WO2017169842A1 - File bearing - Google Patents

File bearing Download PDF

Info

Publication number
WO2017169842A1
WO2017169842A1 PCT/JP2017/010637 JP2017010637W WO2017169842A1 WO 2017169842 A1 WO2017169842 A1 WO 2017169842A1 JP 2017010637 W JP2017010637 W JP 2017010637W WO 2017169842 A1 WO2017169842 A1 WO 2017169842A1
Authority
WO
WIPO (PCT)
Prior art keywords
foil
bearing
top foil
shaft
downstream
Prior art date
Application number
PCT/JP2017/010637
Other languages
French (fr)
Japanese (ja)
Inventor
真人 吉野
藤原 宏樹
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016069021A external-priority patent/JP6651397B2/en
Priority claimed from JP2016069138A external-priority patent/JP2017180685A/en
Priority claimed from JP2016143490A external-priority patent/JP6798810B2/en
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2017169842A1 publication Critical patent/WO2017169842A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C27/00Elastic or yielding bearings or bearing supports, for exclusively rotary movement
    • F16C27/02Sliding-contact bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/04Sliding-contact bearings for exclusively rotary movement for axial load only
    • F16C17/042Sliding-contact bearings for exclusively rotary movement for axial load only with flexible leaves to create hydrodynamic wedge, e.g. axial foil bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • F16C17/024Sliding-contact bearings for exclusively rotary movement for radial load only with flexible leaves to create hydrodynamic wedge, e.g. radial foil bearings

Definitions

  • the present invention relates to a foil bearing.
  • a foil bearing is a flexible metal thin plate (foil) that forms a bearing surface.
  • the bearing clearance varies depending on operating conditions such as shaft rotation speed, load, and ambient temperature. It has the feature of being automatically adjusted to an appropriate width.
  • Patent Document 1 discloses a foil bearing called a bump type as an example of a thrust foil bearing that supports a thrust load.
  • the foil bearing includes a top foil 114, a back foil 112 (bump foil) that elastically supports the top foil 114 from behind, and a base plate 110 to which the top foil 114 and the back foil 112 are attached. And have.
  • a wedge-shaped bearing gap C is formed between the bearing surface 114a of the top foil 114 and the thrust collar 115 with the gap width decreasing toward the downstream side.
  • the fluid pressure is increased when the fluid in the large gap portion C1 of the bearing gap C is pushed into the small gap portion C2, and the thrust collar 115 is supported in a non-contact manner.
  • the back foil 112 is elastically deformed by the fluid pressure, so that the top foil 114 is allowed to bend and the gap width of the bearing gap C is automatically adjusted.
  • Patent Document 3 discloses a foil bearing called a bump type as an example of a foil bearing.
  • This foil bearing includes a top foil having a bearing surface and a corrugated back foil (bump foil) that elastically supports the top foil from the back.
  • bump foil corrugated back foil
  • crests that are in contact with the top foil and flat troughs are alternately formed in the rotation direction of the shaft.
  • the fluid (air) in the bearing gap C flows downstream as the shaft rotates.
  • the fluid in the vicinity of the thrust collar 115 easily flows due to the shearing force with the thrust collar 115, but the fluid separated from the thrust collar 115 does not easily flow.
  • only a part of the fluid in the bearing gap C (particularly, the fluid in the large gap portion C1) flows, and the amount of fluid flowing into the small gap portion C2 may be insufficient, and the fluid pressure may not be sufficiently increased. .
  • Patent Document 3 a structure for increasing the load capacity of a foil bearing is proposed. Specifically, a plurality of notches are provided at the downstream end of each top foil. Thereby, the fluid pushed into the small gap portion C2 passes through the notch portion to the back side of the top foil, and the flow of the fluid in the large gap portion C1 adjacent to the downstream side of the top foil is disturbed. Due to this turbulent flow, the fluid in the large gap portion C1 dynamically flows, thereby increasing the amount of fluid pushed into the small gap portion C2 and increasing the load capacity of the foil bearing.
  • a first object of the present invention is to further increase the load capacity of the foil bearing.
  • the present inventors have proposed a foil bearing having a back foil 320 as shown in FIG. 38 in the previous application (Japanese Patent Application No. 2015-234626).
  • the back foil 320 includes a flat portion 321 (intermediate portion), a plurality of upper convex portions 322 (first protruding portions) protruding from the flat portion 321 to the top foil side, and a flat portion 321 on the opposite side of the top foil 310. It has a plurality of protruding lower protrusions 323 (second protrusions).
  • the back foil 320 is disposed between the top foil 310 and the foil holder 302 (in FIG. 39, the back foil 320 is schematically shown by a spring).
  • a wedge-shaped bearing gap C is formed between the bearing surface of the top foil 310 and the end face 303a of the thrust collar 303 provided on the shaft, and the fluid in the large gap portion C1 of the bearing gap C is a small gap.
  • the fluid pressure is increased by being pushed into the part C2. With this fluid pressure, the back foil 320 is elastically compressed in the width direction of the bearing gap C (up and down direction in FIG. 39), and thereby the width of the bearing gap C is automatically adjusted.
  • the flat portion 321 see FIG.
  • the back foil 320 is a portion having a relatively low rigidity with respect to the compressive force, when the compressive force is applied to the back foil 320, the flat portion 321 first. Deforms and absorbs the compressive force. Therefore, the rigidity of the entire back foil can be reduced and the flexibility of the bearing surface can be increased as compared with the corrugated back foil as disclosed in Patent Document 2.
  • the top foil 310 has a plurality of upper convex portions 322 provided on the back foil 320.
  • the top foil 310 is separated from the back at a plurality of positions separated in a direction orthogonal to the axis rotation direction (left-right direction in FIG. Contact supported.
  • the contact portion A with the upper convex portion 322 of the back foil 320 has high rigidity
  • the periphery of the contact portion A has low rigidity. Therefore, when the top foil 310 is pressed against the back foil 320 by the fluid pressure generated in the bearing gap C, the region around the contact portion A is farther from the thrust collar 303 than the contact portion A, as shown in FIG.
  • the second object of the present invention is at a plurality of locations where the top foil is separated in a direction orthogonal to the relative rotation direction of the shaft (hereinafter, this direction is referred to as “rotation orthogonal direction”).
  • rotation orthogonal direction In a foil bearing that is contact-supported by a back foil, a supporting force is increased by suppressing a decrease in fluid pressure in the bearing gap.
  • a first invention made to achieve the above first object includes a top foil part having a bearing surface, a back foil part elastically supporting the top foil part from the back, the top foil part, And a foil holder to which the back foil portion is attached, and a foil bearing that supports the shaft in a non-contact manner by a fluid pressure generated in a bearing gap between the shaft that rotates relative to the bearing surface.
  • a plurality of notches are provided at the downstream end, and the back foil is in contact with the top foil at a plurality of positions separated in a direction orthogonal to the relative rotation direction of the shaft.
  • downstream side means the upstream side in the relative rotational direction of the shaft (see the direction of arrow R in FIG. 2), that is, the downstream side in the fluid flow direction with respect to the top foil part at the time of relative rotation of the shaft.
  • upstream side means the upstream side in the relative rotational direction of the shaft (see the direction of arrow R in FIG. 2), that is, the downstream side in the fluid flow direction with respect to the top foil part at the time of relative rotation of the shaft.
  • upstream side is the downstream side in the fluid flow direction with respect to the top foil part at the time of relative rotation of the shaft.
  • the fluid in the gap between the back foil part and the foil holder is transferred to the back foil part and the foil holder. It is possible to flow downstream through the non-contact part (between the rotation orthogonal direction of the contact part). Therefore, due to the turbulent flow generated in the large gap portion, the fluid in the gap under the foil is pulled downstream and flows into the large gap portion, thereby further increasing the amount of fluid and further increasing the load capacity.
  • the back foil part includes, for example, a flat part, a plurality of first protrusions protruding on the front side (top foil part side) of the flat part, and a plurality of second protrusions protruding on the back side (foil holder side) of the flat part. And have.
  • the flat portion is a portion having low rigidity against the compressive force in the width direction of the bearing gap (direction perpendicular to the bearing surface) in the back foil portion. Therefore, when a compressive force is applied to the back foil portion due to the fluid pressure generated in the bearing gap with the relative rotation of the shaft, the flat portion is deformed to absorb the compressive force.
  • the local rigidity can be reduced as compared with the existing bump-type back foil (see FIG. 16) that does not have such a flat portion.
  • rigidity is increased by supporting the top foil portion with the entire back foil portion, and when an uneven load is applied to the bearing surface due to misalignment (center misalignment), By locally deforming the back foil portion, it is possible to prevent the shaft from hitting one side.
  • the fluid turbulence effect is further enhanced, so that the amount of fluid flowing into the next bearing gap is further increased. Can do.
  • the downstream end of the back foil portion on the downstream side of the downstream end of the top foil portion, the turbulence effect by the notch portion of the back foil portion is further enhanced.
  • a second invention made to achieve the second object described above comprises a top foil part having a bearing surface, and a back foil part elastically supporting the top foil part from the back, and a relative shaft In the foil bearing that supports the shaft in a non-contact manner with the fluid pressure generated in the bearing gap between the shaft and the bearing surface as it rotates.
  • the back foil portion includes a support portion that supports and supports the top foil portion at a plurality of locations separated in a direction orthogonal to the relative rotation direction of the shaft.
  • a top foil part having a bearing surface and a back foil part that elastically supports the top foil part from the back are provided.
  • the back foil portion extends the top foil portion in a direction orthogonal to the relative rotation direction of the shaft.
  • a foil bearing is provided downstream of the first support portion and continuously contacts and supports the top foil portion in a direction orthogonal to the relative rotation direction.
  • the top foil portion When the fluid pressure in the bearing gap increases with the relative rotation of the shaft, the top foil portion is contacted and supported by the first support portion of the back foil portion at a plurality of locations separated in the direction orthogonal to the rotation. Is deformed to the side away from the shaft (side to widen the bearing gap), and a recess is formed on the bearing surface (see FIG. 41).
  • the region on the downstream side of the concave portion of the top foil portion is continuously contacted and supported in the rotation orthogonal direction by the second support portion of the back foil portion, the rigidity of this region is enhanced.
  • the second support part of the back foil part continuously contacts the top foil part in the entire region in the direction orthogonal to the rotation.
  • a weir is formed on the downstream side of the concave portion of the top foil portion over the entire length in the direction perpendicular to the rotation direction, so that a decrease in fluid pressure is further effectively suppressed.
  • the second support part can be constituted by, for example, a curved part that protrudes toward the top foil part.
  • the back foil portion includes a flat portion, a plurality of upper convex portions protruding from the flat portion toward the top foil portion, and a plurality of protrusions protruding from the flat portion to the opposite side of the top foil portion.
  • the first support portion can be configured by the plurality of upper convex portions.
  • the back foil portion is provided with a corrugated portion alternately having a plurality of crests and troughs extending in a direction intersecting with the rotation direction of the shaft in the relative rotation direction.
  • a support part can be comprised.
  • a top foil portion having a bearing surface and a back foil portion that elastically supports the top foil portion from the back are provided.
  • the back foil portion is a region of the top foil portion where the bearing surface is provided.
  • a foil bearing having a bent portion which is bent along the end portion on the side away from the shaft.
  • the top foil part When the fluid pressure in the bearing gap increases with the relative rotation of the shaft, the top foil part is contacted and supported by the back foil part supporting part at a plurality of positions separated in the rotation orthogonal direction. Is deformed to the side away from the shaft (side to widen the bearing gap), and a recess is formed on the bearing surface (see FIG. 41).
  • the rigidity of the region near the end portion on the downstream side of the bearing surface is enhanced.
  • this region is one step higher than the recess.
  • a weir (arranged on the shaft side) is formed.
  • the fluid that has flowed downstream through the concave portion of the bearing surface is blocked by the weir formed on the downstream side, so that the outflow of fluid from the small gap portion of the bearing gap is suppressed. Therefore, as shown by the dotted line in the lower part of FIG. 39, a decrease in fluid pressure in the small gap portion is suppressed, and the supporting force is improved.
  • the bent portion can be formed, for example, by bending the vicinity of the downstream end portion of the top foil portion. In this case, the bent portion is bent with respect to the bearing surface of the top foil portion. Alternatively, the bent portion can be formed by curving the vicinity of the end portion on the downstream side of the top foil portion into a curved surface. In this case, the bent portion is in a curved state so as to be smoothly continuous with the bearing surface.
  • the above bent portion can be formed by bending the end portion on the downstream side of the top foil portion plastically or elastically.
  • an insertion part is provided at the downstream end of the top foil part, and an insertion port is provided near the upstream end of the top foil part, and the insertion part of each top foil part is adjacent to the downstream side. If it inserts in the insertion port of the top foil part to perform, the downstream edge part vicinity of a top foil part can be elastically bent to the side away from an axis
  • the shaft if the shaft swings, the shaft contacts the end of the top foil portion in the direction perpendicular to the rotation, and the top foil portion may be damaged. Therefore, if a bent portion is provided in a region excluding the end portion in the rotation orthogonal direction in the top foil portion, rigidity at the end portion in the rotation orthogonal direction of the top foil portion can be suppressed. The contact surface pressure is reduced, and damage to the top foil portion can be prevented.
  • the foil bearing described above includes, for example, a plurality of foil members integrally including a top foil portion and a back foil portion, and the top foil portion of each foil member is arranged on the back foil portion of another foil member. Can be configured.
  • the load capacity of the foil bearing can be increased.
  • the supporting force of the foil bearing can be increased.
  • the lower part is a cross-sectional view taken along line YY of the upper part. It is a top view of the back foil which concerns on 5th Embodiment of 1st invention. It is sectional drawing of the foil bearing which concerns on 6th Embodiment of 1st invention. It is sectional drawing of the foil bearing which concerns on 7th Embodiment of 1st invention. It is a top view of the foil which concerns on 8th Embodiment of 1st invention. It is a perspective view of the foil bearing which has the foil of FIG. It is sectional drawing of the foil bearing (radial foil bearing) which concerns on 9th Embodiment of 1st invention. It is sectional drawing of the conventional foil bearing.
  • FIG. 18 is a perspective view of a top foil and a back foil provided on the foil bearing of FIG. 17.
  • FIG. 20 is a plan view of the back foil of FIG. 19.
  • FIG. 20 is a perspective view of the back foil of FIG. 19.
  • FIG. 20 is a cross-sectional view of the downstream end of the back foil of FIG. 19. It is sectional drawing of the downstream end part of the back foil which concerns on another example. It is the VV sectional view taken on the line of FIG.
  • FIG. 20 is a plan view of the top foil of FIG. 19.
  • FIG. 26 is a cross-sectional view taken along the line U-U in FIG.
  • FIG. 26 is a cross-sectional view taken along line TT in FIG. 25. It is sectional drawing of the foil bearing of FIG. It is a top view of the back foil which concerns on 2nd Embodiment of 2nd invention. It is sectional drawing of the foil bearing which concerns on 3rd Embodiment of 2nd invention.
  • the upper part is a plan view of a back foil according to the fourth embodiment of the second invention, and the lower part is a cross-sectional view taken along line YY of the plan view. It is sectional drawing of the back foil which concerns on 5th Embodiment of 2nd invention. It is sectional drawing of the foil bearing which concerns on 6th Embodiment of 2nd invention. It is a top view of the foil of the foil bearing of FIG.
  • FIG. 36 is a perspective view of a foil bearing having the foil of FIG. It is sectional drawing of the foil bearing which concerns on 8th Embodiment of 2nd invention. It is a perspective view of the back foil proposed in the prior application.
  • the upper stage is a cross-sectional view of a foil bearing having the back foil of FIG. 38, and the lower stage is a graph showing the pressure distribution of the upper foil bearing.
  • FIG. 40 is a cross-sectional view taken along line WW in FIG. 39, showing a state where the fluid pressure in the bearing gap is low.
  • FIG. 40 is a cross-sectional view taken along the line WW in FIG.
  • FIG. 40 is a plan view of a top foil of the foil bearing of FIG. 39. It is sectional drawing of the foil bearing which concerns on 9th Embodiment of 2nd invention. It is a top view of the foil bearing of FIG. It is a perspective view of the top foil and back foil provided in the foil bearing of FIG.
  • FIG. 46 is a plan view of the back foil of FIG. 45.
  • FIG. 46 is a perspective view of the back foil of FIG. 45.
  • It is sectional drawing of the downstream edge part of the top foil which concerns on another example. It is sectional drawing of the downstream edge part of the top foil which concerns on another example. It is the VV sectional view taken on the line of FIG. FIG.
  • FIG. 46 is a plan view of the top foil of FIG. 45.
  • FIG. 52 is a cross-sectional view taken along the line U-U in FIG. 51.
  • FIG. 52 is a sectional view taken along line TT in FIG. 51.
  • It is sectional drawing of the foil bearing of FIG. It is a perspective view of the top foil and back foil which concern on 10th Embodiment of 2nd invention. It is a perspective view of the top foil and back foil which concern on 11th Embodiment of 2nd invention. It is a top view of the back foil which concerns on 12th Embodiment of 2nd invention. It is sectional drawing of the foil bearing which concerns on 13th Embodiment of 2nd invention.
  • the upper part is a plan view of the back foil according to the fourteenth embodiment of the second invention, and the lower part is a cross-sectional view taken along line YY of the plan view. It is sectional drawing of the foil bearing which concerns on 15th Embodiment of 2nd invention. It is a perspective view of the foil concerning 16th Embodiment of 2nd invention.
  • FIG. 62 is a perspective view of a foil bearing having the foil of FIG. 61. It is a perspective view of the foil bearing which concerns on 17th Embodiment of 2nd invention.
  • FIG. 64 is a plan view showing another example of a foil incorporated in the foil bearing of FIG. 63. It is sectional drawing of the foil bearing which concerns on 18th Embodiment of 2nd invention.
  • FIG. 66 is a plan view of a foil of the foil bearing of FIG. 65. It is sectional drawing of the foil bearing which concerns on 19th Embodiment of 2nd invention.
  • the foil bearing 10 is an air film formed between the disc-shaped thrust collar 3 provided on the shaft 2, and the shaft 2 is moved in the thrust direction. It is a thrust foil bearing to support.
  • the foil bearing 10 includes a disc-shaped foil holder 11, and a top foil 12 and a back foil 13 attached to an end surface 11 a of the foil holder 11.
  • a plurality (six in the illustrated example) of fan-shaped top foil 12 and back foil 13 are arranged side by side in the rotation direction of shaft 2 (the circumferential direction of foil holder 11).
  • the foil holder 11 is made of metal or resin.
  • the foil holder 11 has a hollow disk shape having an inner hole 11b into which the shaft 2 is inserted.
  • a plurality of top foils 12 and back foils 13 are attached to one end surface 11 a of the foil holder 11.
  • the other end surface 11c of the foil holder 11 is fixed to a housing of a facility (for example, a turbo machine such as a gas turbine) in which the foil bearing 10 is incorporated.
  • the top foil 12 and the back foil 13 are formed of a metal having a high spring property and good workability, for example, steel or a copper alloy.
  • the top foil 12 and the back foil 13 are formed of a thin metal plate (foil) having a thickness of about 20 ⁇ m to 200 ⁇ m.
  • a thin metal plate foil having a thickness of about 20 ⁇ m to 200 ⁇ m.
  • the top foil 12 has a smooth bearing surface X without irregularities and functions as a top foil portion Tf.
  • the foils 12 and 13 are shown in a rectangular shape for simplification of the drawing.
  • the upstream end 12 a of the top foil 12 is fixed to the end surface 11 a of the foil holder 11.
  • the upstream end portion 12 a of the top foil 12 is fixed to the end surface 11 a of the foil holder 11 through a spacer 15 by welding or the like.
  • the upstream end 12 a of the top foil 12 may be directly fixed to the end surface 11 a of the foil holder 11 without using the spacer 15.
  • the top foil 12 is formed in a substantially fan-shaped flat plate shape having a notch 12b1 by subjecting the foil to press processing (punching processing) or electric discharge processing.
  • the downstream end 12b of the top foil 12 is a free end.
  • the downstream end 12b of the top foil 12 is provided with a plurality of notches 12b1.
  • the plurality of cutout portions 12b1 are arranged in the rotation orthogonal direction (radial direction in the present embodiment) along the edge of the downstream end portion 12b of the top foil 12.
  • each notch part 12b1 comprises a triangle, and the edge of the edge part 12b of the downstream of the top foil 12 is formed in zigzag shape.
  • the shape of each notch 12b1 is not limited to the above, and may be an arc, an elliptical arc, a trapezoid, a rectangle, a waveform, or the like.
  • the plurality of cutout portions 12b1 are continuously arranged in the radial direction.
  • the present invention is not limited to this, and the plurality of cutout portions 12b1 are provided intermittently in the radial direction.
  • An edge extending in the radial direction may be left between the radial directions of 12b1.
  • the back foil 13 is disposed between the top foil 12 and the foil holder 11 and functions as a back foil portion Bf that elastically supports the top foil 12 from behind.
  • the back foil 13 has a fan shape that is substantially the same shape as the top foil 12 in a plan view, and is disposed so as to overlap directly below the top foil 12.
  • the upstream end 13 a of the back foil 13 is fixed to the end surface 11 a of the foil holder 11.
  • the upstream end 13 a of the back foil 13 is fixed to the end surface 11 a of the foil holder 11 by welding or the like via the spacer 15. Note that the upstream end portion 13 a of the back foil 13 may be directly fixed to the end surface 11 a of the foil holder 11 without using the spacer 15.
  • the back foil 13 has a shape that can be compressed in the axial direction by elastic deformation.
  • the back foil 13 of the present embodiment includes a flat portion 13b substantially parallel to the end surface 11a of the foil holder 11, and a plurality of first protrusions protruding from the flat portion 13b to the front side (top foil 12 side).
  • the flat portion 13b, the upper convex portion 13c, and the lower convex portion 13d of the back foil 13 have a uniform thickness. Both the upper convex portion 13c and the lower convex portion 13d are formed in a substantially hemispherical shape. Since the inside of the upper convex portion 13c and the lower convex portion 13d is hollow, for example, when the back foil 13 is viewed from the front side (top foil 12 side), the region where the lower convex portion 13d exists is a concave portion.
  • a flat portion 13b is provided on the entire circumference of the upper convex portion 13c and the lower convex portion 13d.
  • the upper convex portion 13c and the lower convex portion 13d are provided at a plurality of locations separated in the rotation direction and the rotation orthogonal direction, respectively.
  • the upper convex portion 13c and the lower convex portion 13d in the illustrated example are each distributed and arranged over the entire region except for the vicinity of the upstream end portion 13a of the back foil 13.
  • a plurality of upper convex portions 13 c are arranged in the radial direction in the immediate vicinity of the downstream end portion 13 e of the back foil 13.
  • the arrangement pattern of the upper convex part 13c and the lower convex part 13d shown in FIG. 4 is only an example, and an arbitrary arrangement pattern different from that in FIG.
  • At least a partial region (entire region in the illustrated example) of the cutout portion 12b1 of the top foil 12 is provided so as to overlap the flat portion 13b of the downstream end portion 13e of the back foil 13 in the axial direction (FIG. 5). reference).
  • the downstream end 12b of the top foil 12 and the downstream end 13e of the back foil 13 are provided at the same rotational direction position.
  • the back foil 13 is formed by forming a substantially fan-shaped flat foil material by subjecting the foil to press processing (punching) or electric discharge processing, and then pressing the foil material to form an upper convex portion 13c and a lower convex portion. It is formed by molding 13d. It should be noted that the stamping of the foil material and the molding of the upper convex portion 13c and the lower convex portion 13d can be simultaneously performed by pressing.
  • the overall axial dimension of the back foil 13 including the upper convex portion 13c and the lower convex portion 13d is about 0.5 to 2 mm.
  • the top foil 12 since the top foil 12 receives the pressure P due to the air pressure generated in the bearing gap C, a compressive force in the pressure P direction acts on the back foil 13 via the top foil 12. Since the flat portion 13b has a thin plate shape extending in a direction orthogonal to the pressure P direction, the flat portion 13b is a portion of the back foil 13 having low rigidity against the compression force. Therefore, when a compressive force is applied to the back foil 13, the flat portion 13b is first deformed and absorbs the compressive force as shown by a two-dot chain line in FIG. Therefore, the rigidity of the back foil 13 can be locally reduced as compared with an existing corrugated back foil having no flat portion.
  • the bearing surface X of the top foil 12 is elastically deformed according to the operating conditions such as the load, the rotational speed of the shaft 2 and the ambient temperature, and the bearing gap C becomes the operating condition. It is automatically adjusted to the appropriate width. Therefore, the bearing gap C can be managed to the optimum width even under severe conditions such as high temperature and high speed rotation, and the shaft 2 can be stably supported.
  • notch part 12b1 in the downstream end part 12b of the top foil 12
  • a part of the air flowing through the bearing gap C is disposed on the back side of the top foil 12 via the notch part 12b1. Exit (see arrow A1 in FIG. 5).
  • the air in the large gap C1 dynamically flows and is formed by the next top foil 12.
  • the amount of air flowing into the small gap portion C2 of the bearing gap C increases, and the load capacity of the foil bearing 10 is increased.
  • the cutout portion 12b1 of the top foil 12 is disposed so as to overlap the flat portion 13b in the vicinity of the downstream end portion 13e of the back foil 13 in the axial direction.
  • the fluid B flowing along the flat portion 13b of the back foil 13 joins the high-speed fluid A flowing through the bearing gap C, so that the fluid in the inter-foil gap D is easily pulled downstream, and the large gap The amount of fluid flowing into the part C1 further increases.
  • the back foil 13 and the foil holder 11 contact at a plurality of locations separated in the radial direction.
  • a flow path in which air can flow downstream is formed in the gap between the back foil 13 and the foil holder 11 (foil lower gap E).
  • the downstream end of this flow path communicates with the large gap C1.
  • the lower protrusions 13d dispersedly arranged on the back foil 13 come into contact with the end surface 11a of the foil holder 11, so that the air in the gap under the foil E is not in contact with the back foil 13 and the foil holder 11. It is possible to flow downstream through the contact portion (between the radial directions of the lower convex portion 13d).
  • each top foil 12 and the end surface 3a of the thrust collar 3 are in sliding contact with each other at the time of low-speed rotation immediately before the shaft 2 is stopped or immediately after it is started.
  • a low friction coating such as a titanium aluminum nitride film, a tungsten disulfide film, or a molybdenum disulfide film may be formed.
  • the above-described low-friction coating may be formed on one or both of the mutually sliding surfaces.
  • the present invention is not limited to the above embodiment.
  • description is abbreviate
  • the notch 12b1 is provided at the downstream end 12b of the top foil 12, and the notch 13e1 is provided at the downstream end 13e of the back foil 13.
  • the notch 13e1 of the back foil 13 has the same configuration as the notch 12b1 of the top foil 12, and has a triangular shape, for example.
  • the air flows into the back side of the back foil 13 through the notch 13e1 (see arrow B1), so that the turbulence effect in the large gap C1 is enhanced. In this case, as shown in FIG.
  • the downstream end 13e of the back foil 13 is arranged on the downstream side of the downstream end 12b of the top foil 12, and at least a part of the notch 13e1 of the back foil 13 ( If the entire region in the illustrated example is disposed so as to protrude downstream from the downstream end 12b of the top foil 12, the turbulent flow effect by the notch 13e1 of the back foil 13 is enhanced.
  • the back foil 13 has a waveform having alternately a plurality of peaks 13f1 and valleys 13f2 extending in a predetermined direction.
  • the peak portion 13f1 and the valley portion 13f2 extend along a direction intersecting with the edge of the downstream end portion 13e, and extend in a direction parallel to the edge of the upstream end portion 13a of the back foil 13, for example.
  • the peak portion 13f1 of the back foil 13 contacts the region near the downstream end of the top foil 12 at a plurality of locations separated in the radial direction.
  • the corrugated back foil 13 as shown in FIG. 9 is formed by pressing, the flat foil material is bent into a corrugated shape, so that the dimensions in plan view (the extent of the peaks 13f1 and troughs 13f2) are accordingly increased.
  • the dimension in the direction orthogonal to the current direction is reduced. Therefore, the flat foil material before the press work needs to be set in shape and dimensions in consideration of the reduction in dimensions due to the press work, so that the design becomes very complicated.
  • the back foil 13 in which a large number of upper convex portions 13 c and lower convex portions 13 d are dispersedly arranged is obtained by pressing a flat foil material and locally stretching the material.
  • the upper convex portion 13c and the lower convex portion 13d can be formed. In this case, since the overall dimensions in a plan view are hardly changed by pressing, the upper convex portion 13c and the lower convex portion 13d can be freely designed, and the design of the back foil 13 is facilitated.
  • the rigidity of the bearing surface X can be partially controlled by changing the distribution density of the upper protrusions 13c and the lower protrusions 13d provided on the back foil 13 depending on the location.
  • the density of the upper convex portion 13c and the lower convex portion 13d increases as going to the downstream side.
  • the rigidity of the back foil 13 in the compression direction (axial direction) increases as it goes downstream.
  • the bearing surface X of the top foil 12 is less likely to be deformed in the direction away from the thrust collar 3 (the direction in which the bearing gap C is widened) as it goes downstream, so that a wedge-shaped bearing gap C is easily formed. .
  • a bearing surface having a predetermined shape can be obtained by changing the height of the upper convex portion 13c and the lower convex portion 13d provided on the back foil 13 depending on the location.
  • the height (axial dimension) of the back foil 13 including the upper convex portion 13 c and the lower convex portion 13 d becomes larger toward the downstream side.
  • the bearing surface X of the top foil 12 tends to be displaced toward the thrust collar 3 toward the downstream side, and a wedge-shaped bearing gap C is easily formed.
  • the embodiment shown in FIG. 12 includes a foil member 14 that integrally includes a top foil portion Tf and a back foil portion Bf (the back foil portion Bf is indicated by a dotted pattern).
  • the upstream end of each foil member 14 is attached to the foil holder 11.
  • the back foil portion Bf of the foil member 14 adjacent to the downstream side is disposed between the top foil portion Tf of each foil member 14 and the foil holder 11. .
  • the back foil part Bf of each foil member 14 contacts the top foil part Tf of the foil member 14 stacked on the foil member 14 at a plurality of locations separated in the radial direction.
  • a notch portion 12b1 similar to that shown in FIGS. 2 and 3 is provided at the downstream end portion of the top foil portion Tf of each foil member.
  • each foil member 14 has a top foil portion Tf and a back foil portion Bf, but the shape of each foil member 14 is shown in FIG. Different from the embodiment.
  • the foil member 14 of FIG. 13 integrally includes a main body 14a having a top foil portion Tf and a back foil portion Bf, and a fixing portion 14b extending from the main body 14a to the outer diameter side and fixed to the foil holder 11. Both of the edge of the upstream end 14a1 and the edge of the downstream end 14a2 of the main body 14a have a shape in which the radially central portion is swollen downstream.
  • the downstream end portion 14a2 of the main body 14a is provided with a plurality of cutout portions 12b1 as in the above embodiment.
  • the back foil portion Bf is provided with a flat portion 13b, an upper convex portion 13c (white circle), and a lower convex portion 13d (black circle).
  • the back foil portion Bf of each foil member 14 is hidden behind the top foil portion Tf of the adjacent foil member 14, and the top foil portion Tf. Only the surface side (thrust color side) is exposed.
  • the present invention can also be applied to a radial foil bearing that supports a shaft in a radial direction.
  • the radial foil bearing 20 shown in FIG. 15 has a cylindrical foil holder 21 and a plurality of foil members 22 attached to the inner peripheral surface 21a of the foil holder 21 side by side in the circumferential direction.
  • the downstream region functions as the top foil portion Tf
  • the upstream region functions as the back foil portion Bf (shown with a dotted pattern).
  • a plurality of notches are provided at the downstream end of the top foil portion Tf of each foil member 22 (not shown) as in the above embodiment.
  • the back foil portion Bf contacts the top foil portion Tf of the foil member 22 adjacent to the downstream side at a plurality of locations separated in the axial direction.
  • the flat foil portion, the upper convex portion, and the lower convex portion Part When the shaft 2 rotates, a bearing gap C is formed between the bearing surface X of the top foil portion Tf and the outer peripheral surface of the shaft 2.
  • the present invention is not limited thereto, and the shaft 2 may be fixed and the foil bearing may be rotated. However, if the foil bearing is rotated, the foil may be damaged by centrifugal force. Therefore, it is preferable to fix the foil bearing as in the above embodiment.
  • foil bearings described above can be used, for example, as bearings for main shafts of turbo machines such as gas turbines and turbochargers (superchargers), bearings for vehicles such as automobiles, or bearings for industrial equipment. It is.
  • foil bearing described above can be used not only as an air dynamic pressure bearing using air as a pressure generating fluid but also as an oil dynamic pressure bearing using lubricating oil as a pressure generating fluid.
  • the foil bearing 210 is an air film formed between the disk-shaped thrust collar 203 provided on the shaft 202, and the shaft 202 is thrust in the thrust direction. It is a thrust foil bearing to support.
  • the foil bearing 210 includes a disc-shaped foil holder 211, and a top foil 212 and a back foil 213 attached to the end surface 211 a of the foil holder 211.
  • a plurality (six in the illustrated example) of fan-shaped top foil 212 and back foil 213 are arranged side by side in the rotational direction of shaft 202 (the circumferential direction of foil holder 211).
  • the rotation direction leading side of the shaft 202 (in the direction of arrow R in FIG. 18), that is, the downstream side of the fluid flow direction with respect to the top foil 212 when the shaft 202 rotates is referred to as “downstream side” and vice versa.
  • the side is called the “upstream side”.
  • the foil holder 211 is made of metal or resin.
  • the foil holder 211 has a hollow disk shape having an inner hole 211b into which the shaft 202 is inserted.
  • a plurality of top foils 212 and back foils 213 are attached to one end surface 211 a of the foil holder 211.
  • the other end surface 211c of the foil holder 211 is fixed to a housing of a facility (for example, a turbo machine such as a gas turbine) in which the foil bearing 210 is incorporated.
  • the top foil 212 and the back foil 213 are formed of a metal having a high spring property and good workability, for example, steel or a copper alloy.
  • the top foil 212 and the back foil 213 are formed of a thin metal plate (foil) having a thickness of about 20 ⁇ m to 200 ⁇ m.
  • a thin metal plate foil having a thickness of about 20 ⁇ m to 200 ⁇ m.
  • the top foil 212 functions as a top foil portion Tf having the bearing surface X. As shown in FIGS. 18 and 19, the top foil 212 has a smooth bearing surface X without unevenness.
  • the upstream end 212a of the top foil 212 is fixed to the end surface 211a of the foil holder 211 by welding or the like.
  • An end 212b on the downstream side of the top foil 212 is a free end.
  • the top foil 212 is formed by punching or electric discharge machining a flat foil.
  • the back foil 213 functions as a back foil portion Bf that supports the top foil 212 from behind.
  • the back foil 213 has a fan shape that is substantially the same shape as the top foil 212 in plan view, and is placed directly below the top foil 212 (see FIG. 19).
  • the upstream end 213a of the back foil 213 is fixed to the end surface 211a of the foil holder 211 by welding or the like.
  • the back foil 213 includes a first region Q1 that occupies most of the region excluding both ends in the circumferential direction, and a second region Q2 provided at the downstream end.
  • the first region Q1 of the back foil 213 is provided with a first support portion that comes into contact with the top foil 212 at a plurality of locations separated in the radial direction.
  • the upper convex part 213c and the lower convex part 213d are made the name which attached "upper” and “lower” so that these relative positional relationships may be understood easily, this limits the use aspect of the foil bearing 210. It is not the purpose.
  • the flat part 213b, the upper convex part 213c, the lower convex part 213d, and the curved part 213e described later have a uniform thickness of the back foil 213.
  • Both the upper convex part 213c and the lower convex part 213d are formed in a substantially hemispherical shape. Since the inside of the upper convex portion 213c and the lower convex portion 213d is hollow, when the back foil 213 is viewed from one side of the front and back sides, for example, from the front side (top foil 212 side) as shown in FIG. A region where 213d exists is a recess. In FIG. 20, the lower convex portion 213d that is a concave portion is hatched for easy understanding.
  • a flat portion 213b is provided on the entire circumference of the upper convex portion 213c and the lower convex portion 213d.
  • the upper convex portion 213c and the lower convex portion 213d are each distributed and arranged over the entire first region Q1.
  • the upper convex portion 213 c is in contact with the back surface (surface opposite to the bearing surface X) of the top foil 212, and the lower convex portion 213 d is in contact with the end surface 211 a of the foil holder 211.
  • the second region Q2 of the back foil 213 is provided with a second support portion that continuously contacts the top foil 212 in the radial direction.
  • a curved portion 213e that protrudes toward the top foil 212 is provided in the second region Q2, and the curved portion 213e constitutes a second support portion (rigidity imparting means).
  • the curved portion 213e extends continuously in the radial direction, and extends, for example, along the edge of the downstream end portion 212b (free end) of the top foil 212, in the illustrated example, along the radial direction.
  • the curved portion 213e is provided in the entire radial direction of the second region Q2, and continuously contacts the entire radial direction of the top foil 212. As shown in FIG.
  • the substantially cylindrical curved surface portion provided at the top of the curved portion 213 e is in contact with the top foil 212.
  • the upstream end of the curved portion 213e is continuous with the flat portion 213b of the first region Q1.
  • the downstream end of the curved portion 213e is curved along the end surface 211a of the foil holder 211. Thereby, when the bending part 213e is compressed, the downstream end part of the bending part 213e can be smoothly deformed while sliding on the end surface 211a of the foil holder 211.
  • the downstream end of the curved portion 213e may be separated from the end surface 211a of the foil holder 211.
  • the bending portion 213e is easily displaced in the axial direction, and the rigidity when the back foil 213 is compressed can be suppressed.
  • the back foil 213 is formed by pressing the foil.
  • the foil material is subjected to press working to obtain a flat portion 213b, an upper convex portion 213c, a lower convex portion 213d, and a curved portion.
  • the back foil 213 is formed.
  • the stamping of the foil material and the forming of the flat portion 213b, the upper convex portion 213c, the lower convex portion 213d, and the curved portion 213e can be simultaneously performed by pressing.
  • the thickness direction dimension (axial dimension) of the entire back foil 213 including the upper convex portion 213c and the lower convex portion 213d is about 0.5 to 2 mm.
  • the protruding amount of the upper convex portion 213c and the curved portion 213e with respect to the flat portion 213b is approximately the same.
  • the arrangement pattern of the upper convex part 213c and the lower convex part 213d shown in FIG. 20 is only an example, and an arbitrary arrangement pattern different from that in FIG. 20 can be adopted as necessary.
  • the bearing surface X of the top foil 212 is elastically deformed according to the operating conditions such as the load, the rotational speed of the shaft 202, and the ambient temperature, so that the bearing gap C is automatically adjusted to an appropriate width according to the operating conditions.
  • the Therefore, the bearing gap C can be managed to the optimum width even under severe conditions such as high temperature and high speed rotation, and the shaft 202 can be stably supported.
  • the top foil 212 is pressed against the back foil 213. Specifically, most of the top foil 212 except for the upstream end 212a and the downstream end 212b is supported by the upper convex portion 213c of the back foil 213 and the downstream end 212b of the top foil 212. The nearby region is contact-supported by the curved portion 213e of the back foil 213. At this time, of the top foil 212, the contact portion A that is in contact with the upper convex portion 213c (first support portion) of the back foil 213 has high rigidity, and the periphery of the contact portion A has low rigidity. Therefore, as shown in FIGS.
  • the region between the radial directions of the contact portion A in the top foil 212 is deformed to the foil holder 211 side (downward in FIGS. 26 and 27) from the contact portion A, A recess B is formed in this region.
  • the region of the top foil 212 where the curved portion 213e (second support portion) of the back foil 213 is in contact has high rigidity and is difficult to be deformed to the foil holder 211 side by air pressure.
  • the top foil 212 receives pressure P due to the air pressure generated in the bearing gap C as shown in FIG. 28. Therefore, the back foil 213 is compressed in the pressure P direction via the top foil 212. Force acts. Since the flat portion 213b has a thin plate shape extending in a direction orthogonal to the pressure P direction, the back foil 213 is a portion having low rigidity against the compression force. Therefore, when a compressive force is applied to the back foil 213, the flat portion 213b is first deformed and absorbs the compressive force as shown by a two-dot chain line in FIG.
  • the rigidity of the back foil 213 can be locally reduced as compared with the back foil portion of an existing bump type foil bearing that does not have such a flat portion.
  • each top foil 212 and the end surface 203a of the thrust collar 203 are in sliding contact with each other at the time of low-speed rotation immediately before the shaft 202 is stopped or just after starting.
  • a low friction coating such as a titanium aluminum nitride film, a tungsten disulfide film, or a molybdenum disulfide film may be formed.
  • the above-described low-friction coating may be formed on one or both of the mutually sliding surfaces.
  • the present invention is not limited to the above embodiment.
  • description is abbreviate
  • the rigidity of the bearing surface X can be partially controlled by changing the distribution density of the upper protrusions 213c and the lower protrusions 213d provided in the first region Q1 of the back foil 213 depending on the location. it can.
  • the density of the upper protrusions 213c and the lower protrusions 213d increases as going downstream.
  • the rigidity of the back foil 213 in the compression direction (axial direction) increases as it goes downstream.
  • the bearing surface X of the top foil 212 is less likely to be deformed in the direction away from the thrust collar 203 (the direction in which the bearing gap C is widened) as it goes downstream, so that a wedge-shaped bearing gap C is easily formed.
  • the back foil 213 is simplified and shown as a rectangle.
  • a bearing surface having a predetermined shape can be obtained by changing the height of the upper convex portion 213c and the lower convex portion 213d provided in the first region Q1 of the back foil 213 depending on the location.
  • the height (axial dimension) of the back foil 213 including the upper convex portion 213c and the lower convex portion 213d increases toward the downstream side.
  • the bearing surface X of the top foil 212 tends to be displaced toward the thrust collar 203 toward the downstream side, and a wedge-shaped bearing gap C is easily formed.
  • a corrugated portion 213f is provided in the first region Q1 of the back foil 213.
  • the corrugated portion 213 f has a plurality of crest portions 213 f 1 and trough portions 213 f 2 extending along the direction intersecting the rotation direction of the shaft 202 alternately in the rotation direction of the shaft 202.
  • the peak portion 213f1 of the corrugated portion 213f constitutes a first support portion that contacts and supports the top foil 212 from behind.
  • the peak portion 213f1 and the valley portion 213f2 extend in a direction intersecting with the edge of the downstream end portion of the back foil 213, and extend in a direction parallel to the edge of the upstream end portion 213a of the back foil 213 in the illustrated example.
  • the peak portions 213f1 are provided at a plurality of locations separated in the radial direction, and these peak portions 213f1 are in contact with the top foil 212.
  • the curved portion 213e is provided as in the above embodiment.
  • the back foil 213 having the corrugated portion 213f as shown in FIG. 31 can be formed by, for example, pressing.
  • the flat foil material is bent into a corrugated shape, the dimension in plan view (the dimension in the direction orthogonal to the extending direction of the peak portion 213f1) is reduced accordingly. Therefore, the flat foil material before the press work needs to be set in shape and dimensions in consideration of the reduction in dimensions due to the press work, so that the design becomes very complicated.
  • the back foil 213 having the dimple-like upper convex portion 213c and the lower convex portion 213d as shown in FIG. 21 is formed by pressing a flat foil material and locally stretching the material to the upper convex portion.
  • 213c and the downward convex part 213d can be shape
  • the overall dimensions in a plan view are hardly changed by pressing, it is possible to freely design the upper convex portion 213c and the lower convex portion 213d, and the design of the back foil 213 is facilitated.
  • the second support portion of the back foil portion Bf is constituted by a rod-like member 215.
  • the rod-shaped member 215 is made of metal or resin.
  • the rod-shaped member 215 extends continuously in the radial direction, for example, extends along the edge of the downstream end portion 212b of the top foil 212, specifically, along the radial direction.
  • the rod-shaped member 215 is fixed to the surface of the second region Q2 of the back foil 213 (the surface on the top foil 212 side) by welding or the like. When the pressure in the bearing gap C increases, the rod-shaped member 215 continuously contacts the top foil portion Tf in the radial direction.
  • the cross-sectional shape of the rod-shaped member 215 is not limited to FIG. 32, and may be, for example, an upwardly convex semicircular shape.
  • each foil member 214 includes a foil member 214 that integrally includes a top foil portion Tf and a back foil portion Bf (the back foil portion Bf is indicated by a dotted pattern).
  • the upstream end of each foil member 214 is attached to the foil holder 211.
  • the back foil portion Bf of the adjacent foil member 214 is disposed between the top foil portion Tf of each foil member 214 and the foil holder 211.
  • the first region Q1 of the back foil portion Bf of each foil member 214 is provided with a first support portion that contacts and supports the top foil portion Tf at a plurality of locations separated in the radial direction.
  • a flat portion 213b, an upper convex portion 213c (open circle) as a first support portion, and a lower convex portion 213d (hatched circle) are provided in the first region Q1.
  • a second support portion that continuously contacts and supports the top foil portion Tf in the radial direction is provided.
  • a curved portion is used as the second support portion. 213e is provided.
  • each foil member 214 has a top foil portion Tf and a back foil portion Bf, but the shape of each foil member 214 is shown in FIG. Different from the embodiment shown in FIG.
  • the foil member 214 of FIG. 35 has a main body 214a having a top foil portion Tf and a back foil portion Bf, and a fixing portion 214b extending from the main body 214a to the outer diameter side and fixed to the foil holder 211.
  • the edge 214a1 at the downstream end and the edge 214a2 at the upstream end of the main body 214a both have a shape in which the central portion in the radial direction is bulged downstream.
  • the back foil portion Bf is provided with a flat portion 213b, an upper convex portion 213c (open circle) as a first support portion, a lower convex portion 213d (hatching circle), and a curved portion 213e as a second support portion.
  • the curved portion 213e extends in a direction substantially parallel to the edge 214a1 at the downstream end of the main body 214a.
  • the curved portion 213e does not necessarily have to be parallel to the radial direction, and may be any shape that can continuously contact the top foil portion Tf in the radial direction.
  • the present invention can also be applied to a radial foil bearing that supports a shaft in a radial direction.
  • the present invention is applied to a so-called leaf-type radial foil bearing 220.
  • the radial foil bearing 220 includes a cylindrical foil holder 221 and a plurality of foil members 222 attached to the inner peripheral surface 221a of the foil holder 221 in a circumferential direction. Of each foil member 222, the downstream region functions as the top foil portion Tf, and the upstream region functions as the back foil portion Bf.
  • first support portions for example, upward convex portions
  • second support portion for example, a curved portion
  • the second support portion (curved portion) is in contact with the entire region in the rotation orthogonal direction of the top foil portion Tf is shown, but not limited thereto, for example, the dimension in the rotation orthogonal direction of the second support portion. May be slightly smaller than the top foil portion Tf, and the second support portion may be configured to contact and support the region excluding the end portion in the rotation orthogonal direction of the top foil portion Tf.
  • the present invention is not limited thereto, and the shaft 202 may be fixed and the foil bearing may be rotated. However, if the foil bearing is rotated, the foil may be damaged by centrifugal force. Therefore, it is preferable to fix the foil bearing as in the above embodiment.
  • foil bearings described above can be used, for example, as bearings for main shafts of turbo machines such as gas turbines and turbochargers (superchargers), bearings for vehicles such as automobiles, or bearings for industrial equipment. It is.
  • foil bearing described above can be used not only as an air dynamic pressure bearing using air as a pressure generating fluid but also as an oil dynamic pressure bearing using lubricating oil as a pressure generating fluid.
  • the foil bearing 410 is an air film formed between the disc-shaped thrust collar 403 provided on the shaft 402 and a thrust that supports the shaft 402 in the thrust direction. It is a foil bearing.
  • the foil bearing 410 includes a disc-shaped foil holder 411, and a top foil 412 and a back foil 413 attached to the end surface 411 a of the foil holder 411.
  • a plurality (six in the illustrated example) of fan-shaped top foil 412 and back foil 413 are arranged side by side in the rotation direction of shaft 402 (the circumferential direction of foil holder 411).
  • the upstream side in the rotational direction of the shaft 402 (in the direction of arrow R in FIG. 44), that is, the downstream side in the air flow direction with respect to the top foil 412 when the shaft 402 rotates is referred to as “downstream side” and vice versa.
  • the side is called the “upstream side”.
  • the foil holder 411 is made of metal, resin, or the like.
  • the foil holder 411 has a hollow disk shape having an inner hole 411b into which the shaft 402 is inserted.
  • a plurality of top foils 412 and a back foil 413 are attached to one end surface 411 a of the foil holder 411.
  • the other end surface 411c of the foil holder 411 is fixed to a housing of a facility (for example, a turbo machine such as a gas turbine) in which the foil bearing 410 is incorporated.
  • the top foil 412 and the back foil 413 are made of a metal having a high spring property and good workability, for example, steel or a copper alloy.
  • the top foil 412 and the back foil 413 are formed of a thin metal plate (foil) having a thickness of about 20 ⁇ m to 200 ⁇ m.
  • a thin metal plate foil having a thickness of about 20 ⁇ m to 200 ⁇ m.
  • the top foil 412 functions as a top foil portion Tf having the bearing surface X. As shown in FIGS. 44 and 45, the top foil 412 has a smooth bearing surface X having no irregularities.
  • the upstream end 412a of the top foil 412 is fixed to the end surface 411a of the foil holder 411 by welding or the like.
  • the downstream end of the top foil 412 is a free end.
  • a bent portion 412b (rigidity imparting means) is provided at the downstream end of the top foil 412 (see FIG. 45).
  • the bent portion 412b is formed by bending the vicinity of the downstream end portion of the top foil 412 to the side away from the thrust collar 403 (the foil holder 411 side). Specifically, after a flat plate-shaped foil material having a predetermined shape is formed by punching or electric discharge machining, an area adjacent to the downstream side of the bearing surface X in the foil material (in the illustrated example, more than the bearing surface X).
  • the bent portion 412b is formed by plastically deforming the downstream band-like region) by pressing or the like.
  • the bent portion 412b extends along the downstream end of the bearing surface X, and extends in the direction orthogonal to the rotation (radial direction) in the illustrated example.
  • the bent portion 412b is bent with respect to the bearing surface X.
  • the angle and dimension of the bent portion 412b are set so that the end portion of the bent portion 412b does not contact the foil holder 411.
  • the bent portion 412b is bent in a direction orthogonal to the bearing surface X.
  • the axial dimension of the bent portion 412b is smaller than the axial dimension of the back foil 413, for example, 30 to 70% of the axial dimension of the back foil 413.
  • the angle between the bearing surface X of the top foil 412 and the bent portion 412b is not limited to a right angle, and this angle may be an acute angle.
  • the bent portion 412b is formed by folding the vicinity of the downstream end of the top foil 412 about 180 ° upstream. Or as shown in FIG. 49, it is good also considering the angle between the bearing surface X and the bending part 412b as an obtuse angle.
  • the end of the bent portion 412b may be brought into contact with the end surface 411a of the foil holder 411. In this case, the rigidity of the region near the end portion on the downstream side of the bearing surface X can be increased.
  • the bent portion 412b may be normally separated from the end surface 411a of the foil holder 411 so that the bent portion 412b contacts the end surface 411a of the foil holder 411 when the fluid pressure in the bearing gap is increased.
  • the back foil 413 functions as a back foil portion Bf that supports the top foil 412 from behind.
  • the back foil 413 has a fan shape that is substantially the same shape as the top foil 412 in a plan view, and is arranged to overlap the top foil 412 (see FIGS. 45 and 46).
  • the upstream end 413a of the back foil 413 is fixed to the end surface 411a of the foil holder 411 by welding or the like.
  • the back foil 413 has support portions that come into contact with the top foil 412 at a plurality of locations separated in the radial direction.
  • the back foil 413 has a flat portion 413b, a plurality of upper convex portions 413c protruding from the flat portion 413b to the top foil 412 side, and the flat portion 413b opposite to the top foil 412.
  • a plurality of lower convex portions 413d protruding to the side are provided, and the upper convex portion 413c constitutes a support portion.
  • the flat portion 413b, the upper convex portion 413c, and the lower convex portion 413d of the back foil 413 have a uniform thickness. Both the upper convex portion 413c and the lower convex portion 413d are substantially hemispherical. Since the inside of the upper convex portion 413c and the lower convex portion 413d is hollow, when the back foil 413 is viewed from one side of the front and back sides, for example, from the front side (top foil 412 side) as shown in FIG. The region where 413d exists is a recess. In FIG. 46, for easy understanding, the lower convex portion 413d serving as a concave portion is hatched.
  • a flat portion 413b is provided on the entire circumference of the upper convex portion 413c and the lower convex portion 413d.
  • the upper convex part 413c and the lower convex part 413d are respectively distributed and arranged in the whole area except for the vicinity of the upstream end part 413a of the back foil 413.
  • the upper convex portion 413 c comes into contact with the back surface (the surface opposite to the bearing surface X) of the top foil 412, and the lower convex portion 413 d comes into contact with the end surface 411 a of the foil holder 411.
  • the back foil 413 is formed by pressing the foil.
  • the foil material is pressed to form the upper convex portion 413c and the lower convex portion 413d at the same time.
  • a foil 413 is formed. It should be noted that the stamping of the foil material and the molding of the upper convex portion 413c and the lower convex portion 413d can be simultaneously performed by pressing.
  • the thickness direction dimension (axial dimension) of the entire back foil 413 including the upper convex portion 413c and the lower convex portion 413d is about 0.5 to 2 mm. Note that the arrangement pattern of the upper protrusion 413c and the lower protrusion 413d shown in FIG. 46 is merely an example, and an arbitrary arrangement pattern different from that shown in FIG.
  • the bearing surface C of the top foil 412 is elastically deformed according to the operating conditions such as the load, the rotational speed of the shaft 402, and the ambient temperature, so that the bearing gap C is automatically adjusted to an appropriate width according to the operating conditions.
  • the Therefore, the bearing gap C can be managed to the optimum width even under severe conditions such as high temperature and high speed rotation, and the shaft 402 can be stably supported.
  • the top foil 412 is pressed against the back foil 413. Specifically, most of the top foil 412 except the upstream end portion 412a and the downstream end portion (bending portion 412b) is contact-supported by the upper convex portion 413c of the back foil 413. At this time, in the top foil 412, the contact portion A where the upper convex portion 413c (supporting portion) 413c (support portion) of the back foil 413 contacts has high rigidity, and the periphery of the contact portion A has low rigidity. Therefore, as shown in FIGS.
  • the region in the radial direction of the contact portion A in the top foil 412 is deformed to the foil holder 411 side (downward in FIGS. 52 and 53) from the contact portion A.
  • a recess B is formed in the region.
  • the rigidity of the region along the bent portion 412b is increased. Yes. Accordingly, the region near the downstream end portion of the bearing surface X is not easily deformed to the foil holder 411 side by the fluid pressure, and therefore a weir D that is one step higher than the recess B is formed in this region (see FIG. 53). ).
  • This weir D extends continuously in the radial direction, and in this embodiment extends over the entire length of the top foil 412 in the radial direction (see FIG. 51).
  • the top foil 412 receives the pressure P due to the air pressure generated in the bearing gap C. Therefore, the back foil 413 is compressed in the pressure P direction via the top foil 412. Force acts. Since the flat portion 413b has a thin plate shape extending in a direction orthogonal to the pressure P direction, the back foil 413 is a portion having low rigidity against the compression force. Therefore, when a compressive force is applied to the back foil 413, the flat portion 413b is first deformed and absorbs the compressive force as shown by a two-dot chain line in FIG.
  • the rigidity of the back foil 413 can be locally reduced as compared with the back foil portion of an existing bump type foil bearing that does not have such a flat portion.
  • each top foil 412 and the end surface 403a of the thrust collar 403 are in sliding contact with each other at the time of low-speed rotation immediately before the shaft 402 is stopped or immediately after starting.
  • a low friction coating such as a titanium aluminum nitride film, a tungsten disulfide film, or a molybdenum disulfide film may be formed.
  • the above-described low-friction coating may be formed on one or both of the mutually sliding surfaces.
  • the present invention is not limited to the above embodiment.
  • description is abbreviate
  • the bent portion 412b is provided only in the intermediate portion excluding both ends in the radial direction among the downstream end portions of the top foil 412.
  • the rigidity at both ends in the radial direction in the region near the end portion on the downstream side of the bearing surface X is low.
  • the outer diameter end of the end surface 403a of the thrust collar 403 may come into contact with the outer diameter end of the bearing surface X.
  • the bending portion 412b at the radial end is omitted, By reducing the rigidity of this portion, the surface pressure due to contact with the thrust collar 403 can be suppressed, so that the top foil 412 can be prevented from being damaged.
  • the bent portion 412b may be omitted at only one end portion in the radial direction (for example, only at the outer diameter end) in addition to being omitted at both ends in the radial direction of the top foil 412 as described above.
  • the bent portion 412b of the top foil 412 is bent with respect to the bearing surface X.
  • the present invention is not limited to this.
  • the bent portion 412b is formed by curving the vicinity of the end portion on the downstream side of the top foil 412 in a curved shape on the side away from the thrust collar 403.
  • the bent portion 412b has a curved surface portion that is smoothly continuous with the bearing surface X.
  • the rigidity of the bearing surface X can be partially controlled by changing the distribution density of the upper protrusions 413c and the lower protrusions 413d provided on the back foil 413 depending on the location.
  • the density of the upper protrusions 413c and the lower protrusions 413d increases as going downstream.
  • the rigidity in the compression direction (axial direction) of the back foil 413 increases as it goes downstream.
  • the bearing surface X of the top foil 412 is less likely to be deformed in a direction away from the thrust collar 403 (a direction in which the bearing gap C is widened) as it goes downstream, so that a wedge-shaped bearing gap C is easily formed.
  • the back foil 413 is simplified and shown as a rectangle.
  • a bearing surface having a predetermined shape can be obtained by changing the heights of the upper convex portion 413c and the lower convex portion 413d provided on the back foil 413 depending on the location.
  • the height (axial dimension) of the back foil 413 including the upper convex portion 413c and the lower convex portion 413d increases toward the downstream side.
  • the bearing surface X of the top foil 412 tends to be displaced toward the thrust collar 403 toward the downstream side, and a wedge-shaped bearing gap C is easily formed.
  • the back foil 413 is provided with a corrugated portion 413f.
  • the corrugated portion 413 f has a plurality of peak portions 413 f 1 and valley portions 413 f 2 extending along the direction intersecting the rotation direction of the shaft 402 alternately in the rotation direction of the shaft 402.
  • the peak portion 413f1 of the corrugated portion 413f constitutes a first support portion that contacts and supports the top foil 412 from behind.
  • the peak portion 413f1 and the valley portion 413f2 extend in a direction intersecting with the edge of the downstream end portion of the back foil 413, and extend in a direction parallel to the edge of the upstream end portion 413a of the back foil 413 in the illustrated example.
  • the peak portions 413f1 are provided at a plurality of locations separated in the radial direction, and these peak portions 413f1 are in contact with the top foil 412.
  • the back foil 413 having the corrugated portion 413f as shown in FIG. 59 can be formed by, for example, pressing.
  • the flat foil material is bent into a corrugated shape, the dimension in plan view (dimension in the direction orthogonal to the extending direction of the peak portion 413f1) is reduced accordingly. Therefore, the flat foil material before the press work needs to be set in shape and dimensions in consideration of the reduction in dimensions due to the press work, so that the design becomes very complicated.
  • the back foil 413 having the dimple-like upper convex portion 413c and the lower convex portion 413d as shown in FIG. 47 is formed by pressing the flat foil material and locally stretching the material. 413c and the downward convex part 413d can be shape
  • each foil member 414 integrally having a top foil portion Tf and a back foil portion Bf (the back foil portion Bf is indicated by a dotted pattern).
  • the upstream end of each foil member 414 is attached to the foil holder 411.
  • the back foil portion Bf of the adjacent foil member 414 is disposed between the top foil portion Tf of each foil member 414 and the foil holder 411.
  • the back foil portion Bf of each foil member 414 is provided with a support portion for contacting and supporting the top foil portion Tf at a plurality of locations separated in the radial direction.
  • a flat portion 413b as shown in FIGS.
  • An upper convex portion 413c (support portion), and a lower convex portion 413d are provided.
  • the case where the bent portion 412b is formed by plastically deforming the downstream end portion of the top foil 412 is not limited to this, but the downstream end portion of the top foil 412 is not limited to this.
  • the bent portion 412b may be formed by elastic deformation.
  • a foil member 414 integrally including a top foil portion Tf and a back foil portion Bf is provided, and an insertion portion 412c is provided at a downstream end portion of the top foil portion Tf.
  • An insertion port 412d is provided in the vicinity of the upstream end of the top foil portion Tf.
  • the insertion portion 412c of each top foil portion Tf is inserted into the insertion port 412d of the top foil portion Tf adjacent to the downstream side. Since the back foil portion Bf is arranged behind the top foil portion Tf (lower side in the figure), the downstream end portion (free end) of the top foil portion Tf is usually on the thrust collar side than the upstream end portion. (Upper in the figure). Therefore, the top foil portion Tf is inserted by inserting the insertion portion 412c provided at the downstream end portion of the top foil portion Tf into the insertion port 412d provided near the upstream end portion of the adjacent top foil portion Tf.
  • the vicinity of the downstream end is elastically curved toward the side away from the shaft (downward in the figure), thereby forming a bent portion 412b.
  • the insertion portion 412c and the insertion port 412d are provided only at the center in the radial direction of the top foil portion Tf. You may provide the insertion part 412c and the insertion port 412d.
  • the top foil 412 having the insertion portion 412c and the insertion port 412d and the back foil 413 are formed separately.
  • the insertion port 412d of the top foil 412 is not limited to the slit shape as shown in FIG. 63, and may be configured by a recess opened at the upstream end of the top foil 412 as shown in FIG.
  • each foil member 414 has a top foil portion Tf and a back foil portion Bf, but the shape of each foil member 414 is shown in FIG.
  • Different from the embodiment shown in FIG. 65 includes a main body 414a having a top foil portion Tf and a back foil portion Bf, and a fixing portion 414b extending from the main body 414a to the outer diameter side and fixed to the foil holder 411.
  • Both the edge 414a1 at the downstream end and the edge 414a2 at the upstream end of the main body 414a have a shape in which the central portion in the radial direction is inflated downstream.
  • a bent portion 412b extending along the downstream end portion of the bearing surface X is provided at the downstream end portion of the main body 414a (shown by a dotted line in FIG. 65).
  • the back foil portion Bf is provided with a flat portion 413b, an upper convex portion 413c (open circle) as a support portion, and a lower convex portion 413d (hatched circle).
  • the present invention can also be applied to a radial foil bearing that supports a shaft in a radial direction.
  • the present invention is applied to a so-called leaf-type radial foil bearing 420.
  • the radial foil bearing 420 includes a cylindrical foil holder 421 and a plurality of foil members 422 attached to the inner peripheral surface 421a of the foil holder 421 in a circumferential direction.
  • the downstream region functions as the top foil portion Tf
  • the upstream region functions as the back foil portion Bf.
  • a bent portion 412b is provided at the downstream end of the top foil portion Tf of each foil member 422, as in the above embodiment.
  • support portions for example, upward convex portions
  • a bearing gap C is formed between the bearing surface X of the top foil portion Tf and the outer peripheral surface of the shaft 402.
  • the present invention is not limited thereto, and the shaft 402 may be fixed and the foil bearing may be rotated. However, if the foil bearing is rotated, the foil may be damaged by centrifugal force. Therefore, it is preferable to fix the foil bearing as in the above embodiment.
  • foil bearings described above can be used, for example, as bearings for main shafts of turbo machines such as gas turbines and turbochargers (superchargers), bearings for vehicles such as automobiles, or bearings for industrial equipment. It is.
  • foil bearing described above can be used not only as an air dynamic pressure bearing using air as a pressure generating fluid but also as an oil dynamic pressure bearing using lubricating oil as a pressure generating fluid.
  • the configuration of the foil bearing shown as the embodiment of the first invention and the configuration of the foil bearing shown as the embodiment of the second invention may be applied in combination.

Abstract

This file bearing 10 is provided with a top file unit Tf having a bearing surface X, a back file unit Bf elastically supporting the top file unit Tf from the back, and a file holder 11 to which the top file unit Tf and the back file unit Bf are attached, and a shaft 2 is supported in a contactless manner by the fluid pressure occurring in the bearing gap between the shaft 2 and the bearing surface X, which rotate relative to one another. Multiple notches 12b1 are provided on the downstream-side end 12b of the top file unit Tf. The back file unit Bf contacts the top file unit TF at multiple locations separated in the direction orthogonal to the direction of rotation of the shaft (the radial direction).

Description

フォイル軸受Foil bearing
 本発明は、フォイル軸受に関する。 The present invention relates to a foil bearing.
 フォイル軸受は、可撓性を有する金属薄板(フォイル)で軸受面を構成するものであり、フォイルが撓むことにより、軸の回転速度や荷重、周囲温度等の運転条件に応じて軸受隙間が適切な幅に自動調整されるという特徴を有する。 A foil bearing is a flexible metal thin plate (foil) that forms a bearing surface. When the foil bends, the bearing clearance varies depending on operating conditions such as shaft rotation speed, load, and ambient temperature. It has the feature of being automatically adjusted to an appropriate width.
 例えば下記の特許文献1には、スラスト荷重を支持するスラストフォイル軸受の一例として、バンプ型と呼ばれるフォイル軸受が開示されている。このフォイル軸受は、図16に示すように、トップフォイル114と、トップフォイル114を背後から弾性的に支持するバックフォイル112(バンプフォイル)と、トップフォイル114およびバックフォイル112が取り付けられたベースプレート110とを有する。 For example, the following Patent Document 1 discloses a foil bearing called a bump type as an example of a thrust foil bearing that supports a thrust load. As shown in FIG. 16, the foil bearing includes a top foil 114, a back foil 112 (bump foil) that elastically supports the top foil 114 from behind, and a base plate 110 to which the top foil 114 and the back foil 112 are attached. And have.
 軸が回転すると、トップフォイル114の軸受面114aとスラストカラー115との間に、下流側に向けて隙間幅を小さくした楔状の軸受隙間Cが形成される。そして、軸受隙間Cの大隙間部C1の流体が小隙間部C2に押し込まれることにより流体圧が高められ、スラストカラー115が非接触支持される。このとき、流体圧によりバックフォイル112が弾性変形することで、トップフォイル114の撓みが許容され、軸受隙間Cの隙間幅が自動的に調整される。 When the shaft rotates, a wedge-shaped bearing gap C is formed between the bearing surface 114a of the top foil 114 and the thrust collar 115 with the gap width decreasing toward the downstream side. The fluid pressure is increased when the fluid in the large gap portion C1 of the bearing gap C is pushed into the small gap portion C2, and the thrust collar 115 is supported in a non-contact manner. At this time, the back foil 112 is elastically deformed by the fluid pressure, so that the top foil 114 is allowed to bend and the gap width of the bearing gap C is automatically adjusted.
 また、下記の特許文献3には、フォイル軸受の一例として、バンプ型と呼ばれるフォイル軸受が開示されている。このフォイル軸受は、軸受面を有するトップフォイルと、トップフォイルを背後から弾性的に支持する波形のバックフォイル(バンプフォイル)とを備える。バックフォイルには、トップフォイルに接する山部と、平坦な谷部とが、軸の回転方向で交互に形成されている。 In addition, Patent Document 3 below discloses a foil bearing called a bump type as an example of a foil bearing. This foil bearing includes a top foil having a bearing surface and a corrugated back foil (bump foil) that elastically supports the top foil from the back. In the back foil, crests that are in contact with the top foil and flat troughs are alternately formed in the rotation direction of the shaft.
実開昭61-36725号公報Japanese Utility Model Publication No. 61-36725 特開2013-87789号公報JP 2013-87789 A 特開2013-47555号公報JP 2013-47555 A
 図16に示すようなフォイル軸受では、軸の回転に伴って軸受隙間Cの流体(空気)が下流側に流動する。このとき、スラストカラー115付近の流体は、スラストカラー115とのせん断力により流動しやすいが、スラストカラー115から離反した流体は流動しにくい。このため、軸受隙間Cの流体(特に、大隙間部C1の流体)の一部しか流動せず、小隙間部C2に流入する流体量が不足して流体圧が十分に高められない恐れがある。 In a foil bearing as shown in FIG. 16, the fluid (air) in the bearing gap C flows downstream as the shaft rotates. At this time, the fluid in the vicinity of the thrust collar 115 easily flows due to the shearing force with the thrust collar 115, but the fluid separated from the thrust collar 115 does not easily flow. For this reason, only a part of the fluid in the bearing gap C (particularly, the fluid in the large gap portion C1) flows, and the amount of fluid flowing into the small gap portion C2 may be insufficient, and the fluid pressure may not be sufficiently increased. .
 例えば上記の特許文献3には、フォイル軸受の負荷容量を増大させる構造が提案されている。具体的には、各トップフォイルの下流側端部に、複数の切り欠き部を設けている。これにより、小隙間部C2に押し込まれた流体が、切り欠き部を介してトップフォイルの裏側に抜け、そのトップフォイルの下流側に隣接する大隙間部C1における流体の流れが乱される。この乱流により、大隙間部C1の流体がダイナミックに流動し、これにより小隙間部C2に押し込まれる流体量が増大して、フォイル軸受の負荷容量が高められる。 For example, in the above Patent Document 3, a structure for increasing the load capacity of a foil bearing is proposed. Specifically, a plurality of notches are provided at the downstream end of each top foil. Thereby, the fluid pushed into the small gap portion C2 passes through the notch portion to the back side of the top foil, and the flow of the fluid in the large gap portion C1 adjacent to the downstream side of the top foil is disturbed. Due to this turbulent flow, the fluid in the large gap portion C1 dynamically flows, thereby increasing the amount of fluid pushed into the small gap portion C2 and increasing the load capacity of the foil bearing.
 しかし、特許文献3のような構造を採用しても、フォイル軸受の負荷容量が十分でない場合がある。 However, even if the structure as in Patent Document 3 is adopted, the load capacity of the foil bearing may not be sufficient.
 そこで、本発明の第1の目的は、フォイル軸受の負荷容量をさらに高めることにある。 Therefore, a first object of the present invention is to further increase the load capacity of the foil bearing.
 また、上記の特許文献2に示されたフォイル軸受において、軸の回転に伴って軸受隙間の圧力が高まると、トップフォイルを介してバックフォイルが軸受隙間の幅方向に圧縮される。このとき、波形のバックフォイルは、各山部を押し潰すように変形することになるが、その際の変形抵抗が大きく、バックフォイルが全体的に高剛性となるため、トップフォイルの柔軟性が不足する傾向にある。トップフォイルの柔軟性が不足すると、軸受隙間の自動調整機能が損なわれ、軸とトップフォイルが接触し易くなる等の不具合を招く。 Also, in the foil bearing shown in Patent Document 2 above, when the pressure in the bearing gap increases with the rotation of the shaft, the back foil is compressed in the width direction of the bearing gap through the top foil. At this time, the corrugated back foil is deformed so as to crush each peak, but the deformation resistance at that time is large, and the back foil is highly rigid as a whole. It tends to run short. When the flexibility of the top foil is insufficient, the function of automatically adjusting the bearing gap is impaired, and problems such as easy contact between the shaft and the top foil are caused.
 そこで、本発明者らは、先の出願(特願2015-234626)において、図38に示すようなバックフォイル320を有するフォイル軸受を提案した。このバックフォイル320は、平坦部321(中間部)と、平坦部321からトップフォイル側に突出した複数の上凸部322(第一突出部)と、平坦部321からトップフォイル310と反対側に突出した複数の下凸部323(第二突出部)とを有する。 Therefore, the present inventors have proposed a foil bearing having a back foil 320 as shown in FIG. 38 in the previous application (Japanese Patent Application No. 2015-234626). The back foil 320 includes a flat portion 321 (intermediate portion), a plurality of upper convex portions 322 (first protruding portions) protruding from the flat portion 321 to the top foil side, and a flat portion 321 on the opposite side of the top foil 310. It has a plurality of protruding lower protrusions 323 (second protrusions).
 図39に示すように、バックフォイル320は、トップフォイル310とフォイルホルダ302との間に配される(図39では、バックフォイル320を模式的にバネで示している)。軸が回転すると、トップフォイル310の軸受面と、軸に設けられたスラストカラー303の端面303aとの間に楔状の軸受隙間Cが形成され、軸受隙間Cの大隙間部C1の流体が小隙間部C2に押し込まれることにより流体圧が高められる。この流体圧により、バックフォイル320が軸受隙間Cの幅方向(図39の上下方向)に弾性的に圧縮され、これにより軸受隙間Cの幅が自動的に調整される。このとき、バックフォイル320のうち、平坦部321(図38参照)は圧縮力に対する剛性が相対的に低い部分となるため、バックフォイル320に圧縮力が負荷された際には、先ず平坦部321が変形して圧縮力を吸収する。従って、特許文献2に示されたような波形のバックフォイルに比べ、バックフォイル全体の剛性を小さくして、軸受面の柔軟性を高めることができる。 As shown in FIG. 39, the back foil 320 is disposed between the top foil 310 and the foil holder 302 (in FIG. 39, the back foil 320 is schematically shown by a spring). When the shaft rotates, a wedge-shaped bearing gap C is formed between the bearing surface of the top foil 310 and the end face 303a of the thrust collar 303 provided on the shaft, and the fluid in the large gap portion C1 of the bearing gap C is a small gap. The fluid pressure is increased by being pushed into the part C2. With this fluid pressure, the back foil 320 is elastically compressed in the width direction of the bearing gap C (up and down direction in FIG. 39), and thereby the width of the bearing gap C is automatically adjusted. At this time, since the flat portion 321 (see FIG. 38) of the back foil 320 is a portion having a relatively low rigidity with respect to the compressive force, when the compressive force is applied to the back foil 320, the flat portion 321 first. Deforms and absorbs the compressive force. Therefore, the rigidity of the entire back foil can be reduced and the flexibility of the bearing surface can be increased as compared with the corrugated back foil as disclosed in Patent Document 2.
 図40に示すように、トップフォイル310は、バックフォイル320に設けられた複数の上凸部322により、軸の回転方向と直交する方向(図40の左右方向)に離隔した複数箇所で背後から接触支持される。この場合、トップフォイル310のうち、バックフォイル320の上凸部322との接触部Aは剛性が高く、接触部Aの周囲は剛性が低くなる。従って、軸受隙間Cで生じる流体圧によりトップフォイル310がバックフォイル320に押し付けられると、図41に示すように、接触部Aの周囲の領域が、接触部Aよりもスラストカラー303から離反する側(図中下側)に変形し、これにより接触部Aの間の領域に凹部Bが形成される。この場合、図42に矢印で示すように、軸受隙間Cの小隙間部C2に押し込まれた流体が凹部Bを介して下流側に抜けやすくなるため、図39の下段に実線で示すように、大隙間部C1から小隙間部C2へ行くにつれて徐々に高まった流体圧Pが、小隙間部C2で早期に降下してしまい、支持力が低下する。 As shown in FIG. 40, the top foil 310 has a plurality of upper convex portions 322 provided on the back foil 320. The top foil 310 is separated from the back at a plurality of positions separated in a direction orthogonal to the axis rotation direction (left-right direction in FIG. Contact supported. In this case, in the top foil 310, the contact portion A with the upper convex portion 322 of the back foil 320 has high rigidity, and the periphery of the contact portion A has low rigidity. Therefore, when the top foil 310 is pressed against the back foil 320 by the fluid pressure generated in the bearing gap C, the region around the contact portion A is farther from the thrust collar 303 than the contact portion A, as shown in FIG. It deforms (lower side in the figure), thereby forming a recess B in a region between the contact portions A. In this case, as shown by an arrow in FIG. 42, the fluid pushed into the small gap portion C2 of the bearing gap C is likely to be released downstream through the recess B. Therefore, as shown by the solid line in the lower stage of FIG. The fluid pressure P that gradually increases as it goes from the large gap portion C1 to the small gap portion C2 drops at an early stage in the small gap portion C2, and the supporting force is reduced.
 以上のような事情から、本発明の第2の目的は、トップフォイルが、軸の相対回転方向と直交する方向(以下、この方向を「回転直交方向」と言う。)に離隔した複数箇所でバックフォイルにより接触支持されたフォイル軸受において、軸受隙間における流体圧の低下を抑えて支持力を高めることにある。 In view of the circumstances as described above, the second object of the present invention is at a plurality of locations where the top foil is separated in a direction orthogonal to the relative rotation direction of the shaft (hereinafter, this direction is referred to as “rotation orthogonal direction”). In a foil bearing that is contact-supported by a back foil, a supporting force is increased by suppressing a decrease in fluid pressure in the bearing gap.
[第1の発明]
 上記の第1の目的を達成するためになされた第1の発明は、軸受面を有するトップフォイル部と、前記トップフォイル部を背後から弾性的に支持するバックフォイル部と、前記トップフォイル部及び前記バックフォイル部が取り付けられたフォイルホルダとを備え、相対回転する軸と前記軸受面との間の軸受隙間に生じる流体圧で、前記軸を非接触支持するフォイル軸受において、前記トップフォイル部の下流側端部に複数の切り欠き部を設け、前記バックフォイル部が、軸の相対回転方向と直交する方向で離隔した複数箇所で前記トップフォイル部と接触することを特徴とする。
[First invention]
A first invention made to achieve the above first object includes a top foil part having a bearing surface, a back foil part elastically supporting the top foil part from the back, the top foil part, And a foil holder to which the back foil portion is attached, and a foil bearing that supports the shaft in a non-contact manner by a fluid pressure generated in a bearing gap between the shaft that rotates relative to the bearing surface. A plurality of notches are provided at the downstream end, and the back foil is in contact with the top foil at a plurality of positions separated in a direction orthogonal to the relative rotation direction of the shaft.
 尚、「下流側」とは、軸の相対回転方向先行側(図2の矢印R方向参照)、すなわち、軸の相対回転時における、トップフォイル部に対する流体の流れ方向下流側のことを言い、その反対側を「上流側」と言う。 Incidentally, the “downstream side” means the upstream side in the relative rotational direction of the shaft (see the direction of arrow R in FIG. 2), that is, the downstream side in the fluid flow direction with respect to the top foil part at the time of relative rotation of the shaft. The opposite side is called the “upstream side”.
 このように、トップフォイル部の下流側端部に複数の切り欠き部を設けることで、軸受隙間を流れる高圧の流体の一部が、切り欠き部を介してトップフォイル部の裏側(バックフォイル部側)に抜け、トップフォイル部の下流側に隣接する比較的幅の広い隙間(大隙間部)に乱流が生じる。このとき、バックフォイル部が、軸の相対回転方向と直交する方向(以下、「回転直交方向」と言う)に離隔した複数箇所でトップフォイル部と接触していることで、トップフォイル部とバックフォイル部との間の隙間(フォイル間隙間)の流体が、トップフォイル部とバックフォイル部との非接触部(接触部の回転直交方向間)を通って下流側に流動可能とされる。従って、大隙間部で生じた乱流により、フォイル間隙間の流体が下流側に引っ張られて大隙間部に流入し、これにより流体量が増大して負荷容量が高められる。 In this way, by providing a plurality of notches at the downstream end of the top foil part, a part of the high-pressure fluid flowing through the bearing gap is passed through the notch part on the back side of the top foil part (the back foil part). Turbulent flow occurs in a relatively wide gap (large gap) adjacent to the downstream side of the top foil portion. At this time, the back foil portion is in contact with the top foil portion at a plurality of locations separated in a direction orthogonal to the relative rotation direction of the shaft (hereinafter referred to as “rotation orthogonal direction”). The fluid in the gap between the foil portions (the gap between the foils) can flow downstream through the non-contact portion (between the rotation directions of the contact portions) between the top foil portion and the back foil portion. Therefore, due to the turbulent flow generated in the large gap portion, the fluid between the foil gaps is pulled downstream and flows into the large gap portion, thereby increasing the amount of fluid and increasing the load capacity.
 また、バックフォイル部を、回転直交方向に離隔した複数箇所でフォイルホルダと接触させれば、バックフォイル部とフォイルホルダとの間の隙間(フォイル下隙間)の流体が、バックフォイル部とフォイルホルダとの非接触部(接触部の回転直交方向間)を通って下流側に流動可能とされる。従って、大隙間部で生じた乱流により、フォイル下隙間の流体が下流側に引っ張られて大隙間部に流入し、これにより流体量がさらに増大して、負荷容量がさらに高められる。 In addition, if the back foil part is brought into contact with the foil holder at a plurality of locations separated in the direction orthogonal to the rotation direction, the fluid in the gap between the back foil part and the foil holder (foil under gap) is transferred to the back foil part and the foil holder. It is possible to flow downstream through the non-contact part (between the rotation orthogonal direction of the contact part). Therefore, due to the turbulent flow generated in the large gap portion, the fluid in the gap under the foil is pulled downstream and flows into the large gap portion, thereby further increasing the amount of fluid and further increasing the load capacity.
 バックフォイル部は、例えば、平坦部と、平坦部の表側(トップフォイル部側)に突出する複数の第一突出部と、平坦部の裏側(フォイルホルダ側)に突出する複数の第二突出部とを有する。この場合、平坦部が、バックフォイル部の中でも、軸受隙間の幅方向(軸受面と直交する方向)の圧縮力に対する剛性の低い部分となる。そのため、軸の相対回転に伴って軸受隙間で生じる流体圧力によりバックフォイル部に圧縮力が負荷された際には、平坦部が変形して圧縮力を吸収する。従って、このような平坦部を有さない既存のバンプ型のバックフォイル(図16参照)に比べ、局所的な剛性を低くすることができる。これにより、軸受面全体に荷重が加わる通常運転時には、バックフォイル部の全体でトップフォイル部を支持することで剛性を高め、ミスアライメント(芯ずれ)等により軸受面に偏荷重が加わったときには、バックフォイル部を局所的に変形させることで、軸の片当たりを防止することができる。 The back foil part includes, for example, a flat part, a plurality of first protrusions protruding on the front side (top foil part side) of the flat part, and a plurality of second protrusions protruding on the back side (foil holder side) of the flat part. And have. In this case, the flat portion is a portion having low rigidity against the compressive force in the width direction of the bearing gap (direction perpendicular to the bearing surface) in the back foil portion. Therefore, when a compressive force is applied to the back foil portion due to the fluid pressure generated in the bearing gap with the relative rotation of the shaft, the flat portion is deformed to absorb the compressive force. Therefore, the local rigidity can be reduced as compared with the existing bump-type back foil (see FIG. 16) that does not have such a flat portion. As a result, during normal operation in which a load is applied to the entire bearing surface, rigidity is increased by supporting the top foil portion with the entire back foil portion, and when an uneven load is applied to the bearing surface due to misalignment (center misalignment), By locally deforming the back foil portion, it is possible to prevent the shaft from hitting one side.
 上記のフォイル軸受において、バックフォイル部の下流側端部に複数の切り欠き部を設ければ、流体の乱流効果がさらに高められるため、次の軸受隙間に流入する流体量をさらに増大させることができる。特に、バックフォイル部の下流側端部を、トップフォイル部の下流側端部よりも下流側に配することで、バックフォイル部の切り欠き部による乱流効果がより一層高められる。 In the above foil bearing, if a plurality of notches are provided at the downstream end of the back foil portion, the fluid turbulence effect is further enhanced, so that the amount of fluid flowing into the next bearing gap is further increased. Can do. In particular, by arranging the downstream end of the back foil portion on the downstream side of the downstream end of the top foil portion, the turbulence effect by the notch portion of the back foil portion is further enhanced.
[第2の発明]
 上記の第2の目的を達成するためになされた第2の発明は、軸受面を有するトップフォイル部と、前記トップフォイル部を背後から弾性的に支持するバックフォイル部とを備え、軸の相対回転に伴って、前記軸と前記軸受面との間の軸受隙間に生じる流体圧で、前記軸を非接触支持するフォイル軸受において、
 前記バックフォイル部が、前記トップフォイル部を、前記軸の相対回転方向と直交する方向に離隔した複数箇所で接触支持する支持部を有し、
 前記トップフォイル部の下流側端部付近の、前記軸から離反する側への変形に対する剛性を高めることで、前記相対回転方向と直交する方向で連続的に設けられた堰を形成する剛性付与手段を設けたことを特徴とする。
[Second invention]
A second invention made to achieve the second object described above comprises a top foil part having a bearing surface, and a back foil part elastically supporting the top foil part from the back, and a relative shaft In the foil bearing that supports the shaft in a non-contact manner with the fluid pressure generated in the bearing gap between the shaft and the bearing surface as it rotates.
The back foil portion includes a support portion that supports and supports the top foil portion at a plurality of locations separated in a direction orthogonal to the relative rotation direction of the shaft.
Rigidity imparting means for forming a weir continuously provided in a direction orthogonal to the relative rotational direction by increasing the rigidity against deformation toward the side away from the shaft near the downstream end of the top foil part. Is provided.
 具体的に、第2の発明の一例として、軸受面を有するトップフォイル部と、前記トップフォイル部を背後から弾性的に支持するバックフォイル部とを備え、軸の相対回転に伴って、前記軸と前記軸受面との間の軸受隙間に生じる流体圧で、前記軸を非接触支持するフォイル軸受において、前記バックフォイル部が、前記トップフォイル部を、前記軸の相対回転方向と直交する方向に離隔した複数箇所で接触支持する第一支持部と、前記第一支持部の下流側に設けられ、前記トップフォイル部を、前記相対回転方向と直交する方向で連続的に接触支持する第二支持部とを有するフォイル軸受を提供する。 Specifically, as an example of the second invention, a top foil part having a bearing surface and a back foil part that elastically supports the top foil part from the back are provided. In the foil bearing that supports the shaft in a non-contact manner with a fluid pressure generated in a bearing gap between the back foil portion and the bearing surface, the back foil portion extends the top foil portion in a direction orthogonal to the relative rotation direction of the shaft. A first support portion that contacts and supports at a plurality of spaced locations, and a second support that is provided downstream of the first support portion and continuously contacts and supports the top foil portion in a direction orthogonal to the relative rotation direction. And a foil bearing.
 軸の相対回転に伴って軸受隙間における流体圧が高まると、トップフォイル部が、バックフォイル部の第一支持部により、回転直交方向に離隔した複数箇所で接触支持されるため、この接触支持部の周囲が軸から離反する側(軸受隙間を広げる側)に変形し、軸受面に凹部が形成される(図41参照)。本発明では、トップフォイル部のうち、凹部の下流側の領域が、バックフォイル部の第二支持部により、回転直交方向に連続的に接触支持されるため、この領域の剛性が高められる。その結果、軸受隙間における流体圧が高められたときでも、トップフォイル部のうち、バックフォイル部の第二支持部で支持された領域が、軸から離反する側に変形しにくくなるため、この領域に、前記凹部よりも一段高くなった(軸側に配された)堰が形成される。この場合、トップフォイル部の前記凹部を介して下流側に抜けた流体が、その下流側に形成された堰で堰き止められるため、軸受隙間からの流体の流出が抑えられる。従って、図39の下段に点線で示すように、軸受隙間Cの小隙間部C2における流体圧の低下が抑えられ、支持力が高められる。 When the fluid pressure in the bearing gap increases with the relative rotation of the shaft, the top foil portion is contacted and supported by the first support portion of the back foil portion at a plurality of locations separated in the direction orthogonal to the rotation. Is deformed to the side away from the shaft (side to widen the bearing gap), and a recess is formed on the bearing surface (see FIG. 41). In the present invention, since the region on the downstream side of the concave portion of the top foil portion is continuously contacted and supported in the rotation orthogonal direction by the second support portion of the back foil portion, the rigidity of this region is enhanced. As a result, even when the fluid pressure in the bearing gap is increased, the region of the top foil portion that is supported by the second support portion of the back foil portion is less likely to be deformed to the side away from the shaft. In addition, a weir that is one step higher than the concave portion (arranged on the shaft side) is formed. In this case, the fluid that has flowed downstream through the concave portion of the top foil portion is blocked by the weir formed on the downstream side, so that the outflow of fluid from the bearing gap is suppressed. Therefore, as shown by the dotted line in the lower part of FIG. 39, a decrease in fluid pressure in the small gap portion C2 of the bearing gap C is suppressed, and the supporting force is increased.
 バックフォイル部の第二支持部は、トップフォイル部に、回転直交方向の全域で連続的に接触することが好ましい。これにより、トップフォイル部の前記凹部の下流側に、回転直交方向の全長にわたって堰が形成されるため、流体圧の低下がより一層効果的に抑えられる。 It is preferable that the second support part of the back foil part continuously contacts the top foil part in the entire region in the direction orthogonal to the rotation. As a result, a weir is formed on the downstream side of the concave portion of the top foil portion over the entire length in the direction perpendicular to the rotation direction, so that a decrease in fluid pressure is further effectively suppressed.
 前記第二支持部は、例えば、前記トップフォイル部側に凸となる湾曲部で構成することができる。 The second support part can be constituted by, for example, a curved part that protrudes toward the top foil part.
 また、上記のフォイル軸受では、例えば、バックフォイル部に、平坦部と、前記平坦部からトップフォイル部側に突出した複数の上凸部と、平坦部からトップフォイル部と反対側に突出した複数の下凸部とを設け、前記複数の上凸部で第一支持部を構成することができる。あるいは、バックフォイル部に、軸の回転方向に対して交差する方向に延びる複数の山部及び谷部を、前記相対回転方向で交互に有する波形部を設け、この波形部の山部で第一支持部を構成することができる。 In the above foil bearing, for example, the back foil portion includes a flat portion, a plurality of upper convex portions protruding from the flat portion toward the top foil portion, and a plurality of protrusions protruding from the flat portion to the opposite side of the top foil portion. The first support portion can be configured by the plurality of upper convex portions. Alternatively, the back foil portion is provided with a corrugated portion alternately having a plurality of crests and troughs extending in a direction intersecting with the rotation direction of the shaft in the relative rotation direction. A support part can be comprised.
 また、第2の発明の他の例として、軸受面を有するトップフォイル部と、前記トップフォイル部を背後から弾性的に支持するバックフォイル部とを備え、軸の相対回転に伴って、前記軸と前記軸受面との間の軸受隙間に生じる流体圧で、前記軸を非接触支持するフォイル軸受において、前記バックフォイル部が、前記トップフォイル部のうち、前記軸受面が設けられた領域を、前記軸の相対回転方向と直交する方向に離隔した複数箇所で接触支持する支持部を有し、前記トップフォイル部が、前記軸受面の下流側に隣接した領域に、前記軸受面の下流側の端部に沿って、前記軸から離反する側に曲げられた曲げ部を有するフォイル軸受を提供する。 Further, as another example of the second invention, a top foil portion having a bearing surface and a back foil portion that elastically supports the top foil portion from the back are provided. In a foil bearing that supports the shaft in a non-contact manner with a fluid pressure generated in a bearing gap between the bearing surface and the bearing surface, the back foil portion is a region of the top foil portion where the bearing surface is provided. A support portion that contacts and supports at a plurality of locations separated in a direction perpendicular to the relative rotation direction of the shaft, and the top foil portion is located on a downstream side of the bearing surface in a region adjacent to the downstream side of the bearing surface. Provided is a foil bearing having a bent portion which is bent along the end portion on the side away from the shaft.
 軸の相対回転に伴って軸受隙間における流体圧が高まると、トップフォイル部が、バックフォイル部の支持部により、回転直交方向に離隔した複数箇所で接触支持されるため、この接触支持部の周囲が軸から離反する側(軸受隙間を広げる側)に変形し、軸受面に凹部が形成される(図41参照)。本発明では、トップフォイル部の軸受面の下流側に隣接した領域に曲げ部を設けたことにより、軸受面の下流側の端部付近の領域の剛性が高められる。その結果、軸受隙間における流体圧が高められたときでも、軸受面の下流側の端部付近の領域が、軸から離反する側に変形しにくくなるため、この領域に、凹部よりも一段高くなった(軸側に配された)堰が形成される。これにより、軸受面の前記凹部を介して下流側に抜けた流体が、その下流側に形成された堰で堰き止められるため、軸受隙間の小隙間部からの流体の流出が抑えられる。従って、図39の下段に点線で示すように、小隙間部における流体圧の低下が抑えられ、支持力が向上する。 When the fluid pressure in the bearing gap increases with the relative rotation of the shaft, the top foil part is contacted and supported by the back foil part supporting part at a plurality of positions separated in the rotation orthogonal direction. Is deformed to the side away from the shaft (side to widen the bearing gap), and a recess is formed on the bearing surface (see FIG. 41). In the present invention, by providing the bent portion in the region adjacent to the downstream side of the bearing surface of the top foil portion, the rigidity of the region near the end portion on the downstream side of the bearing surface is enhanced. As a result, even when the fluid pressure in the bearing gap is increased, the region near the end on the downstream side of the bearing surface is not easily deformed to the side away from the shaft, so this region is one step higher than the recess. A weir (arranged on the shaft side) is formed. As a result, the fluid that has flowed downstream through the concave portion of the bearing surface is blocked by the weir formed on the downstream side, so that the outflow of fluid from the small gap portion of the bearing gap is suppressed. Therefore, as shown by the dotted line in the lower part of FIG. 39, a decrease in fluid pressure in the small gap portion is suppressed, and the supporting force is improved.
 上記の曲げ部は、例えば、トップフォイル部の下流側の端部付近を折り曲げることにより形成することができる。この場合、曲げ部は、トップフォイル部の軸受面に対して折り曲げられた状態となる。あるいは、上記の曲げ部は、トップフォイル部の下流側の端部付近を曲面状に湾曲させることにより形成することができる。この場合、曲げ部は、軸受面と滑らかに連続するように湾曲した状態となる。 The bent portion can be formed, for example, by bending the vicinity of the downstream end portion of the top foil portion. In this case, the bent portion is bent with respect to the bearing surface of the top foil portion. Alternatively, the bent portion can be formed by curving the vicinity of the end portion on the downstream side of the top foil portion into a curved surface. In this case, the bent portion is in a curved state so as to be smoothly continuous with the bearing surface.
 上記の曲げ部は、トップフォイル部の下流側の端部を、塑性的あるいは弾性的に曲げることにより形成することができる。 The above bent portion can be formed by bending the end portion on the downstream side of the top foil portion plastically or elastically.
 例えば、トップフォイル部の下流側の端部に差込部を設けると共に、トップフォイル部の上流側の端部付近に差込口を設け、各トップフォイル部の差込部を、下流側に隣接するトップフォイル部の差込口に差し込めば、トップフォイル部の下流側端部付近を、軸から離反する側に弾性的に曲げることができる。 For example, an insertion part is provided at the downstream end of the top foil part, and an insertion port is provided near the upstream end of the top foil part, and the insertion part of each top foil part is adjacent to the downstream side. If it inserts in the insertion port of the top foil part to perform, the downstream edge part vicinity of a top foil part can be elastically bent to the side away from an axis | shaft.
 上記のフォイル軸受において、軸に振れ回りが生じると、トップフォイル部の回転直交方向の端部に軸が接触し、トップフォイル部が損傷する恐れがある。そこで、トップフォイル部のうち、回転直交方向の端部を除く領域に曲げ部を設ければ、トップフォイル部の回転直交方向の端部における剛性が抑えられるため、この部分におけるトップフォイル部と軸との接触面圧が低減され、トップフォイル部の損傷を防止できる。 In the above foil bearing, if the shaft swings, the shaft contacts the end of the top foil portion in the direction perpendicular to the rotation, and the top foil portion may be damaged. Therefore, if a bent portion is provided in a region excluding the end portion in the rotation orthogonal direction in the top foil portion, rigidity at the end portion in the rotation orthogonal direction of the top foil portion can be suppressed. The contact surface pressure is reduced, and damage to the top foil portion can be prevented.
 上記のフォイル軸受は、例えば、トップフォイル部とバックフォイル部とを一体に有する複数のフォイル部材を備え、各フォイル部材のトップフォイル部を、他のフォイル部材のバックフォイル部の上に重ねて配した構成とすることができる。 The foil bearing described above includes, for example, a plurality of foil members integrally including a top foil portion and a back foil portion, and the top foil portion of each foil member is arranged on the back foil portion of another foil member. Can be configured.
 以上のように、第1の発明によれば、フォイル軸受の負荷容量を高めることができる。 As described above, according to the first invention, the load capacity of the foil bearing can be increased.
 また、第2の発明によれば、軸受隙間における流体圧の低下を抑えることができるため、フォイル軸受の支持力を高めることができる。 Further, according to the second invention, since the decrease in fluid pressure in the bearing gap can be suppressed, the supporting force of the foil bearing can be increased.
第1の発明の第1実施形態に係るフォイル軸受(スラストフォイル軸受)の断面図である。It is sectional drawing of the foil bearing (thrust foil bearing) which concerns on 1st Embodiment of 1st invention. 図1のフォイル軸受の平面図である。It is a top view of the foil bearing of FIG. 図1のフォイル軸受を模式的に示す斜視図である。It is a perspective view which shows the foil bearing of FIG. 1 typically. 図1のフォイル軸受に設けられたバックフォイルの斜視図である。It is a perspective view of the back foil provided in the foil bearing of FIG. 図2のV-V線における断面図である。FIG. 5 is a sectional view taken along line VV in FIG. 2. 図1のフォイル軸受の断面図である。It is sectional drawing of the foil bearing of FIG. 第1の発明の第2実施形態に係るフォイル軸受の断面図である。It is sectional drawing of the foil bearing which concerns on 2nd Embodiment of 1st invention. 第1の発明の第3実施形態に係るフォイル軸受の断面図である。It is sectional drawing of the foil bearing which concerns on 3rd Embodiment of 1st invention. 上段は、第1の発明の第4実施形態に係るバックフォイルの平面図である。下段は、上段のY-Y線における断面図である。The upper stage is a plan view of the back foil according to the fourth embodiment of the first invention. The lower part is a cross-sectional view taken along line YY of the upper part. 第1の発明の第5実施形態に係るバックフォイルの平面図である。It is a top view of the back foil which concerns on 5th Embodiment of 1st invention. 第1の発明の第6実施形態に係るフォイル軸受の断面図である。It is sectional drawing of the foil bearing which concerns on 6th Embodiment of 1st invention. 第1の発明の第7実施形態に係るフォイル軸受の断面図である。It is sectional drawing of the foil bearing which concerns on 7th Embodiment of 1st invention. 第1の発明の第8実施形態に係るフォイルの平面図である。It is a top view of the foil which concerns on 8th Embodiment of 1st invention. 図13のフォイルを有するフォイル軸受の斜視図である。It is a perspective view of the foil bearing which has the foil of FIG. 第1の発明の第9実施形態に係るフォイル軸受(ラジアルフォイル軸受)の断面図である。It is sectional drawing of the foil bearing (radial foil bearing) which concerns on 9th Embodiment of 1st invention. 従来のフォイル軸受の断面図である。It is sectional drawing of the conventional foil bearing. 第2の発明の第1実施形態に係るフォイル軸受の断面図である。It is sectional drawing of the foil bearing which concerns on 1st Embodiment of 2nd invention. 図17のフォイル軸受の平面図である。It is a top view of the foil bearing of FIG. 図17のフォイル軸受に設けられたトップフォイル及びバックフォイルの斜視図である。FIG. 18 is a perspective view of a top foil and a back foil provided on the foil bearing of FIG. 17. 図19のバックフォイルの平面図である。FIG. 20 is a plan view of the back foil of FIG. 19. 図19のバックフォイルの斜視図である。FIG. 20 is a perspective view of the back foil of FIG. 19. 図19のバックフォイルの下流側端部の断面図である。FIG. 20 is a cross-sectional view of the downstream end of the back foil of FIG. 19. 他の例に係るバックフォイルの下流側端部の断面図である。It is sectional drawing of the downstream end part of the back foil which concerns on another example. 図18のV-V線断面図である。It is the VV sectional view taken on the line of FIG. 図19のトップフォイルの平面図である。FIG. 20 is a plan view of the top foil of FIG. 19. 図25のU-U線断面図である。FIG. 26 is a cross-sectional view taken along the line U-U in FIG. 25. 図25のT-T線断面図である。FIG. 26 is a cross-sectional view taken along line TT in FIG. 25. 図17のフォイル軸受の断面図である。It is sectional drawing of the foil bearing of FIG. 第2の発明の第2実施形態に係るバックフォイルの平面図である。It is a top view of the back foil which concerns on 2nd Embodiment of 2nd invention. 第2の発明の第3実施形態に係るフォイル軸受の断面図である。It is sectional drawing of the foil bearing which concerns on 3rd Embodiment of 2nd invention. 上段は、第2の発明の第4実施形態に係るバックフォイルの平面図であり、下段は、前記平面図のY-Y線断面図である。The upper part is a plan view of a back foil according to the fourth embodiment of the second invention, and the lower part is a cross-sectional view taken along line YY of the plan view. 第2の発明の第5実施形態に係るバックフォイルの断面図である。It is sectional drawing of the back foil which concerns on 5th Embodiment of 2nd invention. 第2の発明の第6実施形態に係るフォイル軸受の断面図である。It is sectional drawing of the foil bearing which concerns on 6th Embodiment of 2nd invention. 図33のフォイル軸受のフォイルの平面図である。It is a top view of the foil of the foil bearing of FIG. 第2の発明の第7実施形態に係るフォイルの平面図である。It is a top view of the foil which concerns on 7th Embodiment of 2nd invention. 図35のフォイルを有するフォイル軸受の斜視図である。FIG. 36 is a perspective view of a foil bearing having the foil of FIG. 第2の発明の第8実施形態に係るフォイル軸受の断面図である。It is sectional drawing of the foil bearing which concerns on 8th Embodiment of 2nd invention. 先願において提案されたバックフォイルの斜視図である。It is a perspective view of the back foil proposed in the prior application. 上段は、図38のバックフォイルを有するフォイル軸受の断面図であり、下段は、上段のフォイル軸受の圧力分布を示すグラフである。The upper stage is a cross-sectional view of a foil bearing having the back foil of FIG. 38, and the lower stage is a graph showing the pressure distribution of the upper foil bearing. 図39のW-W線における断面図であり、軸受隙間における流体圧が低い状態を示す。FIG. 40 is a cross-sectional view taken along line WW in FIG. 39, showing a state where the fluid pressure in the bearing gap is low. 図39のW-W線における断面図であり、軸受隙間における流体圧が高い状態を示す。FIG. 40 is a cross-sectional view taken along the line WW in FIG. 39, showing a state where the fluid pressure in the bearing gap is high. 図39のフォイル軸受のトップフォイルの平面図である。FIG. 40 is a plan view of a top foil of the foil bearing of FIG. 39. 第2の発明の第9実施形態に係るフォイル軸受の断面図である。It is sectional drawing of the foil bearing which concerns on 9th Embodiment of 2nd invention. 図43のフォイル軸受の平面図である。It is a top view of the foil bearing of FIG. 図43のフォイル軸受に設けられたトップフォイル及びバックフォイルの斜視図である。It is a perspective view of the top foil and back foil provided in the foil bearing of FIG. 図45のバックフォイルの平面図である。FIG. 46 is a plan view of the back foil of FIG. 45. 図45のバックフォイルの斜視図である。FIG. 46 is a perspective view of the back foil of FIG. 45. 他の例に係るトップフォイルの下流側端部の断面図である。It is sectional drawing of the downstream edge part of the top foil which concerns on another example. 他の例に係るトップフォイルの下流側端部の断面図である。It is sectional drawing of the downstream edge part of the top foil which concerns on another example. 図44のV-V線断面図である。It is the VV sectional view taken on the line of FIG. 図45のトップフォイルの平面図である。FIG. 46 is a plan view of the top foil of FIG. 45. 図51のU-U線断面図である。FIG. 52 is a cross-sectional view taken along the line U-U in FIG. 51. 図51のT-T線断面図である。FIG. 52 is a sectional view taken along line TT in FIG. 51. 図43のフォイル軸受の断面図である。It is sectional drawing of the foil bearing of FIG. 第2の発明の第10実施形態に係るトップフォイル及びバックフォイルの斜視図である。It is a perspective view of the top foil and back foil which concern on 10th Embodiment of 2nd invention. 第2の発明の第11実施形態に係るトップフォイル及びバックフォイルの斜視図である。It is a perspective view of the top foil and back foil which concern on 11th Embodiment of 2nd invention. 第2の発明の第12実施形態に係るバックフォイルの平面図である。It is a top view of the back foil which concerns on 12th Embodiment of 2nd invention. 第2の発明の第13実施形態に係るフォイル軸受の断面図である。It is sectional drawing of the foil bearing which concerns on 13th Embodiment of 2nd invention. 上段は、第2の発明の第14実施形態に係るバックフォイルの平面図であり、下段は、前記平面図のY-Y線断面図である。The upper part is a plan view of the back foil according to the fourteenth embodiment of the second invention, and the lower part is a cross-sectional view taken along line YY of the plan view. 第2の発明の第15実施形態に係るフォイル軸受の断面図である。It is sectional drawing of the foil bearing which concerns on 15th Embodiment of 2nd invention. 第2の発明の第16実施形態にかかるフォイルの斜視図である。It is a perspective view of the foil concerning 16th Embodiment of 2nd invention. 図61のフォイルを有するフォイル軸受の斜視図である。FIG. 62 is a perspective view of a foil bearing having the foil of FIG. 61. 第2の発明の第17実施形態に係るフォイル軸受の斜視図である。It is a perspective view of the foil bearing which concerns on 17th Embodiment of 2nd invention. 図63のフォイル軸受に組み込まれるフォイルの他の例を示す平面図である。FIG. 64 is a plan view showing another example of a foil incorporated in the foil bearing of FIG. 63. 第2の発明の第18実施形態に係るフォイル軸受の断面図である。It is sectional drawing of the foil bearing which concerns on 18th Embodiment of 2nd invention. 図65のフォイル軸受のフォイルの平面図である。FIG. 66 is a plan view of a foil of the foil bearing of FIG. 65. 第2の発明の第19実施形態に係るフォイル軸受の断面図である。It is sectional drawing of the foil bearing which concerns on 19th Embodiment of 2nd invention.
 以下、本発明の第1の発明の実施形態を、図1~15に基づいて説明する。 Hereinafter, an embodiment of the first invention of the present invention will be described with reference to FIGS.
 本発明の第一実施形態に係るフォイル軸受10は、図1に示すように、軸2に設けられた円盤状のスラストカラー3との間に形成される空気膜で、軸2をスラスト方向に支持するスラストフォイル軸受である。フォイル軸受10は、円盤状のフォイルホルダ11と、フォイルホルダ11の端面11aに取り付けられたトップフォイル12及びバックフォイル13とを有する。本実施形態では、図2に示すように、複数(図示例では各6枚)の扇形のトップフォイル12及びバックフォイル13が、軸2の回転方向(フォイルホルダ11の周方向)で並べて配される。 As shown in FIG. 1, the foil bearing 10 according to the first embodiment of the present invention is an air film formed between the disc-shaped thrust collar 3 provided on the shaft 2, and the shaft 2 is moved in the thrust direction. It is a thrust foil bearing to support. The foil bearing 10 includes a disc-shaped foil holder 11, and a top foil 12 and a back foil 13 attached to an end surface 11 a of the foil holder 11. In the present embodiment, as shown in FIG. 2, a plurality (six in the illustrated example) of fan-shaped top foil 12 and back foil 13 are arranged side by side in the rotation direction of shaft 2 (the circumferential direction of foil holder 11). The
 フォイルホルダ11は、金属や樹脂等で形成される。フォイルホルダ11は、軸2が挿入される内孔11bを有する中空円盤状を成している。フォイルホルダ11の一方の端面11aには複数のトップフォイル12及びバックフォイル13が取り付けられる。フォイルホルダ11の他方の端面11cは、フォイル軸受10が組み込まれる設備(例えばガスタービン等のターボ機械)のハウジングに固定される。 The foil holder 11 is made of metal or resin. The foil holder 11 has a hollow disk shape having an inner hole 11b into which the shaft 2 is inserted. A plurality of top foils 12 and back foils 13 are attached to one end surface 11 a of the foil holder 11. The other end surface 11c of the foil holder 11 is fixed to a housing of a facility (for example, a turbo machine such as a gas turbine) in which the foil bearing 10 is incorporated.
 トップフォイル12及びバックフォイル13は、ばね性に富み、かつ加工性のよい金属で形成され、例えば鋼や銅合金で形成される。トップフォイル12及びバックフォイル13は、厚さ20μm~200μm程度の金属薄板(フォイル)で形成される。本実施形態のように流体膜として空気を用いる空気動圧軸受では、雰囲気に潤滑油が存在しないため、ステンレス鋼もしくは青銅でトップフォイル12及びバックフォイル13を形成するのが好ましい。 The top foil 12 and the back foil 13 are formed of a metal having a high spring property and good workability, for example, steel or a copper alloy. The top foil 12 and the back foil 13 are formed of a thin metal plate (foil) having a thickness of about 20 μm to 200 μm. In the air dynamic pressure bearing using air as a fluid film as in the present embodiment, since there is no lubricating oil in the atmosphere, it is preferable to form the top foil 12 and the back foil 13 with stainless steel or bronze.
 トップフォイル12は、図2及び図3に示すように、凹凸の無い滑らかな軸受面Xを有し、トップフォイル部Tfとして機能する。尚、図3では、図の簡略化のため、各フォイル12、13を矩形状に表している。トップフォイル12の上流側の端部12aは、フォイルホルダ11の端面11aに固定される。図示例では、トップフォイル12の上流側の端部12aが、フォイルホルダ11の端面11aに、スペーサ15を介して溶接等により固定される。尚、トップフォイル12の上流側の端部12aを、スペーサ15を介さずにフォイルホルダ11の端面11aに直接固定してもよい。トップフォイル12は、フォイルにプレス加工(打ち抜き加工)や放電加工を施すにより、切り欠き部12b1を有する略扇形の平板状に形成される。 As shown in FIGS. 2 and 3, the top foil 12 has a smooth bearing surface X without irregularities and functions as a top foil portion Tf. In FIG. 3, the foils 12 and 13 are shown in a rectangular shape for simplification of the drawing. The upstream end 12 a of the top foil 12 is fixed to the end surface 11 a of the foil holder 11. In the illustrated example, the upstream end portion 12 a of the top foil 12 is fixed to the end surface 11 a of the foil holder 11 through a spacer 15 by welding or the like. The upstream end 12 a of the top foil 12 may be directly fixed to the end surface 11 a of the foil holder 11 without using the spacer 15. The top foil 12 is formed in a substantially fan-shaped flat plate shape having a notch 12b1 by subjecting the foil to press processing (punching processing) or electric discharge processing.
 トップフォイル12の下流側端部12bは自由端である。トップフォイル12の下流側端部12bには、複数の切り欠き部12b1が設けられる。複数の切り欠き部12b1は、トップフォイル12の下流側端部12bの縁に沿って、回転直交方向(本実施形態では半径方向)に並んでいる。図示例では、各切り欠き部12b1が三角形を成し、トップフォイル12の下流側の端部12bの縁がジグザグ状に形成される。各切り欠き部12b1の形状は上記に限らず、円弧、楕円弧、台形、矩形、波形等としてもよい。また、図示例では、複数の切り欠き部12b1が半径方向で連続的に並んでいるが、これに限らず、複数の切り欠き部12b1を半径方向で離間させて間欠的に設け、切り欠き部12b1の半径方向間に半径方向に延びる縁を残してもよい。 The downstream end 12b of the top foil 12 is a free end. The downstream end 12b of the top foil 12 is provided with a plurality of notches 12b1. The plurality of cutout portions 12b1 are arranged in the rotation orthogonal direction (radial direction in the present embodiment) along the edge of the downstream end portion 12b of the top foil 12. In the example of illustration, each notch part 12b1 comprises a triangle, and the edge of the edge part 12b of the downstream of the top foil 12 is formed in zigzag shape. The shape of each notch 12b1 is not limited to the above, and may be an arc, an elliptical arc, a trapezoid, a rectangle, a waveform, or the like. In the illustrated example, the plurality of cutout portions 12b1 are continuously arranged in the radial direction. However, the present invention is not limited to this, and the plurality of cutout portions 12b1 are provided intermittently in the radial direction. An edge extending in the radial direction may be left between the radial directions of 12b1.
 バックフォイル13は、トップフォイル12とフォイルホルダ11との間に配され、トップフォイル12を背後から弾性的に支持するバックフォイル部Bfとして機能する。バックフォイル13は、平面視でトップフォイル12と略同形状の扇形をなし、トップフォイル12の真下に重ねて配されている。バックフォイル13の上流側の端部13aは、フォイルホルダ11の端面11aに固定される。本実施形態では、バックフォイル13の上流側の端部13aが、フォイルホルダ11の端面11aに、スペーサ15を介して溶接等により固定される。尚、バックフォイル13の上流側の端部13aを、スペーサ15を介さずにフォイルホルダ11の端面11aに直接固定してもよい。 The back foil 13 is disposed between the top foil 12 and the foil holder 11 and functions as a back foil portion Bf that elastically supports the top foil 12 from behind. The back foil 13 has a fan shape that is substantially the same shape as the top foil 12 in a plan view, and is disposed so as to overlap directly below the top foil 12. The upstream end 13 a of the back foil 13 is fixed to the end surface 11 a of the foil holder 11. In the present embodiment, the upstream end 13 a of the back foil 13 is fixed to the end surface 11 a of the foil holder 11 by welding or the like via the spacer 15. Note that the upstream end portion 13 a of the back foil 13 may be directly fixed to the end surface 11 a of the foil holder 11 without using the spacer 15.
 バックフォイル13は、弾性変形することにより軸方向に圧縮可能な形状を有する。本実施形態のバックフォイル13は、図4に示すように、フォイルホルダ11の端面11aと略平行な平坦部13bと、平坦部13bから表側(トップフォイル12側)に突出した複数の第一突出部(上凸部13c)と、平坦部13bから裏側(フォイルホルダ11側)に突出した複数の第二突出部(下凸部13d)とを有する。尚、上凸部13c及び下凸部13dは、これらの相対的な位置関係を理解しやすいように「上」「下」を付した名称としているが、これはフォイル軸受10の使用態様を限定する趣旨ではない。 The back foil 13 has a shape that can be compressed in the axial direction by elastic deformation. As shown in FIG. 4, the back foil 13 of the present embodiment includes a flat portion 13b substantially parallel to the end surface 11a of the foil holder 11, and a plurality of first protrusions protruding from the flat portion 13b to the front side (top foil 12 side). Part (upward convex part 13c) and a plurality of second projecting parts (lower convex part 13d) projecting from the flat part 13b to the back side (foil holder 11 side). In addition, although the upper convex part 13c and the lower convex part 13d are set as the name which attached "upper" and "lower" so that these relative positional relationships may be understood easily, this limits the usage aspect of the foil bearing 10. FIG. It is not the purpose.
 バックフォイル13の平坦部13b、上凸部13c、および下凸部13dは、均一な肉厚を有する。上凸部13cおよび下凸部13dは、何れも概略半球状に形成される。上凸部13cおよび下凸部13dの内側は中空状になっているため、例えばバックフォイル13を表側(トップフォイル12側)から見た場合、下凸部13dが存在する領域は凹部となる。上凸部13c及び下凸部13dの全周に、平坦部13bが設けられる。上凸部13c及び下凸部13dは、それぞれ回転方向及び回転直交方向に離隔した複数箇所に設けられる。図示例の上凸部13c及び下凸部13dは、それぞれバックフォイル13の上流側端部13a付近を除く全域に分散して配置される。また、図示例では、バックフォイル13の下流側端部13eの直近に、複数の上凸部13cが半径方向に離隔して配されている。尚、図4に示す上凸部13cおよび下凸部13dの配置パターンは例示にすぎず、必要に応じて図4とは異なる任意の配置パターンを採用してもよい。 The flat portion 13b, the upper convex portion 13c, and the lower convex portion 13d of the back foil 13 have a uniform thickness. Both the upper convex portion 13c and the lower convex portion 13d are formed in a substantially hemispherical shape. Since the inside of the upper convex portion 13c and the lower convex portion 13d is hollow, for example, when the back foil 13 is viewed from the front side (top foil 12 side), the region where the lower convex portion 13d exists is a concave portion. A flat portion 13b is provided on the entire circumference of the upper convex portion 13c and the lower convex portion 13d. The upper convex portion 13c and the lower convex portion 13d are provided at a plurality of locations separated in the rotation direction and the rotation orthogonal direction, respectively. The upper convex portion 13c and the lower convex portion 13d in the illustrated example are each distributed and arranged over the entire region except for the vicinity of the upstream end portion 13a of the back foil 13. Further, in the illustrated example, a plurality of upper convex portions 13 c are arranged in the radial direction in the immediate vicinity of the downstream end portion 13 e of the back foil 13. In addition, the arrangement pattern of the upper convex part 13c and the lower convex part 13d shown in FIG. 4 is only an example, and an arbitrary arrangement pattern different from that in FIG.
 本実施形態では、トップフォイル12の切り欠き部12b1の少なくとも一部領域(図示例では全域)が、バックフォイル13の下流側端部13eの平坦部13bと軸方向で重ねて設けられる(図5参照)。図示例では、トップフォイル12の下流側端部12bとバックフォイル13の下流側端部13eとが、同じ回転方向位置に設けられる。 In the present embodiment, at least a partial region (entire region in the illustrated example) of the cutout portion 12b1 of the top foil 12 is provided so as to overlap the flat portion 13b of the downstream end portion 13e of the back foil 13 in the axial direction (FIG. 5). reference). In the illustrated example, the downstream end 12b of the top foil 12 and the downstream end 13e of the back foil 13 are provided at the same rotational direction position.
 バックフォイル13は、フォイルにプレス加工(打ち抜き加工)や放電加工を施すことにより略扇形の平板状のフォイル素材を形成した後、このフォイル素材にプレス加工を施して上凸部13c及び下凸部13dを成形することで形成される。尚、フォイル素材の打ち抜きと、上凸部13c及び下凸部13dの成形とを、プレス加工で同時に行うこともできる。上凸部13c及び下凸部13dを含めたバックフォイル13全体の軸方向寸法は、0.5~2mm程度である。 The back foil 13 is formed by forming a substantially fan-shaped flat foil material by subjecting the foil to press processing (punching) or electric discharge processing, and then pressing the foil material to form an upper convex portion 13c and a lower convex portion. It is formed by molding 13d. It should be noted that the stamping of the foil material and the molding of the upper convex portion 13c and the lower convex portion 13d can be simultaneously performed by pressing. The overall axial dimension of the back foil 13 including the upper convex portion 13c and the lower convex portion 13d is about 0.5 to 2 mm.
 軸2及びスラストカラー3が周方向一方(矢印R方向)に回転すると、図5に示すように、フォイル軸受10の各トップフォイル12の軸受面Xとスラストカラー3の端面3aとの間に軸受隙間Cが形成される。このとき、トップフォイル12が湾曲することで、軸受隙間Cは、下流側へ行くにつれて狭くなった断面楔状を成す。そして、スラストカラー3と空気との間のせん断力により、軸受隙間Cの空気が下流側に流動することで、軸受隙間Cの小隙間部C2に空気が押し込まれる(図5の矢印A参照)。これにより、軸受隙間Cの空気膜の圧力が高められ、この圧力により軸2及びスラストカラー3がスラスト方向に非接触支持される。 When the shaft 2 and the thrust collar 3 rotate in one circumferential direction (in the direction of arrow R), the bearing is provided between the bearing surface X of each top foil 12 of the foil bearing 10 and the end surface 3a of the thrust collar 3 as shown in FIG. A gap C is formed. At this time, the top foil 12 is curved, so that the bearing gap C has a wedge-shaped cross section that becomes narrower toward the downstream side. Then, the air in the bearing gap C flows downstream by the shearing force between the thrust collar 3 and the air, so that the air is pushed into the small gap portion C2 of the bearing gap C (see arrow A in FIG. 5). . As a result, the pressure of the air film in the bearing gap C is increased, and the shaft 2 and the thrust collar 3 are supported in a non-contact manner in the thrust direction by this pressure.
 このとき、図6に示すように、軸受隙間Cで生じる空気圧によりトップフォイル12が圧力Pを受けるため、バックフォイル13には、トップフォイル12を介して圧力P方向の圧縮力が作用する。平坦部13bは圧力P方向と直交する方向に延びる薄板状であるため、バックフォイル13の中でも前記圧縮力に対する剛性の低い部分となる。そのため、バックフォイル13に圧縮力が負荷されると、図6の二点鎖線で示すように先ず平坦部13bが変形して圧縮力を吸収する。従って、このような平坦部を有さない既存の波形のバックフォイルに比べ、バックフォイル13の剛性を局所的に小さくすることができる。これにより、軸受面Xの柔軟性が高まるため、トップフォイル12の軸受面Xが、荷重や軸2の回転速度、周囲温度等の運転条件に応じて弾性変形し、軸受隙間Cが運転条件に応じた適切幅に自動調整される。そのため、高温・高速回転といった過酷な条件下でも、軸受隙間Cを最適幅に管理することができ、軸2を安定して支持することが可能となる。 At this time, as shown in FIG. 6, since the top foil 12 receives the pressure P due to the air pressure generated in the bearing gap C, a compressive force in the pressure P direction acts on the back foil 13 via the top foil 12. Since the flat portion 13b has a thin plate shape extending in a direction orthogonal to the pressure P direction, the flat portion 13b is a portion of the back foil 13 having low rigidity against the compression force. Therefore, when a compressive force is applied to the back foil 13, the flat portion 13b is first deformed and absorbs the compressive force as shown by a two-dot chain line in FIG. Therefore, the rigidity of the back foil 13 can be locally reduced as compared with an existing corrugated back foil having no flat portion. Thereby, since the flexibility of the bearing surface X is increased, the bearing surface X of the top foil 12 is elastically deformed according to the operating conditions such as the load, the rotational speed of the shaft 2 and the ambient temperature, and the bearing gap C becomes the operating condition. It is automatically adjusted to the appropriate width. Therefore, the bearing gap C can be managed to the optimum width even under severe conditions such as high temperature and high speed rotation, and the shaft 2 can be stably supported.
 また、本実施形態では、トップフォイル12の下流側端部12bに切り欠き部12b1を設けることで、軸受隙間Cを流れる空気の一部が、切り欠き部12b1を介してトップフォイル12の裏側に抜ける(図5の矢印A1参照)。これにより、トップフォイル12の下流側に隣接する空間(大隙間部C1)における空気の流れが乱されるため、大隙間部C1の空気がダイナミックに流動し、次のトップフォイル12で形成される軸受隙間Cの小隙間部C2に流入する空気量が増大して、フォイル軸受10の負荷容量が高められる。 Moreover, in this embodiment, by providing the notch part 12b1 in the downstream end part 12b of the top foil 12, a part of the air flowing through the bearing gap C is disposed on the back side of the top foil 12 via the notch part 12b1. Exit (see arrow A1 in FIG. 5). Thereby, since the air flow in the space (large gap C1) adjacent to the downstream side of the top foil 12 is disturbed, the air in the large gap C1 dynamically flows and is formed by the next top foil 12. The amount of air flowing into the small gap portion C2 of the bearing gap C increases, and the load capacity of the foil bearing 10 is increased.
 このとき、バックフォイル13とトップフォイル12とが、半径方向に離隔した複数箇所で接触しているため、バックフォイル13とトップフォイル12との間の隙間(フォイル間隙間D)に、空気が下流側に流通可能な流路が形成される。この流路の下流側端部は、大隙間部C1に連通している。本実施形態では、バックフォイル13に分散配置された上凸部13cがトップフォイル12の裏面に接触することで、フォイル間隙間Dの隙間の空気が、両フォイル12、13の非接触部(上凸部13cの半径方向間)を通って下流側に流動可能とされる。トップフォイル12の切り欠き部12b1に起因して大隙間部C1に乱流が生じると、フォイル間隙間Dの空気が引っ張られて下流側に流動し、大隙間部C1に流入する(図5の矢印B参照)。これにより、次のトップフォイル12で形成される軸受隙間Cに流入する空気量がさらに増大し、フォイル軸受10の負荷容量がさらに高められる。 At this time, since the back foil 13 and the top foil 12 are in contact with each other at a plurality of locations separated in the radial direction, air flows downstream in the gap between the back foil 13 and the top foil 12 (interfoil gap D). A flow path capable of flowing to the side is formed. The downstream end of this flow path communicates with the large gap C1. In the present embodiment, the upper protrusions 13c dispersedly arranged on the back foil 13 come into contact with the back surface of the top foil 12, so that the air in the gap D between the foils is not contacted between the foils 12 and 13 (upper It is possible to flow downstream through the convex portion 13c). When turbulent flow occurs in the large gap C1 due to the notch 12b1 of the top foil 12, the air in the gap D between the foils is pulled and flows downstream, and flows into the large gap C1 (see FIG. 5). (See arrow B). Thereby, the amount of air flowing into the bearing gap C formed by the next top foil 12 is further increased, and the load capacity of the foil bearing 10 is further increased.
 特に、本実施形態では、トップフォイル12の切り欠き部12b1が、バックフォイル13の下流側端部13e付近の平坦部13bと軸方向で重ねて配置されている。この場合、バックフォイル13の平坦部13bに沿って流れる流体Bに、軸受隙間Cを流れる高速の流体Aが合流することで、フォイル間隙間Dの流体が下流側に引っ張られやすくなり、大隙間部C1に流入する流体量がさらに増大する。 In particular, in this embodiment, the cutout portion 12b1 of the top foil 12 is disposed so as to overlap the flat portion 13b in the vicinity of the downstream end portion 13e of the back foil 13 in the axial direction. In this case, the fluid B flowing along the flat portion 13b of the back foil 13 joins the high-speed fluid A flowing through the bearing gap C, so that the fluid in the inter-foil gap D is easily pulled downstream, and the large gap The amount of fluid flowing into the part C1 further increases.
 さらに、本実施形態では、バックフォイル13とフォイルホルダ11とが、半径方向に離隔した複数箇所で接触する。これにより、バックフォイル13とフォイルホルダ11との間の隙間(フォイル下隙間E)に、空気が下流側に流通可能な流路が形成される。この流路の下流側端部は、大隙間部C1に連通している。本実施形態では、バックフォイル13に分散配置された下凸部13dがフォイルホルダ11の端面11aに接触することで、フォイル下隙間Eの隙間の空気が、バックフォイル13とフォイルホルダ11との非接触部(下凸部13dの半径方向間)を通って下流側に流動可能とされる。トップフォイル12の切り欠き部12b1に起因して大隙間部C1に乱流が生じると、フォイル間隙間Dの空気だけでなく、フォイル下隙間Eの空気も引っ張られて下流側に流動し、大隙間部C1に流入するため、次のトップフォイル12で形成される軸受隙間Cの小隙間部C2に流入する空気量がさらに増大し、フォイル軸受10の負荷容量がさらに高められる。 Furthermore, in this embodiment, the back foil 13 and the foil holder 11 contact at a plurality of locations separated in the radial direction. Thereby, a flow path in which air can flow downstream is formed in the gap between the back foil 13 and the foil holder 11 (foil lower gap E). The downstream end of this flow path communicates with the large gap C1. In the present embodiment, the lower protrusions 13d dispersedly arranged on the back foil 13 come into contact with the end surface 11a of the foil holder 11, so that the air in the gap under the foil E is not in contact with the back foil 13 and the foil holder 11. It is possible to flow downstream through the contact portion (between the radial directions of the lower convex portion 13d). When turbulent flow is generated in the large gap C1 due to the notch 12b1 of the top foil 12, not only the air in the gap D between the foils but also the air in the gap E under the foil is pulled and flows downstream. Since it flows into the clearance C1, the amount of air flowing into the small clearance C2 of the bearing clearance C formed by the next top foil 12 further increases, and the load capacity of the foil bearing 10 is further increased.
 尚、軸2の停止直前や起動直後の低速回転時には、各トップフォイル12の軸受面Xとスラストカラー3の端面3aとが接触摺動するため、これらの何れか一方または双方に、DLC膜、チタンアルミナイトライド膜、二硫化タングステン膜、あるいは二硫化モリブデン膜等の低摩擦化被膜を形成してもよい。 Note that the bearing surface X of each top foil 12 and the end surface 3a of the thrust collar 3 are in sliding contact with each other at the time of low-speed rotation immediately before the shaft 2 is stopped or immediately after it is started. A low friction coating such as a titanium aluminum nitride film, a tungsten disulfide film, or a molybdenum disulfide film may be formed.
 また、軸2の回転中は、トップフォイル12とバックフォイル13、あるいは、バックフォイル13とフォイルホルダ11の端面11aとの間に微小摺動が生じる。この微小摺動による摩擦エネルギーにより、軸2の振動を減衰させることができる。このような微小摺動による摩擦力を調整するために、互いに摺動する面の何れか一方または双方に、上記のような低摩擦化被膜を形成してもよい。 Further, during the rotation of the shaft 2, a minute slide occurs between the top foil 12 and the back foil 13 or between the back foil 13 and the end surface 11 a of the foil holder 11. The vibration of the shaft 2 can be attenuated by the frictional energy generated by the minute sliding. In order to adjust the frictional force due to such micro-sliding, the above-described low-friction coating may be formed on one or both of the mutually sliding surfaces.
 本発明は、上記の実施形態に限られない。以下、本発明の他の実施形態を説明するが、上記の実施形態と重複する点については説明を省略する。 The present invention is not limited to the above embodiment. Hereinafter, although other embodiment of this invention is described, description is abbreviate | omitted about the point which overlaps with said embodiment.
 図7に示す実施形態では、トップフォイル12の切り欠き部12b1の少なくとも一部領域(図示例では全域)が、バックフォイル13の下流側端部13eから下流側にはみ出して配されている。この場合、図5に示す実施形態よりも、切り欠き部12b1の裏側(フォイルホルダ11側)の空間が大きくなるため、切り欠き部12b1を介して軸受隙間Cの流体が抜けやすくなる。 7, at least a partial region (entire region in the illustrated example) of the notch portion 12b1 of the top foil 12 protrudes from the downstream end portion 13e of the back foil 13 to the downstream side. In this case, since the space on the back side (the foil holder 11 side) of the notch 12b1 is larger than that in the embodiment shown in FIG. 5, the fluid in the bearing gap C is easily removed through the notch 12b1.
 図8に示す実施形態では、トップフォイル12の下流側端部12bに切り欠き部12b1を設けると共に、バックフォイル13の下流側端部13eに切り欠き部13e1を設けている。バックフォイル13の切り欠き部13e1は、トップフォイル12の切り欠き部12b1と同様の構成を成し、例えば三角形状を成す。この切り欠き部13e1を介して、空気がバックフォイル13の裏側に流入することで(矢印B1参照)、大隙間部C1における乱流効果が高められる。この場合、図8に示すように、バックフォイル13の下流側端部13eをトップフォイル12の下流側端部12bよりも下流側に配し、バックフォイル13の切り欠き部13e1の少なくとも一部(図示例では全域)を、トップフォイル12の下流側端部12bから下流側にはみ出して配すれば、バックフォイル13の切り欠き部13e1による乱流効果が高められる。 In the embodiment shown in FIG. 8, the notch 12b1 is provided at the downstream end 12b of the top foil 12, and the notch 13e1 is provided at the downstream end 13e of the back foil 13. The notch 13e1 of the back foil 13 has the same configuration as the notch 12b1 of the top foil 12, and has a triangular shape, for example. The air flows into the back side of the back foil 13 through the notch 13e1 (see arrow B1), so that the turbulence effect in the large gap C1 is enhanced. In this case, as shown in FIG. 8, the downstream end 13e of the back foil 13 is arranged on the downstream side of the downstream end 12b of the top foil 12, and at least a part of the notch 13e1 of the back foil 13 ( If the entire region in the illustrated example is disposed so as to protrude downstream from the downstream end 12b of the top foil 12, the turbulent flow effect by the notch 13e1 of the back foil 13 is enhanced.
 図9に示す実施形態では、バックフォイル13が、所定方向に延びる複数の山部13f1及び谷部13f2を交互に有する波形を成している。図示例では、山部13f1及び谷部13f2が、下流側端部13eの縁と交差する方向に沿って延び、例えばバックフォイル13の上流側端部13aの縁と平行な方向に延びる。この場合、バックフォイル13の山部13f1が、トップフォイル12の下流側端部付近の領域に、半径方向に離隔した複数箇所で接触する。これにより、軸2の回転時には、フォイル間隙間Dの空気が、バックフォイル13の谷部13f2を通って下流側に流動し、大隙間部C1に流入する。 In the embodiment shown in FIG. 9, the back foil 13 has a waveform having alternately a plurality of peaks 13f1 and valleys 13f2 extending in a predetermined direction. In the illustrated example, the peak portion 13f1 and the valley portion 13f2 extend along a direction intersecting with the edge of the downstream end portion 13e, and extend in a direction parallel to the edge of the upstream end portion 13a of the back foil 13, for example. In this case, the peak portion 13f1 of the back foil 13 contacts the region near the downstream end of the top foil 12 at a plurality of locations separated in the radial direction. As a result, when the shaft 2 rotates, the air in the inter-foil gap D flows downstream through the valley 13f2 of the back foil 13 and flows into the large gap C1.
 ところで、図9に示すような波形のバックフォイル13をプレス加工により形成する場合、平板状のフォイル素材が波形に曲げられるため、その分だけ平面視における寸法(山部13f1及び谷部13f2の延在方向と直交する方向の寸法)が縮小する。従って、プレス加工を施す前の平板状のフォイル素材は、プレス加工による寸法の縮小を考慮して形状及び寸法を設定する必要があるため、設計が非常に複雑となる。これに対し、図4に示すように、多数の上凸部13c及び下凸部13dが分散配置されたバックフォイル13は、平板状のフォイル素材にプレス加工を施し、局部的に材料を引き延ばして上凸部13c及び下凸部13dを成形することができる。この場合、プレス加工により、平面視における全体寸法はほとんど変化しないため、上凸部13c及び下凸部13dを自由に設計することが可能となり、バックフォイル13の設計が容易化される。 By the way, when the corrugated back foil 13 as shown in FIG. 9 is formed by pressing, the flat foil material is bent into a corrugated shape, so that the dimensions in plan view (the extent of the peaks 13f1 and troughs 13f2) are accordingly increased. The dimension in the direction orthogonal to the current direction is reduced. Therefore, the flat foil material before the press work needs to be set in shape and dimensions in consideration of the reduction in dimensions due to the press work, so that the design becomes very complicated. On the other hand, as shown in FIG. 4, the back foil 13 in which a large number of upper convex portions 13 c and lower convex portions 13 d are dispersedly arranged is obtained by pressing a flat foil material and locally stretching the material. The upper convex portion 13c and the lower convex portion 13d can be formed. In this case, since the overall dimensions in a plan view are hardly changed by pressing, the upper convex portion 13c and the lower convex portion 13d can be freely designed, and the design of the back foil 13 is facilitated.
 また、上記のフォイル軸受10において、バックフォイル13に設けられる上凸部13c及び下凸部13dの分布密度を場所によって変えることで、軸受面Xの剛性を部分的にコントロールすることができる。例えば、図10に示す実施形態では、上凸部13c及び下凸部13dの密度が、下流側に行くにつれて高くなっている。この場合、バックフォイル13の圧縮方向(軸方向)の剛性が下流側に行くにつれて高くなる。これにより、トップフォイル12の軸受面Xが、下流側に行くにつれて、スラストカラー3から離反する方向(軸受隙間Cを広げる方向)に変形しにくくなるため、楔状の軸受隙間Cが形成されやすくなる。 Also, in the foil bearing 10 described above, the rigidity of the bearing surface X can be partially controlled by changing the distribution density of the upper protrusions 13c and the lower protrusions 13d provided on the back foil 13 depending on the location. For example, in the embodiment shown in FIG. 10, the density of the upper convex portion 13c and the lower convex portion 13d increases as going to the downstream side. In this case, the rigidity of the back foil 13 in the compression direction (axial direction) increases as it goes downstream. As a result, the bearing surface X of the top foil 12 is less likely to be deformed in the direction away from the thrust collar 3 (the direction in which the bearing gap C is widened) as it goes downstream, so that a wedge-shaped bearing gap C is easily formed. .
 また、上記のフォイル軸受10において、バックフォイル13に設けられる上凸部13c及び下凸部13dの高さを場所によって変えることで、所定形状の軸受面を得ることができる。例えば、図11に示す実施形態では、上凸部13c及び下凸部13dを含むバックフォイル13の高さ(軸方向寸法)が、下流側に行くにつれて大きくなっている。これにより、トップフォイル12の軸受面Xが、下流側に行くにつれてスラストカラー3側に変位した形状となりやすくなり、楔状の軸受隙間Cが形成されやすくなる。 Further, in the foil bearing 10 described above, a bearing surface having a predetermined shape can be obtained by changing the height of the upper convex portion 13c and the lower convex portion 13d provided on the back foil 13 depending on the location. For example, in the embodiment shown in FIG. 11, the height (axial dimension) of the back foil 13 including the upper convex portion 13 c and the lower convex portion 13 d becomes larger toward the downstream side. As a result, the bearing surface X of the top foil 12 tends to be displaced toward the thrust collar 3 toward the downstream side, and a wedge-shaped bearing gap C is easily formed.
 図12に示す実施形態では、トップフォイル部Tf及びバックフォイル部Bfを一体に有するフォイル部材14を備える(バックフォイル部Bfを散点模様で示す)。各フォイル部材14の上流側の端部が、フォイルホルダ11に取り付けられる。複数のフォイル部材14をフォイルホルダ11に取り付けた状態では、各フォイル部材14のトップフォイル部Tfとフォイルホルダ11との間に、下流側に隣接するフォイル部材14のバックフォイル部Bfが配される。各フォイル部材14のバックフォイル部Bfは、その上に重ねられたフォイル部材14のトップフォイル部Tfに半径方向で離隔した複数箇所で接触する。各フォイル部材14のトップフォイル部Tfの下流側端部には、図2及び図3と同様の切り欠き部12b1が設けられる。 The embodiment shown in FIG. 12 includes a foil member 14 that integrally includes a top foil portion Tf and a back foil portion Bf (the back foil portion Bf is indicated by a dotted pattern). The upstream end of each foil member 14 is attached to the foil holder 11. In a state where the plurality of foil members 14 are attached to the foil holder 11, the back foil portion Bf of the foil member 14 adjacent to the downstream side is disposed between the top foil portion Tf of each foil member 14 and the foil holder 11. . The back foil part Bf of each foil member 14 contacts the top foil part Tf of the foil member 14 stacked on the foil member 14 at a plurality of locations separated in the radial direction. A notch portion 12b1 similar to that shown in FIGS. 2 and 3 is provided at the downstream end portion of the top foil portion Tf of each foil member.
 図13に示す実施形態では、図12に示す実施形態と同様に、各フォイル部材14がトップフォイル部Tf及びバックフォイル部Bfを有しているが、各フォイル部材14の形状が図12に示す実施形態と異なる。図13のフォイル部材14は、トップフォイル部Tf及びバックフォイル部Bfを有する本体14aと、本体14aから外径側に延び、フォイルホルダ11に固定される固定部14bとを一体に有する。本体14aの上流側端部14a1の縁及び下流側端部14a2の縁は、何れも半径方向中央部を下流側に膨らませた形状を成している。本体14aの下流側端部14a2には、上記の実施形態と同様に、複数の切り欠き部12b1が設けられる。バックフォイル部Bfには、平坦部13b、上凸部13c(白丸)、及び下凸部13d(黒丸)が設けられる。図13のフォイル部材14をフォイルホルダ11に取り付けると、図14に示すように、各フォイル部材14のバックフォイル部Bfは隣接するフォイル部材14のトップフォイル部Tfの背後に隠れ、トップフォイル部Tfのみが表側(スラストカラー側)に露出した状態となる。 In the embodiment shown in FIG. 13, as in the embodiment shown in FIG. 12, each foil member 14 has a top foil portion Tf and a back foil portion Bf, but the shape of each foil member 14 is shown in FIG. Different from the embodiment. The foil member 14 of FIG. 13 integrally includes a main body 14a having a top foil portion Tf and a back foil portion Bf, and a fixing portion 14b extending from the main body 14a to the outer diameter side and fixed to the foil holder 11. Both of the edge of the upstream end 14a1 and the edge of the downstream end 14a2 of the main body 14a have a shape in which the radially central portion is swollen downstream. The downstream end portion 14a2 of the main body 14a is provided with a plurality of cutout portions 12b1 as in the above embodiment. The back foil portion Bf is provided with a flat portion 13b, an upper convex portion 13c (white circle), and a lower convex portion 13d (black circle). When the foil member 14 of FIG. 13 is attached to the foil holder 11, as shown in FIG. 14, the back foil portion Bf of each foil member 14 is hidden behind the top foil portion Tf of the adjacent foil member 14, and the top foil portion Tf. Only the surface side (thrust color side) is exposed.
 以上の実施形態では、本発明をスラストフォイル軸受に適用した場合を示したが、本発明は、軸をラジアル方向に支持するラジアルフォイル軸受に適用することもできる。例えば、図15に示すラジアルフォイル軸受20は、円筒状のフォイルホルダ21と、フォイルホルダ21の内周面21aに周方向に並べて取り付けられた複数のフォイル部材22とを有する。各フォイル部材22のうち、下流側の領域がトップフォイル部Tfとして機能し、上流側の領域がバックフォイル部Bf(散点模様で示す)として機能する。各フォイル部材22のトップフォイル部Tfの下流側端部には、上記の実施形態と同様に、複数の切り欠き部が設けられる(図示省略)。バックフォイル部Bfは、下流側に隣接するフォイル部材22のトップフォイル部Tfと軸方向に離隔した複数箇所で接触し、例えば上記の実施形態と同様に、平板部、上凸部、及び下凸部を有する。軸2の回転時には、トップフォイル部Tfの軸受面Xと軸2の外周面との間に軸受隙間Cが形成される。 In the above embodiment, the case where the present invention is applied to a thrust foil bearing has been shown. However, the present invention can also be applied to a radial foil bearing that supports a shaft in a radial direction. For example, the radial foil bearing 20 shown in FIG. 15 has a cylindrical foil holder 21 and a plurality of foil members 22 attached to the inner peripheral surface 21a of the foil holder 21 side by side in the circumferential direction. Of each foil member 22, the downstream region functions as the top foil portion Tf, and the upstream region functions as the back foil portion Bf (shown with a dotted pattern). A plurality of notches are provided at the downstream end of the top foil portion Tf of each foil member 22 (not shown) as in the above embodiment. The back foil portion Bf contacts the top foil portion Tf of the foil member 22 adjacent to the downstream side at a plurality of locations separated in the axial direction. For example, as in the above-described embodiment, the flat foil portion, the upper convex portion, and the lower convex portion Part. When the shaft 2 rotates, a bearing gap C is formed between the bearing surface X of the top foil portion Tf and the outer peripheral surface of the shaft 2.
 以上の実施形態では、フォイル軸受を固定し、軸2を回転させた場合を示したが、これに限らず、軸2を固定し、フォイル軸受を回転させてもよい。ただし、フォイル軸受を回転させると、遠心力でフォイルが破損する恐れがあるため、上記の実施形態のようにフォイル軸受を固定することが好ましい。 In the above embodiment, the case where the foil bearing is fixed and the shaft 2 is rotated is shown. However, the present invention is not limited thereto, and the shaft 2 may be fixed and the foil bearing may be rotated. However, if the foil bearing is rotated, the foil may be damaged by centrifugal force. Therefore, it is preferable to fix the foil bearing as in the above embodiment.
 また、以上に示したフォイル軸受は、例えばガスタービンやターボチャージャ(過給機)等のターボ機械の主軸用軸受、自動車等の車両用軸受、あるいは産業機器用の軸受等として使用することが可能である。 In addition, the foil bearings described above can be used, for example, as bearings for main shafts of turbo machines such as gas turbines and turbochargers (superchargers), bearings for vehicles such as automobiles, or bearings for industrial equipment. It is.
 また、以上に述べたフォイル軸受は、圧力発生流体として空気を使用した空気動圧軸受のみならず、圧力発生流体として潤滑油を使用した油動圧軸受としても使用することができる。 Further, the foil bearing described above can be used not only as an air dynamic pressure bearing using air as a pressure generating fluid but also as an oil dynamic pressure bearing using lubricating oil as a pressure generating fluid.
 以下、第2の発明の第1~8実施形態を、図17~37に基づいて説明する。 Hereinafter, first to eighth embodiments of the second invention will be described with reference to FIGS.
 本発明の第1実施形態に係るフォイル軸受210は、図17に示すように、軸202に設けられた円盤状のスラストカラー203との間に形成される空気膜で、軸202をスラスト方向に支持するスラストフォイル軸受である。フォイル軸受210は、円盤状のフォイルホルダ211と、フォイルホルダ211の端面211aに取り付けられたトップフォイル212及びバックフォイル213とを有する。本実施形態では、図18に示すように、複数(図示例では各6枚)の扇形のトップフォイル212及びバックフォイル213が、軸202の回転方向(フォイルホルダ211の周方向)で並べて配される。尚、以下では、軸202の回転方向先行側(図18の矢印R方向)、すなわち、軸202の回転時における、トップフォイル212に対する流体の流れ方向下流側を「下流側」と言い、その反対側を「上流側」と言う。 As shown in FIG. 17, the foil bearing 210 according to the first embodiment of the present invention is an air film formed between the disk-shaped thrust collar 203 provided on the shaft 202, and the shaft 202 is thrust in the thrust direction. It is a thrust foil bearing to support. The foil bearing 210 includes a disc-shaped foil holder 211, and a top foil 212 and a back foil 213 attached to the end surface 211 a of the foil holder 211. In the present embodiment, as shown in FIG. 18, a plurality (six in the illustrated example) of fan-shaped top foil 212 and back foil 213 are arranged side by side in the rotational direction of shaft 202 (the circumferential direction of foil holder 211). The In the following, the rotation direction leading side of the shaft 202 (in the direction of arrow R in FIG. 18), that is, the downstream side of the fluid flow direction with respect to the top foil 212 when the shaft 202 rotates is referred to as “downstream side” and vice versa. The side is called the “upstream side”.
 フォイルホルダ211は、金属や樹脂等で形成される。フォイルホルダ211は、軸202が挿入される内孔211bを有する中空円盤状を成している。フォイルホルダ211の一方の端面211aには複数のトップフォイル212及びバックフォイル213が取り付けられる。フォイルホルダ211の他方の端面211cは、フォイル軸受210が組み込まれる設備(例えばガスタービン等のターボ機械)のハウジングに固定される。 The foil holder 211 is made of metal or resin. The foil holder 211 has a hollow disk shape having an inner hole 211b into which the shaft 202 is inserted. A plurality of top foils 212 and back foils 213 are attached to one end surface 211 a of the foil holder 211. The other end surface 211c of the foil holder 211 is fixed to a housing of a facility (for example, a turbo machine such as a gas turbine) in which the foil bearing 210 is incorporated.
 トップフォイル212及びバックフォイル213は、ばね性に富み、かつ加工性のよい金属で形成され、例えば鋼や銅合金で形成される。トップフォイル212及びバックフォイル213は、厚さ20μm~200μm程度の金属薄板(フォイル)で形成される。本実施形態のように流体膜として空気を用いる空気動圧軸受では、雰囲気に潤滑油が存在しないため、ステンレス鋼もしくは青銅でトップフォイル212及びバックフォイル213を形成するのが好ましい。 The top foil 212 and the back foil 213 are formed of a metal having a high spring property and good workability, for example, steel or a copper alloy. The top foil 212 and the back foil 213 are formed of a thin metal plate (foil) having a thickness of about 20 μm to 200 μm. In the air dynamic pressure bearing using air as a fluid film as in the present embodiment, since there is no lubricating oil in the atmosphere, it is preferable to form the top foil 212 and the back foil 213 with stainless steel or bronze.
 トップフォイル212は、軸受面Xを有するトップフォイル部Tfとして機能する。トップフォイル212は、図18及び図19に示すように、凹凸の無い滑らかな軸受面Xを有する。トップフォイル212の上流側の端部212aは、フォイルホルダ211の端面211aに溶接等により固定される。トップフォイル212の下流側の端部212bは自由端である。トップフォイル212は、平板状のフォイルに打ち抜き加工や放電加工を施すことにより形成される。 The top foil 212 functions as a top foil portion Tf having the bearing surface X. As shown in FIGS. 18 and 19, the top foil 212 has a smooth bearing surface X without unevenness. The upstream end 212a of the top foil 212 is fixed to the end surface 211a of the foil holder 211 by welding or the like. An end 212b on the downstream side of the top foil 212 is a free end. The top foil 212 is formed by punching or electric discharge machining a flat foil.
 バックフォイル213は、トップフォイル212を背後から支持するバックフォイル部Bfとして機能する。バックフォイル213は、平面視でトップフォイル212と略同形状の扇形をなし、トップフォイル212の真下に重ねて配されている(図19参照)。バックフォイル213の上流側の端部213aは、フォイルホルダ211の端面211aに溶接等により固定される。 The back foil 213 functions as a back foil portion Bf that supports the top foil 212 from behind. The back foil 213 has a fan shape that is substantially the same shape as the top foil 212 in plan view, and is placed directly below the top foil 212 (see FIG. 19). The upstream end 213a of the back foil 213 is fixed to the end surface 211a of the foil holder 211 by welding or the like.
 バックフォイル213は、図20に示すように、周方向両端を除く大部分を占める第一領域Q1と、下流側の端部に設けられた第二領域Q2とを有する。バックフォイル213の第一領域Q1には、半径方向に離隔した複数箇所でトップフォイル212と接触する第一支持部が設けられる。本実施形態では、図21に示すように、第一領域Q1に、平坦部213bと、平坦部213bからトップフォイル212側に突出した複数の上凸部213cと、平坦部213bからトップフォイル212と反対側に突出した複数の下凸部213dとが設けられ、上凸部213cが第一支持部を構成する。尚、上凸部213c及び下凸部213dは、これらの相対的な位置関係を理解しやすいように「上」「下」を付した名称としているが、これはフォイル軸受210の使用態様を限定する趣旨ではない。 As shown in FIG. 20, the back foil 213 includes a first region Q1 that occupies most of the region excluding both ends in the circumferential direction, and a second region Q2 provided at the downstream end. The first region Q1 of the back foil 213 is provided with a first support portion that comes into contact with the top foil 212 at a plurality of locations separated in the radial direction. In the present embodiment, as shown in FIG. 21, in the first region Q1, a flat portion 213b, a plurality of upper convex portions 213c protruding from the flat portion 213b to the top foil 212 side, and a flat foil 213b to the top foil 212, A plurality of lower convex portions 213d protruding to the opposite side are provided, and the upper convex portion 213c constitutes the first support portion. In addition, although the upper convex part 213c and the lower convex part 213d are made the name which attached "upper" and "lower" so that these relative positional relationships may be understood easily, this limits the use aspect of the foil bearing 210. It is not the purpose.
 バックフォイル213の平坦部213b、上凸部213c、下凸部213d、及び後述する湾曲部213eは、均一な肉厚を有する。上凸部213cおよび下凸部213dは、何れも概略半球状に形成される。上凸部213cおよび下凸部213dの内側は中空状になっているため、バックフォイル213を表裏の一方側、例えば図20のように表側(トップフォイル212側)から見た場合、下凸部213dが存在する領域は凹部となる。尚、図20では、理解しやすいように、凹部となる下凸部213dにハッチングを付している。上凸部213c及び下凸部213dの全周に、平坦部213bが設けられる。上凸部213c及び下凸部213dは、それぞれ第一領域Q1の全域に分散して配置される。上凸部213cはトップフォイル212の裏面(軸受面Xと反対側の面)に接触し、下凸部213dはフォイルホルダ211の端面211aに接触する。 The flat part 213b, the upper convex part 213c, the lower convex part 213d, and the curved part 213e described later have a uniform thickness of the back foil 213. Both the upper convex part 213c and the lower convex part 213d are formed in a substantially hemispherical shape. Since the inside of the upper convex portion 213c and the lower convex portion 213d is hollow, when the back foil 213 is viewed from one side of the front and back sides, for example, from the front side (top foil 212 side) as shown in FIG. A region where 213d exists is a recess. In FIG. 20, the lower convex portion 213d that is a concave portion is hatched for easy understanding. A flat portion 213b is provided on the entire circumference of the upper convex portion 213c and the lower convex portion 213d. The upper convex portion 213c and the lower convex portion 213d are each distributed and arranged over the entire first region Q1. The upper convex portion 213 c is in contact with the back surface (surface opposite to the bearing surface X) of the top foil 212, and the lower convex portion 213 d is in contact with the end surface 211 a of the foil holder 211.
 バックフォイル213の第二領域Q2には、半径方向でトップフォイル212と連続的に接触する第二支持部が設けられる。本実施形態では、第二領域Q2に、トップフォイル212側に凸となる湾曲部213eが設けられ、この湾曲部213eで第二支持部(剛性付与手段)が構成される。湾曲部213eは、半径方向で連続的に延び、例えばトップフォイル212の下流側端部212b(自由端)の縁に沿う方向、図示例では半径方向に沿って延びる。湾曲部213eは、第二領域Q2の半径方向全域に設けられ、トップフォイル212の半径方向の全域に連続的に接触する。図22に示すように、湾曲部213eの頂部に設けられた略円筒状の曲面部が、トップフォイル212に接触している。湾曲部213eの上流側の端部は、第一領域Q1の平坦部213bと連続している。湾曲部213eの下流側の端部は、フォイルホルダ211の端面211aに沿うように湾曲している。これにより、湾曲部213eが圧縮されたときに、湾曲部213eの下流側の端部を、フォイルホルダ211の端面211a上で滑らせながらスムーズに変形させることができる。 The second region Q2 of the back foil 213 is provided with a second support portion that continuously contacts the top foil 212 in the radial direction. In the present embodiment, a curved portion 213e that protrudes toward the top foil 212 is provided in the second region Q2, and the curved portion 213e constitutes a second support portion (rigidity imparting means). The curved portion 213e extends continuously in the radial direction, and extends, for example, along the edge of the downstream end portion 212b (free end) of the top foil 212, in the illustrated example, along the radial direction. The curved portion 213e is provided in the entire radial direction of the second region Q2, and continuously contacts the entire radial direction of the top foil 212. As shown in FIG. 22, the substantially cylindrical curved surface portion provided at the top of the curved portion 213 e is in contact with the top foil 212. The upstream end of the curved portion 213e is continuous with the flat portion 213b of the first region Q1. The downstream end of the curved portion 213e is curved along the end surface 211a of the foil holder 211. Thereby, when the bending part 213e is compressed, the downstream end part of the bending part 213e can be smoothly deformed while sliding on the end surface 211a of the foil holder 211.
 尚、図23に示すように、湾曲部213eの下流側の端部を、フォイルホルダ211の端面211aから離反させてもよい。この場合、湾曲部213eが軸方向で変位しやすくなり、バックフォイル213が圧縮されたときの剛性を抑えることができる。 In addition, as shown in FIG. 23, the downstream end of the curved portion 213e may be separated from the end surface 211a of the foil holder 211. In this case, the bending portion 213e is easily displaced in the axial direction, and the rigidity when the back foil 213 is compressed can be suppressed.
 バックフォイル213は、フォイルをプレス加工することで形成される。本実施形態では、打ち抜き加工や放電加工により所定形状の平板状のフォイル素材を形成した後、このフォイル素材にプレス加工を施して、平坦部213b、上凸部213c、下凸部213d、及び湾曲部213eを同時に成形することで、バックフォイル213が形成される。尚、フォイル素材の打ち抜きと、平坦部213b、上凸部213c、下凸部213d、及び湾曲部213eの成形とを、プレス加工で同時に行うこともできる。上凸部213c及び下凸部213dを含めたバックフォイル213全体の厚さ方向寸法(軸方向寸法)は0.5~2mm程度である。上凸部213c及び湾曲部213eの平坦部213bに対する突出量は同程度である。尚、図20に示す上凸部213cおよび下凸部213dの配置パターンは例示にすぎず、必要に応じて図20とは異なる任意の配置パターンを採用することができる。 The back foil 213 is formed by pressing the foil. In the present embodiment, after forming a flat plate-shaped foil material having a predetermined shape by punching or electric discharge machining, the foil material is subjected to press working to obtain a flat portion 213b, an upper convex portion 213c, a lower convex portion 213d, and a curved portion. By forming the part 213e at the same time, the back foil 213 is formed. The stamping of the foil material and the forming of the flat portion 213b, the upper convex portion 213c, the lower convex portion 213d, and the curved portion 213e can be simultaneously performed by pressing. The thickness direction dimension (axial dimension) of the entire back foil 213 including the upper convex portion 213c and the lower convex portion 213d is about 0.5 to 2 mm. The protruding amount of the upper convex portion 213c and the curved portion 213e with respect to the flat portion 213b is approximately the same. In addition, the arrangement pattern of the upper convex part 213c and the lower convex part 213d shown in FIG. 20 is only an example, and an arbitrary arrangement pattern different from that in FIG. 20 can be adopted as necessary.
 図24に示すように、軸202及びスラストカラー203が周方向一方(矢印R方向)に回転すると、フォイル軸受210の各トップフォイル212の軸受面Xとスラストカラー203の端面203aとの間に軸受隙間Cが形成される。このとき、トップフォイル212が湾曲することで、軸受隙間Cは、下流側へ行くにつれて狭くなった楔状を成す。この楔状の軸受隙間Cの大隙間部C1の空気が小隙間部C2に押し込まれることにより、軸受隙間Cの空気膜の圧力が高められ、この圧力により軸202及びスラストカラー203がスラスト方向に非接触支持される。このとき、トップフォイル212の軸受面Xが、荷重や軸202の回転速度、周囲温度等の運転条件に応じて弾性変形することで、軸受隙間Cが運転条件に応じた適切幅に自動調整される。そのため、高温・高速回転といった過酷な条件下でも、軸受隙間Cを最適幅に管理することができ、軸202を安定して支持することが可能となる。 As shown in FIG. 24, when the shaft 202 and the thrust collar 203 rotate in one circumferential direction (the direction of the arrow R), the bearings between the bearing surfaces X of the top foils 212 of the foil bearings 210 and the end surfaces 203 a of the thrust collars 203. A gap C is formed. At this time, the top foil 212 is curved, so that the bearing gap C has a wedge shape that becomes narrower toward the downstream side. The air in the large gap C1 of the wedge-shaped bearing gap C is pushed into the small gap C2, thereby increasing the pressure of the air film in the bearing gap C. This pressure causes the shaft 202 and the thrust collar 203 to move in the thrust direction. Contact supported. At this time, the bearing surface X of the top foil 212 is elastically deformed according to the operating conditions such as the load, the rotational speed of the shaft 202, and the ambient temperature, so that the bearing gap C is automatically adjusted to an appropriate width according to the operating conditions. The Therefore, the bearing gap C can be managed to the optimum width even under severe conditions such as high temperature and high speed rotation, and the shaft 202 can be stably supported.
 上記のように、軸受隙間C(特に、小隙間部C2)における空気圧が高められると、トップフォイル212がバックフォイル213に押し付けられる。具体的には、トップフォイル212の上流側端部212a及び下流側端部212bを除く大部分が、バックフォイル213の上凸部213cで接触支持されると共に、トップフォイル212の下流側端部212b付近の領域が、バックフォイル213の湾曲部213eで接触支持される。このとき、トップフォイル212のうち、バックフォイル213の上凸部213c(第一支持部)が接触した接触部Aは剛性が高く、接触部Aの周囲は剛性が低い。従って、図25~27に示すように、トップフォイル212のうち、接触部Aの半径方向間の領域が、接触部Aよりもフォイルホルダ211側(図26及び図27の下方)に変形し、この領域に凹部Bが形成される。一方、トップフォイル212のうち、バックフォイル213の湾曲部213e(第二支持部)が接触した領域は、剛性が高く、空気圧によりフォイルホルダ211側に変形しにくいため、この領域に、凹部Bよりも一段高くなった堰Dが形成される。この堰Dは、半径方向で連続的に延び、本実施形態ではトップフォイル212の半径方向全長にわたって延びる(図25参照)。 As described above, when the air pressure in the bearing gap C (particularly, the small gap portion C2) is increased, the top foil 212 is pressed against the back foil 213. Specifically, most of the top foil 212 except for the upstream end 212a and the downstream end 212b is supported by the upper convex portion 213c of the back foil 213 and the downstream end 212b of the top foil 212. The nearby region is contact-supported by the curved portion 213e of the back foil 213. At this time, of the top foil 212, the contact portion A that is in contact with the upper convex portion 213c (first support portion) of the back foil 213 has high rigidity, and the periphery of the contact portion A has low rigidity. Therefore, as shown in FIGS. 25 to 27, the region between the radial directions of the contact portion A in the top foil 212 is deformed to the foil holder 211 side (downward in FIGS. 26 and 27) from the contact portion A, A recess B is formed in this region. On the other hand, the region of the top foil 212 where the curved portion 213e (second support portion) of the back foil 213 is in contact has high rigidity and is difficult to be deformed to the foil holder 211 side by air pressure. A weir D having a height higher than that is formed. This weir D extends continuously in the radial direction, and in this embodiment extends over the entire length of the top foil 212 in the radial direction (see FIG. 25).
 軸202の回転に伴って小隙間部C2に押し込まれた空気は、トップフォイル212の凹部Bを通って下流側に抜ける(図25及び27の矢印S参照)。しかし、凹部Bの下流側には、半径方向で連続的に延びる堰Dが設けられているため、空気の下流側への流動が規制される。これにより、小隙間部C2から下流側に空気が抜けにくくなり、小隙間部C2における空気圧の低下が抑えられるため(図39の下段の点線参照)、フォイル軸受210の支持力を高めることができる。 The air pushed into the small gap portion C2 with the rotation of the shaft 202 passes through the concave portion B of the top foil 212 to the downstream side (see arrow S in FIGS. 25 and 27). However, since the weir D continuously extending in the radial direction is provided on the downstream side of the recess B, the flow of air to the downstream side is restricted. This makes it difficult for air to escape from the small gap portion C2 to the downstream side, and a decrease in air pressure in the small gap portion C2 is suppressed (see the dotted line in the lower stage of FIG. 39). .
 また、軸202の回転中は、図28に示すように、軸受隙間Cで生じる空気圧によりトップフォイル212が圧力Pを受けるため、バックフォイル213には、トップフォイル212を介して圧力P方向の圧縮力が作用する。平坦部213bは圧力P方向と直交する方向に延びる薄板状であるため、バックフォイル213の中でも前記圧縮力に対する剛性の低い部分となる。そのため、バックフォイル213に圧縮力が負荷されると、図28の二点鎖線で示すように先ず平坦部213bが変形して圧縮力を吸収する。従って、そのような平坦部分を有しない、既存のバンプ型フォイル軸受のバックフォイル部に比べ、バックフォイル213の剛性を局所的に小さくすることができる。これにより、軸受面Xの柔軟性が高まるため、軸202の変位等に対して軸受面Xが追従変形し易くなり、軸受隙間Cを最適幅に自動調整して、スラストカラー203とトップフォイル212との接触を確実に防止することが可能となる。 During rotation of the shaft 202, the top foil 212 receives pressure P due to the air pressure generated in the bearing gap C as shown in FIG. 28. Therefore, the back foil 213 is compressed in the pressure P direction via the top foil 212. Force acts. Since the flat portion 213b has a thin plate shape extending in a direction orthogonal to the pressure P direction, the back foil 213 is a portion having low rigidity against the compression force. Therefore, when a compressive force is applied to the back foil 213, the flat portion 213b is first deformed and absorbs the compressive force as shown by a two-dot chain line in FIG. Therefore, the rigidity of the back foil 213 can be locally reduced as compared with the back foil portion of an existing bump type foil bearing that does not have such a flat portion. Thereby, since the flexibility of the bearing surface X is increased, the bearing surface X is easily deformed following the displacement of the shaft 202, and the bearing gap C is automatically adjusted to the optimum width, so that the thrust collar 203 and the top foil 212 are adjusted. It is possible to reliably prevent contact with the.
 尚、軸202の停止直前や起動直後の低速回転時には、各トップフォイル212の軸受面Xとスラストカラー203の端面203aとが接触摺動するため、これらの何れか一方または双方に、DLC膜、チタンアルミナイトライド膜、二硫化タングステン膜、あるいは二硫化モリブデン膜等の低摩擦化被膜を形成してもよい。 Note that the bearing surface X of each top foil 212 and the end surface 203a of the thrust collar 203 are in sliding contact with each other at the time of low-speed rotation immediately before the shaft 202 is stopped or just after starting. A low friction coating such as a titanium aluminum nitride film, a tungsten disulfide film, or a molybdenum disulfide film may be formed.
 また、軸202の回転中は、トップフォイル212とバックフォイル213、あるいは、バックフォイル213とフォイルホルダ211の端面211aとの間に微小摺動が生じる。この微小摺動による摩擦エネルギーにより、軸202の振動を減衰させることができる。このような微小摺動による摩擦力を調整するために、互いに摺動する面の何れか一方または双方に、上記のような低摩擦化被膜を形成してもよい。 Further, during the rotation of the shaft 202, a minute slide occurs between the top foil 212 and the back foil 213 or between the back foil 213 and the end surface 211a of the foil holder 211. The vibration of the shaft 202 can be attenuated by the frictional energy generated by the minute sliding. In order to adjust the frictional force due to such micro-sliding, the above-described low-friction coating may be formed on one or both of the mutually sliding surfaces.
 本発明は、上記の実施形態に限られない。以下、本発明の他の実施形態を説明するが、上記の実施形態と重複する点については説明を省略する。 The present invention is not limited to the above embodiment. Hereinafter, although other embodiment of this invention is described, description is abbreviate | omitted about the point which overlaps with said embodiment.
 上記のフォイル軸受210において、バックフォイル213の第一領域Q1に設けられる上凸部213c及び下凸部213dの分布密度を場所によって変えることで、軸受面Xの剛性を部分的にコントロールすることができる。例えば、図29に示す第2実施形態では、上凸部213c及び下凸部213dの密度が、下流側に行くにつれて高くなっている。この場合、バックフォイル213の圧縮方向(軸方向)の剛性が下流側に行くにつれて高くなる。これにより、トップフォイル212の軸受面Xが、下流側に行くにつれて、スラストカラー203から離反する方向(軸受隙間Cを広げる方向)に変形しにくくなるため、楔状の軸受隙間Cが形成されやすくなる。尚、図29では、バックフォイル213を簡略化して、矩形で示している。 In the foil bearing 210 described above, the rigidity of the bearing surface X can be partially controlled by changing the distribution density of the upper protrusions 213c and the lower protrusions 213d provided in the first region Q1 of the back foil 213 depending on the location. it can. For example, in the second embodiment shown in FIG. 29, the density of the upper protrusions 213c and the lower protrusions 213d increases as going downstream. In this case, the rigidity of the back foil 213 in the compression direction (axial direction) increases as it goes downstream. As a result, the bearing surface X of the top foil 212 is less likely to be deformed in the direction away from the thrust collar 203 (the direction in which the bearing gap C is widened) as it goes downstream, so that a wedge-shaped bearing gap C is easily formed. . In FIG. 29, the back foil 213 is simplified and shown as a rectangle.
 また、上記のフォイル軸受210において、バックフォイル213の第一領域Q1に設けられる上凸部213c及び下凸部213dの高さを場所によって変えることで、所定形状の軸受面を得ることができる。例えば、図30に示す第3実施形態では、上凸部213c及び下凸部213dを含むバックフォイル213の高さ(軸方向寸法)が、下流側に行くにつれて大きくなっている。これにより、トップフォイル212の軸受面Xが、下流側に行くにつれてスラストカラー203側に変位した形状となりやすくなり、楔状の軸受隙間Cが形成されやすくなる。 Further, in the foil bearing 210 described above, a bearing surface having a predetermined shape can be obtained by changing the height of the upper convex portion 213c and the lower convex portion 213d provided in the first region Q1 of the back foil 213 depending on the location. For example, in the third embodiment shown in FIG. 30, the height (axial dimension) of the back foil 213 including the upper convex portion 213c and the lower convex portion 213d increases toward the downstream side. As a result, the bearing surface X of the top foil 212 tends to be displaced toward the thrust collar 203 toward the downstream side, and a wedge-shaped bearing gap C is easily formed.
 図31に示す第4実施形態では、バックフォイル213の第一領域Q1に波形部213fを設けている。波形部213fは、軸202の回転方向と交差する方向に沿って延びる複数の山部213f1及び谷部213f2を、軸202の回転方向で交互に有する。波形部213fの山部213f1が、トップフォイル212を背後から接触支持する第一支持部を構成する。山部213f1及び谷部213f2は、バックフォイル213の下流側端部の縁と交差する方向に延び、図示例では、バックフォイル213の上流側端部213aの縁と平行な方向に延びる。この場合、第一領域Q1の下流側端部では、山部213f1が半径方向に離隔した複数箇所に設けられ、これらの山部213f1がトップフォイル212に接触する。第二領域Q2には、上記の実施形態と同様に湾曲部213eが設けられる。 In the fourth embodiment shown in FIG. 31, a corrugated portion 213f is provided in the first region Q1 of the back foil 213. The corrugated portion 213 f has a plurality of crest portions 213 f 1 and trough portions 213 f 2 extending along the direction intersecting the rotation direction of the shaft 202 alternately in the rotation direction of the shaft 202. The peak portion 213f1 of the corrugated portion 213f constitutes a first support portion that contacts and supports the top foil 212 from behind. The peak portion 213f1 and the valley portion 213f2 extend in a direction intersecting with the edge of the downstream end portion of the back foil 213, and extend in a direction parallel to the edge of the upstream end portion 213a of the back foil 213 in the illustrated example. In this case, at the downstream end portion of the first region Q1, the peak portions 213f1 are provided at a plurality of locations separated in the radial direction, and these peak portions 213f1 are in contact with the top foil 212. In the second region Q2, the curved portion 213e is provided as in the above embodiment.
 図31に示すような波形部213fを有するバックフォイル213は、例えばプレス加工により形成することができる。この場合、平板状のフォイル素材が波形に曲げられるため、その分だけ平面視における寸法(山部213f1の延在方向と直交する方向の寸法)が縮小する。従って、プレス加工を施す前の平板状のフォイル素材は、プレス加工による寸法の縮小を考慮して形状及び寸法を設定する必要があるため、設計が非常に複雑となる。 The back foil 213 having the corrugated portion 213f as shown in FIG. 31 can be formed by, for example, pressing. In this case, since the flat foil material is bent into a corrugated shape, the dimension in plan view (the dimension in the direction orthogonal to the extending direction of the peak portion 213f1) is reduced accordingly. Therefore, the flat foil material before the press work needs to be set in shape and dimensions in consideration of the reduction in dimensions due to the press work, so that the design becomes very complicated.
 これに対し、図21に示すようなディンプル状の上凸部213c及び下凸部213dを有するバックフォイル213は、平板状のフォイル素材にプレス加工を施し、局部的に材料を引き延ばして上凸部213c及び下凸部213dを成形することができる。この場合、プレス加工により、平面視における全体寸法はほとんど変化しないため、上凸部213c及び下凸部213dを自由に設計することが可能となり、バックフォイル213の設計が容易化される。 On the other hand, the back foil 213 having the dimple-like upper convex portion 213c and the lower convex portion 213d as shown in FIG. 21 is formed by pressing a flat foil material and locally stretching the material to the upper convex portion. 213c and the downward convex part 213d can be shape | molded. In this case, since the overall dimensions in a plan view are hardly changed by pressing, it is possible to freely design the upper convex portion 213c and the lower convex portion 213d, and the design of the back foil 213 is facilitated.
 図32に示す第5実施形態は、バックフォイル部Bfの第二支持部が棒状部材215で構成される。棒状部材215は、金属や樹脂で形成される。棒状部材215は、半径方向で連続的に延び、例えばトップフォイル212の下流側端部212bの縁に沿う方向、具体的には半径方向に沿って延びる。棒状部材215は、バックフォイル213の第二領域Q2の表面(トップフォイル212側の面)に、溶接等により固定される。軸受隙間Cの圧力が高まると、棒状部材215が、トップフォイル部Tfに半径方向で連続的に接触する。棒状部材215の断面形状は図32に限らず、例えば上に凸の半円形状としてもよい。 In the fifth embodiment shown in FIG. 32, the second support portion of the back foil portion Bf is constituted by a rod-like member 215. The rod-shaped member 215 is made of metal or resin. The rod-shaped member 215 extends continuously in the radial direction, for example, extends along the edge of the downstream end portion 212b of the top foil 212, specifically, along the radial direction. The rod-shaped member 215 is fixed to the surface of the second region Q2 of the back foil 213 (the surface on the top foil 212 side) by welding or the like. When the pressure in the bearing gap C increases, the rod-shaped member 215 continuously contacts the top foil portion Tf in the radial direction. The cross-sectional shape of the rod-shaped member 215 is not limited to FIG. 32, and may be, for example, an upwardly convex semicircular shape.
 図33に示す第6実施形態では、トップフォイル部Tf及びバックフォイル部Bfを一体に有するフォイル部材214を備える(バックフォイル部Bfは散点模様で示す)。各フォイル部材214の上流側の端部が、フォイルホルダ211に取り付けられる。複数のフォイル部材214をフォイルホルダ211に取り付けた状態では、各フォイル部材214のトップフォイル部Tfとフォイルホルダ211との間に、隣接するフォイル部材214のバックフォイル部Bfが配される。図34に示すように、各フォイル部材214のバックフォイル部Bfの第一領域Q1には、半径方向に離隔した複数箇所でトップフォイル部Tfを接触支持する第一支持部が設けられる。図示例では、第一領域Q1に、平坦部213b、第一支持部としての上凸部213c(白抜き円)、及び下凸部213d(ハッチング円)が設けられる。各フォイル部材214のバックフォイル部Bfの第二領域Q2には、トップフォイル部Tfを半径方向で連続的に接触支持する第二支持部が設けられ、図示例では、第二支持部として湾曲部213eが設けられる。 33 includes a foil member 214 that integrally includes a top foil portion Tf and a back foil portion Bf (the back foil portion Bf is indicated by a dotted pattern). The upstream end of each foil member 214 is attached to the foil holder 211. In a state where the plurality of foil members 214 are attached to the foil holder 211, the back foil portion Bf of the adjacent foil member 214 is disposed between the top foil portion Tf of each foil member 214 and the foil holder 211. As shown in FIG. 34, the first region Q1 of the back foil portion Bf of each foil member 214 is provided with a first support portion that contacts and supports the top foil portion Tf at a plurality of locations separated in the radial direction. In the illustrated example, a flat portion 213b, an upper convex portion 213c (open circle) as a first support portion, and a lower convex portion 213d (hatched circle) are provided in the first region Q1. In the second region Q2 of the back foil portion Bf of each foil member 214, a second support portion that continuously contacts and supports the top foil portion Tf in the radial direction is provided. In the illustrated example, a curved portion is used as the second support portion. 213e is provided.
 図35に示す第7実施形態では、図33に示す実施形態と同様に、各フォイル部材214がトップフォイル部Tf及びバックフォイル部Bfを有しているが、各フォイル部材214の形状が図34に示す実施形態と異なる。図35のフォイル部材214は、トップフォイル部Tf及びバックフォイル部Bfを有する本体214aと、本体214aから外径側に延び、フォイルホルダ211に固定される固定部214bとを有する。本体214aの下流側端部の縁214a1及び上流側端部の縁214a2は、何れも半径方向中央部を下流側に膨らませた形状を成している。バックフォイル部Bfには、平坦部213b、第一支持部としての上凸部213c(白抜き円)、下凸部213d(ハッチング円)、および第二支持部としての湾曲部213eが設けられる。湾曲部213eは、本体214aの下流側端部の縁214a1と略平行な方向に延びる。このように、湾曲部213eは、必ずしも半径方向と平行である必要はなく、半径方向で連続的にトップフォイル部Tfと接触可能な形状であればよい。図35に示すフォイル部材214をフォイルホルダ211に取り付けると、図36に示すように、各フォイル部材214のバックフォイル部Bfは隣接するフォイル部材214のトップフォイル部Tfの背後に隠れ、トップフォイル部Tfのみが表側(スラストカラー側)に露出した状態となる。 In the seventh embodiment shown in FIG. 35, as in the embodiment shown in FIG. 33, each foil member 214 has a top foil portion Tf and a back foil portion Bf, but the shape of each foil member 214 is shown in FIG. Different from the embodiment shown in FIG. The foil member 214 of FIG. 35 has a main body 214a having a top foil portion Tf and a back foil portion Bf, and a fixing portion 214b extending from the main body 214a to the outer diameter side and fixed to the foil holder 211. The edge 214a1 at the downstream end and the edge 214a2 at the upstream end of the main body 214a both have a shape in which the central portion in the radial direction is bulged downstream. The back foil portion Bf is provided with a flat portion 213b, an upper convex portion 213c (open circle) as a first support portion, a lower convex portion 213d (hatching circle), and a curved portion 213e as a second support portion. The curved portion 213e extends in a direction substantially parallel to the edge 214a1 at the downstream end of the main body 214a. Thus, the curved portion 213e does not necessarily have to be parallel to the radial direction, and may be any shape that can continuously contact the top foil portion Tf in the radial direction. When the foil member 214 shown in FIG. 35 is attached to the foil holder 211, the back foil portion Bf of each foil member 214 is hidden behind the top foil portion Tf of the adjacent foil member 214 as shown in FIG. Only Tf is exposed on the front side (thrust color side).
 以上の実施形態では、本発明をスラストフォイル軸受に適用した場合を示したが、本発明は、軸をラジアル方向に支持するラジアルフォイル軸受に適用することもできる。例えば、図37に示す第8実施形態は、いわゆるリーフ型のラジアルフォイル軸受220に本発明を適用したものである。このラジアルフォイル軸受220は、円筒状のフォイルホルダ221と、フォイルホルダ221の内周面221aに周方向に並べて取り付けられた複数のフォイル部材222とを有する。各フォイル部材222のうち、下流側の領域がトップフォイル部Tfとして機能し、上流側の領域がバックフォイル部Bfとして機能する。各フォイル部材222のバックフォイル部Bf(散点模様で示す)には、上記の実施形態と同様に、回転直交方向(軸方向)に離隔した複数箇所に第一支持部(例えば上凸部)が設けられると共に、その下流側に、トップフォイル部Tfに軸方向で連続的に接触する第二支持部(例えば湾曲部)が設けられる。軸202の回転時には、トップフォイル部Tfの軸受面と軸202の外周面との間に軸受隙間Cが形成される。 In the above embodiment, the case where the present invention is applied to a thrust foil bearing has been shown. However, the present invention can also be applied to a radial foil bearing that supports a shaft in a radial direction. For example, in the eighth embodiment shown in FIG. 37, the present invention is applied to a so-called leaf-type radial foil bearing 220. The radial foil bearing 220 includes a cylindrical foil holder 221 and a plurality of foil members 222 attached to the inner peripheral surface 221a of the foil holder 221 in a circumferential direction. Of each foil member 222, the downstream region functions as the top foil portion Tf, and the upstream region functions as the back foil portion Bf. In the backfoil portion Bf (indicated by a dotted pattern) of each foil member 222, as in the above-described embodiment, first support portions (for example, upward convex portions) are provided at a plurality of locations separated in the rotation orthogonal direction (axial direction). And a second support portion (for example, a curved portion) that continuously contacts the top foil portion Tf in the axial direction is provided on the downstream side thereof. When the shaft 202 rotates, a bearing gap C is formed between the bearing surface of the top foil portion Tf and the outer peripheral surface of the shaft 202.
 以上の実施形態では、第二支持部(湾曲部)が、トップフォイル部Tfの回転直交方向全域と接触する場合を示したが、これに限らず、例えば、第二支持部の回転直交方向寸法を、トップフォイル部Tfよりも若干小さくし、第二支持部で、トップフォイル部Tfの回転直交方向端部を除く領域を接触支持するようにしてもよい。 In the above embodiment, the case where the second support portion (curved portion) is in contact with the entire region in the rotation orthogonal direction of the top foil portion Tf is shown, but not limited thereto, for example, the dimension in the rotation orthogonal direction of the second support portion. May be slightly smaller than the top foil portion Tf, and the second support portion may be configured to contact and support the region excluding the end portion in the rotation orthogonal direction of the top foil portion Tf.
 また、以上の実施形態では、フォイル軸受を固定し、軸202を回転させた場合を示したが、これに限らず、軸202を固定し、フォイル軸受を回転させてもよい。ただし、フォイル軸受を回転させると、遠心力でフォイルが破損する恐れがあるため、上記の実施形態のようにフォイル軸受を固定することが好ましい。 In the above embodiment, the case where the foil bearing is fixed and the shaft 202 is rotated has been described. However, the present invention is not limited thereto, and the shaft 202 may be fixed and the foil bearing may be rotated. However, if the foil bearing is rotated, the foil may be damaged by centrifugal force. Therefore, it is preferable to fix the foil bearing as in the above embodiment.
 また、以上に示したフォイル軸受は、例えばガスタービンやターボチャージャ(過給機)等のターボ機械の主軸用軸受、自動車等の車両用軸受、あるいは産業機器用の軸受等として使用することが可能である。 In addition, the foil bearings described above can be used, for example, as bearings for main shafts of turbo machines such as gas turbines and turbochargers (superchargers), bearings for vehicles such as automobiles, or bearings for industrial equipment. It is.
 また、以上に述べたフォイル軸受は、圧力発生流体として空気を使用した空気動圧軸受のみならず、圧力発生流体として潤滑油を使用した油動圧軸受としても使用することができる。 Further, the foil bearing described above can be used not only as an air dynamic pressure bearing using air as a pressure generating fluid but also as an oil dynamic pressure bearing using lubricating oil as a pressure generating fluid.
 以下、第2の発明の第9~19実施形態を、図43~67に基づいて説明する。 Hereinafter, ninth to nineteenth embodiments of the second invention will be described with reference to FIGS.
 第9実施形態に係るフォイル軸受410は、図43に示すように、軸402に設けられた円盤状のスラストカラー403との間に形成される空気膜で、軸402をスラスト方向に支持するスラストフォイル軸受である。フォイル軸受410は、円盤状のフォイルホルダ411と、フォイルホルダ411の端面411aに取り付けられたトップフォイル412及びバックフォイル413とを有する。本実施形態では、図44に示すように、複数(図示例では各6枚)の扇形のトップフォイル412及びバックフォイル413が、軸402の回転方向(フォイルホルダ411の周方向)で並べて配される。尚、以下では、軸402の回転方向先行側(図44の矢印R方向)、すなわち、軸402の回転時における、トップフォイル412に対する空気の流れ方向下流側を「下流側」と言い、その反対側を「上流側」と言う。 As shown in FIG. 43, the foil bearing 410 according to the ninth embodiment is an air film formed between the disc-shaped thrust collar 403 provided on the shaft 402 and a thrust that supports the shaft 402 in the thrust direction. It is a foil bearing. The foil bearing 410 includes a disc-shaped foil holder 411, and a top foil 412 and a back foil 413 attached to the end surface 411 a of the foil holder 411. In the present embodiment, as shown in FIG. 44, a plurality (six in the illustrated example) of fan-shaped top foil 412 and back foil 413 are arranged side by side in the rotation direction of shaft 402 (the circumferential direction of foil holder 411). The In the following description, the upstream side in the rotational direction of the shaft 402 (in the direction of arrow R in FIG. 44), that is, the downstream side in the air flow direction with respect to the top foil 412 when the shaft 402 rotates is referred to as “downstream side” and vice versa. The side is called the “upstream side”.
 フォイルホルダ411は、金属や樹脂等で形成される。フォイルホルダ411は、軸402が挿入される内孔411bを有する中空円盤状を成している。フォイルホルダ411の一方の端面411aには複数のトップフォイル412及びバックフォイル413が取り付けられる。フォイルホルダ411の他方の端面411cは、フォイル軸受410が組み込まれる設備(例えばガスタービン等のターボ機械)のハウジングに固定される。 The foil holder 411 is made of metal, resin, or the like. The foil holder 411 has a hollow disk shape having an inner hole 411b into which the shaft 402 is inserted. A plurality of top foils 412 and a back foil 413 are attached to one end surface 411 a of the foil holder 411. The other end surface 411c of the foil holder 411 is fixed to a housing of a facility (for example, a turbo machine such as a gas turbine) in which the foil bearing 410 is incorporated.
 トップフォイル412及びバックフォイル413は、ばね性に富み、かつ加工性のよい金属で形成され、例えば鋼や銅合金で形成される。トップフォイル412及びバックフォイル413は、厚さ20μm~200μm程度の金属薄板(フォイル)で形成される。本実施形態のように流体膜として空気を用いる空気動圧軸受では、雰囲気に潤滑油が存在しないため、ステンレス鋼もしくは青銅でトップフォイル412及びバックフォイル413を形成するのが好ましい。 The top foil 412 and the back foil 413 are made of a metal having a high spring property and good workability, for example, steel or a copper alloy. The top foil 412 and the back foil 413 are formed of a thin metal plate (foil) having a thickness of about 20 μm to 200 μm. In an air dynamic pressure bearing using air as a fluid film as in the present embodiment, since there is no lubricating oil in the atmosphere, it is preferable to form the top foil 412 and the back foil 413 with stainless steel or bronze.
 トップフォイル412は、軸受面Xを有するトップフォイル部Tfとして機能する。トップフォイル412は、図44及び図45に示すように、凹凸の無い滑らかな軸受面Xを有する。トップフォイル412の上流側の端部412aは、フォイルホルダ411の端面411aに溶接等により固定される。 The top foil 412 functions as a top foil portion Tf having the bearing surface X. As shown in FIGS. 44 and 45, the top foil 412 has a smooth bearing surface X having no irregularities. The upstream end 412a of the top foil 412 is fixed to the end surface 411a of the foil holder 411 by welding or the like.
 トップフォイル412の下流側の端部は自由端である。トップフォイル412の下流側の端部には、曲げ部412b(剛性付与手段)が設けられる(図45参照)。曲げ部412bは、トップフォイル412の下流側の端部付近を、スラストカラー403から離反する側(フォイルホルダ411側)に曲げることで形成される。具体的には、打ち抜き加工や放電加工により所定形状の平板状のフォイル素材を形成した後、このフォイル素材のうち、軸受面Xの下流側に隣接した領域(図示例では、軸受面Xよりも下流側の帯状の領域)を、プレス加工等で塑性変形させることで、曲げ部412bが形成される。尚、フォイル素材の打ち抜きと、曲げ部412bの形成とを、プレス加工で同時に行うこともできる。曲げ部412bは、軸受面Xの下流側の端部に沿って延び、図示例では回転直交方向(半径方向)に延びる。曲げ部412bは、軸受面Xに対して折り曲げられている。曲げ部412bの角度や寸法は、曲げ部412bの端部がフォイルホルダ411と接触しないように設定される。図示例では、曲げ部412bが、軸受面Xと直交する方向に折り曲げられている。曲げ部412bの軸方向寸法は、バックフォイル413の軸方向寸法よりも小さく、例えばバックフォイル413の軸方向寸法の30~70%とされる。 The downstream end of the top foil 412 is a free end. A bent portion 412b (rigidity imparting means) is provided at the downstream end of the top foil 412 (see FIG. 45). The bent portion 412b is formed by bending the vicinity of the downstream end portion of the top foil 412 to the side away from the thrust collar 403 (the foil holder 411 side). Specifically, after a flat plate-shaped foil material having a predetermined shape is formed by punching or electric discharge machining, an area adjacent to the downstream side of the bearing surface X in the foil material (in the illustrated example, more than the bearing surface X). The bent portion 412b is formed by plastically deforming the downstream band-like region) by pressing or the like. It should be noted that the stamping of the foil material and the formation of the bent portion 412b can be simultaneously performed by pressing. The bent portion 412b extends along the downstream end of the bearing surface X, and extends in the direction orthogonal to the rotation (radial direction) in the illustrated example. The bent portion 412b is bent with respect to the bearing surface X. The angle and dimension of the bent portion 412b are set so that the end portion of the bent portion 412b does not contact the foil holder 411. In the illustrated example, the bent portion 412b is bent in a direction orthogonal to the bearing surface X. The axial dimension of the bent portion 412b is smaller than the axial dimension of the back foil 413, for example, 30 to 70% of the axial dimension of the back foil 413.
 トップフォイル412の軸受面Xと曲げ部412bとの間の角度は直角に限らず、この角度を鋭角としてもよい。例えば図48に示す例では、トップフォイル412の下流側の端部付近を上流側に約180°折り返して、曲げ部412bを形成している。あるいは、図49に示すように、軸受面Xと曲げ部412bとの間の角度を鈍角としてもよい。また、同図に示すように、曲げ部412bの端部をフォイルホルダ411の端面411aに当接させてもよい。この場合、軸受面Xの下流側の端部付近の領域の剛性を高めることができる。この他、常時は曲げ部412bをフォイルホルダ411の端面411aから離反させ、軸受隙間の流体圧が高められたときに、曲げ部412bがフォイルホルダ411の端面411aに当接するようにしてもよい。 The angle between the bearing surface X of the top foil 412 and the bent portion 412b is not limited to a right angle, and this angle may be an acute angle. For example, in the example shown in FIG. 48, the bent portion 412b is formed by folding the vicinity of the downstream end of the top foil 412 about 180 ° upstream. Or as shown in FIG. 49, it is good also considering the angle between the bearing surface X and the bending part 412b as an obtuse angle. Further, as shown in the figure, the end of the bent portion 412b may be brought into contact with the end surface 411a of the foil holder 411. In this case, the rigidity of the region near the end portion on the downstream side of the bearing surface X can be increased. In addition, the bent portion 412b may be normally separated from the end surface 411a of the foil holder 411 so that the bent portion 412b contacts the end surface 411a of the foil holder 411 when the fluid pressure in the bearing gap is increased.
 バックフォイル413は、トップフォイル412を背後から支持するバックフォイル部Bfとして機能する。バックフォイル413は、平面視でトップフォイル412と略同形状の扇形をなし、トップフォイル412の真下に重ねて配されている(図45及び図46参照)。バックフォイル413の上流側の端部413aは、フォイルホルダ411の端面411aに溶接等により固定される。 The back foil 413 functions as a back foil portion Bf that supports the top foil 412 from behind. The back foil 413 has a fan shape that is substantially the same shape as the top foil 412 in a plan view, and is arranged to overlap the top foil 412 (see FIGS. 45 and 46). The upstream end 413a of the back foil 413 is fixed to the end surface 411a of the foil holder 411 by welding or the like.
 バックフォイル413は、半径方向に離隔した複数箇所でトップフォイル412と接触する支持部を有する。本実施形態では、図47に示すように、バックフォイル413に、平坦部413bと、平坦部413bからトップフォイル412側に突出した複数の上凸部413cと、平坦部413bからトップフォイル412と反対側に突出した複数の下凸部413dとが設けられ、上凸部413cが支持部を構成する。尚、上凸部413c及び下凸部413dは、これらの相対的な位置関係を理解しやすいように「上」「下」を付した名称としているが、これはフォイル軸受410の使用態様を限定する趣旨ではない。 The back foil 413 has support portions that come into contact with the top foil 412 at a plurality of locations separated in the radial direction. In this embodiment, as shown in FIG. 47, the back foil 413 has a flat portion 413b, a plurality of upper convex portions 413c protruding from the flat portion 413b to the top foil 412 side, and the flat portion 413b opposite to the top foil 412. A plurality of lower convex portions 413d protruding to the side are provided, and the upper convex portion 413c constitutes a support portion. In addition, although the upper convex part 413c and the lower convex part 413d are set as the name which attached "upper" and "lower" so that these relative positional relationships may be understood easily, this limits the use aspect of the foil bearing 410. It is not the purpose.
 バックフォイル413の平坦部413b、上凸部413c、および下凸部413dは、均一な肉厚を有する。上凸部413cおよび下凸部413dは、何れも概略半球状に形成される。上凸部413cおよび下凸部413dの内側は中空状になっているため、バックフォイル413を表裏の一方側、例えば図46のように表側(トップフォイル412側)から見た場合、下凸部413dが存在する領域は凹部となる。尚、図46では、理解しやすいように、凹部となる下凸部413dにハッチングを付している。上凸部413c及び下凸部413dの全周に、平坦部413bが設けられる。上凸部413c及び下凸部413dは、それぞれバックフォイル413の上流側端部413a付近を除く全域に分散して配置される。上凸部413cはトップフォイル412の裏面(軸受面Xと反対側の面)に接触し、下凸部413dはフォイルホルダ411の端面411aに接触する。 The flat portion 413b, the upper convex portion 413c, and the lower convex portion 413d of the back foil 413 have a uniform thickness. Both the upper convex portion 413c and the lower convex portion 413d are substantially hemispherical. Since the inside of the upper convex portion 413c and the lower convex portion 413d is hollow, when the back foil 413 is viewed from one side of the front and back sides, for example, from the front side (top foil 412 side) as shown in FIG. The region where 413d exists is a recess. In FIG. 46, for easy understanding, the lower convex portion 413d serving as a concave portion is hatched. A flat portion 413b is provided on the entire circumference of the upper convex portion 413c and the lower convex portion 413d. The upper convex part 413c and the lower convex part 413d are respectively distributed and arranged in the whole area except for the vicinity of the upstream end part 413a of the back foil 413. The upper convex portion 413 c comes into contact with the back surface (the surface opposite to the bearing surface X) of the top foil 412, and the lower convex portion 413 d comes into contact with the end surface 411 a of the foil holder 411.
 バックフォイル413は、フォイルをプレス加工することで形成される。本実施形態では、打ち抜き加工や放電加工により所定形状の平板状のフォイル素材を形成した後、このフォイル素材にプレス加工を施して上凸部413c及び下凸部413dを同時に成形することで、バックフォイル413が形成される。尚、フォイル素材の打ち抜きと、上凸部413c及び下凸部413dの成形とを、プレス加工で同時に行うこともできる。上凸部413c及び下凸部413dを含めたバックフォイル413全体の厚さ方向寸法(軸方向寸法)は0.5~2mm程度である。尚、図46に示す上凸部413cおよび下凸部413dの配置パターンは例示にすぎず、必要に応じて図46とは異なる任意の配置パターンを採用することができる。 The back foil 413 is formed by pressing the foil. In this embodiment, after forming a flat plate-shaped foil material having a predetermined shape by punching or electric discharge machining, the foil material is pressed to form the upper convex portion 413c and the lower convex portion 413d at the same time. A foil 413 is formed. It should be noted that the stamping of the foil material and the molding of the upper convex portion 413c and the lower convex portion 413d can be simultaneously performed by pressing. The thickness direction dimension (axial dimension) of the entire back foil 413 including the upper convex portion 413c and the lower convex portion 413d is about 0.5 to 2 mm. Note that the arrangement pattern of the upper protrusion 413c and the lower protrusion 413d shown in FIG. 46 is merely an example, and an arbitrary arrangement pattern different from that shown in FIG.
 図50に示すように、軸402及びスラストカラー403が周方向一方(矢印R方向)に回転すると、フォイル軸受410の各トップフォイル412の軸受面Xとスラストカラー403の端面403aとの間に軸受隙間Cが形成される。このとき、トップフォイル412が湾曲することで、軸受隙間Cは、下流側へ行くにつれて狭くなった楔状を成す。この楔状の軸受隙間Cの大隙間部C1の空気が小隙間部C2に押し込まれることにより、軸受隙間Cの空気膜の圧力が高められ、この圧力により軸402及びスラストカラー403がスラスト方向に非接触支持される。このとき、トップフォイル412の軸受面Xが、荷重や軸402の回転速度、周囲温度等の運転条件に応じて弾性変形することで、軸受隙間Cが運転条件に応じた適切幅に自動調整される。そのため、高温・高速回転といった過酷な条件下でも、軸受隙間Cを最適幅に管理することができ、軸402を安定して支持することが可能となる。 As shown in FIG. 50, when the shaft 402 and the thrust collar 403 are rotated in one circumferential direction (the direction of the arrow R), the bearings between the bearing surface X of each top foil 412 of the foil bearing 410 and the end surface 403a of the thrust collar 403 are supported. A gap C is formed. At this time, the top foil 412 is curved, so that the bearing gap C has a wedge shape that becomes narrower toward the downstream side. The air in the large gap portion C1 of the wedge-shaped bearing gap C is pushed into the small gap portion C2, thereby increasing the pressure of the air film in the bearing gap C. This pressure causes the shaft 402 and the thrust collar 403 to move in the thrust direction. Contact supported. At this time, the bearing surface C of the top foil 412 is elastically deformed according to the operating conditions such as the load, the rotational speed of the shaft 402, and the ambient temperature, so that the bearing gap C is automatically adjusted to an appropriate width according to the operating conditions. The Therefore, the bearing gap C can be managed to the optimum width even under severe conditions such as high temperature and high speed rotation, and the shaft 402 can be stably supported.
 上記のように、軸受隙間C(特に、小隙間部C2)の空気圧が高められると、トップフォイル412がバックフォイル413に押し付けられる。具体的には、トップフォイル412の上流側端部412a及び下流側端部(曲げ部412b)を除く大部分が、バックフォイル413の上凸部413cで接触支持される。このとき、トップフォイル412のうち、バックフォイル413の上凸部413c(支持部)が接触した接触部Aは剛性が高く、接触部Aの周囲は剛性が低い。従って、図51~53に示すように、トップフォイル412のうち、接触部Aの半径方向間の領域が、接触部Aよりもフォイルホルダ411側(図52及び53では下方)に変形し、この領域に凹部Bが形成される。一方、トップフォイル412の下流側の端部には、曲げ部412bが形成されているため、曲げ部412bに沿った領域(軸受面Xの下流側端部付近の領域)の剛性が高くなっている。従って、軸受面Xの下流側端部付近の領域は、流体圧によりフォイルホルダ411側に変形しにくいため、この領域に、凹部Bよりも一段高くなった堰Dが形成される(図53参照)。この堰Dは、半径方向で連続的に延び、本実施形態ではトップフォイル412の半径方向全長にわたって延びる(図51参照)。 As described above, when the air pressure in the bearing gap C (particularly, the small gap portion C2) is increased, the top foil 412 is pressed against the back foil 413. Specifically, most of the top foil 412 except the upstream end portion 412a and the downstream end portion (bending portion 412b) is contact-supported by the upper convex portion 413c of the back foil 413. At this time, in the top foil 412, the contact portion A where the upper convex portion 413c (supporting portion) 413c (support portion) of the back foil 413 contacts has high rigidity, and the periphery of the contact portion A has low rigidity. Therefore, as shown in FIGS. 51 to 53, the region in the radial direction of the contact portion A in the top foil 412 is deformed to the foil holder 411 side (downward in FIGS. 52 and 53) from the contact portion A. A recess B is formed in the region. On the other hand, since a bent portion 412b is formed at the downstream end of the top foil 412, the rigidity of the region along the bent portion 412b (region near the downstream end of the bearing surface X) is increased. Yes. Accordingly, the region near the downstream end portion of the bearing surface X is not easily deformed to the foil holder 411 side by the fluid pressure, and therefore a weir D that is one step higher than the recess B is formed in this region (see FIG. 53). ). This weir D extends continuously in the radial direction, and in this embodiment extends over the entire length of the top foil 412 in the radial direction (see FIG. 51).
 軸402の回転に伴って小隙間部C2に押し込まれた空気は、トップフォイル412の凹部Bを通って下流側に抜ける(図51及び53の矢印S参照)。しかし、凹部Bの下流側に、曲げ部412bに沿って連続的に延びる堰Dが設けられているため、空気の下流側への流動が規制される。これにより、小隙間部C2から下流側に空気が抜けにくくなり、小隙間部C2における空気圧の低下が抑えられるため(図39の下段の点線参照)、フォイル軸受410による支持力を高めることができる。 The air pushed into the small gap portion C2 with the rotation of the shaft 402 passes through the concave portion B of the top foil 412 to the downstream side (see arrow S in FIGS. 51 and 53). However, since the weir D continuously extending along the bent portion 412b is provided on the downstream side of the recess B, the flow of air to the downstream side is restricted. This makes it difficult for air to escape from the small gap portion C2 to the downstream side, and a decrease in air pressure in the small gap portion C2 is suppressed (see the dotted line in the lower stage of FIG. 39), so that the support force by the foil bearing 410 can be increased. .
 また、軸402の回転中は、図54に示すように、軸受隙間Cで生じる空気圧によりトップフォイル412が圧力Pを受けるため、バックフォイル413には、トップフォイル412を介して圧力P方向の圧縮力が作用する。平坦部413bは圧力P方向と直交する方向に延びる薄板状であるため、バックフォイル413の中でも前記圧縮力に対する剛性の低い部分となる。そのため、バックフォイル413に圧縮力が負荷されると、図54の二点鎖線で示すように先ず平坦部413bが変形して圧縮力を吸収する。従って、そのような平坦部分を有しない、既存のバンプ型フォイル軸受のバックフォイル部に比べ、バックフォイル413の剛性を局所的に小さくすることができる。これにより、軸受面Xの柔軟性が高まるため、軸402の変位等に対して軸受面Xが追従変形し易くなり、軸受隙間Cを最適幅に自動調整してスラストカラー403とトップフォイル412との接触を確実に防止することが可能となる。 During rotation of the shaft 402, as shown in FIG. 54, the top foil 412 receives the pressure P due to the air pressure generated in the bearing gap C. Therefore, the back foil 413 is compressed in the pressure P direction via the top foil 412. Force acts. Since the flat portion 413b has a thin plate shape extending in a direction orthogonal to the pressure P direction, the back foil 413 is a portion having low rigidity against the compression force. Therefore, when a compressive force is applied to the back foil 413, the flat portion 413b is first deformed and absorbs the compressive force as shown by a two-dot chain line in FIG. Therefore, the rigidity of the back foil 413 can be locally reduced as compared with the back foil portion of an existing bump type foil bearing that does not have such a flat portion. Thereby, since the flexibility of the bearing surface X is increased, the bearing surface X easily follows and deforms with respect to the displacement of the shaft 402, and the thrust collar 403, the top foil 412 and the bearing gap C are automatically adjusted to the optimum width. It is possible to reliably prevent the contact of.
 尚、軸402の停止直前や起動直後の低速回転時には、各トップフォイル412の軸受面Xとスラストカラー403の端面403aとが接触摺動するため、これらの何れか一方または双方に、DLC膜、チタンアルミナイトライド膜、二硫化タングステン膜、あるいは二硫化モリブデン膜等の低摩擦化被膜を形成してもよい。 Note that the bearing surface X of each top foil 412 and the end surface 403a of the thrust collar 403 are in sliding contact with each other at the time of low-speed rotation immediately before the shaft 402 is stopped or immediately after starting. A low friction coating such as a titanium aluminum nitride film, a tungsten disulfide film, or a molybdenum disulfide film may be formed.
 また、軸402の回転中は、トップフォイル412とバックフォイル413、あるいは、バックフォイル413とフォイルホルダ411の端面411aとの間に微小摺動が生じる。この微小摺動による摩擦エネルギーにより、軸402の振動を減衰させることができる。このような微小摺動による摩擦力を調整するために、互いに摺動する面の何れか一方または双方に、上記のような低摩擦化被膜を形成してもよい。 Further, during the rotation of the shaft 402, a minute slide occurs between the top foil 412 and the back foil 413 or between the back foil 413 and the end surface 411a of the foil holder 411. The vibration of the shaft 402 can be attenuated by the frictional energy generated by the minute sliding. In order to adjust the frictional force due to such micro-sliding, the above-described low-friction coating may be formed on one or both of the mutually sliding surfaces.
 本発明は、上記の実施形態に限られない。以下、本発明の他の実施形態を説明するが、上記の実施形態と重複する点については説明を省略する。 The present invention is not limited to the above embodiment. Hereinafter, although other embodiment of this invention is described, description is abbreviate | omitted about the point which overlaps with said embodiment.
 図55に示す第10実施形態では、トップフォイル412の下流側の端部のうち、半径方向両端を除く中間部のみに曲げ部412bを設けている。この場合、軸受面Xの下流側の端部付近の領域のうち、半径方向両端における剛性が低くなる。軸402が振れ回ると、スラストカラー403の端面403aの外径端が、軸受面Xの外径端に接触することがあるが、上記のように半径方向端部の曲げ部412bを省略し、この部分の剛性を低くすることで、スラストカラー403との接触による面圧が抑えられるため、トップフォイル412が損傷する事態を防止できる。尚、曲げ部412bは、上記のようにトップフォイル412の半径方向両端において省略する他、半径方向一方の端部のみ(例えば外径端のみ)において省略してもよい。 55, the bent portion 412b is provided only in the intermediate portion excluding both ends in the radial direction among the downstream end portions of the top foil 412. In the tenth embodiment shown in FIG. In this case, the rigidity at both ends in the radial direction in the region near the end portion on the downstream side of the bearing surface X is low. When the shaft 402 swings around, the outer diameter end of the end surface 403a of the thrust collar 403 may come into contact with the outer diameter end of the bearing surface X. However, as described above, the bending portion 412b at the radial end is omitted, By reducing the rigidity of this portion, the surface pressure due to contact with the thrust collar 403 can be suppressed, so that the top foil 412 can be prevented from being damaged. The bent portion 412b may be omitted at only one end portion in the radial direction (for example, only at the outer diameter end) in addition to being omitted at both ends in the radial direction of the top foil 412 as described above.
 また、上記の実施形態では、トップフォイル412の曲げ部412bを、軸受面Xに対して折り曲げているが、これに限られない。例えば、図56に示す第11実施形態では、トップフォイル412の下流側の端部付近を、スラストカラー403から離反する側に曲面状に湾曲させることで、曲げ部412bが形成されている。この場合、曲げ部412bは、軸受面Xと滑らかに連続した曲面部を有する。 In the above embodiment, the bent portion 412b of the top foil 412 is bent with respect to the bearing surface X. However, the present invention is not limited to this. For example, in the eleventh embodiment shown in FIG. 56, the bent portion 412b is formed by curving the vicinity of the end portion on the downstream side of the top foil 412 in a curved shape on the side away from the thrust collar 403. In this case, the bent portion 412b has a curved surface portion that is smoothly continuous with the bearing surface X.
 また、上記のフォイル軸受410において、バックフォイル413に設けられる上凸部413c及び下凸部413dの分布密度を場所によって変えることで、軸受面Xの剛性を部分的にコントロールすることができる。例えば、図57に示す第12実施形態では、上凸部413c及び下凸部413dの密度が、下流側に行くにつれて高くなっている。この場合、バックフォイル413の圧縮方向(軸方向)の剛性が下流側に行くにつれて高くなる。これにより、トップフォイル412の軸受面Xが、下流側に行くにつれて、スラストカラー403から離反する方向(軸受隙間Cを広げる方向)に変形しにくくなるため、楔状の軸受隙間Cが形成されやすくなる。尚、図57では、バックフォイル413を簡略化して矩形で示している。 In the foil bearing 410 described above, the rigidity of the bearing surface X can be partially controlled by changing the distribution density of the upper protrusions 413c and the lower protrusions 413d provided on the back foil 413 depending on the location. For example, in the twelfth embodiment shown in FIG. 57, the density of the upper protrusions 413c and the lower protrusions 413d increases as going downstream. In this case, the rigidity in the compression direction (axial direction) of the back foil 413 increases as it goes downstream. As a result, the bearing surface X of the top foil 412 is less likely to be deformed in a direction away from the thrust collar 403 (a direction in which the bearing gap C is widened) as it goes downstream, so that a wedge-shaped bearing gap C is easily formed. . In FIG. 57, the back foil 413 is simplified and shown as a rectangle.
 また、上記のフォイル軸受410において、バックフォイル413に設けられる上凸部413c及び下凸部413dの高さを場所によって変えることで、所定形状の軸受面を得ることができる。例えば、図58に示す第13実施形態では、上凸部413c及び下凸部413dを含むバックフォイル413の高さ(軸方向寸法)が、下流側に行くにつれて大きくなっている。これにより、トップフォイル412の軸受面Xが、下流側に行くにつれてスラストカラー403側に変位した形状となりやすくなり、楔状の軸受隙間Cが形成されやすくなる。 Further, in the foil bearing 410 described above, a bearing surface having a predetermined shape can be obtained by changing the heights of the upper convex portion 413c and the lower convex portion 413d provided on the back foil 413 depending on the location. For example, in the thirteenth embodiment shown in FIG. 58, the height (axial dimension) of the back foil 413 including the upper convex portion 413c and the lower convex portion 413d increases toward the downstream side. As a result, the bearing surface X of the top foil 412 tends to be displaced toward the thrust collar 403 toward the downstream side, and a wedge-shaped bearing gap C is easily formed.
 図59に示す第14実施形態では、バックフォイル413に波形部413fを設けている。波形部413fは、軸402の回転方向と交差する方向に沿って延びる複数の山部413f1及び谷部413f2を、軸402の回転方向で交互に有する。波形部413fの山部413f1が、トップフォイル412を背後から接触支持する第一支持部を構成する。山部413f1及び谷部413f2は、バックフォイル413の下流側端部の縁と交差する方向に延び、図示例では、バックフォイル413の上流側端部413aの縁と平行な方向に延びる。この場合、バックフォイル413の下流側端部では、山部413f1が半径方向に離隔した複数箇所に設けられ、これらの山部413f1がトップフォイル412に接触する。 In the fourteenth embodiment shown in FIG. 59, the back foil 413 is provided with a corrugated portion 413f. The corrugated portion 413 f has a plurality of peak portions 413 f 1 and valley portions 413 f 2 extending along the direction intersecting the rotation direction of the shaft 402 alternately in the rotation direction of the shaft 402. The peak portion 413f1 of the corrugated portion 413f constitutes a first support portion that contacts and supports the top foil 412 from behind. The peak portion 413f1 and the valley portion 413f2 extend in a direction intersecting with the edge of the downstream end portion of the back foil 413, and extend in a direction parallel to the edge of the upstream end portion 413a of the back foil 413 in the illustrated example. In this case, at the downstream end portion of the back foil 413, the peak portions 413f1 are provided at a plurality of locations separated in the radial direction, and these peak portions 413f1 are in contact with the top foil 412.
 図59に示すような波形部413fを有するバックフォイル413は、例えばプレス加工により形成することができる。この場合、平板状のフォイル素材が波形に曲げられるため、その分だけ平面視における寸法(山部413f1の延在方向と直交する方向の寸法)が縮小する。従って、プレス加工を施す前の平板状のフォイル素材は、プレス加工による寸法の縮小を考慮して形状及び寸法を設定する必要があるため、設計が非常に複雑となる。 The back foil 413 having the corrugated portion 413f as shown in FIG. 59 can be formed by, for example, pressing. In this case, since the flat foil material is bent into a corrugated shape, the dimension in plan view (dimension in the direction orthogonal to the extending direction of the peak portion 413f1) is reduced accordingly. Therefore, the flat foil material before the press work needs to be set in shape and dimensions in consideration of the reduction in dimensions due to the press work, so that the design becomes very complicated.
 これに対し、図47に示すようなディンプル状の上凸部413c及び下凸部413dを有するバックフォイル413は、平板状のフォイル素材にプレス加工を施し、局部的に材料を引き延ばして上凸部413c及び下凸部413dを成形することができる。この場合、プレス加工により、平面視における全体寸法はほとんど変化しないため、上凸部413c及び下凸部413dを自由に設計することが可能となり、バックフォイル413の設計が容易化される。 On the other hand, the back foil 413 having the dimple-like upper convex portion 413c and the lower convex portion 413d as shown in FIG. 47 is formed by pressing the flat foil material and locally stretching the material. 413c and the downward convex part 413d can be shape | molded. In this case, since the overall dimensions in a plan view are hardly changed by pressing, the upper convex portion 413c and the lower convex portion 413d can be freely designed, and the design of the back foil 413 is facilitated.
 図60に示す第15実施形態では、トップフォイル部Tf及びバックフォイル部Bfを一体に有するフォイル部材414を備える(バックフォイル部Bfは散点模様で示す)。各フォイル部材414の上流側の端部が、フォイルホルダ411に取り付けられる。複数のフォイル部材414をフォイルホルダ411に取り付けた状態では、各フォイル部材414のトップフォイル部Tfとフォイルホルダ411との間に、隣接するフォイル部材414のバックフォイル部Bfが配される。各フォイル部材414のバックフォイル部Bfには、半径方向に離隔した複数箇所でトップフォイル部Tfを接触支持する支持部が設けられ、例えば、図46及び図47に示されたような平坦部413b、上凸部413c(支持部)、及び下凸部413dが設けられる。 60 includes a foil member 414 integrally having a top foil portion Tf and a back foil portion Bf (the back foil portion Bf is indicated by a dotted pattern). The upstream end of each foil member 414 is attached to the foil holder 411. In a state where the plurality of foil members 414 are attached to the foil holder 411, the back foil portion Bf of the adjacent foil member 414 is disposed between the top foil portion Tf of each foil member 414 and the foil holder 411. The back foil portion Bf of each foil member 414 is provided with a support portion for contacting and supporting the top foil portion Tf at a plurality of locations separated in the radial direction. For example, a flat portion 413b as shown in FIGS. , An upper convex portion 413c (support portion), and a lower convex portion 413d are provided.
 また、上記の実施形態では、トップフォイル412の下流側の端部を塑性変形させることで曲げ部412bを形成する場合を示したが、これに限らず、トップフォイル412の下流側の端部を弾性変形させることで曲げ部412bを形成してもよい。例えば、図61に示す第16実施形態では、トップフォイル部Tfとバックフォイル部Bfとを一体に有するフォイル部材414を備え、トップフォイル部Tfの下流側端部に差込部412cを設けると共に、トップフォイル部Tfの上流側端部付近に差込口412dを設けている。図62に示すように、各トップフォイル部Tfの差込部412cは、下流側に隣接するトップフォイル部Tfの差込口412dに差し込まれる。トップフォイル部Tfの背後(図中下方)にはバックフォイル部Bfが配されているため、通常、トップフォイル部Tfの下流側端部(自由端)は、上流側端部よりもスラストカラー側(図中上方)に配される。従って、トップフォイル部Tfの下流側端部に設けられた差込部412cを、隣接するトップフォイル部Tfの上流側端部付近に設けられた差込口412dに差し込むことにより、トップフォイル部Tfの下流側端部付近が軸から離反する側(図中下方)に弾性的に湾曲され、これにより曲げ部412bが形成される。尚、図示例では、トップフォイル部Tfの半径方向中央のみに差込部412c及び差込口412dを設けているが、これに限らず、半径方向に離隔した複数箇所(例えば半径方向両端)に差込部412c及び差込口412dを設けてもよい。 In the above embodiment, the case where the bent portion 412b is formed by plastically deforming the downstream end portion of the top foil 412 is not limited to this, but the downstream end portion of the top foil 412 is not limited to this. The bent portion 412b may be formed by elastic deformation. For example, in the sixteenth embodiment shown in FIG. 61, a foil member 414 integrally including a top foil portion Tf and a back foil portion Bf is provided, and an insertion portion 412c is provided at a downstream end portion of the top foil portion Tf. An insertion port 412d is provided in the vicinity of the upstream end of the top foil portion Tf. As shown in FIG. 62, the insertion portion 412c of each top foil portion Tf is inserted into the insertion port 412d of the top foil portion Tf adjacent to the downstream side. Since the back foil portion Bf is arranged behind the top foil portion Tf (lower side in the figure), the downstream end portion (free end) of the top foil portion Tf is usually on the thrust collar side than the upstream end portion. (Upper in the figure). Therefore, the top foil portion Tf is inserted by inserting the insertion portion 412c provided at the downstream end portion of the top foil portion Tf into the insertion port 412d provided near the upstream end portion of the adjacent top foil portion Tf. The vicinity of the downstream end is elastically curved toward the side away from the shaft (downward in the figure), thereby forming a bent portion 412b. In the illustrated example, the insertion portion 412c and the insertion port 412d are provided only at the center in the radial direction of the top foil portion Tf. You may provide the insertion part 412c and the insertion port 412d.
 また、図63に示す第17実施形態では、差込部412c及び差込口412dを有するトップフォイル412と、バックフォイル413とを、別体に形成している。この場合、トップフォイル412の差込口412dは、図63のようなスリット状に限らず、図64のように、トップフォイル412の上流側端部に開口した凹部で構成してもよい。 In the seventeenth embodiment shown in FIG. 63, the top foil 412 having the insertion portion 412c and the insertion port 412d and the back foil 413 are formed separately. In this case, the insertion port 412d of the top foil 412 is not limited to the slit shape as shown in FIG. 63, and may be configured by a recess opened at the upstream end of the top foil 412 as shown in FIG.
 図65に示す第18実施形態では、図60に示す実施形態と同様に、各フォイル部材414がトップフォイル部Tf及びバックフォイル部Bfを有しているが、各フォイル部材414の形状が図61に示す実施形態と異なる。図65のフォイル部材414は、トップフォイル部Tf及びバックフォイル部Bfを有する本体414aと、本体414aから外径側に延び、フォイルホルダ411に固定される固定部414bとを有する。本体414aの下流側端部の縁414a1及び上流側端部の縁414a2は、何れも半径方向中央部を下流側に膨らませた形状を成している。本体414aの下流側端部には、軸受面Xの下流側端部に沿って延びる曲げ部412bが設けられる(図65に点線で示す)。バックフォイル部Bfには、平坦部413b、支持部としての上凸部413c(白抜き円)、及び下凸部413d(ハッチング円)が設けられる。図65のフォイル部材414をフォイルホルダ411に取り付けると、図66に示すように、各フォイル部材414のバックフォイル部Bfは隣接するフォイル部材414のトップフォイル部Tfの背後に隠れ、トップフォイル部Tfのみが表側(スラストカラー側)に露出した状態となる。 In the eighteenth embodiment shown in FIG. 65, as in the embodiment shown in FIG. 60, each foil member 414 has a top foil portion Tf and a back foil portion Bf, but the shape of each foil member 414 is shown in FIG. Different from the embodiment shown in FIG. 65 includes a main body 414a having a top foil portion Tf and a back foil portion Bf, and a fixing portion 414b extending from the main body 414a to the outer diameter side and fixed to the foil holder 411. Both the edge 414a1 at the downstream end and the edge 414a2 at the upstream end of the main body 414a have a shape in which the central portion in the radial direction is inflated downstream. A bent portion 412b extending along the downstream end portion of the bearing surface X is provided at the downstream end portion of the main body 414a (shown by a dotted line in FIG. 65). The back foil portion Bf is provided with a flat portion 413b, an upper convex portion 413c (open circle) as a support portion, and a lower convex portion 413d (hatched circle). When the foil member 414 of FIG. 65 is attached to the foil holder 411, as shown in FIG. 66, the back foil portion Bf of each foil member 414 is hidden behind the top foil portion Tf of the adjacent foil member 414, and the top foil portion Tf Only the surface side (thrust color side) is exposed.
 以上の実施形態では、本発明をスラストフォイル軸受に適用した場合を示したが、本発明は、軸をラジアル方向に支持するラジアルフォイル軸受に適用することもできる。例えば、図67に示す第19実施形態は、いわゆるリーフ型のラジアルフォイル軸受420に本発明を適用したものである。このラジアルフォイル軸受420は、円筒状のフォイルホルダ421と、フォイルホルダ421の内周面421aに周方向に並べて取り付けられた複数のフォイル部材422とを有する。各フォイル部材422のうち、下流側の領域がトップフォイル部Tfとして機能し、上流側の領域がバックフォイル部Bfとして機能する。各フォイル部材422のトップフォイル部Tfの下流側端部には、上記の実施形態と同様に、曲げ部412bが設けられる。バックフォイル部Bf(散点模様で示す)には、回転直交方向(軸方向)に離隔した複数箇所に支持部(例えば上凸部)が設けられる。軸402の回転時には、トップフォイル部Tfの軸受面Xと軸402の外周面との間に軸受隙間Cが形成される。 In the above embodiment, the case where the present invention is applied to a thrust foil bearing has been shown. However, the present invention can also be applied to a radial foil bearing that supports a shaft in a radial direction. For example, in the nineteenth embodiment shown in FIG. 67, the present invention is applied to a so-called leaf-type radial foil bearing 420. The radial foil bearing 420 includes a cylindrical foil holder 421 and a plurality of foil members 422 attached to the inner peripheral surface 421a of the foil holder 421 in a circumferential direction. Of each foil member 422, the downstream region functions as the top foil portion Tf, and the upstream region functions as the back foil portion Bf. A bent portion 412b is provided at the downstream end of the top foil portion Tf of each foil member 422, as in the above embodiment. In the back foil portion Bf (indicated by a dotted pattern), support portions (for example, upward convex portions) are provided at a plurality of locations separated in the rotation orthogonal direction (axial direction). When the shaft 402 rotates, a bearing gap C is formed between the bearing surface X of the top foil portion Tf and the outer peripheral surface of the shaft 402.
 以上の実施形態では、フォイル軸受を固定し、軸402を回転させた場合を示したが、これに限らず、軸402を固定し、フォイル軸受を回転させてもよい。ただし、フォイル軸受を回転させると、遠心力でフォイルが破損する恐れがあるため、上記の実施形態のようにフォイル軸受を固定することが好ましい。 In the above embodiment, the case where the foil bearing is fixed and the shaft 402 is rotated is shown. However, the present invention is not limited thereto, and the shaft 402 may be fixed and the foil bearing may be rotated. However, if the foil bearing is rotated, the foil may be damaged by centrifugal force. Therefore, it is preferable to fix the foil bearing as in the above embodiment.
 また、以上に示したフォイル軸受は、例えばガスタービンやターボチャージャ(過給機)等のターボ機械の主軸用軸受、自動車等の車両用軸受、あるいは産業機器用の軸受等として使用することが可能である。 In addition, the foil bearings described above can be used, for example, as bearings for main shafts of turbo machines such as gas turbines and turbochargers (superchargers), bearings for vehicles such as automobiles, or bearings for industrial equipment. It is.
 また、以上に述べたフォイル軸受は、圧力発生流体として空気を使用した空気動圧軸受のみならず、圧力発生流体として潤滑油を使用した油動圧軸受としても使用することができる。 Further, the foil bearing described above can be used not only as an air dynamic pressure bearing using air as a pressure generating fluid but also as an oil dynamic pressure bearing using lubricating oil as a pressure generating fluid.
 また、第1の発明の実施形態として示したフォイル軸受の構成と、第2の発明の実施形態として示したフォイル軸受の構成とを組み合わせて適用してもよい。 Further, the configuration of the foil bearing shown as the embodiment of the first invention and the configuration of the foil bearing shown as the embodiment of the second invention may be applied in combination.
2     軸
3     スラストカラー
10   フォイル軸受
11   フォイルホルダ
12   トップフォイル
12b1      切り欠き部
13   バックフォイル
13b 平坦部
13c 上凸部(第一突出部)
13d 下凸部(第二突出部)
Bf   バックフォイル部
Tf   トップフォイル部
X     軸受面
C     軸受隙間
C1   大隙間部
C2   小隙間部
D     フォイル間隙間
E     フォイル下隙間
2 shaft 3 thrust collar 10 foil bearing 11 foil holder 12 top foil 12b1 notched portion 13 back foil 13b flat portion 13c upward convex portion (first projecting portion)
13d downward protrusion (second protrusion)
Bf Back foil part Tf Top foil part X Bearing surface C Bearing gap C1 Large gap part C2 Small gap part D Foil gap E Foil bottom gap

Claims (8)

  1.  軸受面を有するトップフォイル部と、前記トップフォイル部を背後から弾性的に支持するバックフォイル部と、前記トップフォイル部及び前記バックフォイル部が取り付けられたフォイルホルダとを備え、相対回転する軸と前記軸受面との間の軸受隙間に生じる流体圧で、前記軸を非接触支持するフォイル軸受において、
     前記トップフォイル部の下流側端部に複数の切り欠き部を設け、
     前記バックフォイル部が、軸の相対回転方向と直交する方向で離隔した複数箇所で前記トップフォイル部と接触するフォイル軸受。
    A top foil part having a bearing surface; a back foil part that elastically supports the top foil part from behind; a foil holder to which the top foil part and the back foil part are attached; In the foil bearing that supports the shaft in a non-contact manner with the fluid pressure generated in the bearing gap between the bearing surface,
    A plurality of notches are provided at the downstream end of the top foil portion,
    The foil bearing which the said back foil part contacts with the said top foil part in several places spaced apart in the direction orthogonal to the relative rotation direction of an axis | shaft.
  2.  前記バックフォイル部が、軸の相対回転方向と直交する方向で離隔した複数箇所で前記フォイルホルダと接触する請求項1に記載のフォイル軸受。 The foil bearing according to claim 1, wherein the back foil portion is in contact with the foil holder at a plurality of locations separated in a direction orthogonal to a relative rotation direction of the shaft.
  3.  前記バックフォイル部が、平坦部と、前記平坦部から前記トップフォイル部側に突出した複数の第一突出部と、前記平坦部から前記トップフォイル部と反対側に突出した複数の第二突出部とを有する請求項1又は2に記載のフォイル軸受。 The back foil portion includes a flat portion, a plurality of first protrusions protruding from the flat portion toward the top foil portion, and a plurality of second protrusions protruding from the flat portion to the opposite side of the top foil portion. The foil bearing of Claim 1 or 2 which has these.
  4.  前記バックフォイル部の下流側端部に複数の切り欠き部を設けた請求項1~3の何れか1項に記載のフォイル軸受。 The foil bearing according to any one of claims 1 to 3, wherein a plurality of notches are provided at a downstream end portion of the back foil portion.
  5.  前記バックフォイル部の下流側端部が、前記相対回転方向で、前記トップフォイル部の下流側端部よりも下流側に配された請求項4に記載のフォイル軸受。 The foil bearing according to claim 4, wherein a downstream end portion of the back foil portion is arranged on the downstream side of the downstream end portion of the top foil portion in the relative rotation direction.
  6.  前記トップフォイル部の下流側端部付近の、前記軸から離反する側への変形に対する剛性を高めることで、前記相対回転方向と直交する方向で連続的に設けられた堰を形成する剛性付与手段を設けた請求項1~5の何れか1項に記載のフォイル軸受。 Rigidity imparting means for forming a weir continuously provided in a direction orthogonal to the relative rotational direction by increasing the rigidity against deformation toward the side away from the shaft near the downstream end of the top foil part. The foil bearing according to any one of claims 1 to 5, wherein:
  7.  前記バックフォイル部が、前記トップフォイル部を、前記軸の相対回転方向と直交する方向に離隔した複数箇所で接触支持する第一支持部と、前記第一支持部の下流側に設けられ、前記トップフォイル部を、前記相対回転方向と直交する方向で連続的に接触支持する第二支持部とを有する請求項6に記載のフォイル軸受。 The back foil portion is provided on the downstream side of the first support portion, a first support portion that contacts and supports the top foil portion at a plurality of locations separated in a direction orthogonal to the relative rotation direction of the shaft, The foil bearing of Claim 6 which has a 2nd support part which contacts and supports a top foil part continuously in the direction orthogonal to the said relative rotation direction.
  8.  前記トップフォイル部が、前記軸受面の下流側に隣接した領域に、前記軸受面の下流側の端部に沿って、前記軸から離反する側に曲げられた曲げ部を有する請求項6に記載のフォイル軸受。 The said top foil part has the bending part bent in the area | region adjacent to the downstream of the said bearing surface along the downstream edge part of the said bearing surface to the side away from the said axis | shaft. Foil bearing.
PCT/JP2017/010637 2016-03-30 2017-03-16 File bearing WO2017169842A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2016-069138 2016-03-30
JP2016069021A JP6651397B2 (en) 2016-03-30 2016-03-30 Foil bearing
JP2016069138A JP2017180685A (en) 2016-03-30 2016-03-30 Foil bearing
JP2016-069021 2016-03-30
JP2016-143490 2016-07-21
JP2016143490A JP6798810B2 (en) 2016-07-21 2016-07-21 Foil bearing

Publications (1)

Publication Number Publication Date
WO2017169842A1 true WO2017169842A1 (en) 2017-10-05

Family

ID=59965375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/010637 WO2017169842A1 (en) 2016-03-30 2017-03-16 File bearing

Country Status (1)

Country Link
WO (1) WO2017169842A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020050257A1 (en) * 2018-09-04 2020-03-12 株式会社Ihi Thrust foil bearing
JP2020159450A (en) * 2019-03-26 2020-10-01 Ntn株式会社 Thrust foil bearing, foil bearing unit, turbomachine and foil
KR20210146158A (en) * 2020-05-26 2021-12-03 주식회사 뉴로스 Air foil thrust bearing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003507682A (en) * 1999-08-24 2003-02-25 アライドシグナル インコーポレイテッド Foil thrust bearing
JP2012154447A (en) * 2011-01-27 2012-08-16 Shimadzu Corp Dynamic pressure gas bearing
JP2012197887A (en) * 2011-03-22 2012-10-18 Ntn Corp Foil bearing, and its manufacturing method
JP2013047555A (en) * 2011-08-29 2013-03-07 Ntn Corp Foil bearing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003507682A (en) * 1999-08-24 2003-02-25 アライドシグナル インコーポレイテッド Foil thrust bearing
JP2012154447A (en) * 2011-01-27 2012-08-16 Shimadzu Corp Dynamic pressure gas bearing
JP2012197887A (en) * 2011-03-22 2012-10-18 Ntn Corp Foil bearing, and its manufacturing method
JP2013047555A (en) * 2011-08-29 2013-03-07 Ntn Corp Foil bearing

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020050257A1 (en) * 2018-09-04 2020-03-12 株式会社Ihi Thrust foil bearing
JP2020037975A (en) * 2018-09-04 2020-03-12 株式会社Ihi Thrust foil bearing
CN112912635A (en) * 2018-09-04 2021-06-04 株式会社Ihi Thrust foil bearing
EP3848601A4 (en) * 2018-09-04 2022-05-18 IHI Corporation Thrust foil bearing
US11408466B2 (en) 2018-09-04 2022-08-09 Ihi Corporation Thrust foil bearing
JP7139800B2 (en) 2018-09-04 2022-09-21 株式会社Ihi thrust foil bearing
JP2020159450A (en) * 2019-03-26 2020-10-01 Ntn株式会社 Thrust foil bearing, foil bearing unit, turbomachine and foil
WO2020195488A1 (en) * 2019-03-26 2020-10-01 Ntn株式会社 Thrust foil bearing, foil bearing unit, turbo machine, and foil
JP7114520B2 (en) 2019-03-26 2022-08-08 Ntn株式会社 Thrust foil bearings, foil bearing units, turbomachinery and foils
US11719126B2 (en) 2019-03-26 2023-08-08 Ntn Corporation Thrust foil bearing, foil bearing unit, turbo machine, and foil
KR20210146158A (en) * 2020-05-26 2021-12-03 주식회사 뉴로스 Air foil thrust bearing
KR102413773B1 (en) * 2020-05-26 2022-06-29 주식회사 뉴로스 Air foil thrust bearing

Similar Documents

Publication Publication Date Title
JP6268847B2 (en) Thrust bearing
JP5915701B2 (en) Radial foil bearing
JP6221244B2 (en) Thrust bearing
JP6372062B2 (en) Thrust bearing
WO2017169842A1 (en) File bearing
WO2007026851A1 (en) Roller bearing
WO2018047840A1 (en) Foil bearing
JP6651397B2 (en) Foil bearing
US20210372465A1 (en) Thrust foil bearing, and method for manufacturing base plate of thrust foil bearing
JP2018040413A (en) Foil bearing
JP2017180685A (en) Foil bearing
JP2018013162A (en) Foil bearing
CN112912635B (en) Thrust foil bearing
CN112639313B (en) Thrust foil bearing
CN216951265U (en) Radial bump foil, dynamic pressure air-float radial bearing, motor and air compressor
JP6798810B2 (en) Foil bearing
JP2018040414A (en) Foil bearing
JP6428335B2 (en) Thrust bearing
JP6654081B2 (en) Foil bearing
WO2022065375A1 (en) Thrust foil bearing
WO2018051929A1 (en) Foil bearing

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17774386

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17774386

Country of ref document: EP

Kind code of ref document: A1