WO2017169874A1 - Manufacturing method for bis(halogenated sulfonyl)imide acid metal salt - Google Patents

Manufacturing method for bis(halogenated sulfonyl)imide acid metal salt Download PDF

Info

Publication number
WO2017169874A1
WO2017169874A1 PCT/JP2017/010826 JP2017010826W WO2017169874A1 WO 2017169874 A1 WO2017169874 A1 WO 2017169874A1 JP 2017010826 W JP2017010826 W JP 2017010826W WO 2017169874 A1 WO2017169874 A1 WO 2017169874A1
Authority
WO
WIPO (PCT)
Prior art keywords
bis
salt
organic base
halide
fluoride
Prior art date
Application number
PCT/JP2017/010826
Other languages
French (fr)
Japanese (ja)
Inventor
進 岩崎
真太朗 佐々木
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Publication of WO2017169874A1 publication Critical patent/WO2017169874A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/082Compounds containing nitrogen and non-metals and optionally metals
    • C01B21/086Compounds containing nitrogen and non-metals and optionally metals containing one or more sulfur atoms

Definitions

  • the present invention relates to an industrial production method of bis (halogenated sulfonyl) imidic acid metal salt.
  • Patent Document 1 discloses a method in which urea and fluorosulfonic acid are reacted to obtain bis (fluorosulfonyl) imidic acid.
  • a manufacturing method is known in which a metal fluoride is reacted with chlorosulfonyl) imidic acid to obtain bis (fluorosulfonyl) imidic acid.
  • Patent Document 2 reacts chlorosulfonic acid (ClSO 3 H) and chlorosulfonyl isocyanate (ClSO 2 NCO) to produce bis (chlorosulfonyl) imidic acid. 2 is reported to react chlorosulfonic acid (ClSO 3 H) with N-sulfonyltrichlorophosphazene (ClSO 2 NPCl 3 ) to obtain bis (chlorosulfonyl) imidic acid.
  • Patent Document 3 a method for obtaining a metal salt of bis (halogenated sulfonyl) imidic acid by reacting sulfuryl halide with ammonia as a method suitable for larger-scale production.
  • Patent Document 1 uses highly toxic and corrosive fluorosulfonic acid, and further requires a separation step of bis (fluorosulfonyl) imidic acid obtained by this reaction and fluorosulfonic acid. In addition, the yield was somewhat low, and it was somewhat difficult to adopt as an industrial production method. Further, the method described in Non-Patent Document 1 is disadvantageous for industrial mass production because it uses arsenic trifluoride or antimony trifluoride, which is highly toxic and expensive.
  • Patent Document 2 and Non-Patent Document 2 are disadvantageous in that relatively expensive chlorosulfonyl isocyanate (ClSO 2 NCO) or N-sulfonyltrichlorophosphazene (ClSO 2 NPCl 3 ) is used.
  • Patent Document 3 The method described in Patent Document 3 is a useful method for obtaining a bis (halogenated sulfonyl) imidic acid metal salt with high purity, but the yield varies (32% to 83%). Since water is used in the process immediately before obtaining bis (halogenated sulfonyl) imidic acid compound itself, considering that it is unstable to water, there is some room for improvement in industrial production. there were.
  • An object of the present invention is to provide a method for efficiently and stably producing a bis (halogenated sulfonyl) imidic acid derivative having a low impurity content under industrially employable conditions.
  • the present invention provides the inventions described in [Invention 1]-[Invention 6] below.
  • the mixture obtained in the first step is washed with water and / or filtered to separate and remove “a salt or complex comprising an organic base and a hydrogen halide” contained in the mixture, and “bis (halogen) A sulfonylated) imide acid and an organic base salt or complex ”.
  • invention 2 The production method according to invention 1, wherein the organic base used in the first step is a primary amine, secondary amine, tertiary amine, nitrogen-containing aromatic heterocyclic compound or imine base.
  • the alkali metal or alkaline earth metal halide used in the third step is lithium fluoride, sodium fluoride, potassium fluoride, lithium chloride, sodium chloride, potassium chloride, magnesium fluoride, calcium fluoride, barium fluoride, The manufacturing method in any one of invention 1 thru
  • the solvent used for reacting the alkali metal halide is an aliphatic hydrocarbon, aromatic hydrocarbon, ether, carbonate, ester, amide, nitrile or sulfoxide.
  • the invention further comprises a step of separating and removing “a salt or complex comprising an organic base and a hydrogen halide” contained in a mixed solution containing a bis (halogenated sulfonyl) imidic acid metal salt by a filtration operation.
  • the manufacturing method in any one of 1 thru
  • the production method of the present invention has an effect that a bis (halogenated sulfonyl) imidic acid metal salt in which each step proceeds well and the impurity content is extremely low can be efficiently produced.
  • a sulfuryl halide is reacted with an organic base and ammonia or an ammonium halide to produce a “salt or complex consisting of bis (halogenated sulfonyl) imidic acid and an organic base” and “an organic base and This is a step of obtaining a mixture containing a “salt or complex comprising a hydrogen halide” (Scheme 1; definitions of each reaction reagent will be described later).
  • sulfuryl halide used in this step examples include sulfuryl fluoride, sulfuryl chloride, sulfuryl bromide, sulfuryl iodide, and sulfuryl chloride.
  • sulfuryl fluoride and sulfuryl chloride are on an industrial scale. Is preferable because it is easily available, and sulfuryl fluoride is particularly preferable. Therefore, in the definition of R in the formula [1], X 1 (X 2 and X 3 in the sulfuryl halide) is preferably fluorine or chlorine, and fluorine is particularly preferable.
  • the sulfuryl halide used in this step is usually 1 to 10 mol, preferably 1 to 8 mol, more preferably 1 to 5 mol per 1 mol of ammonia or ammonium halide.
  • the organic base used in this step is a primary amine, secondary amine or tertiary amine represented by the following formula, a nitrogen-containing aromatic heterocyclic compound, or the following imine skeleton: —C ⁇ N—C It is an imine base having-.
  • R 1 , R 2 and R 3 are each independently a hydrogen atom (except when R 1 , R 2 and R 3 are hydrogen atoms (when the organic base is “ammonia”)), Represents an alkyl group, a substituted alkyl group, an aryl group or a substituted aryl group;
  • the alkyl group represents a linear or branched alkyl group having 1 to 12 carbon atoms or a cyclic alkyl group having 3 to 12 carbon atoms.
  • the aryl group represents an aromatic hydrocarbon having 6 to 18 carbon atoms (phenyl group, naphthyl group, anthranyl group, etc.).
  • the substituted alkyl group has a substituent in any number and in any combination on any carbon of the alkyl group described above.
  • substituents are halogen (fluorine, chlorine, bromine, iodine), amino group (—NH 2 ), alkyl group having 1 to 12 carbon atoms (when substituted with a cyclic alkyl group), haloalkyl group having 1 to 12 carbon atoms.
  • a nitro group, an acetyl group, a cyano group, an aryl group or a hydroxyl group in the case where the substituent in the substituted alkyl group is an amino group, one of the hydrogen atoms of the amino group
  • Part or all may be substituted with an alkyl group.
  • the substituted aryl group has a substituent in any number and in any combination on any carbon of the aryl group described above.
  • Such substituents are halogen (fluorine, chlorine, bromine, iodine), amino group, alkyl group having 1 to 10 carbon atoms, haloalkyl group having 1 to 10 carbon atoms, nitro group, acetyl group, cyano group, aryl group or hydroxyl group. It is.
  • organic bases they are primary amines, secondary amines or tertiary amines, and R 1 , R 2 and R 3 in the amines are each independently a hydrogen atom, a carbon number of 1 to 8 A linear or branched alkyl group, a cyclic alkyl group having 3 to 8 carbon atoms, or an aryl group is preferable. Further, among these, tertiary amines, in which R 1 , R 2 and R 3 in the amine are each independently a linear or branched alkyl group having 1 to 6 carbon atoms are particularly preferable. .
  • Organic base including the nitrogen-containing aromatic heterocyclic compound and the imine base are shown below.
  • Organic base methylamine, ethylamine, isopropylamine, n-butylamine, N-benzylamine, diethylamine, dipropylamine, trimethylamine, triethylamine, diisopropylethylamine, tri-n-propylamine, triisopropylamine, tri-n-butylamine, Trioctylamine, tridecylamine, triphenylamine, tribenzylamine, tris (2-ethylhexyl) amine, N, N-dimethyldecylamine, N-benzyldimethylamine, N-butyldimethylamine, N, N- Dimethylcyclohexylamine, N, N, N ′, N′-tetramethylethylenediamine, N, N, N ′, N′-tetramethylpropylenediamine, N,
  • an organic base can be used individually or in combination.
  • the amount of the organic base used in this step is 3 moles when ammonia is used stoichiometrically and 4 moles when ammonium halide is used, and usually 3 moles per mole of sulfuryl halide. Although it is ⁇ 10 mol, it is preferably selected appropriately from 3 to 5 mol. If it is less than 3 mol (4 mol in the case of ammonium halide), the reaction yield will be reduced. Even if it is used in excess of 10 moles, there is no problem with the progress of the reaction, but there are not many merits in terms of reaction rate, yield, or economy.
  • ammonia used in this step can be used either alone (for example, gas or liquid ammonia) or in a liquid state (such as dissolved in a solvent).
  • this step can be performed in the presence of an organic solvent.
  • the organic solvent means an inert organic compound that does not directly participate in the reaction of the present invention.
  • the reaction solvent include aliphatic hydrocarbons, aromatic hydrocarbons, halogenated hydrocarbons, ethers, esters, amides, nitriles or sulfoxides. Among these, esters, amides, nitriles or sulfoxides are preferable, and nitriles are more preferable.
  • organic solvent examples include n-hexane, cyclohexane, n-heptane, benzene, toluene, xylene, mesitylene, methylene chloride, chloroform, 1,2-dichloroethane, diethyl ether, tetrahydrofuran, tert-butyl methyl ether, Examples thereof include ethyl acetate, butyl acetate, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, acetonitrile, propionitrile, butyronitrile, isobutyronitrile, valeronitrile, dimethyl sulfoxide and the like.
  • reaction solvents can be used alone or in combination.
  • the amount of the organic solvent to be used is not particularly limited, but 0.1 L (liter) or more may be used with respect to 1 mol of ammonia or ammonium halide, and usually 0.1 to 20 L is preferable. 1 to 10 L is more preferable.
  • an organic solvent when used in this step, when the organic solvent is a water-soluble organic solvent, it is removed by a general organic chemistry operation such as distillation after the reaction in this step, and after the removal.
  • Performing the second step is mentioned as one of particularly preferable embodiments from the viewpoint of operation.
  • the second step can be carried out as it is after the reaction in this step, without particularly performing an operation for removing the solvent.
  • the temperature condition in this step is not particularly limited, but it may be usually in the range of ⁇ 50 to 200 ° C., preferably 0 to 100 ° C., more preferably 0 to 70 ° C. If the temperature is lower than ⁇ 50 ° C., the reaction rate is slow, and if the temperature exceeds 200 ° C., decomposition of the product may occur.
  • reaction vessel used in the present process stainless steel, Monel TM, Hastelloy TM, nickel, or these metals or polytetrafluoroethylene, etc. lined pressure-resistant reaction vessel with a fluororesin such as perfluoropolyether resins .
  • the reaction time in this step is not particularly limited, but may be in the range of 0.1 to 240 hours. Since it varies depending on the substrate and reaction conditions, it can be analyzed by analytical means such as gas chromatography, liquid chromatography, and NMR. It is preferable that the progress of the reaction is followed and the end point is the point at which the raw material sulfuryl halide has almost disappeared.
  • the second step is based on the mixture obtained in the first step including the “salt or complex comprising bis (halogenated sulfonyl) imidic acid and an organic base” and the “salt or complex comprising an organic base and a hydrogen halide”. , By washing with water and / or filtering, the “salt or complex comprising an organic base and a hydrogen halide” contained in the mixture is separated and removed, and “consisting of a bis (halogenated sulfonyl) imidic acid and an organic base. This is a step of obtaining a “salt or complex” (Scheme 2).
  • the embodiment for carrying out water washing and / or filtration is not particularly limited, and may be carried out by ordinary organic chemistry operations.
  • the amount of water used in the water washing is not particularly limited, but it is usually preferable to use about 50 to 300% by mass with respect to the “salt or complex consisting of imide acid and organic base” in the reaction mixture. It is also a preferable operation to repeat the washing / separation by dividing the amount of water into several times. In order to increase the removal efficiency of the organic base in the reaction mixture, washing with hydrochloric acid before washing with water is also one preferable operation.
  • the washing with water is usually preferably performed at room temperature, but the temperature condition is not particularly limited and may be heated. Further, as the reaction vessel used for water washing is not particularly limited, stainless steel, Monel TM, Hastelloy TM, nickel, or these metals or polytetrafluoroethylene, lined with a fluorine resin such as perfluoro polyether resin Reaction container etc. are mentioned.
  • the separation operation after washing with water is not particularly limited as long as it is a method capable of separating the organic phase and the aqueous phase. In general, it can be carried out by simple separation, filtration, centrifugation or the like.
  • a water-insoluble organic solvent is used continuously from the first step, it is preferable to remove it by a general organic chemistry operation such as distillation after separation, but it can also be used in the third step as it is. is there.
  • alkali metal halides include lithium fluoride (LiF), sodium fluoride (NaF), potassium fluoride (KF), rubidium fluoride (RbF), cesium fluoride (CsF), lithium chloride (LiCl), and chloride.
  • alkali metal or alkaline earth metal halides are preferred, and alkali metal halides include lithium fluoride (LiF), sodium fluoride (NaF), potassium fluoride (KF), and lithium chloride (LiCl).
  • Sodium chloride (NaCl) or potassium chloride (KCl) are alkali earth metal halides such as magnesium fluoride (MgF 2 ), calcium fluoride (CaF 2 ), barium fluoride (BaF 2 ), fluorine Strontium iodide (SrF 2 ), magnesium chloride (MgCl 2 ) or calcium chloride (CaCl 2 ) is preferably used from the viewpoint of low cost and availability.
  • these compounds can also be used 1 type or in combination of 2 or more types.
  • the amount of the alkali metal or alkaline earth metal halide used is 1 to 10 mol, preferably 1 to 5 mol, more preferably 1 to 1 mol, per 1 mol of the “salt or complex consisting of imide acid and organic base”. 3 moles.
  • the amount exceeds 10 mol that is, when an excess amount of base is reacted, the reaction proceeds, but the “salt or complex composed of imidic acid and organic base” is decomposed, and the yield may decrease. For this reason, it is not preferable to use an excessive amount of base.
  • the amount is less than 1 mol, the conversion rate decreases, which is not preferable.
  • This step can be performed by using an organic solvent as a solvent.
  • organic solvent include aliphatic hydrocarbons, aromatic hydrocarbons, ethers, carbonates, esters, amides, nitriles, or sulfoxides. Among these, esters, amides, carbonates, nitriles or sulfoxides are preferable, and carbonates or nitriles are more preferable.
  • organic solvent examples include n-hexane, cyclohexane, n-heptane, benzene, toluene, xylene, mesitylene, methylene chloride, chloroform, 1,2-dichloroethane, diethyl ether, tetrahydrofuran, tert-butyl methyl ether, Dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, ethylene carbonate, propylene carbonate, ethyl acetate, butyl acetate, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, acetonitrile, propionitrile, butyronitrile, iso Examples include butyronitrile, valeronitrile, and dimethyl sulfoxide.
  • ethyl acetate, butyl acetate, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, ethylene carbonate, propylene carbonate, acetonitrile, propionitrile or dimethyl Sulfoxide is preferred, and dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, acetonitrile or propionitrile is more preferred.
  • These reaction solvents can be used alone or in combination.
  • the reaction temperature is not particularly limited, but is usually ⁇ 10 ° C. to + 110 ° C., preferably +25 to + 80 ° C. If the temperature is lower than ⁇ 10 ° C., the reaction does not proceed sufficiently and causes a decrease in yield, which is economically disadvantageous, or causes a problem that the reaction rate decreases and it takes a long time to complete the reaction. There is a case. On the other hand, if it exceeds + 110 ° C., by-products are likely to be generated, and excessive heating is not energy efficient.
  • the reaction time is not particularly limited, but it may usually be within a range of 24 hours.
  • the progress of the reaction is traced by an analytical means such as ion chromatography or NMR, and the end point when the raw material substrate has almost disappeared. Is preferable.
  • the reactor used in this process include stainless steel, Hastelloy TM, or metal container such as Monel TM, tetrafluoroethylene resin, chlorotrifluoroethylene resin, vinylidene fluoride resin, PFA resin, polypropylene resin, polyethylene resin, A reactor capable of performing a sufficient reaction under normal pressure or pressure, such as a glass lined inside, can be used.
  • a recrystallization operation is performed using an organic solvent to obtain a high-purity bis (halogenated sulfonyl) imidic acid metal salt. It is also possible to obtain.
  • organic solvent used for recrystallization include ethers, alcohols, carbonates, aliphatic hydrocarbons, ketones, halogenated hydrocarbons, and aromatic hydrocarbons.
  • organic solvents include diethyl ether, tetrahydrofuran, dioxane, butyl methyl ether, diisopropyl ether, methyl tert-butyl ether ethylene glycol dimethyl ether, methanol, ethanol, n-propyl alcohol, iso-propyl alcohol, n- Butyl alcohol, iso-butyl alcohol, sec-butyl alcohol, tert-butyl alcohol, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, ethylene carbonate, propylene carbonate, n-pentane, n-hexane, n-heptane, n-octane, Acetone, methyl ethyl ketone, methyl isobutyl ketone, dichloromethane, chloroform, benzene, toluene, xylene, etc.
  • organic solvents may be used alone or in combination with
  • Bis (halogenated sulfonyl) imidic acid metal salt is precipitated by recrystallization. In order to isolate this, it is sufficient to carry out by a general organic chemistry operation. For example, a high-purity bis (halogenated sulfonyl) imidic acid metal salt can be obtained by performing a filtration operation. In addition, since the bis (halogenated sulfonyl) imidic acid metal salt is partially dissolved in the obtained filtrate, the obtained filtrate can be recovered and reused as a solvent in recrystallization. . By reusing, the yield of bis (halogenated sulfonyl) imidic acid metal salt can be further improved, and waste liquid can be greatly reduced.
  • Example 1 ⁇ First step> A 500 ml autoclave was charged with 140 g of acetonitrile and 128.5 g (1.27 mol) of triethylamine, cooled to 5 ° C. with ice water, and 96.9 g (0.95 mol) of sulfuryl fluoride was introduced. After introducing sulfuryl fluoride, 7.2 g (0.43 mole) of anhydrous ammonia was introduced over 1 hour while maintaining the internal temperature of 0 ° C to 5 ° C. When the introduction of anhydrous ammonia was completed, the reactor was warmed to room temperature and stirred for 14 hours. After 14 hours, the reaction solution was quantified by 19 F-NMR.
  • ⁇ Third step> 102 g of the bis (fluorosulfonyl) imide triethylammonium salt obtained in the second step was placed in a 500 ml four-necked flask, and 360 g of dimethyl carbonate was added. 17.5 g (0.41 mol) of lithium chloride was added and stirred for 6 hours, and then 413 g of bis (fluorosulfonyl) imide lithium was obtained as a solution by filtering the crystals. When bis (fluorosulfonyl) imidolithium in this solution was quantified by 19 F-NMR, the yield relative to ammonia as a starting material was 84.7% (0.36 mol), and the purity was 99% or more.
  • the moisture value was 3 ppm with respect to bis (fluorosulfonyl) imide lithium. Further, when the solvent of the bis (fluorosulfonyl) imide lithium solution was distilled off under reduced pressure, 67.3 g (0.36 mol) of bis (fluorosulfonyl) imide lithium was obtained as crystals (fluorine ion concentration: 3 ppm, sulfamic acid). (NH 2 SO 3 H) concentration: 24 ppm).
  • Example 2 ⁇ First step> A 500 ml autoclave was charged with 140 g of acetonitrile and 236 g (1.27 mol) of tri-n-butylamine, cooled to 5 ° C. with ice water, and 95.3 g (0.93 mol) of sulfuryl fluoride was introduced. After introducing sulfuryl fluoride, 7.0 g (0.41 mol) of anhydrous ammonia was introduced over 1 hour while maintaining the internal temperature of 0 ° C to 5 ° C. When the introduction of anhydrous ammonia was completed, the reactor was warmed to room temperature and stirred for 13 hours. After 13 hours, the reaction solution was quantified by 19 F-NMR.
  • the bis (halogenated sulfonyl) imidic acid metal salt targeted in the present invention can be used as an intermediate for medical and agricultural chemicals, a battery electrolyte, an acid catalyst, and an ionic liquid.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

A manufacturing method for a bis(halogenated sulfonyl)imide acid metal salt comprises: a step (first step) for obtaining a mixture including a "salt or complex comprising a bis(halogenated sulfonyl)imide acid and an organic base" and a "salt or complex comprising an organic base and hydrogen halide" by reacting an organic base with ammonia or ammonium halide in sulfuryl halide; a step (second step) for obtaining the "salt or complex comprising a bis(halogenated sulfonyl)imide acid and an organic base" by water-washing and/or filtering the obtained mixture; and a step (third step) for reacting the obtained "salt or complex comprising a bis(halogenated sulfonyl)imide acid and an organic base" with a halide of an alkali metal or an alkaline earth metal in a solvent.

Description

ビス(ハロゲン化スルホニル)イミド酸金属塩の製造方法Method for producing bis (halogenated sulfonyl) imidic acid metal salt
 本発明は、ビス(ハロゲン化スルホニル)イミド酸金属塩の工業的な製造方法に関する。 The present invention relates to an industrial production method of bis (halogenated sulfonyl) imidic acid metal salt.
 従来から広く知られているビス(ハロゲン化スルホニル)イミド酸金属塩は電池電解質溶媒やイオン液体、帯電防止剤としても有用な化合物である。 Conventionally known bis (halogenated sulfonyl) imidic acid metal salts are useful compounds as battery electrolyte solvents, ionic liquids and antistatic agents.
 ビス(ハロゲン化スルホニル)イミド酸化合物の製造方法として、特許文献1に尿素とフルオロスルホン酸とを反応させて、ビス(フルオロスルホニル)イミド酸を得る方法が、非特許文献1には、ビス(クロロスルホニル)イミド酸に金属フッ化物を反応させて、ビス(フルオロスルホニル)イミド酸を得る製造方法が知られている。 As a method for producing a bis (halogenated sulfonyl) imidic acid compound, Patent Document 1 discloses a method in which urea and fluorosulfonic acid are reacted to obtain bis (fluorosulfonyl) imidic acid. A manufacturing method is known in which a metal fluoride is reacted with chlorosulfonyl) imidic acid to obtain bis (fluorosulfonyl) imidic acid.
 ビス(クロロスルホニル)イミド酸化合物の製造方法として、特許文献2にクロロスルホン酸(ClSO3H)とクロロスルホニルイソシアネート(ClSO2NCO)を反応させてビス(クロロスルホニル)イミド酸が、非特許文献2にクロロスルホン酸(ClSO3H)とN-スルホニルトリクロロホスファゼン(ClSO2NPCl3)を反応させてビス(クロロスルホニル)イミド酸を得る方法が報告されている。 As a method for producing a bis (chlorosulfonyl) imidic acid compound, Patent Document 2 reacts chlorosulfonic acid (ClSO 3 H) and chlorosulfonyl isocyanate (ClSO 2 NCO) to produce bis (chlorosulfonyl) imidic acid. 2 is reported to react chlorosulfonic acid (ClSO 3 H) with N-sulfonyltrichlorophosphazene (ClSO 2 NPCl 3 ) to obtain bis (chlorosulfonyl) imidic acid.
 また、本出願人らは、より大量規模製造に適した方法として、ハロゲン化スルフリルとアンモニアを反応させて、ビス(ハロゲン化スルホニル)イミド酸金属塩を得る方法を提案している(特許文献3)。 Further, the present applicants have proposed a method for obtaining a metal salt of bis (halogenated sulfonyl) imidic acid by reacting sulfuryl halide with ammonia as a method suitable for larger-scale production (Patent Document 3). ).
米国特許第3379509号明細書US Pat. No. 3,379,509 米国特許第4315935号明細書U.S. Pat. No. 4,315,935 特開2010-254554号公報JP 2010-254554 A
 特許文献1に記載の方法では、毒性・腐食性の高いフルオロスルホン酸を使用しており、さらにこの反応で得られるビス(フルオロスルホニル)イミド酸と、フルオロスルホン酸との分離工程が必要となること、また、やや低収率ということもあり、工業的な製造法として採用するには幾分難があった。また、非特許文献1に記載の方法は、毒性が高く、高価である三フッ化砒素や三フッ化アンチモンを使用することから、工業的に量産を行うには不利である。さらに、特許文献2および非特許文献2に記載の方法では、比較的高価なクロロスルホニルイソシアネート(ClSO2NCO)やN-スルホニルトリクロロホスファゼン(ClSO2NPCl3)を用いる点で不利であった。 The method described in Patent Document 1 uses highly toxic and corrosive fluorosulfonic acid, and further requires a separation step of bis (fluorosulfonyl) imidic acid obtained by this reaction and fluorosulfonic acid. In addition, the yield was somewhat low, and it was somewhat difficult to adopt as an industrial production method. Further, the method described in Non-Patent Document 1 is disadvantageous for industrial mass production because it uses arsenic trifluoride or antimony trifluoride, which is highly toxic and expensive. Furthermore, the methods described in Patent Document 2 and Non-Patent Document 2 are disadvantageous in that relatively expensive chlorosulfonyl isocyanate (ClSO 2 NCO) or N-sulfonyltrichlorophosphazene (ClSO 2 NPCl 3 ) is used.
 特許文献3に記載の方法は、ビス(ハロゲン化スルホニル)イミド酸金属塩を、高純度で得る有用な製法ではあるが、収率にばらつきがある(32%~83%)こと、該金属塩を得る直前の工程で水を用いている為、元来、ビス(ハロゲン化スルホニル)イミド酸化合物自体、水に対し不安定であることも考慮すると、工業的な製造としてはいくぶん改善の余地があった。 The method described in Patent Document 3 is a useful method for obtaining a bis (halogenated sulfonyl) imidic acid metal salt with high purity, but the yield varies (32% to 83%). Since water is used in the process immediately before obtaining bis (halogenated sulfonyl) imidic acid compound itself, considering that it is unstable to water, there is some room for improvement in industrial production. there were.
 本発明は、工業的に採用し得る条件で、不純物含有量が少ないビス(ハロゲン化スルホニル)イミド酸誘導体を、効率的かつ安定的に製造する方法を提供することを課題とする。 An object of the present invention is to provide a method for efficiently and stably producing a bis (halogenated sulfonyl) imidic acid derivative having a low impurity content under industrially employable conditions.
 そこで本発明者らは、上記課題に鑑み、鋭意検討したところ、ハロゲン化スルフリルに、有機塩基の存在下、アンモニア(NH3)等を反応させて「ビス(ハロゲン化スルホニル)イミド酸と有機塩基からなる塩又は錯体」を反応系内に形成させ、続いて水洗浄及び/又はろ別操作を行った後、金属ハロゲン化物とのカチオン交換反応を行うことで、従来の製造方法と比べて不純物の含有量が極めて低い、ビス(ハロゲン化スルホニル)イミド酸金属塩の効率的な製造方法を見出し、本発明を完成させた。 In view of the above problems, the inventors of the present invention have made extensive studies. As a result, ammonia (NH 3 ) or the like is reacted with halogenated sulfuryl in the presence of an organic base to produce “bis (halogenated sulfonyl) imidic acid and organic base. In the reaction system, after forming a salt or complex consisting of ”in the reaction system, followed by washing with water and / or filtering, a cation exchange reaction with a metal halide is carried out. The present invention was completed by finding an efficient method for producing a metal salt of bis (halogenated sulfonyl) imidic acid having a very low content of.
 すなわち、本発明は以下の[発明1]-[発明6]に記載する発明を提供する。 That is, the present invention provides the inventions described in [Invention 1]-[Invention 6] below.
 [発明1]
 式[1]で表されるビス(ハロゲン化スルホニル)イミド酸金属塩の製造方法において、以下の工程を含むことを特徴とする、ビス(ハロゲン化スルホニル)イミド酸金属塩の製造方法。
Figure JPOXMLDOC01-appb-C000002
[式中、Rはそれぞれ独立してハロスルホニル基(-SO21;X1はハロゲン(フッ素、塩素、臭素、ヨウ素))を表す。Mはアルカリ金属又はアルカリ土類金属を表す。nは該当する金属の価数と同数の整数を示す。]
 [第1工程]
 ハロゲン化スルフリル(SO223;X2、X3は同一、又は異なるハロゲン(フッ素、塩素、臭素、ヨウ素)を表す。)に、有機塩基と、アンモニアもしくはハロゲン化アンモニウムとを反応させることにより、「ビス(ハロゲン化スルホニル)イミド酸と有機塩基からなる塩又は錯体」と、「有機塩基とハロゲン化水素からなる塩または錯体」を含む混合物を得る工程。
 [第2工程]
 第1工程で得られた混合物に対し、水洗浄及び/又はろ別を行うことにより、該混合物に含まれる「有機塩基とハロゲン化水素からなる塩または錯体」を分離除去し、「ビス(ハロゲン化スルホニル)イミド酸と有機塩基からなる塩又は錯体」を得る工程。
 [第3工程]
 第2工程で得られた「ビス(ハロゲン化スルホニル)イミド酸と有機塩基からなる塩又は錯体」に、溶媒中、アルカリ金属もしくはアルカリ土類金属のハロゲン化物を反応させ、式[1]で表されるビス(ハロゲン化スルホニル)イミド酸金属塩を含む混合液を得る工程。
[Invention 1]
In the manufacturing method of the bis (halogenated sulfonyl) imido acid metal salt represented by Formula [1], the manufacturing method of the bis (halogenated sulfonyl) imido acid metal salt characterized by including the following processes.
Figure JPOXMLDOC01-appb-C000002
[Wherein, R independently represents a halosulfonyl group (—SO 2 X 1 ; X 1 is halogen (fluorine, chlorine, bromine, iodine)). M represents an alkali metal or an alkaline earth metal. n represents an integer equal to the valence of the corresponding metal. ]
[First step]
Sulfuryl halide (SO 2 X 2 X 3 ; X 2 and X 3 represent the same or different halogens (fluorine, chlorine, bromine, iodine)) are reacted with an organic base and ammonia or ammonium halide. By this, the process of obtaining the mixture containing "the salt or complex which consists of a bis (halogenation sulfonyl) imide acid and an organic base", and "the salt or complex which consists of an organic base and a hydrogen halide."
[Second step]
The mixture obtained in the first step is washed with water and / or filtered to separate and remove “a salt or complex comprising an organic base and a hydrogen halide” contained in the mixture, and “bis (halogen) A sulfonylated) imide acid and an organic base salt or complex ”.
[Third step]
The “salt or complex comprising bis (halogenated sulfonyl) imidic acid and organic base” obtained in the second step is reacted with a halide of an alkali metal or an alkaline earth metal in a solvent, and represented by the formula [1]. A step of obtaining a mixed solution containing a bis (halogenated sulfonyl) imidic acid metal salt.
 [発明2]
 第1工程で用いる有機塩基が、第1級アミン、第2級アミン、第3級アミン、含窒素芳香族複素環式化合物またはイミン系塩基である、発明1に記載の製造方法。
[Invention 2]
The production method according to invention 1, wherein the organic base used in the first step is a primary amine, secondary amine, tertiary amine, nitrogen-containing aromatic heterocyclic compound or imine base.
 [発明3]
 第1工程で有機溶媒を用いて反応を行い、続く第2工程において、水洗浄及び/又はろ別を行う前に濃縮して有機溶媒を留去する工程を更に含む、発明1または2に記載の製造方法。
[Invention 3]
The reaction according to the invention 1 or 2, further comprising a step of performing a reaction using an organic solvent in the first step, and further concentrating and distilling the organic solvent before performing water washing and / or filtration in the second step. Manufacturing method.
 [発明4]
 第3工程で用いるアルカリ金属もしくはアルカリ土類金属のハロゲン化物が、フッ化リチウム、フッ化ナトリウム、フッ化カリウム、塩化リチウム、塩化ナトリウム、塩化カリウム、フッ化マグネシウム、フッ化カルシウム、フッ化バリウム、フッ化ストロンチウム、塩化マグネシウムまたは塩化カルシウムである、発明1乃至3の何れかに記載の製造方法。
[Invention 4]
The alkali metal or alkaline earth metal halide used in the third step is lithium fluoride, sodium fluoride, potassium fluoride, lithium chloride, sodium chloride, potassium chloride, magnesium fluoride, calcium fluoride, barium fluoride, The manufacturing method in any one of invention 1 thru | or 3 which is strontium fluoride, magnesium chloride, or calcium chloride.
 [発明5]
 第3工程において、アルカリ金属のハロゲン化物を反応させる際に用いる溶媒が、脂肪族炭化水素類、芳香族炭化水素類、エーテル類、カーボネート類、エステル類、アミド類、ニトリル類またはスルホキシド類である、発明1乃至4の何れかに記載の製造方法。
[Invention 5]
In the third step, the solvent used for reacting the alkali metal halide is an aliphatic hydrocarbon, aromatic hydrocarbon, ether, carbonate, ester, amide, nitrile or sulfoxide. The manufacturing method in any one of invention 1 thru | or 4.
 [発明6]
 第3工程において、ビス(ハロゲン化スルホニル)イミド酸金属塩を含む混合液中に含まれる「有機塩基とハロゲン化水素からなる塩または錯体」をろ別操作で分離除去する工程を更に含む、発明1乃至5の何れかに記載の製造方法。
[Invention 6]
In the third step, the invention further comprises a step of separating and removing “a salt or complex comprising an organic base and a hydrogen halide” contained in a mixed solution containing a bis (halogenated sulfonyl) imidic acid metal salt by a filtration operation. The manufacturing method in any one of 1 thru | or 5.
 本発明における製造方法は、各工程が良好に進行し、かつ、不純物含有量が極めて低いビス(ハロゲン化スルホニル)イミド酸金属塩を、効率的に製造できるという効果を奏する。 The production method of the present invention has an effect that a bis (halogenated sulfonyl) imidic acid metal salt in which each step proceeds well and the impurity content is extremely low can be efficiently produced.
 以下、本発明を詳細に説明する。本発明は以下の実施態様に限定されるものではなく、本発明の趣旨を損なわない範囲で、当業者の通常の知識に基づいて、適宜実施することができる。 Hereinafter, the present invention will be described in detail. The present invention is not limited to the following embodiments, and can be appropriately implemented based on the ordinary knowledge of those skilled in the art without departing from the spirit of the present invention.
 [第1工程]
 まず、第1工程について説明する。第1工程は、ハロゲン化スルフリルに、有機塩基と、アンモニアもしくはハロゲン化アンモニウムとを反応させることにより、「ビス(ハロゲン化スルホニル)イミド酸と有機塩基からなる塩又は錯体」と、「有機塩基とハロゲン化水素からなる塩または錯体」を含む混合物を得る工程である(スキーム1;各反応試剤の定義は後述する)。
Figure JPOXMLDOC01-appb-C000003
[First step]
First, the first step will be described. In the first step, a sulfuryl halide is reacted with an organic base and ammonia or an ammonium halide to produce a “salt or complex consisting of bis (halogenated sulfonyl) imidic acid and an organic base” and “an organic base and This is a step of obtaining a mixture containing a “salt or complex comprising a hydrogen halide” (Scheme 1; definitions of each reaction reagent will be described later).
Figure JPOXMLDOC01-appb-C000003
 本工程で用いるハロゲン化スルフリルとしては、フッ化スルフリル、塩化スルフリル、臭化スルフリル、ヨウ化スルフリル、塩化フッ化スルフリルが挙げられるが、これらの中で、フッ化スルフリル、塩化スルフリルは工業的規模での入手がしやすいため好ましく、特にフッ化スルフリルが好ましい。よって、式[1]におけるRの定義中、X1(ハロゲン化スルフリルにおけるX2、X3)は、フッ素又は塩素である場合が好ましく、特にフッ素が好ましい。 Examples of the sulfuryl halide used in this step include sulfuryl fluoride, sulfuryl chloride, sulfuryl bromide, sulfuryl iodide, and sulfuryl chloride. Of these, sulfuryl fluoride and sulfuryl chloride are on an industrial scale. Is preferable because it is easily available, and sulfuryl fluoride is particularly preferable. Therefore, in the definition of R in the formula [1], X 1 (X 2 and X 3 in the sulfuryl halide) is preferably fluorine or chlorine, and fluorine is particularly preferable.
 また、本工程で用いるハロゲン化アンモニウムとしては、具体的にフッ化アンモニウム、塩化アンモニウム、臭化アンモニウム、ヨウ化アンモニウム等が挙げられる。 Specific examples of the ammonium halide used in this step include ammonium fluoride, ammonium chloride, ammonium bromide, and ammonium iodide.
 本工程で使用するハロゲン化スルフリルはアンモニアもしくはハロゲン化アンモニウム1モルに対して、通常、1~10モルで行い、好ましくは1~8モル、より好ましくは1~5モルで行う。 The sulfuryl halide used in this step is usually 1 to 10 mol, preferably 1 to 8 mol, more preferably 1 to 5 mol per 1 mol of ammonia or ammonium halide.
 本工程で用いる有機塩基は、下記式で表される第1級アミン、第2級アミンまたは第3級アミン、含窒素芳香族複素環式化合物、または次のイミン骨格:-C=N-C-を有するイミン系塩基である。
Figure JPOXMLDOC01-appb-C000004
[式中、R1、R2、R3は、それぞれ独立に、水素原子(但し、R1、R2及びR3が水素原子の場合(有機塩基が「アンモニア」の場合)を除く)、アルキル基、置換アルキル基、アリール基または置換アリール基を表す。]
 該アルキル基は、炭素数1~12の直鎖又は分岐鎖のアルキル基、炭素数3~12の環状アルキル基を表す。アリール基は炭素数6~18の芳香族炭化水素(フェニル基、ナフチル基、アントラニル基等)を表す。置換アルキル基は、前記で述べたアルキル基の任意の炭素上に、任意の数及び任意の組み合わせで置換基を有する。係る置換基は、ハロゲン(フッ素、塩素、臭素、ヨウ素)、アミノ基(‐NH2)、炭素数1~12のアルキル基(環状アルキル基に置換する場合)、炭素数1~12のハロアルキル基(環状アルキル基に置換する場合)、ニトロ基、アセチル基、シアノ基、アリール基またはヒドロキシル基である(なお、置換アルキル基における置換基がアミノ基である場合、該アミノ基の水素原子の一部または全てがアルキル基に置換されていても良い)。
 置換アリール基は、前記で述べたアリール基の任意の炭素上に、任意の数及び任意の組み合わせで置換基を有する。係る置換基はハロゲン(フッ素、塩素、臭素、ヨウ素)、アミノ基、炭素数1~10のアルキル基、炭素数1~10のハロアルキル基、ニトロ基、アセチル基、シアノ基、アリール基またはヒドロキシル基である。
The organic base used in this step is a primary amine, secondary amine or tertiary amine represented by the following formula, a nitrogen-containing aromatic heterocyclic compound, or the following imine skeleton: —C═N—C It is an imine base having-.
Figure JPOXMLDOC01-appb-C000004
[Wherein R 1 , R 2 and R 3 are each independently a hydrogen atom (except when R 1 , R 2 and R 3 are hydrogen atoms (when the organic base is “ammonia”)), Represents an alkyl group, a substituted alkyl group, an aryl group or a substituted aryl group; ]
The alkyl group represents a linear or branched alkyl group having 1 to 12 carbon atoms or a cyclic alkyl group having 3 to 12 carbon atoms. The aryl group represents an aromatic hydrocarbon having 6 to 18 carbon atoms (phenyl group, naphthyl group, anthranyl group, etc.). The substituted alkyl group has a substituent in any number and in any combination on any carbon of the alkyl group described above. Such substituents are halogen (fluorine, chlorine, bromine, iodine), amino group (—NH 2 ), alkyl group having 1 to 12 carbon atoms (when substituted with a cyclic alkyl group), haloalkyl group having 1 to 12 carbon atoms. (When substituted with a cyclic alkyl group), a nitro group, an acetyl group, a cyano group, an aryl group or a hydroxyl group (in the case where the substituent in the substituted alkyl group is an amino group, one of the hydrogen atoms of the amino group) Part or all may be substituted with an alkyl group).
The substituted aryl group has a substituent in any number and in any combination on any carbon of the aryl group described above. Such substituents are halogen (fluorine, chlorine, bromine, iodine), amino group, alkyl group having 1 to 10 carbon atoms, haloalkyl group having 1 to 10 carbon atoms, nitro group, acetyl group, cyano group, aryl group or hydroxyl group. It is.
 これらの有機塩基のうち、第1級アミン、第2級アミンまたは第3級アミンであり、該アミンにおけるR1、R2、R3が、それぞれ独立に、水素原子、炭素数1~8の直鎖又は分岐鎖のアルキル基、炭素数3~8の環状アルキル基またはアリール基であるものが好ましい。さらに、これらの中でも、第3級アミンであり、該アミンにおけるR1、R2、R3が、それぞれ独立に、炭素数1~6の直鎖又は分岐鎖のアルキル基であるものが特に好ましい。 Among these organic bases, they are primary amines, secondary amines or tertiary amines, and R 1 , R 2 and R 3 in the amines are each independently a hydrogen atom, a carbon number of 1 to 8 A linear or branched alkyl group, a cyclic alkyl group having 3 to 8 carbon atoms, or an aryl group is preferable. Further, among these, tertiary amines, in which R 1 , R 2 and R 3 in the amine are each independently a linear or branched alkyl group having 1 to 6 carbon atoms are particularly preferable. .
 前記含窒素芳香族複素環式化合物及びイミン系塩基も含め、有機塩基の具体例を以下に示す。
有機塩基:メチルアミン、エチルアミン、イソプロピルアミン、n-ブチルアミン、N-ベンジルアミン、ジエチルアミン、ジプロピルアミン、トリメチルアミン、トリエチルアミン、ジイソプロピルエチルアミン、トリ-n-プロピルアミン、トリイソプロピルアミン、トリ-n-ブチルアミン、トリオクチルアミン、トリデシルアミン、トリフェニルアミン、トリベンジルアミン、トリス(2-エチルへキシル)アミン、N,N-ジメチルデシルアミン、N-ベンジルジメチルアミン、N-ブチルジメチルアミン、N,N-ジメチルシクロヘキシルアミン、N,N,N’,N’-テトラメチルエチレンジアミン、N,N,N’,N’-テトラメチルプロピレンジアミン、N,N-ジメチルアニリン、N,N-ジエチルアニリン、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン、1,5-ジアザビシクロ[4.3.0]ノン-5-エン、1,4-ジアザビシクロ[2.2.2]オクタン、N-メチルピロリジン、N-メチルピペリジン、N-メチルモルホリン、N-エチルモルホリン、N,N′-ジメチルピペラジン、N-メチルピペコリン、N-メチルピロリドン、N-ビニル-ピロリドン、ビス(2-ジメチルアミノ-エチル)エーテル、N,N,N,N',N''-ペンタメチル-ジエチレントリアミン、トリエタノールアミン、トリプロパノールアミン、ジメチルエタノールアミン、ジメチルアミノエトキシエタノール、N,N-ジメチルアミノプロピルアミン、N,N,N',N',N''-ペンタメチルジプロピレントリアミン、トリス(3-ジメチルアミノプロピル)アミン、テトラメチルイミノ-ビス(プロピルアミン)、N-ジエチル-エタノールアミン、ピリジン、2,4,6-トリメチルピリジン、4-ジメチルアミノピリジン、ルチジン、ピリミジン、ピリダジン、ピラジン、オキサゾール、イソオキサゾール、チアゾール、イソチアゾール、イミダゾール、1,2-ジメチルイミダゾール、3-(ジメチルアミノ)プロピルイミダゾール、ピラゾール,フラザン、ピラジン、キノリン、イソキノリン、プリン、1H-インダゾール、キナゾリン、シンノリン、キノキサリン、フタラジン、プテリジン、フェナントリジン、2,6-ジ-t-ブチルピリジン、2,2'-ビピリジン、4,4'-ジメチル-2,2'-ビピリジル、4,4'-ジメチル-2,2'-ビピリジル、5,5'-ジメチル-2,2'-ビピリジル、6,6'-t-ブチル-2,2'-ジピリジル、4,4'-ジフェニル-2,2'-ビピリジル、1,10-フェナントロリン、2,7-ジメチル-1,10-フェナントロリン、5,6-ジメチル-1,10-フェナントロリン、4,7-ジフェニル-1,10-フェナントロリンなどである。
 これらのうち、トリメチルアミン、トリエチルアミン、ジイソプロピルエチルアミン、トリ-n-プロピルアミン、トリイソプロピルアミン、トリ-n-ブチルアミン、トリオクチルアミン、トリフェニルアミン、N-ブチルジメチルアミンまたはN,N-ジメチルシクロヘキシルアミンが好ましく、中でも、トリエチルアミン、ジイソプロピルエチルアミン、トリ-n-ブチルアミンが特に好ましい。
 なお、有機塩基は単独又は組み合わせて使用することができる。
Specific examples of the organic base including the nitrogen-containing aromatic heterocyclic compound and the imine base are shown below.
Organic base: methylamine, ethylamine, isopropylamine, n-butylamine, N-benzylamine, diethylamine, dipropylamine, trimethylamine, triethylamine, diisopropylethylamine, tri-n-propylamine, triisopropylamine, tri-n-butylamine, Trioctylamine, tridecylamine, triphenylamine, tribenzylamine, tris (2-ethylhexyl) amine, N, N-dimethyldecylamine, N-benzyldimethylamine, N-butyldimethylamine, N, N- Dimethylcyclohexylamine, N, N, N ′, N′-tetramethylethylenediamine, N, N, N ′, N′-tetramethylpropylenediamine, N, N-dimethylaniline, N, N-diethylaniline, 1,8 -Diaza Bicyclo [5.4.0] undec-7-ene, 1,5-diazabicyclo [4.3.0] non-5-ene, 1,4-diazabicyclo [2.2.2] octane, N-methylpyrrolidine N-methylpiperidine, N-methylmorpholine, N-ethylmorpholine, N, N'-dimethylpiperazine, N-methylpipecoline, N-methylpyrrolidone, N-vinyl-pyrrolidone, bis (2-dimethylamino-ethyl) Ether, N, N, N, N ′, N ″ -pentamethyl-diethylenetriamine, triethanolamine, tripropanolamine, dimethylethanolamine, dimethylaminoethoxyethanol, N, N-dimethylaminopropylamine, N, N, N ', N', N ″ -pentamethyldipropylenetriamine, tris (3-dimethylaminopropyl) Amine, tetramethylimino-bis (propylamine), N-diethyl-ethanolamine, pyridine, 2,4,6-trimethylpyridine, 4-dimethylaminopyridine, lutidine, pyrimidine, pyridazine, pyrazine, oxazole, isoxazole, thiazole , Isothiazole, imidazole, 1,2-dimethylimidazole, 3- (dimethylamino) propylimidazole, pyrazole, furazane, pyrazine, quinoline, isoquinoline, purine, 1H-indazole, quinazoline, cinnoline, quinoxaline, phthalazine, pteridine, phenanthate Lysine, 2,6-di-t-butylpyridine, 2,2′-bipyridine, 4,4′-dimethyl-2,2′-bipyridyl, 4,4′-dimethyl-2,2′-bipyridyl, 5, 5'-dimethyl-2,2 ' -Bipyridyl, 6,6'-t-butyl-2,2'-dipyridyl, 4,4'-diphenyl-2,2'-bipyridyl, 1,10-phenanthroline, 2,7-dimethyl-1,10-phenanthroline 5,6-dimethyl-1,10-phenanthroline, 4,7-diphenyl-1,10-phenanthroline, and the like.
Of these, trimethylamine, triethylamine, diisopropylethylamine, tri-n-propylamine, triisopropylamine, tri-n-butylamine, trioctylamine, triphenylamine, N-butyldimethylamine or N, N-dimethylcyclohexylamine Among them, triethylamine, diisopropylethylamine, and tri-n-butylamine are particularly preferable.
In addition, an organic base can be used individually or in combination.
 本工程で用いる有機塩基の使用量は、ハロゲン化スルフリル1モルに対して、化学量論的にはアンモニアを使用した場合は3モル、ハロゲン化アンモニウムを使用した場合は4モル必要とし、通常3~10モルであるが、好ましくは3~5モルから適宜選択される。3モル(ハロゲン化アンモニウムの場合は4モル)より少ないと反応収率が低下する原因となる。また、10モルを超えて用いても反応の進行について問題は無いが、反応速度、収率、または経済性の点でも、メリットは多くない。 The amount of the organic base used in this step is 3 moles when ammonia is used stoichiometrically and 4 moles when ammonium halide is used, and usually 3 moles per mole of sulfuryl halide. Although it is ˜10 mol, it is preferably selected appropriately from 3 to 5 mol. If it is less than 3 mol (4 mol in the case of ammonium halide), the reaction yield will be reduced. Even if it is used in excess of 10 moles, there is no problem with the progress of the reaction, but there are not many merits in terms of reaction rate, yield, or economy.
 本工程で用いるアンモニアは、単体(例えば気体または液体アンモニアなど)であっても、液体状態(溶媒に溶解したもの等)であっても、いずれも用いることが可能である。 The ammonia used in this step can be used either alone (for example, gas or liquid ammonia) or in a liquid state (such as dissolved in a solvent).
 また、本工程は有機溶媒を共存させて反応を行うこともできる。ここで有機溶媒とは、本発明の反応に直接関与しない不活性な有機化合物のことを言う。反応溶媒としては、脂肪族炭化水素類、芳香族炭化水素類、ハロゲン化炭化水素類、エーテル類、エステル類、アミド類、ニトリル類またはスルホキシド類等が挙げられる。これらの中でもエステル類、アミド類、ニトリル類またはスルホキシド類が好ましく、ニトリル類がより好ましい。 Also, this step can be performed in the presence of an organic solvent. Here, the organic solvent means an inert organic compound that does not directly participate in the reaction of the present invention. Examples of the reaction solvent include aliphatic hydrocarbons, aromatic hydrocarbons, halogenated hydrocarbons, ethers, esters, amides, nitriles or sulfoxides. Among these, esters, amides, nitriles or sulfoxides are preferable, and nitriles are more preferable.
 有機溶媒の具体的な例としては、n-ヘキサン、シクロヘキサン、n-ヘプタン、ベンゼン、トルエン、キシレン、メシチレン、塩化メチレン、クロロホルム、1,2-ジクロロエタン、ジエチルエーテル、テトラヒドロフラン、tert-ブチルメチルエーテル、酢酸エチル、酢酸ブチル、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン、アセトニトリル、プロピオニトリル、ブチロニトリル、イソブチロニトリル、バレロニトリルまたはジメチルスルホキシド等が挙げられる。この中でも酢酸エチル、酢酸ブチル、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン、アセトニトリル、プロピオニトリルまたはジメチルスルホキシドが好ましく、アセトニトリルまたはプロピオニトリルがより好ましい。これらの反応溶媒は単独又は組み合わせて使用することができる。 Specific examples of the organic solvent include n-hexane, cyclohexane, n-heptane, benzene, toluene, xylene, mesitylene, methylene chloride, chloroform, 1,2-dichloroethane, diethyl ether, tetrahydrofuran, tert-butyl methyl ether, Examples thereof include ethyl acetate, butyl acetate, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, acetonitrile, propionitrile, butyronitrile, isobutyronitrile, valeronitrile, dimethyl sulfoxide and the like. Among these, ethyl acetate, butyl acetate, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, acetonitrile, propionitrile or dimethyl sulfoxide are preferable, and acetonitrile or propionitrile is more preferable. These reaction solvents can be used alone or in combination.
 有機溶媒の使用量としては、特に制限はないが、アンモニアもしくはハロゲン化アンモニウム1モルに対して0.1L(リットル)以上を使用すればよく、通常は0.1~20Lが好ましく、特に0.1~10Lがより好ましい。 The amount of the organic solvent to be used is not particularly limited, but 0.1 L (liter) or more may be used with respect to 1 mol of ammonia or ammonium halide, and usually 0.1 to 20 L is preferable. 1 to 10 L is more preferable.
 なお、本工程で有機溶媒を用いた場合、該有機溶媒が水溶性の有機溶媒である場合は、本工程の反応後、蒸留等の一般的な有機化学の操作で除去しておき、除去後に第2工程を行うことが、操作の観点からも特に好ましい態様の一つとして挙げられる。一方、有機溶媒を用いない場合もしくは非水溶性の有機溶媒を用いた場合、本工程の反応後、特に溶媒を取り除く操作を行うことなく、そのまま第2工程を行うことができる。 In addition, when an organic solvent is used in this step, when the organic solvent is a water-soluble organic solvent, it is removed by a general organic chemistry operation such as distillation after the reaction in this step, and after the removal. Performing the second step is mentioned as one of particularly preferable embodiments from the viewpoint of operation. On the other hand, when no organic solvent is used or when a water-insoluble organic solvent is used, the second step can be carried out as it is after the reaction in this step, without particularly performing an operation for removing the solvent.
 本工程の温度条件としては、特に制限はないが、通常、-50~200℃の範囲で行えば良いが、0~100℃が好ましく、特に0~70℃がより好ましい。-50℃よりも低い温度であれば反応速度が遅くなり、200℃を超える温度であれば、生成物の分解等が生じることもある。 The temperature condition in this step is not particularly limited, but it may be usually in the range of −50 to 200 ° C., preferably 0 to 100 ° C., more preferably 0 to 70 ° C. If the temperature is lower than −50 ° C., the reaction rate is slow, and if the temperature exceeds 200 ° C., decomposition of the product may occur.
 本工程で用いる反応容器としては、ステンレス鋼、モネルTM、ハステロイTM、ニッケル、又はこれらの金属やポリテトラフルオロエチレン、パーフルオロポリエーテル樹脂などのフッ素樹脂でライニングされた耐圧反応容器などが挙げられる。 The reaction vessel used in the present process, stainless steel, Monel TM, Hastelloy TM, nickel, or these metals or polytetrafluoroethylene, etc. lined pressure-resistant reaction vessel with a fluororesin such as perfluoropolyether resins .
 本工程の反応時間としては、特に制限はないが、0.1~240時間の範囲で行えばよく、基質および反応条件により異なるため、ガスクロマトグラフィー、液体クロマトグラフィー、NMR等の分析手段により、反応の進行状況を追跡して原料であるハロゲン化スルフリルが殆ど消失した時点を終点とすることが好ましい。 The reaction time in this step is not particularly limited, but may be in the range of 0.1 to 240 hours. Since it varies depending on the substrate and reaction conditions, it can be analyzed by analytical means such as gas chromatography, liquid chromatography, and NMR. It is preferable that the progress of the reaction is followed and the end point is the point at which the raw material sulfuryl halide has almost disappeared.
 [第2工程]
 次に第2工程について説明する。第2工程は、第1工程で得られた「ビス(ハロゲン化スルホニル)イミド酸と有機塩基からなる塩又は錯体」と「有機塩基とハロゲン化水素からなる塩または錯体」とを含む混合物に対し、水洗浄及び/又はろ別を行うことにより、該混合物に含まれる「有機塩基とハロゲン化水素からなる塩または錯体」を分離除去し、「ビス(ハロゲン化スルホニル)イミド酸と有機塩基からなる塩又は錯体」を得る工程である(スキーム2)。
Figure JPOXMLDOC01-appb-C000005
[Second step]
Next, the second step will be described. The second step is based on the mixture obtained in the first step including the “salt or complex comprising bis (halogenated sulfonyl) imidic acid and an organic base” and the “salt or complex comprising an organic base and a hydrogen halide”. , By washing with water and / or filtering, the “salt or complex comprising an organic base and a hydrogen halide” contained in the mixture is separated and removed, and “consisting of a bis (halogenated sulfonyl) imidic acid and an organic base. This is a step of obtaining a “salt or complex” (Scheme 2).
Figure JPOXMLDOC01-appb-C000005
 水洗浄及び/又はろ別を実施する実施態様としては、特に制限は無く、有機化学の通常の操作でもって行えば良い。前記水洗浄で用いられる水の量は特に限定されないが、通常、反応混合物中の「イミド酸と有機塩基からなる塩又は錯体」に対して、50~300質量%程度を用いることが好ましい。また、前記の量の水を数回に分けて洗浄・分離を繰り返すことも好ましい操作の一つである。また、反応混合物中の有機塩基の除去効率を上げるために、水洗浄前に塩酸で洗浄することも好ましい操作の一つである。 The embodiment for carrying out water washing and / or filtration is not particularly limited, and may be carried out by ordinary organic chemistry operations. The amount of water used in the water washing is not particularly limited, but it is usually preferable to use about 50 to 300% by mass with respect to the “salt or complex consisting of imide acid and organic base” in the reaction mixture. It is also a preferable operation to repeat the washing / separation by dividing the amount of water into several times. In order to increase the removal efficiency of the organic base in the reaction mixture, washing with hydrochloric acid before washing with water is also one preferable operation.
 前記水洗浄は通常は常温で行うことが好ましいが、温度条件に特に制限はなく、加温してもよい。また、水洗浄に使われる反応容器としては特に制限は無く、ステンレス鋼、モネルTM、ハステロイTM、ニッケル、又はこれらの金属やポリテトラフルオロエチレン、パーフルオロポリエーテル樹脂などのフッ素樹脂でライニングされた反応容器などが挙げられる。 The washing with water is usually preferably performed at room temperature, but the temperature condition is not particularly limited and may be heated. Further, as the reaction vessel used for water washing is not particularly limited, stainless steel, Monel TM, Hastelloy TM, nickel, or these metals or polytetrafluoroethylene, lined with a fluorine resin such as perfluoro polyether resin Reaction container etc. are mentioned.
 第2工程において、水洗浄した後の分離操作とは、有機相と水相とを分けられる方法であれば特に限定はない。一般的には簡便な分液やろ過、遠心分離等で行うことが出来る。第1工程から引き続き、非水溶性の有機溶媒を使用した場合、分液後、蒸留等の一般的な有機化学の操作で除去することが好ましいが、そのまま第3工程で使用することも可能である。 In the second step, the separation operation after washing with water is not particularly limited as long as it is a method capable of separating the organic phase and the aqueous phase. In general, it can be carried out by simple separation, filtration, centrifugation or the like. When a water-insoluble organic solvent is used continuously from the first step, it is preferable to remove it by a general organic chemistry operation such as distillation after separation, but it can also be used in the third step as it is. is there.
 [第3工程]
 次に、第3工程について説明する。第2工程で得られた「ビス(ハロゲン化スルホニル)イミド酸と有機塩基からなる塩又は錯体」に、溶媒中、アルカリ金属もしくはアルカリ土類金属のハロゲン化物を反応させ、ビス(ハロゲン化スルホニル)イミド酸金属塩を含む混合液を得る工程である。
[Third step]
Next, the third step will be described. The “salt or complex comprising bis (halogenated sulfonyl) imidic acid and organic base” obtained in the second step is reacted with an alkali metal or alkaline earth metal halide in a solvent to obtain bis (sulfonyl halide). It is a step of obtaining a mixed liquid containing a metal imidate.
 アルカリ金属のハロゲン化物としては、フッ化リチウム(LiF)、フッ化ナトリウム(NaF)、フッ化カリウム(KF)、フッ化ルビジウム(RbF)、フッ化セシウム(CsF)、塩化リチウム(LiCl)、塩化ナトリウム(NaCl)、塩化カリウム(KCl)、塩化ルビジウム(RbCl)、塩化セシウム(CsCl)、臭化リチウム(LiBr)、臭化ナトリウム(NaBr)、臭化カリウム(KBr)、臭化ルビジウム(RbBr)、臭化セシウム(CsBr)、ヨウ化リチウム(LiI)、ヨウ化ナトリウム(NaI)、ヨウ化カリウム(KI)、ヨウ化ルビジウム(RbI)、ヨウ化セシウム(CsI)が、アルカリ土類金属のハロゲン化物としては、フッ化マグネシウム(MgF2)、フッ化カルシウム(CaF2)、フッ化バリウム(BaF2)、フッ化ストロンチウム(SrF2)、塩化マグネシウム(MgCl2)、塩化カルシウム(CaCl2)、塩化バリウム(BaCl2)、塩化ストロンチウム(SrCl2)、臭化マグネシウム(MgBr2)、臭化カルシウム(CaBr2)、臭化バリウム(BaBr2)、臭化ストロンチウム(SrBr2)、ヨウ化マグネシウム(MgI2)、ヨウ化カルシウム(CaI2)、ヨウ化バリウム(BaI2)、ヨウ化ストロンチウム(SrI2)が挙げられ、好ましくは塩化リチウム(LiCl)、塩化ナトリウム(NaCl)、塩化カリウム(KCl)、塩化ルビジウム(RbCl)、塩化セシウム(CsCl)、塩化マグネシウム(MgCl2)、塩化カルシウム(CaCl2)、塩化バリウム(BaCl2)、塩化ストロンチウム(SrCl2)が挙げられる。
 これらのうち、アルカリ金属もしくはアルカリ土類金属のハロゲン化物が好ましく、アルカリ金属のハロゲン化物としては、フッ化リチウム(LiF)、フッ化ナトリウム(NaF)、フッ化カリウム(KF)、塩化リチウム(LiCl)、塩化ナトリウム(NaCl)または塩化カリウム(KCl)が、アルカリ土類金属のハロゲン化物としては、フッ化マグネシウム(MgF2)、フッ化カルシウム(CaF2)、フッ化バリウム(BaF2)、フッ化ストロンチウム(SrF2)、塩化マグネシウム(MgCl2)または塩化カルシウム(CaCl2)が、安価かつ入手の容易性の点で好ましく用いられる。
 また、これらの化合物は1種または2種以上を組み合わせて用いることもできる。
Examples of alkali metal halides include lithium fluoride (LiF), sodium fluoride (NaF), potassium fluoride (KF), rubidium fluoride (RbF), cesium fluoride (CsF), lithium chloride (LiCl), and chloride. Sodium (NaCl), potassium chloride (KCl), rubidium chloride (RbCl), cesium chloride (CsCl), lithium bromide (LiBr), sodium bromide (NaBr), potassium bromide (KBr), rubidium bromide (RbBr) , Cesium bromide (CsBr), lithium iodide (LiI), sodium iodide (NaI), potassium iodide (KI), rubidium iodide (RbI), cesium iodide (CsI) are alkaline earth metal halogens the product, magnesium fluoride (MgF 2), calcium fluoride (CaF 2) Barium fluoride (BaF 2), strontium fluoride (SrF 2), magnesium chloride (MgCl 2), calcium chloride (CaCl 2), barium chloride (BaCl 2), strontium chloride (SrCl 2), magnesium bromide (MgBr 2 ), calcium bromide (CaBr 2), barium bromide (BaBr 2), strontium bromide (SrBr 2), magnesium iodide (MgI 2), calcium iodide (CaI 2), barium iodide (BaI 2), And strontium iodide (SrI 2 ), preferably lithium chloride (LiCl), sodium chloride (NaCl), potassium chloride (KCl), rubidium chloride (RbCl), cesium chloride (CsCl), magnesium chloride (MgCl 2 ), calcium chloride (CaCl 2), barium chloride (B Cl 2), include strontium chloride (SrCl 2) is.
Of these, alkali metal or alkaline earth metal halides are preferred, and alkali metal halides include lithium fluoride (LiF), sodium fluoride (NaF), potassium fluoride (KF), and lithium chloride (LiCl). ), Sodium chloride (NaCl) or potassium chloride (KCl) are alkali earth metal halides such as magnesium fluoride (MgF 2 ), calcium fluoride (CaF 2 ), barium fluoride (BaF 2 ), fluorine Strontium iodide (SrF 2 ), magnesium chloride (MgCl 2 ) or calcium chloride (CaCl 2 ) is preferably used from the viewpoint of low cost and availability.
Moreover, these compounds can also be used 1 type or in combination of 2 or more types.
 アルカリ金属もしくはアルカリ土類金属のハロゲン化物の使用量は、「イミド酸と有機塩基からなる塩又は錯体」1モルに対し1~10モルであり、1~5モルが好ましく、より好ましくは1~3モルである。10モルを超える量、すなわち過剰量の塩基を反応させた場合、反応は進行するが、「イミド酸と有機塩基からなる塩又は錯体」が分解してしまい、収率が低下してしまうことがある為、過剰量の塩基を用いることは好ましくない。また、1モルよりも少ないと、変換率が低下することからも、好ましくない。 The amount of the alkali metal or alkaline earth metal halide used is 1 to 10 mol, preferably 1 to 5 mol, more preferably 1 to 1 mol, per 1 mol of the “salt or complex consisting of imide acid and organic base”. 3 moles. When the amount exceeds 10 mol, that is, when an excess amount of base is reacted, the reaction proceeds, but the “salt or complex composed of imidic acid and organic base” is decomposed, and the yield may decrease. For this reason, it is not preferable to use an excessive amount of base. On the other hand, when the amount is less than 1 mol, the conversion rate decreases, which is not preferable.
 本工程は、有機溶媒を溶媒として用いて反応させることができる。有機溶媒としては、脂肪族炭化水素類、芳香族炭化水素類、エーテル類、カーボネート類、エステル類、アミド類、ニトリル類またはスルホキシド類等が挙げられる。これらの中でもエステル類、アミド類、カーボネート類、ニトリル類またはスルホキシド類が好ましく、カーボネート類またはニトリル類がより好ましい。 This step can be performed by using an organic solvent as a solvent. Examples of the organic solvent include aliphatic hydrocarbons, aromatic hydrocarbons, ethers, carbonates, esters, amides, nitriles, or sulfoxides. Among these, esters, amides, carbonates, nitriles or sulfoxides are preferable, and carbonates or nitriles are more preferable.
 有機溶媒の具体的な例としては、n-ヘキサン、シクロヘキサン、n-ヘプタン、ベンゼン、トルエン、キシレン、メシチレン、塩化メチレン、クロロホルム、1,2-ジクロロエタン、ジエチルエーテル、テトラヒドロフラン、tert-ブチルメチルエーテル、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、エチレンカーボネート、プロピレンカーボネート、酢酸エチル、酢酸ブチル、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン、アセトニトリル、プロピオニトリル、ブチロニトリル、イソブチロニトリル、バレロニトリルまたはジメチルスルホキシド等が挙げられる。その中でも酢酸エチル、酢酸ブチル、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、エチレンカーボネート、プロピレンカーボネート、アセトニトリル、プロピオニトリルまたはジメチルスルホキシドが好ましく、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、アセトニトリルまたはプロピオニトリルがより好ましい。これらの反応溶媒は単独又は組み合わせて使用することができる。 Specific examples of the organic solvent include n-hexane, cyclohexane, n-heptane, benzene, toluene, xylene, mesitylene, methylene chloride, chloroform, 1,2-dichloroethane, diethyl ether, tetrahydrofuran, tert-butyl methyl ether, Dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, ethylene carbonate, propylene carbonate, ethyl acetate, butyl acetate, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, acetonitrile, propionitrile, butyronitrile, iso Examples include butyronitrile, valeronitrile, and dimethyl sulfoxide. Among them, ethyl acetate, butyl acetate, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, ethylene carbonate, propylene carbonate, acetonitrile, propionitrile or dimethyl Sulfoxide is preferred, and dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, acetonitrile or propionitrile is more preferred. These reaction solvents can be used alone or in combination.
 反応温度に特別に制限はないが、通常-10℃~+110℃、好ましくは+25~+80℃である。-10℃未満であると反応が充分に進行せず、収率低下の原因となり、経済的に不利となる、あるいは、反応速度が低下して反応終了までに長時間を要するなどの問題を生ずる場合がある。一方、+110℃を超えると、副生物が生じやすく、また過剰な加熱はエネルギー効率が悪い。 The reaction temperature is not particularly limited, but is usually −10 ° C. to + 110 ° C., preferably +25 to + 80 ° C. If the temperature is lower than −10 ° C., the reaction does not proceed sufficiently and causes a decrease in yield, which is economically disadvantageous, or causes a problem that the reaction rate decreases and it takes a long time to complete the reaction. There is a case. On the other hand, if it exceeds + 110 ° C., by-products are likely to be generated, and excessive heating is not energy efficient.
 反応時間としては、特に制限はないが、通常は24時間以内の範囲で行えばよく、イオンクロマトグラフィー、NMR等の分析手段により反応の進行状況を追跡し、原料基質が殆ど消失した時点を終点とするのが好ましい。 The reaction time is not particularly limited, but it may usually be within a range of 24 hours. The progress of the reaction is traced by an analytical means such as ion chromatography or NMR, and the end point when the raw material substrate has almost disappeared. Is preferable.
 本工程に用いられる反応器は、ステンレス鋼、ハステロイTM、モネルTMなどの金属製容器や、四フッ化エチレン樹脂、クロロトリフルオロエチレン樹脂、フッ化ビニリデン樹脂、PFA樹脂、ポリプロピレン樹脂、ポリエチレン樹脂、そしてガラスなどを内部にライニングしたもの等、常圧又は加圧下で十分反応を行うことができる反応器を使用することができる。 The reactor used in this process include stainless steel, Hastelloy TM, or metal container such as Monel TM, tetrafluoroethylene resin, chlorotrifluoroethylene resin, vinylidene fluoride resin, PFA resin, polypropylene resin, polyethylene resin, A reactor capable of performing a sufficient reaction under normal pressure or pressure, such as a glass lined inside, can be used.
 なお、本工程では、ビス(ハロゲン化スルホニル)イミド酸金属塩を含む混合液中に「有機塩基とハロゲン化水素からなる塩または錯体」が固体として生成する為、該混合液に対しろ別操作を行うことで「有機塩基とハロゲン化水素からなる塩または錯体」を分離除去することが好ましい。なお、ろ別操作を実施する実施態様としては、特に制限は無く、有機化学の通常の操作でもって行えば良い。ろ別することにより、ビス(ハロゲン化スルホニル)イミド酸金属塩が溶液として得られる。 In this step, since a “salt or complex consisting of an organic base and hydrogen halide” is formed as a solid in the mixed solution containing the metal salt of bis (halogenated sulfonyl) imidic acid, the separation operation is performed on the mixed solution. It is preferable to separate and remove the “salt or complex comprising an organic base and a hydrogen halide”. In addition, there is no restriction | limiting in particular as an embodiment which implements filtration operation, What is necessary is just to carry out by the normal operation of organic chemistry. By filtering off, a bis (halogenated sulfonyl) imidic acid metal salt is obtained as a solution.
 このまま溶液として用いることもできるが、溶媒を留去して当該金属塩の固体を得た後、有機溶媒を用いて再結晶操作を行い、高純度のビス(ハロゲン化スルホニル)イミド酸金属塩を得ることも可能である。再結晶に用いる有機溶媒としては、例えばエーテル類、アルコール類、カーボネート類、脂肪族炭化水素類、ケトン類、ハロゲン化炭化水素類、芳香族炭化水素類等が挙げられる。 Although it can be used as a solution as it is, after removing the solvent to obtain a solid of the metal salt, a recrystallization operation is performed using an organic solvent to obtain a high-purity bis (halogenated sulfonyl) imidic acid metal salt. It is also possible to obtain. Examples of the organic solvent used for recrystallization include ethers, alcohols, carbonates, aliphatic hydrocarbons, ketones, halogenated hydrocarbons, and aromatic hydrocarbons.
 これらの有機溶媒の具体的な化合物は、ジエチルエーテル、テトラヒドロフラン、ジオキサン、ブチルメチルエーテル、ジイソプロピルエーテル、メチル-tert-ブチルエーテルエチレングリコールジメチルエーテル、メタノール、エタノール、n-プロピルアルコール、iso-プロピルアルコール、n-ブチルアルコール、iso-ブチルアルコール、sec-ブチルアルコール、tert-ブチルアルコール、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、エチレンカーボネート、プロピレンカーボネート、n-ペンタン、n-ヘキサン、n-ヘプタン、n-オクタン、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジクロロメタン、クロロホルム、ベンゼン、トルエン、キシレン等である。これらの有機溶媒はそれぞれ単独で用いてもよく、複数の有機溶媒を組み合わせてもよい。 Specific compounds of these organic solvents include diethyl ether, tetrahydrofuran, dioxane, butyl methyl ether, diisopropyl ether, methyl tert-butyl ether ethylene glycol dimethyl ether, methanol, ethanol, n-propyl alcohol, iso-propyl alcohol, n- Butyl alcohol, iso-butyl alcohol, sec-butyl alcohol, tert-butyl alcohol, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, ethylene carbonate, propylene carbonate, n-pentane, n-hexane, n-heptane, n-octane, Acetone, methyl ethyl ketone, methyl isobutyl ketone, dichloromethane, chloroform, benzene, toluene, xylene, etc. A. These organic solvents may be used alone or in combination with a plurality of organic solvents.
 再結晶によって、ビス(ハロゲン化スルホニル)イミド酸金属塩が析出する。これを単離するには、通常の有機化学の操作で行えばよく、例えばろ過操作を施すことで、さらに高純度のビス(ハロゲン化スルホニル)イミド酸金属塩を得ることが出来る。なお、得られたろ液には、ビス(ハロゲン化スルホニル)イミド酸金属塩が一部溶解していることから、得られたろ液を回収し、再結晶における溶媒として再利用することが可能である。再利用することにより、ビス(ハロゲン化スルホニル)イミド酸金属塩の収率をさらに向上させること、また、廃液が大幅に削減できる。 Bis (halogenated sulfonyl) imidic acid metal salt is precipitated by recrystallization. In order to isolate this, it is sufficient to carry out by a general organic chemistry operation. For example, a high-purity bis (halogenated sulfonyl) imidic acid metal salt can be obtained by performing a filtration operation. In addition, since the bis (halogenated sulfonyl) imidic acid metal salt is partially dissolved in the obtained filtrate, the obtained filtrate can be recovered and reused as a solvent in recrystallization. . By reusing, the yield of bis (halogenated sulfonyl) imidic acid metal salt can be further improved, and waste liquid can be greatly reduced.
 次に本発明を実施例に基づき詳細に説明する。なお、本発明はかかる実施例に限定されるものではない。ここで、生成物の定量については、反応混合物を核磁気共鳴分析装置(NMR)によって測定して得られた組成の「モル%」を基に算出した。 Next, the present invention will be described in detail based on examples. In addition, this invention is not limited to this Example. Here, the quantification of the product was calculated based on “mol%” of the composition obtained by measuring the reaction mixture with a nuclear magnetic resonance analyzer (NMR).
 [実施例1]
 <第1工程>
 500mlオートクレーブにアセトニトリルを140g、トリエチルアミンを128.5g(1.27mоl)仕込み、氷水で5℃に冷却し、フッ化スルフリルを96.9g(0.95mоl)導入した。フッ化スルフリルを導入した後、続いて、無水アンモニア7.2g(0.43mоl)を内温0℃~5℃を保ちながら1時間掛けて導入した。無水アンモニアの導入が終了したら反応器を室温まで昇温させ、14時間攪拌した。14時間後、反応液を19F-NMRで定量した結果、出発原料のアンモニアに対するビス(フルオロスルホニル)イミドトリエチルアンモニウム塩の収率は88.0%(0.38mol)であった。
 <第2工程>
 上記反応工程で得られた反応液の溶媒を留去後、残渣を水洗浄し、乾燥することでビス(フルオロスルホニル)イミドトリエチルアンモニウム塩を102g得た。このビス(フルオロスルホニル)イミドトリエチルアンモニウム塩を19F-NMRにより定量を行ったところ、出発原料のアンモニアに対する収率は86.6%(0.37mol)、純度は98.1%であった。
 <第3工程>
 第2工程で得られたビス(フルオロスルホニル)イミドトリエチルアンモニウム塩102gを500ml四つ口フラスコに入れ、ジメチルカーボネートを360g加えた。塩化リチウム17.5g(0.41mol)を加えて、6時間攪拌した後、結晶をろ別することでビス(フルオロスルホニル)イミドリチウム413gを溶液として得た。この溶液中のビス(フルオロスルホニル)イミドリチウムを19F-NMRにより定量を行ったところ、出発原料のアンモニアに対する収率は84.7%(0.36mol)、純度99%以上であった。また、水分値はビス(フルオロスルホニル)イミドリチウムに対して3ppmであった。更にこのビス(フルオロスルホニル)イミドリチウム溶液の溶媒を減圧下、留去したところ、ビス(フルオロスルホニル)イミドリチウムを結晶として67.3g(0.36mol)得た(フッ素イオン濃度:3ppm、スルファミン酸(NH2SO3H)濃度:24ppm)。
[Example 1]
<First step>
A 500 ml autoclave was charged with 140 g of acetonitrile and 128.5 g (1.27 mol) of triethylamine, cooled to 5 ° C. with ice water, and 96.9 g (0.95 mol) of sulfuryl fluoride was introduced. After introducing sulfuryl fluoride, 7.2 g (0.43 mole) of anhydrous ammonia was introduced over 1 hour while maintaining the internal temperature of 0 ° C to 5 ° C. When the introduction of anhydrous ammonia was completed, the reactor was warmed to room temperature and stirred for 14 hours. After 14 hours, the reaction solution was quantified by 19 F-NMR. As a result, the yield of bis (fluorosulfonyl) imide triethylammonium salt relative to the starting material ammonia was 88.0% (0.38 mol).
<Second step>
After distilling off the solvent of the reaction solution obtained in the above reaction step, the residue was washed with water and dried to obtain 102 g of bis (fluorosulfonyl) imide triethylammonium salt. This bis (fluorosulfonyl) imide triethylammonium salt was quantified by 19 F-NMR. As a result, the yield of the starting material with respect to ammonia was 86.6% (0.37 mol), and the purity was 98.1%.
<Third step>
102 g of the bis (fluorosulfonyl) imide triethylammonium salt obtained in the second step was placed in a 500 ml four-necked flask, and 360 g of dimethyl carbonate was added. 17.5 g (0.41 mol) of lithium chloride was added and stirred for 6 hours, and then 413 g of bis (fluorosulfonyl) imide lithium was obtained as a solution by filtering the crystals. When bis (fluorosulfonyl) imidolithium in this solution was quantified by 19 F-NMR, the yield relative to ammonia as a starting material was 84.7% (0.36 mol), and the purity was 99% or more. The moisture value was 3 ppm with respect to bis (fluorosulfonyl) imide lithium. Further, when the solvent of the bis (fluorosulfonyl) imide lithium solution was distilled off under reduced pressure, 67.3 g (0.36 mol) of bis (fluorosulfonyl) imide lithium was obtained as crystals (fluorine ion concentration: 3 ppm, sulfamic acid). (NH 2 SO 3 H) concentration: 24 ppm).
 [実施例2]
 <第1工程>
 500mlオートクレーブにアセトニトリルを140g、トリ-n-ブチルアミンを236g(1.27mоl)仕込み、氷水で5℃に冷却し、フッ化スルフリルを95.3g(0.93 mоl)導入した。フッ化スルフリルを導入した後、続いて、無水アンモニア7.0g(0.41mоl)を内温0℃~5℃を保ちながら1時間掛けて導入した。無水アンモニアの導入が終了したら反応器を室温まで昇温させ、13時間攪拌した。13時間後、反応液を19F-NMRで定量した結果、出発原料のアンモニアに対するビス(フルオロスルホニル)イミドトリ-n-ブチルアンモニウム塩の収率は81.0%(0.33mol)であった。
 <第2工程>
 上記第1工程で得られた反応液の溶媒を留去後、残渣を水洗浄し得られた白色結晶に対し、桐山ロートを用いて減圧濾過後、乾燥することで、ビス(フルオロスルホニル)イミドトリ-n-ブチルアンモニウム塩を124g得た。このビス(フルオロスルホニル)イミドトリ-n-ブチルアンモニウム塩を19F-NMRにより定量を行ったところ、出発原料のアンモニアに対する収率は78.0%(0.32mol)、純度は98.4%であった。
 <第3工程>
 次に、500ml四つ口フラスコに、第2工程で得られたビス(フルオロスルホニル)イミドトリ-n-ブチルアンモニウム塩68.0g(0.18mol)と炭酸ジメチル174g、塩化リチウム8.5g(0.20mol)を加えて15時間、室温で攪拌し、その後結晶をろ別することでビス(フルオロスルホニル)イミドリチウム205gを溶液として得た。この溶液中のビス(フルオロスルホニル)イミドリチウムを19F-NMRにより定量を行ったところ、出発原料のアンモニアに対する収率は73.7%(0.17mol)、純度99%以上であった。また、水分値はビス(フルオロスルホニル)イミドリチウムに対して18ppmであった。更にこのビス(フルオロスルホニル)イミドリチウム溶液の溶媒を減圧下、留去したところビス(フルオロスルホニル)イミドリチウムを結晶として31.8g(0.17mol)得た(フッ素イオン濃度:6ppm、スルファミン酸濃度:35ppm)。
[Example 2]
<First step>
A 500 ml autoclave was charged with 140 g of acetonitrile and 236 g (1.27 mol) of tri-n-butylamine, cooled to 5 ° C. with ice water, and 95.3 g (0.93 mol) of sulfuryl fluoride was introduced. After introducing sulfuryl fluoride, 7.0 g (0.41 mol) of anhydrous ammonia was introduced over 1 hour while maintaining the internal temperature of 0 ° C to 5 ° C. When the introduction of anhydrous ammonia was completed, the reactor was warmed to room temperature and stirred for 13 hours. After 13 hours, the reaction solution was quantified by 19 F-NMR. As a result, the yield of bis (fluorosulfonyl) imide tri-n-butylammonium salt relative to the starting material ammonia was 81.0% (0.33 mol).
<Second step>
After distilling off the solvent of the reaction solution obtained in the first step, the residue was washed with water. The white crystals obtained were filtered under reduced pressure using a Kiriyama funnel and dried to obtain bis (fluorosulfonyl) imide tri 124 g of n-butylammonium salt were obtained. The bis (fluorosulfonyl) imide tri-n-butylammonium salt was quantified by 19 F-NMR. As a result, the yield of the starting material with respect to ammonia was 78.0% (0.32 mol), and the purity was 98.4%. there were.
<Third step>
Next, in a 500 ml four-necked flask, 68.0 g (0.18 mol) of the bis (fluorosulfonyl) imide tri-n-butylammonium salt obtained in the second step, 174 g of dimethyl carbonate, and 8.5 g of lithium chloride (0. 20 mol) was added, and the mixture was stirred at room temperature for 15 hours, and then crystals were filtered off to obtain 205 g of bis (fluorosulfonyl) imide lithium as a solution. When bis (fluorosulfonyl) imidolithium in this solution was quantified by 19 F-NMR, the yield relative to ammonia as a starting material was 73.7% (0.17 mol), and the purity was 99% or more. The moisture value was 18 ppm with respect to bis (fluorosulfonyl) imide lithium. Further, the solvent of this bis (fluorosulfonyl) imide lithium solution was distilled off under reduced pressure to obtain 31.8 g (0.17 mol) of bis (fluorosulfonyl) imide lithium as crystals (fluorine ion concentration: 6 ppm, sulfamic acid concentration). : 35 ppm).
 [比較例1]
 <第1工程>
 500mlオートクレーブにアセトニトリルを140g、トリエチルアミンを128g(1.26mоl)仕込み、氷水で5℃に冷却し、フッ化スルフリルを102g(1.00 mоl)導入した。フッ化スルフリルを導入した後、続いて、無水アンモニア7.2g(0.43mоl)を内温0℃~5℃を保ちながら1時間掛けて導入した。無水アンモニアの導入が終了したら反応器を室温まで昇温させ、14時間攪拌した。14時間後、反応液を19F-NMRで定量した結果、出発原料のアンモニアに対するビス(フルオロスルホニル)イミドトリエチルアンモニウム塩の収率は91.0%(0.39mol)、純度は95.7%であった。
 <第2工程>
 上記第1工程で得られた反応液の溶媒を留去後、残渣を水洗浄し、ビス(フルオロスルホニル)イミドトリエチルアンモニウム塩を125g得た。このビス(フルオロスルホニル)イミドトリエチルアンモニウム塩を19F-NMRにより定量を行ったところ出発原料のアンモニアに対する収率は85.5%(0.37mol)であった(フッ素イオン濃度:95ppm、スルファミン酸濃度:N.D.、硫酸イオン濃度:5ppm)。
 <カチオン交換工程>
 次に、第2工程で得られたビス(フルオロスルホニル)イミドトリエチルアンモニウム塩125g(0.37mol)と水酸化リチウム一水和物18.0g(0.43mol)、水100gを500ml四つ口フラスコに入れ、1時間、室温で攪拌した。反応混合物のトリエチルアミンおよび留去して、ビス(フルオロスルホニル)イミドリチウムを得た。
 さらにこれにアセトニトリルを加え未溶解分をろ別し、アセトニトリルを留去させて、純度99%以上のビス(フルオロスルホニル)イミドリチウムを65.1g、収率81%で得た(フッ素イオン濃度:356ppm、スルファミン酸濃度:1653ppm、硫酸イオン濃度:3536ppm)。
 比較例1では、ビス(フルオロスルホニル)イミドリチウムの加水分解により乾燥工程でフッ素イオン、スルファミン酸、硫酸イオンが増加していることがわかる。
[Comparative Example 1]
<First step>
A 500 ml autoclave was charged with 140 g of acetonitrile and 128 g (1.26 mol) of triethylamine, cooled to 5 ° C. with ice water, and 102 g (1.00 mol) of sulfuryl fluoride was introduced. After introducing sulfuryl fluoride, 7.2 g (0.43 mole) of anhydrous ammonia was introduced over 1 hour while maintaining the internal temperature of 0 ° C to 5 ° C. When the introduction of anhydrous ammonia was completed, the reactor was warmed to room temperature and stirred for 14 hours. After 14 hours, the reaction solution was quantified by 19 F-NMR. As a result, the yield of bis (fluorosulfonyl) imide triethylammonium salt relative to the starting material ammonia was 91.0% (0.39 mol), and the purity was 95.7%. Met.
<Second step>
After distilling off the solvent of the reaction solution obtained in the first step, the residue was washed with water to obtain 125 g of bis (fluorosulfonyl) imide triethylammonium salt. This bis (fluorosulfonyl) imide triethylammonium salt was quantified by 19 F-NMR. The yield relative to the starting material ammonia was 85.5% (0.37 mol) (fluorine ion concentration: 95 ppm, sulfamic acid). Concentration: ND, sulfate ion concentration: 5 ppm).
<Cation exchange process>
Next, 125 g (0.37 mol) of bis (fluorosulfonyl) imide triethylammonium salt obtained in the second step, 18.0 g (0.43 mol) of lithium hydroxide monohydrate, and 100 g of water were added to a 500 ml four-necked flask. And stirred at room temperature for 1 hour. The reaction mixture was triethylamine and evaporated to give bis (fluorosulfonyl) imidolithium.
Furthermore, acetonitrile was added to this, the undissolved part was separated by filtration, acetonitrile was distilled off, and 65.1 g of bis (fluorosulfonyl) imide lithium having a purity of 99% or more was obtained in a yield of 81% (fluorine ion concentration: 356 ppm, sulfamic acid concentration: 1653 ppm, sulfate ion concentration: 3536 ppm).
In Comparative Example 1, it can be seen that fluorine ions, sulfamic acid, and sulfate ions are increased in the drying step due to hydrolysis of bis (fluorosulfonyl) imide lithium.
 本発明で対象とするビス(ハロゲン化スルホニル)イミド酸金属塩は、医農薬の中間体、電池電解質、酸触媒、及びイオン性液体として利用できる。 The bis (halogenated sulfonyl) imidic acid metal salt targeted in the present invention can be used as an intermediate for medical and agricultural chemicals, a battery electrolyte, an acid catalyst, and an ionic liquid.

Claims (6)

  1. 式[1]で表されるビス(ハロゲン化スルホニル)イミド酸金属塩の製造方法において、以下の工程を含むことを特徴とする、ビス(ハロゲン化スルホニル)イミド酸金属塩の製造方法。
    Figure JPOXMLDOC01-appb-C000001
    [式中、Rはそれぞれ独立して-SO21で表されるハロスルホニル基(但し、X1はハロゲン原子を示す。)を表す。Mはアルカリ金属又はアルカリ土類金属を表す。nは該当する金属の価数と同数の整数を示す。]
     [第1工程]
     SO223で表されるハロゲン化スルフリル(但し、X2、X3は同一、又は異なるハロゲン原子を示す。)に、有機塩基と、アンモニアもしくはハロゲン化アンモニウムとを反応させることにより、「ビス(ハロゲン化スルホニル)イミド酸と有機塩基からなる塩又は錯体」と、「有機塩基とハロゲン化水素からなる塩または錯体」を含む混合物を得る工程。
     [第2工程]
     第1工程で得られた混合物に対し、水洗浄及び/又はろ別を行うことにより、該混合物に含まれる「有機塩基とハロゲン化水素からなる塩または錯体」を分離除去し、「ビス(ハロゲン化スルホニル)イミド酸と有機塩基からなる塩又は錯体」を得る工程。
     [第3工程]
     第2工程で得られた「ビス(ハロゲン化スルホニル)イミド酸と有機塩基からなる塩又は錯体」に、溶媒中、アルカリ金属もしくはアルカリ土類金属のハロゲン化物を反応させ、式[1]で表されるビス(ハロゲン化スルホニル)イミド酸金属塩を含む混合液を得る工程。
    In the manufacturing method of the bis (halogenated sulfonyl) imido acid metal salt represented by Formula [1], the manufacturing method of the bis (halogenated sulfonyl) imido acid metal salt characterized by including the following processes.
    Figure JPOXMLDOC01-appb-C000001
    [Wherein, R is independently halosulfonyl group represented by -SO 2 X 1 (where, X 1 is. Of a halogen atom) represents an. M represents an alkali metal or an alkaline earth metal. n represents an integer equal to the valence of the corresponding metal. ]
    [First step]
    By reacting a sulfuryl halide represented by SO 2 X 2 X 3 (wherein X 2 and X 3 represent the same or different halogen atoms) with an organic base and ammonia or ammonium halide, A step of obtaining a mixture containing “a salt or complex composed of bis (halogenated sulfonyl) imidic acid and an organic base” and “a salt or complex composed of an organic base and a hydrogen halide”.
    [Second step]
    The mixture obtained in the first step is washed with water and / or filtered to separate and remove “a salt or complex comprising an organic base and a hydrogen halide” contained in the mixture, and “bis (halogen) A sulfonylated) imide acid and an organic base salt or complex ”.
    [Third step]
    The “salt or complex comprising bis (halogenated sulfonyl) imidic acid and organic base” obtained in the second step is reacted with a halide of an alkali metal or an alkaline earth metal in a solvent, and represented by the formula [1]. A step of obtaining a mixed solution containing a bis (halogenated sulfonyl) imidic acid metal salt.
  2. 第1工程で用いる有機塩基が、第1級アミン、第2級アミン、第3級アミン、含窒素芳香族複素環式化合物またはイミン系塩基である、請求項1に記載の製造方法。 The production method according to claim 1, wherein the organic base used in the first step is a primary amine, a secondary amine, a tertiary amine, a nitrogen-containing aromatic heterocyclic compound or an imine base.
  3. 第1工程で有機溶媒を用いて反応を行い、続く第2工程において、水洗浄及び/又はろ別を行う前に濃縮して有機溶媒を留去する工程を更に含む、請求項1または2に記載の製造方法。 The method according to claim 1, further comprising a step of reacting with an organic solvent in the first step, and further concentrating to distill off the organic solvent before performing water washing and / or filtration in the subsequent second step. The manufacturing method as described.
  4. 第3工程で用いるアルカリ金属もしくはアルカリ土類金属のハロゲン化物が、フッ化リチウム、フッ化ナトリウム、フッ化カリウム、塩化リチウム、塩化ナトリウム、塩化カリウム、フッ化マグネシウム、フッ化カルシウム、フッ化バリウム、フッ化ストロンチウム、塩化マグネシウムまたは塩化カルシウムである、請求項1乃至3の何れかに記載の製造方法。 The alkali metal or alkaline earth metal halide used in the third step is lithium fluoride, sodium fluoride, potassium fluoride, lithium chloride, sodium chloride, potassium chloride, magnesium fluoride, calcium fluoride, barium fluoride, The production method according to claim 1, which is strontium fluoride, magnesium chloride or calcium chloride.
  5. 第3工程において、アルカリ金属のハロゲン化物を反応させる際に用いる溶媒が、脂肪族炭化水素類、芳香族炭化水素類、エーテル類、カーボネート類、エステル類、アミド類、ニトリル類またはスルホキシド類である、請求項1乃至4の何れかに記載の製造方法。 In the third step, the solvent used for reacting the alkali metal halide is an aliphatic hydrocarbon, aromatic hydrocarbon, ether, carbonate, ester, amide, nitrile or sulfoxide. The manufacturing method in any one of Claims 1 thru | or 4.
  6. 第3工程において、ビス(ハロゲン化スルホニル)イミド酸金属塩を含む混合液中に含まれる「有機塩基とハロゲン化水素からなる塩または錯体」をろ別操作で分離除去する工程を更に含む、請求項1乃至5の何れかに記載の製造方法。 In the third step, the method further comprises a step of separating and removing “a salt or complex comprising an organic base and a hydrogen halide” contained in a mixed solution containing a metal salt of bis (halogenated sulfonyl) imidic acid by a filtering operation. Item 6. The production method according to any one of Items 1 to 5.
PCT/JP2017/010826 2016-03-31 2017-03-17 Manufacturing method for bis(halogenated sulfonyl)imide acid metal salt WO2017169874A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-070438 2016-03-31
JP2016070438A JP2019089663A (en) 2016-03-31 2016-03-31 Method of producing bis(sulfonyl halide)imidic acid metal salt

Publications (1)

Publication Number Publication Date
WO2017169874A1 true WO2017169874A1 (en) 2017-10-05

Family

ID=59964473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/010826 WO2017169874A1 (en) 2016-03-31 2017-03-17 Manufacturing method for bis(halogenated sulfonyl)imide acid metal salt

Country Status (2)

Country Link
JP (1) JP2019089663A (en)
WO (1) WO2017169874A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110980669A (en) * 2019-11-29 2020-04-10 中船重工(邯郸)派瑞特种气体有限公司 Preparation method of bis (fluorosulfonyl) imide alkali metal salt
JPWO2020209018A1 (en) * 2019-04-08 2020-10-15
CN112279224A (en) * 2020-11-26 2021-01-29 周峰 Preparation method of sulfimide salt
CN112897488A (en) * 2021-03-19 2021-06-04 常州高优纳米新材料有限公司 Method for preparing bis (fluorosulfonyl) imide by using microchannel reactor
CN112919435A (en) * 2021-03-23 2021-06-08 常州高优纳米新材料有限公司 Preparation method of high-purity bis (fluorosulfonyl) imide and alkali metal salt thereof
JP2021526500A (en) * 2018-06-01 2021-10-07 アルケマ フランス A method for purifying a lithium bis (fluorosulfonyl) imide salt
CN117229463A (en) * 2023-11-15 2023-12-15 国家电投集团氢能科技发展有限公司 Non-fluorine sulfonic acid resin, proton exchange membrane and preparation method and application thereof
WO2024061955A1 (en) * 2022-09-22 2024-03-28 Specialty Operations France Method for manufacturing bis(halogeno sulfonyl)imide

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010254554A (en) * 2009-03-31 2010-11-11 Central Glass Co Ltd Method for producing imidic acid compound
JP2010280586A (en) * 2009-06-03 2010-12-16 Central Glass Co Ltd Method for producing imidic acid salt
JP2015157758A (en) * 2011-03-03 2015-09-03 日本曹達株式会社 Method for producing fluorosulfonylimide salt
JP2015536296A (en) * 2012-11-16 2015-12-21 トリナプコ インコーポレイテッド Synthesis of tetrabutylammonium bis (fluorosulfonyl) imide and related salts

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010254554A (en) * 2009-03-31 2010-11-11 Central Glass Co Ltd Method for producing imidic acid compound
JP2010280586A (en) * 2009-06-03 2010-12-16 Central Glass Co Ltd Method for producing imidic acid salt
JP2015157758A (en) * 2011-03-03 2015-09-03 日本曹達株式会社 Method for producing fluorosulfonylimide salt
JP2015536296A (en) * 2012-11-16 2015-12-21 トリナプコ インコーポレイテッド Synthesis of tetrabutylammonium bis (fluorosulfonyl) imide and related salts

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021526500A (en) * 2018-06-01 2021-10-07 アルケマ フランス A method for purifying a lithium bis (fluorosulfonyl) imide salt
JPWO2020209018A1 (en) * 2019-04-08 2020-10-15
EP3954651A4 (en) * 2019-04-08 2023-05-24 Nippon Shokubai Co., Ltd. Alkali metal bis(fluorosulfonyl)imide aqueous solution, container having said aqueous solution therein, and method for storing or transporting said aqueous solution
JP7523623B2 (en) 2019-04-08 2024-07-26 株式会社日本触媒 Aqueous solution of alkali metal bis(fluorosulfonyl)imide, container containing the aqueous solution, and method for storing or transporting the aqueous solution
CN110980669A (en) * 2019-11-29 2020-04-10 中船重工(邯郸)派瑞特种气体有限公司 Preparation method of bis (fluorosulfonyl) imide alkali metal salt
CN112279224A (en) * 2020-11-26 2021-01-29 周峰 Preparation method of sulfimide salt
CN112897488A (en) * 2021-03-19 2021-06-04 常州高优纳米新材料有限公司 Method for preparing bis (fluorosulfonyl) imide by using microchannel reactor
CN112897488B (en) * 2021-03-19 2023-10-24 常州高优纳米新材料有限公司 Method for preparing difluoro sulfimide by micro-channel reactor
CN112919435A (en) * 2021-03-23 2021-06-08 常州高优纳米新材料有限公司 Preparation method of high-purity bis (fluorosulfonyl) imide and alkali metal salt thereof
WO2024061955A1 (en) * 2022-09-22 2024-03-28 Specialty Operations France Method for manufacturing bis(halogeno sulfonyl)imide
CN117229463A (en) * 2023-11-15 2023-12-15 国家电投集团氢能科技发展有限公司 Non-fluorine sulfonic acid resin, proton exchange membrane and preparation method and application thereof
CN117229463B (en) * 2023-11-15 2024-01-30 国家电投集团氢能科技发展有限公司 Non-fluorine sulfonic acid resin, proton exchange membrane and preparation method and application thereof

Also Published As

Publication number Publication date
JP2019089663A (en) 2019-06-13

Similar Documents

Publication Publication Date Title
WO2017169874A1 (en) Manufacturing method for bis(halogenated sulfonyl)imide acid metal salt
JP5630048B2 (en) Method for producing imido acid compound
JP5471045B2 (en) Method for producing imidoate
KR102246544B1 (en) Method for preparing bis(fluorosulfonyl)imide acid and salts thereof
WO2020099527A1 (en) Method for producing alkali sulfonyl imide salts
JP5146149B2 (en) Method for purifying trifluoromethanesulfonyl fluoride
US20240228283A9 (en) Bis(fluorosulfonyl)imide salts and preparation method thereof
JP6631534B2 (en) Method for producing (fluorosulfonyl) perfluoroalkanesulfonylimide salt
JP5928149B2 (en) Method for producing imido acid compound
WO2019073755A1 (en) Lithium fluorosulfonate production method
CN111051278B (en) Method for producing perfluoroalkyl sulfimide metal salt
US8304580B2 (en) Method for producing tris(perfluoroalkanesulfonyl)methide acid salt
WO2017150244A1 (en) Method for producing perfluoroalkane sulfonyl imide acid metal salt
JP2008255100A (en) Method for producing trifluoromethanesulfonyl fluoride
JP4045601B2 (en) Process for producing N, N&#39;-difluorodiazoniabicycloalkane salt, synthetic intermediate thereof, target product and application of target product
JP2000053650A (en) Production of fluorinating agent

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17774418

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17774418

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP