived erythropoietin. Further, Patent Document 4 discloses that the pH of a protein solution is adjusted in the acidic region before the cation exchange chromatography treatment and that a buffer having a buffering action in the acidic region is used when loading the column. Not. In the method of Patent Document 5, since purification is performed using dye affinity chromatography, there is no risk that the dye molecules are mixed into the purified product of erythropoietin, as in Patent Documents 1 and 2.
  • Patent Document 6 does not describe any production and purification of cat-derived erythropoietin. Of course, Patent Document 6 does not disclose means suitable for purifying and recovering cat-derived erythropoietin.
  • Patent Documents 1, 2, etc. a conventionally known method using dye affinity chromatography
  • Patent Document 3 describes not only a protein purification method using affinity chromatography but also a protein purification method that does not use the protein purification method.
  • affinity chromatography it is generally necessary to increase the purification ratio. There is a problem of requiring stage chromatography, and there is room for improvement.
  • an object of the present invention is to provide an optimized means for producing purified cat-derived erythropoietin.
  • a method for producing a purified cat-derived erythropoietin A pH adjusting step for adjusting the pH of the protein solution containing cat-derived erythropoietin to a range of 4 or more and 7 or less; a purification step comprising contacting the protein solution adjusted in the pH adjustment step with a carrier having a cation exchange group to adsorb cat-derived erythropoietin, and then eluting the adsorbed cat-derived erythropoietin from the carrier; Including methods.
  • the method according to (1) further comprising a precipitate removing step of removing the precipitate from the protein solution whose pH has been adjusted in the pH adjusting step before the purification step.
  • the protein solution is mixed with a buffer solution having a buffering action in the acidic region containing a component having a buffering effect in the acidic region at a concentration of 1 M or less.
  • the protein solution is mixed with 1.5 parts by volume or more of a buffer solution having a buffering action in an acidic region with respect to 1 part by volume of the protein solution.
  • the protein solution used in the pH adjustment step is a protein solution prepared using an egg of a transgenic bird having an exogenous gene encoding a cat-derived erythropoietin (1) to (5) The method described.
  • the method according to (7) further comprising a virus removal step of removing the virus by passing the water-soluble long-chain molecule-added cat-derived erythropoietin obtained in the water-soluble long-chain molecule addition step through a filter.
  • a preparation comprising a water-soluble long-chain molecule-added cat-derived erythropoietin obtained in the water-soluble long-chain molecule addition step, and preparing a liquid composition having the same osmotic pressure and pH as the body fluid of a mammal
  • an improved means for producing purified cat-derived erythropoietin is provided.
  • feline-derived erythropoietin can be efficiently purified by using a pH adjustment step and a purification step using a carrier having a cation exchange group in combination.
  • the cat-derived erythropoietin can be efficiently purified.
  • the cat-derived erythropoietin is further adsorbed on the cat-derived erythropoietin by contacting with a carrier having a cation exchange group in a buffer solution having a buffering action in the acidic region. It can be purified efficiently.
  • erythropoietin may be referred to as “EPO”.
  • Cat-derived erythropoietin is sometimes referred to as “fEPO”.
  • the DNA base sequence encoding fEPO is shown in SEQ ID NO: 1.
  • the amino acid sequence encoded by the base sequence shown in SEQ ID NO: 1 is as shown in SEQ ID NO: 2, and among these, the first to 26th amino acid residues are signal sequences, so they are also referred to as fEPO preproteins.
  • the signal sequence of the fEPO preprotein is removed and the amino acid sequence from which the 192nd amino acid group is deleted is mature fEPO.
  • the amino acid sequence of mature fEPO is as shown in SEQ ID NO: 3.
  • the fEPO may also be a polypeptide that partially includes the amino acid sequence of the fEPO preprotein of SEQ ID NO: 2 or a polypeptide that partially includes the amino acid sequence of the mature fEPO of SEQ ID NO: 3.
  • fEPO not only the fEPO preprotein consisting of the amino acid sequence shown in SEQ ID NO: 2 and the mature fEPO consisting of the amino acid sequence shown in SEQ ID NO: 3, but also active mutants thereof can be used.
  • the polypeptide exhibits an activity of 10% or more, preferably 40% or more, more preferably 60% or more, and still more preferably 80% or more.
  • the active mutant examples include a polypeptide comprising an amino acid sequence in which one or more amino acids are added, deleted or substituted in the amino acid sequence shown in SEQ ID NO: 2 or 3, more preferably SEQ ID NO: 2. Or a polypeptide comprising an amino acid sequence in which 1 to a plurality of amino acids are added, deleted or substituted in total at the N-terminal and / or C-terminal in the amino acid sequence shown in 3 or SEQ ID NO: 2 or 3 A polypeptide comprising an amino acid sequence having 80% or more, preferably 85% or more, more preferably 90% or more, 95% or more, 97% or more, 98% or more, or 99% or more amino acid identity to the amino acid sequence. Applicable.
  • the active variant of the fEPO preprotein consisting of the amino acid sequence shown in SEQ ID NO: 2 is selected from the N-terminus, C-terminus, the portion of residues 1 to 26 and 192 residues of SEQ ID NO: 2. It contains mutations as listed above in at least one place.
  • the mature fEPO consisting of the amino acid sequence shown in SEQ ID NO: 3 may have a methionine residue encoded by the start codon at the N-terminus.
  • “plurality” means, for example, 2 or more, 3 or more, 4 or more, 5 or more, 6 or more, 7 or more, 8 or more, 9 or more, 10 or more.
  • amino acid identity refers to SEQ ID NO: 2 or 3 when two amino acid sequences are aligned (aligned), and gaps are introduced as necessary to maximize the degree of amino acid identity between the two. The ratio (%) of the same amino acid residue to the total number of amino acid residues of the protein shown.
  • Amino acid identity can be calculated using a BLAST or FASTA protein search system (Karlin, S. et al., 1993, Proc. Natl. Acad. Sci. USA, 90: 5873-5877; Altschul, SF et al., 1990, J. Mol. Biol., 215: 403-410; Pearson, WR et al., 1988, Proc. Natl. Acad. Sci. USA, 85: 2444-2448. ).
  • the amino acid substitution is preferably conservative amino acid substitution.
  • Consative amino acid substitution refers to substitution between amino acids having similar properties such as charge, side chain, polarity, aromaticity and the like.
  • Amino acids with similar properties include, for example, basic amino acids (arginine, lysine, histidine), acidic amino acids (aspartic acid, glutamic acid), uncharged polar amino acids (glycine, asparagine, glutamine, serine, threonine, cysteine, tyrosine), nonpolar
  • functional amino acids leucine, isoleucine, alanine, valine, proline, phenylalanine, tryptophan, methionine
  • branched chain amino acids leucine, valine, isoleucine
  • aromatic amino acids phenylalanine, tyrosine, tryptophan, histidine
  • transgenic cells that have been genetically modified to express fEPO by introducing a foreign gene encoding fEPO into a host of generally available animal cells (for example, CHO cells), plant cells, prokaryotes, and yeast.
  • animal cells for example, CHO cells
  • plant cells for example, CHO cells
  • prokaryotes for example, CHO cells
  • yeast Manufactured using a cell-free protein synthesis system, a transgenic animal or transgenic plant that has been genetically modified to express fEPO by introducing a foreign gene encoding fEPO
  • a thing etc. can be utilized, it is not limited to these.
  • transgenic animal examples include birds, and birds are preferably poultry birds such as chickens, quails, turkeys, ducks, ducks, ostriches, geese, long-tailed birds, pigeons, emu, pheasants and guinea fowls, with chickens being particularly preferred.
  • Transgenic birds are preferably those that accumulate fEPO in the egg.
  • a method for producing a transgenic bird expressing fEPO in an egg and obtaining fEPO from the egg is as described in Patent Document 1 and the like.
  • the transgenic plant is not particularly limited, and even monocotyledonous plants may be dicotyledonous plants.
  • Examples of monocotyledonous plants include grass family (rice, barley, wheat, corn, sugarcane, buckwheat, sorghum, millet, millet. Etc.), liliaceae (asparagus, lily, onion, leek, katsuri etc.), plants belonging to the ginger family (ginger, myoga, turmeric, etc.), and dicotyledonous plants include, for example, cruciferous (Arabidopsis, cabbage, Rapeseed, cauliflower, broccoli, radish, etc.) Eggplant (tomato, eggplant, potato, tobacco, etc.), legume (soybean, pea, green beans, alfalfa, etc.), cucurbitaceae (cucumber, melon, pumpkin, etc.), celery family ( Carrots, celery, bees, etc.), asteraceae (lettuce, etc.), mallow (cotton, okra, etc.) Chenopodiaceae (sugar bee
  • FEPO polypeptide may be modified with one or more sugar chains or other groups.
  • the type and number of sugar chains that modify fEPO are not particularly limited, and the number and type of sugar chains according to the expression system used (ie, transgenic cells, transgenic animals, transgenic plants, cell-free protein synthesis systems, etc.). Is generally modified by For example, when the expression system used is a chicken, the sugar chain modification is mainly modification with a sugar chain in which 2 to 5 sugar chains containing a ⁇ -N-acetylglucosamine residue are bound to a trimannosyl core. is there.
  • purified cat-derived erythropoietin means fEPO present in a state in which the concentration of fEPO per amount of protein is higher than that in the protein solution used as a raw material before purification.
  • a crude product may be used regardless of the degree.
  • fEPO that has undergone one purification step with a cation exchanger is also included in the purified fEPO in the present invention.
  • the protein solution used as a raw material in the method of the present invention is not particularly limited as long as it is a liquid material containing fEPO, and may be a form in which fEPO is dissolved in water.
  • a fEPO-containing protein solution derived from an fEPO production system such as a transgenic cell, a transgenic animal, a transgenic plant, a cell-free protein synthesis system or the like that expresses fEPO as described above can be used. .
  • a first preferred form of the protein solution used as a raw material is a protein solution prepared using eggs of transgenic birds having a foreign gene encoding fEPO.
  • the said egg can be various forms, such as the whole egg obtained by splitting, the egg white isolate
  • the eggs may be frozen and then thawed.
  • the protein solution prepared using the egg may be the egg itself or a solution obtained by diluting the egg with water or an aqueous solution.
  • the protein solution prepared using the egg is preferably one that has been sufficiently homogenized by a shearing treatment.
  • the protein solution prepared using the egg is, for example, 3 volume parts or less, preferably 2 volumes with respect to the egg itself or the egg and the egg 1 volume part subjected to shearing treatment. Part or less, more preferably a mixed solution with 1 part by volume or less of water.
  • a second preferred form of the protein solution used as a raw material is a protein solution prepared from a culture mixture formed by culturing a transgenic cell (for example, CHO cell) having a foreign gene encoding fEPO in a medium. is there.
  • a transgenic cell for example, CHO cell
  • the protein solution according to the second preferred form preferably, the culture mixture itself, the supernatant of the culture mixture, the disrupted solution obtained by disrupting the cells in the culture mixture, the supernatant of the disrupted solution, Or the liquid which diluted the liquid which concentrated one of these liquids, water, or aqueous solution can be illustrated.
  • the pH value refers to a value measured using a pH meter at a liquid temperature of 22.5 ⁇ 0.5 ° C. unless otherwise specified.
  • the pH meter is preferably used after a two-point calibration at pH 4 and pH 7 using a commercially available standard reagent.
  • the pH adjustment step in the present invention is a step of adjusting the pH of the protein solution containing fEPO to a range of 4 or more and 7 or less.
  • the range of the pH in the pH adjustment step is more preferably 4.1 or higher, 4.2 or higher, 4.3 or higher, 4.4 or higher, 4.5 or higher, 4 or higher. .6 or more, 4.7 or more, 4.8 or more, 4.9 or more, 5.0 or more, and 6.5 or less, 6.4 or less, 6.3 or less, 6.2 or less, 6. 1 or less, 6.02 or less, 6.0 or less, 5.9 or less, 5.8 or less, 5.7 or less, 5.6 or less, 5.5 or less, 5.4 or less, 5.3 or less, 5. 2 or less, 5.1 or less.
  • the pH is 4.7 or more, 4.8 or more, 4.9 or more, or 5.0 or more
  • / or the pH is 6.1 or less, 6.02 or less, 6.0 or less, 5. 9 or less, 5.8 or less, 5.7 or less, 5.6 or less, 5.5 or less, 5.4 or less, 5.3 or less, 5.2 or less, 5.1 or less, from the protein solution
  • This is preferable because the formation of precipitates is particularly accelerated.
  • adjusting the pH of the protein solution to the above range in the pH adjustment step is a viewpoint that fEPO can be obtained in a high yield when purifying using a carrier containing a cation exchange group in the purification step described later.
  • the pH range in the pH adjustment step is 4.4 or more, 4.5 or more, 4.6 or more, 4.7 or more, 4.8 or more, 4.9 or more, 5.0 or more. It is preferable to do.
  • the upper limit of the pH in the pH adjustment step is not particularly limited, but preferably 6.5 or less, 6.4 or less, 6.3 or less, 6.2 or less, 6.1 or less, 6.0 or less, It is 5.9 or less, 5.8 or less, 5.7 or less, 5.6 or less, 5.5 or less, 5.4 or less, 5.3 or less, 5.2 or less.
  • the pH range in the pH adjustment step is 4.1 or more, 4.2 or more, 4.3 or more, 4.4 or more, 4.5 or more, 4.6 or more, 4.7 or more, It is preferable to set it as 4.8 or more, 4.9 or more, and 5.0 or more.
  • the upper limit of the pH in the pH adjustment step is not particularly limited, but is preferably 6.5 or less, 6.4 or less, 6.3 or less, 6.2 or less, 6.1 or less, 6.0 or less. .
  • the formation of precipitates is promoted, the yield of purification of fEPO using a support containing a cation exchange group, and the activity of fEPO are increased.
  • An advantageous effect in holding can be achieved. That is, by performing the pH adjustment step and the subsequent purification step of fEPO under a consistent pH condition, the activity of fEPO can be maintained and the purification efficiency can be improved. Such an effect is an unexpected advantageous effect which is not suggested by the prior arts such as Patent Documents 4 and 6.
  • the above-mentioned effect by the pH adjustment step is obtained when the protein solution prepared using the first preferred form, that is, an egg of a transgenic bird having an exogenous gene encoding fEPO is used as the raw material protein solution.
  • the protein solution prepared using the first preferred form that is, an egg of a transgenic bird having an exogenous gene encoding fEPO is used as the raw material protein solution.
  • eggs of transgenic birds contain ovalbumin, ovotransferrin, ovomucoid, etc. as major proteins, and these major proteins have an isoelectric point in the acidic region (for example, the isoelectric point of ovalbumin is 4.6, the isoelectric point of ovotransferrin is 6.1 and the isoelectric point of ovomucoid is generally 3.9 to 4.5), whereas fEPO is the amino acid sequence shown in SEQ ID NO: 3.
  • the isoelectric point is estimated to be 8.2. Therefore, by adjusting the pH of the protein solution prepared using the eggs of transgenic birds having a foreign gene encoding fEPO to 4 or more and 7 or less, fEPO whose isoelectric point is an alkaline region is dissolved, It is presumed that proteins in the acidic region at the isoelectric point are precipitated, but are not restricted by this estimation mechanism.
  • the pH adjustment step is performed on the protein solution before the purification step described later. By performing the pH adjustment step first and then the purification step, the above-described effect of increasing the purification efficiency of fEPO in the purification step can be obtained.
  • the pH can be adjusted by mixing a sufficient amount of a buffer solution and a protein solution, mixing an acid or a base as necessary, and adjusting the pH of the mixture to a pH within the above range. . More specifically, the pH of the mixture obtained by mixing a sufficient amount of buffer solution and protein solution is measured, and when the pH is outside the above range, the pH of the mixture is adjusted to the above by mixing an appropriate amount of acid or base.
  • the range can be adjusted.
  • a sufficient amount of the buffer is, for example, 1.5 parts by volume or more, preferably 2 parts by volume or more with respect to 1 part by volume of the protein solution, and the upper limit is not particularly limited, but typically 10 parts by volume. Hereinafter, it is typically 7 parts by weight or less.
  • the viscosity of the protein solution can be sufficiently reduced, and it is preferable because it is easy to handle when used for purification using a carrier containing a cation exchange group in the purification step.
  • the viscosity of the mixture of a sufficient amount of buffer solution and protein solution in the pH adjustment step is, for example, 20 cP or less when measured with a B-type viscometer (for example, TVB-10 viscometer manufactured by Toki Sangyo Co., Ltd.) at 15 ° C.
  • the viscosity is 10 cP or less, and still more preferably 5 cP or less.
  • an acidic buffer solution of about 0.5 wt% to about 5 wt% with respect to the egg white is added to the egg white pool to form a mixed egg white having a pH of about 5 to 6.5.
  • a method of mixing the egg white and the acidic buffer solution is disclosed, and it is described that the viscosity can be reduced by using an acidic buffer solution in this pH range.
  • the viscosity of egg white to which a small amount of acidic buffer is added is very high, and it is not easy to remove precipitates or perform column chromatography.
  • the buffer solution is not particularly limited.
  • a buffer solution containing at least one selected from glycine, phthalic acid, citric acid, succinic acid, acetic acid and phosphoric acid can be used.
  • those having low biotoxicity suitable for the production of pharmaceuticals are preferable.
  • acetate buffer is preferable because it is easy to use.
  • a buffer solution having a buffering action in the acidic region is preferably used. Can be used.
  • the buffering action is an action in which the pH hardly fluctuates even when an acid or a base is added or the concentration changes due to evaporation or dilution.
  • the acidic range preferably includes the above pH range.
  • the concentration of the buffer component in the buffer is preferably 1 M or less, more preferably 500 mM or less, more preferably 400 mM or less, more preferably 300 mM or less, more preferably 200 mM or less, more preferably 100 mM or less, and more preferably 90 mM or less. 80 mM or less is more preferable. Proteins may be denatured when high concentration buffer components come in contact with the protein.
  • a buffer solution having a relatively low concentration of the buffer component as described above is preferable because the damage given to the protein containing fEPO is small when mixed with the protein solution.
  • Patent Document 6 it is described that an acidic buffer solution containing about 5 M to about 6 M sodium acetate is mixed with egg white. Such a buffer solution containing a high concentration of acidic sodium denatures egg white. The possibility is considered high.
  • the upper limit of the concentration of the buffer component of the buffer solution is not particularly limited, but is typically 1 mM or more, more preferably 10 mM or more, and further preferably 20 mM or more.
  • the concentration of the buffer component is a concentration converted as if it existed in the form of a free form regardless of whether the buffer component is contained in a salt form or a free form.
  • the pH-adjusted protein solution preferably contains protein at a concentration of preferably 1 mg / mL or more, preferably 100 mg / mL or less, more preferably 5 mg / mL or more, more preferably 15 mg / mL or less.
  • the pH-adjusted protein solution preferably has an fEPO of 12.3 ⁇ g / mL or more, more preferably 16.6 ⁇ g / mL or more, preferably 60.0 ⁇ g / mL or less, more preferably 41.7 ⁇ g / mL or less. Contains by concentration.
  • the protein concentration or the fEPO concentration is particularly high when the protein solution prepared using the above-mentioned first preferred form, ie, an egg of a transgenic bird having a foreign gene encoding fEPO, is used as the raw protein solution.
  • the above-mentioned fEPO concentration refers to a concentration based on the weight of fEPO converted to a mature fEPO polypeptide that consists of the amino acid sequence shown in SEQ ID NO: 3 and is not chemically modified with a water-soluble long chain molecule or the like. .
  • the protein concentration is determined by measuring absorbance at 280 nm using a quartz cell having an optical path length of 1 cm using a spectrophotometer with water as a blank. At this time, in order that the absorbance does not exceed the upper limit of the analytical sensitivity of the spectrophotometer, the analytical sample is measured by diluting with water, and the background is corrected using the absorbance value of 320 nm. Specifically, the protein concentration (mg / mL) is calculated as (absorbance at 280 nm ⁇ absorbance at 320 nm) ⁇ dilution rate ⁇ 0.959.
  • fEPO concentration (ng / mL) by measuring pre-treated egg white raw material and fEPO standard product (in-house management) using an EPO-ELISA kit (Roche).
  • Precipitate removal step The protein solution whose pH has been adjusted by the pH adjustment step may be used for the treatment in the purification step as it is, or before the purification step, the precipitate is removed from the protein solution whose pH has been adjusted in the pH adjustment step. You may perform a process. As described above, the precipitate in the pH adjustment step is considered to be a protein component.
  • the precipitate removal step is a step of removing the precipitate from the pH-adjusted protein solution by any means such as filtration and centrifugation, and recovering the protein solution with a reduced amount of precipitate.
  • the amount of unnecessary protein can be reduced to increase the purification efficiency, and the handling of the protein solution in the purification step is facilitated.
  • a method for separating the precipitate by filtration filtration using a filter having an average pore size of preferably 0.5 ⁇ m or more and 25 ⁇ m or less, more preferably an average pore size of 0.2 ⁇ m or more and 5 ⁇ m or less can be mentioned.
  • Examples of the method for separating the precipitates by centrifugation include a method of centrifuging at 5,000 ⁇ g to 10,000 ⁇ g.
  • the protein solution whose pH was adjusted in the pH adjustment step was subjected to a precipitate removal step as necessary, and then contacted with a carrier having a cation exchange group to adsorb fEPO, and then adsorbed. elution of fEPO from the carrier.
  • Strong cation exchange group including a carboxyl group - as the cation exchange group a sulfonic acid group (-SO 3) (-COO -), etc.
  • Weak cation exchange groups comprising the like.
  • Specific examples of the strong cation exchange group containing a sulfonic acid group include sulfopropyl (SP).
  • Specific examples of the weak cation exchange group containing a carboxyl group include carboxymethyl (CM).
  • the carrier to which the cation exchange group is linked is not particularly limited as long as it is a carrier generally used in the field of ion exchange chromatography.
  • a styrene carrier, an agarose carrier, or a cellulose carrier can be used.
  • the styrenic carrier include a carrier composed of a crosslinked polymer obtained by copolymerizing styrene and divinylbenzene, and commercially available products include trade names MiniBeads, MonoBeads, and SOURCE15 commercially available from GE Healthcare Japan. SOURCE 30 can be exemplified.
  • agarose-based carriers include trade names such as Sepharose High Performance, Sepharose Fast Flow, Sepharose 4 Fast Flow, Sepharose XL, Sepharose XL, and Sepharose BegBesBegBeseBegBeseBegBesBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBsBgBeBeBeBeBeBeBgBBeBeBeBgBB .
  • Cellulose-based carriers include those of the trade name Cellufine MAX series commercially available from JNC Corporation.
  • the pH of the protein solution brought into contact with the cation exchanger is particularly 4.1 or higher, 4.2 or higher, 4.3 or higher, 4.4 or higher, 4.5 or higher, 4.6 or higher, 4.6 or higher. It is preferably 7 or more, 4.8 or more, 4.9 or more, or 5.0 or more.
  • the upper limit of the pH of the protein solution brought into contact with the cation exchanger is not particularly limited from the viewpoint of the yield, but is preferably 6.5 or less, 6.4 or less, 6.3 or less, 6.2 or less, 6.1 or less. Below, it is 6.0 or less, 5.9 or less, 5.8 or less, 5.7 or less, 5.6 or less, 5.5 or less, 5.4 or less, 5.3 or less, 5.2 or less.
  • the pH of the protein solution brought into contact with the cation exchanger is particularly 4.1 or higher, 4.2 or higher, 4.3 or higher, 4.4 or higher, 4.5 or higher, 4.6 or higher, 4.6 or higher. It is preferable to set it as 7 or more, 4.8 or more, 4.9 or more, and 5.0 or more, and it is preferable that it is especially the range of 4.8 or more or a higher pH value among these ranges.
  • the upper limit of the pH of the protein solution to be contacted with the cation exchanger is not particularly limited, but is preferably 6.5 or less, 6.4 or less, 6.3 or less, 6.2 or less, 6.1 or less. , 6.0 or less.
  • the yield of purification of fEPO using the carrier containing the cation exchange group is improved, and the fEPO An advantageous effect in maintaining the activity can be obtained.
  • the formation of precipitates can be promoted by the pH adjustment step.
  • the activity of fEPO can be maintained and the purification efficiency can be improved.
  • the bed formed by packing the cation exchanger in a column or the like is adsorbed at a pH lower than the isoelectric point of fEPO. It is preferable to fill and equilibrate with the working buffer.
  • the buffer for adsorption is substantially the same as the buffer used in the pH adjustment step (preferably the concentration of the buffer component of the buffer is also substantially the same), for example, acetate buffer, phosphate buffer Although it is a citrate buffer solution or the like, an adsorption buffer solution having a buffering action in an acidic region can be suitably used in view of the isoelectric point of fEPO.
  • the pH value of the acidic region can be selected from the same range as the pH value of the protein solution to be contacted with the cation exchanger, preferably substantially the same as the protein solution to be contacted with the cation exchanger.
  • the same pH value can be obtained.
  • the buffering action is an action in which the pH hardly fluctuates even when an acid or a base is added or the concentration changes due to evaporation or dilution.
  • fEPO is estimated to have an isoelectric point of 8.2 from the amino acid sequence shown in SEQ ID NO: 3, and is considered to be positively charged under acidic pH conditions.
  • fEPO when the protein solution is brought into contact with the cation exchanger in the adsorption buffer having a buffering action in the acidic region, fEPO can be adsorbed to the cation exchanger with high probability, and the fEPO is purified. can do.
  • This effect is particularly remarkable when the protein solution prepared using the above-described first preferred form, ie, an egg of a transgenic bird having an exogenous gene encoding fEPO, is used as the raw material protein solution.
  • the protein solution prepared using the above-described first preferred form ie, an egg of a transgenic bird having an exogenous gene encoding fEPO
  • many of the major proteins contained in the eggs of transgenic birds have an isoelectric point in the acidic region and are difficult to adsorb on the cation exchanger under acidic conditions, so they have a buffering effect on the acidic region. It is considered that fEPO mixed with the main protein can be selectively adsorbed to the cation exchange
  • Load the pH-adjusted protein solution onto the equilibrated cation exchanger bed, adsorb fEPO onto the cation exchanger, and wash the bed as necessary. Thereafter, an elution buffer whose ionic strength is increased stepwise or continuously by adding salts to the adsorption buffer is passed through a bed of a cation exchanger on which fEPO is adsorbed to elute fEPO. , Recovered as a fEPO-containing liquid.
  • the ionic strength of the elution buffer is preferably 100 mM or more and 300 mM or less.
  • the purification using a cation exchanger is preferably performed within a temperature range of 20 ° C. or more and 25 ° C. or less.
  • the pH of the washing buffer used for washing and the adsorption buffer can be set to substantially the same pH value as the protein solution brought into contact with the cation exchanger.
  • the purification using a cation exchanger is preferably performed first as the fEPO purification step other than the precipitate removal step.
  • the reason is that when a large amount of albumin is contained in the protein solution used as a raw material, the purification rate can be increased by removing it first.
  • a step of purifying fEPO by further protein purification treatment may be combined.
  • purification treatments salting out, adsorption chromatography, ion exchange chromatography, size exclusion chromatography, antibody column method and the like can be used alone or in combination.
  • the adsorption chromatography include dye affinity chromatography, heparin affinity chromatography, metal ion affinity chromatography and the like.
  • the dye affinity chromatography include those using a solid support to which a triazine dye such as Cibacron Blue 3G is linked.
  • the method of the present invention preferably does not include a step of purification by dye affinity chromatography. This is because by not including the step of purification by dye affinity chromatography, it is possible to prevent the dye from being mixed into the target purified fEPO.
  • ion exchange chromatography in addition to the above cation exchange chromatography, anion exchange chromatography can also be used.
  • a buffer solution for dissolving a protein containing fEPO can be exchanged between treatments as necessary.
  • the exchange of the buffer solution can be performed by a normal method using ultrafiltration or dialysis.
  • the present invention further includes a water-soluble long-chain molecule addition step of chemically modifying fEPO purified in the purification step with a water-soluble long-chain molecule to obtain water-soluble long-chain molecule-added fEPO.
  • the water-soluble long-chain molecule is not particularly limited, and for example, PEG (polyethylene glycol), polyamino acid, polypropylene glycol and the like can be used. These produce reaction precursors and can be added to proteins by synthetic reactions. Among these, since PEG has no antigenicity and is nontoxic, it is effective from the viewpoint of reducing the antigenicity of the modified protein and suppressing the expression of anti-protein antibodies as a side effect.
  • the weight average molecular weight of the water-soluble long chain molecule is 5 kDa or more and 40 kDa or less in vivo hematopoietic effect. Is preferably 10 kDa or more, more preferably 30 kDa or less. More preferably, it is 20 kDa.
  • fEPO has at least three water-soluble long-chain molecule binding sites, and 1 (mono), 2 (di), and 3 (tri) molecules can be attached to a single fEPO polypeptide.
  • 1 (mono), 2 (di), and 3 (tri) molecules can be attached to a single fEPO polypeptide.
  • the mono- or di-form is preferred, and the di-form is particularly preferred.
  • “chemical modification” refers to changing a function such as activity and reactivity by chemically changing a specific functional group.
  • fEPO is chemically modified with a water-soluble long-chain molecule such as PEG. Reacts with a functional group (for example, primary amino group) possessed by a polypeptide constituting fEPO and a functional group possessed by a water-soluble long-chain molecule to form a covalent bond, and is soluble in the polypeptide constituting fEPO. It refers to the addition of long chain molecules.
  • fEPO and the water-soluble long chain molecule are mixed at a molar ratio of about 1: 1 to 10 and then mixed at 4 to 37 ° C. while mixing at 30 to 180.
  • the reaction may be stopped by adding about 1/10 volume of a 100 mM glycine solution as a reaction terminator and mixing at 4 to 37 ° C. for 1 hour.
  • the water-soluble long-chain molecule modified fEPO has an addition number of water-soluble long-chain molecules of 1 or 2 or more, and the apparent appearance in an aqueous solvent measured by gel filtration column chromatography of one molecule modified with a water-soluble long-chain molecule
  • the molecular weight is preferably from 100 kDa to 900 kDa, the number of water-soluble long chain molecules added is 1, and the apparent molecular weight is from 100 kDa to 500 kDa, or the number of water-soluble long chain molecules added is 2. In addition, it is more preferable that the apparent molecular weight is 100 kDa to 500 kDa.
  • the apparent molecular weight is measured by gel filtration column chromatography using a low-pressure chromatograph AKTA® explorer® 100 (Amersham) and a gel filtration column Superdex® 200/10/300 (Amersham).
  • a method for covalently bonding a water-soluble long chain molecule to a protein there is a chemical reaction with a polyol, lactol, amine, carboxylic acid or carboxylic acid derivative which is a functional group capable of oxidizing protein or sugar chain.
  • a polyol, lactol, amine, carboxylic acid or carboxylic acid derivative which is a functional group capable of oxidizing protein or sugar chain.
  • sulfonate ester activated polymers such as sulfonate ester activated PEG.
  • EPO it can be added by these methods.
  • PEGylation reaction precursor used for covalently bonding PEG to a protein one obtained by methoxylation of one end of a long chain molecule can be used. Furthermore, a PEG having a non-methoxylated end modified to a group capable of forming a covalent bond by undergoing a nucleophilic reaction by a nucleophilic group such as an amino group of fEPO (for example, succinimidyl fatty acid esterified) has been developed.
  • fEPO for example, succinimidyl fatty acid esterified
  • EPO Since EPO has a plurality of lysine residues, the number of PEG additions increases as the reaction proceeds, resulting in a mixture of isomers with different numbers of additions.
  • alanine 27 In fEPO consisting of SEQ ID NO: 2, alanine 27, lysine 71 and / or lysine 78 are preferably PEGylated, and in mature fEPO consisting of SEQ ID NO: 3, alanine 1, lysine 45 and / or lysine 52 are preferably PEGylated.
  • the virus is preferably removed by passing the water-soluble long chain molecule-added fEPO obtained in the water-soluble long chain molecule addition step through a filter.
  • a virus removal step is further included.
  • the virus removal step can be performed by passing the liquid composition through the filter.
  • a filter composed of a nonwoven fabric, a hollow fiber membrane, a porous film or the like can be used as the filter.
  • the filter preferably has pores with a width in the range of 1 to 1,000 nm.
  • viruses removed by the virus removal step include human parvovirus, mouse microvirus, porcine parvovirus, encephalomyocarditis virus, hepatitis virus, and human immunodeficiency virus.
  • ⁇ Formulation process> when the water-soluble long-chain molecule addition step is performed, the osmotic pressure of a mammalian body fluid is more preferable. And a formulation step of preparing a liquid composition having the same osmotic pressure and pH as the pH.
  • “same” includes “substantially the same”.
  • Mammals refer to mammals to which fEPO is administered, such as cats and dogs.
  • An fEPO-containing liquid composition having the same osmotic pressure and pH as the body fluid of the subject mammal is preferred because it hardly causes pain when administered subcutaneously to the subject mammal.
  • a liquid composition suitable for administration to a mammal having a body fluid with an osmotic pressure of about 280 mOsm / KgH 2 O and a pH of about 7.4 it is prepared in a formulation process.
  • the osmotic pressure of preferably 200 mOsm / KGH 2 O or more, 400 mOsm / KGH 2 O or less, more preferably 250 mOsm / KGH 2 O or more, and more preferably not more than 300mOsm / KgH 2 O, pH is preferably Is 7.0 or more and 8.0 or less, more preferably 7.3 or more, and more preferably 7.7 or less.
  • the osmotic pressure of the mammalian body fluid is XmOsm / KgH 2 O
  • the osmotic pressure of the liquid composition is preferably (X ⁇ 100) mOsm / KgH 2 O, more preferably (X ⁇ 50) mOsm / It can also be KgH 2 O.
  • the pH of the mammalian body fluid is Y
  • the pH of the liquid composition is preferably (Y ⁇ 0.5), more preferably (Y ⁇ 0.1).
  • osmotic pressure and pH are values measured at 20 to 25 ° C.
  • the purified fEPO produced by the method of the present invention, the water-soluble long-chain molecule-added fEPO, and the liquid composition may be provided in any form, for example, a pharmaceutical composition for a non-human animal.
  • a pharmaceutical composition for a non-human animal may be in the form of an intermediate product for the production of a pharmaceutical composition containing fEPO, such as an fEPO solution containing fEPO in water.
  • the purified fEPO, water-soluble long-chain molecule-added fEPO, and the liquid composition produced by the method of the present invention include, in addition to purified fEPO or water-soluble long-chain molecule-added fEPO, a solvent such as water, an excipient, It may be a combination of at least one component selected from the group consisting of a disintegrant, a binder, a stabilizer, a pH adjuster, an osmotic pressure adjuster and a surfactant, and the component is preferably It is a pharmacologically acceptable ingredient for non-human animals to be administered.
  • the purified fEPO, water-soluble long-chain molecule-added fEPO and the liquid composition produced by the method of the present invention are a combination of purified fEPO or water-soluble long-chain molecule-added fEPO and other additives.
  • additives include lubricants, coating agents, coloring agents, anti-aggregation agents, absorption promoters, solubilizers, health food materials, nutritional supplement materials, vitamins, fragrances, sweeteners, preservatives
  • At least one additive selected from the group consisting of agents, preservatives and antioxidants can be used.
  • the additive is preferably an pharmacologically acceptable additive for the non-human animal to be administered.
  • the method of the present invention may further include a step of preparing a solution, gel, or powder containing purified fEPO or water-soluble long-chain molecule-added fEPO, and then preparing various preparations.
  • a solution, gel, or powder containing purified fEPO or water-soluble long-chain molecule-added fEPO for example, injections, drops, injections, liquids for external use, patches, coating agents (creams, ointments etc.), inhalants, sprays, suppositories, rectal capsules , Subcutaneous implantable sustained-release preparations, micelle preparations, gelled preparations, liposome preparations, and forms of preparations for parenteral administration such as pessaries for intravaginal administration, and forms of preparations for oral administration.
  • injections and drops examples include intravenous, subcutaneous, intradermal, intramuscular, intraorgan, intranasal, eye drop, intracerebral, intraperitoneal, and lesion.
  • the injection may be in the form of a prefilled syringe formulation.
  • Examples of the application of the injection include rectal and vagina.
  • Various preparations for oral administration include solid preparations such as tablets, pills, capsules, powders, fine granules and granules, and liquid preparations such as extracts, elixirs, syrups, tinctures and limonades. It is done.
  • preparations in which fEPO is dissolved in the liquid are included in the above-mentioned “fEPO-containing liquid composition”.
  • the amount of fEPO is an amount based on the weight converted as a polypeptide having the amino acid sequence shown in SEQ ID NO: 3 (mature fEPO).
  • FEPO produced in egg white is a polypeptide (mature fEPO) having the amino acid sequence shown in SEQ ID NO: 3.
  • the DNA base sequence encoding fEPO (full length of preprotein) is shown in SEQ ID NO: 1.
  • a solution containing a retroviral vector for fEPO expression prepared by the method of Example 5 of JP-A-2007-89578 was used.
  • the virus titer of this solution was 1.6 ⁇ 10 9 cfu / ml.
  • the method for measuring the virus titer is as described in Example 3 of JP-A-2007-89578.
  • Incubator P-008 (B) (made by Showa Franchi Co., Ltd.) was set to 38 ° C and humidity 50-60%, and the power-on time was the incubation start time (0 hour). Incubation was performed while turning 90 ° every minute.
  • the egg was taken out from the incubator and a hole of about 1 mm was made in the blunt end. Subsequently, a hole having a diameter of about 7 to 10 mm was made slightly above the center of the side surface of the egg.
  • femtochip II Eppendorf was injected with about 2 ⁇ l of the virus solution prepared by the procedure described in Example 5 of JP-A-2007-89578, and femtojet (Eppendorf) And then injected into the heart of the chicken embryo from the hole.
  • the eggs of chicken individuals whose fEPO activity has been confirmed in the egg white are collected, divided using a diamond cutter type egg breaking machine (made by Mitaka Denki Co., Ltd.), and egg white separated using an egg white separation slit (made by Mitaka Denki Co., Ltd.).
  • the egg yolk was separated and only the egg white was collected.
  • the collected egg white was sheared by passing a 1 mm caliber egg white strainer (manufactured by Sankyo Giken Co., Ltd.). 10 to 20 L of sheared egg white was collected in a 20 L tank, and then stirred and mixed at 750 rpm for 5 minutes using a stirrer.
  • the egg white after stirring was subdivided into containers, and stored frozen using a ⁇ 80 ° C. freezer (CLN-50CD1 manufactured by Japan Freezer).
  • the above operation was performed a plurality of times to prepare and freeze the egg white containing fEPO in an amount necessary for the following purification treatment.
  • RPMI 1640 liquid medium manufactured by Nissui Pharmaceutical Co., Ltd.
  • FBS fetal bovine serum
  • penicillin and streptomycin was used as the medium for BaF / EPOR cells.
  • Epodin was added to a final concentration of 1 IU / ml during normal BaF / EPOR cell culture. Cells in logarithmic growth phase were used for the cell proliferation assay.
  • Samples used in the assay were serially diluted by about 2 to 4 times with a medium so as to fall within the measurement range of the calibration curve, and 10 ⁇ l each was added to the seeded cells and suspended uniformly. Three points of the same standard sample and unknown sample were measured. After culturing for 2 days, 10 ⁇ l of Cell Counting Kit-8 (manufactured by Doujin Chemical Laboratory) was added to each well. After a color reaction for 1 to 4 hours, 10 ⁇ l of 0.1 mol / l hydrochloric acid was added to stop the reaction, and the absorbance at 450 nm was measured using a microplate reader. The measurement result of the standard sample was logarithmically approximated to obtain an approximate expression. The activity of the unknown sample was converted from the obtained approximate expression. The activity of fEPO corresponding to 1 IU of Epogin is defined as 1 U.
  • the egg white used for the activity measurement was prepared so as to be uniform as a whole by ultrasonic waves or physical methods.
  • the prepared sample was stored frozen at ⁇ 80 ° C. until the activity was measured.
  • the collected egg white was weighed 40.8 kg into a 100 L capacity tank, and then sheared by passing it through a 1 mm caliber egg white strainer (manufactured by Sankyo Giken Co., Ltd.) and recovered into a 100 L capacity tank. Further, purified water was passed through the strainer for washing, and a total of about 72 L (about 72 kg) of egg white liquid including the washing liquid was collected.
  • a 500 L tank add 158 Kg of the buffer solution and stir at 190 rpm. About 72 Kg of egg white liquid obtained by the shearing treatment was added, and then purified water was added to adjust the total amount to 240.0 kg. Then, glacial acetic acid was added to adjust the pH to 5.1 to obtain a mixed solution (hereinafter referred to as a pH-adjusted egg white solution). The pH-adjusted egg white liquor was clouded immediately after mixing the acetate buffer and egg white.
  • PH measurement was performed using a pH meter (Horiba Seisakusho) that was calibrated at two points at pH 4 and pH 7 using a calibration solution manufactured by Nacalai Tesque.
  • the solution temperature during the measurement was 22.5 ⁇ 0.5 ° C. Unless otherwise specified, all pH values in this specification are values measured under these conditions.
  • the pH-adjusted egg white solution prepared in (1) was pumped and passed through a stainless steel wire mesh with a mesh diameter of 100 to 300 ⁇ m to remove large aggregates. Thereafter, the filtrate was filtered using a microfiltration membrane (depth filter with a pore diameter of 0.2 to 5 ⁇ m, manufactured by Merck Millipore) at a flow rate of about 20 to 30 LMH, and the filtrated liquid was collected in a tank. The liquid remaining on the microfiltration membrane was collected by flowing 160 kg of the extrusion buffer solution.
  • a microfiltration membrane depth filter with a pore diameter of 0.2 to 5 ⁇ m, manufactured by Merck Millipore
  • the filtrate collected in the tank was stirred and homogenized, and then aseptically filled through a 0.2 ⁇ m (Merck Millipore) filter.
  • an acetic acid-sodium acetate buffer solution (pH 5.1) was prepared by the following procedure. Add 1000 g of purified water to a 1 L beaker and add 383.2 g of sodium acetate trihydrate (Merck) and 63.68 g of glacial acetic acid (Merck) to the water. Stir. After visually confirming that the powder was completely dissolved, the stirring was stopped, mixed with 79.0 kg of purified water, and the pH was measured to confirm that the pH was 5.10 ⁇ 0.05. This operation was repeated to produce a total of 160 kg of extrusion buffer solution.
  • pretreated egg white raw material The protein concentration of the egg white treatment liquid after membrane filtration (hereinafter referred to as “pretreated egg white raw material”) was 7.4 mg / mL, the fEPO concentration was 15.9 ⁇ g / mL or more, and the pH value was 5.12.
  • Method for measuring protein concentration After pretreatment, the egg white raw material is diluted with purified water, and the precipitate is removed by centrifugation or filter filtration. The absorbance at wavelengths of 280 nm and 320 nm is measured using a spectrophotometer and a quartz cell having an optical path length of 1 cm, and the amount of protein is calculated from the following equation.
  • Protein amount (mg / mL) (Abs280-Abs320) ⁇ 0.959 ⁇ dilution ratio
  • Measurement method of fEPO concentration EPO-ELISA kit (Roche), pre-treated egg white raw material and PEGylated Measure mature fEPO standards (in-house management) that have not been completed.
  • a calibration curve of 4.0 to 1.1 ng / mL is prepared from the standard product, and the erythropoietin concentration in the pretreated egg white raw material is calculated using the following formula.
  • Concentration (ng / mL) (Average value of absorbance ⁇ intercept) / slope ⁇ dilution rate
  • the thawed egg white was sheared with a strainer in the same manner as in “2.2.
  • Chicken egg white contains ovalbumin, ovomucoid and the like as main proteins. It is known that the isoelectric point (pI) of ovalbumin is 4.6, and that of ovomucoid is 3.9 to 4.5 (Biochemical Dictionary 4th edition, Tokyo Kagaku Dojin). On the other hand, fEPO consisting of the amino acid sequence of SEQ ID NO: 3 is estimated to have a pI of 8.2 from the amino acid sequence. Individual proteins have different charge states depending on the pH of the solution, and are negatively charged under pH conditions higher than pI and positively charged under pH conditions lower than pI.
  • fEPO can be separated from the main protein in egg white such as ovalbumin and ovomucoid by ion exchange chromatography.
  • Method 1.1 PH adjustment of egg white solution Prepare 50 mM sodium acetate solution of pH 3.5, 4.4, 5.0, 5.6 and mix with egg white thawed and sheared in the same manner as described in Experiment 2. , PH adjusted egg white liquids of 3.5, 4.4, 5.0, and 5.6 were prepared. The pH-adjusted egg white solution was subjected to an experiment after centrifugation to remove the precipitate.
  • ovalbumin was removed by the following procedure: Equal amounts of each sampling solution and 10 mM DTT-containing sample loading buffer were mixed and heat-treated at about 98 ° C. for 5 minutes. This was electrophoresed on a 12.5% concentration polyacrylamide gel and then silver stained using a silver staining kit (manufactured by Invitrogen) to determine the presence or absence of an ovalbumin band.
  • ⁇ for the adsorbed fraction indicates that fEPO was detected and that the amount of fEPO was 50% or more when the amount of fEPO in the egg white raw material after pretreatment was 100%.
  • ovalbumin removal indicates that ovalbumin has not been removed at all in the adsorbed fraction, ⁇ indicates that it has been removed to some extent, and ⁇ indicates that it has been generally removed.
  • the cation exchange column carrier adsorbs not only fEPO but also ovalbumin at pH 3.5, whereas it can adsorb fEPO and remove ovalbumin under higher pH conditions. Although there was no difference in the amount of fEPO adsorbed, pH 4.4 or higher is preferable in order to achieve the object of removing ovalbumin.
  • An XK26 column (manufactured by GE Healthcare) was packed with SP Sepharose FastFlow (SPFF: GE Healthcare) at a bed height of 15 cm and a compression rate of 113%.
  • SPFF SP Sepharose FastFlow
  • the following buffer solutions were prepared at pH 4.8, 4.9, 5.0, and 5.2, and experiments were performed using a buffer solution having the same pH as that of the pretreated egg white raw material.
  • a solution 50 mM acetic acid-sodium acetate buffer B solution: 50 mM acetic acid-sodium acetate buffer / 70 mM sodium chloride
  • C solution 50 mM acetic acid-sodium acetate buffer / 150 mM sodium chloride
  • D solution 50 mM acetic acid-sodium acetate buffer / 1 M Sodium chloride
  • liquid A was passed and equilibrated, 88 mg of pretreated egg white raw material as a total protein amount was loaded per 1 ml of the carrier volume.
  • the linear flow rate during loading was 30 cm / h.
  • the solution B was passed through 3 CV.
  • the main fraction was eluted with 5 CV C solution, and 1 CV was collected at a time. After collection, the mixture was mixed so as not to foam and sampled.
  • the remaining protein components remaining on the column were eluted with 3 CV solution D.
  • Protein amount The protein concentration was measured by the same procedure as described in “2.4. Membrane filtration” in Experiment 1 above. The protein concentration x the amount of recovered solution was defined as the total protein amount.
  • ELISA The fEPO concentration of the load solution and the eluted fraction was measured in the same procedure as described in “2.4. Membrane filtration” in Experiment 1 above. The fEPO recovery rate was calculated by dividing by the amount of fEPO contained in the egg white raw material loaded with the concentration of fEPO contained in the eluted fraction ⁇ the amount of the recovered solution.
  • Fig. 2 shows the elution chart.
  • the solid line indicates the total protein amount, and the dotted line indicates the fEPO recovery rate.
  • Most of the total protein amount is impurity protein such as OTF (ovotransferrin), and the relative fEPO amount is about 3%.
  • FIG. 3 shows molecular weight marker M, pre-treated egg white raw material P before purification, non-adsorbed fraction F, washing fraction W, and elution fraction when purification by cation exchange column chromatography is performed at pH 4.8. The results of SDS-PAGE of fraction E and total elution fraction A are shown.
  • the fEPO yield for each pH condition during adsorption is shown in the following table.
  • OVA ovalbumin
  • purified fEPO solution a solution containing 61.5 ⁇ g / mL of fEPO in terms of mature fEPO that was not PEGylated was used.
  • This purified fEPO solution is a non-PEGylated purified fEPO solution obtained in the step of “3. Further purification” in Experiment 7 below.
  • the following buffer solutions were prepared as buffer solutions for pH control.
  • PH 4.0 buffer Acetic acid was added to a 50 mM aqueous sodium acetate solution to adjust the pH to 4.0.
  • PH 5.0 buffer Acetic acid was added to a 50 mM aqueous sodium acetate solution to adjust the pH to 4.0.
  • PH 6.0 buffer 1N hydrochloric acid was added to phosphate buffered saline (PBS) to adjust pH to 6.0.
  • the purified fEPO solution was diluted 200-fold with a pH 4.0 buffer solution, and diluted solutions were prepared each diluted 400-fold with a pH 5.0 buffer solution and a pH 6.0 buffer solution.
  • the diluted solution was allowed to stand at room temperature for 3 days.
  • the erythropoietin activity of the diluted solution was measured by the cell proliferation assay by BaF / EPOR described in the column.
  • the activity was expressed as erythropoietin activity (U) as epogin per 1 mL of purified fEPO solution before dilution. Three measurements were performed under each pH condition, and the average value is shown in the following table.
  • AKTA chromatography system manufactured by GE Healthcare
  • Attached equipment A, B pump, sample pump, conductivity meter, absorbance monitor (280 nm and 215 nm), thermometer, pressure gauge / purification column: BPG300 column (manufactured by GE Healthcare)
  • Each buffer solution prepared was used within 72 hours after 0.2 ⁇ m filter filtration.
  • the solution temperature at the time of pH measurement was 22.5 ⁇ 0.5 ° C.
  • ⁇ Reagent> The following reagents were used. Sodium acetate trihydrate (Merck Co., Ltd.) Glacial acetic acid (Merck Corporation) Sodium chloride (Merck Corporation)
  • Liquid A 479.00 g of sodium acetate and 79.600 g of acetic acid were added to, dissolved in, and mixed with 100.00 kg of water, and the pH and electrical conductivity were confirmed.
  • Liquid B 479.00 g of sodium acetate and 409.20 g of sodium chloride were dissolved in 100.00 kg of water, 69.970 g of acetic acid was added, and after mixing, the pH and electrical conductivity were confirmed.
  • Solution C After dissolving 718.50 g of sodium acetate in 150.00 kg of water, dissolve 1315.50 g of sodium chloride, add 97.650 g of acetic acid, and after mixing, check the pH and electrical conductivity. It was.
  • Liquid D After dissolving 958.00 g of sodium acetate in 200.00 kg of water, 11688.0 g of sodium chloride is dissolved, 88.480 g of acetic acid is added, and after mixing, the pH and electrical conductivity are confirmed. It was.
  • the flow rate was confirmed by measuring the outlet flow rate for both the sample pump and the system pump. Regarding the temperature, it was confirmed that the used buffer and the sample were at 20-25 ° C. before starting the chromatography.
  • ⁇ Operation procedure> The temperature during purification was 20-25 ° C.
  • the linear flow rate was 30 cm / h when the egg white raw material was loaded after pretreatment and 60 cm / h during fractionation.
  • the egg white raw material after the pretreatment was filtered by 0.2 ⁇ m, and a 0.2 ⁇ m filter was installed immediately before the column.
  • Process control tests were conducted on the following items. The process control test was carried out after the chromatography and before carrying out the ultrafiltration as the next process.
  • the elution fraction obtained in this step was designated as “SPFF elution fraction”.
  • Protein amount The protein concentration is measured by the same procedure as described in “2.4. Membrane filtration” in Experiment 1 above. The amount of protein in the eluted fraction was 2.4 mg / mL.
  • ELISA Measure the fEPO concentration of the load solution and the eluted fraction in the same procedure as described in “2.4. Membrane filtration” in Experiment 1 above. These concentrations and load weight or elution fraction weight are integrated, and the relative value of the fEPO amount of the elution fraction with respect to the load amount is obtained. As a result, the amount of fEPO in the eluted fraction was 91% or more of the amount of fEPO loaded on the cation exchange chromatography column.
  • an ultrafiltration membrane (regenerated cellulose molecular weight cut off 5 k), a Pericon ultrafiltration membrane and a V screen membrane manufactured by Merck & Co., Inc. were used.
  • the protein concentration of the recovered solution after concentration and salt exchange was 9.74 mg / mL and 9.07 mg / mL, respectively, in two tests.
  • the protein concentration was measured by the same procedure as described in “2.4. Membrane filtration” in Experiment 1 above.
  • a purified fEPO fraction (hereinafter referred to as a purified EPO fraction) was obtained from the recovered solution after ultrafiltration obtained in step 1 through a plurality of known purification steps.
  • the purified EPO fraction contains 50 mM phosphate buffer (pH 8.35) as a buffer.
  • the purified EPO fraction had a pH of 8.35 and was colorless and transparent and contained no insoluble substances.
  • FEPO concentration The purified EPO fraction is diluted with a phosphate buffer, the absorbance at wavelengths of 280 nm and 320 nm is measured using a spectrophotometer and a quartz cell with an optical path length of 1 cm, and the fEPO concentration is calculated from the following equation.
  • Formula: fEPO concentration (mg / mL) (Abs280 ⁇ Abs320) ⁇ 0.959 ⁇ dilution ratio
  • the fEPO concentration was 2.3 mg / mL.
  • the fEPO concentration determined by the above formula is a concentration based on the weight converted to a polypeptide comprising the amino acid sequence shown in SEQ ID NO: 3 and not chemically modified with a water-soluble long chain molecule or the like.
  • SDS-PAGE / WB The purified EPO fraction is mixed with a 10 mM DTT-containing sample loading buffer and heated at about 98 ° C. for 5 minutes. This is electrophoresed on a 12.5% polyacrylamide gel and transferred to a PVDF membrane using a transfer electrophoresis tank. As a result of detecting the protein using the anti-fEPO monoclonal antibody, each test solution (manufactured by TOYOBO) and detection reagent (manufactured by GE), a band was confirmed at a position of about 30 kDa.
  • CBB staining The purified EPO fraction is mixed with a 10 mM DTT-containing sample loading buffer and heated at about 98 ° C. for 5 minutes. This is electrophoresed on a 15% polyacrylamide gel and then stained with CBB. As a result, a single band was confirmed.
  • HPLC-SEC Using HPLC and a size exclusion column (manufactured by Tosoh Corporation), analysis is performed for 70 minutes at a mobile phase (0.05% polysorbate / phosphate buffer solution) at 0.5 mL / min. A peak is visually detected by comparing the chart of the purified EPO fraction with that of the control (phosphate buffer), and the peak is calculated manually. As a result of obtaining other peak areas relative to the peak area of fEPO, no peak of 2.0% or more was observed.
  • Bioactivity measurement 1.2 of the above Experiment 1.
  • the biological activity was determined according to the method described in the activity measurement of cat-derived erythropoietin described in the column.
  • the purified EPO fraction was diluted (1000000 times to 3375000 times) and added to the culture solution. After culturing at 37 ° C. in a 5% CO 2 atmosphere for 2 days, Cell Counting Kit 8 (Dojindo Laboratories) was added and the number of cells was measured. A standard curve was prepared, the activity was read, and the specific activity of the preparation was calculated. As a result, it was 2.8 ⁇ 10 5 U / mg.
  • OVA measurement kit manufactured by Morinaga Bioscience
  • ovotransferrin measurement kit manufactured by ICL
  • lysozyme measurement kit manufactured by CUSABIO
  • OVA manufactured by SIGMA
  • PEGylation of fEPO 3 The following PEGating agent was added to the purified EPO fraction obtained in (1).
  • SUNBRIGHT ME-200HS PEGylating agent for linear PEG having an average molecular weight of 20K, manufactured by NOF Corporation
  • the purified EPO fraction and the PEGating agent were mixed at a molar ratio of fEPO and PEGating agent of 1: 5, and then reacted for 2 hours while mixing at 4 ° C. After the reaction for 2 hours, 1/10 amount of 100 mM glycine solution was added as a reaction terminator, and the reaction was stopped while mixing at 4 ° C. for 1 hour.
  • PEGylation reaction solution obtained in 1) was diluted with 10 volumes of 50 mM acetic acid-sodium acetate buffer (pH 4.5), filtered through a 0.2 ⁇ m filter, mono-PEG, di-PEG, oligo-PEG and unreacted In order to separate and recover PEG and unreacted EPO, separation and purification were performed using a cation exchange column.
  • the diluted solution was loaded on a cation exchange column (MacroCapSP: manufactured by GE Healthcare Japan Co., Ltd.).
  • the column after loading was washed with 50 mM acetic acid-sodium acetate buffer (pH 4.5), and then step elution was performed with 50 mM acetic acid-sodium acetate buffer, 0.15 M NaCl (pH 4.5). It was collected. The collected elution fraction was homogeneously stirred to obtain “MCSP elution fraction”. Subsequently, the residual protein was eluted with 50 mM acetic acid-sodium acetate buffer, 1 M NaCl (pH 4.5).
  • MCSP elution fraction corresponds to the fraction from which the peaks of mono-PEG and di-PEG were collected.
  • the virus was removed by passing the solution after ultrafiltration through a hollow fiber membrane having an average pore diameter of 20 nm.
  • the above-mentioned solution after virus removal was filtered through a 0.2 ⁇ m filter and aseptically filled into a bag as the drug substance.
  • the drug substance buffer was added to a total of 100 mL, and the mixture was stirred well to obtain Tween 80 solution.
  • the drug substance 468.9 mL was accurately weighed and placed in a 2 L graduated cylinder.
  • the drug substance buffer solution was added to make up to 1300 mL.
  • the composition of the PEGylated fEPO solution formulation thus obtained is shown in Table 6. Filtration was performed using Millipak 20 (manufactured by Merck), and 1.1 mL each was filled into a glass vial. Sealed with a rubber stopper and an aluminum cap.
  • FEPO concentration 3.
  • the fEPO concentration measured by the same procedure as described in 1 was 0.11 mg / mL.
  • HPLC-RP 3. HPLC-RP was performed in the same procedure as described in 1. As a result of obtaining the other peak areas relative to the peak area of the PEG body, no peak of 0.5% or more was observed.
  • HPLC-SEC 3. HPLC-SEC was performed in the same procedure as described in 1. As a result of obtaining a relative value from the peak areas of the aggregate, triPEG body, monoPEG body and diPEG body, the ratio of the aggregate was less than 2.0%.
  • Bioactivity measurement 1.2 of the above Experiment 1.
  • the biological activity was determined according to the method described in the activity measurement of cat-derived erythropoietin described in the column. As a result of calculating the specific activity of the preparation, it was 1.8 ⁇ 10 4 U / mg.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Toxicology (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

The purpose of the present invention is to provide an improved means for producing purified feline erythropoietin (fEPO). This method for producing purified fEPO includes: a pH adjustment step for adjusting the pH of a protein solution including fEPO to within a range of 4-7; and a purification step for bringing the protein solution, the pH of which was adjusted in the pH adjustment step, into contact with a carrier provided with cation exchange groups, adsorbing the fEPO, and then eluting the fEPO from the carrier.

Description

精製されたネコ由来エリスロポエチンの製造方法Method for producing purified cat-derived erythropoietin
 本発明は、動物用医薬の有効成分として利用することができる、精製されたネコ由来エリスロポエチンを製造する方法に関する。 The present invention relates to a method for producing a purified feline-derived erythropoietin that can be used as an active ingredient in veterinary medicine.
 ネコはペットとして昔から人間に愛着のある動物であるが、最近では「伴侶、仲間、相棒としての動物」として人間社会の一員としての地位が確立しつつある。一方、医学、薬学、獣医学、心理学などで従来から実験動物として使用されており、最近では医薬品の安全性試験、効果検定にも使用されるようになってきている。このようにネコの社会的重要性が高まっている状況の中では、ネコの疾病や伝染病に対する関心が高く、その有効な治療法が望まれている。近年ネコの疾病治療においても医薬用タンパク質が注目されており、主としてヒト用の医薬用タンパク質が転用されている。しかし、ヒト用の医薬用タンパク質はネコが本来持つ生体内タンパク質とアミノ酸配列が異なるため、生体内での効果が異なる可能性がある。また、アミノ酸配列の差異により、アレルギーを起こす可能性もあり、悪くすればアナフィラキシー様症状を引き起こす。よって、高頻度の投与には耐えないため、ネコが本来もつ医薬用タンパク質の開発が求められている。 Cats have long been an animal that has been attached to humans as pets, but recently, the status of being a member of human society has been established as an “animal as a companion, companion, partner”. On the other hand, it has been used as a laboratory animal in medicine, pharmacy, veterinary medicine, psychology, etc., and recently it has also been used for safety testing and efficacy testing of pharmaceuticals. Thus, in the situation where the social importance of cats is increasing, there is a high interest in cat diseases and infectious diseases, and effective treatment methods are desired. In recent years, pharmaceutical proteins have attracted attention in the treatment of cat diseases, and mainly human pharmaceutical proteins have been diverted. However, since the protein for human use has a different amino acid sequence from the in vivo protein inherent in cats, it may have different effects in vivo. In addition, differences in amino acid sequence can cause allergies, and worse, anaphylactoid symptoms. Therefore, since it cannot withstand high-frequency administration, development of a protein for pharmaceutical use inherent in cats is required.
 そこで本出願人は、ネコ由来医薬用タンパク質として、腎性貧血等の疾患の治療に用いることができるネコ由来エリスロポエチンを、トランスジェニック鳥類を用いて生産する技術を開発している(特許文献1、2)。 Therefore, the present applicant has developed a technique for producing a feline-derived erythropoietin that can be used for the treatment of diseases such as renal anemia as a feline-derived medicinal protein using transgenic birds (Patent Document 1, 2).
 特許文献1及び2では、ネコ由来エリスロポエチンを発現するよう遺伝子組み換えしたトランスジェニック鳥類の卵の卵白からネコ由来エリスロポエチンを取得する方法を開示している。特許文献1及び2では、トランスジェニック鳥類の卵白からネコ由来エリスロポエチンを精製し回収するためには、塩析法、吸着カラムクロマトグラフ法(ブルーセファロースクロマトグラフィー、ヘパリンクロマトグラフィー等)、イオン交換カラムクロマトグラフ法、ゲルろ過カラムクロマトグラフ法、抗体カラム法を単独、もしくは組み合わせて精製することが開示されている。 Patent Documents 1 and 2 disclose a method of obtaining cat-derived erythropoietin from the egg white of transgenic birds that have been genetically modified to express cat-derived erythropoietin. In Patent Documents 1 and 2, in order to purify and recover cat-derived erythropoietin from egg white of transgenic birds, salting-out, adsorption column chromatography (blue sepharose chromatography, heparin chromatography, etc.), ion exchange column chromatography It is disclosed to purify the graph method, gel filtration column chromatography method, and antibody column method alone or in combination.
 特許文献1の実施例9では、卵白を水で希釈してpHを5.0に調整して15分間以上撹拌したのち遠心分離し、上清をpH7.0に調整する前処理を行うこと、並びに、前処理後の卵白液に対して、ブルーセファロースクロマトグラフィー、ヘパリンクロマトグラフィー、脱塩カラム、陰イオン交換カラムクロマトグラフィー及びゲルろ過クロマトグラフィーをこの順で行ってネコ由来エリスロポエチンを精製することが開示されている。 In Example 9 of Patent Document 1, the egg white is diluted with water, adjusted to pH 5.0, stirred for 15 minutes or more, centrifuged, and then subjected to pretreatment to adjust the supernatant to pH 7.0. In addition, it is possible to purify cat-derived erythropoietin by performing blue sepharose chromatography, heparin chromatography, desalting column, anion exchange column chromatography and gel filtration chromatography in this order on the pretreated egg white liquid. It is disclosed.
 特許文献2の段落0026では、卵白を前処理としてバッファーで希釈してpH調整したのちにブルーセファロースカラムに供し、透析後、陽イオン交換カラム(SPカラム)で目的物を分画し、限外濃縮したのちに脱塩カラム処理後、陰イオン交換カラム(DEAEセファロースカラム)精製で純度99%以上のネコエリスロポエチンを取得することが開示されている。 In Paragraph 0026 of Patent Document 2, egg white is diluted with a buffer as a pretreatment, adjusted to pH, then applied to a blue sepharose column, dialyzed, and fractionated with a cation exchange column (SP column). It is disclosed that after concentration, after treatment with a desalting column, feline erythropoietin having a purity of 99% or more is obtained by purification of an anion exchange column (DEAE Sepharose column).
 特許文献3では、アミノ酸配列が改変されたネコ由来エリスロポエチンのバリアントを、CHO(チャイニーズハムスターの卵巣)細胞等の細胞を用いて発現させ、該細胞の培地または細胞溶解液から精製する方法が開示されている。精製のための手法として、アフィニティークロマトグラフィー、陰イオン交換クロマトグラフィー、陽イオン交換クロマトグラフィー等が例示されている。特許文献3の実施例8ではネコ由来エリスロポエチンのバリアントを発現する細胞の培養上清をpH8.5に調整し、フェニルボロネートクロマトグラフィー、アニオン交換クロマトグラフィー及び疎水性相互作用クロマトグラフィーをこの順で行い、ネコ由来エリスロポエチンのバリアントを精製することが開示されている。 Patent Document 3 discloses a method in which a variant of a cat-derived erythropoietin with a modified amino acid sequence is expressed using cells such as CHO (Chinese hamster ovary) cells and purified from the cell culture medium or cell lysate. ing. Examples of methods for purification include affinity chromatography, anion exchange chromatography, cation exchange chromatography and the like. In Example 8 of Patent Document 3, the culture supernatant of a cell expressing a variant of cat-derived erythropoietin was adjusted to pH 8.5, and phenylboronate chromatography, anion exchange chromatography and hydrophobic interaction chromatography were performed in this order. Performing and purifying a variant of cat-derived erythropoietin.
 一方、特許文献4の実施例24では、ヒト由来エリスロポエチンを生産するトランスジェニックニワトリの卵の卵白を、3倍量のpH4.6の50mM酢酸ナトリウムで希釈し、混合した後、ろ過して、セファロース陽イオン交換カラムを用いてヒト由来エリスロポエチンを精製することが開示されている。特許文献5では、ヒト由来エリスロポエチン産生哺乳類細胞を培養し、培養上清からヒト由来エリスロポエチンを精製し回収する方法として、色素アフィニティークロマトグラフィーにより精製する第一ステップと、ハイドロキシアパタイトカラムにより精製する第二ステップと、陽イオン交換クロマトグラフィーにより精製する第三ステップとを行う方法が開示されている。 On the other hand, in Example 24 of Patent Document 4, egg white of a transgenic chicken egg that produces human-derived erythropoietin is diluted with 3 volumes of 50 mM sodium acetate at pH 4.6, mixed, filtered, and separated. It has been disclosed to purify human erythropoietin using a cation exchange column. In Patent Document 5, as a method for culturing human-derived erythropoietin-producing mammalian cells and purifying and recovering human-derived erythropoietin from the culture supernatant, the first step of purification by dye affinity chromatography and the second step of purification by hydroxyapatite column are performed. A method is disclosed that performs a step and a third step of purification by cation exchange chromatography.
 特許文献6では、卵白をクロマトグラフィー処理のために前処理する方法として、卵白のプールに、卵白に対して約0.5重量%~約5重量%の酸性緩衝液を添加し、pHが約5~6.5の混合卵白が形成されるように前記卵白と前記酸性緩衝液を混合する方法が開示されている。特許文献6では前記酸性緩衝液として、約5M~約6Mの酢酸ナトリウムを含む緩衝液が開示されている。 In Patent Document 6, as a method for pretreating egg white for chromatographic treatment, an acid buffer of about 0.5 wt% to about 5 wt% with respect to the egg white is added to the egg white pool, and the pH is about A method of mixing the egg white and the acidic buffer so as to form a mixed egg white of 5 to 6.5 is disclosed. Patent Document 6 discloses a buffer containing about 5M to about 6M sodium acetate as the acidic buffer.
特開2007-89578号公報JP 2007-89578 A 特開2010-111595号公報JP 2010-1111595 A 特表2012-504136号公報Special table 2012-504136 gazette 特表2010-509327号公報Special table 2010-509327 特表2010-511378号公報JP 2010-511378 A 国際公開WO2015/164320International Publication WO2015 / 164320
 しかしながら、特許文献1及び2において具体的に開示されている精製方法は、ブルーセファロースクロマトグラフィーを使用するものである。ブルーセファロースクロマトグラフィーで用いるカラムは、担体に色素の分子が固定されたものであるが、これらの分子がネコ由来エリスロポエチンの精製物に混入するリスクは皆無ではない。 However, the purification methods specifically disclosed in Patent Documents 1 and 2 use blue sepharose chromatography. The column used in blue sepharose chromatography is one in which dye molecules are immobilized on a carrier, but there is no risk that these molecules will be mixed into the purified feline erythropoietin product.
 また、特許文献4及び5では、ネコ由来エリスロポエチンを生産し精製することは一切記載されていない。さらに特許文献4では、陽イオン交換クロマトグラフィーの処理の前に酸性領域内にタンパク質溶液をpH調整すること及びカラムにロードする際に酸性領域において緩衝作用を有する緩衝液を使用することについて開示されていない。また特許文献5の方法では、色素アフィニティークロマトグラフィーを用いて精製を行うため、特許文献1、2と同様に、色素分子がエリスロポエチンの精製物に混入するリスクが皆無ではない。 Further, Patent Documents 4 and 5 do not describe any production and purification of cat-derived erythropoietin. Further, Patent Document 4 discloses that the pH of a protein solution is adjusted in the acidic region before the cation exchange chromatography treatment and that a buffer having a buffering action in the acidic region is used when loading the column. Not. In the method of Patent Document 5, since purification is performed using dye affinity chromatography, there is no risk that the dye molecules are mixed into the purified product of erythropoietin, as in Patent Documents 1 and 2.
 また、特許文献6には、ネコ由来エリスロポエチンを生産し精製することは一切記載されていない。当然ながら特許文献6は、ネコ由来エリスロポエチンを精製して回収するために適した手段を開示していない。 Patent Document 6 does not describe any production and purification of cat-derived erythropoietin. Of course, Patent Document 6 does not disclose means suitable for purifying and recovering cat-derived erythropoietin.
 上述より、タンパク質液からネコ由来エリスロポエチンを精製して回収する方法として、従来公知である色素アフィニティークロマトグラフィーを利用する方法(特許文献1、2等)は必ずしも満足できるものではない。また、特許文献3ではアフィニティークロマトグラフィーを利用するタンパク質精製方法だけでなく、それを利用しないタンパク質精製方法も記載されているが、アフィニティークロマトグラフィーを利用しない場合は、一般に精製倍率を上げるために多段階のクロマトグラフィーを要するという問題があり、改善の余地がある。 From the above, as a method for purifying and recovering cat-derived erythropoietin from a protein solution, a conventionally known method using dye affinity chromatography ( Patent Documents 1, 2, etc.) is not always satisfactory. In addition, Patent Document 3 describes not only a protein purification method using affinity chromatography but also a protein purification method that does not use the protein purification method. However, when affinity chromatography is not used, it is generally necessary to increase the purification ratio. There is a problem of requiring stage chromatography, and there is room for improvement.
 したがって、本発明は、精製されたネコ由来エリスロポエチンを製造するために最適化された手段を提供することを解決すべき課題とする。 Therefore, an object of the present invention is to provide an optimized means for producing purified cat-derived erythropoietin.
 上記課題を解決するための手段として本明細書では以下の発明を開示する。
(1)精製されたネコ由来エリスロポエチンの製造方法であって、
 ネコ由来エリスロポエチンを含むタンパク質液のpHを4以上、7以下の範囲に調整するpH調整工程と、
 pH調整工程においてpH調整されたタンパク質液を、陽イオン交換基を備えた担体に接触させてネコ由来エリスロポエチンを吸着させ、次いで吸着されたネコ由来エリスロポエチンを前記担体から溶出させることを含む精製工程と
を含む方法。
(2)精製工程の前に、pH調整工程においてpH調整されたタンパク質液から析出物を除去する析出物除去工程を更に含む、(1)に記載の方法。
(3)pH調整工程において前記タンパク質液のpHを4.7以上の範囲に調整する、(1)又は(2)に記載の方法。
(4)pH調整工程において、前記タンパク質液と、酸性領域で緩衝作用を有する成分を1M以下の濃度で含む、酸性領域で緩衝作用を有する緩衝液とを混合する、(1)~(3)のいずれかに記載の方法。
(5)pH調整工程において、前記タンパク質液と、前記タンパク質液1容量部に対して1.5容量部以上の、酸性領域で緩衝作用を有する緩衝液とを混合する、(1)~(4)のいずれかに記載の方法。
(6)pH調整工程において用いる前記タンパク質液が、ネコ由来エリスロポエチンをコードする外来性遺伝子を有するトランスジェニック鳥類の卵を用いて調製されたタンパク質液である(1)~(5)のいずれかに記載の方法。
(7)(1)~(6)のいずれかに記載の方法により、精製されたネコ由来エリスロポエチンを製造する工程と、
 前記精製されたネコ由来エリスロポエチンを水溶性長鎖分子で化学修飾して水溶性長鎖分子付加ネコ由来エリスロポエチンを得る水溶性長鎖分子付加工程と
を含む、水溶性長鎖分子付加ネコ由来エリスロポエチンの製造方法。
(8)水溶性長鎖分子付加工程において得られた水溶性長鎖分子付加ネコ由来エリスロポエチンをフィルターに通してウイルスを除去するウイルス除去工程を更に含む、(7)に記載の方法。
(9)水溶性長鎖分子付加工程において得られた水溶性長鎖分子付加ネコ由来エリスロポエチンを含み、哺乳動物の体液の浸透圧及びpHと同じ浸透圧及びpHを有する液状組成物を調製する製剤化工程を更に含む、(7)又は(8)に記載の方法。
As means for solving the above problems, the present invention discloses the following invention.
(1) A method for producing a purified cat-derived erythropoietin,
A pH adjusting step for adjusting the pH of the protein solution containing cat-derived erythropoietin to a range of 4 or more and 7 or less;
a purification step comprising contacting the protein solution adjusted in the pH adjustment step with a carrier having a cation exchange group to adsorb cat-derived erythropoietin, and then eluting the adsorbed cat-derived erythropoietin from the carrier; Including methods.
(2) The method according to (1), further comprising a precipitate removing step of removing the precipitate from the protein solution whose pH has been adjusted in the pH adjusting step before the purification step.
(3) The method according to (1) or (2), wherein the pH of the protein solution is adjusted to a range of 4.7 or more in the pH adjustment step.
(4) In the pH adjustment step, the protein solution is mixed with a buffer solution having a buffering action in the acidic region containing a component having a buffering effect in the acidic region at a concentration of 1 M or less. (1) to (3) The method in any one of.
(5) In the pH adjustment step, the protein solution is mixed with 1.5 parts by volume or more of a buffer solution having a buffering action in an acidic region with respect to 1 part by volume of the protein solution. ) Any one of the methods.
(6) The protein solution used in the pH adjustment step is a protein solution prepared using an egg of a transgenic bird having an exogenous gene encoding a cat-derived erythropoietin (1) to (5) The method described.
(7) producing a purified cat-derived erythropoietin by the method according to any one of (1) to (6);
Water-soluble long-chain molecule-added cat-derived erythropoietin comprising a water-soluble long-chain molecule-added step of chemically modifying the purified cat-derived erythropoietin with a water-soluble long-chain molecule to obtain a water-soluble long-chain molecule-added cat-derived erythropoietin Production method.
(8) The method according to (7), further comprising a virus removal step of removing the virus by passing the water-soluble long-chain molecule-added cat-derived erythropoietin obtained in the water-soluble long-chain molecule addition step through a filter.
(9) A preparation comprising a water-soluble long-chain molecule-added cat-derived erythropoietin obtained in the water-soluble long-chain molecule addition step, and preparing a liquid composition having the same osmotic pressure and pH as the body fluid of a mammal The method according to (7) or (8), further comprising a conversion step.
 本明細書は本願の優先権の基礎となる日本国特許出願番号2016-072815号の開示内容を包含する。 This specification includes the disclosure of Japanese Patent Application No. 2016-072815, which is the basis of the priority of the present application.
 本発明によれば、精製されたネコ由来エリスロポエチンを製造するための改善された手段が提供される。 According to the present invention, an improved means for producing purified cat-derived erythropoietin is provided.
 本発明では、pH調整工程と、陽イオン交換基を備えた担体を用いる精製工程とを併用することで、ネコ由来エリスロポエチンを効率的に精製することができる。 In the present invention, feline-derived erythropoietin can be efficiently purified by using a pH adjustment step and a purification step using a carrier having a cation exchange group in combination.
 また、pH調整工程によりタンパク質液から不溶性成分を析出物として析出させてから精製工程を行う本発明の実施形態によれば、ネコ由来エリスロポエチンを効率的に精製することができる。 Moreover, according to the embodiment of the present invention in which the purification step is performed after the insoluble component is precipitated as a precipitate from the protein solution by the pH adjustment step, the cat-derived erythropoietin can be efficiently purified.
 更に、精製工程において、酸性領域で緩衝作用を有する緩衝液中で、陽イオン交換基を備えた担体に接触させてネコ由来エリスロポエチンを吸着させる本発明の実施形態によれば、ネコ由来エリスロポエチンを更に効率的に精製することができる。 Furthermore, in the purification step, the cat-derived erythropoietin is further adsorbed on the cat-derived erythropoietin by contacting with a carrier having a cation exchange group in a buffer solution having a buffering action in the acidic region. It can be purified efficiently.
実験2において、卵白溶液をpH調整し静置して1時間経過後の写真を示す。サンプル番号とpH条件との対応関係は表1に記載の通り。In Experiment 2, the pH of the egg white solution is adjusted and allowed to stand, and a photograph after 1 hour is shown. Table 1 shows the correspondence between sample numbers and pH conditions. 実験4における、各pH条件での陽イオン交換カラムクロマトグラフィーによる精製の溶出チャートを示す。実線は総タンパク質量を、点線はfEPO回収率をそれぞれ示す。総タンパク質量の大部分はOTF(オボトランスフェリン)である。横軸は溶出液量をカラム体積(CV)で示す。The elution chart of the refinement | purification by the cation exchange column chromatography in each pH conditions in Experiment 4 is shown. The solid line indicates the total protein amount, and the dotted line indicates the fEPO recovery rate. The majority of the total protein is OTF (ovotransferrin). The horizontal axis shows the amount of eluate in column volume (CV). 実験4において、陽イオン交換カラムクロマトグラフィーによる精製をpH4.8にて行った際の、分子量マーカーM、精製前の前処理後卵白原料P、非吸着画分F、洗浄画分W、溶出画分E、全溶出画分AのSDS-PAGEの結果を示す。分子量マーカーMの数字の単位はキロダルトン(kDa)である。In Experiment 4, when the purification by cation exchange column chromatography was performed at pH 4.8, the molecular weight marker M, the pretreated egg white raw material P before purification, the non-adsorbed fraction F, the washed fraction W, and the eluted fraction The results of SDS-PAGE of fraction E and total elution fraction A are shown. The unit of the number of the molecular weight marker M is kilodalton (kDa).
<ネコ由来エリスロポエチン>
 以下、エリスロポエチンを「EPO」と記載する場合がある。またネコ由来エリスロポエチンを「fEPO」と記載する場合がある。
<Cat-derived erythropoietin>
Hereinafter, erythropoietin may be referred to as “EPO”. Cat-derived erythropoietin is sometimes referred to as “fEPO”.
 fEPOをコードするDNA塩基配列を配列番号1に示す。配列番号1に示す塩基配列がコードするアミノ酸配列は配列番号2に示す通りであり、このうち第1~第26アミノ酸残基はシグナル配列であるため、fEPOプレタンパク質ともいう。そして、前記fEPOプレタンパク質のシグナル配列が除かれ、且つ第192アミノ酸基が欠失したアミノ酸配列が成熟fEPOであり、成熟fEPOのアミノ酸配列は配列番号3に示す通りである。fEPOとしてはまた、配列番号2のfEPOプレタンパク質のアミノ酸配列を一部に含むポリペプチドや、配列番号3の成熟fEPOのアミノ酸配列を一部に含むポリペプチドであってもよい。 The DNA base sequence encoding fEPO is shown in SEQ ID NO: 1. The amino acid sequence encoded by the base sequence shown in SEQ ID NO: 1 is as shown in SEQ ID NO: 2, and among these, the first to 26th amino acid residues are signal sequences, so they are also referred to as fEPO preproteins. The signal sequence of the fEPO preprotein is removed and the amino acid sequence from which the 192nd amino acid group is deleted is mature fEPO. The amino acid sequence of mature fEPO is as shown in SEQ ID NO: 3. The fEPO may also be a polypeptide that partially includes the amino acid sequence of the fEPO preprotein of SEQ ID NO: 2 or a polypeptide that partially includes the amino acid sequence of the mature fEPO of SEQ ID NO: 3.
 fEPOとしてはまた、配列番号2に示すアミノ酸配列からなるfEPOプレタンパク質及び配列番号3に示すアミノ酸配列からなる成熟fEPOに限らず、その活性変異体も使用できる。活性変異体は、好ましくは、本願明細書の実施例に示す活性測定条件において、配列番号2に示すアミノ酸配列からなるfEPOプレタンパク質、或いは、配列番号3に示すアミノ酸配列からなる成熟fEPOを用いた場合の10%以上、好ましくは40%以上、より好ましくは60%以上、更に好ましくは80%以上の活性を示すポリペプチドである。上記の活性変異体には、例えば、配列番号2又は3に示すアミノ酸配列において、1~複数個のアミノ酸が付加、欠失、又は置換されたアミノ酸配列からなるポリペプチド、より好ましくは配列番号2又は3に示すアミノ酸配列においてそのN末端及び/又はC末端に、合計で1~複数個のアミノ酸が付加、欠失、又は置換されたアミノ酸配列からなるポリペプチドや、配列番号2又は3に示すアミノ酸配列に対して80%以上、好ましくは85%以上、より好ましくは90%以上、95%以上、97%以上、98%以上又は99%以上のアミノ酸同一性を有するアミノ酸配列からなるポリペプチドが該当する。配列番号2に示すアミノ酸配列からなるfEPOプレタンパク質の活性変異体は、より好ましくは、配列番号2のN末端、C末端、第1~第26残基の部分及び第192残基から選択される少なくとも一か所において上記で挙げたような変異を含む。配列番号3に示すアミノ酸配列からなる成熟fEPOは、N末端に開始コドンがコードするメチオニン残基が付加されていてもよい。本明細書において「複数個」とは、例えば、2個以上、3個以上、4個以上、5個以上、6個以上、7個以上、8個以上、9個以上、10個以上であり、また、50個以下、45個以下、40個以下、35個以下、30個以下、29個以下、28個以下、27個以下、26個以下、25個以下、24個以下、23個以下、22個以下、21個以下、20個以下、19個以下、18個以下、17個以下、16個以下、15個以下、14個以下、13個以下、12個以下、11個以下をいう。「アミノ酸同一性」とは、二つのアミノ酸配列を整列(アラインメント)し、必要に応じてギャップを導入して、両者のアミノ酸一致度が最も高くなるようにしたときの、配列番号2又は3に示すタンパク質の全アミノ酸残基数に対する同一アミノ酸残基の割合(%)をいう。アミノ酸同一性は、BLASTやFASTAによるタンパク質の検索システムを用いて算出することができる(Karlin,S.et al., 1993, Proc. Natl. Acad. Sci. USA, 90: 5873-5877;Altschul,S.F.et al., 1990, J. Mol. Biol., 215: 403-410;Pearson,W.R.et al., 1988, Proc. Natl. Acad. Sci. USA, 85: 2444-2448)。また、アミノ酸の置換は、保存的アミノ酸置換が望ましい。「保存的アミノ酸置換」とは、電荷、側鎖、極性、芳香族性等の性質の類似するアミノ酸間の置換をいう。性質の類似するアミノ酸は、例えば、塩基性アミノ酸(アルギニン、リジン、ヒスチジン)、酸性アミノ酸(アスパラギン酸、グルタミン酸)、無電荷極性アミノ酸(グリシン、アスパラギン、グルタミン、セリン、トレオニン、システイン、チロシン)、無極性アミノ酸(ロイシン、イソロイシン、アラニン、バリン、プロリン、フェニルアラニン、トリプトファン、メチオニン)、分枝鎖アミノ酸(ロイシン、バリン、イソロイシン)、芳香族アミノ酸(フェニルアラニン、チロシン、トリプトファン、ヒスチジン)等に分類することができる。 As fEPO, not only the fEPO preprotein consisting of the amino acid sequence shown in SEQ ID NO: 2 and the mature fEPO consisting of the amino acid sequence shown in SEQ ID NO: 3, but also active mutants thereof can be used. Preferably, the activity mutant used fEPO preprotein consisting of the amino acid sequence shown in SEQ ID NO: 2 or mature fEPO consisting of the amino acid sequence shown in SEQ ID NO: 3 under the activity measurement conditions shown in the examples of the present specification. The polypeptide exhibits an activity of 10% or more, preferably 40% or more, more preferably 60% or more, and still more preferably 80% or more. Examples of the active mutant include a polypeptide comprising an amino acid sequence in which one or more amino acids are added, deleted or substituted in the amino acid sequence shown in SEQ ID NO: 2 or 3, more preferably SEQ ID NO: 2. Or a polypeptide comprising an amino acid sequence in which 1 to a plurality of amino acids are added, deleted or substituted in total at the N-terminal and / or C-terminal in the amino acid sequence shown in 3 or SEQ ID NO: 2 or 3 A polypeptide comprising an amino acid sequence having 80% or more, preferably 85% or more, more preferably 90% or more, 95% or more, 97% or more, 98% or more, or 99% or more amino acid identity to the amino acid sequence. Applicable. More preferably, the active variant of the fEPO preprotein consisting of the amino acid sequence shown in SEQ ID NO: 2 is selected from the N-terminus, C-terminus, the portion of residues 1 to 26 and 192 residues of SEQ ID NO: 2. It contains mutations as listed above in at least one place. The mature fEPO consisting of the amino acid sequence shown in SEQ ID NO: 3 may have a methionine residue encoded by the start codon at the N-terminus. In this specification, “plurality” means, for example, 2 or more, 3 or more, 4 or more, 5 or more, 6 or more, 7 or more, 8 or more, 9 or more, 10 or more. Also, 50 or less, 45 or less, 40 or less, 35 or less, 30 or less, 29 or less, 28 or less, 27 or less, 26 or less, 25 or less, 24 or less, 23 or less 22 or less, 21 or less, 20 or less, 19 or less, 18 or less, 17 or less, 16 or less, 15 or less, 14 or less, 13 or less, 12 or less, 11 or less . “Amino acid identity” refers to SEQ ID NO: 2 or 3 when two amino acid sequences are aligned (aligned), and gaps are introduced as necessary to maximize the degree of amino acid identity between the two. The ratio (%) of the same amino acid residue to the total number of amino acid residues of the protein shown. Amino acid identity can be calculated using a BLAST or FASTA protein search system (Karlin, S. et al., 1993, Proc. Natl. Acad. Sci. USA, 90: 5873-5877; Altschul, SF et al., 1990, J. Mol. Biol., 215: 403-410; Pearson, WR et al., 1988, Proc. Natl. Acad. Sci. USA, 85: 2444-2448. ). The amino acid substitution is preferably conservative amino acid substitution. “Conservative amino acid substitution” refers to substitution between amino acids having similar properties such as charge, side chain, polarity, aromaticity and the like. Amino acids with similar properties include, for example, basic amino acids (arginine, lysine, histidine), acidic amino acids (aspartic acid, glutamic acid), uncharged polar amino acids (glycine, asparagine, glutamine, serine, threonine, cysteine, tyrosine), nonpolar Can be classified into functional amino acids (leucine, isoleucine, alanine, valine, proline, phenylalanine, tryptophan, methionine), branched chain amino acids (leucine, valine, isoleucine), aromatic amino acids (phenylalanine, tyrosine, tryptophan, histidine), etc. it can.
 fEPOとしては、一般的に入手可能な動物細胞(例えばCHO細胞)、植物細胞、原核生物、酵母を宿主としfEPOをコードする外来遺伝子が導入されfEPOを発現するように遺伝子組み換えされたトランスジェニック細胞で製造されたものや、fEPOをコードする外来遺伝子が導入されfEPOを発現するように遺伝子組み換えされたトランスジェニック動物又はトランスジェニック植物で製造されたもの、無細胞タンパク質合成系を用いて製造されたもの等が利用できるが、これらに限定されるものではない。前記トランスジェニック動物としては鳥類が挙げられ、鳥類としてはニワトリ、ウズラ、七面鳥、カモ、アヒル、ダチョウ、ガチョウ、オナガドリ、ハト、エミュー、キジ、ホロホロチョウ等の家禽鳥類が好ましく、特にニワトリが好ましい。トランスジェニック鳥類は、卵中にfEPOを蓄積するものが好ましい。卵中にfEPOを発現するトランスジェニック鳥類を作出し、その卵からfEPOを取得する方法は特許文献1等に記載の通りである。前記トランスジェニック植物としては特に限定されず、単子葉植物であっても双子葉植物よく、単子葉植物としては、例えばイネ科(イネ、オオムギ、コムギ、トウモロコシ、サトウキビ、シバ、ソルガム、アワ、ヒエ等)、ユリ科(アスパラガス、ユリ、タマネギ、ニラ、カタクリ等)、ショウガ科(ショウガ、ミョウガ、ウコン等)に属する植物が挙げられ、双子葉植物としては、例えばアブラナ科(シロイヌナズナ、キャベツ、ナタネ、カリフラワー、ブロッコリー、ダイコン等)、ナス科(トマト、ナス、ジャガイモ、タバコ等)、マメ科(ダイズ、エンドウ、インゲン、アルファルファ等)、ウリ科(キュウリ、メロン、カボチャ等)、セリ科(ニンジン、セロリ、ミツバ等)、キク科(レタス等)、アオイ科(ワタ、オクラ等)、アカザ科(シュガービート、ホウレンソウ等)、フトモモ科(ユーカリ、クローブ等)、ヤナギ科(ポプラ等)に属する植物が挙げられるが、これらに限定はされない。 As fEPO, transgenic cells that have been genetically modified to express fEPO by introducing a foreign gene encoding fEPO into a host of generally available animal cells (for example, CHO cells), plant cells, prokaryotes, and yeast. Manufactured using a cell-free protein synthesis system, a transgenic animal or transgenic plant that has been genetically modified to express fEPO by introducing a foreign gene encoding fEPO Although a thing etc. can be utilized, it is not limited to these. Examples of the transgenic animal include birds, and birds are preferably poultry birds such as chickens, quails, turkeys, ducks, ducks, ostriches, geese, long-tailed birds, pigeons, emu, pheasants and guinea fowls, with chickens being particularly preferred. Transgenic birds are preferably those that accumulate fEPO in the egg. A method for producing a transgenic bird expressing fEPO in an egg and obtaining fEPO from the egg is as described in Patent Document 1 and the like. The transgenic plant is not particularly limited, and even monocotyledonous plants may be dicotyledonous plants. Examples of monocotyledonous plants include grass family (rice, barley, wheat, corn, sugarcane, buckwheat, sorghum, millet, millet. Etc.), liliaceae (asparagus, lily, onion, leek, katsuri etc.), plants belonging to the ginger family (ginger, myoga, turmeric, etc.), and dicotyledonous plants include, for example, cruciferous (Arabidopsis, cabbage, Rapeseed, cauliflower, broccoli, radish, etc.) Eggplant (tomato, eggplant, potato, tobacco, etc.), legume (soybean, pea, green beans, alfalfa, etc.), cucurbitaceae (cucumber, melon, pumpkin, etc.), celery family ( Carrots, celery, bees, etc.), asteraceae (lettuce, etc.), mallow (cotton, okra, etc.) Chenopodiaceae (sugar beet, spinach, etc.), Myrtaceae (Eucalyptus, clove, etc.), including but plants belonging to the Salicaceae (Populus, etc.), but are not limited to.
 fEPOのポリペプチドは1つ以上の糖鎖や、その他の基により修飾されていてもよい。fEPOを修飾する糖鎖の種類と数は特に限定されず、使用する発現系(すなわちトランスジェニック細胞、トランスジェニック動物、トランスジェニック植物、無細胞タンパク質合成系等)に応じた種類と数の糖鎖により修飾されることが一般的である。例えば、使用する発現系がニワトリであった場合の糖鎖修飾は、主に、トリマンノシルコアにβ-N-アセチルグルコサミン残基を含む糖鎖が更に2~5本結合した糖鎖による修飾である。 FEPO polypeptide may be modified with one or more sugar chains or other groups. The type and number of sugar chains that modify fEPO are not particularly limited, and the number and type of sugar chains according to the expression system used (ie, transgenic cells, transgenic animals, transgenic plants, cell-free protein synthesis systems, etc.). Is generally modified by For example, when the expression system used is a chicken, the sugar chain modification is mainly modification with a sugar chain in which 2 to 5 sugar chains containing a β-N-acetylglucosamine residue are bound to a trimannosyl core. is there.
<精製されたネコ由来エリスロポエチン>
 本発明において「精製された」ネコ由来エリスロポエチン(fEPO)とは、タンパク質量あたりのfEPO濃度が、精製前の原料となるタンパク質液中よりも高められた状態で存在するfEPOを意味し、精製の程度は問わず粗精製物であってもよい。例えば、陽イオン交換体による精製工程を1回経たfEPOも本発明での精製されたfEPOに含まれる。
<Purified cat-derived erythropoietin>
In the present invention, “purified” cat-derived erythropoietin (fEPO) means fEPO present in a state in which the concentration of fEPO per amount of protein is higher than that in the protein solution used as a raw material before purification. A crude product may be used regardless of the degree. For example, fEPO that has undergone one purification step with a cation exchanger is also included in the purified fEPO in the present invention.
<タンパク質液>
 本発明の方法において原料として用いるタンパク質液は、fEPOを含有する液状物であれば特に限定されず、fEPOが水中に溶解した形態であってもよい。このようなタンパク質液としては上記のようなfEPOを発現するトランスジェニック細胞、トランスジェニック動物、トランスジェニック植物、無細胞タンパク質合成系等のfEPO生産系に由来するfEPO含有タンパク質液を使用することができる。
<Protein solution>
The protein solution used as a raw material in the method of the present invention is not particularly limited as long as it is a liquid material containing fEPO, and may be a form in which fEPO is dissolved in water. As such a protein solution, a fEPO-containing protein solution derived from an fEPO production system such as a transgenic cell, a transgenic animal, a transgenic plant, a cell-free protein synthesis system or the like that expresses fEPO as described above can be used. .
 原料として用いるタンパク質液の第1の好適な形態は、fEPOをコードする外来性遺伝子を有するトランスジェニック鳥類の卵を用いて調製されたタンパク質液である。当該卵は、割卵して得られる全卵や、全卵から分離された卵白、卵黄等の各種形態であることができ、好ましくは卵白である。前記卵は凍結したのち解凍したものであってもよい。前記卵を用いて調製されたタンパク質液としては、前記卵自体であってもよいし、前記卵を水又は水溶液で希釈して得た溶液であってもよい。前記卵を用いて調製されたタンパク質液は、好ましくはせん断処理を施して十分に均一化したものである。より好ましくは、前記卵を用いて調製されたタンパク質液は、せん断処理が施された、前記卵自体、又は、前記卵と前記卵1容量部に対して例えば3容量部以下、好ましくは2容量部以下、より好ましくは1容量部以下の水との混合液である。 A first preferred form of the protein solution used as a raw material is a protein solution prepared using eggs of transgenic birds having a foreign gene encoding fEPO. The said egg can be various forms, such as the whole egg obtained by splitting, the egg white isolate | separated from the whole egg, and an egg yolk, Preferably it is an egg white. The eggs may be frozen and then thawed. The protein solution prepared using the egg may be the egg itself or a solution obtained by diluting the egg with water or an aqueous solution. The protein solution prepared using the egg is preferably one that has been sufficiently homogenized by a shearing treatment. More preferably, the protein solution prepared using the egg is, for example, 3 volume parts or less, preferably 2 volumes with respect to the egg itself or the egg and the egg 1 volume part subjected to shearing treatment. Part or less, more preferably a mixed solution with 1 part by volume or less of water.
 原料として用いるタンパク質液の第2の好適な形態は、fEPOをコードする外来性遺伝子を有するトランスジェニック細胞(例えばCHO細胞)を培地中で培養して形成される培養混合物から調製されたタンパク質液である。当該第2の好適な形態に係るタンパク質液としては、好ましくは、前記培養混合物自体、前記培養混合物の上清液、前記培養混合物において前記細胞を破砕した破砕液、前記破砕液の上清液、或いは、これらの液のうちの1つを濃縮した液、水又は水溶液で希釈した液が例示できる。 A second preferred form of the protein solution used as a raw material is a protein solution prepared from a culture mixture formed by culturing a transgenic cell (for example, CHO cell) having a foreign gene encoding fEPO in a medium. is there. As the protein solution according to the second preferred form, preferably, the culture mixture itself, the supernatant of the culture mixture, the disrupted solution obtained by disrupting the cells in the culture mixture, the supernatant of the disrupted solution, Or the liquid which diluted the liquid which concentrated one of these liquids, water, or aqueous solution can be illustrated.
<pH>
 本発明においてpH値は、特に限定しない限り、測定時の液温を22.5±0.5℃としてpH計を用いて測定された値を指す。pH計は市販の標準試薬を用いてpH4及びpH7での2点校正をしたうえで使用することが好ましい。
<PH>
In the present invention, the pH value refers to a value measured using a pH meter at a liquid temperature of 22.5 ± 0.5 ° C. unless otherwise specified. The pH meter is preferably used after a two-point calibration at pH 4 and pH 7 using a commercially available standard reagent.
<pH調整工程>
 本発明でのpH調整工程は、fEPOを含むタンパク質液のpHを4以上、7以下の範囲に調整する工程である。
<PH adjustment step>
The pH adjustment step in the present invention is a step of adjusting the pH of the protein solution containing fEPO to a range of 4 or more and 7 or less.
 fEPOを含むタンパク質液のpHを4以上、7以下の範囲に調整することにより、驚くべきことに、タンパク質液に含まれる成分のうち、fEPO以外の一部の成分が不溶化して析出することが顕著に促進される。この結果、pH調整工程を経たタンパク質液中では、溶解成分におけるfEPOの割合が高まる。このため、pH調整工程を経たタンパク質液を後述する精製工程に供することで、fEPOを効率的に精製することが可能である。一方、fEPOを含むタンパク質液のpHを4未満又は7を上回る範囲とした場合、fEPO以外の成分による析出物は形成され難く、fEPOの精製効率を高める効果は得られない。 Surprisingly, by adjusting the pH of the protein solution containing fEPO to a range of 4 or more and 7 or less, it is surprising that some components other than fEPO are insolubilized and precipitated out of the components contained in the protein solution. Remarkably promoted. As a result, in the protein solution that has undergone the pH adjustment step, the ratio of fEPO in the dissolved component increases. For this reason, it is possible to refine | purify fEPO efficiently by using the protein solution which passed through the pH adjustment process for the refinement | purification process mentioned later. On the other hand, when the pH of the protein solution containing fEPO is in the range of less than 4 or more than 7, precipitates due to components other than fEPO are hardly formed, and the effect of increasing the purification efficiency of fEPO cannot be obtained.
 pH調整工程におけるpHの前記範囲は、析出物の形成を促進する観点から、より好ましくは、4.1以上、4.2以上、4.3以上、4.4以上、4.5以上、4.6以上、4.7以上、4.8以上、4.9以上、5.0以上であり、また、6.5以下、6.4以下、6.3以下、6.2以下、6.1以下、6.02以下、6.0以下、5.9以下、5.8以下、5.7以下、5.6以下、5.5以下、5.4以下、5.3以下、5.2以下、5.1以下である。特に、pHを4.7以上、4.8以上、4.9以上又は5.0以上とした場合、及び/又は、pHを6.1以下、6.02以下、6.0以下、5.9以下、5.8以下、5.7以下、5.6以下、5.5以下、5.4以下、5.3以下、5.2以下、5.1以下とした場合に、タンパク質液からの析出物の形成が特に促進されるため好ましい。 From the viewpoint of promoting the formation of precipitates, the range of the pH in the pH adjustment step is more preferably 4.1 or higher, 4.2 or higher, 4.3 or higher, 4.4 or higher, 4.5 or higher, 4 or higher. .6 or more, 4.7 or more, 4.8 or more, 4.9 or more, 5.0 or more, and 6.5 or less, 6.4 or less, 6.3 or less, 6.2 or less, 6. 1 or less, 6.02 or less, 6.0 or less, 5.9 or less, 5.8 or less, 5.7 or less, 5.6 or less, 5.5 or less, 5.4 or less, 5.3 or less, 5. 2 or less, 5.1 or less. In particular, when the pH is 4.7 or more, 4.8 or more, 4.9 or more, or 5.0 or more, and / or the pH is 6.1 or less, 6.02 or less, 6.0 or less, 5. 9 or less, 5.8 or less, 5.7 or less, 5.6 or less, 5.5 or less, 5.4 or less, 5.3 or less, 5.2 or less, 5.1 or less, from the protein solution This is preferable because the formation of precipitates is particularly accelerated.
 更に、pH調整工程においてタンパク質液のpHを前記範囲に調整することは、後述する精製工程において陽イオン交換基を含む担体を用いて精製する場合にfEPOを高収率で得ることができるという観点からも好ましい。この観点からは、pH調整工程におけるpHの前記範囲は特に4.4以上、4.5以上、4.6以上、4.7以上、4.8以上、4.9以上、5.0以上とすることが好ましい。収率の観点からpH調整工程におけるpHの上限は特に限定されないが、好ましくは6.5以下、6.4以下、6.3以下、6.2以下、6.1以下、6.0以下、5.9以下、5.8以下、5.7以下、5.6以下、5.5以下、5.4以下、5.3以下、5.2以下である。 Furthermore, adjusting the pH of the protein solution to the above range in the pH adjustment step is a viewpoint that fEPO can be obtained in a high yield when purifying using a carrier containing a cation exchange group in the purification step described later. Is also preferable. From this viewpoint, the pH range in the pH adjustment step is 4.4 or more, 4.5 or more, 4.6 or more, 4.7 or more, 4.8 or more, 4.9 or more, 5.0 or more. It is preferable to do. From the viewpoint of yield, the upper limit of the pH in the pH adjustment step is not particularly limited, but preferably 6.5 or less, 6.4 or less, 6.3 or less, 6.2 or less, 6.1 or less, 6.0 or less, It is 5.9 or less, 5.8 or less, 5.7 or less, 5.6 or less, 5.5 or less, 5.4 or less, 5.3 or less, 5.2 or less.
 更にまた、pH調整工程においてタンパク質液のpHを前記範囲に調整することは、fEPOの活性を保持する観点からも好ましい。この観点からは、pH調整工程におけるpHの前記範囲は特に4.1以上、4.2以上、4.3以上、4.4以上、4.5以上、4.6以上、4.7以上、4.8以上、4.9以上、5.0以上とすることが好ましい。活性の観点からpH調整工程におけるpHの上限は特に限定されないが、好ましくは6.5以下、6.4以下、6.3以下、6.2以下、6.1以下、6.0以下である。 Furthermore, adjusting the pH of the protein solution to the above range in the pH adjusting step is also preferable from the viewpoint of maintaining the activity of fEPO. From this viewpoint, the pH range in the pH adjustment step is 4.1 or more, 4.2 or more, 4.3 or more, 4.4 or more, 4.5 or more, 4.6 or more, 4.7 or more, It is preferable to set it as 4.8 or more, 4.9 or more, and 5.0 or more. From the viewpoint of activity, the upper limit of the pH in the pH adjustment step is not particularly limited, but is preferably 6.5 or less, 6.4 or less, 6.3 or less, 6.2 or less, 6.1 or less, 6.0 or less. .
 このように本発明の一実施形態では、pH調整工程を行うことにより、析出物の形成の促進と、陽イオン交換基を含む担体を用いたfEPOの精製の収率の向上と、fEPOの活性保持において有利な効果を奏することができる。すなわち、pH調整工程とその後のfEPOの精製工程とを一貫したpH条件で行うことにより、fEPOの活性を保持できるとともに、精製効率を向上させることができる。このような効果は、特許文献4、6等の従来技術からは示唆されない予想外の有利な効果である。 Thus, in one embodiment of the present invention, by performing the pH adjustment step, the formation of precipitates is promoted, the yield of purification of fEPO using a support containing a cation exchange group, and the activity of fEPO are increased. An advantageous effect in holding can be achieved. That is, by performing the pH adjustment step and the subsequent purification step of fEPO under a consistent pH condition, the activity of fEPO can be maintained and the purification efficiency can be improved. Such an effect is an unexpected advantageous effect which is not suggested by the prior arts such as Patent Documents 4 and 6.
 pH調整工程による上記の効果は、原料タンパク質液として上記の第1の好適な形態、すなわち、fEPOをコードする外来性遺伝子を有するトランスジェニック鳥類の卵を用いて調製されたタンパク質液を用いる場合に特に顕著である。トランスジェニック鳥類の卵にはオボアルブミン、オボトランスフェリン、オボムコイド等が主要タンパク質として含まれることが知られており、これらの主要タンパク質は等電点が酸性領域である(例えばオボアルブミンの等電点は4.6、オボトランスフェリンの等電点は6.1、オボムコイドの等電点は3.9~4.5)ことが一般的であるのに対して、fEPOは、配列番号3に示すアミノ酸配列から等電点が8.2と推測される。そこで、fEPOをコードする外来性遺伝子を有するトランスジェニック鳥類の卵を用いて調製されたタンパク質液のpHを4以上、7以下とすることにより、等電点がアルカリ性領域であるfEPOは溶解し、等電点が酸性領域のタンパク質が析出しているものと推定されるが、この推定機構には拘束されない。 The above-mentioned effect by the pH adjustment step is obtained when the protein solution prepared using the first preferred form, that is, an egg of a transgenic bird having an exogenous gene encoding fEPO is used as the raw material protein solution. This is particularly noticeable. It is known that eggs of transgenic birds contain ovalbumin, ovotransferrin, ovomucoid, etc. as major proteins, and these major proteins have an isoelectric point in the acidic region (for example, the isoelectric point of ovalbumin is 4.6, the isoelectric point of ovotransferrin is 6.1 and the isoelectric point of ovomucoid is generally 3.9 to 4.5), whereas fEPO is the amino acid sequence shown in SEQ ID NO: 3. From this, the isoelectric point is estimated to be 8.2. Therefore, by adjusting the pH of the protein solution prepared using the eggs of transgenic birds having a foreign gene encoding fEPO to 4 or more and 7 or less, fEPO whose isoelectric point is an alkaline region is dissolved, It is presumed that proteins in the acidic region at the isoelectric point are precipitated, but are not restricted by this estimation mechanism.
 pH調整工程は、後述する精製工程を行う前のタンパク質液に対して行う。先にpH調整工程を行い、その後に精製工程を行うことにより、精製工程でのfEPOの精製効率を高める上記の効果が得られる。 The pH adjustment step is performed on the protein solution before the purification step described later. By performing the pH adjustment step first and then the purification step, the above-described effect of increasing the purification efficiency of fEPO in the purification step can be obtained.
 pHの調整は、十分量の緩衝液とタンパク質液とを混合し、必要に応じて酸又は塩基を混合して、混合物のpHを目的とする上記範囲のpHに調整することで行うことができる。より具体的には、十分量の緩衝液とタンパク質液とを混合した混合物のpHを測定し、pHが上記範囲外の場合は、適量の酸又は塩基を混合することで、混合物のpHを上記範囲となるように調整することができる。十分量の緩衝液としては、タンパク質液1容量部に対して、例えば1.5容量部以上、好ましくは2容量部以上の緩衝液であり、上限は特に限定されないが典型的には10容量部以下、より典型的には7重量部以下である。十分量の緩衝液を用いることにより、タンパク質液の粘度を十分に低減させることができ、そのまま精製工程において陽イオン交換基を含む担体を用いた精製に用いる場合の取扱いが容易であるため好ましい。また、pH調整工程において析出した析出物を除去する実施形態においても、タンパク質液の粘度を十分に低減させることにより析出物の除去が容易であるため好ましい。pH調整工程における十分量の緩衝液とタンパク質液との混合物の粘度としては、例えば15℃においてB型粘度計(例えば、東機産業社製のTVB-10型粘度計)で測定した時に20cP以下、より好ましくは10cP以下、さらに好ましくは5cP以下の粘度が好ましい。なお、特許文献6では、卵白のプールに、卵白に対して約0.5重量%~約5重量%の酸性緩衝液を添加し、pHが約5~6.5の混合卵白が形成されるように前記卵白と前記酸性緩衝液を混合する方法が開示されており、このpHの範囲の酸性緩衝液を用いることで粘度が低減できると記載されている。しかしながら、特許文献6のように少量の酸性緩衝液を添加した卵白の粘度は非常に高く、析出物の除去やカラムクロマトグラフィーを行う際の取り扱いは容易でない。 The pH can be adjusted by mixing a sufficient amount of a buffer solution and a protein solution, mixing an acid or a base as necessary, and adjusting the pH of the mixture to a pH within the above range. . More specifically, the pH of the mixture obtained by mixing a sufficient amount of buffer solution and protein solution is measured, and when the pH is outside the above range, the pH of the mixture is adjusted to the above by mixing an appropriate amount of acid or base. The range can be adjusted. A sufficient amount of the buffer is, for example, 1.5 parts by volume or more, preferably 2 parts by volume or more with respect to 1 part by volume of the protein solution, and the upper limit is not particularly limited, but typically 10 parts by volume. Hereinafter, it is typically 7 parts by weight or less. By using a sufficient amount of buffer solution, the viscosity of the protein solution can be sufficiently reduced, and it is preferable because it is easy to handle when used for purification using a carrier containing a cation exchange group in the purification step. Moreover, also in embodiment which removes the deposit which precipitated in the pH adjustment process, since the removal of a deposit is easy by fully reducing the viscosity of a protein liquid, it is preferable. The viscosity of the mixture of a sufficient amount of buffer solution and protein solution in the pH adjustment step is, for example, 20 cP or less when measured with a B-type viscometer (for example, TVB-10 viscometer manufactured by Toki Sangyo Co., Ltd.) at 15 ° C. More preferably, the viscosity is 10 cP or less, and still more preferably 5 cP or less. In Patent Document 6, an acidic buffer solution of about 0.5 wt% to about 5 wt% with respect to the egg white is added to the egg white pool to form a mixed egg white having a pH of about 5 to 6.5. Thus, a method of mixing the egg white and the acidic buffer solution is disclosed, and it is described that the viscosity can be reduced by using an acidic buffer solution in this pH range. However, as in Patent Document 6, the viscosity of egg white to which a small amount of acidic buffer is added is very high, and it is not easy to remove precipitates or perform column chromatography.
 前記緩衝液としては特に限定はしないが、例えば、グリシン、フタル酸、クエン酸、コハク酸、酢酸及びリン酸から選択される少なくとも1種以上を緩衝成分として含むものが使用できる。また、医薬品の製造に適した生体毒性の少ないものが好ましく、例えば酢酸緩衝液は使いやすく好ましい。また、fEPOの等電点(配列番号3のアミノ酸配列からなるfEPOは、アミノ酸配列から、等電点が8.2と推測される)を鑑みると酸性領域において緩衝作用を有する緩衝液を好適に用いることができる。前記緩衝作用とは、酸や塩基が添加されたり、蒸発や希釈によって濃度が変化したりしても、ほとんどpHが変動しないという作用である。酸性領域としては、好ましくは、上記のpHの範囲が挙げられる。緩衝液の緩衝成分の濃度としては、1M以下が好ましく、500mM以下がより好ましく、400mM以下がより好ましく、300mM以下がより好ましく、200mM以下がより好ましく、100mM以下がより好ましく、90mM以下がより好ましく、80mM以下がより好ましい。高濃度の緩衝成分がタンパク質に接触するとタンパク質が変性する場合がある。緩衝成分の濃度が上記のように比較的低い緩衝液は、タンパク質液と混合した際にfEPOを含むタンパク質に与えるダメージが小さいため好ましい。なお特許文献6では、約5M~約6Mの酢酸ナトリウムを含む酸性緩衝液を卵白と混合することが記載されているが、このような高濃度の酸性ナトリウムを含む緩衝液は、卵白を変性させる可能性が高いと考えられる。なお本実施形態において緩衝液の緩衝成分の濃度の上限は特限定されないが、典型的には1mM以上であり、10mM以上がより好ましく、20mM以上がさらに好ましい。緩衝成分の濃度は、緩衝成分が塩の形態で含まれるか遊離体の形態として含まれるかに関わらず、全て遊離体の形態で存在するものとして換算した濃度である。 The buffer solution is not particularly limited. For example, a buffer solution containing at least one selected from glycine, phthalic acid, citric acid, succinic acid, acetic acid and phosphoric acid can be used. In addition, those having low biotoxicity suitable for the production of pharmaceuticals are preferable. For example, acetate buffer is preferable because it is easy to use. In view of the isoelectric point of fEPO (fEPO consisting of the amino acid sequence of SEQ ID NO: 3 is estimated to have an isoelectric point of 8.2 from the amino acid sequence), a buffer solution having a buffering action in the acidic region is preferably used. Can be used. The buffering action is an action in which the pH hardly fluctuates even when an acid or a base is added or the concentration changes due to evaporation or dilution. The acidic range preferably includes the above pH range. The concentration of the buffer component in the buffer is preferably 1 M or less, more preferably 500 mM or less, more preferably 400 mM or less, more preferably 300 mM or less, more preferably 200 mM or less, more preferably 100 mM or less, and more preferably 90 mM or less. 80 mM or less is more preferable. Proteins may be denatured when high concentration buffer components come in contact with the protein. A buffer solution having a relatively low concentration of the buffer component as described above is preferable because the damage given to the protein containing fEPO is small when mixed with the protein solution. In Patent Document 6, it is described that an acidic buffer solution containing about 5 M to about 6 M sodium acetate is mixed with egg white. Such a buffer solution containing a high concentration of acidic sodium denatures egg white. The possibility is considered high. In this embodiment, the upper limit of the concentration of the buffer component of the buffer solution is not particularly limited, but is typically 1 mM or more, more preferably 10 mM or more, and further preferably 20 mM or more. The concentration of the buffer component is a concentration converted as if it existed in the form of a free form regardless of whether the buffer component is contained in a salt form or a free form.
 pH調整されたタンパク質液は、好ましくは、タンパク質を好ましくは1mg/mL以上、好ましくは100mg/mL以下、より好ましくは5mg/mL以上、より好ましくは15mg/mL以下の濃度で含有する。また、pH調整されたタンパク質液は、fEPOを好ましくは12.3μg/mL以上、より好ましくは16.6μg/mL以上、好ましくは60.0μg/mL以下、より好ましくは41.7μg/mL以下の濃度で含有する。タンパク質濃度又はfEPOの濃度は、原料タンパク質液として上記の第1の好適な形態、すなわち、fEPOをコードする外来性遺伝子を有するトランスジェニック鳥類の卵を用いて調製されたタンパク質液を用いる場合に特に好適である。ここで、前記のfEPO濃度は、fEPOを、配列番号3に示すアミノ酸配列からなり、水溶性長鎖分子等により化学修飾がされていない、成熟fEPOのポリペプチドとして換算した重量に基づく濃度を指す。 The pH-adjusted protein solution preferably contains protein at a concentration of preferably 1 mg / mL or more, preferably 100 mg / mL or less, more preferably 5 mg / mL or more, more preferably 15 mg / mL or less. The pH-adjusted protein solution preferably has an fEPO of 12.3 μg / mL or more, more preferably 16.6 μg / mL or more, preferably 60.0 μg / mL or less, more preferably 41.7 μg / mL or less. Contains by concentration. The protein concentration or the fEPO concentration is particularly high when the protein solution prepared using the above-mentioned first preferred form, ie, an egg of a transgenic bird having a foreign gene encoding fEPO, is used as the raw protein solution. Is preferred. Here, the above-mentioned fEPO concentration refers to a concentration based on the weight of fEPO converted to a mature fEPO polypeptide that consists of the amino acid sequence shown in SEQ ID NO: 3 and is not chemically modified with a water-soluble long chain molecule or the like. .
 タンパク質濃度の測定方法は、水をブランクとして、分光光度計を用いて光路長1cmの石英セルを用いて280nmの吸光度により求める。このとき、吸光度が分光光度計の分析感度の上限を超えないよう、分析試料は水で希釈して測定するともに、320nmの吸光度の値を用いてバックグランド補正する。具体的には、(280nmの吸光度-320nmの吸光度)×希釈倍率×0.959としてタンパク質濃度(mg/mL)を算出する。 The protein concentration is determined by measuring absorbance at 280 nm using a quartz cell having an optical path length of 1 cm using a spectrophotometer with water as a blank. At this time, in order that the absorbance does not exceed the upper limit of the analytical sensitivity of the spectrophotometer, the analytical sample is measured by diluting with water, and the background is corrected using the absorbance value of 320 nm. Specifically, the protein concentration (mg / mL) is calculated as (absorbance at 280 nm−absorbance at 320 nm) × dilution rate × 0.959.
 fEPO濃度(ng/mL)の測定方法は、EPO-ELISAキット(Roche社製)を用いて、前処理後卵白原料とfEPO標準品(自社管理)を測定する。標準品から4.0~1.1ng/mLの検量線を作成し、次式を用いてタンパク質液中のエリスロポエチン濃度を算出する。式:濃度(ng/mL)=(吸光度の平均値-切片)/傾き×希釈率として計算する。 Measure the fEPO concentration (ng / mL) by measuring pre-treated egg white raw material and fEPO standard product (in-house management) using an EPO-ELISA kit (Roche). A calibration curve of 4.0 to 1.1 ng / mL is prepared from the standard product, and the erythropoietin concentration in the protein solution is calculated using the following formula. Calculated as the formula: concentration (ng / mL) = (average value of absorbance−intercept) / slope × dilution ratio.
<析出物除去工程>
 pH調整工程によりpH調整されたタンパク質液は、そのまま精製工程での処理に用いてもよいし、精製工程の前に、pH調整工程においてpH調整されたタンパク質液から析出物を除去する析出物除去工程を行ってもよい。pH調整工程での析出物は、上記の通り、タンパク質成分と考えられる。
<Precipitate removal step>
The protein solution whose pH has been adjusted by the pH adjustment step may be used for the treatment in the purification step as it is, or before the purification step, the precipitate is removed from the protein solution whose pH has been adjusted in the pH adjustment step. You may perform a process. As described above, the precipitate in the pH adjustment step is considered to be a protein component.
 析出物除去工程は、pH調整後のタンパク質液からろ過、遠心処理等の任意の手段により析出物を除去し、析出物量が低減されたタンパク質液を回収する工程である。析出物除去工程を行うことにより、不要なタンパク質の量を低減して精製効率を高めることができるとともに、精製工程におけるタンパク質液の取り扱いが容易になる。 The precipitate removal step is a step of removing the precipitate from the pH-adjusted protein solution by any means such as filtration and centrifugation, and recovering the protein solution with a reduced amount of precipitate. By performing the precipitate removal step, the amount of unnecessary protein can be reduced to increase the purification efficiency, and the handling of the protein solution in the purification step is facilitated.
 ろ過により析出物を分離する方法としては、好ましくは平均孔径0.5μm以上、25μm以下、より好ましくは平均孔径0.2μm以上、5μm以下のフィルターを用いた濾過が挙げられる。遠心処理により析出物を分離する方法としては、5,000×g~10,000×gの遠心分離をする方法が挙げられる。 As a method for separating the precipitate by filtration, filtration using a filter having an average pore size of preferably 0.5 μm or more and 25 μm or less, more preferably an average pore size of 0.2 μm or more and 5 μm or less can be mentioned. Examples of the method for separating the precipitates by centrifugation include a method of centrifuging at 5,000 × g to 10,000 × g.
<精製工程>
 精製工程は、pH調整工程においてpH調整されたタンパク質液を、必要に応じて析出物除去工程を行った後に、陽イオン交換基を備えた担体に接触させてfEPOを吸着させ、次いで吸着されたfEPOを前記担体から溶出させることを含む。
<Purification process>
In the purification step, the protein solution whose pH was adjusted in the pH adjustment step was subjected to a precipitate removal step as necessary, and then contacted with a carrier having a cation exchange group to adsorb fEPO, and then adsorbed. elution of fEPO from the carrier.
 陽イオン交換基としてはスルホン酸基(-SO )を含む強い陽イオン交換基、カルボキシル基(-COO)を含む弱い陽イオン交換基等が挙げられる。スルホン酸基を含む強い陽イオン交換基としては具体的にはスルホプロピル(SP)等が挙げられる。カルボキシル基を含む弱い陽イオン交換基としては具体的にはカルボキシメチル(CM)が挙げられる。 Strong cation exchange group including a carboxyl group - as the cation exchange group a sulfonic acid group (-SO 3) (-COO -), etc. Weak cation exchange groups comprising the like. Specific examples of the strong cation exchange group containing a sulfonic acid group include sulfopropyl (SP). Specific examples of the weak cation exchange group containing a carboxyl group include carboxymethyl (CM).
 陽イオン交換基が連結される担体は、イオン交換クロマトグラフィーの分野で一般的に用いられる担体であれば特に限定されず、例えばスチレン系担体、アガロース系担体、セルロース系担体を用いることができる。スチレン系担体としてはスチレンとジビニルベンゼンとを共重合させた架橋高分子から構成される担体が挙げられ、市販品としてはGEヘルスケア・ジャパン株式会社から市販されている商品名MiniBeads、MonoBeads、SOURCE15、SOURCE30が例示できる。アガロース系担体の市販品としてはGEヘルスケア・ジャパン株式会社から市販されている商品名Sepharose High Performance、Sepharose Fast Flow、Sepharose 4 Fast Flow、Sepharose XL、Sepharose Big Beads等のSepharoseシリーズの担体が挙げられる。セルロース系担体としてはJNC株式会社から市販されている商品名セルファインMAXシリーズの担体が挙げられる。 The carrier to which the cation exchange group is linked is not particularly limited as long as it is a carrier generally used in the field of ion exchange chromatography. For example, a styrene carrier, an agarose carrier, or a cellulose carrier can be used. Examples of the styrenic carrier include a carrier composed of a crosslinked polymer obtained by copolymerizing styrene and divinylbenzene, and commercially available products include trade names MiniBeads, MonoBeads, and SOURCE15 commercially available from GE Healthcare Japan. SOURCE 30 can be exemplified. Commercially available agarose-based carriers include trade names such as Sepharose High Performance, Sepharose Fast Flow, Sepharose 4 Fast Flow, Sepharose XL, Sepharose XL, and Sepharose BegBesBegBeseBegBeseBegBesBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBsBgBeBeBeBeBgBBeBeBeBgBB . Cellulose-based carriers include those of the trade name Cellufine MAX series commercially available from JNC Corporation.
 陽イオン交換基を備えた担体(以下「陽イオン交換体」という)に接触させるタンパク質液として、上記のpH調整工程によりpHが4以上、7以下に調整されているタンパク質液を用いることで、陽イオン交換体での精製でのfEPOの収率を高めることができるため好ましい。この観点からは、陽イオン交換体に接触させるタンパク質液のpHは特に4.1以上、4.2以上、4.3以上、4.4以上、4.5以上、4.6以上、4.7以上、4.8以上、4.9以上、5.0以上とすることが好ましく、これらの範囲のなかでも特に4.4以上又はより高いpH値の範囲であることが好ましい。この収率の観点から陽イオン交換体に接触させるタンパク質液のpHの上限は特に限定されないが、好ましくは6.5以下、6.4以下、6.3以下、6.2以下、6.1以下、6.0以下、5.9以下、5.8以下、5.7以下、5.6以下、5.5以下、5.4以下、5.3以下、5.2以下である。 By using a protein solution whose pH is adjusted to 4 or more and 7 or less by the pH adjusting step as a protein solution to be contacted with a carrier having a cation exchange group (hereinafter referred to as “cation exchanger”), This is preferable because the yield of fEPO in the purification with a cation exchanger can be increased. From this viewpoint, the pH of the protein solution brought into contact with the cation exchanger is particularly 4.1 or higher, 4.2 or higher, 4.3 or higher, 4.4 or higher, 4.5 or higher, 4.6 or higher, 4.6 or higher. It is preferably 7 or more, 4.8 or more, 4.9 or more, or 5.0 or more. Among these ranges, it is particularly preferably 4.4 or more or a higher pH value range. The upper limit of the pH of the protein solution brought into contact with the cation exchanger is not particularly limited from the viewpoint of the yield, but is preferably 6.5 or less, 6.4 or less, 6.3 or less, 6.2 or less, 6.1 or less. Below, it is 6.0 or less, 5.9 or less, 5.8 or less, 5.7 or less, 5.6 or less, 5.5 or less, 5.4 or less, 5.3 or less, 5.2 or less.
 また、陽イオン交換体に接触させるタンパク質液として、上記のpH調整工程によりpHが4以上、7以下に調整されているタンパク質液を用いることは、fEPOの活性を保持する観点からも好ましい。この観点からは、陽イオン交換体に接触させるタンパク質液のpHは特に4.1以上、4.2以上、4.3以上、4.4以上、4.5以上、4.6以上、4.7以上、4.8以上、4.9以上、5.0以上とすることが好ましく、これらの範囲のなかでも特に4.8以上又はより高いpH値の範囲であることが好ましい。この活性の観点から陽イオン交換体に接触させるタンパク質液のpHの上限は特に限定されないが、好ましくは6.5以下、6.4以下、6.3以下、6.2以下、6.1以下、6.0以下である。 In addition, it is also preferable from the viewpoint of maintaining the activity of fEPO to use a protein solution whose pH is adjusted to 4 or more and 7 or less by the pH adjusting step as a protein solution to be brought into contact with the cation exchanger. From this viewpoint, the pH of the protein solution brought into contact with the cation exchanger is particularly 4.1 or higher, 4.2 or higher, 4.3 or higher, 4.4 or higher, 4.5 or higher, 4.6 or higher, 4.6 or higher. It is preferable to set it as 7 or more, 4.8 or more, 4.9 or more, and 5.0 or more, and it is preferable that it is especially the range of 4.8 or more or a higher pH value among these ranges. From the viewpoint of this activity, the upper limit of the pH of the protein solution to be contacted with the cation exchanger is not particularly limited, but is preferably 6.5 or less, 6.4 or less, 6.3 or less, 6.2 or less, 6.1 or less. , 6.0 or less.
 このように、pH調整工程において所定のpH範囲に調整したタンパク質液を陽イオン交換体と接触させることにより、陽イオン交換基を含む担体を用いたfEPOの精製の収率の向上と、fEPOの活性保持において有利な効果を奏することができる。pH調整工程により、析出物の形成を促進することができることは既述の通りである。このように、pH調整工程とその後のfEPOの精製工程とを一貫したpH条件で行うことにより、fEPOの活性を保持できるとともに精製効率を向上させることができる。 Thus, by bringing the protein solution adjusted to the predetermined pH range in the pH adjustment step into contact with the cation exchanger, the yield of purification of fEPO using the carrier containing the cation exchange group is improved, and the fEPO An advantageous effect in maintaining the activity can be obtained. As described above, the formation of precipitates can be promoted by the pH adjustment step. Thus, by performing the pH adjustment step and the subsequent purification step of fEPO under consistent pH conditions, the activity of fEPO can be maintained and the purification efficiency can be improved.
 pH調整されたタンパク質液を、陽イオン交換体に接触させる際は、まず、陽イオン交換体をカラム等に充填して形成したベッドを、fEPOの等電点よりも低いpHに調整された吸着用緩衝液で満たして平衡化することが好ましい。吸着用緩衝液は、pH調整工程で用いる緩衝液と実質的に同じ緩衝液(緩衝液の緩衝成分の濃度も実質的に同じである方が好ましい)、例えば、酢酸緩衝液、リン酸緩衝液、クエン酸緩衝液等であるが、fEPOの等電点を鑑みると酸性領域において緩衝作用を有する吸着用緩衝液を好適に用いることができる。前記酸性領域のpH値としては、陽イオン交換体に接触させるタンパク質液の上記のpH値と同様の範囲から選択することができ、好ましくは、陽イオン交換体に接触させるタンパク質液と実質的に同じpH値とすることができる。前記緩衝作用とは、酸や塩基が添加されたり、蒸発や希釈によって濃度が変化したりしても、ほとんどpHが変動しないという作用である。fEPOは、配列番号3に示すアミノ酸配列から等電点が8.2と推測され、酸性pH条件では正に荷電すると考えられる。このため、酸性領域において緩衝作用を有する前記吸着用緩衝液中で陽イオン交換体に前記タンパク質液を接触させると、fEPOは前記陽イオン交換体に高確率で吸着することができ、fEPOを精製することができる。この効果は、原料タンパク質液として上記の第1の好適な形態、すなわち、fEPOをコードする外来性遺伝子を有するトランスジェニック鳥類の卵を用いて調製されたタンパク質液を用いる場合に特に顕著である。既述の通り、トランスジェニック鳥類の卵に含まれる主要タンパク質の多くは酸性領域に等電点を有しており酸性条件下では陽イオン交換体に吸着しにくいことから、酸性領域に緩衝作用を有する前記吸着用緩衝液中では、前記主要タンパク質と混在しているfEPOを選択的に前記陽イオン交換体に吸着することができると考えられる。 When contacting the pH-adjusted protein solution with the cation exchanger, first, the bed formed by packing the cation exchanger in a column or the like is adsorbed at a pH lower than the isoelectric point of fEPO. It is preferable to fill and equilibrate with the working buffer. The buffer for adsorption is substantially the same as the buffer used in the pH adjustment step (preferably the concentration of the buffer component of the buffer is also substantially the same), for example, acetate buffer, phosphate buffer Although it is a citrate buffer solution or the like, an adsorption buffer solution having a buffering action in an acidic region can be suitably used in view of the isoelectric point of fEPO. The pH value of the acidic region can be selected from the same range as the pH value of the protein solution to be contacted with the cation exchanger, preferably substantially the same as the protein solution to be contacted with the cation exchanger. The same pH value can be obtained. The buffering action is an action in which the pH hardly fluctuates even when an acid or a base is added or the concentration changes due to evaporation or dilution. fEPO is estimated to have an isoelectric point of 8.2 from the amino acid sequence shown in SEQ ID NO: 3, and is considered to be positively charged under acidic pH conditions. For this reason, when the protein solution is brought into contact with the cation exchanger in the adsorption buffer having a buffering action in the acidic region, fEPO can be adsorbed to the cation exchanger with high probability, and the fEPO is purified. can do. This effect is particularly remarkable when the protein solution prepared using the above-described first preferred form, ie, an egg of a transgenic bird having an exogenous gene encoding fEPO, is used as the raw material protein solution. As mentioned above, many of the major proteins contained in the eggs of transgenic birds have an isoelectric point in the acidic region and are difficult to adsorb on the cation exchanger under acidic conditions, so they have a buffering effect on the acidic region. It is considered that fEPO mixed with the main protein can be selectively adsorbed to the cation exchanger in the adsorption buffer solution.
 pH調整されたタンパク質液を平衡化された陽イオン交換体のベッドに負荷して、fEPOを陽イオン交換体に吸着させ、必要に応じてベッドを洗浄する。その後、前記吸着用緩衝液に塩類を加えて段階的に又は連続的にイオン強度を高めた溶出用緩衝液を、fEPOが吸着された陽イオン交換体のベッドを通過させて、fEPOを溶出させ、fEPO含有液として回収する。溶出用緩衝液のイオン強度は100mM以上、300mM以下が好ましい。陽イオン交換体を用いた精製は20℃以上、25℃以下の温度の範囲内で行うことが好ましい。洗浄に用いる洗浄用緩衝液及び前記吸着用緩衝液のpHは、陽イオン交換体に接触させるタンパク質液と実質的に同じpH値とすることができる。 ∙ Load the pH-adjusted protein solution onto the equilibrated cation exchanger bed, adsorb fEPO onto the cation exchanger, and wash the bed as necessary. Thereafter, an elution buffer whose ionic strength is increased stepwise or continuously by adding salts to the adsorption buffer is passed through a bed of a cation exchanger on which fEPO is adsorbed to elute fEPO. , Recovered as a fEPO-containing liquid. The ionic strength of the elution buffer is preferably 100 mM or more and 300 mM or less. The purification using a cation exchanger is preferably performed within a temperature range of 20 ° C. or more and 25 ° C. or less. The pH of the washing buffer used for washing and the adsorption buffer can be set to substantially the same pH value as the protein solution brought into contact with the cation exchanger.
 陽イオン交換体を用いた精製は、前記析出物除去工程以外のfEPOの精製工程としては最初に行うことが好ましい。その理由は、原料として用いるタンパク質液にアルブミンが大量に含まれる場合に、それを最初に除くことで、精製倍率を上げることができるためである。 The purification using a cation exchanger is preferably performed first as the fEPO purification step other than the precipitate removal step. The reason is that when a large amount of albumin is contained in the protein solution used as a raw material, the purification rate can be increased by removing it first.
 本発明の精製工程では、陽イオン交換体を用いた精製以外に、更なるタンパク質精製処理によりfEPOを精製する工程を組み合わせてもよい。他の精製処理としては、塩析、吸着クロマトグラフィー、イオン交換クロマトグラフィー、サイズ排除クロマトグラフィー、抗体カラム法等を単独で、もしくは組み合わせて使用することができる。また例示されていない他のタンパク質精製処理を行ってもよい。吸着クロマトグラフィーとしては、色素アフィニティークロマトグラフィー、ヘパリンアフィニティクロマトグラフィー、金属イオンアフィニティクロマトグラフィー等が挙げられる。色素アフィニティークロマトグラフィーとしてはCibacron Blue 3G等のトリアジン色素が連結した固相担体を利用したものが挙げられる。ただし、本発明の方法は、より好ましくは色素アフィニティークロマトグラフィーにより精製する工程を含まない。色素アフィニティークロマトグラフィーにより精製する工程を含まないことにより、色素が目的とする精製fEPOに混入することを回避することができるためである。イオン交換クロマトグラフィーとしては上述の陽イオン交換クロマトグラフィーのほかに、陰イオン交換クロマトグラフィーも利用することができる。 In the purification step of the present invention, in addition to purification using a cation exchanger, a step of purifying fEPO by further protein purification treatment may be combined. As other purification treatments, salting out, adsorption chromatography, ion exchange chromatography, size exclusion chromatography, antibody column method and the like can be used alone or in combination. Moreover, you may perform the other protein purification process which is not illustrated. Examples of the adsorption chromatography include dye affinity chromatography, heparin affinity chromatography, metal ion affinity chromatography and the like. Examples of the dye affinity chromatography include those using a solid support to which a triazine dye such as Cibacron Blue 3G is linked. However, the method of the present invention preferably does not include a step of purification by dye affinity chromatography. This is because by not including the step of purification by dye affinity chromatography, it is possible to prevent the dye from being mixed into the target purified fEPO. As the ion exchange chromatography, in addition to the above cation exchange chromatography, anion exchange chromatography can also be used.
 複数の精製処理を行う場合、必要に応じて、処理間でfEPOを含むタンパク質を溶解する緩衝液を交換することができる。緩衝液の交換は限外ろ過や透析を利用する通常の方法により行うことができる。 When performing a plurality of purification treatments, a buffer solution for dissolving a protein containing fEPO can be exchanged between treatments as necessary. The exchange of the buffer solution can be performed by a normal method using ultrafiltration or dialysis.
<水溶性長鎖分子付加工程>
 本発明では、より好ましくは、精製工程において精製されたfEPOを水溶性長鎖分子で化学修飾して水溶性長鎖分子付加fEPOを得る水溶性長鎖分子付加工程を更に含む。
<Water-soluble long chain molecule addition step>
More preferably, the present invention further includes a water-soluble long-chain molecule addition step of chemically modifying fEPO purified in the purification step with a water-soluble long-chain molecule to obtain water-soluble long-chain molecule-added fEPO.
 水溶性長鎖分子としては特に限定されないが、例えばPEG(ポリエチレングリコール)、ポリアミノ酸、ポリプロピレングリコール等が使用できる。これらは反応前駆体を作製し、合成反応によりタンパク質に付加することができる。このうち、PEGは抗原性がなく無毒であるため、修飾タンパク質の抗原性を低下させ、副作用としての抗タンパク質抗体の発現を抑える点からも有効である。 The water-soluble long-chain molecule is not particularly limited, and for example, PEG (polyethylene glycol), polyamino acid, polypropylene glycol and the like can be used. These produce reaction precursors and can be added to proteins by synthetic reactions. Among these, since PEG has no antigenicity and is nontoxic, it is effective from the viewpoint of reducing the antigenicity of the modified protein and suppressing the expression of anti-protein antibodies as a side effect.
 fEPOをマウス、ラット等のげっ歯類に投与し造血効果を確認すると、血中単回投与後4日目に網状赤血球の増加が最大となり、7日目に効果がなくなることが報告されているが、PEGを付加すると肝臓での代謝が阻害され、血中寿命が延びることにより薬効持続期間が延長され、ラット造血実験では2倍の14日間効果が持続することが知られている。 When fEPO is administered to rodents such as mice and rats to confirm the hematopoietic effect, it has been reported that the increase in reticulocytes is greatest on the 4th day after a single administration in blood and disappears on the 7th day. However, it is known that addition of PEG inhibits metabolism in the liver and prolongs the life span in blood, thereby extending the duration of drug efficacy, and in rat hematopoietic experiments it is known that the effect lasts 14 days.
 付加されるPEG等の水溶性長鎖分子の分子量の増大に伴い、水溶性長鎖分子-fEPO複合体の血中寿命は増大する。しかし、極めて高分子の水溶性長鎖分子を付加することはfEPOの造血活性を阻害するため(WO02/032957)、水溶性長鎖分子の重量平均分子量は、5kDa以上、40kDa以下がインビボ造血効果を最大にする上で好ましく、より好ましくは10kDa以上であり、より好ましくは30kDa以下である。更に好ましくは20kDaである。 As the molecular weight of the water-soluble long-chain molecule such as PEG added increases, the blood life of the water-soluble long-chain molecule-fEPO complex increases. However, since the addition of a very high molecular weight water-soluble long chain molecule inhibits the hematopoietic activity of fEPO (WO02 / 032957), the weight average molecular weight of the water-soluble long chain molecule is 5 kDa or more and 40 kDa or less in vivo hematopoietic effect. Is preferably 10 kDa or more, more preferably 30 kDa or less. More preferably, it is 20 kDa.
 fEPOには少なくとも3個所の水溶性長鎖分子の結合可能部位があり、ひとつのfEPOポリペプチドに結合する水溶性長鎖分子は1(モノ)、2(ジ)、3(トリ)分子が可能であるが、複数箇所にPEGが結合することでEPOのレセプター結合能が阻害されインビボ活性を低下させることから、モノ体又はジ体が好ましく、ジ体が特に好ましい。 fEPO has at least three water-soluble long-chain molecule binding sites, and 1 (mono), 2 (di), and 3 (tri) molecules can be attached to a single fEPO polypeptide. However, since the binding ability of PEG at multiple sites inhibits the receptor binding ability of EPO and reduces in vivo activity, the mono- or di-form is preferred, and the di-form is particularly preferred.
 本発明において「化学修飾」とは、特定の官能基を化学的に変化させて、活性や反応性などの機能を変化させることを指し、fEPOをPEG等の水溶性長鎖分子で化学修飾するとは、fEPOを構成するポリペプチドが有する官能基(例えば1級アミノ基)と、水溶性長鎖分子が有する官能基とを反応させて共有結合を形成し、fEPOを構成するポリペプチドに水溶性長鎖分子を付加することを指す。 In the present invention, “chemical modification” refers to changing a function such as activity and reactivity by chemically changing a specific functional group. When fEPO is chemically modified with a water-soluble long-chain molecule such as PEG. Reacts with a functional group (for example, primary amino group) possessed by a polypeptide constituting fEPO and a functional group possessed by a water-soluble long-chain molecule to form a covalent bond, and is soluble in the polypeptide constituting fEPO. It refers to the addition of long chain molecules.
 fEPOを水溶性長鎖分子で化学修飾する方法としては、fEPOと水溶性長鎖分子をモル比で約1:1~10となる割合で混合後、4~37℃で混和しながら30~180分間反応させ、反応停止剤として100mMグリシン溶液を約1/10量加え、4~37℃で1時間混和しながら反応を停止させる手法などが挙げられる。 As a method of chemically modifying fEPO with a water-soluble long chain molecule, fEPO and the water-soluble long chain molecule are mixed at a molar ratio of about 1: 1 to 10 and then mixed at 4 to 37 ° C. while mixing at 30 to 180. For example, the reaction may be stopped by adding about 1/10 volume of a 100 mM glycine solution as a reaction terminator and mixing at 4 to 37 ° C. for 1 hour.
 水溶性長鎖分子修飾fEPOは、水溶性長鎖分子の付加数が1又は2以上であって、水溶性長鎖分子修飾された1分子のゲルろ過カラムクロマトグラフィーにより測定した水系溶媒中における見かけの分子量が100kDaから900kDaであるものが好ましく、水溶性長鎖分子の付加数が1であって、上記見かけの分子量が100kDaから500kDaであるもの、又は、水溶性長鎖分子の付加数が2であって、上記見かけの分子量が100kDaから500kDaであるものがより好ましい。上記ゲルろ過カラムクロマトグラフィーによる見かけの分子量の測定は、低圧クロマト装置AKTA explorer 100(アマシャム社製)及びゲルろ過カラムSuperdex 200 10/300(アマシャム社製)を用いて行う。 The water-soluble long-chain molecule modified fEPO has an addition number of water-soluble long-chain molecules of 1 or 2 or more, and the apparent appearance in an aqueous solvent measured by gel filtration column chromatography of one molecule modified with a water-soluble long-chain molecule The molecular weight is preferably from 100 kDa to 900 kDa, the number of water-soluble long chain molecules added is 1, and the apparent molecular weight is from 100 kDa to 500 kDa, or the number of water-soluble long chain molecules added is 2. In addition, it is more preferable that the apparent molecular weight is 100 kDa to 500 kDa. The apparent molecular weight is measured by gel filtration column chromatography using a low-pressure chromatograph AKTA® explorer® 100 (Amersham) and a gel filtration column Superdex® 200/10/300 (Amersham).
 一般に、水溶性長鎖分子をタンパク質に共有結合させる方法としては、タンパク質、又は糖鎖の酸化活性可能な官能基であるポリオール、ラクトール、アミン、カルボン酸又はカルボン酸誘導体との化学反応がある。またスルホネートエステル活性化ポリマー、例えばスルホネートエステル活性化PEGを用いる方法などがある。EPOに付加する場合にもこれらの方法で付加することができる。 Generally, as a method for covalently bonding a water-soluble long chain molecule to a protein, there is a chemical reaction with a polyol, lactol, amine, carboxylic acid or carboxylic acid derivative which is a functional group capable of oxidizing protein or sugar chain. There are also methods using sulfonate ester activated polymers such as sulfonate ester activated PEG. Also when adding to EPO, it can be added by these methods.
 以下、水溶性長鎖高分子がPEGである場合の好ましい形態について説明する。 Hereinafter, a preferable mode when the water-soluble long chain polymer is PEG will be described.
 PEGをタンパク質に共有結合させるために用いるPEG化反応前駆体としては、長鎖分子の片末端をメトキシ化したものが使用できる。さらにメトキシ化されていない末端を、fEPOが有するアミノ基等の求核性基による求核反応を受けて共有結合を形成し得る基に改変した(例えば、スクシンイミジル脂肪酸エステル化した)PEGが開発されており、なかでも次式:
CH-O-(CHCHO)-X-Y
(式中、
Yはスクシンイミジルオキシ基等の脱離基を表し、
Xは
-(CH-C(=O)-
で表される基であり、
mは1以上、8以下、より好ましくは4以上、より好ましくは6以下、最も好ましくは5の整数であり、
nは重合度を示す整数である)
で表されるものが反応性の点から好ましい。前記式で表されるPEG化反応前駆体をヒトEPOと反応させると、N末端又はリジン残基のアミノ基に選択的に付加することが知られている。EPOには複数のリジン残基が存在するため、反応が進むにつれPEGの付加数は増え、付加数の異なる異性体混合物となる。配列番号2からなるfEPOにおいてはアラニン27、リジン71及び/又はリジン78が、配列番号3からなる成熟fEPOにおいてはアラニン1、リジン45及び/又はリジン52が、それぞれPEG化されることが好ましい。
As a PEGylation reaction precursor used for covalently bonding PEG to a protein, one obtained by methoxylation of one end of a long chain molecule can be used. Furthermore, a PEG having a non-methoxylated end modified to a group capable of forming a covalent bond by undergoing a nucleophilic reaction by a nucleophilic group such as an amino group of fEPO (for example, succinimidyl fatty acid esterified) has been developed. Among them, the following formula:
CH 3 —O— (CH 2 CH 2 O) n —XY
(Where
Y represents a leaving group such as a succinimidyloxy group,
X is — (CH 2 ) m —C (═O) —
A group represented by
m is 1 or more and 8 or less, more preferably 4 or more, more preferably 6 or less, and most preferably an integer of 5.
n is an integer indicating the degree of polymerization)
Is preferable from the viewpoint of reactivity. It is known that when a PEGylation reaction precursor represented by the above formula is reacted with human EPO, it is selectively added to the amino group of the N-terminal or lysine residue. Since EPO has a plurality of lysine residues, the number of PEG additions increases as the reaction proceeds, resulting in a mixture of isomers with different numbers of additions. In fEPO consisting of SEQ ID NO: 2, alanine 27, lysine 71 and / or lysine 78 are preferably PEGylated, and in mature fEPO consisting of SEQ ID NO: 3, alanine 1, lysine 45 and / or lysine 52 are preferably PEGylated.
<ウイルス除去工程>
 本発明の方法は、上記水溶性長鎖分子付加工程を行う場合、より好ましくは、水溶性長鎖分子付加工程において得られた水溶性長鎖分子付加fEPOを、フィルターに通してウイルスを除去するウイルス除去工程を更に含む。上記水溶性長鎖分子付加工程では、水溶性長鎖分子付加fEPOが溶解した液状組成物として得られ、該液状組成物を前記フィルターに通液することによりウイルス除去工程を行うことができる。
<Virus removal process>
In the method of the present invention, when the water-soluble long chain molecule addition step is performed, the virus is preferably removed by passing the water-soluble long chain molecule-added fEPO obtained in the water-soluble long chain molecule addition step through a filter. A virus removal step is further included. In the water-soluble long-chain molecule addition step, a liquid composition in which water-soluble long-chain molecule-added fEPO is dissolved is obtained, and the virus removal step can be performed by passing the liquid composition through the filter.
 ここでフィルターとしては不織布、中空糸膜、多孔フィルム等により構成されるフィルターを用いることができる。該フィルターは1~1,000nmの範囲の幅の細孔を有するものが好ましい。 Here, as the filter, a filter composed of a nonwoven fabric, a hollow fiber membrane, a porous film or the like can be used. The filter preferably has pores with a width in the range of 1 to 1,000 nm.
 ウイルス除去工程により除去されるウイルスとしてはヒトパルボウイルス、マウス微小ウイルス、ブタパルボウイルス、脳心筋炎ウイルス、肝炎ウイルス、ヒト免疫不全ウイルスなどが挙げられる。 Examples of viruses removed by the virus removal step include human parvovirus, mouse microvirus, porcine parvovirus, encephalomyocarditis virus, hepatitis virus, and human immunodeficiency virus.
<製剤化工程>
 本発明の方法は、上記水溶性長鎖分子付加工程を行う場合、より好ましくは、水溶性長鎖分子付加工程において得られた水溶性長鎖分子付加fEPOを含み、哺乳動物の体液の浸透圧及びpHと同じ浸透圧及びpHを有する液状組成物を調製する製剤化工程を更に含む。ここで「同じ」とは「実質的に同じ」を包含する。
<Formulation process>
In the method of the present invention, when the water-soluble long-chain molecule addition step is performed, the osmotic pressure of a mammalian body fluid is more preferable. And a formulation step of preparing a liquid composition having the same osmotic pressure and pH as the pH. Here, “same” includes “substantially the same”.
 哺乳動物はネコ、イヌ等の、fEPOの投与の対象となる哺乳動物を指す。対象とする哺乳動物の体液の浸透圧及びpHと同じ浸透圧及びpHを有するfEPO含有液状組成物は、対象とする哺乳動物に皮下投与した際に痛みを引き起こしにくいため好ましい。例えば浸透圧が約280mOsm/KgHOであり、pHが約7.4である体液を有する哺乳動物に投与するのに適した液状組成物を製造する場合には、製剤化工程において調製される前記液状組成物は、浸透圧が好ましくは200mOsm/KgHO以上、400mOsm/KgHO以下、より好ましくは250mOsm/KgHO以上、より好ましくは300mOsm/KgHO以下であり、pHが好ましくは7.0以上、8.0以下、より好ましくは7.3以上、より好ましくは7.7以下である。また、哺乳動物の体液の浸透圧をXmOsm/KgHOとしたとき、前記液状組成物の浸透圧は好ましくは(X±100)mOsm/KgHO、より好ましくは(X±50)mOsm/KgHOとすることもできる。哺乳動物の体液のpHをYとしたとき、前記液状組成物のpHは好ましくは(Y±0.5)、より好ましくは(Y±0.1)とすることもできる。ここで浸透圧とpHは20~25℃において測定した値を指す。 Mammals refer to mammals to which fEPO is administered, such as cats and dogs. An fEPO-containing liquid composition having the same osmotic pressure and pH as the body fluid of the subject mammal is preferred because it hardly causes pain when administered subcutaneously to the subject mammal. For example, when producing a liquid composition suitable for administration to a mammal having a body fluid with an osmotic pressure of about 280 mOsm / KgH 2 O and a pH of about 7.4, it is prepared in a formulation process. the liquid composition, the osmotic pressure of preferably 200 mOsm / KGH 2 O or more, 400 mOsm / KGH 2 O or less, more preferably 250 mOsm / KGH 2 O or more, and more preferably not more than 300mOsm / KgH 2 O, pH is preferably Is 7.0 or more and 8.0 or less, more preferably 7.3 or more, and more preferably 7.7 or less. Further, when the osmotic pressure of the mammalian body fluid is XmOsm / KgH 2 O, the osmotic pressure of the liquid composition is preferably (X ± 100) mOsm / KgH 2 O, more preferably (X ± 50) mOsm / It can also be KgH 2 O. When the pH of the mammalian body fluid is Y, the pH of the liquid composition is preferably (Y ± 0.5), more preferably (Y ± 0.1). Here, osmotic pressure and pH are values measured at 20 to 25 ° C.
<ネコ由来エリスロポエチンの形態>
 本発明の方法で製造される精製されたfEPO、水溶性長鎖分子付加fEPO及び前記液状組成物は、どのような形態で提供されてもよく、例えば非ヒト動物を対象とした薬剤組成物の形態であってもよいし、例えば水中にfEPOを含むfEPO溶液等の、fEPO含有薬剤組成物の製造のための中間品の形態であってもよい。
<Form of erythropoietin derived from cat>
The purified fEPO produced by the method of the present invention, the water-soluble long-chain molecule-added fEPO, and the liquid composition may be provided in any form, for example, a pharmaceutical composition for a non-human animal. For example, it may be in the form of an intermediate product for the production of a pharmaceutical composition containing fEPO, such as an fEPO solution containing fEPO in water.
 本発明の方法で製造される精製されたfEPO、水溶性長鎖分子付加fEPO及び前記液状組成物は、精製されたfEPO又は水溶性長鎖分子付加fEPO以外に水等の溶媒、賦形剤、崩壊剤、結合剤、安定化剤、pH調節剤、浸透圧調節剤及び界面活性剤からなる群から選択される少なくとも1種の成分が組み合わされたものであってよく、該成分は好ましくは、投与対象となる非ヒト動物に対して薬理学的に許容される成分である。本発明の方法で製造される精製されたfEPO、水溶性長鎖分子付加fEPO及び前記液状組成物は、精製されたfEPO又は水溶性長鎖分子付加fEPOに他の添加物が組み合わされたものであってよく、該添加物としては例えば、滑沢剤、コーティング剤、着色剤、凝集防止剤、吸収促進剤、溶解補助剤、健康食品素材、栄養補助食品素材、ビタミン、香料、甘味剤、防腐剤、保存剤及び抗酸化剤からなる群から選択される少なくとも1種の添加物を使用することができる。該添加物は好ましくは、投与対象となる非ヒト動物に対して薬理学的に許容される添加物である。 The purified fEPO, water-soluble long-chain molecule-added fEPO, and the liquid composition produced by the method of the present invention include, in addition to purified fEPO or water-soluble long-chain molecule-added fEPO, a solvent such as water, an excipient, It may be a combination of at least one component selected from the group consisting of a disintegrant, a binder, a stabilizer, a pH adjuster, an osmotic pressure adjuster and a surfactant, and the component is preferably It is a pharmacologically acceptable ingredient for non-human animals to be administered. The purified fEPO, water-soluble long-chain molecule-added fEPO and the liquid composition produced by the method of the present invention are a combination of purified fEPO or water-soluble long-chain molecule-added fEPO and other additives. Examples of such additives include lubricants, coating agents, coloring agents, anti-aggregation agents, absorption promoters, solubilizers, health food materials, nutritional supplement materials, vitamins, fragrances, sweeteners, preservatives At least one additive selected from the group consisting of agents, preservatives and antioxidants can be used. The additive is preferably an pharmacologically acceptable additive for the non-human animal to be administered.
 本発明の方法では、精製されたfEPO又は水溶性長鎖分子付加fEPOを含む溶液、ゲル又は粉末を調整した後、各種製剤の形態にする工程を更に含むことができる。ここで、前記製剤の形態としては、例えば、注射剤、点滴剤、注入剤、外用液剤、貼付剤、塗布剤(クリーム剤、軟膏剤等)、吸入剤、噴霧剤、坐剤、レクタルカプセル剤、皮下埋め込み型徐放製剤、ミセル製剤、ゲル化製剤、リポソーム製剤、及び、膣内投与のためのペッサリー等の非経口投与用の製剤の形態や、経口投与用の製剤の形態が挙げられる。注射剤、点滴剤の適用としては、静脈内、皮下、皮内、筋肉内、臓器内、鼻腔内、点眼、脳内、腹腔内、病巣などが挙げられる。注射剤はプレフィルドシリンジ製剤の形態であってもよい。注入剤の適用としては、直腸内、膣内などが挙げられる。経口投与用の各種製剤としては、錠剤、丸剤、カプセル剤、散剤、細粒剤、顆粒剤等の固形剤や、エキス剤、エリキシル剤、シロップ剤、チンキ剤、リモナーデ剤等の液剤が挙げられる。これらの形態の薬剤のうち、fEPOが液中に溶解した製剤は上記の「fEPO含有液状組成物」に包含される。 The method of the present invention may further include a step of preparing a solution, gel, or powder containing purified fEPO or water-soluble long-chain molecule-added fEPO, and then preparing various preparations. Here, as the form of the preparation, for example, injections, drops, injections, liquids for external use, patches, coating agents (creams, ointments etc.), inhalants, sprays, suppositories, rectal capsules , Subcutaneous implantable sustained-release preparations, micelle preparations, gelled preparations, liposome preparations, and forms of preparations for parenteral administration such as pessaries for intravaginal administration, and forms of preparations for oral administration. Examples of the application of injections and drops include intravenous, subcutaneous, intradermal, intramuscular, intraorgan, intranasal, eye drop, intracerebral, intraperitoneal, and lesion. The injection may be in the form of a prefilled syringe formulation. Examples of the application of the injection include rectal and vagina. Various preparations for oral administration include solid preparations such as tablets, pills, capsules, powders, fine granules and granules, and liquid preparations such as extracts, elixirs, syrups, tinctures and limonades. It is done. Among these forms of drugs, preparations in which fEPO is dissolved in the liquid are included in the above-mentioned “fEPO-containing liquid composition”.
 以下実施例により本発明を詳述するが、本発明はこれらの実施例により限定されるものではない。商品名を記載している場合は特に記述のない限り添付の説明書の指示に従った。 Hereinafter, the present invention will be described in detail by way of examples, but the present invention is not limited to these examples. When the product name was described, the instructions in the attached manual were followed unless otherwise specified.
<実験1>
 トランスジェニックニワトリによるfEPO含有卵白の調製は特開2007-89578に記載の方法を基礎とし改変を加えた方法により行ったが、その工程の要点を以下に記載する。
<Experiment 1>
Preparation of fEPO-containing egg white by a transgenic chicken was carried out by a modified method based on the method described in Japanese Patent Application Laid-Open No. 2007-89578. The main points of the process are described below.
 下記の試験においてfEPOの量は、いずれも、配列番号3に示すアミノ酸配からなるポリペプチド(成熟fEPO)として換算した重量に基づく量である。卵白中に生成されるfEPOは、配列番号3に示すアミノ酸配からなるポリペプチド(成熟fEPO)である。 In the following tests, the amount of fEPO is an amount based on the weight converted as a polypeptide having the amino acid sequence shown in SEQ ID NO: 3 (mature fEPO). FEPO produced in egg white is a polypeptide (mature fEPO) having the amino acid sequence shown in SEQ ID NO: 3.
1.トランスジェニックニワトリを用いたネコ由来EPOを含有する卵白の調製
1.1.ニワトリ胚へのレトロウイルスベクターのマイクロインジェクションと人工孵化
 fEPO発現用レトロウイルスベクターを、ニワトリ胚へマイクロインジェクションし、fEPOを発現するトランスジェニックニワトリを作製した。マイクロインジェクションと人工孵化は無菌条件下で行った。
1. 1. Preparation of egg white containing feline-derived EPO using transgenic chicken 1.1. Microinjection and Artificial Hatching of Retroviral Vector into Chicken Embryos A retroviral vector for fEPO expression was microinjected into chicken embryos to produce transgenic chickens that express fEPO. Microinjection and artificial hatching were performed under aseptic conditions.
 fEPO(プレタンパク質の全長)をコードするDNA塩基配列を配列番号1に示す。 The DNA base sequence encoding fEPO (full length of preprotein) is shown in SEQ ID NO: 1.
 特開2007-89578の実施例5の方法で調製された、fEPO発現用レトロウイルスベクターを含む溶液を用いた。この溶液のウイルス力価は1.6×10cfu/mlであった。ウイルス力価の測定法は特開2007-89578の実施例3に記載の通りである。 A solution containing a retroviral vector for fEPO expression prepared by the method of Example 5 of JP-A-2007-89578 was used. The virus titer of this solution was 1.6 × 10 9 cfu / ml. The method for measuring the virus titer is as described in Example 3 of JP-A-2007-89578.
 ニワトリ受精卵(城山種鶏場製)の外側を消毒液(株式会社昭和フランキ製)及びエタノールで除菌した。孵卵機P-008(B)型(株式会社昭和フランキ製)を38℃、湿度50~60%の環境になるようセットし、電源を入れた時刻を孵卵開始時刻(0時間)とし、以後15分毎に90°転卵しながら孵卵を行った。 The outside of the chicken fertilized egg (manufactured by Shiroyama Breeder) was sterilized with a disinfectant (manufactured by Showa Franchi) and ethanol. Incubator P-008 (B) (made by Showa Franchi Co., Ltd.) was set to 38 ° C and humidity 50-60%, and the power-on time was the incubation start time (0 hour). Incubation was performed while turning 90 ° every minute.
 孵卵開始から約55時間経過後孵卵器から卵を取り出し、鈍端部に1mm程度の穴を開けた。つづいて卵の側面の中央よりやや上部に直径7~10mm程度の穴をあけた。実体顕微鏡システムSZX12(オリンパス社製)下で、フェムトチップII(エッペンドルフ社製)に特開2007-89578の実施例5に記載の手順で調製したウイルス液約2μlを注入し、フェムトジェット(エッペンドルフ社製)を用いて前記穴からニワトリ胚の心臓に注入した。 After about 55 hours from the start of incubation, the egg was taken out from the incubator and a hole of about 1 mm was made in the blunt end. Subsequently, a hole having a diameter of about 7 to 10 mm was made slightly above the center of the side surface of the egg. Under a stereomicroscope system SZX12 (Olympus), femtochip II (Eppendorf) was injected with about 2 μl of the virus solution prepared by the procedure described in Example 5 of JP-A-2007-89578, and femtojet (Eppendorf) And then injected into the heart of the chicken embryo from the hole.
 ウイルス液を注入後スコッチテープBK-15(住友スリーエム社製)で穴をふさぎ、孵卵器に戻して孵卵を続けた。孵卵器の転卵を30分毎に30°転卵に変更した。孵卵開始から1週間後に孵卵器に60cc/minで酸素を供給し孵卵を行った。孵卵開始から19日目に転卵をとめ、自然に孵化するのを待った。自然に孵化し誕生した雛を飼育して成長させて、トランスジェニックニワトリの雌性成体を得た。飼料として、幼雛SXセーフティー及びネオセーフティー17(豊橋飼料株式会社製)を用いた。トランスジェニックニワトリが産卵した卵白中におけるfEPOの発現を、後述のBaF/EPORによる細胞増殖アッセイにより確認した。卵白中のfEPO活性は1.4×104 U/mLであることが確認された。 After injecting the virus solution, the hole was closed with Scotch tape BK-15 (manufactured by Sumitomo 3M), and the egg was returned to the incubator and incubation was continued. The incubator's turning was changed to 30 ° turning every 30 minutes. One week after the start of incubation, oxygen was supplied to the incubator at 60 cc / min for incubation. On the 19th day after the start of incubation, the eggs were turned and waited for natural hatching. The chicks that hatched naturally were bred and grown to obtain a female adult chicken. As feed, young SX safety and Neosafety 17 (manufactured by Toyohashi Feed Co., Ltd.) were used. The expression of fEPO in the egg white laid by the transgenic chicken was confirmed by a cell proliferation assay by BaF / EPOR described later. It was confirmed that the fEPO activity in egg white was 1.4 × 10 4 U / mL.
 卵白中にfEPO活性が確認されたニワトリ個体の卵を回収し、ダイアモンドカッター型割卵機(ミタカ電機社製)を用いて割卵し、卵白分離スリット(ミタカ電機社製)を用いて卵白と卵黄を分離し、卵白のみを回収した。回収した卵白は1mm口径の卵白ストレーナー(三共技研社製)を通液することでせん断した。せん断した卵白10~20Lを、20L容量のタンクへ回収した後、撹拌機を用いて750rpm、5分間攪拌して混合した。攪拌後の卵白を容器に小分けした後、-80℃のフリーザー(日本フリーザー社製 CLN-50CD1)を用いて凍結保管した。 The eggs of chicken individuals whose fEPO activity has been confirmed in the egg white are collected, divided using a diamond cutter type egg breaking machine (made by Mitaka Denki Co., Ltd.), and egg white separated using an egg white separation slit (made by Mitaka Denki Co., Ltd.). The egg yolk was separated and only the egg white was collected. The collected egg white was sheared by passing a 1 mm caliber egg white strainer (manufactured by Sankyo Giken Co., Ltd.). 10 to 20 L of sheared egg white was collected in a 20 L tank, and then stirred and mixed at 750 rpm for 5 minutes using a stirrer. The egg white after stirring was subdivided into containers, and stored frozen using a −80 ° C. freezer (CLN-50CD1 manufactured by Japan Freezer).
 以上の操作を複数回行い、下記の精製処理に必要な量のfEPO含有卵白を調製し凍結した。 The above operation was performed a plurality of times to prepare and freeze the egg white containing fEPO in an amount necessary for the following purification treatment.
1.2.ネコ由来エリスロポエチンの活性測定
 卵白中のfEPOの活性は、EPO依存性細胞株であるBaF/EPORによる細胞増殖アッセイ(特開平10-94393)により行った。細胞増殖アッセイはエポジン(中外製薬株式会社製)を標準エリスロポエチンとして、増殖の検量線を描きそれを元に未知サンプルのエリスロポエチン活性を測った。BaF/EPOR細胞用培地として5%の牛胎児血清(Fetal Bovine Serum,FBS)と50units/mlのペニシリン、ストレプトマイシンを含むRPMI1640リキッド培地(日水製薬株式会社製)を用いた。通常のBaF/EPOR細胞の培養の際には終濃度1 IU/mlとなるようにエポジンを加えた。細胞増殖アッセイには対数増殖期にある細胞を用いた。
1.2. Measurement of the activity of cat-derived erythropoietin The activity of fEPO in egg white was determined by a cell proliferation assay using BaF / EPOR, which is an EPO-dependent cell line (JP-A-10-94393). The cell proliferation assay was performed using epogin (manufactured by Chugai Pharmaceutical Co., Ltd.) as a standard erythropoietin, and a calibration curve for the growth was drawn to measure the erythropoietin activity of unknown samples. RPMI 1640 liquid medium (manufactured by Nissui Pharmaceutical Co., Ltd.) containing 5% fetal bovine serum (FBS), 50 units / ml penicillin and streptomycin was used as the medium for BaF / EPOR cells. Epodin was added to a final concentration of 1 IU / ml during normal BaF / EPOR cell culture. Cells in logarithmic growth phase were used for the cell proliferation assay.
 BaF/EPOR細胞で細胞増殖アッセイを行うため、まず培地中のエポジンを除去した。培養したBaF/EPOR細胞を1000rpmで5分間遠心分離した。上清を取り除き、沈殿にエポジンを含まない培地を10ml加え懸濁した。同様の操作を3度行い培地中のエポジンを除去した。細胞を計数し、エポジンを含まない培地で55555Cells/mlの濃度になるように希釈した。96穴マイクロタイタープレートの各ウェルに90μlずつ播種した。これに、培地で25、16、10、6.4、4.0、2.5、1.6、1.0 IU/mlとなるよう希釈したエポジンを10μlずつ加え、一様になるよう懸濁した(エリスロポエチンの終濃度はそれぞれ2.5、1.6、1.0、0.64、0.4、0.25、0.16、0.1 IU/mlとなる)。 In order to perform a cell proliferation assay with BaF / EPOR cells, first, epodine in the medium was removed. The cultured BaF / EPOR cells were centrifuged at 1000 rpm for 5 minutes. The supernatant was removed, and 10 ml of a medium not containing epogin was added to the precipitate and suspended. The same operation was repeated three times to remove epodine from the medium. The cells were counted and diluted to a concentration of 55555 Cells / ml in medium lacking epogin. 90 μl was seeded in each well of a 96-well microtiter plate. To this, add 10 μl of epodine diluted to 25, 16, 10, 6.4, 4.0, 2.5, 1.6, 1.0 IU / ml in culture medium and suspend evenly. It became turbid (final erythropoietin concentrations were 2.5, 1.6, 1.0, 0.64, 0.4, 0.25, 0.16, 0.1 IU / ml, respectively).
 アッセイに用いるサンプルは培地で2~4倍程度ずつ段階希釈し、検量線の測定範囲内に入るようにし、播種した細胞中に10μlずつ加え、一様になるよう懸濁した。標準サンプル、未知サンプル共に同じものを3点測った。2日間培養し、Cell Counting Kit-8(同人化学研究所社製)溶液を各ウェルに10μlずつ添加した。1~4時間呈色反応を行った後、0.1mol/lの塩酸を10μl加え反応を停止し、マイクロプレートリーダーを用い、450nmの吸光度を測定した。標準サンプルの測定結果を対数近似し、近似式を求めた。求めた近似式より未知サンプルの活性を換算した。fEPOの、エポジンの1 IUに相当する活性を、1 Uとする。 Samples used in the assay were serially diluted by about 2 to 4 times with a medium so as to fall within the measurement range of the calibration curve, and 10 μl each was added to the seeded cells and suspended uniformly. Three points of the same standard sample and unknown sample were measured. After culturing for 2 days, 10 μl of Cell Counting Kit-8 (manufactured by Doujin Chemical Laboratory) was added to each well. After a color reaction for 1 to 4 hours, 10 μl of 0.1 mol / l hydrochloric acid was added to stop the reaction, and the absorbance at 450 nm was measured using a microplate reader. The measurement result of the standard sample was logarithmically approximated to obtain an approximate expression. The activity of the unknown sample was converted from the obtained approximate expression. The activity of fEPO corresponding to 1 IU of Epogin is defined as 1 U.
 活性測定に用いる卵白は、超音波や物理的手法により全体を一様となるように調製した。調製したサンプルは活性測定時まで-80℃で凍結保存した。 The egg white used for the activity measurement was prepared so as to be uniform as a whole by ultrasonic waves or physical methods. The prepared sample was stored frozen at −80 ° C. until the activity was measured.
2.卵白の前処理
 上記1の手順で得られた、fEPOを含有する卵白からfEPOを精製するための前処理として、前記卵白に対して以下の処理を行った。
2. Pretreatment of egg white As the pretreatment for purifying fEPO from the egg white containing fEPO obtained in the above procedure 1, the following treatment was performed on the egg white.
2.1.解凍
 上記1で得られ-80℃のフリーザー内に保管された凍結卵白を容器ごと取り出し、解凍機を用い15℃の温度において14時間かけて解凍し、以降の処理に用いた
2.1. Thawing The frozen egg white obtained in 1 above and stored in the -80 ° C freezer was taken out together with the container, thawed at a temperature of 15 ° C for 14 hours using a thawing machine, and used for the subsequent processing.
2.2.せん断
 解凍後の卵白のせん断処理を次の手順で行った。
2.2. Shear The egg white after thawing was sheared by the following procedure.
 回収した卵白を100L容量のタンクへ40.8kg秤量した後、1mm口径の卵白ストレーナー(三共技研社製)へ通液することでせん断し、100L容量のタンクへ回収した。さらにストレーナー内へ精製水を通液して洗浄し、洗浄液も含めて合計約72L(約72Kg)の卵白液を回収した。 The collected egg white was weighed 40.8 kg into a 100 L capacity tank, and then sheared by passing it through a 1 mm caliber egg white strainer (manufactured by Sankyo Giken Co., Ltd.) and recovered into a 100 L capacity tank. Further, purified water was passed through the strainer for washing, and a total of about 72 L (about 72 kg) of egg white liquid including the washing liquid was collected.
2.3.pH調整
 pH調整用緩衝液として、下記の手順で50mM酢酸-酢酸ナトリウム緩衝液を調整した。
2.3. pH adjustment A 50 mM acetic acid-sodium acetate buffer solution was prepared as a pH adjusting buffer solution by the following procedure.
 5L容量のジョッキ中で、約2L精製水を加え、該水中に、1149.6gの酢酸ナトリウム3水和物(メルク株式会社)と、187.2gの氷酢酸(メルク株式会社)とを加えて十分に撹拌し、4Lにメスアップしたものを、濃縮緩衝液として調製した。 In a 5 L mug, about 2 L of purified water was added, and 1149.6 g of sodium acetate trihydrate (Merck) and 187.2 g of glacial acetic acid (Merck) were added to the water. Thoroughly stirred and made up to 4 L was prepared as a concentrated buffer.
 500L容量のタンクに136Lの精製水を加え、該水中に前記濃縮緩衝液を4L加え、精製水を用いて総量が158Kgとなるようにメスアップし十分に撹拌した。 136 L of purified water was added to a 500 L tank, 4 L of the concentrated buffer solution was added to the water, and the volume was increased to 158 Kg with purified water, followed by thorough stirring.
 500L容量のタンクに、158Kgの前記緩衝液を加え190rpmで撹拌しながら上記実験1の2.2.のせん断処理により得られた約72Kgの卵白液を添加し、次いで精製水を添加して総量が240.0kgとなるように調整した。そして、氷酢酸を添加してpHを5.1に調整して混合液を得た(以下、pH調整済卵白液という)。なお、pH調整済卵白液には酢酸緩衝液と卵白との混合直後から白濁が生じた。 In a 500 L tank, add 158 Kg of the buffer solution and stir at 190 rpm. About 72 Kg of egg white liquid obtained by the shearing treatment was added, and then purified water was added to adjust the total amount to 240.0 kg. Then, glacial acetic acid was added to adjust the pH to 5.1 to obtain a mixed solution (hereinafter referred to as a pH-adjusted egg white solution). The pH-adjusted egg white liquor was clouded immediately after mixing the acetate buffer and egg white.
 pH測定は、ナカライテスク製校正液を使用してpH4及びpH7での2点校正をしたpH計(堀場製作所)を用いて実施した。測定時の溶液温度は22.5±0.5℃とした。特に断りのない限り、本明細書におけるpH値は全てこの条件のもとで測定された値である。 PH measurement was performed using a pH meter (Horiba Seisakusho) that was calibrated at two points at pH 4 and pH 7 using a calibration solution manufactured by Nacalai Tesque. The solution temperature during the measurement was 22.5 ± 0.5 ° C. Unless otherwise specified, all pH values in this specification are values measured under these conditions.
2.4.膜ろ過
 白濁が生じたpH調整済卵白液の膜ろ過を次の手順で行った。
2.4. Membrane filtration Membrane filtration of the pH-adjusted egg white solution in which white turbidity occurred was performed in the following procedure.
 前記2.3.で調製したpH調整済卵白液をポンプで送液し、メッシュ径100~300μmのステンレス製金網を通すことにより、大きな凝集物を除いた。その後、そのろ過液について、精密ろ過膜(孔径0.2~5μmのデプスフィルター、メルクミリポア社製)を用い、およそ20~30LMHの流速でフィルターろ過し、ろ過後の液をタンクに回収した。精密ろ過膜に残った液を、押し出し用緩衝液160kgを流して回収した。 2.3. The pH-adjusted egg white solution prepared in (1) was pumped and passed through a stainless steel wire mesh with a mesh diameter of 100 to 300 μm to remove large aggregates. Thereafter, the filtrate was filtered using a microfiltration membrane (depth filter with a pore diameter of 0.2 to 5 μm, manufactured by Merck Millipore) at a flow rate of about 20 to 30 LMH, and the filtrated liquid was collected in a tank. The liquid remaining on the microfiltration membrane was collected by flowing 160 kg of the extrusion buffer solution.
 タンクに回収されたろ液を攪拌し均一化した後、0.2μm(メルクミリポア社製)のフィルターを通して、無菌的にバッグに充填した。 The filtrate collected in the tank was stirred and homogenized, and then aseptically filled through a 0.2 μm (Merck Millipore) filter.
 上記で用いる押し出し用の緩衝液として、下記の手順で酢酸-酢酸ナトリウム緩衝液(pH5.1)を調整した。1L容量のビーカー中に1000gの精製水を加え、該水中に、383.2gの酢酸ナトリウム3水和物(メルク株式会社)と、63.68gの氷酢酸(メルク株式会社)とを加え十分に撹拌した。粉末が完全に溶解したことを目視で確認した後に撹拌を停止し、精製水79.0kgと混合して、pHを測定してpH5.10±0.05であることを確認した。この操作を繰り返して合計160kgの押し出し用緩衝液を作製した。 As the extrusion buffer solution used above, an acetic acid-sodium acetate buffer solution (pH 5.1) was prepared by the following procedure. Add 1000 g of purified water to a 1 L beaker and add 383.2 g of sodium acetate trihydrate (Merck) and 63.68 g of glacial acetic acid (Merck) to the water. Stir. After visually confirming that the powder was completely dissolved, the stirring was stopped, mixed with 79.0 kg of purified water, and the pH was measured to confirm that the pH was 5.10 ± 0.05. This operation was repeated to produce a total of 160 kg of extrusion buffer solution.
 膜ろ過後の卵白処理液(以下「前処理後卵白原料」とする)のタンパク質濃度は7.4mg/mL、fEPO濃度は15.9μg/mL以上、pH値は5.12であった。 The protein concentration of the egg white treatment liquid after membrane filtration (hereinafter referred to as “pretreated egg white raw material”) was 7.4 mg / mL, the fEPO concentration was 15.9 μg / mL or more, and the pH value was 5.12.
 タンパク質濃度の測定方法:前処理後卵白原料を精製水で希釈し遠心分離またはフィルターろ過により沈殿物を除去する。これを分光光度計と光路長1cmの石英セルを用いて波長280nmと320nmの吸光度を測定し次式からタンパク質量を算出する。式:タンパク質量(mg/mL)=(Abs280-Abs320)×0.959×希釈倍率
 fEPO濃度の測定方法:EPO-ELISAキット(Roche社製)を用いて、前処理後卵白原料と、PEG化されていない成熟fEPO標準品(自社管理)を測定する。標準品から4.0~1.1ng/mLの検量線を作成し、次式を用いて前処理後卵白原料中のエリスロポエチン濃度を算出する。式:濃度(ng/mL)=(吸光度の平均値-切片)/傾き×希釈率
Method for measuring protein concentration: After pretreatment, the egg white raw material is diluted with purified water, and the precipitate is removed by centrifugation or filter filtration. The absorbance at wavelengths of 280 nm and 320 nm is measured using a spectrophotometer and a quartz cell having an optical path length of 1 cm, and the amount of protein is calculated from the following equation. Formula: Protein amount (mg / mL) = (Abs280-Abs320) × 0.959 × dilution ratio Measurement method of fEPO concentration: EPO-ELISA kit (Roche), pre-treated egg white raw material and PEGylated Measure mature fEPO standards (in-house management) that have not been completed. A calibration curve of 4.0 to 1.1 ng / mL is prepared from the standard product, and the erythropoietin concentration in the pretreated egg white raw material is calculated using the following formula. Formula: Concentration (ng / mL) = (Average value of absorbance−intercept) / slope × dilution rate
<実験2>
 ニワトリ卵白溶液におけるpHと沈殿物量との関係について調べた。
1.方法
 実験1の「1.1.トランスジェニックニワトリを用いたネコ由来EPOを含有する卵白の調製」に記載の手順で調製したfEPO含有ニワトリ卵白を-20℃で凍結保存したのち、15℃のインキュベータにて一晩インキュベートして解凍した。
<Experiment 2>
The relationship between the pH and the amount of precipitate in chicken egg white solution was investigated.
1. Method The fEPO-containing chicken egg white prepared by the procedure described in “1.1. Preparation of feline-derived EPO using a transgenic chicken” in Experiment 1 was stored frozen at −20 ° C., and then incubator at 15 ° C. Thaw and incubate overnight.
 解凍した卵白を実験1の「2.2.せん断」と同様にストレーナーにてせん断した。 The thawed egg white was sheared with a strainer in the same manner as in “2.2.
 53mMの酢酸ナトリウム水溶液を1500ml作成した。306gのせん断した卵白(卵白の比重1.02)に、前記53mM酢酸ナトリウム溶液1500mlを加え(最終濃度44mM)、スターラにより攪拌して卵白溶液とした。 1500 ml of 53 mM sodium acetate aqueous solution was prepared. To 306 g of sheared egg white (specific gravity of egg white 1.02), 1500 ml of the 53 mM sodium acetate solution (final concentration 44 mM) was added and stirred with a stirrer to obtain an egg white solution.
 卵白溶液100mlを分注し、必要に応じて氷酢酸を添加して、pHを下記の表1又は表2に示す各値に調整した。 100 ml of egg white solution was dispensed, and glacial acetic acid was added as necessary to adjust the pH to each value shown in Table 1 or 2 below.
 pH調整後に再度懸濁してO.D600を測定した。 After re-adjusting the pH, D600 was measured.
 O.D600を測定後、別のガラス容器に移した。 O. After measuring D600, it was transferred to another glass container.
 全てのサンプルを個別にガラス容器に移した後、同時に転倒混和により均一化させた。均一化後、1時間静置した後に写真撮影を行った。 All samples were individually transferred to glass containers and then homogenized by inversion mixing at the same time. After homogenization, the photo was taken after standing for 1 hour.
2.結果
 各サンプルにおける卵白溶液の濁度(O.D600)の測定結果を下記の表1に示す。
Figure JPOXMLDOC01-appb-T000001
2. Results The measurement results of the turbidity (OD 600) of the egg white solution in each sample are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
 また、均一化し1時間静置後の各サンプル(サンプル番号は表1参照)の写真を図1に示す。 Also, a photograph of each sample after uniformization and standing for 1 hour (see Table 1 for sample numbers) is shown in FIG.
 上記の結果から、pH4.00とpH4.91との間で沈殿生成量が変化することが推定された。そこで別のロットの卵白を用い、卵白溶液のpHを4.00、4.40、4.79とした以外はサンプル1~8と同様の手順で卵白溶液の濁度(O.D600)を測定した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
From the above results, it was estimated that the amount of precipitate produced varied between pH 4.00 and pH 4.91. Therefore, the turbidity (OD600) of the egg white solution was measured in the same procedure as Samples 1 to 8, except that the pH of the egg white solution was changed to 4.00, 4.40, and 4.79 using another lot of egg white. did. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
 以上の結果から、pH4~7において、卵白から沈殿物が効率よく生じることが明らかとなった。pH5付近でO.D600の値が最大になることから、沈殿物を取り除くにはpH5.1前後が最適といえる。また、pH4.4~6.1の範囲内、特にpH4.7~6.02の範囲内で沈殿物が効率よく生じることが明らかとなった。 From the above results, it was revealed that precipitates were efficiently generated from egg white at pH 4-7. O. Since the value of D600 is maximized, pH 5.1 is optimal for removing the precipitate. It was also found that precipitates are efficiently generated within the range of pH 4.4 to 6.1, particularly within the range of pH 4.7 to 6.02.
<実験3>
 ニワトリ卵白中には主要なタンパク質としてオボアルブミン、オボムコイド等が含まれる。オボアルブミンの等電点(pI)は4.6であり、オボムコイドのpIは3.9~4.5であることが知られている(生化学辞典第4版、東京化学同人)。一方、配列番号3のアミノ酸配列からなるfEPOは、アミノ酸配列から、pIが8.2と推測される。個々のタンパク質は、溶液のpHにより荷電状態が異なり、pIより高いpH条件下では負に荷電し、pIより低いpH条件下では正に荷電する。上記の通り、ニワトリ卵白中に含まれる主要なタンパク質とfEPOとでpIが異なることから、イオン交換クロマトグラフィーにより、オボアルブミンやオボムコイド等の卵白中の主要タンパク質とfEPOとを分離できると考えられる。
<Experiment 3>
Chicken egg white contains ovalbumin, ovomucoid and the like as main proteins. It is known that the isoelectric point (pI) of ovalbumin is 4.6, and that of ovomucoid is 3.9 to 4.5 (Biochemical Dictionary 4th edition, Tokyo Kagaku Dojin). On the other hand, fEPO consisting of the amino acid sequence of SEQ ID NO: 3 is estimated to have a pI of 8.2 from the amino acid sequence. Individual proteins have different charge states depending on the pH of the solution, and are negatively charged under pH conditions higher than pI and positively charged under pH conditions lower than pI. As described above, since the pI differs between the main protein contained in chicken egg white and fEPO, it is considered that fEPO can be separated from the main protein in egg white such as ovalbumin and ovomucoid by ion exchange chromatography.
 そこで、fEPOが陽イオン交換体に結合する条件およびオボアルブミンを除去できる条件をバッチ法により検討した。 Therefore, the conditions for fEPO binding to the cation exchanger and the conditions for removing ovalbumin were examined by the batch method.
1.方法
1.1.卵白溶液のpH調整
 pH3.5、4.4、5.0、5.6の50mM酢酸ナトリウム溶液を作製して、実験2に記載の方法と同様の手法で解凍・せん断した卵白と混合して、pHが3.5、4.4、5.0、5.6の各pH調整済卵白液を作製した。pH調整済卵白液は遠心分離して沈殿物を除去してから実験に供した。
1. Method 1.1. PH adjustment of egg white solution Prepare 50 mM sodium acetate solution of pH 3.5, 4.4, 5.0, 5.6 and mix with egg white thawed and sheared in the same manner as described in Experiment 2. , PH adjusted egg white liquids of 3.5, 4.4, 5.0, and 5.6 were prepared. The pH-adjusted egg white solution was subjected to an experiment after centrifugation to remove the precipitate.
1.2.陽イオン交換カラム担体への吸着と回収
 本欄に記載の50mM酢酸緩衝液はpH調整済卵白液と同じpHのものを使用した。エタノールに懸濁されている陽イオン交換カラム担体(SP sepharose FastFlow,GEヘルスケア)500μlを遠心分離(1000g,3分)し、上清を捨てた。1mlの1M NaClを加え懸濁後遠心分離(1000g,3分)し、上清を捨てた。1mlの50mM酢酸緩衝液を加え、懸濁後遠心分離(1000g,3分)し、上清を捨てた。再び、1mlの50mM酢酸緩衝液を加え、懸濁後遠心分離(1000g,3分)し、上清を捨てた。沈殿に、500μlの50mM酢酸緩衝液と、前記1.1.欄で調製したpH調整済卵白液250μlとを加え懸濁後1時間室温で振とうした。振とう後、遠心分離(1000g,3分)を行った。沈殿に1mlの50mM酢酸緩衝液を加え、1時間室温で振とうした。1mlの1M NaClを加え1時間室温で振とうした。振とう後遠心分離(1000g,3分)し、上清を「吸着画分」として回収した。回収した各画分のfEPO測定はBaF/EPORによる細胞増殖アッセイ(実験1の「1.2.ネコ由来エリスロポエチンの活性測定」の欄参照)を行った。
1.2. Adsorption and recovery on cation exchange column carrier The 50 mM acetate buffer described in this column was the same pH as the pH-adjusted egg white solution. 500 μl of a cation exchange column carrier (SP sepharose FastFlow, GE Healthcare) suspended in ethanol was centrifuged (1000 g, 3 minutes), and the supernatant was discarded. 1 ml of 1M NaCl was added and suspended, followed by centrifugation (1000 g, 3 minutes), and the supernatant was discarded. 1 ml of 50 mM acetate buffer was added, suspended, centrifuged (1000 g, 3 minutes), and the supernatant was discarded. Again, 1 ml of 50 mM acetate buffer was added, suspended, centrifuged (1000 g, 3 minutes), and the supernatant was discarded. For precipitation, 500 μl of 50 mM acetate buffer and 1.1. After adding 250 μl of pH-adjusted egg white solution prepared in the column and suspending, the mixture was shaken at room temperature for 1 hour. After shaking, centrifugation (1000 g, 3 minutes) was performed. 1 ml of 50 mM acetate buffer was added to the precipitate and shaken for 1 hour at room temperature. 1 ml of 1M NaCl was added and shaken for 1 hour at room temperature. After shaking, the mixture was centrifuged (1000 g, 3 minutes), and the supernatant was collected as an “adsorption fraction”. The fEPO measurement of each collected fraction was performed by a cell proliferation assay by BaF / EPOR (see the column of “1.2. Measurement of activity of cat-derived erythropoietin” in Experiment 1).
 オボアルブミンが除去されているか否かを以下の手順で評価した:各サンプリング液と10mM DTT含サンプルローディングバッファーを等量混和し、約98℃で5分間加熱処理をする。これを12.5%濃度ポリアクリルアミドゲルで電気泳動した後に、銀染色キット(Invitrogen社製)を用いて銀染色して、オボアルブミンバンドの有無を判定した。 Whether or not ovalbumin was removed was evaluated by the following procedure: Equal amounts of each sampling solution and 10 mM DTT-containing sample loading buffer were mixed and heat-treated at about 98 ° C. for 5 minutes. This was electrophoresed on a 12.5% concentration polyacrylamide gel and then silver stained using a silver staining kit (manufactured by Invitrogen) to determine the presence or absence of an ovalbumin band.
2.結果
 結果を表3に示す。
2. Results The results are shown in Table 3.
 吸着画分についての○はfEPOが検出され、かつ、前処理後卵白原料中のfEPO量を100%としたとき50%以上のfEPO量が含まれていたことを表す。 ◯ for the adsorbed fraction indicates that fEPO was detected and that the amount of fEPO was 50% or more when the amount of fEPO in the egg white raw material after pretreatment was 100%.
 オボアルブミン除去に関して、×は吸着画分においてオボアルブミンが全く除去できていないこと指し、△はある程度除去されていることを指し、○は概ね除去できていることを指す。
Figure JPOXMLDOC01-appb-T000003
Regarding ovalbumin removal, x indicates that ovalbumin has not been removed at all in the adsorbed fraction, Δ indicates that it has been removed to some extent, and ○ indicates that it has been generally removed.
Figure JPOXMLDOC01-appb-T000003
 陽イオン交換カラム担体はpH3.5においてfEPOだけでなくオボアルブミンを吸着してしまうのに対して、より高いpH条件ではfEPOを吸着しオボアルブミンを除去できることが明らかとなった。fEPOの吸着量には差が無かったが、オボアルブミンを除去するという目的を達成するには、pH4.4以上が好ましい。 It has been clarified that the cation exchange column carrier adsorbs not only fEPO but also ovalbumin at pH 3.5, whereas it can adsorb fEPO and remove ovalbumin under higher pH conditions. Although there was no difference in the amount of fEPO adsorbed, pH 4.4 or higher is preferable in order to achieve the object of removing ovalbumin.
<実験4>
 AKTAクロマトシステムを用いて、陽イオン交換カラムクロマトグラフィーにおける、fEPOの回収率へのpH条件の影響について、実験3より狭い範囲で確認した。
<Experiment 4>
Using an AKTA chromatography system, the influence of pH conditions on the recovery rate of fEPO in cation exchange column chromatography was confirmed in a narrower range than in Experiment 3.
 実験1の「2.3.pH調整」欄に記載した50mM酢酸緩衝液として、pHが5.1の代わりに4.8、4.9、5.0、5.2のものを用いて、前処理後卵白原料を作製した。よって、取得された前処理後卵白原料のpHは、それぞれ4.8、4.9、5.0、5.2に調整されている。陽イオン交換カラムクロマトグラフィーによる精製は全て20℃の温度条件で行った。 As the 50 mM acetate buffer described in the “2.3. PH adjustment” column of Experiment 1, pH 4.8, 4.9, 5.0, and 5.2 instead of 5.1 were used. An egg white raw material was prepared after pretreatment. Therefore, the pH values of the obtained pretreated egg white raw materials are adjusted to 4.8, 4.9, 5.0, and 5.2, respectively. All purifications by cation exchange column chromatography were performed at a temperature of 20 ° C.
 XK26カラム(GEヘルスケア社製)にSP sepharose FastFlow(SPFF:GEヘルスケア)をベッド高15cm、圧縮率113%で充填した。 An XK26 column (manufactured by GE Healthcare) was packed with SP Sepharose FastFlow (SPFF: GE Healthcare) at a bed height of 15 cm and a compression rate of 113%.
 以下の緩衝液をpH4.8、4.9、5.0、5.2にて作製して、前処理後卵白原料と同じpHの緩衝液を用いて実験を行った。
 A液:50mM酢酸-酢酸ナトリウム緩衝液
 B液:50mM酢酸-酢酸ナトリウム緩衝液/70mM塩化ナトリウム
 C液:50mM酢酸-酢酸ナトリウム緩衝液/150mM塩化ナトリウム
 D液:50mM酢酸-酢酸ナトリウム緩衝液/1M塩化ナトリウム
The following buffer solutions were prepared at pH 4.8, 4.9, 5.0, and 5.2, and experiments were performed using a buffer solution having the same pH as that of the pretreated egg white raw material.
A solution: 50 mM acetic acid-sodium acetate buffer B solution: 50 mM acetic acid-sodium acetate buffer / 70 mM sodium chloride C solution: 50 mM acetic acid-sodium acetate buffer / 150 mM sodium chloride D solution: 50 mM acetic acid-sodium acetate buffer / 1 M Sodium chloride
 A液を通液して平衡化した後に、担体体積1mlに対して、総タンパク質量として88mgの前処理後卵白原料を負荷した。負荷の際の線流速は30cm/hとした。担体に非吸着及び弱く結合しているタンパク質を洗い流すため、B液を3CV通液した。5CVのC液で主画分の溶出を行い、1CVずつ回収した。回収後は泡立たないように混合し、サンプリングした。3CVのD液でカラムに残留している残タンパク質成分の溶出を行った。 After liquid A was passed and equilibrated, 88 mg of pretreated egg white raw material as a total protein amount was loaded per 1 ml of the carrier volume. The linear flow rate during loading was 30 cm / h. In order to wash away non-adsorbed and weakly bound protein on the carrier, the solution B was passed through 3 CV. The main fraction was eluted with 5 CV C solution, and 1 CV was collected at a time. After collection, the mixture was mixed so as not to foam and sampled. The remaining protein components remaining on the column were eluted with 3 CV solution D.
 卵白添加時に非吸着の画分(フロースルー)、洗浄画分、溶出画分、全溶出の画分について、下記の分析を実施した。 The following analysis was performed on the fraction that was not adsorbed at the time of egg white addition (flow-through), the washed fraction, the eluted fraction, and the total eluted fraction.
<分析>
 タンパク質量:上記実験1の「2.4.膜ろ過」で説明したのと同様の手順でタンパク質濃度を測定した。タンパク質濃度×回収液量を総タンパク質量とした。
<Analysis>
Protein amount: The protein concentration was measured by the same procedure as described in “2.4. Membrane filtration” in Experiment 1 above. The protein concentration x the amount of recovered solution was defined as the total protein amount.
 SDS-PAGE:各サンプリング液と10mM DTT含サンプルローディングバッファーを等量混和し、約98℃で5分間加熱処理をする。これを12.5%濃度ポリアクリルアミドゲルで電気泳動した後に、銀染色キット(Invitrogen社製)を用いて銀染色して、OVAの有無を確認した。 SDS-PAGE: Equivalent amounts of each sampling solution and 10 mM DTT-containing sample loading buffer are mixed and heated at about 98 ° C. for 5 minutes. This was electrophoresed on a 12.5% concentration polyacrylamide gel and then silver-stained using a silver staining kit (Invitrogen) to confirm the presence or absence of OVA.
 ELISA:上記実験1の「2.4.膜ろ過」で説明したのと同様の手順で負荷液と溶出画分のfEPO濃度を測定した。fEPO回収率は、溶出画分に含まれるfEPO濃度×回収液量を負荷した卵白原料に含まれるfEPO量で除して算出した。 ELISA: The fEPO concentration of the load solution and the eluted fraction was measured in the same procedure as described in “2.4. Membrane filtration” in Experiment 1 above. The fEPO recovery rate was calculated by dividing by the amount of fEPO contained in the egg white raw material loaded with the concentration of fEPO contained in the eluted fraction × the amount of the recovered solution.
 図2に、溶出チャートを示す。実線は総タンパク質量を、点線はfEPO回収率をそれぞれ示す。総タンパク質量の大部分はOTF(オボトランスフェリン)などの不純物タンパク質であり、相対的なfEPO量は3%程度である。 Fig. 2 shows the elution chart. The solid line indicates the total protein amount, and the dotted line indicates the fEPO recovery rate. Most of the total protein amount is impurity protein such as OTF (ovotransferrin), and the relative fEPO amount is about 3%.
 図3に、陽イオン交換カラムクロマトグラフィーによる精製をpH4.8にて行った際の、分子量マーカーM、精製前の前処理後卵白原料P、非吸着画分F、洗浄画分W、溶出画分E、全溶出画分AのSDS-PAGEの結果を示す。 FIG. 3 shows molecular weight marker M, pre-treated egg white raw material P before purification, non-adsorbed fraction F, washing fraction W, and elution fraction when purification by cation exchange column chromatography is performed at pH 4.8. The results of SDS-PAGE of fraction E and total elution fraction A are shown.
 吸着時のpH条件ごとのfEPO収率を次表に示す。
Figure JPOXMLDOC01-appb-T000004
The fEPO yield for each pH condition during adsorption is shown in the following table.
Figure JPOXMLDOC01-appb-T000004
 図3に示されるように、pH4.8の条件でも、主要な不純物であるオボアルブミン(OVA)は、非吸着画分F及び洗浄画分Wに含まれ、溶出画分Eには混入しないことが確認された。また、pH4.8~5.2でfEPOの回収率は74%以上と高く、pH4.9~5.2では78%以上となりより高いfEPOの回収率となった。 As shown in FIG. 3, even when the pH is 4.8, ovalbumin (OVA), which is a major impurity, is contained in the non-adsorbed fraction F and the washed fraction W and should not be mixed in the eluted fraction E. Was confirmed. Further, the fEPO recovery rate was high at 74% or more at pH 4.8 to 5.2, and 78% or higher at pH 4.9 to 5.2, indicating a higher fEPO recovery rate.
<実験5>
 上記実験1の2.1.の解凍処理を経て得られた卵白液と、上記実験1の2.4.の膜ろ過処理を経て得られた前処理後卵白原料2ロット分について、東機産業社製のTVB-10型粘度計を用いて15℃での粘度を測定した。
 卵白液の粘度:49.2cP(15℃)
 前処理後卵白原料の粘度:3.1cP、2.9cP(15℃)
<Experiment 5>
In Experiment 1, 2.1. And the egg white liquid obtained through the thawing treatment of 2.4 of the above Experiment 1. Viscosity at 15 ° C. was measured using two TVB-10 viscometers manufactured by Toki Sangyo Co., Ltd. for 2 lots of pretreated egg white raw material obtained through the membrane filtration treatment.
Egg white liquor viscosity: 49.2 cP (15 ° C.)
Viscosity of egg white raw material after pretreatment: 3.1 cP, 2.9 cP (15 ° C.)
 この結果は、pH調整及び膜ろ過の工程を経ていない卵白液は粘度が非常に高く、pH調整及び膜ろ過の工程により粘度が低減することを示す。 This result indicates that the egg white liquor not subjected to the pH adjustment and membrane filtration steps has a very high viscosity, and the viscosity is reduced by the pH adjustment and membrane filtration steps.
<実験6>
 fEPO活性のpHによる影響を以下の手順で調べた。
<Experiment 6>
The effect of pH on fEPO activity was examined by the following procedure.
 精製fEPO溶液として、PEG化されていない成熟fEPO換算で、61.5μg/mLのfEPOを含むものを用いた。この精製fEPO溶液は、下記の実験7の「3.更なる精製」の工程で得られたPEG化されていない精製fEPO溶液である。 As the purified fEPO solution, a solution containing 61.5 μg / mL of fEPO in terms of mature fEPO that was not PEGylated was used. This purified fEPO solution is a non-PEGylated purified fEPO solution obtained in the step of “3. Further purification” in Experiment 7 below.
 pH制御のための緩衝液として以下の緩衝液を用意した。 The following buffer solutions were prepared as buffer solutions for pH control.
 pH4.0用緩衝液:50mM酢酸ナトリウム水溶液に酢酸を加えてpH4.0とした。 PH 4.0 buffer: Acetic acid was added to a 50 mM aqueous sodium acetate solution to adjust the pH to 4.0.
 pH5.0用緩衝液:50mM酢酸ナトリウム水溶液に酢酸を加えてpH4.0とした。 PH 5.0 buffer: Acetic acid was added to a 50 mM aqueous sodium acetate solution to adjust the pH to 4.0.
 pH6.0用緩衝液:リン酸緩衝生理食塩水(PBS)に1N塩酸を加えてpH6.0とした。 PH 6.0 buffer: 1N hydrochloric acid was added to phosphate buffered saline (PBS) to adjust pH to 6.0.
 精製fEPO溶液をpH4.0用緩衝液で200倍希釈し、pH5.0用緩衝液及びpH6.0用緩衝液でそれぞれ400倍希釈した希釈液を調製した。 The purified fEPO solution was diluted 200-fold with a pH 4.0 buffer solution, and diluted solutions were prepared each diluted 400-fold with a pH 5.0 buffer solution and a pH 6.0 buffer solution.
 希釈液を室温で3日間静置し、3日後に実験1の1.2.欄に記載のBaF/EPORによる細胞増殖アッセイにより希釈液のエリスロポエチン活性を測定した。活性は、希釈前の精製fEPO溶液1mLあたりの、エポジンとしてのエリスロポエチン活性(U)として表した。各pH条件において3回の測定を行いその平均値を次表に示す。
Figure JPOXMLDOC01-appb-T000005
The diluted solution was allowed to stand at room temperature for 3 days. The erythropoietin activity of the diluted solution was measured by the cell proliferation assay by BaF / EPOR described in the column. The activity was expressed as erythropoietin activity (U) as epogin per 1 mL of purified fEPO solution before dilution. Three measurements were performed under each pH condition, and the average value is shown in the following table.
Figure JPOXMLDOC01-appb-T000005
 この結果は、pHが5以上の場合に、fEPOの活性は保持され易く、pHが5.0付近であればfEPOは失活しにくいためである。 This result is because when the pH is 5 or more, the activity of fEPO is easily retained, and when the pH is around 5.0, fEPO is not easily deactivated.
 そして、上記表3~5から、精製工程におけるクロマトグラフィーをロードする際のタンパク質液のpHが4.4~6.0であれば、オボアルブミンを除去し、fEPOの回収率が高くなることが明らかとなった。また、pHが4.8~5.2であれば、活性を保持しつつ、回収率をより向上させることを見出した。 From Tables 3 to 5 above, if the pH of the protein solution at the time of loading the chromatography in the purification step is 4.4 to 6.0, ovalbumin is removed and the recovery rate of fEPO is increased. It became clear. It was also found that when the pH is 4.8 to 5.2, the recovery rate is further improved while maintaining the activity.
<実験7>
 上記の実験の結果から、卵白をpH5.1にpH調整して膜ろ過を行い、その後にpH5.1で陽イオン交換クロマトグラフィーを行うことが、卵白からfEPOを精製する条件として好ましいと本発明者らは推定した。そこで以下の実験7では、実験1の2.4.欄で調製した前処理後卵白原料(卵白をpH5.1に調整した後に膜ろ過した卵白原料)をpH5.1での陽イオン交換クロマトグラフィーにより精製し、更にPEG化してPEG化fEPO製剤を調製した。
<Experiment 7>
From the results of the above experiments, it is preferable that the pH of egg white is adjusted to pH 5.1, membrane filtration is performed, and then cation exchange chromatography is performed at pH 5.1, as a condition for purifying fEPO from egg white. They estimated. Therefore, in Experiment 7 below, 2.4. The pretreated egg white raw material (egg white raw material obtained by membrane filtration after adjusting the egg white to pH 5.1) prepared in the column is purified by cation exchange chromatography at pH 5.1, and further PEGylated to prepare a PEGylated fEPO preparation did.
1.陽イオン交換クロマトグラフィーによる精製
<工程概要>
 本工程では、実験1の2.4.欄で調製した前処理後卵白原料を陽イオン交換クロマトグラフィー担体に負荷し、fEPOを吸着させた。不純物を洗浄した後、fEPOを溶出させることでfEPOの粗精製を行った。該工程の目標は主不純物であるオボアルブミン(以下OVAと記載する)の除去である。
1. Purification by cation exchange chromatography <Process overview>
In this step, 2.4. The pretreated egg white raw material prepared in the column was loaded on a cation exchange chromatography carrier to adsorb fEPO. After washing the impurities, fEPO was eluted by eluting the crude fEPO. The target of the process is removal of ovalbumin (hereinafter referred to as OVA) which is a main impurity.
<主要機器>
・クロマトグラフィーシステム:AKTAクロマトシステム(GEヘルスケア社製)
 付帯装備:A,Bポンプ、サンプルポンプ、電気伝導度計、吸光度モニター(280nmおよび215nm)、温度計、圧力計
・精製カラム:BPG300カラム(GEヘルスケア社製)
<Main equipment>
-Chromatography system: AKTA chromatography system (manufactured by GE Healthcare)
Attached equipment: A, B pump, sample pump, conductivity meter, absorbance monitor (280 nm and 215 nm), thermometer, pressure gauge / purification column: BPG300 column (manufactured by GE Healthcare)
<精製用担体>
・SP sepharose FastFlow(SPFF:GEヘルスケア)
 ベッド高15cm、圧縮率113%
<Carrier for purification>
・ SP Sepharose FastFlow (SPFF: GE Healthcare)
Bed height 15cm, compression rate 113%
<担体のカラムへのパッキング手法>
 パッキング時のカラムへの通液は、カラムの上から下の方向(以下Down Flowと記載する)で行った。パッキング作業は室温(以下、室温の範囲は、20.0~25.0℃とする)で実施し、カラムの評価およびカラム保管条件も20~25℃とした。
 パッキング液:水
 担体圧縮率(自然沈降体積/充填体積):1.13
 最終ベッド高:15cm
<Method of packing the carrier into the column>
Liquid passing through the column at the time of packing was performed from the top to the bottom of the column (hereinafter referred to as Down Flow). The packing operation was performed at room temperature (the room temperature range was 20.0 to 25.0 ° C. below), and column evaluation and column storage conditions were 20 to 25 ° C.
Packing liquid: water Carrier compressibility (natural sedimentation volume / filling volume): 1.13
Final bed height: 15cm
<緩衝液>
 以下の緩衝液を用いた。
 A液:50mM酢酸-酢酸ナトリウム緩衝液(pH=5.10)
 B液:50mM酢酸-酢酸ナトリウム緩衝液(pH=5.10)/70mM塩化ナトリウム
 C液:50mM酢酸-酢酸ナトリウム緩衝液(pH=5.10)/150mM塩化ナトリウム
 D液:50mM酢酸-酢酸ナトリウム緩衝液(pH=5.10)/1M塩化ナトリウム
<Buffer solution>
The following buffers were used.
Solution A: 50 mM acetic acid-sodium acetate buffer (pH = 5.10)
Solution B: 50 mM acetic acid-sodium acetate buffer (pH = 5.10) / 70 mM sodium chloride Solution C: 50 mM acetic acid-sodium acetate buffer (pH = 5.10) / 150 mM sodium chloride Solution D: 50 mM acetic acid-sodium acetate Buffer (pH = 5.10) / 1M sodium chloride
 調製した各緩衝液は、0.2μmフィルター濾過を実施後、72時間以内に使用した。 Each buffer solution prepared was used within 72 hours after 0.2 μm filter filtration.
 pH測定は、ナカライ社製校正液を使用し、pH=4、pH=7の2点校正を実施した。pH測定時の溶液温度は22.5±0.5℃とした。 PH measurement was carried out using a calibration solution manufactured by Nacalai Co., Ltd., and two-point calibration was performed at pH = 4 and pH = 7. The solution temperature at the time of pH measurement was 22.5 ± 0.5 ° C.
<試薬>
 以下の試薬を使用した。
 酢酸ナトリウム・3水和物(メルク株式会社)
 氷酢酸(メルク株式会社)
 塩化ナトリウム(メルク株式会社)
<Reagent>
The following reagents were used.
Sodium acetate trihydrate (Merck Co., Ltd.)
Glacial acetic acid (Merck Corporation)
Sodium chloride (Merck Corporation)
<調製方法>
A液:水100.00kgに対して、酢酸ナトリウム479.00g、酢酸を79.600g添加、溶解、混合し、pHおよび電気伝導度での確認を行った。
B液:水100.00kgに対して、酢酸ナトリウム479.00g、塩化ナトリウム409.20gを溶解し、酢酸69.970gを添加し、混合後、pHおよび電気伝導度での確認を行った。
C液:水150.00kgに対して、酢酸ナトリウム718.50gを溶解後、塩化ナトリウム1315.50gを溶解し、酢酸97.650gを添加し、混合後、pHおよび電気伝導動での確認を行った。
D液:水200.00kgに対して、酢酸ナトリウム958.00gを溶解後、塩化ナトリウム11688.0gを溶解し、酢酸88.480gを添加し、混合後、pHおよび電気伝導度での確認を行った。
<Preparation method>
Liquid A: 479.00 g of sodium acetate and 79.600 g of acetic acid were added to, dissolved in, and mixed with 100.00 kg of water, and the pH and electrical conductivity were confirmed.
Liquid B: 479.00 g of sodium acetate and 409.20 g of sodium chloride were dissolved in 100.00 kg of water, 69.970 g of acetic acid was added, and after mixing, the pH and electrical conductivity were confirmed.
Solution C: After dissolving 718.50 g of sodium acetate in 150.00 kg of water, dissolve 1315.50 g of sodium chloride, add 97.650 g of acetic acid, and after mixing, check the pH and electrical conductivity. It was.
Liquid D: After dissolving 958.00 g of sodium acetate in 200.00 kg of water, 11688.0 g of sodium chloride is dissolved, 88.480 g of acetic acid is added, and after mixing, the pH and electrical conductivity are confirmed. It was.
<工程モニタリング>
 クロマトシステムに内蔵されている、流速、液量、電気伝導度、吸光度(280nm)、圧力(充填圧以下とする)、温度をモニタリングした。
<Process monitoring>
The flow rate, liquid volume, electrical conductivity, absorbance (280 nm), pressure (below the filling pressure), and temperature built in the chromatographic system were monitored.
 流速については、サンプルポンプ、システムポンプともに出口流量の実測により確認した。温度については、クロマト開始前に使用緩衝液およびサンプルが20-25℃になっていることを確認した。 The flow rate was confirmed by measuring the outlet flow rate for both the sample pump and the system pump. Regarding the temperature, it was confirmed that the used buffer and the sample were at 20-25 ° C. before starting the chromatography.
<操作手順>
 精製時の温度は20-25℃とした。線流速は、前処理後卵白原料の負荷時30cm/h、分画時は60cm/hとした。凝集物の発生によるカラム目詰まり防止を目的とし、前処理後卵白原料は0.2μm濾過を実施し、さらにカラムの直前に0.2μmフィルターを設置した。
<Operation procedure>
The temperature during purification was 20-25 ° C. The linear flow rate was 30 cm / h when the egg white raw material was loaded after pretreatment and 60 cm / h during fractionation. In order to prevent clogging of the column due to the generation of aggregates, the egg white raw material after the pretreatment was filtered by 0.2 μm, and a 0.2 μm filter was installed immediately before the column.
1)平衡化
 カラム中の保存液を置換するため、1カラム体積(以下、CVと表記する)の水を通液後に下記の操作を行った。
1) Equilibration In order to replace the preservation solution in the column, the following operation was performed after passing 1 column volume (hereinafter referred to as CV) of water.
 D液を通液後(3CV以上)、A液を通液(3CV以上)し、それぞれ電気伝導度が安定することを確認した。 After passing the D liquid (3 CV or more), the A liquid was passed (3 CV or more), and it was confirmed that the electrical conductivity was stabilized.
2)前処理後卵白原料の負荷
 担体体積(※)1mlに対して、総タンパク質量として88mgの前処理後卵白原料を負荷した。カラムの目詰まり防止のため、前処理後卵白原料は、0.2μフィルター濾過を実施した。前処理後卵白原料は4℃で保管されているが、カラムに添加する前に20-25℃に戻した。線流速を30cm/hとし、前処理後卵白原料を負荷した。尚、分画時(洗浄・溶出・全溶出)の線流速は60cm/hとした。
※担体体積とは、圧縮・充填後の担体体積であり、カラム断面積×ベッド高とする。
2) Loading of egg white raw material after pretreatment 88 mg of pretreated egg white raw material was loaded as a total protein amount per 1 ml of the carrier volume (*). In order to prevent clogging of the column, the pre-treated egg white raw material was subjected to 0.2 μ filter filtration. The egg white raw material after pretreatment is stored at 4 ° C., but it was returned to 20-25 ° C. before being added to the column. The linear flow rate was 30 cm / h, and the egg white raw material was loaded after pretreatment. The linear flow rate during fractionation (washing / elution / total elution) was 60 cm / h.
* The carrier volume is the volume of the carrier after compression and packing, and the column cross-sectional area x bed height.
3)洗浄
 前処理後卵白原料の負荷後、担体に非吸着及び弱く結合しているタンパク質を洗い流すため、B液を3CV通液した。
3) Washing After the pretreatment, after loading the egg white raw material, 3 CV was passed through the solution B in order to wash away proteins that were not adsorbed and weakly bound to the carrier.
4)溶出
 5CVのC液で主画分の溶出を行い、まとめて回収した。回収後は泡立たないように混合し、サンプリングし、下記の工程管理試験を実施した。残りは使用するまで4℃で保管した。
4) Elution The main fraction was eluted with 5 CV solution C and collected together. After collection, the mixture was sampled so as not to foam, sampled, and the following process control test was performed. The rest was stored at 4 ° C. until use.
5)全溶出
 3CVのD液でカラムに残留している残タンパク質成分の溶出を行った。
5) Total elution The remaining protein components remaining on the column were eluted with 3 CV D solution.
<サンプリング>
 卵白添加時に非吸着の画分(フロースルー)、洗浄画分、溶出画分、全溶出の画分について、液をよくかき混ぜた上、サンプリングを行い、下記の工程管理試験を実施した。
<Sampling>
The non-adsorbed fraction (flow-through), the washed fraction, the eluted fraction, and the total eluted fraction at the time of egg white addition were mixed well, sampled, and subjected to the following process control test.
<工程管理試験>
 下記項目について工程管理試験を実施した。工程管理試験はクロマトグラフィー終了後、次工程である限外濾過を実施する前に実施した。
<Process control test>
Process control tests were conducted on the following items. The process control test was carried out after the chromatography and before carrying out the ultrafiltration as the next process.
 本工程で得られた溶出画分を、「SPFF溶出画分」とした。 The elution fraction obtained in this step was designated as “SPFF elution fraction”.
 タンパク質量:上記実験1の「2.4.膜ろ過」で説明したのと同様の手順でタンパク質濃度を測定する。溶出画分のタンパク質量は2.4mg/mLであった。 Protein amount: The protein concentration is measured by the same procedure as described in “2.4. Membrane filtration” in Experiment 1 above. The amount of protein in the eluted fraction was 2.4 mg / mL.
 SDS-PAGE:各サンプリング液と10mM DTT含サンプルローディングバッファーを等量混和し、約98℃で5分間加熱処理をする。これを12.5%濃度ポリアクリルアミドゲルで電気泳動した後に、銀染色キット(Invitrogen社製)を用いて銀染色する。その結果、負荷サンプルにあったOVAは溶出画分には無かった。 SDS-PAGE: Equivalent amounts of each sampling solution and 10 mM DTT-containing sample loading buffer are mixed and heated at about 98 ° C. for 5 minutes. This is electrophoresed on a 12.5% polyacrylamide gel, and then silver stained using a silver staining kit (manufactured by Invitrogen). As a result, there was no OVA in the loaded sample in the eluted fraction.
 ELISA:上記実験1の「2.4.膜ろ過」で説明したのと同様の手順で負荷液と溶出画分のfEPO濃度を測定する。これらの濃度と負荷重量または溶出画分重量を積算し、負荷量に対する溶出画分のfEPO量の相対値を求める。結果、溶出画分のfEPO量は、陽イオン交換クロマトグラフィーカラムに負荷したfEPO量の91%以上であった。 ELISA: Measure the fEPO concentration of the load solution and the eluted fraction in the same procedure as described in “2.4. Membrane filtration” in Experiment 1 above. These concentrations and load weight or elution fraction weight are integrated, and the relative value of the fEPO amount of the elution fraction with respect to the load amount is obtained. As a result, the amount of fEPO in the eluted fraction was 91% or more of the amount of fEPO loaded on the cation exchange chromatography column.
2.限外濾過による濃縮・塩交換工程
 上記1.により得られた陽イオン交換クロマトグラフィー溶出液(SPFF溶出画分)に対し、限外濾過膜による濃縮及び塩交換を実施した。
2. Concentration / salt exchange step by ultrafiltration The cation exchange chromatography eluate (SPFF elution fraction) obtained by the above was subjected to concentration and salt exchange using an ultrafiltration membrane.
 限外濾過膜として、限外濾過膜(再生セルロース 分画分子量5k) メルク社製 ペリコン限外濾過膜、Vスクリーン膜を用いた。処理液11.6Lあたり、0.4m以上の限外濾過膜を使用した。 As the ultrafiltration membrane, an ultrafiltration membrane (regenerated cellulose molecular weight cut off 5 k), a Pericon ultrafiltration membrane and a V screen membrane manufactured by Merck & Co., Inc. were used. An ultrafiltration membrane of 0.4 m 2 or more was used per 11.6 L of the treatment liquid.
 限外濾過用緩衝液として、4.95mMリン酸緩衝液(pH=6.75)、20ppmCaClを用い、塩交換した。 As an ultrafiltration buffer, 4.95 mM phosphate buffer (pH = 6.75) and 20 ppm CaCl 2 were used for salt exchange.
 濃縮及び塩交換後の回収液(限外濾過後回収液)のタンパク質濃度は、2回の試験でそれぞれ、9.74mg/mL及び9.07mg/mLであった。総タンパク質量は、上記実験1の「2.4.膜ろ過」で説明したのと同様の手順でタンパク質濃度を測定した。 The protein concentration of the recovered solution after concentration and salt exchange (recovered solution after ultrafiltration) was 9.74 mg / mL and 9.07 mg / mL, respectively, in two tests. For the total protein amount, the protein concentration was measured by the same procedure as described in “2.4. Membrane filtration” in Experiment 1 above.
3.更なる精製
 上記2.で得られた限外濾過後回収液から複数の公知の精製工程を経て精製fEPO画分(以下、精製EPO画分)を得た。
3. Further purification A purified fEPO fraction (hereinafter referred to as a purified EPO fraction) was obtained from the recovered solution after ultrafiltration obtained in step 1 through a plurality of known purification steps.
 精製EPO画分は緩衝液として50mMリン酸緩衝液(pH8.35)を含む。 The purified EPO fraction contains 50 mM phosphate buffer (pH 8.35) as a buffer.
 精製EPO画分はpH8.35の、無色透明で不溶性物質を含まないものであった。 The purified EPO fraction had a pH of 8.35 and was colorless and transparent and contained no insoluble substances.
 fEPO濃度:精製EPO画分をリン酸緩衝液で希釈して分光光度計と光路長1cmの石英セルを用いて波長280nmと320nmの吸光度を測定し、次式からfEPO濃度を算出する。式:fEPO濃度(mg/mL)=(Abs280-Abs320)×0.959×希釈倍率 FEPO concentration: The purified EPO fraction is diluted with a phosphate buffer, the absorbance at wavelengths of 280 nm and 320 nm is measured using a spectrophotometer and a quartz cell with an optical path length of 1 cm, and the fEPO concentration is calculated from the following equation. Formula: fEPO concentration (mg / mL) = (Abs280−Abs320) × 0.959 × dilution ratio
 その結果、fEPO濃度は2.3mg/mLであった。上記の算式により求められるfEPO濃度は、配列番号3に示すアミノ酸配列からなり、水溶性長鎖分子等により化学修飾がされていないポリペプチドとして換算した重量に基づく濃度である。 As a result, the fEPO concentration was 2.3 mg / mL. The fEPO concentration determined by the above formula is a concentration based on the weight converted to a polypeptide comprising the amino acid sequence shown in SEQ ID NO: 3 and not chemically modified with a water-soluble long chain molecule or the like.
 SDS-PAGE/WB:精製EPO画分を10mM DTT含サンプルローディングバッファーと混和し、約98℃で5分間加熱処理をする。これを12.5%濃度ポリアクリルアミドゲルで電気泳動し、転写用電気泳動槽を用いてPVDF膜に転写する。抗fEPOモノクローナル抗体、各試験用液(TOYOBO社製)および検出用試薬(GE社製)を用いてタンパク質を検出した結果、約30kDaの位置にバンドを確認した。 SDS-PAGE / WB: The purified EPO fraction is mixed with a 10 mM DTT-containing sample loading buffer and heated at about 98 ° C. for 5 minutes. This is electrophoresed on a 12.5% polyacrylamide gel and transferred to a PVDF membrane using a transfer electrophoresis tank. As a result of detecting the protein using the anti-fEPO monoclonal antibody, each test solution (manufactured by TOYOBO) and detection reagent (manufactured by GE), a band was confirmed at a position of about 30 kDa.
 SDS-PAGE(CBB染色):精製EPO画分を10mM DTT含サンプルローディングバッファーと混和し、約98℃で5分間加熱処理をする。これを15%濃度ポリアクリルアミドゲルで電気泳動した後にCBB染色を行う。この結果、単一なバンドを確認した。 SDS-PAGE (CBB staining): The purified EPO fraction is mixed with a 10 mM DTT-containing sample loading buffer and heated at about 98 ° C. for 5 minutes. This is electrophoresed on a 15% polyacrylamide gel and then stained with CBB. As a result, a single band was confirmed.
 HPLC-RP:HPLCと逆相用カラム(GRACE社製)を用いて、移動相A(超純水/トリフルオロ酢酸=1000/1)と移動相B(超純水/アセトニトリル/トリフルオロ酢酸=100/900/1)のグラジエントで0.75mL/分で70分間分析する。精製EPO画分のチャートと対照(リン酸緩衝液)のそれとを比較して目視でピークを検出し、手動でピーク演算を行う。fEPOのピーク面積に対するそれ以外のピーク面積を求めた結果、0.5%以上のピークを認めなかった。 HPLC-RP: Mobile phase A (ultra pure water / trifluoroacetic acid = 1000/1) and mobile phase B (ultra pure water / acetonitrile / trifluoroacetic acid = using HPLC and a reverse phase column (manufactured by GRACE) Analyze with a gradient of 100/900/1) at 0.75 mL / min for 70 minutes. A peak is visually detected by comparing the chart of the purified EPO fraction with that of the control (phosphate buffer), and the peak is calculated manually. As a result of obtaining other peak areas relative to the peak area of fEPO, no peak of 0.5% or more was observed.
 HPLC-SEC:HPLCとサイズ排除用カラム(東ソー社製)を用いて、移動相(0.05%ポリソルベート/リン酸緩衝液)0.5mL/分で70分間分析する。精製EPO画分のチャートと対照(リン酸緩衝液)のそれとを比較して目視でピークを検出し、手動でピーク演算を行う。fEPOのピーク面積に対するそれ以外のピーク面積を求めた結果、2.0%以上のピークを認めなかった。 HPLC-SEC: Using HPLC and a size exclusion column (manufactured by Tosoh Corporation), analysis is performed for 70 minutes at a mobile phase (0.05% polysorbate / phosphate buffer solution) at 0.5 mL / min. A peak is visually detected by comparing the chart of the purified EPO fraction with that of the control (phosphate buffer), and the peak is calculated manually. As a result of obtaining other peak areas relative to the peak area of fEPO, no peak of 2.0% or more was observed.
 生物活性測定:上記実験1の1.2.欄に記載のネコ由来エリスロポエチンの活性測定に記載の方法に従って生物学的活性を求めた。精製EPO画分を希釈(1000000倍~3375000倍)して培養液に加えた。2日間37℃5%CO雰囲気下で培養した後に、セルカウンティングキット8(同仁化学)を加えて、細胞数を測定した。標準曲線を作成して、活性を読み取り、製剤の比活性を算出した結果、2.8×105 U/mgだった。 Bioactivity measurement: 1.2 of the above Experiment 1. The biological activity was determined according to the method described in the activity measurement of cat-derived erythropoietin described in the column. The purified EPO fraction was diluted (1000000 times to 3375000 times) and added to the culture solution. After culturing at 37 ° C. in a 5% CO 2 atmosphere for 2 days, Cell Counting Kit 8 (Dojindo Laboratories) was added and the number of cells was measured. A standard curve was prepared, the activity was read, and the specific activity of the preparation was calculated. As a result, it was 2.8 × 10 5 U / mg.
 ELISA:OVA測定キット(森永生科学社製)、オボトランスフェリン測定キット(ICL社製)およびリゾチーム測定キット(CUSABIO社製)を用いて、OVA(SIGMA社製)を標準品として用いる以外は各キットの手順に従い精製EPO画分中の各物質量を定量する。その結果fEPO量に対して、OVAは369ppm、オボトランスフェリンは1ppm、リゾチームは62ppmであった。 ELISA: OVA measurement kit (manufactured by Morinaga Bioscience), ovotransferrin measurement kit (manufactured by ICL) and lysozyme measurement kit (manufactured by CUSABIO), except for using OVA (manufactured by SIGMA) as a standard product The amount of each substance in the purified EPO fraction is quantified according to the procedure of 1. As a result, OVA was 369 ppm, ovotransferrin was 1 ppm, and lysozyme was 62 ppm with respect to the amount of fEPO.
4.fEPOのPEG化
 上記3.で得られた精製EPO画分に以下のPEG化剤を添加した。
 SUNBRIGHT ME-200HS(平均分子量20Kの直鎖PEGのPEG化剤、日油株式会社製)
4). PEGylation of fEPO 3. The following PEGating agent was added to the purified EPO fraction obtained in (1).
SUNBRIGHT ME-200HS (PEGylating agent for linear PEG having an average molecular weight of 20K, manufactured by NOF Corporation)
 fEPOとPEG化剤とがモル比で1:5となる割合で精製EPO画分とPEG化剤を混合後、4℃で混和しながら2時間反応させた。2時間反応後、反応停止剤として100mMグリシン溶液を1/10量加え、4℃で1時間混和しながら反応を停止させた。 The purified EPO fraction and the PEGating agent were mixed at a molar ratio of fEPO and PEGating agent of 1: 5, and then reacted for 2 hours while mixing at 4 ° C. After the reaction for 2 hours, 1/10 amount of 100 mM glycine solution was added as a reaction terminator, and the reaction was stopped while mixing at 4 ° C. for 1 hour.
5.PEG化fEPOの分離精製
 上記4.で得られたPEG化反応液を10倍量の50mM酢酸-酢酸ナトリウム緩衝液(pH4.5)で希釈し、0.2μmフィルターろ過後、モノPEG体、ジPEG体、オリゴPEG体および未反応PEG、未反応EPOを分離回収するため、陽イオン交換カラムにより分離精製を行った。
5. Separation and purification of PEGylated fEPO The PEGylation reaction solution obtained in 1) was diluted with 10 volumes of 50 mM acetic acid-sodium acetate buffer (pH 4.5), filtered through a 0.2 μm filter, mono-PEG, di-PEG, oligo-PEG and unreacted In order to separate and recover PEG and unreacted EPO, separation and purification were performed using a cation exchange column.
 以下の操作は20-25℃にて行った。 The following operations were performed at 20-25 ° C.
 前記希釈液を陽イオン交換カラム(MacroCapSP:GEヘルスケア・ジャパン株式会社製)に負荷した。負荷後のカラムを50mM酢酸-酢酸ナトリウム緩衝液(pH4.5)により洗浄し、次いで、50mM酢酸-酢酸ナトリウム緩衝液、0.15M NaCl(pH4.5)でステップ溶出を行い、溶出画分を回収した。回収された溶出画分を均質に撹拌し「MCSP溶出画分」とした。次いで、50mM酢酸-酢酸ナトリウム緩衝液、1M NaCl(pH4.5)により残タンパク質の溶出を行った。 The diluted solution was loaded on a cation exchange column (MacroCapSP: manufactured by GE Healthcare Japan Co., Ltd.). The column after loading was washed with 50 mM acetic acid-sodium acetate buffer (pH 4.5), and then step elution was performed with 50 mM acetic acid-sodium acetate buffer, 0.15 M NaCl (pH 4.5). It was collected. The collected elution fraction was homogeneously stirred to obtain “MCSP elution fraction”. Subsequently, the residual protein was eluted with 50 mM acetic acid-sodium acetate buffer, 1 M NaCl (pH 4.5).
 「MCSP溶出画分」はモノPEG体及びジPEG体のピークを回収した画分に相当する。 “MCSP elution fraction” corresponds to the fraction from which the peaks of mono-PEG and di-PEG were collected.
<サンプリング>
 PEG化反応液と溶出画分について、液をよくかき混ぜた上、サンプリングを行い、工程管理試験を実施した。
<Sampling>
The PEGylation reaction solution and the eluted fraction were mixed well, sampled, and a process control test was performed.
 SDS-PAGE:各サンプリング液と10mM DTT含サンプルローディングバッファーを等量混和し、約98℃で5分間加熱処理をする。これを4~20%濃度のポリアクリルアミドグラジエントゲルで電気泳動した後に、銀染色キット(Invitrogen社製)を用いて銀染色する。その結果、60kDaと120kDaにバンドを認めた。 SDS-PAGE: Equivalent amounts of each sampling solution and 10 mM DTT-containing sample loading buffer are mixed and heated at about 98 ° C. for 5 minutes. This is electrophoresed on a polyacrylamide gradient gel having a concentration of 4 to 20%, and then silver-stained using a silver staining kit (manufactured by Invitrogen). As a result, bands were observed at 60 kDa and 120 kDa.
6.原薬調製
 表6に示す各成分のうちPEG化fEPO及びTween80を含まない以外は同様の成分を水中に含みpH調整した緩衝液を原薬緩衝液とした。上記5.で得たMCSP溶出画分を限外濾過によって原薬緩衝液に塩交換するとともに、タンパク質濃度を0.27mg/mLに調整した。
6). Preparation of drug substance A buffer solution containing the same components in water except that PEGylated fEPO and Tween 80 were not included among the components shown in Table 6 was used as the drug substance buffer solution. 5. above. The MCSP elution fraction obtained in 1 above was subjected to salt exchange with the drug substance buffer solution by ultrafiltration, and the protein concentration was adjusted to 0.27 mg / mL.
 上記の限外濾過後の溶液を平均孔径20nmの中空糸膜を通過させることによりウイルス除去を行った。 The virus was removed by passing the solution after ultrafiltration through a hollow fiber membrane having an average pore diameter of 20 nm.
 上記のウイルス除去後の溶液に0.2μmフィルターろ過を行い、無菌的にバッグに充填したものを原薬とした。 The above-mentioned solution after virus removal was filtered through a 0.2 μm filter and aseptically filled into a bag as the drug substance.
7.製剤化
 上記6.において調製された原薬を用いて下記組成の液状組成物を製造した。
7). Formulation above 6. A liquid composition having the following composition was produced using the drug substance prepared in 1.
 0.5gのTween80をメスフラスコに加えた後に、合計100mLになるように原薬緩衝液を加えて、よく撹拌したものをTween80液とした。原薬468.9mLを正確に量り取り、2Lメスシリンダーに投入した。Tween80液13mLを正確に量り取り同じ2Lメスシリンダーに投入した後に、原薬緩衝液を加えて1300mLにメスアップした。こうして得られたPEG化fEPO溶液製剤の組成を表6に示す。ミリパック20(メルク社製)を用いて濾過し、ガラスバイアルに1.1mLずつ充填した。ゴム栓とアルミキャップを用いて打栓して密閉した。 After adding 0.5 g of Tween 80 to the volumetric flask, the drug substance buffer was added to a total of 100 mL, and the mixture was stirred well to obtain Tween 80 solution. The drug substance 468.9 mL was accurately weighed and placed in a 2 L graduated cylinder. After accurately weighing 13 mL of Tween 80 solution and putting it in the same 2 L graduated cylinder, the drug substance buffer solution was added to make up to 1300 mL. The composition of the PEGylated fEPO solution formulation thus obtained is shown in Table 6. Filtration was performed using Millipak 20 (manufactured by Merck), and 1.1 mL each was filled into a glass vial. Sealed with a rubber stopper and an aluminum cap.
 fEPO濃度:上記3.で説明したのと同様の手順で測定したfEPO濃度は0.11mg/mLであった。 FEPO concentration: 3. The fEPO concentration measured by the same procedure as described in 1 was 0.11 mg / mL.
 SDS-PAGE(CBB染色):上記3.で説明したのと同様の手順でSDS-PAGE(CBB染色)を行った。その結果、60kDaと120kDaにバンドを確認した。 SDS-PAGE (CBB staining): 3. SDS-PAGE (CBB staining) was performed in the same procedure as described in 1. above. As a result, bands were confirmed at 60 kDa and 120 kDa.
 HPLC-RP:上記3.で説明したのと同様の手順でHPLC-RPを行った。PEG体のピーク面積に対するそれ以外のピーク面積を求めた結果、0.5%以上のピークを認めなかった。 HPLC-RP: 3. HPLC-RP was performed in the same procedure as described in 1. As a result of obtaining the other peak areas relative to the peak area of the PEG body, no peak of 0.5% or more was observed.
 HPLC-SEC:上記3.で説明したのと同様の手順でHPLC-SECを行った。凝集体、トリPEG体、モノPEG体およびジPEG体のピーク面積から相対値を求めた結果、凝集体の割合は2.0%より小さかった。 HPLC-SEC: 3. HPLC-SEC was performed in the same procedure as described in 1. As a result of obtaining a relative value from the peak areas of the aggregate, triPEG body, monoPEG body and diPEG body, the ratio of the aggregate was less than 2.0%.
 生物活性測定:上記実験1の1.2.欄に記載のネコ由来エリスロポエチンの活性測定に記載の方法に従って生物学的活性を求めた。製剤の比活性を算出した結果、1.8×10 U/mgだった。
Figure JPOXMLDOC01-appb-T000006
Bioactivity measurement: 1.2 of the above Experiment 1. The biological activity was determined according to the method described in the activity measurement of cat-derived erythropoietin described in the column. As a result of calculating the specific activity of the preparation, it was 1.8 × 10 4 U / mg.
Figure JPOXMLDOC01-appb-T000006
 本明細書で引用した全ての刊行物、特許及び特許出願はそのまま引用により本明細書に組み入れられるものとする。 All publications, patents and patent applications cited in this specification are incorporated herein by reference in their entirety.

Claims (9)

  1.  精製されたネコ由来エリスロポエチンの製造方法であって、
     ネコ由来エリスロポエチンを含むタンパク質液のpHを4以上、7以下の範囲に調整するpH調整工程と、
     pH調整工程においてpH調整されたタンパク質液を、陽イオン交換基を備えた担体に接触させてネコ由来エリスロポエチンを吸着させ、次いで吸着されたネコ由来エリスロポエチンを前記担体から溶出させることを含む精製工程と
    を含む方法。
    A method for producing a purified cat-derived erythropoietin,
    A pH adjusting step for adjusting the pH of the protein solution containing cat-derived erythropoietin to a range of 4 or more and 7 or less;
    a purification step comprising contacting the protein solution adjusted in the pH adjustment step with a carrier having a cation exchange group to adsorb cat-derived erythropoietin, and then eluting the adsorbed cat-derived erythropoietin from the carrier; Including methods.
  2.  精製工程の前に、pH調整工程においてpH調整されたタンパク質液から析出物を除去する析出物除去工程を更に含む、請求項1に記載の方法。 The method according to claim 1, further comprising a precipitate removing step of removing the precipitate from the protein solution whose pH has been adjusted in the pH adjusting step before the purification step.
  3.  pH調整工程において前記タンパク質液のpHを4.7以上の範囲に調整する、請求項1又は2に記載の方法。 The method according to claim 1 or 2, wherein the pH of the protein solution is adjusted to a range of 4.7 or more in the pH adjustment step.
  4.  pH調整工程において、前記タンパク質液と、酸性領域で緩衝作用を有する成分を1M以下の濃度で含む、酸性領域で緩衝作用を有する緩衝液とを混合する、請求項1~3のいずれか1項に記載の方法。 4. The pH adjustment step, wherein the protein solution is mixed with a buffer solution having a buffering action in an acidic region containing a component having a buffering effect in the acidic region at a concentration of 1 M or less. The method described in 1.
  5.  pH調整工程において、前記タンパク質液と、前記タンパク質液1容量部に対して1.5容量部以上の、酸性領域で緩衝作用を有する緩衝液とを混合する、請求項1~4のいずれか1項に記載の方法。 5. The pH adjustment step, wherein the protein solution is mixed with at least 1.5 parts by volume of a buffer solution having a buffering action in an acidic region with respect to 1 part by volume of the protein solution. The method according to item.
  6.  pH調整工程において用いる前記タンパク質液が、ネコ由来エリスロポエチンをコードする外来性遺伝子を有するトランスジェニック鳥類の卵を用いて調製されたタンパク質液である請求項1~5のいずれか1項に記載の方法。 The method according to any one of claims 1 to 5, wherein the protein solution used in the pH adjustment step is a protein solution prepared using an egg of a transgenic bird having a foreign gene encoding a cat-derived erythropoietin. .
  7.  請求項1~6のいずれか1項に記載の方法により、精製されたネコ由来エリスロポエチンを製造する工程と、
     前記精製されたネコ由来エリスロポエチンを水溶性長鎖分子で化学修飾して水溶性長鎖分子付加ネコ由来エリスロポエチンを得る水溶性長鎖分子付加工程と
    を含む、水溶性長鎖分子付加ネコ由来エリスロポエチンの製造方法。
    A step of producing a purified cat-derived erythropoietin by the method according to any one of claims 1 to 6;
    Water-soluble long-chain molecule-added cat-derived erythropoietin comprising a water-soluble long-chain molecule-added step of chemically modifying the purified cat-derived erythropoietin with a water-soluble long-chain molecule to obtain a water-soluble long-chain molecule-added cat-derived erythropoietin Production method.
  8.  水溶性長鎖分子付加工程において得られた水溶性長鎖分子付加ネコ由来エリスロポエチンをフィルターに通してウイルスを除去するウイルス除去工程を更に含む、請求項7に記載の方法。 The method according to claim 7, further comprising a virus removal step of removing the virus by passing the erythropoietin derived from the water-soluble long chain molecule-added cat obtained in the water-soluble long chain molecule addition step through a filter.
  9.  水溶性長鎖分子付加工程において得られた水溶性長鎖分子付加ネコ由来エリスロポエチンを含み、哺乳動物の体液の浸透圧及びpHと同じ浸透圧及びpHを有する液状組成物を調製する製剤化工程を更に含む、請求項7又は8に記載の方法。 A formulation step of preparing a liquid composition comprising the erythropoietin derived from the water-soluble long-chain molecule-added cat obtained in the water-soluble long-chain molecule addition step and having the same osmotic pressure and pH as that of a mammalian body fluid The method according to claim 7 or 8, further comprising:
PCT/JP2017/011217 2016-03-31 2017-03-21 Method for producing purified feline erythropoietin WO2017169978A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018509088A JP6920280B2 (en) 2016-03-31 2017-03-21 Method for Producing Purified Cat-Derived Erythropoietin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016072815 2016-03-31
JP2016-072815 2016-03-31

Publications (1)

Publication Number Publication Date
WO2017169978A1 true WO2017169978A1 (en) 2017-10-05

Family

ID=59964336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/011217 WO2017169978A1 (en) 2016-03-31 2017-03-21 Method for producing purified feline erythropoietin

Country Status (2)

Country Link
JP (1) JP6920280B2 (en)
WO (1) WO2017169978A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112805567A (en) * 2018-12-25 2021-05-14 深圳迈瑞生物医疗电子股份有限公司 Erythrocyte-simulating particle, preparation method thereof and quality control substance or calibrator containing erythrocyte-simulating particle

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3111458A (en) * 1959-02-16 1963-11-19 Wilfrid F White Erythropoietic factor purification and product
JPS62501701A (en) * 1985-01-11 1987-07-09 ジェネティックス・インスチチュ−ト・インコ−ポレ−テッド Homogeneous erythropoietin
JP2002529475A (en) * 1998-11-06 2002-09-10 スターンベルド バイオテクノロジー ノース アメリカ, インコーポレイテッド Method for purifying recombinant human erythropoietin from cell culture supernatant
JP2007089578A (en) * 2005-08-31 2007-04-12 Kaneka Corp Transgenic avian which has foreign gene containing sequence encoding feline-derived protein and method for production thereof
US20090299037A1 (en) * 2006-09-20 2009-12-03 Chen Liang M Methods of purifying proteins from egg white
JP2010509327A (en) * 2006-11-09 2010-03-25 シナジェバ・バイオファーマ・コーポレイション Avian derived erythropoietin
JP2010511378A (en) * 2006-12-06 2010-04-15 日本ケミカルリサーチ株式会社 Method for producing human erythropoietin
JP2010111595A (en) * 2008-11-04 2010-05-20 Kaneka Corp Manufacturing method of protein by gene recombinant birds
JP2013505276A (en) * 2009-09-23 2013-02-14 バイオジェネリックス ゲーエムベーハー Process for purifying recombinant human erythropoietin (EPO), EPO thus purified and pharmaceutical composition comprising the same
JP2015163637A (en) * 2009-09-15 2015-09-10 株式会社カネカ Modified erythropoietin with water-soluble long-chain molecule added
WO2015164320A1 (en) * 2014-04-23 2015-10-29 Synageva Biopharma Corp. Egg white processing

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3111458A (en) * 1959-02-16 1963-11-19 Wilfrid F White Erythropoietic factor purification and product
JPS62501701A (en) * 1985-01-11 1987-07-09 ジェネティックス・インスチチュ−ト・インコ−ポレ−テッド Homogeneous erythropoietin
JP2002529475A (en) * 1998-11-06 2002-09-10 スターンベルド バイオテクノロジー ノース アメリカ, インコーポレイテッド Method for purifying recombinant human erythropoietin from cell culture supernatant
JP2007089578A (en) * 2005-08-31 2007-04-12 Kaneka Corp Transgenic avian which has foreign gene containing sequence encoding feline-derived protein and method for production thereof
US20090299037A1 (en) * 2006-09-20 2009-12-03 Chen Liang M Methods of purifying proteins from egg white
JP2010509327A (en) * 2006-11-09 2010-03-25 シナジェバ・バイオファーマ・コーポレイション Avian derived erythropoietin
JP2010511378A (en) * 2006-12-06 2010-04-15 日本ケミカルリサーチ株式会社 Method for producing human erythropoietin
JP2010111595A (en) * 2008-11-04 2010-05-20 Kaneka Corp Manufacturing method of protein by gene recombinant birds
JP2015163637A (en) * 2009-09-15 2015-09-10 株式会社カネカ Modified erythropoietin with water-soluble long-chain molecule added
JP2013505276A (en) * 2009-09-23 2013-02-14 バイオジェネリックス ゲーエムベーハー Process for purifying recombinant human erythropoietin (EPO), EPO thus purified and pharmaceutical composition comprising the same
WO2015164320A1 (en) * 2014-04-23 2015-10-29 Synageva Biopharma Corp. Egg white processing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112805567A (en) * 2018-12-25 2021-05-14 深圳迈瑞生物医疗电子股份有限公司 Erythrocyte-simulating particle, preparation method thereof and quality control substance or calibrator containing erythrocyte-simulating particle

Also Published As

Publication number Publication date
JP6920280B2 (en) 2021-08-18
JPWO2017169978A1 (en) 2019-02-21

Similar Documents

Publication Publication Date Title
ES2879387T3 (en) Fibronectin-based scaffold domain proteins that bind to myostatin
JP2016535087A (en) Mutated fibroblast growth factor (FGF) 1 and methods of use
Parker et al. Purification and characterization of a recombinant version of human α-fetoprotein expressed in the milk of transgenic goats
CA2513598A1 (en) Use of the cathelicidin ll-37 and derivatives thereof for wound healing
US10695404B2 (en) Treatment of steroid-induced hyperglycemia with fibroblast growth factor (FGF) 1 analogs
JP6018667B2 (en) Modified erythropoietin with a water-soluble long-chain molecule
JP2013515474A (en) Recombinant factor H and variants and conjugates thereof
Liu et al. Purification and characterization of protamine, the allergen from the milt of large yellow croaker (Pseudosciaena crocea), and its components
Hawe et al. Formulation development for hydrophobic therapeutic proteins
WO2017169978A1 (en) Method for producing purified feline erythropoietin
CN110302362B (en) Application of protein in preparing medicine for preventing and treating diabetes complication
AU2018314767B2 (en) Hemopexin formulations
Ciuraszkiewicz et al. Isolation and characterisation of crocodile and python ovotransferrins.
MASON ROSS TA MACGILLIVRAY
Wu et al. Ca2+-Responsive Glyco-insulin
JP2022529811A (en) Process for preparing granulocyte colony stimulating factor
Zhao Production and purification of four cytokines from recombinant Escherichia coli
EP2970420A1 (en) Enhanced liquid formulation stability of erythropoietin alpha through purification processing
CN115515641A (en) Novel protein conjugate and use thereof for preventing or treating nonalcoholic steatohepatitis, obesity and diabetes
Bailey Isolation, purification and characterisation of the pentraxins from Limulus polyphemus and Mustelus canis
JP2005312434A (en) Method for producing high-purity granulocyte colony-stimulating factor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018509088

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17774519

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17774519

Country of ref document: EP

Kind code of ref document: A1