WO2017169713A1 - Method for culturing microalga and method for producing algal biomass - Google Patents

Method for culturing microalga and method for producing algal biomass Download PDF

Info

Publication number
WO2017169713A1
WO2017169713A1 PCT/JP2017/010090 JP2017010090W WO2017169713A1 WO 2017169713 A1 WO2017169713 A1 WO 2017169713A1 JP 2017010090 W JP2017010090 W JP 2017010090W WO 2017169713 A1 WO2017169713 A1 WO 2017169713A1
Authority
WO
WIPO (PCT)
Prior art keywords
culture
medium
microalgae
biofilm
liquid surface
Prior art date
Application number
PCT/JP2017/010090
Other languages
French (fr)
Japanese (ja)
Inventor
沙織 松山
若田 裕一
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2018508950A priority Critical patent/JPWO2017169713A1/en
Publication of WO2017169713A1 publication Critical patent/WO2017169713A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials

Definitions

  • the present invention relates to a method for culturing useful algae-producing microalgae.
  • microalgae Production of useful substances such as oils, fats, lipids, and fuels by microalgae is expected from the viewpoints of reducing the amount of CO 2 generated from petrochemical fuels and the associated prevention of global warming.
  • the cost is high compared with other petrochemical fuels.
  • One of the causes of the high cost is that there is no efficient method for collecting microalgae. Specifically, since microalgae usually grow while floating in the liquid, in order to use the microalgae as biomass, a very dilute concentration of microalgae must be recovered from a large amount of liquid.
  • microalgae requires light energy, and there is a limit to the culture density of microalgae in order to ensure sufficient light irradiation for microalgae present in the liquid.
  • it is necessary to filter a large amount of water, but the size of microalgae is generally small and the filtration operation itself is not easy. .
  • a recovery method for solving such problems a method using a precipitant, a method using a centrifuge, a method of recovering the large organism after using microalgae as food for a larger organism, etc.
  • none of these methods led to a fundamental solution.
  • Patent Document 2 discloses a first step of aerobically cultivating microalgae Euglena, a second step of further culturing a medium in which the microalgae Euglena is cultured in a nitrogen-starved state, and anaerobic cells.
  • a method for producing a wax ester-rich Euglena comprising a third step held below is proposed. In this method, a nitrogen starvation condition is created by replacing the medium with a nitrogen-deficient medium.
  • Patent Document 3 is a method for culturing microalgae that is useful substance-productive, comprising culturing microalgae in a culture medium in a culture vessel and forming a biofilm on the liquid surface of the culture medium; and A method for culturing microalgae is proposed, which comprises a step of changing the concentration of at least one component and increasing the useful substance produced by the microalgae by changing the concentration of the component.
  • the step of changing the concentration of at least one component contained in the medium is preferably by reducing the concentration of the component containing nitrogen or phosphorus.
  • the medium used for culturing microalgae usually contains nitrate ions (nitrogen components), but the oil content in microalgae can be improved by reducing the amount of nitrate ions.
  • nitrate ions nitrogen components
  • algal body productivity is reduced. Therefore, the improvement of oil productivity (that is, algal body productivity x oil content) is not immediate. There is a problem that it is not connected.
  • Patent Document 2 includes switching from an aerobic condition to an anaerobic condition, and in addition to the complexity of the original culturing process, the method is further replaced with a nitrogen-deficient medium during the culturing. Requires operation. And even if it goes through such a process and operation, the improvement factor of oil productivity is less than 1.2 times.
  • the present inventors have intensively studied liquid surface suspension culture of microalgae. And now, focusing on not only nitrate ions but also phosphate ions among the medium components, the molar concentration ratio (N / P ratio) of nitrate ions to phosphate ions is 0.7 to 4.0, and Since the amount of nitrate ions per culture area is 0.2 mol / m 2 or more, high useful substance productivity is maintained without the need for complicated steps such as medium replacement and addition during culture. A possible medium composition was found. By using the above medium components. It has also been found that oil productivity can be improved at a higher magnification than the prior art that focuses only on the reduction of nitrate ions without requiring special operations. Based on these findings, the present invention has been completed.
  • the present invention provides the following.
  • a method for culturing microalgae that is useful substance productivity Microalgae in a medium in which the molar concentration ratio of nitrate ion to phosphate ion (N / P ratio) is 0.7 to 4.0 and the amount of nitrate ion per culture area is 0.2 mol / m 2 or more.
  • the microalgae is Botryococcus sudueticus FERM BP-11420, or Chlorococcus sp.
  • the oil productivity for each comparison object is as follows: white rhombus: 1.4 times or more, white circle: 1.3 times or more and less than 1.4 times, white triangle: 1.2 times or more and less than 1.3 times, black triangle: 1. 1 times or more and less than 1.2 times, X mark: less than 1.1 times
  • the numerical range expressed using “to” means a range including numerical values described before and after “to” as the lower limit value and the upper limit value.
  • FIG. 1 The basic culture method of the present invention is shown in FIG.
  • FIG. 1 (a), first, a suspension or dispersion solution of microalgae is prepared. Next, when the culture vessel is left stationary, the microalgae usually sink to the bottom in several seconds to several tens of minutes depending on the type of microalgae as shown in FIG. In this state, when microalgae are cultured for a while, a biofilm composed of microalgae is formed on the liquid surface as shown in FIG. Normally, as shown in FIG.
  • microalgae are also present on the bottom surface of the culture vessel, and although not shown in the figure, they are also present on the side surface of the culture vessel.
  • culture in a stationary state is preferable.
  • the phrase “microalgae sinks to the bottom surface of the culture vessel” means that most of the microalgae sinks to the bottom surface, and does not mean a state in which the microalgae are completely absent from the liquid surface or in the liquid.
  • liquid surface floating algae is about 1/6 of stationary culture
  • Algae body is about 3.5 times that of stationary culture
  • alga body on the bottom surface is about 1.4 times that of stationary culture
  • by shaking culture the proportion of alga bodies existing on the liquid surface is reduced, The percentage of algal bodies present in the middle and bottom is increased.
  • the first substrate is brought into contact with the biofilm formed on the liquid surface, and the biofilm is adhered to the surface of the first substrate (( e)) can be recovered (hereinafter also referred to as “collection by transfer”).
  • the substrate is brought into contact with the entire liquid surface of the culture vessel.
  • the substrate may be partially contacted, or the entire surface or partial contact may be repeated a plurality of times.
  • the collection efficiency of the microalgae on the liquid surface is improved by contacting them a plurality of times.
  • a film-like structure or a three-dimensional structure can be transferred so as to overlap the surface of the first substrate.
  • a transfer material to which a biofilm on a liquid surface is attached is prepared as a first substrate.
  • the first substrate is used to transfer and collect a film-like structure or a three-dimensional structure composed of microalgae on the liquid surface used in FIG. It is a substrate.
  • the first substrate is a substrate that covers the entire liquid level of the culture medium in the culture vessel.
  • a substrate that covers the entire liquid level of the culture medium in the culture vessel may be used as described above. You may use the 1st board
  • the transfer material glass, polyethylene, polypropylene, nylon, polystyrene, vinyl chloride, polyester and the like can be used, but are not limited thereto. It is preferable that the transfer material can be cut with scissors or the like, if necessary, so as to be smaller than the liquid surface area of the culture vessel. For example, when the culture vessel is a 6-hole plate, it is preferable to cut the material into a circular shape having a diameter of about 3.5 cm. The cut transfer material is preferably used as the first substrate after washing to remove dust on the surface. When the collected biofilm is used for the next culture, it is preferable that the transfer material is further immersed in disinfecting ethanol and the surface is dried to be used as the first substrate.
  • the first substrate is gently inserted so that the first substrate is parallel to or close to the liquid surface formed by the culture vessel, and the microalgae on the liquid surface are attached to the first substrate.
  • the first substrate is inserted slightly obliquely with respect to the liquid surface and finally made parallel to the liquid surface, many liquid surface biofilms can be transferred with a small number of transfer times. It is preferable because it can be recovered.
  • the biofilm By gently pulling up the first substrate to which the biofilm on the liquid surface is attached, the biofilm can be transferred to the first substrate from the liquid surface of the culture vessel.
  • the transfer of the biofilm on the liquid surface by the first substrate may be performed a plurality of times. This is because the transfer rate is further improved by performing a plurality of times.
  • the microalgae biofilm growing on the liquid surface in the culture vessel may grow from a film shape into a pleated shape in the culture medium.
  • the second substrate is a substrate used for recovering a film-like structure or a three-dimensional structure composed of microalgae on the liquid surface used in FIG. It is.
  • the substrate is moved from the right side to the left side of the figure.
  • the direction of movement of the second substrate may be reversed (that is, movement of the substrate from the left side to the right side of the drawing) or may be collected multiple times. This is because the collection rate is improved by performing the collection multiple times.
  • the second substrate with the biofilm attached may be used, or the substrate after the biofilm has been completely or partially removed from the surface of the first substrate described above. It may be used as the second substrate or a new substrate may be used.
  • FIG. 1 only one second substrate is shown, but a plurality of second substrates may be used simultaneously. Thereby, a recovery rate improves.
  • the size of the second substrate, the angle of the second substrate with respect to the liquid surface, the moving speed, and the like can be freely set according to the purpose.
  • (g) of FIG. 1 is the state by which the biofilm was collect
  • the collection by the second substrate corresponds to the process from (f) to (g) in FIG.
  • other materials such as a nylon film can be used as the second substrate.
  • the size of the second substrate can be appropriately changed according to the size of the culture vessel, but it is preferable to use a substrate smaller than the surface area of the culture vessel as the second substrate. Thereby, while moving the second substrate, unnecessary contact with the inner wall of the culture vessel can be avoided, and the microalgae biofilm on the liquid surface is separated from the culture vessel and the second substrate. This is because a recovery leakage due to passing through the gap between the two is less likely to occur.
  • the microalgal biofilm growing on the liquid surface in the culture vessel may grow from a film shape into a pleated shape in the culture medium.
  • a fold-like biofilm can be collected by increasing the insertion depth of the second substrate into the liquid.
  • FIG. 1 is a state after the biofilm on the liquid surface is collected.
  • microalgae are attached or deposited.
  • the supply of microalgae to the liquid surface is described as being performed from the bottom surface, but in practice, the microalgae are also in a medium other than the liquid surface and the bottom surface, while the concentration is low. Existing.
  • the present invention describes that the microalgae are supplied from the bottom surface of the culture vessel to the liquid surface.
  • the supply of microalgae from the bottom of the culture vessel to the liquid surface means that the microalgae actually move from the bottom to the liquid surface when they move on the liquid surface without the growth of microalgae on the bottom surface. There are both cases of proliferating.
  • the culture method for culturing microalgae on the liquid surface as shown in FIG. 1 (c) is called liquid surface floating culture. That is, the culture method for culturing microalgae in only one or both of the liquid and the bottom of the liquid is not included in the liquid surface floating culture.
  • the liquid surface in the present invention is typically the liquid surface of a liquid medium described later, and is usually an interface between the liquid medium and air.
  • the liquid surface suspension culture as in the state of (c) of FIG. 1 is performed in a stationary state, which is called liquid surface suspension culture by stationary culture.
  • the microalgae biofilm is detached after the substrate is taken out of the culture vessel. However, it may be detached in the culture vessel.
  • a method for desorbing the microalgae biofilm on the substrate any method can be used as long as the microalgae can be peeled off from the substrate.
  • the microalgal biofilm can be peeled off the substrate by shaking vigorously, performing high-speed shaking treatment, or using something like a cell scraper it can.
  • a method of stripping the microalgal biofilm from the substrate using a jig using a material that does not damage the substrate, such as a cell scraper is preferable.
  • the microalgal biofilm can be peeled off the substrate simply by tilting the substrate. Since this method is simple, it is the most preferable method.
  • the substrate may be reused any number of times.
  • the medium (liquid medium) that can be used in the present invention is capable of cultivating microalgae, and has a molar concentration ratio of nitrate ion to phosphate ion (N / P ratio) of 0.7 to 4.0 as described later. There is no particular limitation as long as the amount of nitrate ions per culture area in the culture vessel is 0.2 mol / m 2 or more.
  • the medium used in the present invention can be prepared by increasing or decreasing predetermined components in a conventional medium.
  • Conventional media include AF-6 medium, Allen medium, BBM medium, C medium, CA medium, CAM medium, CB medium, CC medium, CHU medium, CSi medium, CT medium, CYT medium, D medium, ESM medium, f / 2 medium, HUT medium, M-11 medium, MA medium, MAF-6 medium, MF medium, MDM medium, MG medium, MGM medium, MKM medium, MNK medium, MW medium, P35 medium, URO medium, VT medium, Examples include VTAC medium, VTYT medium, W medium, WESM medium, SW medium, SOT medium, and the like.
  • those that are fresh water are AF-6 medium, Allen medium, BBM medium, C medium, CA medium, CAM medium, CB medium, CC medium, CHU medium, CSi medium, CT medium, CYT medium, D medium, HUT medium.
  • M-11 medium MA medium, MAF-6 medium, MDM medium, MG medium, MGM medium, MW medium, P35 medium, URO medium, VT medium, VTAC medium, VTYT medium, W medium, SW medium, SOT medium is there.
  • a medium for culturing the AVFF007 strain a C medium, a CSi medium, a CHU medium, and a mixture of these mediums are preferable.
  • the medium is preferably selected according to the type of microalgae to be cultured.
  • the medium may or may not be sterilized by ultraviolet light, autoclaving, or filter sterilization.
  • different media may be used in the pre-culture process and the main culture process. Moreover, you may change to a different culture medium in the middle of a culture
  • a culture medium in which the molar concentration ratio of nitrate ions to phosphate ions is set in an effective range from the viewpoint of improving the productivity of useful substances.
  • the N / P ratio is determined by the formula: (molar concentration of nitrate ions in the medium) / (molar concentration of phosphate ions in the medium).
  • the nitrate ion refers to a component represented by NO 3 ⁇ contained in the medium.
  • Nitrate ions are derived from potassium nitrate, sodium nitrate, calcium nitrate and the like among the medium components.
  • the phosphoric acid ion refers to H 2 PO 4 over, HPO 4 2-and PO 4 3- represented by the components contained in the medium.
  • the number of moles of phosphate ions refers to the total number of moles of these ions.
  • phosphate ions are dipotassium hydrogen phosphate (K 2 HPO 4 ), disodium hydrogen phosphate (Na 2 HPO 4 ), potassium dihydrogen phosphate (H 2 KPO 4 ), and dihydrogen phosphate. Derived from sodium (H 2 NaPO 4 ) and the like.
  • the N / P ratio is preferably 0.7 or more. This is because the productivity improvement rate of the useful substance can be 1.1 or more if it is at least this value.
  • the N / P ratio is more preferably 1.0 or more. This is because the productivity improvement rate of the useful substance can be 1.2 or more if the value is equal to or greater than this value. From the viewpoint of further increasing the productivity improvement rate of useful substances, the N / P ratio is more preferably 1.5 or more.
  • the upper limit value of the N / P ratio is preferably 4.0 or less regardless of the lower limit value of the N / P ratio. If this value is exceeded, the algal bodies will grow and the algal body productivity will be improved, but the content of useful substances per alga body will be reduced and the productivity of useful substances will be inferior.
  • a medium is used in which not only the N / P ratio but also the nitrate ion amount (mol / m 2 ) per culture area is set in an effective range from the viewpoint of improving the productivity of useful substances.
  • the amount of nitrate ions per culture area is determined by the formula: (mol of nitrate ions in the medium) / (culture area).
  • the culture area is an area of the liquid surface in the culture system, and is one of the important parameters in the culture of the present invention in which a biofilm is formed on the liquid surface.
  • the amount of nitrate ions per culture area is preferably 0.2 mol / m 2 or more. This is because the productivity improvement rate of the useful substance can be 1.1 or more if it is at least this value.
  • the nitrate ion amount per culture area is more preferably 0.26 mol / m 2 or more. This is because the productivity improvement rate of useful substances can be set to 1.2 or more if the value is equal to or greater than this value. From the viewpoint of further increasing the productivity improvement rate of useful substances, the nitrate ion amount per culture area is more preferably 0.28 mol / m 2 or more.
  • Upper limit of nitrate ion per culture area is preferably the lower limit of nitrate ion per culture area is a 1.5 mol / m 2 even less in each case, 1.2 mol / m 2 or less It is more preferable that If this value is exceeded, the growth of algal bodies will progress and algal body productivity will improve, but the content of useful substances per alga will decrease and the productivity of useful substances will be poor. .
  • the culture medium may contain a sugar that can be assimilated by microalgae as a carbon source.
  • a sugar that can be assimilated by microalgae includes at least one of monosaccharide, disaccharide, trisaccharide, and polysaccharide.
  • Any known monosaccharide can be used, but galactose, mannose, talose, ribose, xylose, arabinose, erythrose, threose, glyceraldehyde, fructose, xylulose, erythrulose, and the like can be used.
  • Any known disaccharide can be used, but trehalose, cordobiose, nigerose, maltose, isomaltose and the like can be used.
  • any of tricarbon sugar, tetracarbon sugar, pentose sugar, hexose sugar and heptose sugar can be used.
  • the polysaccharide starch, amylose, glycohegen, cellulose and the like can be used, and as the oligosaccharide, galactooligosaccharide, deoxyribose, glucuronic acid, glucosamine, glycerin, xylitol and the like can be used.
  • the concentration of sugar in the medium is preferably 0.1 ⁇ g / mL or more, more preferably 0.1 mg / mL or more, and most preferably 1 mg / mL or more. It is preferable for it to be 0.1 ⁇ g / mL or more because the growth rate of microalgae can be suitably improved.
  • solubility is preferably not more than solubility, more preferably not more than half of solubility, and still more preferably 1/10 concentration of solubility. More specifically, when glucose is used as the sugar, it can be 30 mg / mL or less, preferably 10 mg / mL or less, and more preferably 5 mg / mL or less.
  • the sugar concentration is a concentration (initial concentration) immediately before the start of culture, and the concentration of sugar during the culture often changes continuously.
  • a single kind of sugar may be used, or two or more kinds of sugars may be used.
  • the productivity of useful substances can be improved by defining the N / P ratio in the medium and the amount of nitrate ions per culture area.
  • the productivity (g / m 2 ⁇ day) of the useful substance is determined by multiplying the previously obtained algal body productivity (g / m 2 ⁇ day) by the content of the useful substance per algal body weight.
  • the improvement rate of the useful substance productivity is calculated as the ratio of the useful substance productivity in the target culture system to the productivity of the useful substance in the comparative culture system.
  • the comparative culture system is a culture system in which the amount of nitrate ions and phosphate ions in the medium is different from the target culture system, but the other culture conditions are the same. Other culture conditions include the amount of algal bodies at the start of culture (sometimes referred to as initial algal body amount), the number of culture days, the culture area, the depth of the medium (water depth), the amount of light, and the like.
  • the productivity improvement rate of useful substances is comparable to that of the prior art without replacing the culture medium. That is, it can be at least 1.1 times. In the preferable aspect of this invention, the improvement rate of productivity of a useful substance can be 1.2 times or more. Such a high improvement rate could not be achieved under the conventional culture conditions focusing only on nitrate ions (nitrogen components). Further, in a more preferred embodiment of the present invention, the productivity improvement rate of useful substances can be 1.3 times or more, and in a more preferred embodiment, the productivity improvement rate of useful materials is 1.4 times. This can be done.
  • microalgae refers to microalgae whose individual presence cannot be identified with the human eye.
  • the microalgae of the present invention is not particularly limited as long as it is useful substance productivity and has the ability to form a biofilm on the liquid surface.
  • microalgae used in the present invention are useful substance productivity, in particular, intermediates and final products of pharmaceuticals, cosmetics, health foods, raw materials used in synthetic chemistry, oils such as hydrocarbon compounds, triglycerides and fatty acid compounds.
  • Preferred are microalgae that generate a gas, gas such as hydrogen.
  • Microalgae also have good culturing on the liquid surface and recovery from the liquid surface, have a high growth rate, can have a high content of useful substances, have at least little odor during culturing, It is preferable to satisfy any one of the cases where generation of toxic substances has not been confirmed.
  • microalgae capable of forming a biofilm on the liquid surface.
  • Such microalgae are, for example, indigo plant gate, gray plant gate, red plant gate, green plant gate, cryptophyte gate, haptophyte gate, unequal hair plant gate, dinoflagellate plant gate, Euglena plant gate, chlora It may be a microalga belonging to Lactruction planta. Among these, those belonging to the green plant gate are preferable, and green algae are more preferable.
  • AVFF007 strain The AVFF007 strain, under the accession number FERM BP-11420, dated September 28, 2011, National Institute of Advanced Industrial Science and Technology, Patent Biological Deposit Center (1st East, 1st Street, Tsukuba, Ibaraki, Japan, 1st Central 6) is deposited internationally by Fujifilm Corporation (2-30-30 Nishiazabu, Minato-ku, Tokyo, Japan) under the Butabest Convention. The National Institute of Advanced Industrial Science and Technology, Patent Biological Depositary Center has been in operation since April 1, 2012. The National Institute of Technology and Evaluation, Patent Biological Depositary Center (Kisarazu City, Chiba Prefecture, Japan) Kazusa Kamashika 2-5-8 Room 120).
  • AVFF007 strain is a novel strain of freshwater microalgae isolated by the present inventors from a freshwater pond in Kyoto, Japan.
  • AVFF007 strain was analyzed by BLAST based on the data of the National Center for Biotechnology Information (NCBI) of a part of the base sequence of the 18S rRNA gene.
  • NCBI National Center for Biotechnology Information
  • Botryococcus sp. It was identified as a microalgae closely related to the UTEX2629 (Botryococcus sudeticus) strain (1109 bases on the AVFF007 strain side were the same among 1118 bases on the UTEX2629 strain side).
  • the AVFF007 strain is Characiopodium sp.
  • Mary 9/21 is a closely related microalgae with T-3w and may be changed to the genus Characiopodium in the future.
  • the name of the AVFF007 strain is changed, and the name of the AVFF007 strain is also changed when the name is changed to other than the genus Characiopodium.
  • AVFF007 strain having the same taxonomic properties as the AVFF007 strain can be used.
  • the taxonomic properties of AVFF007 strain are shown below.
  • Taxonomic properties of AVFF007 strain Morphological properties It has a green circle shape. It is free-floating and can grow on the liquid and bottom surfaces. The size is 4-30 ⁇ m (the one on the liquid surface is relatively large and the one on the bottom surface is relatively small). It grows on the liquid surface and forms a film-like structure. Along with the growth, bubbles are generated on the liquid surface, and they overlap to form a three-dimensional structure on the liquid surface. It also produces oil. 2.
  • Culture characteristics (culture method) (1) Medium: CSiFF04 (improved CSi medium) Adjust to pH 6.0 with NaOH or HCl. The medium can be sterilized at 121 ° C. for 10 minutes.
  • Culture temperature The preferred temperature is 23 ° C., and culture is possible at 37 ° C. or less.
  • the culture period (approximately the period until reaching the stationary phase) is 2 weeks to 1 month depending on the amount of algal bodies used initially. Usually, it can be cultured at 1 ⁇ 10 5 cells / mL.
  • Culture method Aerobic culture and stationary culture are suitable.
  • Optical requirement Necessary. Light intensity: 4000 to 15000 lux, light / dark cycle: light period 12 hours / dark period 12 hours. When subcultured, it can be cultured at 4000 lux.
  • the AVFF007 strain can be stored by subculture according to the above culture properties (culture method). Planting can be performed by collecting microalgae floating on the liquid surface, dispersing by pipetting, etc., and then dispersing in a new medium. In addition, although it is sinking in the bottom of a culture container immediately after subculture, it begins to form a biofilm on the liquid surface in about one week. Even if it is present on the liquid surface immediately after passage, it can grow. The planting interval is about one month. If it becomes yellowish, pass it on.
  • the strain having the same taxonomic characteristics as the AVFF007 strain is a microalgae, the 18S rRNA gene of which is at least 95.0% with the polynucleotide comprising the base sequence of SEQ ID NO: 1 of the aforementioned Patent Document 3, Preferably, those having a sequence identity of 98.0%, more preferably 99.0%, even more preferably 99.5%, most preferably 99.9% are included.
  • FFG039 strain The microalgae FFG039 used in the examples of the present specification was collected by the present inventors in Nara Prefecture, Japan. Compared with AVFF007 strain, it has good growth and oil productivity. In addition, the biofilm structure is not easily broken and is easy to collect.
  • the FFG039 strain has the accession number FERM BP-22262 on February 6, 2014, the National Institute for Product Evaluation Technology Patent Biological Depositary Center (2-5 Kazusa Kamashika, Kisarazu City, Chiba Prefecture, Japan) 8 Room 120) is deposited internationally by FUJIFILM Corporation (2-30-30 Nishiazabu, Minato-ku, Tokyo, Japan) under the Butabest Convention.
  • a strain having the same taxonomic characteristics as the FFG039 strain can be used.
  • the taxonomic properties of the FFG039 strain are shown below.
  • the method for obtaining microalgae is not particularly limited and may be appropriately selected according to the purpose. Examples thereof include a method of collecting from the natural world, a method of using a commercially available product, a method of obtaining from a storage organization and a depository organization, and the like. can give. In the present invention, one type of microalgae or a plurality of types of microalgae may be used. Moreover, you may use the micro algae which passed through the purification process.
  • a purification process is a process performed for the purpose of making microalgae into a single kind, and does not necessarily mean that only a single microalgae is made completely.
  • microalgae that are useful substance productivity and can form a biofilm on the liquid surface, and when cultured in a medium in a culture vessel, the following (1) to (8) Microalgae having at least one characteristic selected from the group may be used.
  • operations such as medium replacement, biofilm recovery, and resumption of culture become easier, and the implementation of the present invention at a lower cost can be expected.
  • the sum of the algal bodies of microalgae present on the liquid surface and in the region from 1 cm to the liquid surface below the liquid surface and the algal bodies of the microalgae on the bottom surface of the culture vessel is other than that in the culture vessel 10 times or more, preferably 20 times or more, more preferably 30 times or more the amount of algal bodies present in the region.
  • the other region in the culture container referred to here refers to the region on the liquid surface and in the vicinity of the liquid surface, that is, the region from 1 cm below the liquid surface to the liquid surface and the region excluding the bottom surface.
  • microalgae may adhere to the side of the culture vessel and the surface of various structures installed in the culture vessel such as a sensor for monitoring culture, such microalgae may not be included in either area .
  • the amount of algal bodies can be expressed as the weight of algal bodies per bottom area of the culture vessel.
  • the specific gravity of the microalgae on the liquid surface is smaller than the specific gravity of the microalgae on the bottom surface of the culture vessel.
  • the specific gravity of microalgae can be determined by a known method such as a concentration gradient method.
  • the specific gravity of the microalgae on the liquid surface when the specific gravity of the microalgae on the bottom surface is 1, although depending on the type of microalgae, is, for example, 0.99 or less, preferably 0.98 or less, and more Preferably it is 0.96 or less. Although there is no restriction
  • the specific gravity of microalgae on the liquid surface is greater than the specific gravity of water.
  • the oil content of the microalgae on the liquid surface is higher than the oil content of the microalgae on the bottom surface.
  • the oil content of the microalgae on the bottom surface is 1, the oil content of the microalgae on the liquid surface is, for example, 1.1 or more, preferably 1.2 or more, more preferably 1. 3 or more.
  • a lower limit is any case, it is 3.0 or less, for example, Preferably it is 2.5 or less, More preferably, it is 2.0 or less.
  • the size (diameter) of the microalgae on the liquid surface is larger than the size of the microalgae on the bottom surface.
  • the size of the microalgae can be determined by a known method.
  • the size of the microalgae on the bottom surface is 1, the size of the microalgae on the liquid surface is, for example, 1.5 or more, preferably 1.8 or more, more preferably 2.0 or more. .
  • a lower limit is any case, it is 4.0 or less, for example, Preferably it is 3.5 or less, More preferably, it is 3.0 or less.
  • the biofilm to be formed includes a film-like outer layer and an inner layer having a plurality of foam-like structures, and the outer layer is thicker than the inner layer. The thickness of the layer can be determined by a known method.
  • the thickness of the inner layer is 1, the thickness of the outer layer is, for example, 2.0 or more, preferably 3.0 or more, more preferably 5.0 or more.
  • the thickness of the outer layer is, for example, 2.0 or more, preferably 3.0 or more, more preferably 5.0 or more.
  • a lower limit is any case, it is 18.0 or less, for example, Preferably it is 14.0 or less, More preferably, it is 10.0 or less.
  • the biofilm formed may also be just the outer layer. Therefore, it is also one of the characteristics of the microalgae of the present invention that the formed biofilm has either a film-like outer layer or an inner layer having a plurality of foam-like structures. be able to. (7) A part of the formed biofilm has a pleated structure in the medium.
  • the microalgae obtained by collecting and suspending the formed biofilm When the microalgae obtained by collecting and suspending the formed biofilm is seeded on the liquid surface of the medium, it can settle in the medium.
  • the biofilm formed on the liquid surface can be floated on the liquid surface by carefully applying it onto the liquid surface without being subjected to a suspending treatment after the collection.
  • the suspension treatment makes it difficult to float on the liquid surface, resulting in frequent sedimentation.
  • microalgae capable of forming a biofilm on the liquid surface as used in the present invention and at least selected from the group consisting of the above (1) to (8) when cultured in a medium in a culture vessel
  • a microalgae having one characteristic can be distinguished from a group of other algae by at least one characteristic selected from the group consisting of the above (1) to (8), and the at least one characteristic is A collection of microalgae that can be kept and propagated.
  • the average specific gravity, oil content, or size of the target microalgae can be determined and determined.
  • Biofilm The biofilm generally seen is a thin film (substantially two-dimensional structure) formed by attaching microorganisms to a solid surface such as a rock, but the biofilm formed by microalgae in the present invention is a general biofilm. Unlike a film, it does not need to be attached to the surface of a solid, and can exist while maintaining a film-like structure on a fluid surface such as a liquid surface. Moreover, the film-like structure formed with microalgae may have a three-dimensional structure with a certain thickness.
  • the biofilm formed from the microalgae in the present invention may have a gas barrier property such that gas generated during the culturing process (oxygen or the like generated as a result of photosynthesis) cannot permeate. Can be held inside as bubbles. The bubble size is on a mm scale and can be confirmed visually.
  • the biofilm formed from the microalgae in the present invention has a certain degree of strength, can hold bubbles without being broken by the expectation generated as described above, and the microalgae are separated from each other with a weak water flow. It is hard to become.
  • the area of the biofilm can be greater than the cm 2 scale and is different from a mere colony.
  • the biofilm formed from microalgae in the present invention may form a wrinkled structure or a curtain-shaped structure as the culture proceeds.
  • the formation of such a structure indicates that the biofilm grows while being bent by the growth of microalgae even after the biofilm is formed to fill the limited liquid surface of the culture vessel. .
  • Static culture In the main culture step in the present invention, it is preferable to perform stationary culture.
  • Static culture is a culture method in which the medium is not intentionally stirred or shaken during the culture.
  • liquid surface floating culture The culture method for culturing microalgae on the liquid surface is called liquid surface floating culture.
  • liquid surface floating culture even when microalgae are simultaneously present on the bottom surface, side surface, other surface of the culture vessel, or in the culture medium, when the main purpose is culture on the liquid surface, it is called liquid surface floating culture.
  • a lot of foam is present on the liquid surface along with the biofilm, and the position of the liquid surface may not always be clear, and the biofilm may be submerged slightly below the liquid surface due to its own weight.
  • the term “on the liquid surface” includes such a case as well as a complete liquid surface.
  • the culture method of culturing microalgae in the liquid only one or both of the bottom surfaces of the culture vessel is not included in the liquid surface floating culture.
  • the liquid level in the present invention is typically the liquid level of a liquid medium described later, and is usually an interface between the liquid medium and air. Moreover, when water becomes a main component, it is a water surface. In addition, when liquid surface suspension culture is performed in the present invention, a phenomenon that a pleated structure enters a liquid from a biofilm on the liquid surface may be seen. In the present invention, the culture in such a situation is also included in the liquid surface suspension culture.
  • a preculture step Before performing the culture of the present invention, a preculture step may be performed.
  • the pre-culture process is a process of increasing the number of microalgae until the microalgae for storage are grown and main culture can be performed.
  • the culture method of the pre-culture process can be selected by any known culture method. For example, a dispersion culture method, an adhesion culture method, a liquid surface floating culture developed by the present inventors, a culture method of the present invention, and the like can be performed.
  • pre-culture may be performed several times.
  • static culture may be performed according to the purpose, or non-static culture such as shaking culture may be performed.
  • a culture vessel having a surface area of 1 cm 2 to 1 m 2 or less is used, and the culture can be performed both indoors and outdoors.
  • the main culturing step refers to a culturing step for the purpose of producing useful substances after performing the pre-culturing step.
  • the main culturing step can be completed when a sufficient amount of biofilm is formed on the liquid surface.
  • the main culturing step can be completed in, for example, several days to several weeks, more specifically, 5 days to 4 weeks. Further, the main culturing step may be performed a plurality of times.
  • the main culturing step is generally performed by using a culture vessel having a surface area of 100 cm 2 or more (in the case of a larger scale outdoors, the culture vessel may be referred to as a culture vessel). It can be performed on a large scale and can be performed both indoors and outdoors.
  • the seed algae in the present invention refers to the microalgae used at the start of the preculture process or the main culture process, and refers to the microalgae that are the source of the culture of the microalgae in the preculture process or the main culture process.
  • the culture can be started with the microalgae biofilm floating on the liquid surface or with the microalgae present on the bottom surface. In these cases, these microalgae should be used as seed algae. Can do.
  • microalgae attached to the bottom surface, other places of the culture container, other jigs constituting the culture, and the like can also be used as seed algae.
  • cultivation can also be restarted using the micro algae which remain
  • a microalgae sample subjected to suspension treatment may be used as a seed algae. This is because by performing the suspension treatment, the microalgae in the solution become uniform and the film thickness after the culture becomes uniform, and as a result, the amount of microalgae per culture area may increase.
  • any known method can be used, but weak treatment such as pipetting, shaking the microalgae solution in the container by hand, treatment with a stirrer chip or a stir bar, ultrasonic treatment, Examples include a strong treatment such as a high-speed shaking treatment, and a method using a substance such as an enzyme that decomposes an adhesive substance such as an intercellular matrix.
  • any known shape can be used as long as the medium can be retained.
  • an indefinite shape such as a columnar shape, a square shape, a spherical shape, a plate shape, a tube shape, or a plastic bag can be used.
  • Various known methods such as an open pond (open pond) type, a raceway type, and a tube type (J. Biotechnol., 92, 113, 2001) can be used.
  • Shapes that can be used as culture vessels are described, for example, in Journal of Biotechnology 70 (1999) 313-321, Eng. Life Sci. 9, 165-177 (2009). And the culture vessel described in (1). Among these, it is preferable from the viewpoint of cost to use an open pond type or a raceway type.
  • the culture vessel that can be used in the present invention can be either an open type or a closed type, but it prevents diffusion of carbon dioxide outside the culture vessel when using a higher carbon dioxide concentration than in the atmosphere. Therefore, it is preferable to use a closed culture vessel.
  • a closed type culture vessel By using a closed type culture vessel, it is possible to minimize the contamination of microorganisms other than the culture purpose and dust, the suppression of the evaporation of the culture medium, and the influence of the wind on the biofilm structure.
  • culture in an open system is preferable from the viewpoint of low construction costs.
  • At least the medium liquid is used for the purpose of protecting the biofilm formed on the medium liquid surface, although not completely closed, from external influences such as wind and rain. It is more preferable to provide a cover in the vertical direction of a part of the surface.
  • the substrate in the present invention is a solid material used in (d) and (f) of FIG.
  • the shape of the substrate may be any shape such as film, plate, fiber, porous, convex, corrugated, but it is easy to transfer and easy to collect microalgae from the substrate.
  • the film shape or the plate shape is preferable.
  • the materials for the culture vessel and the substrate that can be used in the present invention are not particularly limited, and known materials can be used. For example, a material composed of an organic polymer compound, an inorganic compound, a metal, or a composite thereof can be used. It is also possible to use a mixture thereof.
  • Organic polymer compounds include polyethylene derivatives, polyvinyl chloride derivatives, polyester derivatives, polyamide derivatives, polystyrene derivatives, polypropylene derivatives, polyacryl derivatives, polyethylene terephthalate derivatives, polybutylene terephthalate derivatives, nylon derivatives, polyethylene naphthalate derivatives, polycarbonate derivatives.
  • Polyvinylidene chloride derivatives polyacrylonitrile derivatives, polyvinyl alcohol derivatives, polyethersulfone derivatives, polyarylate derivatives, allyl diglycol carbonate derivatives, ethylene-vinyl acetate copolymer derivatives, fluororesin derivatives, polylactic acid derivatives, acrylic resin derivatives, An ethylene-vinyl alcohol copolymer, an ethylene-methacrylic acid copolymer, or the like can be used.
  • inorganic compound glass, ceramics, concrete, or the like can be used.
  • an alloy such as iron, aluminum, copper or stainless steel can be used.
  • a part of the material of the substrate and the culture vessel is composed of at least one selected from glass, polyethylene, polypropylene, nylon, polystyrene, vinyl chloride, and polyester.
  • the materials of the culture vessel, the substrate, and the penetrating structure may be the same or different.
  • At least a part of the light receiving surface is preferably a material that transmits at least a part of the light, and more preferably a transparent material.
  • carbon dioxide When dispersed culture is performed in the pre-culture process, carbon dioxide may be supplied to the medium by bubbling as in the conventional method. However, when liquid surface suspension culture is performed, carbon dioxide is It is preferable to supply from This is because when carbon dioxide is supplied into the medium by a method such as bubbling, the structure of the microalgae biofilm on the liquid surface is destroyed, resulting in spots of algal mass, and the efficiency of biofilm recovery onto the substrate during the recovery process This is because there is a possibility that the amount of recovered alga bodies may be reduced.
  • carbon dioxide in the atmosphere can be used, but carbon dioxide having a concentration higher than the atmospheric concentration can also be used.
  • the culture in order to prevent the loss of carbon dioxide due to diffusion, the culture is preferably performed in a closed culture vessel or a culture vessel covered with a covering such as an agricultural film.
  • the concentration of carbon dioxide in this case is not particularly limited as long as the effect of the present invention can be achieved, but it is preferably not less than the atmospheric concentration and less than 20% by volume, preferably 0.01 to 15% by volume, more preferably 0. 1 to 10% by volume.
  • the carbon dioxide may be carbon dioxide exhausted by the combustion device. Carbon dioxide may be generated by a reagent.
  • any known light source can be used, and sunlight, LED light, fluorescent lamp, incandescent bulb, xenon lamp light, halogen lamp, and the like can be used. It is preferable to use sunlight, which is energy, an LED with good luminous efficiency, or a fluorescent lamp that can be used easily.
  • the amount of light is preferably 1000 lux or more and 300,000 lux or less, and more preferably 2000 lux or more and 150,000 lux or less.
  • the most preferable amount of light is 10,000 lux or more and 100,000 lux or less. If the light intensity is 2000 lux or more, microalgae can be cultured at a sufficient rate, and if it is 150,000 lux or less, there is little adverse effect on the culture due to light damage.
  • the light may be either continuous irradiation or a method of repeating irradiation and non-irradiation at a certain time interval.
  • the light is emitted at intervals of 12 hours within one day. It is preferable to turn on and off.
  • the wavelength of light can be used for photosynthesis, any wavelength can be used, and there is no limitation.
  • a preferable wavelength is sunlight or a wavelength similar to sunlight.
  • An example in which the growth rate of photosynthetic organisms is improved by irradiating a single wavelength has been reported, and such an irradiation method can also be used in the present invention.
  • the pH of the liquid medium used in the pre-culture process and the main culture process (hereinafter, the liquid medium is also referred to as a medium) is preferably in the range of 1 to 13, preferably in the range of 3 to 11. More preferably, it is more preferably in the range of 5 to 9, and most preferably in the range of 6 to 8.
  • the pH of the liquid medium is the pH at the start of culture.
  • the pH in the culture process may change with the culture, the pH may change in the culture process.
  • a substance having a buffering action for keeping the pH in the medium constant can be added to the medium.
  • the problem that the pH in the medium changes with the progress of the culture of microalgae can be suppressed, and the phenomenon that the pH changes due to the supply of carbon dioxide into the medium can be suppressed.
  • the substance having a buffering action a known substance can be used, and its use is not limited, but 4- (2-hydroxyethyl) -1-piperazine etheric acid (HEPES), sodium phosphate buffer, A potassium phosphate buffer or the like can be preferably used.
  • the concentration and type of these buffer substances can be determined according to the type of microalgae and the culture environment.
  • the water depth is preferably 0.4 cm or more, more preferably 1 cm to 10 m, further preferably 2 cm to 1 m, and most preferably 4 cm to 30 cm.
  • the water depth When the water depth is 0.4 cm or more, a biofilm can be formed, and when the water depth is 10 m or less, handling is easy. When the water depth is 4 cm to 30 cm, the influence of water evaporation is minimal, and handling of a solution containing a medium and microalgae is easy.
  • the culture temperature can be selected according to the type of microalgae and is not particularly limited, but is preferably 0 ° C. or higher and 90 ° C. or lower, more preferably 15 ° C. or higher and 50 ° C. or lower, and 20 ° C. or higher and 40 ° C. or lower. Less than is most preferred. When the culture temperature is 20 ° C. or higher and lower than 40 ° C., microalgae can be suitably grown.
  • the amount of microalgae used at the start of the culture is not particularly limited because the number of cells is one in the culture range and can be grown as long as time is spent. 3 or more, more preferably 1000 pieces / cm 3 or more, and further preferably 1 ⁇ 10 4 pieces / cm 3 or more. Alternatively, the amount used can be defined by the weight of microalgae per unit area. In this case also possible proliferation if only over time is not particularly limited as well, preferably in view of productivity and at 0.05 g / m 2 or more, more preferably 0.1 g / m 2 Or more, more preferably 1 g / m 2 or more.
  • the pre-culture period and the main culture period in the present invention can be selected according to the type of microalgae and are not particularly limited, but are preferably 1 day or more and 100 days or less, more preferably 3 days or more and 50 days or less. 7 days or more and 31 days or less are more preferable.
  • the size of the microalgae biofilm is 0.1 cm 2 or more, more preferably 1 cm 2 or more, more preferably 10 cm 2 or more, and most preferably equal to the liquid surface area of the culture vessel. If it is 0.1 cm 2 or more, the ratio of the amount of microalgae at the end of culture to the amount of microalgae at the start of culture can be increased in a short time.
  • a plurality of microalgal biofilms may exist in the culture region.
  • the thickness of the microalgal biofilm is preferably in the range of 1 ⁇ m to 10000 ⁇ m, more preferably in the range of 1 ⁇ m to 1000 ⁇ m, and most preferably in the range of 10 ⁇ m to 1000 ⁇ m.
  • the thickness is in the range of 10 ⁇ m to 1000 ⁇ m, the strength is high and a sufficient amount of biofilm can be harvested.
  • the liquid film of the medium is used as a reference.
  • the general height of the three-dimensional structure is preferably in the range of 0.01 mm to 100 mm, more preferably in the range of 0.1 mm to 20 mm, and most preferably in the range of 5 mm to 20 mm. preferable.
  • the thickness is in the range of 5 mm to 20 mm, the water content can be sufficiently lowered, and the height of the culture vessel can be kept low.
  • the microalgae according to the present invention preferably has a high growth rate on the liquid surface, and the growth rate in the logarithmic growth phase (that is, the average growth rate per day during the logarithmic growth phase) is 0 by dry weight. is preferably .1g / m 2 / day or more, more preferably 0.5 g / m 2 / day or more, more preferably 1 g / m 2 / day or more, 3 g / m 2 / day The above is most preferable.
  • the growth rate of microalgae in the logarithmic growth phase is generally 10 to 30 g / m 2 / day or less in terms of dry weight.
  • the dry algal body weight per unit area of the biofilm according to the present invention is preferably 0.01 g / m 2 or more, more preferably 1 g / m 2 or more, and 10 g / m 2 or more. Is particularly preferred. Most preferably, it is 50 g / m 2 or more. This is because it is expected that the amount of biomass such as oil obtained is larger when the dry alga body weight per unit area is larger.
  • the dry alga body weight per unit area of the biofilm is usually 20 to 300 g / m 2 .
  • the microalgae of the present invention capable of forming a biofilm having the above structure, the above-mentioned area, thickness, height, growth rate, and dry alga body weight per unit area on the liquid surface. It is preferable for the same reason as described above.
  • the microalgae biofilm on the liquid surface can be collected in a state where the liquid surface in the culture vessel is partially covered with the biofilm, but the amount of microalgae is large. It is preferable to carry out after the liquid level in the culture vessel is entirely covered with the biofilm. In addition, after the biofilm covers the entire liquid surface, the culture may be continued for a while and then recovered.
  • the three-dimensional structure is a structure that is seen when the film-like structure further grows. Compared with the two-dimensional film-like structure, the amount of microalgae that can be recovered is large, and the moisture content is high. It is preferable because it is lower. Further, only the biofilm on the liquid surface may be collected, or at least a part of the biofilm on the liquid surface and the microalgae on the bottom surface may be collected. This is because microalgae on the liquid surface and microalgae on the bottom surface can be used as biomass. However, in general, when oil is considered as a useful substance, the oil content of the microalgae on the liquid surface is higher than that of the microalgae on the bottom surface. Therefore, it is better to avoid collecting bottom algae as much as possible.
  • the above-described collection method preferably collects 70% or more of the biofilm formed on the liquid surface, more preferably 80% or more, and more preferably 90% or more. Yes, most preferably 100% recovery.
  • the recovery rate of the biofilm formed on the liquid surface can be confirmed visually, for example.
  • the dry alga body in the present invention is obtained by drying the collected microalgae obtained by the present invention.
  • a method for drying the microalgae collection product any known method can be used as long as it can reduce the moisture in the microalgae collection product, and is not particularly limited.
  • a method of drying the microalgae collected in the sun a method of heating and drying the microalgae recovered, a method of freeze-drying (freeze drying) the microalgae recovered, a method of blowing dry air on the microalgae recovered, etc. It is done.
  • freeze drying is preferable from the viewpoint of suppressing decomposition of components contained in the microalgae collection
  • heat drying or sun drying is preferable from the viewpoint of efficient drying in a short time.
  • the water content in the present invention is obtained by dividing the weight of water contained in the recovered material by the weight of the recovered material and multiplying by 100.
  • the water content of the microalgal biofilm in the present invention is preferably 99 to 60%, more preferably 95 to 80%, and most preferably 90 to 85%. However, this does not apply when culturing using a penetrating structure.
  • the water content when the microalgae are collected by culturing in a dispersed culture and using a centrifuge is generally about 90%, and the water content of the biofilm on the liquid surface obtained by the culture method of the present invention Is lower than that and is superior to the conventional method.
  • the water content of the three-dimensional structure is lower than that of the film-like structure. This is presumed to be caused by the fact that the three-dimensional structure is farther from the liquid surface, closer to the light source, and a certain degree of drying has progressed.
  • the useful substance in the present invention is a kind of biomass derived from microalgae, and is a general term for substances useful for industries obtained from biomass through an extraction process, a purification process, and the like.
  • Such substances include final products, intermediates and raw materials such as pharmaceuticals, cosmetics and health foods, raw materials for chemical compounds, intermediates and final products, hydrocarbon compounds, oils, alcohol compounds, hydrogen and methane.
  • Energy substitute substances such as enzymes, proteins, nucleic acids, sugars and lipid compounds such as DHA, astaxanthin and the like.
  • the useful substance can be accumulated in the microalgae by the useful substance accumulation process.
  • Biomass in the present invention refers to organic resources derived from renewable organisms excluding fossil resources, and examples thereof include biological substances, foods, materials, fuels, resources, and the like.
  • the algal biomass includes microalgae itself (may be in the form of a biofilm) and microalgae residue after collecting useful substances.
  • the oil in the present invention is a combustible fluid substance, which is a compound mainly composed of carbon and hydrogen, and in some cases, a substance containing oxygen atoms, nitrogen atoms, etc. is there. Oil is generally a mixture and is a substance that is extracted using a low polarity solvent such as hexane or acetone.
  • the composition may be composed of a hydrocarbon compound, a fatty acid, a triglyceride or the like, or may be composed of a plurality of kinds of compositions selected from these. It can also be esterified and used as biodiesel.
  • the method for collecting useful substances and oil contained in the microalgae collection is not particularly limited as long as the effects of the present invention are not impaired.
  • the final recovered material is dried by heating to obtain dried alga bodies, followed by cell disruption and extraction of the oil using an organic solvent.
  • the extracted oil is generally refined because it contains impurities such as chlorophyll.
  • Purification includes silica gel column chromatography and distillation (for example, the distillation method described in JP-T 2010-539300). Such a method can also be used in the present invention.
  • microalgae are crushed by ultrasonic treatment, or microalgae are dissolved by protease, enzyme, or the like, and then the oil in the algal bodies is extracted using an organic solvent (for example, JP 2010-530741 A). Method). Such a method can also be used in the present invention.
  • the biofilm according to the present invention preferably has a high oil content from the viewpoint of usefulness as biomass.
  • the oil content per dry algal body of the biofilm is preferably 5% by mass or more, more preferably 10% by mass or more, and particularly preferably 15% by mass or more.
  • the oil content per dry alga body of the biofilm is usually 80% by mass or less.
  • Example 1 (First preculture) As the first pre-culture, CSiFF04 medium (composition is shown in the table below) in PS Case No. 28 (As One Co., Ltd., 4-5605-05). In this example, hereinafter, it may be simply referred to as “medium”. ) 40 mL and Chlorococcum sp. Put a mixture with FFG039 strain (FERMBP-22262 strain) (1 mL of dispersion liquid with algal body concentration of 1.2 mg / mL), under irradiation of fluorescent light of 15000 lux (light irradiation ON-OFF every 12 hours), 23 ° C., Static culture was performed at a carbon dioxide concentration of 5%. The culture temperature was controlled using an air conditioner set at 23 ° C. Fourteen days later, the microalgae biofilm on the liquid surface was collected using a nylon film (thickness 1 mm) having the same length as the short diameter of PS Case 28.
  • a second preculture was performed in the same manner as the first preculture using the microalgae obtained in the first preculture.
  • a plastic bat of 30 cm ⁇ 23 cm ⁇ 7 cm was used, and the second culture was performed by adding half of the algae recovered in the first culture to 2800 mL of the medium.
  • the microalgae biofilm on the liquid surface was collected, transferred to a 500 ml plastic container containing 300 ml of CSiFF04 medium, shaken by the plastic container by hand, and then subjected to sonication for 5 minutes to obtain a seed algae dispersion. Obtained. 5 ml of this seed algae dispersion was filtered and dried (130 ° C., 1 hour) to determine the alga body weight, and the seed algae concentration (mg / ml) in the dispersion was calculated therefrom.
  • (Main culture) Medium (b) (the composition is shown in the table below) in which the NO 3 ion concentration of 2.8 L of CSiFF04 medium was halved was placed in the plastic vat so that the water depth was 5 cm.
  • the seed algae dispersion prepared by the second preculture was added so that the amount of algal bodies was 0.17 g / m 2 .
  • Static culture was performed at 23 ° C. and a carbon dioxide concentration of 5% under irradiation of a fluorescent lamp of 15000 lux (light irradiation ON / OFF every 12 hours).
  • the number of culture days was 31 days.
  • the algal body amount (g / m 2 ) at the start of the main culture is referred to as the initial algal body amount (the same applies to the following examples and comparative examples).
  • the oil productivity (g / m 2 ⁇ day) was calculated by multiplying the previously obtained algal body productivity (g / m 2 ⁇ day) by the oil content.
  • oil productivity Since oil productivity also changes depending on culture conditions, oil productivity is compared with comparative examples under the same culture conditions (the initial algal mass, culture days, water depth, and light intensity are the same). did. Compared to the comparative example, the oil productivity is less than 1.1 times (E), 1.1 times to less than 1.2 times (D), 1.2 times to less than 1.3 times The product was evaluated as (C), the product of 1.3 times to less than 1.4 times as (B), and the product of 1.4 times or more as (A).
  • Example 2 A first preculture and a second preculture similar to those in Example 1 were performed.
  • a cylindrical plastic container having a diameter of 13.4 cm and a height of 21 cm is charged with a medium (c) in which the NO 3 ion concentration of 2.7 L of CSiFF04 medium is 1/4 times (water depth 20 cm), and the algal mass is 4 g / m.
  • the seed algae dispersion prepared by the second pre-culture was added so as to be 2.
  • Static culture was performed at 2 ° C. under a carbon dioxide concentration of 5% under irradiation of a fluorescent lamp of 22,000 lux (light irradiation ON / OFF every 12 hours).
  • the culture days were 14 days. This was cultured, recovered and evaluated in the same manner as in Example 1.
  • Example 3 Culture was performed in the same manner as in Example 2 except that the medium for main culture in Example 2 was changed to a medium (b) in which the NO 3 ion concentration of CSiFF04 medium was halved.
  • Example 2 and Example 3 were significantly improved in algal body productivity, oil content, and oil productivity as compared with Comparative Example 6 under the same culture conditions.
  • Example 4 In the main culture of Example 2, the initial algal mass was changed to 2 g / m 2 , the NO 3 ion concentration of the CSiFF04 medium was changed to 1 ⁇ 4 times, and the phosphate ion concentration was halved as the medium. The same culture as in Example 2 was performed except that the changed one was used and the light intensity was changed to 19000 lux. Compared to Comparative Examples 7 to 10 under the same culture conditions, an improvement effect was observed in algal body productivity, oil content, and oil productivity.
  • Example 5 In the main culture of Example 4, the same culture as in Example 4 was performed except that the initial algal body amount was changed to 4 g / m 2 , the light intensity was changed to 20000 lux, and the culture days were changed to 21 days.
  • Example 6 In the main culture of Example 5, the same culture as in Example 5 was performed except that the medium in which the NO 3 ion concentration of the CSiFF04 medium was changed to 0.11 times was used.
  • Example 7 In the main culture of Example 5, the same culture as that of Example 5 was performed except that the medium (c) in which the NO 3 ion concentration of the CSiFF04 medium was changed to 1/4 times was used as the medium.
  • Example 8 In the main culture of Example 5, the same culture as in Example 5 was performed except that the medium (b) in which the NO 3 ion concentration of the CSiFF04 medium was changed to 1 ⁇ 2 was used as the medium.
  • Example 5 significant improvement effects were observed in algal body productivity, oil content, and oil productivity compared to Comparative Example 14 and Comparative Example 15 under the same culture conditions.
  • Example 6 as compared with Comparative Example 14 and Comparative Example 15 under the same culture conditions, a large improvement effect in the oil content was recognized.
  • Example 1 Cultivation / collection / evaluation was performed in the same manner as in Example 1, except that the main culture medium of Example 1 was changed to CSiFF04 medium (a).
  • Example 2 In the main culture of Example 1, the initial amount of algal bodies was changed to 4 g / m 2 , the medium was changed to a CSiFF04 medium in which the NO 3 ion concentration was 0.85 times, and the light intensity was changed to 13000 lux. In addition, the same culture, recovery and evaluation as in Example 1 were performed except that the culture days were changed to 14 days.
  • Example 3 In the main culture of Example 1, the initial amount of algal bodies was changed to 4 g / m 2 , the medium was changed to a CSiFF04 medium in which the NO 3 ion concentration was 0.85 times, and the light intensity was changed to 13000 lux. In addition, the same culture, recovery and evaluation as in Example 1 were performed except that the culture days were changed to 14 days.
  • Example 4 In the main culture of Example 2, the medium was changed to one in which the NO 3 ion concentration of the CSiFF04 medium was 0.7 times, the water depth was changed to 15 cm, and the light intensity was changed to 20000 lux. Were cultured, collected and evaluated.
  • Example 5 In the main culture of Example 2, the same culture, collection, and evaluation as in Example 2 were performed except that the medium was changed to CSiFF04 medium (a), the water depth was changed to 15 cm, and the light intensity was changed to 20000 lux.
  • Example 6 Culture was performed in the same manner as in Example 2 except that the main culture medium in Example 2 was changed to CSiFF04 medium (a).
  • Example 7 In Example 4, the same culture, collection, and evaluation as in Example 4 were performed, except that the main culture medium was changed to a CSiFF04 medium in which the NO 3 ion concentration was 0.85 times.
  • Example 4 In Example 4, the same culture, recovery and evaluation as in Example 4 were performed, except that the main culture medium was changed to a CSiFF04 medium in which the NO 3 ion concentration was 0.7 times.
  • Example 9 In Example 4, the culture / recovery / recovery method of Example 4 was changed except that the main culture medium was changed to a CSiFF04 medium with a NO 3 ion concentration of 0.45 times and a phosphate ion concentration of 4.5 times. Evaluation was performed.
  • Example 10 In Example 4, the same culture, collection and evaluation as in Example 4 were performed except that the medium for main culture was changed to CSiFF04 medium (a).
  • Example 11 In the main culture of Example 5, the culture medium was changed to one in which the NO 3 ion concentration of the CSiFF04 medium was 1/8 times, and the culture period was the same as in Example 5, except that the culture period was 14 days. Went.
  • Comparative Example 12 In the main culture of Example 5, the medium was changed to a CSiFF04 medium in which the NO 3 ion concentration was changed to 1/8 times and the phosphate ion concentration was set to 1/4 times, and the culture days were changed to 14 days. The same culture, collection and evaluation as in Example 5 were performed.
  • Example 13 In the main culture of Example 5, the same culture, collection, and evaluation as in Example 5 were performed except that the medium was changed to CSiFF04 medium (a) and the number of culture days was 14 days.
  • Example 5 In Example 5, the same culture, collection, and evaluation as in Example 5 were performed, except that the main culture medium was changed to a CSiFF04 medium in which the NO 3 ion concentration was 0.7 times.
  • Example 15 In Example 5, the same culture, collection and evaluation as in Example 5 were performed except that the medium for main culture was changed to CSiFF04 medium (a).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Botany (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Biomedical Technology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The present invention addresses the problem of conducting more efficient culture by optimizing medium components. A method for culturing a microalga capable of producing a useful substance, said method comprising a step for culturing the microalga in a culture container using a culture medium, wherein the molar concentration ratio of nitrate ion to phosphate ion (N/P ratio) is 0.7-4.0 and the nitrate ion content is not less than 0.2 mol per m2 of the culture area, to thereby allow the microalga to form a biofilm on the liquid surface of the culture medium.

Description

微細藻類の培養方法、及び藻類バイオマスの製造方法Method for culturing microalgae and method for producing algal biomass
 本発明は、有用物質生産性の微細藻類の培養方法に関する。 The present invention relates to a method for culturing useful algae-producing microalgae.
 微細藻類による、油、油脂、脂質、燃料等の有用物質の生産は、石油化学燃料由来のCO2発生量削減、これに伴う地球温暖化の防止等の観点から期待されているが、まだ従来の石油化学燃料と比較してコストが高いという問題がある。コスト高となる原因の一つは、微細藻類の効率的な回収方法がないことである。具体的には、微細藻類は通常、液中に浮遊しながら生育させるため、微細藻類をバイオマスとして利用するには、非常に希薄な濃度の微細藻類を大量の液中から回収しなければならない。加えて、微細藻類の生育には光エネルギーが必要であり、液中に存在する微細藻類に十分な光の照射を確保するためには、微細藻類の培養密度には限界がある。結果として、有用物質を得るために液中の微細藻類を回収するには、多量の水をろ別する必要があるが、微細藻類のサイズは一般的に小さく、ろ過操作自体が容易ではなかった。このような問題を解決するための回収方法の検討として、沈殿剤を用いる方法、遠心分離機を用いる方法、微細藻類をより大型の生物の餌とした後に、該大型の生物を回収する方法等が試みられたものの、いずれの方法も根本的な解決には至らなかった。 Production of useful substances such as oils, fats, lipids, and fuels by microalgae is expected from the viewpoints of reducing the amount of CO 2 generated from petrochemical fuels and the associated prevention of global warming. There is a problem that the cost is high compared with other petrochemical fuels. One of the causes of the high cost is that there is no efficient method for collecting microalgae. Specifically, since microalgae usually grow while floating in the liquid, in order to use the microalgae as biomass, a very dilute concentration of microalgae must be recovered from a large amount of liquid. In addition, the growth of microalgae requires light energy, and there is a limit to the culture density of microalgae in order to ensure sufficient light irradiation for microalgae present in the liquid. As a result, in order to collect microalgae in the liquid to obtain useful substances, it is necessary to filter a large amount of water, but the size of microalgae is generally small and the filtration operation itself is not easy. . As a study of a recovery method for solving such problems, a method using a precipitant, a method using a centrifuge, a method of recovering the large organism after using microalgae as food for a larger organism, etc. However, none of these methods led to a fundamental solution.
 微細藻類を簡便かつ低コストで回収するために、有用物質生産性の微細藻類を液面上で浮遊培養し、バイオフィルムを形成させることが提案されている(例えば、特許文献1)。この培養方法によれば、微細藻類を回収する段階では、微細藻類の集合体から構成されたバイオフィルムが液面上に浮かんでおり、そのバイオフィルムを回収対象としているため、バイオフィルムと培地との分別が容易である。また従来のように大量の培地中に分散した微細藻類を回収する必要はなく、また液面上のバイオフィルムの含水率が比較的低いために、大量の液体をハンドリングする必要がなく、また回収物の乾燥コストも抑えられる。 In order to collect microalgae simply and at low cost, it has been proposed to form a biofilm by floating culture of microalgae having productivity of useful substances on the liquid surface (for example, Patent Document 1). According to this culturing method, in the stage of collecting microalgae, a biofilm composed of aggregates of microalgae floats on the liquid surface, and the biofilm is targeted for recovery. Is easy to separate. In addition, it is not necessary to collect microalgae dispersed in a large amount of medium as in the past, and since the water content of the biofilm on the liquid surface is relatively low, it is not necessary to handle a large amount of liquid, and it is also collected. The cost of drying items can also be reduced.
 一方、効率的な有用物質の生産を行うため、培養条件に関する検討もなされている。例えば特許文献2は、微細藻ユーグレナを好気的に培養する第1の工程と、前記微細藻ユーグレナが培養されている培地を窒素飢餓状態としてさらに培養する第2の工程と、細胞を嫌気状態下に保持する第3の工程とから成るワックスエステル高含有ユーグレナの生産方法を提案する。この方法において窒素飢餓状態は、培地を窒素欠乏培地に置換することにより創出される。 On the other hand, in order to efficiently produce useful substances, studies on culture conditions have been made. For example, Patent Document 2 discloses a first step of aerobically cultivating microalgae Euglena, a second step of further culturing a medium in which the microalgae Euglena is cultured in a nitrogen-starved state, and anaerobic cells. A method for producing a wax ester-rich Euglena comprising a third step held below is proposed. In this method, a nitrogen starvation condition is created by replacing the medium with a nitrogen-deficient medium.
 また特許文献3は、有用物質生産性である微細藻類の培養方法であって、培養容器内の培地中で微細藻類を培養し、培地の液面にバイオフィルムを形成させる工程;及び培地に含まれる少なくとも一つの成分の濃度を変化させる工程を含み、成分の濃度を変化させることにより微細藻類の産生する有用物質を増加させるものである、微細藻類の培養方法を提案する。この方法において、培地に含まれる少なくとも一つの成分の濃度を変化させる工程は、好ましくは窒素又はリンを含む成分の濃度を低減させることによる。 Patent Document 3 is a method for culturing microalgae that is useful substance-productive, comprising culturing microalgae in a culture medium in a culture vessel and forming a biofilm on the liquid surface of the culture medium; and A method for culturing microalgae is proposed, which comprises a step of changing the concentration of at least one component and increasing the useful substance produced by the microalgae by changing the concentration of the component. In this method, the step of changing the concentration of at least one component contained in the medium is preferably by reducing the concentration of the component containing nitrogen or phosphorus.
特開2013-226063号公報JP 2013-226063 A 特開2012-23977号公報JP 2012-23977 A 特開2015-192647号公報JP2015-192647A
 微細藻類の培養に用いられる培地は、通常、硝酸イオン(窒素成分)を含むが、硝酸イオン量を低減することで微細藻類における含油率が向上しうる。しかしながら、硝酸イオンの削減は含油率を向上させることができても、藻体生産性が低下してしまうために、油生産性(即ち、藻体生産性×含油率)の向上には直ちには結び付かないという問題がある。 The medium used for culturing microalgae usually contains nitrate ions (nitrogen components), but the oil content in microalgae can be improved by reducing the amount of nitrate ions. However, even though the reduction of nitrate ions can improve the oil content, algal body productivity is reduced. Therefore, the improvement of oil productivity (that is, algal body productivity x oil content) is not immediate. There is a problem that it is not connected.
 また特許文献2の方法は、好気的な条件から嫌気的な条件への切り替えを含み、元々の培養工程が複雑であることに加えて、培養の途中で窒素欠乏培地に置換するという更なる操作を要する。そしてこのような工程・操作を経ても油生産性の向上倍率は1.2倍には満たない。 Further, the method of Patent Document 2 includes switching from an aerobic condition to an anaerobic condition, and in addition to the complexity of the original culturing process, the method is further replaced with a nitrogen-deficient medium during the culturing. Requires operation. And even if it goes through such a process and operation, the improvement factor of oil productivity is less than 1.2 times.
 さらに特許文献3の方法では、培地に含まれる少なくとも一つの成分の濃度を変化させる工程を実施するために、培養途中で生成しつつある藻体に影響を与えないように配慮しながら、培地の少なくとも一部を交換し、あるいは低栄養の培地を追加するという特別な操作を要する。そしてこのような特別な操作を実施しても、特に窒素を含む成分の濃度を低減させても、油生産性の向上倍率は1.2倍以下である。 Furthermore, in the method of Patent Document 3, in order to carry out the step of changing the concentration of at least one component contained in the culture medium, while taking care not to affect the algal bodies that are being produced during the culture, A special operation of replacing at least a part or adding a low nutrient medium is required. Even if such a special operation is carried out, especially the concentration of the component containing nitrogen is reduced, the improvement factor of the oil productivity is 1.2 times or less.
 本発明は、上記の従来技術の方法より高い油生産性が得られ、又は操作をより単純にする、微細藻類の培養方法、並びにこれを用いる、藻類バイオマスの製造方法を提供することを課題とする。 It is an object of the present invention to provide a method for culturing microalgae, and a method for producing algal biomass using the same, in which higher oil productivity can be obtained than in the above-described prior art methods or the operation is simpler. To do.
 本発明者らは、微細藻類の液面浮遊培養について鋭意検討してきた。そして今般、培地成分のうち、硝酸イオンのみではなく、リン酸イオンにも着目し、硝酸イオンのリン酸イオンに対するモル濃度比(N/P比)が0.7~4.0であり、かつ培養面積当たりの硝酸イオン量が0.2mol/m2以上であることにより、従来のような培養途中での培地の交換、追加等の煩雑な工程を要さず、高い有用物質生産性が維持できる培地組成を見出した。また上記培地成分を用いることにより。特別な操作を要することなく、硝酸イオンの低減のみに着目した従来技術よりも高い倍率で油生産性を向上できることも見出した。このような知見に基づき、本発明を完成した。 The present inventors have intensively studied liquid surface suspension culture of microalgae. And now, focusing on not only nitrate ions but also phosphate ions among the medium components, the molar concentration ratio (N / P ratio) of nitrate ions to phosphate ions is 0.7 to 4.0, and Since the amount of nitrate ions per culture area is 0.2 mol / m 2 or more, high useful substance productivity is maintained without the need for complicated steps such as medium replacement and addition during culture. A possible medium composition was found. By using the above medium components. It has also been found that oil productivity can be improved at a higher magnification than the prior art that focuses only on the reduction of nitrate ions without requiring special operations. Based on these findings, the present invention has been completed.
 本発明は、以下を提供する。
[1]有用物質生産性である微細藻類の培養方法であって、
硝酸イオンのリン酸イオンに対するモル濃度比(N/P比)が0.7~4.0 であり、かつ培養面積当たりの硝酸イオン量が0.2mol/m2以上である培地中で微細藻類を培養し、培地の液面にバイオフィルムを形成させる工程
を含む、微細藻類の培養方法。
[2]上記N/P比が1.0~4.0であり、上記培養面積当たりの硝酸イオン量が0.2mol/m2~1.5mol/m2である、[1]に記載の培養方法。
[3]上記培養が、静置培養により行われる、[1]又は[2]に記載の培養方法。
[4]上記バイオフィルムが三次元構造を有する、[1]~[3]のいずれか1項に記載の培養方法。
[5]培地交換を行わない、[1]~[4]のいずれか1項に記載の培養方法。
[6]上記微細藻類が緑藻である、[1]~[5]のいずれか1項に記載の培養方法。
[7]上記微細藻類が、Botryococcus sp.、Chlamydomonas sp.、Chlorococcum sp、Chlamydomonad sp.、Tetracystis sp.、Characium sp.又はProtosiphon sp.に属するものである、[1]~[6]のいずれか1項に記載の培養方法。
[8]微細藻類が、Botryococcus sudeticus FERM BP-11420、又はChlorococcum sp. FERM BP-22262と同じ種に属するものである、[1]~[7]のいずれか1項に記載の培養方法。
[9][1]~[8]のいずれか1項の培養方法を含む培養工程;及び
形成された上記バイオフィルムを回収する工程;
を含む、藻類バイオマスの製造方法。
[10]上記藻類バイオマスが、オイルである、[9]に記載の製造方法。
The present invention provides the following.
[1] A method for culturing microalgae that is useful substance productivity,
Microalgae in a medium in which the molar concentration ratio of nitrate ion to phosphate ion (N / P ratio) is 0.7 to 4.0 and the amount of nitrate ion per culture area is 0.2 mol / m 2 or more. A method for culturing microalgae, comprising a step of cultivating and forming a biofilm on a liquid surface of a medium.
[2] The culture according to [1], wherein the N / P ratio is 1.0 to 4.0 and the nitrate ion amount per culture area is 0.2 mol / m 2 to 1.5 mol / m 2. Method.
[3] The culture method according to [1] or [2], wherein the culture is performed by static culture.
[4] The culture method according to any one of [1] to [3], wherein the biofilm has a three-dimensional structure.
[5] The culture method according to any one of [1] to [4], wherein the medium is not exchanged.
[6] The culture method according to any one of [1] to [5], wherein the microalgae are green algae.
[7] The microalgae is Botryococcus sp. Chlamydomonas sp. , Chlorococcum sp, Chlamydomonad sp. Tetracystis sp. Characium sp. Or Protosiphon sp. The culture method according to any one of [1] to [6], which belongs to the above.
[8] The microalgae is Botryococcus sudueticus FERM BP-11420, or Chlorococcus sp. The culture method according to any one of [1] to [7], which belongs to the same species as FERM BP-22262.
[9] A culture step including the culture method according to any one of [1] to [8]; and a step of recovering the formed biofilm;
A method for producing algal biomass.
[10] The production method according to [9], wherein the algal biomass is oil.
 本発明によれば、高い油生産性が得られ、又は操作をより単純にする、微細藻類の培養方法、並びにこれを用いる、藻類バイオマスの製造方法を提供することができる。 According to the present invention, it is possible to provide a method for culturing microalgae, which can provide high oil productivity or make operation simpler, and a method for producing algal biomass using the same.
微細藻類の培養方法の一例を示す模式図である。It is a schematic diagram which shows an example of the cultivation method of a micro algae. 実施例及び比較例における硝酸イオンとリン酸イオンとのモル濃度比(N/P比)に対し、培養面積あたりの硝酸イオン量(NO3 - mol/m2)をプロットしたグラフ。それぞれ比較対象に対する油生産性が、白菱形:1.4倍以上、白丸:1.3倍以上1.4倍未満、白三角:1.2倍以上1.3倍未満、黒三角:1.1倍以上1.2倍未満、X印:1.1倍未満Graph plotting - (mol / m 2 NO 3 ) molar ratio of nitric acid ions and phosphoric acid ions to (N / P ratio), nitrate ion per culture area in Examples and Comparative Examples. The oil productivity for each comparison object is as follows: white rhombus: 1.4 times or more, white circle: 1.3 times or more and less than 1.4 times, white triangle: 1.2 times or more and less than 1.3 times, black triangle: 1. 1 times or more and less than 1.2 times, X mark: less than 1.1 times
 以下、本発明による微細藻類の培養方法の好ましい実施の形態について詳細に説明する。なお、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。 Hereinafter, preferred embodiments of the method for culturing microalgae according to the present invention will be described in detail. The numerical range expressed using “to” means a range including numerical values described before and after “to” as the lower limit value and the upper limit value.
[培養方法]
 本発明の基本的な培養方法を図1に示した。なお、本模式図は、本発明を説明するためのものであることから、簡略化して表記されている部分がある。
(培養)
 図1の(a)に示した様に、まず初めに、微細藻類の懸濁溶液又は分散溶液を調製する。次に、培養容器を静置状態にしておくと、通常は、図1の(b)に示したように、微細藻類の種類に応じて、数秒から数十分で微細藻類は底面に沈む。この状態で、微細藻類をしばらく培養すると、図1の(c)に示した様に、液面上に微細藻類から構成されたバイオフィルムが形成される。なお、通常は図1の(c)に示した様に、培養容器底面にも微細藻類は存在し、図には記載していないが、培養容器側面にも存在している。
 本発明では、培養の際に培養容器を静置状態にしておくことが好ましいが、激しく攪拌しない限り、振盪培養を行っても本発明と同様の培養を行うことは可能である。しかし、液面上に形成されるバイオフィルム中の藻体数が多くなることから、静置状態での培養が好ましい。また、微細藻類が培養容器の底面に沈むとは、微細藻類の大部分が底面に沈むことをいい、液面上や液中から完全に微細藻類が存在しなくなる状態を言うものではない。例えば、振盪培養を行うと、静置培養を行った場合と比べて、振盪条件の強弱にも依存するが一例としては、液面浮遊藻体は静置培養の約1/6、培地中の藻体は静置培養の約3.5倍、底面上の藻体は静置培養の約1.4倍となり、振盪培養することにより、液面上に存在する藻体の割合が減り、培地中及び底面上に存在する藻体の割合が増える。
[Culture method]
The basic culture method of the present invention is shown in FIG. In addition, since this schematic diagram is for demonstrating this invention, there exists the part simplified and described.
(culture)
As shown in FIG. 1 (a), first, a suspension or dispersion solution of microalgae is prepared. Next, when the culture vessel is left stationary, the microalgae usually sink to the bottom in several seconds to several tens of minutes depending on the type of microalgae as shown in FIG. In this state, when microalgae are cultured for a while, a biofilm composed of microalgae is formed on the liquid surface as shown in FIG. Normally, as shown in FIG. 1 (c), microalgae are also present on the bottom surface of the culture vessel, and although not shown in the figure, they are also present on the side surface of the culture vessel.
In the present invention, it is preferable to leave the culture vessel stationary during the culture, but as long as the culture is not vigorously stirred, the same culture as in the present invention can be performed even if shake culture is performed. However, since the number of algal bodies in the biofilm formed on the liquid surface increases, culture in a stationary state is preferable. The phrase “microalgae sinks to the bottom surface of the culture vessel” means that most of the microalgae sinks to the bottom surface, and does not mean a state in which the microalgae are completely absent from the liquid surface or in the liquid. For example, when shaking culture is performed, as compared with the case of performing stationary culture, although depending on the strength of shaking conditions, as an example, liquid surface floating algae is about 1/6 of stationary culture, Algae body is about 3.5 times that of stationary culture, alga body on the bottom surface is about 1.4 times that of stationary culture, and by shaking culture, the proportion of alga bodies existing on the liquid surface is reduced, The percentage of algal bodies present in the middle and bottom is increased.
(回収)
 この液面上に形成されたバイオフィルムに対して、図1の(d)の様に、第一の基板を接触させ、第一の基板の表面にバイオフィルムを付着させて(図1の(e))回収することができる(以下、“転写による回収”ともいう)。図1では、培養容器の液面全面に対して基板を接触させているが、部分的に接触させても良いし、全面若しくは部分的な接触を複数回繰り返しても良い。この様に、複数回接触させることで、液面上の微細藻類の回収効率が向上する。上記において、第一の基板の表面に、フィルム状の構造物又は三次元状の構造物を重ねるようにして転写することもできる。この中で、1m2未満の培養面積の場合には、一回の転写で、1m2以上の培養面積の場合には複数回の転写で行うことが好ましい。なお、フィルム状の構造物及び三次元状の構造物の詳細は後述する通りである。
(Recovery)
As shown in FIG. 1D, the first substrate is brought into contact with the biofilm formed on the liquid surface, and the biofilm is adhered to the surface of the first substrate (( e)) can be recovered (hereinafter also referred to as “collection by transfer”). In FIG. 1, the substrate is brought into contact with the entire liquid surface of the culture vessel. However, the substrate may be partially contacted, or the entire surface or partial contact may be repeated a plurality of times. Thus, the collection efficiency of the microalgae on the liquid surface is improved by contacting them a plurality of times. In the above, a film-like structure or a three-dimensional structure can be transferred so as to overlap the surface of the first substrate. Among these, in the case of a culture area of less than 1 m 2 , it is preferable to carry out one transfer, and in the case of a culture area of 1 m 2 or more, it is preferable to carry out a plurality of transcriptions. The details of the film-like structure and the three-dimensional structure are as described later.
 以下に、転写による回収について、より詳細に説明する。
 まず、第一の基板として、液面上のバイオフィルムを付着させる転写材料を準備する。
ここで第一の基板とは、図1の(d)で使用する液面上の微細藻類から構成されたフィルム状の構造物又は三次元状の構造物を転写し、回収するために使用する基板のことである。第一の基板は、図では培養容器の培地の液面全体を覆う基板が使用されているが、この様に培養容器の培地の液面全体を覆う基板を使用しても良いし、培養容器の培地液面の一部のみを覆うことのできる第一の基板を使用しても良い。
 転写材料としては、ガラス、ポリエチレン、ポリプロピレン、ナイロン、ポリスチレン、塩化ビニル、ポリエステル等が使用可能であるがこれらに限定されるものではない。転写材料は、培養容器の液面面積よりも小さくなるように、必要によりはさみ等で切断できることが好ましい。例えば、培養容器が6穴プレートの場合には、直径約3.5cmの円形状に材料を切断することが好ましい。切断した転写材料は、表面のゴミを除去するために洗浄した後に、第一の基板として使用することが好ましい。なお、採取したバイオフィルムを次の培養に使用する場合には、さらに転写材料を消毒用エタノールに浸漬し、表面を乾燥させた後に第一の基板として使用することが好ましい。
Hereinafter, collection by transfer will be described in more detail.
First, a transfer material to which a biofilm on a liquid surface is attached is prepared as a first substrate.
Here, the first substrate is used to transfer and collect a film-like structure or a three-dimensional structure composed of microalgae on the liquid surface used in FIG. It is a substrate. In the figure, the first substrate is a substrate that covers the entire liquid level of the culture medium in the culture vessel. However, a substrate that covers the entire liquid level of the culture medium in the culture vessel may be used as described above. You may use the 1st board | substrate which can cover only a part of medium culture liquid surface.
As the transfer material, glass, polyethylene, polypropylene, nylon, polystyrene, vinyl chloride, polyester and the like can be used, but are not limited thereto. It is preferable that the transfer material can be cut with scissors or the like, if necessary, so as to be smaller than the liquid surface area of the culture vessel. For example, when the culture vessel is a 6-hole plate, it is preferable to cut the material into a circular shape having a diameter of about 3.5 cm. The cut transfer material is preferably used as the first substrate after washing to remove dust on the surface. When the collected biofilm is used for the next culture, it is preferable that the transfer material is further immersed in disinfecting ethanol and the surface is dried to be used as the first substrate.
 次に、第一の基板を培養容器が形成する液面に対して、平行、もしくは、それに近い角度になるように静かに挿入し、液面上の微細藻類を第一の基板に付着させる。なお、挿入を行う際、第一の基板を液面に対して若干斜めに挿入し、最終的に液面に対して平行にするようにすると、多くの液面のバイオフィルムを少ない転写回数で回収できることから好ましい。液面上のバイオフィルムが付着した第一の基板を静かに引き上げることで、培養容器の液面上からバイオフィルムを第一の基板に転写することができる。第一の基板による液面上のバイオフィルムの転写は、複数回行っても良い。複数回行うことによって、より転写率が向上するからである。 Next, the first substrate is gently inserted so that the first substrate is parallel to or close to the liquid surface formed by the culture vessel, and the microalgae on the liquid surface are attached to the first substrate. When inserting, if the first substrate is inserted slightly obliquely with respect to the liquid surface and finally made parallel to the liquid surface, many liquid surface biofilms can be transferred with a small number of transfer times. It is preferable because it can be recovered. By gently pulling up the first substrate to which the biofilm on the liquid surface is attached, the biofilm can be transferred to the first substrate from the liquid surface of the culture vessel. The transfer of the biofilm on the liquid surface by the first substrate may be performed a plurality of times. This is because the transfer rate is further improved by performing a plurality of times.
 培養の状態によっては、培養容器内の液面上で増殖している微細藻類のバイオフィルムは、フィルム状から、ひだ状に培養培地内で成長することがある。この場合には、ピペットを用いてひだ状になったバイオフィルムを採取することもできる。 Depending on the state of culture, the microalgae biofilm growing on the liquid surface in the culture vessel may grow from a film shape into a pleated shape in the culture medium. In this case, it is also possible to collect a pleated biofilm using a pipette.
 次に、転写による回収とは別の回収方法について説明する。
 図1の(f)に示したように、液面上のバイオフィルムを第二の基板を用いてかき集めるように回収することも可能である(以下、“堆積による回収”ともいう)。ここで第二の基板とは、図1の(f)で使用する液面上の微細藻類から構成されたフィルム状の構造物若しくは三次元状の構造物を回収するために使用する基板のことである。
 図では、図の右側から左側に基板を移動させている。第二の基板の移動方向は、逆(すなわち、図の左側から右側への基板の移動)でも良いし、複数回回収しても良い。複数回回収を行うことによって、回収率が向上するからである。複数回回収する場合には、バイオフィルムを付着させたままの第二の基板を用いても良いし、前述の第一の基板の表面からバイオフィルムを全部もしくは部分的に除去した後の基板を第二の基板として用いても良いし、新しい基板を用いても良い。また、図1では1枚の第二の基板しか記していないが、複数枚の第二の基板を同時に用いても良い。これにより、回収率が向上する。なお、この中で第二の基板の強度が許す限り、一枚の第二の基板を用い、回収したバイオフィルムを除去した後、同一の第二の基板を用いて回収を再開することが、回収装置の設置コストの面等から好ましい。また、第二の基板の大きさ、液面に対する第二の基板の角度や移動速度等は目的に応じて自由に設定することができる。なお、図1の(g)は、第二の基板上にバイオフィルムが回収された状態である。
Next, a collection method different from collection by transfer will be described.
As shown in FIG. 1 (f), it is also possible to collect the biofilm on the liquid surface so as to be collected using the second substrate (hereinafter also referred to as “recovery by deposition”). Here, the second substrate is a substrate used for recovering a film-like structure or a three-dimensional structure composed of microalgae on the liquid surface used in FIG. It is.
In the figure, the substrate is moved from the right side to the left side of the figure. The direction of movement of the second substrate may be reversed (that is, movement of the substrate from the left side to the right side of the drawing) or may be collected multiple times. This is because the collection rate is improved by performing the collection multiple times. When collecting multiple times, the second substrate with the biofilm attached may be used, or the substrate after the biofilm has been completely or partially removed from the surface of the first substrate described above. It may be used as the second substrate or a new substrate may be used. In FIG. 1, only one second substrate is shown, but a plurality of second substrates may be used simultaneously. Thereby, a recovery rate improves. In addition, as long as the strength of the second substrate allows in this, after removing the collected biofilm using one second substrate, it is possible to resume the collection using the same second substrate, This is preferable from the viewpoint of the installation cost of the recovery device. The size of the second substrate, the angle of the second substrate with respect to the liquid surface, the moving speed, and the like can be freely set according to the purpose. In addition, (g) of FIG. 1 is the state by which the biofilm was collect | recovered on the 2nd board | substrate.
 以下に、第二の基板による回収について、より詳細に説明する。
 第二の基板による回収は、図1の(f)から(g)への工程に相当する。また、スライドガラスの他に、ナイロンフィルム等の他の材料も第二の基板として用いることができる。また、第二の基板のサイズは、培養容器のサイズに応じて適宜変更できるが、第二の基板は、培養容器の表面積よりも小さな基板を用いる方が好ましい。これにより、第二の基板を移動している時に、培養容器の内壁に対して不必要な接触を避けることができるとともに、液面上の微細藻類バイオフィルムが、培養容器と第二の基板との間の隙間を通ることによる回収漏れが発生しにくくなるためである。
Hereinafter, recovery by the second substrate will be described in more detail.
The collection by the second substrate corresponds to the process from (f) to (g) in FIG. In addition to the slide glass, other materials such as a nylon film can be used as the second substrate. The size of the second substrate can be appropriately changed according to the size of the culture vessel, but it is preferable to use a substrate smaller than the surface area of the culture vessel as the second substrate. Thereby, while moving the second substrate, unnecessary contact with the inner wall of the culture vessel can be avoided, and the microalgae biofilm on the liquid surface is separated from the culture vessel and the second substrate. This is because a recovery leakage due to passing through the gap between the two is less likely to occur.
 また、培養の状態によっては、培養容器内の液面上で増殖している微細藻類のバイオフィルムは、フィルム状から、ひだ状に培養培地内で成長することがある。この場合には、第二の基板の液中への挿入深度を深くすることによって、ひだ状になったバイオフィルムを採取することもできる。 Depending on the culture state, the microalgal biofilm growing on the liquid surface in the culture vessel may grow from a film shape into a pleated shape in the culture medium. In this case, a fold-like biofilm can be collected by increasing the insertion depth of the second substrate into the liquid.
 液面上のバイオフィルムを回収した後の状態が、図1の(h)である。培養容器の底面には、微細藻類が付着又は沈積している。なお、本発明の模式図では液面上への微細藻類の供給が底面から行われるように記されているが、実際には、液面及び底面以外の培地中にも微細藻類が低濃度ながら存在している。また、液面及び底面から微細藻類が液中へと供給されている状態でも、本発明では、培養容器底面から液面上へと微細藻類が供給されていると記すものとする。また、培養容器底面から液面上への微細藻類の供給とは、実際に底面における微細藻類の増殖を伴わずに液面上に移動する場合と、微細藻類が底面から液面上に移動しながら増殖する場合との両方がある。 (H) of FIG. 1 is a state after the biofilm on the liquid surface is collected. On the bottom surface of the culture vessel, microalgae are attached or deposited. In the schematic diagram of the present invention, the supply of microalgae to the liquid surface is described as being performed from the bottom surface, but in practice, the microalgae are also in a medium other than the liquid surface and the bottom surface, while the concentration is low. Existing. Moreover, even if the microalgae are supplied into the liquid from the liquid surface and the bottom surface, the present invention describes that the microalgae are supplied from the bottom surface of the culture vessel to the liquid surface. In addition, the supply of microalgae from the bottom of the culture vessel to the liquid surface means that the microalgae actually move from the bottom to the liquid surface when they move on the liquid surface without the growth of microalgae on the bottom surface. There are both cases of proliferating.
 なお、本発明では図1の(c)の状態のように、液面上で微細藻類を培養する培養方法を液面浮遊培養と呼ぶものとする。すなわち、微細藻類を液中及び液の底面のいずれか一方のみ、又は、両方のみで培養する培養方法は液面浮遊培養には含まれない。
 なお本発明における液面とは、典型的には後述する液体培地の液面であり、通常、液体培地と空気との界面である。
 さらに、図1の(c)の状態のような液面浮遊培養を、静置状態にして行うことを、本発明では静置培養による液面浮遊培養と呼ぶものとする。
In the present invention, the culture method for culturing microalgae on the liquid surface as shown in FIG. 1 (c) is called liquid surface floating culture. That is, the culture method for culturing microalgae in only one or both of the liquid and the bottom of the liquid is not included in the liquid surface floating culture.
The liquid surface in the present invention is typically the liquid surface of a liquid medium described later, and is usually an interface between the liquid medium and air.
Further, in the present invention, the liquid surface suspension culture as in the state of (c) of FIG. 1 is performed in a stationary state, which is called liquid surface suspension culture by stationary culture.
(脱着)
 図1の模式図では、基板を培養容器外へと取り出してから、微細藻類バイオフィルムを脱着しているが、培養容器の中で脱着してもかまわない。
 基板上の微細藻類バイオフィルムを脱着する方法としては、基板上から微細藻類を剥がすことのできる方法であればいかなる方法を用いても良いが、水流を加えたり、基板を入れた容器を超音波処理したり、基板を入れた容器の蓋を閉めた後、激しく振ったり、高速振盪処理を行ったり、セルスクレーバーのようなものを用いたりすることで微細藻類バイオフィルムを基板から剥ぎ取ることができる。このうち、基板を傷つけない素材が使用されている治具、例えば、セルスクレーバーのようなものを用いて基板から微細藻類バイオフィルムを剥ぎ取る方法が好ましい。さらに、基板を傾けるだけで、基板上から微細藻類バイオフィルムを剥がすこともできる。本方法は、簡便であることから、最も好ましい方法である。また、基板は、何度でも再利用してもかまわない。
(Desorption)
In the schematic diagram of FIG. 1, the microalgae biofilm is detached after the substrate is taken out of the culture vessel. However, it may be detached in the culture vessel.
As a method for desorbing the microalgae biofilm on the substrate, any method can be used as long as the microalgae can be peeled off from the substrate. After processing or closing the lid of the container containing the substrate, the microalgal biofilm can be peeled off the substrate by shaking vigorously, performing high-speed shaking treatment, or using something like a cell scraper it can. Among these, a method of stripping the microalgal biofilm from the substrate using a jig using a material that does not damage the substrate, such as a cell scraper, is preferable. Furthermore, the microalgal biofilm can be peeled off the substrate simply by tilting the substrate. Since this method is simple, it is the most preferable method. The substrate may be reused any number of times.
[培地(液体培地)]
 本発明に用いることができる培地(液体培地)は、微細藻類を培養でき、かつ後述のように硝酸イオンのリン酸イオンに対するモル濃度比(N/P比)が0.7~4.0 であり、かつ培養容器における培養面積当たりの硝酸イオン量が0.2mol/m2以上である限り、特に限定されない。本発明に用いる培地は、従来の培地において所定の成分を増減することにより、調製することができる。従来の培地として、AF-6培地、Allen培地、BBM培地、C培地、CA培地、CAM培地、CB培地、CC培地、CHU培地、CSi培地、CT培地、CYT培地、D培地、ESM培地、f/2培地、HUT培地、M-11培地、MA培地、MAF-6培地、MF培地、MDM培地、MG培地、MGM培地、MKM培地、MNK培地、MW培地、P35培地、URO培地、VT培地、VTAC培地、VTYT培地、W培地、WESM培地、SW培地、SOT培地等を挙げることができる。このうち淡水性のものはAF-6培地、Allen培地、BBM培地、C培地、CA培地、CAM培地、CB培地、CC培地、CHU培地、CSi培地、CT培地、CYT培地、D培地、HUT培地、M-11培地、MA培地、MAF-6培地、MDM培地、MG培地、MGM培地、MW培地、P35培地、URO培地、VT培地、VTAC培地、VTYT培地、W培地、SW培地、SOT培地である。AVFF007株を培養する培地としては、C培地、CSi培地、CHU培地、及びこれら培地の混合物が好ましい。なお培地は、培養する微細藻類の種類に応じて選択することが好ましい。
[Medium (liquid medium)]
The medium (liquid medium) that can be used in the present invention is capable of cultivating microalgae, and has a molar concentration ratio of nitrate ion to phosphate ion (N / P ratio) of 0.7 to 4.0 as described later. There is no particular limitation as long as the amount of nitrate ions per culture area in the culture vessel is 0.2 mol / m 2 or more. The medium used in the present invention can be prepared by increasing or decreasing predetermined components in a conventional medium. Conventional media include AF-6 medium, Allen medium, BBM medium, C medium, CA medium, CAM medium, CB medium, CC medium, CHU medium, CSi medium, CT medium, CYT medium, D medium, ESM medium, f / 2 medium, HUT medium, M-11 medium, MA medium, MAF-6 medium, MF medium, MDM medium, MG medium, MGM medium, MKM medium, MNK medium, MW medium, P35 medium, URO medium, VT medium, Examples include VTAC medium, VTYT medium, W medium, WESM medium, SW medium, SOT medium, and the like. Among these, those that are fresh water are AF-6 medium, Allen medium, BBM medium, C medium, CA medium, CAM medium, CB medium, CC medium, CHU medium, CSi medium, CT medium, CYT medium, D medium, HUT medium. , M-11 medium, MA medium, MAF-6 medium, MDM medium, MG medium, MGM medium, MW medium, P35 medium, URO medium, VT medium, VTAC medium, VTYT medium, W medium, SW medium, SOT medium is there. As a medium for culturing the AVFF007 strain, a C medium, a CSi medium, a CHU medium, and a mixture of these mediums are preferable. The medium is preferably selected according to the type of microalgae to be cultured.
 培地は、紫外線滅菌、オートクレーブ滅菌、フィルター滅菌しても良く、しなくても良い。 The medium may or may not be sterilized by ultraviolet light, autoclaving, or filter sterilization.
 培地は、前培養工程と本培養工程で異なる培地を使用しても良い。また、培養工程の途中で異なる培地に変更しても良い。 As the medium, different media may be used in the pre-culture process and the main culture process. Moreover, you may change to a different culture medium in the middle of a culture | cultivation process.
(硝酸イオンのリン酸イオンに対するモル濃度比(N/P比))
 本発明においては、硝酸イオンのリン酸イオンに対するモル濃度比が、有用物質の生産性の向上の観点から有効な範囲に設定された培地を用いる。N/P比は、式:(培地中の硝酸イオンのモル濃度)/(培地中のリン酸イオンのモル濃度)で求められる。硝酸イオンとは、培地中に含まれるNO3 -で表される成分を指す。硝酸イオンは、培地成分のうちの、硝酸カリウム、硝酸ナトリウム、硝酸カルシウム等に由来する。リン酸イオンとは、培地中に含まれるH2PO4ー、HPO4 2-及びPO4 3-で表される成分を指す。リン酸イオンのモル数は、これらのイオンの総和のモル数を指す。リン酸イオンは、培地成分のうちのリン酸水素二カリウム(K2HPO4)、リン酸水素二ナトリウム(Na2HPO4)、リン酸二水素カリウム(H2KPO4)、リン酸二水素ナトリウム(H2NaPO4)等に由来する。
(Molar concentration ratio of nitrate ion to phosphate ion (N / P ratio))
In the present invention, a culture medium is used in which the molar concentration ratio of nitrate ions to phosphate ions is set in an effective range from the viewpoint of improving the productivity of useful substances. The N / P ratio is determined by the formula: (molar concentration of nitrate ions in the medium) / (molar concentration of phosphate ions in the medium). The nitrate ion refers to a component represented by NO 3 contained in the medium. Nitrate ions are derived from potassium nitrate, sodium nitrate, calcium nitrate and the like among the medium components. The phosphoric acid ion, refers to H 2 PO 4 over, HPO 4 2-and PO 4 3- represented by the components contained in the medium. The number of moles of phosphate ions refers to the total number of moles of these ions. Among the medium components, phosphate ions are dipotassium hydrogen phosphate (K 2 HPO 4 ), disodium hydrogen phosphate (Na 2 HPO 4 ), potassium dihydrogen phosphate (H 2 KPO 4 ), and dihydrogen phosphate. Derived from sodium (H 2 NaPO 4 ) and the like.
 N/P比は、0.7以上であることが好ましい。この値以上であれば、有用物質の生産性の向上率を1.1以上とできるからである。N/P比は、1.0以上であることがより好ましい。この値以上であれば、有用物質の生産性の向上率を1.2以上とできるからである。有用物質の生産性の向上率をさらに高めるとの観点からは、N/P比は、1.5以上であることがさらに好ましい。N/P比の上限値は、N/P比の下限値がいずれの場合であっても4.0以下であることが好ましい。この値超える場合には、藻体の増殖が進み、藻体生産性は向上するものの、藻体あたりの有用物質の含有率が下がり、有用物質の生産性としては劣ることになるからである。 The N / P ratio is preferably 0.7 or more. This is because the productivity improvement rate of the useful substance can be 1.1 or more if it is at least this value. The N / P ratio is more preferably 1.0 or more. This is because the productivity improvement rate of the useful substance can be 1.2 or more if the value is equal to or greater than this value. From the viewpoint of further increasing the productivity improvement rate of useful substances, the N / P ratio is more preferably 1.5 or more. The upper limit value of the N / P ratio is preferably 4.0 or less regardless of the lower limit value of the N / P ratio. If this value is exceeded, the algal bodies will grow and the algal body productivity will be improved, but the content of useful substances per alga body will be reduced and the productivity of useful substances will be inferior.
(培養面積当たりの硝酸イオン量)
 本発明においては、N/P比のみならず、培養面積当たりの硝酸イオン量(mol/m2)が、有用物質の生産性の向上の観点から有効な範囲に設定された培地を用いる。培養面積当たりの硝酸イオン量は、式:(培地中の硝酸イオンのモル)/(培養面積)で求められる。培養面積は、培養系における液面の面積であり、液面にバイオフィルムを形成させる本発明の培養においては重要なパラメーターの一つである。
(Nitrate ion amount per culture area)
In the present invention, a medium is used in which not only the N / P ratio but also the nitrate ion amount (mol / m 2 ) per culture area is set in an effective range from the viewpoint of improving the productivity of useful substances. The amount of nitrate ions per culture area is determined by the formula: (mol of nitrate ions in the medium) / (culture area). The culture area is an area of the liquid surface in the culture system, and is one of the important parameters in the culture of the present invention in which a biofilm is formed on the liquid surface.
 培養面積当たりの硝酸イオン量は、0.2mol/m2以上であることが好ましい。この値以上であれば、有用物質の生産性の向上率を1.1以上とできるからである。培養面積当たりの硝酸イオン量は、0.26mol/m2以上であることがより好ましい。この値以上であれば、有用物質の生産性の向上率を1.2以上とできるからである。有用物質の生産性の向上率をさらに高めるとの観点からは、培養面積当たりの硝酸イオン量は、0.28mol/m2以上であることがさらに好ましい。培養面積当たりの硝酸イオン量の上限値は、培養面積当たりの硝酸イオン量の下限値がいずれの場合であっても1.5mol/m2以下であることが好ましく、1.2mol/m2以下であることがより好ましい。この値を超える場合には、藻体の増殖が進み、藻体生産性は向上するものの、藻体あたりの有用物質の含有率が下がり、有用物質の生産性としては劣ることになるからである。 The amount of nitrate ions per culture area is preferably 0.2 mol / m 2 or more. This is because the productivity improvement rate of the useful substance can be 1.1 or more if it is at least this value. The nitrate ion amount per culture area is more preferably 0.26 mol / m 2 or more. This is because the productivity improvement rate of useful substances can be set to 1.2 or more if the value is equal to or greater than this value. From the viewpoint of further increasing the productivity improvement rate of useful substances, the nitrate ion amount per culture area is more preferably 0.28 mol / m 2 or more. Upper limit of nitrate ion per culture area is preferably the lower limit of nitrate ion per culture area is a 1.5 mol / m 2 even less in each case, 1.2 mol / m 2 or less It is more preferable that If this value is exceeded, the growth of algal bodies will progress and algal body productivity will improve, but the content of useful substances per alga will decrease and the productivity of useful substances will be poor. .
(他の成分)
 培地は、炭素源として、微細藻類が資化可能な糖を含んでいてもよい。糖を含む培地を用いることで、光と二酸化炭素を用いた場合と比べて、好適に増殖速度を向上させることが可能な場合がある。また、オイル含有量も高くなる傾向がある。
 本発明で用いることのできる微細藻類が資化可能な糖とは、単糖、二糖、三糖もしくは多糖の少なくとも一つを含むものである。単糖としては、公知のいかなるものも用いることができるが、ガラクトース、マンノース、タロース、リボース、キシロース、アラビノース、エリトロース、トレオース、グリセルアルデヒド、フルクトース、キシルロース、エリトルロース等を用いることができる。二糖としては、公知のいかなるものも使用することができるが、トレハロース、コージビオース、ニゲロース、マルトース、イソマルトース等を用いることができる。また、三炭糖、四炭糖、五炭糖、六炭糖、七炭糖のいずれも用いることができる。多糖としては、デンプン、アミロース、グリコヘゲン、セルロース等を用いることができ、その他、オリゴ糖として、ガラクトオリゴ糖やデオキシリボース、グルクロン酸、グルコサミン、グリセリン、キシリトール等を用いることができる。
 培地中の糖の濃度としては、0.1μg/mL以上が好ましく、0.1mg/mL以上がさらに好ましく、1mg/mL以上が最も好ましい。0.1μg/mL以上であると、微細藻類の増殖速度を好適に向上させることができることから好ましい。また、上限は特に設けないが、好ましくは、溶解度以下、より好ましくは、溶解度の半分以下、さらに好ましくは、溶解度の1/10濃度である。より具体的には、糖としてグルコースを用いる場合、30mg/mL以下とすることができ、10mg/mL以下であることが好ましく、5mg/mL以下であることがより好ましい。なお、糖の濃度とは、培養を開始する直前の濃度(初濃度)のことであり、培養中の糖の濃度は、継続的に変化することが多い。
 糖としては、単一種の糖を用いても良いし、二種以上の糖を用いても良い。
(Other ingredients)
The culture medium may contain a sugar that can be assimilated by microalgae as a carbon source. By using a medium containing sugar, it may be possible to suitably improve the growth rate as compared with the case where light and carbon dioxide are used. Also, the oil content tends to be high.
The sugar that can be assimilated by microalgae that can be used in the present invention includes at least one of monosaccharide, disaccharide, trisaccharide, and polysaccharide. Any known monosaccharide can be used, but galactose, mannose, talose, ribose, xylose, arabinose, erythrose, threose, glyceraldehyde, fructose, xylulose, erythrulose, and the like can be used. Any known disaccharide can be used, but trehalose, cordobiose, nigerose, maltose, isomaltose and the like can be used. In addition, any of tricarbon sugar, tetracarbon sugar, pentose sugar, hexose sugar and heptose sugar can be used. As the polysaccharide, starch, amylose, glycohegen, cellulose and the like can be used, and as the oligosaccharide, galactooligosaccharide, deoxyribose, glucuronic acid, glucosamine, glycerin, xylitol and the like can be used.
The concentration of sugar in the medium is preferably 0.1 μg / mL or more, more preferably 0.1 mg / mL or more, and most preferably 1 mg / mL or more. It is preferable for it to be 0.1 μg / mL or more because the growth rate of microalgae can be suitably improved. Moreover, although there is no upper limit in particular, it is preferably not more than solubility, more preferably not more than half of solubility, and still more preferably 1/10 concentration of solubility. More specifically, when glucose is used as the sugar, it can be 30 mg / mL or less, preferably 10 mg / mL or less, and more preferably 5 mg / mL or less. The sugar concentration is a concentration (initial concentration) immediately before the start of culture, and the concentration of sugar during the culture often changes continuously.
As the sugar, a single kind of sugar may be used, or two or more kinds of sugars may be used.
[培地交換]
 本発明においては、培地中のN/P比及び、かつ培養面積当たりの硝酸イオン量を規定することにより、培養操作がより単純になる。培養操作が単純になることには培養途中で培地交換を行わなくてもよいことが含まれる。培地交換を行わないことには、培地の全部又は一部の置換を行わないこと、培地、培地成分及び水からなる群より選択されるいずれも追加せず、また除去しないことが含まれる。通常、培地交換は、培養途中で生成しつつある藻体の成長状態を観察・測定し、その成長状態に応じた培地を、生成しつつある藻体に影響を与えないように配慮しながら行う必要があるが、本発明によれば、そのような配慮を要する操作は要さないという従来技術では達成しえなかったメリットがある。また本発明によれば、好気的な条件から嫌気的な条件への切り替えも要しない。
[Change medium]
In this invention, culture | cultivation operation becomes simpler by prescribing | regulating the N / P ratio in a culture medium, and the nitrate ion amount per culture | cultivation area. The simplification of the culturing operation includes the fact that the medium need not be changed during the culturing. Not performing medium exchange includes not replacing all or part of the medium, not adding or removing any selected from the group consisting of medium, medium components and water. Usually, medium exchange is performed while observing and measuring the growth state of algal bodies that are being produced during culture, and taking into account the growth medium that does not affect the algal bodies that are being produced. Although necessary, according to the present invention, there is a merit that cannot be achieved by the prior art that an operation requiring such consideration is not required. Further, according to the present invention, switching from an aerobic condition to an anaerobic condition is not required.
[有用物質の生産性]
 本発明においては、培地中のN/P比及び、かつ培養面積当たりの硝酸イオン量を規定することにより、有用物質の生産性を向上させることができる。有用物質の生産性(g/m2・日)は、 先に求めた藻体生産性(g/m2・日)に藻体重量当たりの有用物質の含有率を乗じることによって求められる。有用物質の生産性の向上率は、目的の培養系における有用物質の生産性の、比較対照となる培養系における有用物質の生産性に対する倍率として計算される。比較対照となる培養系は、目的の培養系とは培地中の硝酸イオン量及びリン酸イオン量が異なるが、それ以外の培養条件が同じである培養系である。それ以外の培養条件とは、培養開始時の藻体量(初期藻体量ということもある。)、培養日数、培養面積、培地の深さ(水深)、及び光量等である。
[Productivity of useful substances]
In the present invention, the productivity of useful substances can be improved by defining the N / P ratio in the medium and the amount of nitrate ions per culture area. The productivity (g / m 2 · day) of the useful substance is determined by multiplying the previously obtained algal body productivity (g / m 2 · day) by the content of the useful substance per algal body weight. The improvement rate of the useful substance productivity is calculated as the ratio of the useful substance productivity in the target culture system to the productivity of the useful substance in the comparative culture system. The comparative culture system is a culture system in which the amount of nitrate ions and phosphate ions in the medium is different from the target culture system, but the other culture conditions are the same. Other culture conditions include the amount of algal bodies at the start of culture (sometimes referred to as initial algal body amount), the number of culture days, the culture area, the depth of the medium (water depth), the amount of light, and the like.
 本発明においては、培地中のN/P比及び、かつ培養面積当たりの硝酸イオン量を規定することにより、培地交換を行わなくても、有用物質の生産性の向上率を従来技術と同程度、すなわち少なくとも1.1倍とすることができる。本発明の好ましい態様においては、有用物質の生産性の向上率を、1.2倍以上とすることができる。このように高い向上率は、硝酸イオン(窒素成分)のみに着目した従来技術の培養条件では達成しえなかった。また本発明のより好ましい態様においては、有用物質の生産性の向上率を、1.3倍以上とすることができ、さらに好ましい態様においては、有用物質の生産性の向上率を1.4倍以上とすることができる。 In the present invention, by defining the N / P ratio in the culture medium and the amount of nitrate ions per culture area, the productivity improvement rate of useful substances is comparable to that of the prior art without replacing the culture medium. That is, it can be at least 1.1 times. In the preferable aspect of this invention, the improvement rate of productivity of a useful substance can be 1.2 times or more. Such a high improvement rate could not be achieved under the conventional culture conditions focusing only on nitrate ions (nitrogen components). Further, in a more preferred embodiment of the present invention, the productivity improvement rate of useful substances can be 1.3 times or more, and in a more preferred embodiment, the productivity improvement rate of useful materials is 1.4 times. This can be done.
[微細藻類]
 微細藻類とは、人の肉眼では、個々の存在が識別できないような微小な藻類を指す。本発明には、微細藻類として、有用物質生産性であり、かつ液面上においてバイオフィルムを形成する能力を有するものであれば特に制限はない。
[Microalgae]
The microalgae refers to microalgae whose individual presence cannot be identified with the human eye. The microalgae of the present invention is not particularly limited as long as it is useful substance productivity and has the ability to form a biofilm on the liquid surface.
 本発明に用いられる微細藻類は有用物質生産性であり、特に、医薬品、化粧品、健康食品の中間体や最終生成物、合成化学で使用する原料、炭化水素化合物やトリグリセリド、脂肪酸化合物のようなオイル状物、水素のような気体等を生成する微細藻類が好ましい。微細藻類はまた、液面上での培養及び液面からの回収が良好であること、高い増殖速度を持つこと、高い有用物質含有率を有しうること、少なくとも培養中は臭いが殆どなく、有毒物質の発生も確認されていないこと、のいずれかを満たすことが好ましい。 The microalgae used in the present invention are useful substance productivity, in particular, intermediates and final products of pharmaceuticals, cosmetics, health foods, raw materials used in synthetic chemistry, oils such as hydrocarbon compounds, triglycerides and fatty acid compounds. Preferred are microalgae that generate a gas, gas such as hydrogen. Microalgae also have good culturing on the liquid surface and recovery from the liquid surface, have a high growth rate, can have a high content of useful substances, have at least little odor during culturing, It is preferable to satisfy any one of the cases where generation of toxic substances has not been confirmed.
 本発明では、液面上でバイオフィルムが形成可能な微細藻類を用いる。そのような微細藻類は、例えば、藍色植物門、灰色植物門、紅色植物門、緑色植物門、クリプト植物門、ハプト植物門、不等毛植物門、渦鞭毛植物門、ユーグレナ植物門、クロララクニオン植物門等に属する微細藻類であり得る。これらの中でも、緑色植物門に属するものであることが好ましく、緑藻であることがより好ましい。 In the present invention, microalgae capable of forming a biofilm on the liquid surface is used. Such microalgae are, for example, indigo plant gate, gray plant gate, red plant gate, green plant gate, cryptophyte gate, haptophyte gate, unequal hair plant gate, dinoflagellate plant gate, Euglena plant gate, chlora It may be a microalga belonging to Lacción planta. Among these, those belonging to the green plant gate are preferable, and green algae are more preferable.
 バイオマスの産生性が高いとの観点からは、ヘマトコッカス(Haematococcus sp.)属、クラミドモナス(Chlamydomonas sp.)属、クロロコッカム(Chlorococcum sp.)属、ボツリオコッカス(Botryococcus sp.)属のいずれかに属するものが好ましい。より好ましい例は、ボツリオコッカス スデティクス(Botryococcus sudeticus)やクロロコッカム(Chlorococcum)属に属するものである。具体例として、ボツリオコッカス スデティクス AVFF007株(以下、AVFF007株と略称する。)やFFG039株をあげることができる。 From the viewpoint of high productivity of biomass, any of the genus Haematococcus sp., Chlamydomonas sp., Chlorococcum sp., And Botriococcus sp. Those belonging to are preferred. More preferred examples are those belonging to the genus Botriococcus sudeticus or Chlorococcum. Specific examples include Botriococcus Sudetics AVFF007 strain (hereinafter abbreviated as AVFF007 strain) and FFG039 strain.
[AVFF007株]
 AVFF007株は、受託番号FERM BP-11420として、2011年(平成23年)9月28日付で独立行政法人産業技術総合研究所 特許生物寄託センター(日本国茨城県つくば市東1丁目1番地1 中央第6)にブタベスト条約の下で、富士フイルム株式会社(日本国東京都港区西麻布2丁目26番30号)により、国際寄託されている。なお、独立行政法人産業技術総合研究所 特許生物寄託センターの業務は、2012年(平成24年)4月1日より、独立行政法人製品評価技術基盤機構 特許生物寄託センター(日本国千葉県木更津市かずさ鎌足2-5-8 120号室)に引き継がれている。
[AVFF007 strain]
The AVFF007 strain, under the accession number FERM BP-11420, dated September 28, 2011, National Institute of Advanced Industrial Science and Technology, Patent Biological Deposit Center (1st East, 1st Street, Tsukuba, Ibaraki, Japan, 1st Central 6) is deposited internationally by Fujifilm Corporation (2-30-30 Nishiazabu, Minato-ku, Tokyo, Japan) under the Butabest Convention. The National Institute of Advanced Industrial Science and Technology, Patent Biological Depositary Center has been in operation since April 1, 2012. The National Institute of Technology and Evaluation, Patent Biological Depositary Center (Kisarazu City, Chiba Prefecture, Japan) Kazusa Kamashika 2-5-8 Room 120).
 AVFF007株は、本発明者らが、日本国京都府の淡水池から単離した淡水微細藻類の新規株である。AVFF007株は、その18S rRNA遺伝子の塩基配列の一部を国立生物工学情報センター(National Center for Biotechnology Information、NCBI)のデータに基づき、BLASTで解析した結果、Botryococcus sp. UTEX2629(Botryococcus sudeticus)株に近縁の微細藻類であると同定された(UTEX2629株側の1118塩基中、AVFF007株側の1109塩基が同一であった。)。AVFF007株は、Characiopodium sp. Mary 9/21 T-3wとも近縁の微細藻類であり、今後、Characiopodium属に変更される可能性もある。その場合、AVFF007株の名称は変更されるものとし、また、Characiopodium属以外に変更された場合にも、AVFF007株の名称は変更されるものとする。 AVFF007 strain is a novel strain of freshwater microalgae isolated by the present inventors from a freshwater pond in Kyoto, Japan. AVFF007 strain was analyzed by BLAST based on the data of the National Center for Biotechnology Information (NCBI) of a part of the base sequence of the 18S rRNA gene. As a result, Botryococcus sp. It was identified as a microalgae closely related to the UTEX2629 (Botryococcus sudeticus) strain (1109 bases on the AVFF007 strain side were the same among 1118 bases on the UTEX2629 strain side). The AVFF007 strain is Characiopodium sp. Mary 9/21 is a closely related microalgae with T-3w and may be changed to the genus Characiopodium in the future. In this case, the name of the AVFF007 strain is changed, and the name of the AVFF007 strain is also changed when the name is changed to other than the genus Characiopodium.
 本発明には、AVFF007株と分類学的に同一の性質を有する株を用いることができる。AVFF007株の分類学的性質を以下に示す。 In the present invention, a strain having the same taxonomic properties as the AVFF007 strain can be used. The taxonomic properties of AVFF007 strain are shown below.
 AVFF007株の分類学的性質
1.形態的性質
 緑色円形状である。浮遊性であり、液面及び底面で増殖することができる。サイズは4~30μmである(液面上のものは比較的大きく、底面上のものは比較的小さい。)。液面上で増殖し、フィルム状構造体を形成する。増殖に伴って、液面上に気泡を発生し、これらが重なり合って液面上に三次元構造体を形成する。また、オイルを生産する。
2.培養的性質(培養方法)
(1)培地:CSiFF04(CSi培地を改良したもの。)NaOHもしくはHClにてpH 6.0に調整する。培地は、121℃、10分で滅菌することができる。)
(2)培養温度:好適温度は23℃であり、37℃以下であれば培養できる。
(3)培養期間(概ね定常期に達するまでの期間)は、初期使用藻体量によるが、2週間~1ヶ月である。通常、1×105個/mLで培養することができる。
(4)培養方法:好気培養、静置培養が適する。
(5)光要求性:要。光強度:4000~15000ルクス、明暗周期:明期時間12時間/暗期時間12時間。継代培養の際は、4000ルクスで培養することができる。
Taxonomic properties of AVFF007 strain Morphological properties It has a green circle shape. It is free-floating and can grow on the liquid and bottom surfaces. The size is 4-30 μm (the one on the liquid surface is relatively large and the one on the bottom surface is relatively small). It grows on the liquid surface and forms a film-like structure. Along with the growth, bubbles are generated on the liquid surface, and they overlap to form a three-dimensional structure on the liquid surface. It also produces oil.
2. Culture characteristics (culture method)
(1) Medium: CSiFF04 (improved CSi medium) Adjust to pH 6.0 with NaOH or HCl. The medium can be sterilized at 121 ° C. for 10 minutes. )
(2) Culture temperature: The preferred temperature is 23 ° C., and culture is possible at 37 ° C. or less.
(3) The culture period (approximately the period until reaching the stationary phase) is 2 weeks to 1 month depending on the amount of algal bodies used initially. Usually, it can be cultured at 1 × 10 5 cells / mL.
(4) Culture method: Aerobic culture and stationary culture are suitable.
(5) Optical requirement: Necessary. Light intensity: 4000 to 15000 lux, light / dark cycle: light period 12 hours / dark period 12 hours. When subcultured, it can be cultured at 4000 lux.
 なお、AVFF007株は、上記の培養的性質(培養方法)にしたがった継代培養により、保管することができる。植え継ぎは、液面上に浮いている微細藻類を採取し、ピペッティング等の分散を行った後、新しい培地に分散させることにより、行うことができる。なお、継代直後は、培養容器底面に沈んでいるが、1週間程度で液面上にバイオフィルムを形成し始める。継代直後から液面上に存在させても、増殖することができる。植え継ぎ間隔は、約1ヶ月である。なお黄色味を帯びてきたら、継代する。 The AVFF007 strain can be stored by subculture according to the above culture properties (culture method). Planting can be performed by collecting microalgae floating on the liquid surface, dispersing by pipetting, etc., and then dispersing in a new medium. In addition, although it is sinking in the bottom of a culture container immediately after subculture, it begins to form a biofilm on the liquid surface in about one week. Even if it is present on the liquid surface immediately after passage, it can grow. The planting interval is about one month. If it becomes yellowish, pass it on.
 AVFF007株と分類学的に同一の性質を有する株には、微細藻類であって、その18S rRNA遺伝子が、前掲特許文献3の配列番号1の塩基配列からなるポリヌクレオチドと少なくとも95.0%、好ましくは98.0%、より好ましくは99.0%、さらに好ましくは99.5%、最も好ましくは99.9%の配列同一性を有するものが含まれる。 The strain having the same taxonomic characteristics as the AVFF007 strain is a microalgae, the 18S rRNA gene of which is at least 95.0% with the polynucleotide comprising the base sequence of SEQ ID NO: 1 of the aforementioned Patent Document 3, Preferably, those having a sequence identity of 98.0%, more preferably 99.0%, even more preferably 99.5%, most preferably 99.9% are included.
 本発明で塩基配列について配列同一性というときは、2つの配列を最適の態様で整列させた場合に、整列した領域内の2つの配列間で共有する一致した塩基の数の百分率を意味する。すなわち、同一性=(一致した塩基の数/塩基の全数)×100で算出でき、市販もしくは一般に公開されているアルゴリズムを用いて計算することができる。塩基配列の同一性に関する検索・解析は、当業者には周知のアルゴリズム又はプログラムにより行うことができる。プログラムを用いる場合のパラメーターは、当業者であれば適切に設定することができ、また各プログラムのデフォルトパラメーターを用いてもよい。これらの解析方法の具体的な手法もまた、当業者にはよく知られている。 In the present invention, the term “sequence identity” for a base sequence means the percentage of the number of matched bases shared between the two sequences in the aligned region when the two sequences are aligned in an optimal manner. That is, it can be calculated by identity = (number of matched bases / total number of bases) × 100, and can be calculated using commercially available or publicly available algorithms. Search / analysis regarding the identity of base sequences can be performed by algorithms or programs well known to those skilled in the art. Those skilled in the art can appropriately set parameters when using a program, and the default parameters of each program may be used. Specific techniques for these analysis methods are also well known to those skilled in the art.
[FFG039株]
 本明細書の実施例で使用した微細藻類、FFG039株は、本発明者らが日本国奈良県において採取したものである。AVFF007株に比較して、増殖性が良く、オイル生産性に優れる。また、バイオフィルムの構造が壊れにくく、回収が容易であるという特徴を有する。
[FFG039 strain]
The microalgae FFG039 used in the examples of the present specification was collected by the present inventors in Nara Prefecture, Japan. Compared with AVFF007 strain, it has good growth and oil productivity. In addition, the biofilm structure is not easily broken and is easy to collect.
 FFG039株は、受託番号FERM BP-22262として、2014年(平成26年)2月6日付で独立行政法人製品評価技術基盤機構 特許生物寄託センター(日本国千葉県木更津市かずさ鎌足2-5-8 120号室)にブタベスト条約の下で、富士フイルム株式会社(日本国東京都港区西麻布2丁目26番30号)により、国際寄託されている。 The FFG039 strain has the accession number FERM BP-22262 on February 6, 2014, the National Institute for Product Evaluation Technology Patent Biological Depositary Center (2-5 Kazusa Kamashika, Kisarazu City, Chiba Prefecture, Japan) 8 Room 120) is deposited internationally by FUJIFILM Corporation (2-30-30 Nishiazabu, Minato-ku, Tokyo, Japan) under the Butabest Convention.
 本発明には、FFG039株と分類学的に同一の性質を有する株を用いることができる。FFG039株の分類学的性質を以下に示す。 In the present invention, a strain having the same taxonomic characteristics as the FFG039 strain can be used. The taxonomic properties of the FFG039 strain are shown below.
 FFG039株の分類学的性質
1.形態的性質
 円状である。静置培養を行うと、液面上にフィルム状の構造物を形成する。オイルを生産する。
2.培養的性質(培養方法)
(1)培地:CSiFF04培地又はCSi改良培地(Ca(NO32・4H2O 150 mg/L、KNO3 100 mg/L、K2HPO4 28.4 mg/L、KH2PO4 22.2 mg/L、MgSO4・7H2O 40 mg/L、FeCl3・6H2O 588 ug/L、MnCl2・4H2O 108 ug/L、ZnSO4・7H2O 66 ug/L、CoCl2・6H2O 12 ug/L、Na2MoO4・2H2O 7.5 ug/L、Na2EDTA・2H2O 3 mg/L、ビタミンB12 0.1 ug/L、Biotin 0.1 ug/L、チアミン・HCl 10 ug/L、pH 7.0)
(2)培養温度:15~25℃で培養できる。
(3)培養期間:2~4週間
(4)培養方法:静置培養が適する。
(5)光要求性:要。光強度:4000~15000ルクス、明暗周期:明期時間12時間/暗期時間12時間。
 FFG039株と分類学的に同一の性質を有する微細藻類には、Chlorococcum sp.属に属する微細藻類であって、その18S rRNA遺伝子が、前掲特許文献3の配列番号2の塩基配列からなるポリヌクレオチドと少なくとも99.94%の配列同一性を有するものが含まれる。
Taxonomic properties of FFG039 strain Morphological properties It is circular. When static culture is performed, a film-like structure is formed on the liquid surface. Produce oil.
2. Culture characteristics (culture method)
(1) Medium: CSiFF04 medium or CSi modified medium (Ca (NO 3 ) 2 .4H 2 O 150 mg / L, KNO 3 100 mg / L, K 2 HPO 4 28.4 mg / L, KH 2 PO 4 22 0.2 mg / L, MgSO 4 .7H 2 O 40 mg / L, FeCl 3 .6H 2 O 588 ug / L, MnCl 2 .4H 2 O 108 ug / L, ZnSO 4 .7H 2 O 66 ug / L, CoCl 2 · 6H 2 O 12 ug / L, Na 2 MoO 4 · 2H 2 O 7.5 ug / L, Na 2 EDTA · 2H 2 O 3 mg / L, Vitamin B12 0.1 ug / L, Biotin 0. 1 ug / L, thiamine · HCl 10 ug / L, pH 7.0)
(2) Culture temperature: can be cultured at 15 to 25 ° C.
(3) Culture period: 2 to 4 weeks (4) Culture method: Stationary culture is suitable.
(5) Optical requirement: Necessary. Light intensity: 4000 to 15000 lux, light / dark cycle: light period 12 hours / dark period 12 hours.
Microalgae that have taxonomically identical properties to the FFG039 strain include Chlorococcum sp. The microalgae belonging to the genus include those whose 18S rRNA gene has at least 99.94% sequence identity with the polynucleotide comprising the nucleotide sequence of SEQ ID NO: 2 of Patent Document 3 described above.
 微細藻類を入手する方法には、特に制限はなく、目的に応じて適宜選択することができ、例えば、自然界より採取する方法、市販品を用いる方法、保存機関や寄託機関から入手する方法等があげられる。なお、本発明には、一種類の微細藻類を用いてもよく、複数の種類の微細藻類を用いてもよい。また、純化工程を経た微細藻類を用いてもよい。純化工程とは、微細藻類を単一の種類にする目的で行う工程であり、必ずしも完全に単独の微細藻類のみにすることをいうものではない。 The method for obtaining microalgae is not particularly limited and may be appropriately selected according to the purpose. Examples thereof include a method of collecting from the natural world, a method of using a commercially available product, a method of obtaining from a storage organization and a depository organization, and the like. can give. In the present invention, one type of microalgae or a plurality of types of microalgae may be used. Moreover, you may use the micro algae which passed through the purification process. A purification process is a process performed for the purpose of making microalgae into a single kind, and does not necessarily mean that only a single microalgae is made completely.
[微細藻類の存在状態]
 本発明においては、有用物質生産性であり、かつ液面上にバイオフィルムを形成可能な微細藻類であって、培養容器内の培地中で培養した際に、下記(1)~(8)からなる群より選択される少なくとも一つの特徴を有する、微細藻類を用いてもよい。このような微細藻類を用いることにより、培地置換、バイオフィルムの回収、培養の再開等の操作がより容易となり、より低コストである本発明の実施が期待できる。
(1)液面上及び液面下1cmから液面までの領域に存在する微細藻類の藻体量と培養容器の底面上の微細藻類の藻体量との合計が、培養容器内のそれ以外の領域に存在する藻体量の10倍以上、好ましくは20倍以上、より好ましくは30倍以上である。ここでいう培養容器内のそれ以外の領域とは、液面上と液面近傍、すなわち液面下1cmから液面までの領域、及び底面を除いた領域を指す。培養容器の側面、及び培養をモニターするセンサー等の培養容器内に設置する各種構造物の表面に微細藻類が付着することがあるが、そのような微細藻類はどちらの領域にも含めなくてよい。藻体量は、培養容器の底面積当たりの藻体重量として表すことができる。
(2)液面上の微細藻類の比重が、培養容器の底面上の微細藻類の比重より小さい。微細藻類の比重は、公知の方法、例えば濃度勾配法により求めることができる。底面上の微細藻類の比重を1としたときの液面上の微細藻類の比重は、微細藻類の種類にも拠るが、例えば0.99以下であり、好ましくは0.98以下であり、より好ましくは0.96以下である。下限値には特に制限はないが、上限値がいずれの場合であっても例えば0.75以上であり、好ましくは0.77以上であり、より好ましくは0.79以上である。
(3)液面上の微細藻類の比重が、水の比重より大きい。
(4)液面上の微細藻類のオイル含有量が、底面上の微細藻類のオイル含有量より高い。底面上の微細藻類のオイル含有量を1としたときに、液面上の微細藻類のオイル含有量は、例えば1.1以上であり、好ましくは1.2以上であり、より好ましくは1.3以上である。上限値には特に制限はないが、下限値がいずれの場合であっても、例えば3.0以下であり、好ましくは2.5以下であり、より好ましくは2.0以下である。
(5)液面上の微細藻類のサイズ(直径)が、底面上の微細藻類のサイズより大きい。微細藻類のサイズは、公知の方法により求めることができる。底面上の微細藻類のサイズを1としたときに、液面上の微細藻類のサイズは、例えば1.5以上であり、好ましくは1.8以上であり、より好ましくは2.0以上である。上限値には特に制限はないが、下限値がいずれの場合であっても、例えば4.0以下であり、好ましくは3.5以下であり、より好ましくは3.0以下である。
(6)形成されるバイオフィルムが、フィルム状の外側の層と複数の泡沫状の構造物を有する内側の層とを含み、外側の層が内側の層より厚い。層の厚みは、公知の方法により求めることができる。内側の層の厚みを1としたときに、外側の層の厚みは、例えば2.0以上であり、好ましくは3.0以上であり、より好ましくは5.0以上である。上限値には特に制限はないが、下限値がいずれの場合であっても、例えば18.0以下であり、好ましくは14.0以下であり、より好ましくは10.0以下である。形成されるバイオフィルムはまた、外側の層だけの場合もある。従って、形成されるバイオフィルムが、フィルム状の外側の層と複数の泡沫状の構造物を有する内側の層とのいずれか一方を有することも、本発明の微細藻類が有する特徴の一つということができる。
(7)形成されるバイオフィルムの一部が培地中でひだ状の構造をとる。
(8)形成されたバイオフィルムを回収し、懸濁処理することにより得られた微細藻類を培地の液面上に播種した場合、培地中に沈降しうる。通常、液面上に形成されたバイオフィルムは、回収後、懸濁処理せずにそのまま液面上に注意深くアプライすることにより、液面に浮かせることができる。しかしながら、懸濁処理することにより、液面に浮きにくくなり、沈降することが多くなる。
 なお、本発明でいう液面上にバイオフィルムを形成可能な微細藻類であって、培養容器内の培地中で培養した際に、上記(1)~(8)からなる群より選択される少なくとも一つの特徴を有する微細藻類とは、上記(1)~(8)からなる群より選択される少なくとも一つの特徴によって他の藻類の集合と区別することができ、かつ、その少なくとも一つの特徴を保持しつつ繁殖させることができる微細藻類の集合をいう。上記の(3)(4)(5)に関しては、対象となる微細藻類の平均の比重、オイル含有量又はサイズを求めて判断することができる。
[Presence of microalgae]
In the present invention, microalgae that are useful substance productivity and can form a biofilm on the liquid surface, and when cultured in a medium in a culture vessel, the following (1) to (8) Microalgae having at least one characteristic selected from the group may be used. By using such microalgae, operations such as medium replacement, biofilm recovery, and resumption of culture become easier, and the implementation of the present invention at a lower cost can be expected.
(1) The sum of the algal bodies of microalgae present on the liquid surface and in the region from 1 cm to the liquid surface below the liquid surface and the algal bodies of the microalgae on the bottom surface of the culture vessel is other than that in the culture vessel 10 times or more, preferably 20 times or more, more preferably 30 times or more the amount of algal bodies present in the region. The other region in the culture container referred to here refers to the region on the liquid surface and in the vicinity of the liquid surface, that is, the region from 1 cm below the liquid surface to the liquid surface and the region excluding the bottom surface. Although microalgae may adhere to the side of the culture vessel and the surface of various structures installed in the culture vessel such as a sensor for monitoring culture, such microalgae may not be included in either area . The amount of algal bodies can be expressed as the weight of algal bodies per bottom area of the culture vessel.
(2) The specific gravity of the microalgae on the liquid surface is smaller than the specific gravity of the microalgae on the bottom surface of the culture vessel. The specific gravity of microalgae can be determined by a known method such as a concentration gradient method. The specific gravity of the microalgae on the liquid surface when the specific gravity of the microalgae on the bottom surface is 1, although depending on the type of microalgae, is, for example, 0.99 or less, preferably 0.98 or less, and more Preferably it is 0.96 or less. Although there is no restriction | limiting in particular in a lower limit, Even if an upper limit is any case, it is 0.75 or more, for example, Preferably it is 0.77 or more, More preferably, it is 0.79 or more.
(3) The specific gravity of microalgae on the liquid surface is greater than the specific gravity of water.
(4) The oil content of the microalgae on the liquid surface is higher than the oil content of the microalgae on the bottom surface. When the oil content of the microalgae on the bottom surface is 1, the oil content of the microalgae on the liquid surface is, for example, 1.1 or more, preferably 1.2 or more, more preferably 1. 3 or more. Although there is no restriction | limiting in particular in an upper limit, Even if a lower limit is any case, it is 3.0 or less, for example, Preferably it is 2.5 or less, More preferably, it is 2.0 or less.
(5) The size (diameter) of the microalgae on the liquid surface is larger than the size of the microalgae on the bottom surface. The size of the microalgae can be determined by a known method. When the size of the microalgae on the bottom surface is 1, the size of the microalgae on the liquid surface is, for example, 1.5 or more, preferably 1.8 or more, more preferably 2.0 or more. . Although there is no restriction | limiting in particular in an upper limit, Even if a lower limit is any case, it is 4.0 or less, for example, Preferably it is 3.5 or less, More preferably, it is 3.0 or less.
(6) The biofilm to be formed includes a film-like outer layer and an inner layer having a plurality of foam-like structures, and the outer layer is thicker than the inner layer. The thickness of the layer can be determined by a known method. When the thickness of the inner layer is 1, the thickness of the outer layer is, for example, 2.0 or more, preferably 3.0 or more, more preferably 5.0 or more. Although there is no restriction | limiting in particular in an upper limit, Even if a lower limit is any case, it is 18.0 or less, for example, Preferably it is 14.0 or less, More preferably, it is 10.0 or less. The biofilm formed may also be just the outer layer. Therefore, it is also one of the characteristics of the microalgae of the present invention that the formed biofilm has either a film-like outer layer or an inner layer having a plurality of foam-like structures. be able to.
(7) A part of the formed biofilm has a pleated structure in the medium.
(8) When the microalgae obtained by collecting and suspending the formed biofilm is seeded on the liquid surface of the medium, it can settle in the medium. Usually, the biofilm formed on the liquid surface can be floated on the liquid surface by carefully applying it onto the liquid surface without being subjected to a suspending treatment after the collection. However, the suspension treatment makes it difficult to float on the liquid surface, resulting in frequent sedimentation.
The microalgae capable of forming a biofilm on the liquid surface as used in the present invention, and at least selected from the group consisting of the above (1) to (8) when cultured in a medium in a culture vessel A microalgae having one characteristic can be distinguished from a group of other algae by at least one characteristic selected from the group consisting of the above (1) to (8), and the at least one characteristic is A collection of microalgae that can be kept and propagated. Regarding (3), (4), and (5) above, the average specific gravity, oil content, or size of the target microalgae can be determined and determined.
[バイオフィルム]
 一般に見られるバイオフィルムは、微生物が岩等の固体の表面に付着して形成される薄膜状(略二次元構造)であるが、本発明において微細藻類により形成されるバイオフィルムは、一般のバイオフィルムとは異なり、固体の表面に付着して存在することを要さず、液面のような流動性のある表面にフィルム状の構造を維持したまま存在することができる。また微細藻類により形成されるフィルム状の構造は、ある程度の厚みのある三次元構造を有する場合がある。
[Biofilm]
The biofilm generally seen is a thin film (substantially two-dimensional structure) formed by attaching microorganisms to a solid surface such as a rock, but the biofilm formed by microalgae in the present invention is a general biofilm. Unlike a film, it does not need to be attached to the surface of a solid, and can exist while maintaining a film-like structure on a fluid surface such as a liquid surface. Moreover, the film-like structure formed with microalgae may have a three-dimensional structure with a certain thickness.
 より具体的には、本発明における微細藻類から形成されるバイオフィルムは、培養過程で発生する気体(光合成の結果として生じる酸素等)が透過できない程度のガスバリア性を有することがあり、発生した気体を気泡として内部に保持できる。気泡サイズはmmスケールであり、目視で確認できる。また本発明における微細藻類から形成されるバイオフィルムは、ある程度の強度を有し、上述のように発生した期待によって破られずに気泡を保持できるほか、弱い水流の動き程度では微細藻類同士がばらばらになり難い。バイオフィルムの面積は、cm2スケール以上になり得、単なるコロニーとは異なる。 More specifically, the biofilm formed from the microalgae in the present invention may have a gas barrier property such that gas generated during the culturing process (oxygen or the like generated as a result of photosynthesis) cannot permeate. Can be held inside as bubbles. The bubble size is on a mm scale and can be confirmed visually. In addition, the biofilm formed from the microalgae in the present invention has a certain degree of strength, can hold bubbles without being broken by the expectation generated as described above, and the microalgae are separated from each other with a weak water flow. It is hard to become. The area of the biofilm can be greater than the cm 2 scale and is different from a mere colony.
 また本発明における微細藻類から形成されるバイオフィルムは、培養の進行によって、シワ状の構造物やカーテン状の構造物を形成することがある。このような構造体の形成は、培養容器という限られた液面一杯にバイオフィルムが形成された後も微細藻類の増殖が進行することにより、バイオフィルムが湾曲しつつ成長することを示している。 In addition, the biofilm formed from microalgae in the present invention may form a wrinkled structure or a curtain-shaped structure as the culture proceeds. The formation of such a structure indicates that the biofilm grows while being bent by the growth of microalgae even after the biofilm is formed to fill the limited liquid surface of the culture vessel. .
[静置培養]
 本発明での本培養工程では、静置培養を行うことが好ましい。静置培養とは、培養中に意図的に培地を撹拌も振盪もしない培養法のことである。
[Static culture]
In the main culture step in the present invention, it is preferable to perform stationary culture. Static culture is a culture method in which the medium is not intentionally stirred or shaken during the culture.
[液面浮遊培養]
 液面上で微細藻類を培養する培養方法のことを液面浮遊培養という。なお、培養容器底面、側面、その他表面上や培地中等に微細藻類が同時に存在していても、主たる目的が液面上での培養である場合には、液面浮遊培養という。また液面上にはバイオフィルムとともに泡沫がたくさん存在し、液面がどの位置か必ずしも明確でない場合があり、またバイオフィルムが自重によって液面下に多少沈んでいる場合があるが、本発明で液面上というときは、完全な液面のみならず、このような場合も含む。ただし、微細藻類を液中、培養容器の底面のいずれか一方のみ、又は、両方のみで培養する培養方法は液面浮遊培養には含まれない。
[Liquid surface suspension culture]
The culture method for culturing microalgae on the liquid surface is called liquid surface floating culture. In addition, even when microalgae are simultaneously present on the bottom surface, side surface, other surface of the culture vessel, or in the culture medium, when the main purpose is culture on the liquid surface, it is called liquid surface floating culture. In addition, a lot of foam is present on the liquid surface along with the biofilm, and the position of the liquid surface may not always be clear, and the biofilm may be submerged slightly below the liquid surface due to its own weight. The term “on the liquid surface” includes such a case as well as a complete liquid surface. However, the culture method of culturing microalgae in the liquid, only one or both of the bottom surfaces of the culture vessel is not included in the liquid surface floating culture.
 なお本発明における液面とは、典型的には後述する液体培地の液面であり、通常、液体培地と空気との界面である。また、水が主成分となる場合は、水面のことである。また、本発明での液面浮遊培養を行っていると、液面上バイオフィルムからひだ状の構造体が液中へと侵入する現象が見られることがある。本発明では、この様な状況での培養も液面浮遊培養に含むものとしている。 In addition, the liquid level in the present invention is typically the liquid level of a liquid medium described later, and is usually an interface between the liquid medium and air. Moreover, when water becomes a main component, it is a water surface. In addition, when liquid surface suspension culture is performed in the present invention, a phenomenon that a pleated structure enters a liquid from a biofilm on the liquid surface may be seen. In the present invention, the culture in such a situation is also included in the liquid surface suspension culture.
[前培養工程]
 本発明の培養を行う前に、前培養工程を実施してもよい。前培養工程とは、保存用微細藻類を増殖させ、本培養を行えるまで微細藻類の数を増やす工程のことである。前培養工程の培養法は、公知のいかなる培養方法でも選択可能である。例えば、分散培養法や付着培養法、本発明者らにより開発された液面浮遊培養や本発明の培養法等を行うことも可能である。また、本培養が行える規模まで微細藻類を増殖させるために、前培養を数回行っても良い。また、前培養工程では、目的に応じて静置培養を行っても良いし、振盪培養等の非静置培養を行っても良い。
 また、一般的には、1cm2~1m2以下の表面積を持つ培養容器を使用し、屋内外いずれでも培養可能である。
[Pre-culture process]
Before performing the culture of the present invention, a preculture step may be performed. The pre-culture process is a process of increasing the number of microalgae until the microalgae for storage are grown and main culture can be performed. The culture method of the pre-culture process can be selected by any known culture method. For example, a dispersion culture method, an adhesion culture method, a liquid surface floating culture developed by the present inventors, a culture method of the present invention, and the like can be performed. Moreover, in order to grow microalgae to a scale that allows main culture, pre-culture may be performed several times. In the pre-culture step, static culture may be performed according to the purpose, or non-static culture such as shaking culture may be performed.
In general, a culture vessel having a surface area of 1 cm 2 to 1 m 2 or less is used, and the culture can be performed both indoors and outdoors.
[本培養工程]
 本培養工程とは、前培養工程を行った後の、有用物質生産を目的とする培養工程をいう。本培養工程は、液面上にバイオフィルムが十分な量形成されたときに終了することができる。本培養工程は、例えば、数日~数週間で、より特定すると、5日~4週間で終了することができる。また、本培養工程は、複数回行っても良いものとする。
[Main culture process]
The main culturing step refers to a culturing step for the purpose of producing useful substances after performing the pre-culturing step. The main culturing step can be completed when a sufficient amount of biofilm is formed on the liquid surface. The main culturing step can be completed in, for example, several days to several weeks, more specifically, 5 days to 4 weeks. Further, the main culturing step may be performed a plurality of times.
 また、本培養工程は、一般的には、100cm2以上の表面積を持つ培養容器(屋外で更に大規模で行う場合は培養容器のことを培養槽と呼ぶこともある)を使用して比較的大規模に行うことができ、屋内外いずれでも実施可能である。 In addition, the main culturing step is generally performed by using a culture vessel having a surface area of 100 cm 2 or more (in the case of a larger scale outdoors, the culture vessel may be referred to as a culture vessel). It can be performed on a large scale and can be performed both indoors and outdoors.
[種藻]
 本発明での種藻とは、前培養工程や本培養工程の開始時に使用する微細藻類のことを指し、前培養工程や本培養工程における微細藻類の培養の元となる微細藻類のことをいう。
 また、液面に微細藻類バイオフィルムを浮かせた状態や底面に微細藻類が存在している状態で培養を開始することもでき、それらの場合にも、これらの微細藻類を種藻として利用することができる。さらに、底面や培養容器のその他の場所、培養を構成するその他の治具等に付着存在している微細藻類も、種藻として利用することができる。
 また、回収工程の後に、液面上に残存している微細藻類を種藻として用いて、培養を再開することもできる。
[Seed algae]
The seed algae in the present invention refers to the microalgae used at the start of the preculture process or the main culture process, and refers to the microalgae that are the source of the culture of the microalgae in the preculture process or the main culture process. .
In addition, the culture can be started with the microalgae biofilm floating on the liquid surface or with the microalgae present on the bottom surface. In these cases, these microalgae should be used as seed algae. Can do. Furthermore, microalgae attached to the bottom surface, other places of the culture container, other jigs constituting the culture, and the like can also be used as seed algae.
Moreover, culture | cultivation can also be restarted using the micro algae which remain | survives on the liquid level as a seed algae after a collection | recovery process.
[懸濁処理]
 本発明では、懸濁処理した微細藻類試料を種藻として用いても良い。懸濁処理を行うことで、溶液中の微細藻類が均一化し、培養後の膜厚が均一化する結果、培養面積あたりの微細藻類量が増加する場合があるからである。懸濁処理としては、公知のいかなる方法でも用いることができるが、ピペッティングや容器内に入れた微細藻類溶液を手で振る処理、スターラーチップや攪拌棒による処理等の弱い処理、超音波処理や高速振盪処理等の強い処理、細胞間マトリックスのような接着物質を分解する酵素等の物質を用いる方法等をあげることができる。
[Suspension treatment]
In the present invention, a microalgae sample subjected to suspension treatment may be used as a seed algae. This is because by performing the suspension treatment, the microalgae in the solution become uniform and the film thickness after the culture becomes uniform, and as a result, the amount of microalgae per culture area may increase. As the suspension treatment, any known method can be used, but weak treatment such as pipetting, shaking the microalgae solution in the container by hand, treatment with a stirrer chip or a stir bar, ultrasonic treatment, Examples include a strong treatment such as a high-speed shaking treatment, and a method using a substance such as an enzyme that decomposes an adhesive substance such as an intercellular matrix.
[培養容器]
 本発明に用いることのできる培養容器(培養槽)の形状は、培地を保持できる限り、公知のいかなる形状でも用いることができる。例えば、円柱状、方形状、球状、板状、チューブ状、プラスチックバッグ等の不定形状のものを使用することができる。また、オープンポンド(開放池)型、レースウェイ型、チューブ型(J. Biotechnol., 92, 113, 2001)等様々な公知の方式を用いることができる。培養容器として使用することの可能な形状は、例えば、Journal of Biotechnology 70 (1999) 313-321, Eng. Life Sci. 9, 165-177 (2009). に記載の培養容器をあげることができる。これらの中で、オープンポンド型もしくはレースウェイ型を用いることが、コスト面からは好ましい。
[Culture container]
As the shape of the culture vessel (culture tank) that can be used in the present invention, any known shape can be used as long as the medium can be retained. For example, an indefinite shape such as a columnar shape, a square shape, a spherical shape, a plate shape, a tube shape, or a plastic bag can be used. Various known methods such as an open pond (open pond) type, a raceway type, and a tube type (J. Biotechnol., 92, 113, 2001) can be used. Shapes that can be used as culture vessels are described, for example, in Journal of Biotechnology 70 (1999) 313-321, Eng. Life Sci. 9, 165-177 (2009). And the culture vessel described in (1). Among these, it is preferable from the viewpoint of cost to use an open pond type or a raceway type.
 本発明で使用可能な培養容器は、開放型、閉鎖型のいずれでも使用することができるが、大気中よりも高い二酸化炭素濃度を使用した際の、培養容器外への二酸化炭素の拡散を防ぐために、閉鎖型の培養容器を用いる方が好ましい。閉鎖型の培養容器を用いることで、培養目的外微生物やゴミの混入防止、培地の蒸発抑制、風によるバイオフィルム構造体への影響等を最小限にすることができる。しかし、商業生産を行う場合には、建設コストが安価である等の観点から、開放系での培養が好ましい。またこれらの外部影響の低減と建設コストの安価化を両立させるために、完全に閉鎖をしないものの培地液面に形成されるバイオフィルムを風雨等の外部からの影響から保護する目的で少なくとも培地液面の一部の鉛直方向にカバーを設けることがより好ましい。 The culture vessel that can be used in the present invention can be either an open type or a closed type, but it prevents diffusion of carbon dioxide outside the culture vessel when using a higher carbon dioxide concentration than in the atmosphere. Therefore, it is preferable to use a closed culture vessel. By using a closed type culture vessel, it is possible to minimize the contamination of microorganisms other than the culture purpose and dust, the suppression of the evaporation of the culture medium, and the influence of the wind on the biofilm structure. However, when commercial production is performed, culture in an open system is preferable from the viewpoint of low construction costs. Also, in order to achieve both reduction of these external influences and reduction of construction costs, at least the medium liquid is used for the purpose of protecting the biofilm formed on the medium liquid surface, although not completely closed, from external influences such as wind and rain. It is more preferable to provide a cover in the vertical direction of a part of the surface.
[基板]
 本発明での基板とは、図1の(d)や(f)で使用される固体状物のことである。基板の形状は、フィルム状、板状、繊維状、多孔質状、凸状、波状等いかなる形状のものでも良いが、転写のしやすさ、及び基板からの微細藻類の回収のしやすさから、フィルム状又は板状であることが好ましい。
[素材]
 本発明で使用可能な培養容器及び基板の素材は、特に限定することはなく、公知のものを使用することができる。例えば、有機高分子化合物や無機化合物、金属、それらの複合体から構成された素材を使用することができる。また、それらの混合物を用いることも可能である。
[substrate]
The substrate in the present invention is a solid material used in (d) and (f) of FIG. The shape of the substrate may be any shape such as film, plate, fiber, porous, convex, corrugated, but it is easy to transfer and easy to collect microalgae from the substrate. The film shape or the plate shape is preferable.
[Material]
The materials for the culture vessel and the substrate that can be used in the present invention are not particularly limited, and known materials can be used. For example, a material composed of an organic polymer compound, an inorganic compound, a metal, or a composite thereof can be used. It is also possible to use a mixture thereof.
 有機高分子化合物としては、ポリエチレン誘導体、ポリ塩化ビニル誘導体、ポリエステル誘導体、ポリアミド誘導体、ポリスチレン誘導体、ポリプロピレン誘導体、ポリアクリル誘導体、ポリエチレンテレフタレート誘導体、ポリブチレンテレフタレート誘導体、ナイロン誘導体、ポリエチレンナフタレート誘導体、ポリカーボネート誘導体、ポリ塩化ビニリデン誘導体、ポリアクリロニトリル誘導体、ポリビニルアルコール誘導体、ポリエーテルスルホン誘導体、ポリアリレート誘導体、アリルジグリコールカーボネート誘導体、エチレン-酢酸ビニル共重合体誘導体、フッ素樹脂誘導体、ポリ乳酸誘導体、アクリル樹脂誘導体、エチレン-ビニルアルコール共重合体、エチレン-メタクリル酸共重合体等を用いることができる。 Organic polymer compounds include polyethylene derivatives, polyvinyl chloride derivatives, polyester derivatives, polyamide derivatives, polystyrene derivatives, polypropylene derivatives, polyacryl derivatives, polyethylene terephthalate derivatives, polybutylene terephthalate derivatives, nylon derivatives, polyethylene naphthalate derivatives, polycarbonate derivatives. , Polyvinylidene chloride derivatives, polyacrylonitrile derivatives, polyvinyl alcohol derivatives, polyethersulfone derivatives, polyarylate derivatives, allyl diglycol carbonate derivatives, ethylene-vinyl acetate copolymer derivatives, fluororesin derivatives, polylactic acid derivatives, acrylic resin derivatives, An ethylene-vinyl alcohol copolymer, an ethylene-methacrylic acid copolymer, or the like can be used.
 無機化合物としては、ガラス、セラミックス、コンクリート等を用いることができる。 As the inorganic compound, glass, ceramics, concrete, or the like can be used.
 金属化合物としては、鉄、アルミニウム、銅やステンレス等の合金を用いることができる。 As the metal compound, an alloy such as iron, aluminum, copper or stainless steel can be used.
 上記の中でも、基板や培養容器の素材の一部は、ガラス、ポリエチレン、ポリプロピレン、ナイロン、ポリスチレン、塩化ビニル、ポリエステルの中から選ばれる少なくとも一つから構成されていることが好ましい。 Among the above, it is preferable that a part of the material of the substrate and the culture vessel is composed of at least one selected from glass, polyethylene, polypropylene, nylon, polystyrene, vinyl chloride, and polyester.
 また、培養容器、基板、貫通状構造体の素材が同一であっても良く、異なっていても良い。 In addition, the materials of the culture vessel, the substrate, and the penetrating structure may be the same or different.
 また、閉鎖型の培養容器を用いる場合には、受光面の少なくとも一部は、光の少なくとも一部が透過する素材であることが好ましく、透明材料であることがより好ましい。 In the case of using a closed culture vessel, at least a part of the light receiving surface is preferably a material that transmits at least a part of the light, and more preferably a transparent material.
[二酸化炭素]
 多くの微細藻類の培養には、二酸化炭素の供給が必要である。
[carbon dioxide]
For the cultivation of many microalgae, it is necessary to supply carbon dioxide.
 前培養工程で分散培養を行った場合には、従来法のようにバブリングによって二酸化炭素を培地中に供給しても良いが、液面浮遊培養を行った場合には、二酸化炭素を気相中から供給した方が好ましい。これは、培地中に二酸化炭素をバブリング等の方法で供給すると液面上の微細藻類バイオフィルムの構造が破壊され、藻体量の斑が発生し、回収工程で基板上へのバイオフィルム回収効率が悪く、回収藻体量が減少する可能性があるからである。 When dispersed culture is performed in the pre-culture process, carbon dioxide may be supplied to the medium by bubbling as in the conventional method. However, when liquid surface suspension culture is performed, carbon dioxide is It is preferable to supply from This is because when carbon dioxide is supplied into the medium by a method such as bubbling, the structure of the microalgae biofilm on the liquid surface is destroyed, resulting in spots of algal mass, and the efficiency of biofilm recovery onto the substrate during the recovery process This is because there is a possibility that the amount of recovered alga bodies may be reduced.
 本発明では、大気中の二酸化炭素の利用も可能であるが、大気濃度よりも高濃度の二酸化炭素を利用することもできる。この場合には、拡散による二酸化炭素の損失を防ぐために、閉鎖型の培養容器又は農業用フィルム等の被覆物で覆った培養容器中で培養することが好ましい。この場合の二酸化炭素の濃度は本発明の効果が達成できる限り特に限定しないが、好ましくは大気濃度以上、20体積%未満であり、好ましくは0.01~15体積%であり、より好ましくは0.1~10体積%である。また、二酸化炭素は、燃焼装置によって排出された二酸化炭素であってもよい。また、試薬によって二酸化炭素を発生させてもよい。 In the present invention, carbon dioxide in the atmosphere can be used, but carbon dioxide having a concentration higher than the atmospheric concentration can also be used. In this case, in order to prevent the loss of carbon dioxide due to diffusion, the culture is preferably performed in a closed culture vessel or a culture vessel covered with a covering such as an agricultural film. The concentration of carbon dioxide in this case is not particularly limited as long as the effect of the present invention can be achieved, but it is preferably not less than the atmospheric concentration and less than 20% by volume, preferably 0.01 to 15% by volume, more preferably 0. 1 to 10% by volume. The carbon dioxide may be carbon dioxide exhausted by the combustion device. Carbon dioxide may be generated by a reagent.
[光源及び光量]
 本発明で用いることのできる光源は、公知のいかなる光源も用いることができるが、太陽光、LED光、蛍光燈、白熱球、キセノンランプ光、ハロゲンランプ等を用いることができ、この中でも、自然エネルギーである太陽光、発光効率の良いLED、簡便に使用することのできる蛍光燈を用いることが好ましい。
[Light source and light intensity]
As the light source that can be used in the present invention, any known light source can be used, and sunlight, LED light, fluorescent lamp, incandescent bulb, xenon lamp light, halogen lamp, and the like can be used. It is preferable to use sunlight, which is energy, an LED with good luminous efficiency, or a fluorescent lamp that can be used easily.
 光量は、1000ルクス以上30万ルクス以下であることが好ましく、2000ルクス以上15万ルクス以下がさらに好ましい。最も好ましい光量は、10000ルクス以上10万ルクス以下である。光量が2000ルクス以上であると、微細藻類の培養が十分な速度で可能であり、15万ルクス以下であると、光障害による培養への悪影響が少ない。 The amount of light is preferably 1000 lux or more and 300,000 lux or less, and more preferably 2000 lux or more and 150,000 lux or less. The most preferable amount of light is 10,000 lux or more and 100,000 lux or less. If the light intensity is 2000 lux or more, microalgae can be cultured at a sufficient rate, and if it is 150,000 lux or less, there is little adverse effect on the culture due to light damage.
 光は、連続照射、ある一定の時間間隔で照射と非照射を繰り返す方法のいずれでもかまわないが、屋外での太陽光での培養に準じて、例えば1日間の内の12時間間隔で光をON、OFFすることが好ましい。 The light may be either continuous irradiation or a method of repeating irradiation and non-irradiation at a certain time interval. However, according to the culture with sunlight outdoors, for example, the light is emitted at intervals of 12 hours within one day. It is preferable to turn on and off.
 光の波長は、光合成が行える波長であれば、どの様な波長でも用いることができ、その制限を設けないが、好ましい波長は、太陽光もしくは太陽光に類似の波長である。単一の波長を照射することで光合成生物の育成速度が向上する例も報告されており、本発明でもこの様な照射方法を用いることもできる。
[その他の培養条件]
 本発明では、前培養工程や本培養工程で使用する液体培地(以下、液体培地のことを培地ともいう)のpHは、1~13の範囲内であることが好ましく、3~11の範囲内であることがより好ましく、5~9の範囲内であることがさらに好ましく、6~8の範囲内であることが最も好ましい。
As long as the wavelength of light can be used for photosynthesis, any wavelength can be used, and there is no limitation. However, a preferable wavelength is sunlight or a wavelength similar to sunlight. An example in which the growth rate of photosynthetic organisms is improved by irradiating a single wavelength has been reported, and such an irradiation method can also be used in the present invention.
[Other culture conditions]
In the present invention, the pH of the liquid medium used in the pre-culture process and the main culture process (hereinafter, the liquid medium is also referred to as a medium) is preferably in the range of 1 to 13, preferably in the range of 3 to 11. More preferably, it is more preferably in the range of 5 to 9, and most preferably in the range of 6 to 8.
 また、微細藻類の種類に応じて、好適なpHは変化することから、微細藻類の種類に応じたpHを選択することが好ましい。なお、液体培地のpHとは、培養開始時のpHのことである。また、培養工程内のpHとは、培養に伴って変化する場合があることから、培養工程内でpHは変化しても良い。 Further, since a suitable pH varies depending on the type of microalgae, it is preferable to select a pH corresponding to the type of microalgae. The pH of the liquid medium is the pH at the start of culture. Moreover, since the pH in the culture process may change with the culture, the pH may change in the culture process.
 本発明では、培地中のpHを一定に保つ緩衝作用を持った物質を培地中に添加することができる。これにより、微細藻類の培養の進行とともに培地中のpHが変化する問題を抑制することや、培地中への二酸化炭素の供給でpHが変化する現象を抑制できる場合がある。緩衝作用を持った物質としては、公知の物質を使用することができ、その使用には制限がないが、4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid(HEPES)や、リン酸ナトリウム緩衝液、リン酸カリウム緩衝液等を好適に用いることができる。これら、緩衝物質の濃度や種類は、微細藻類の種類や培養環境に応じて決めることができる。 In the present invention, a substance having a buffering action for keeping the pH in the medium constant can be added to the medium. Thereby, the problem that the pH in the medium changes with the progress of the culture of microalgae can be suppressed, and the phenomenon that the pH changes due to the supply of carbon dioxide into the medium can be suppressed. As the substance having a buffering action, a known substance can be used, and its use is not limited, but 4- (2-hydroxyethyl) -1-piperazine etheric acid (HEPES), sodium phosphate buffer, A potassium phosphate buffer or the like can be preferably used. The concentration and type of these buffer substances can be determined according to the type of microalgae and the culture environment.
 分散培養を行う場合、液体培地の水深が深いと、光が届かず、攪拌効率が悪くなる問題があり、限度があった。しかし、液面浮遊培養の場合には、液面上に高密度に微細藻類が増殖していることから、培養容器深部に対して光を供給する必要がなく、基本的には攪拌も行わないことから、その水深は、浅くすることができる。これにより、水の使用量が少なく、ハンドリング効率が良くなることから、水深を浅くすることは好ましい。水深は0.4cm以上が好ましく、1cm~10mがより好ましく、2cm~1mがさらに好ましく、4cm~30cmが最も好ましい。水深が0.4cm以上であるとバイオフィルムの形成が可能となり、水深が10m以下であると、ハンドリングが容易である。水深が4cm~30cmであると、水分の蒸発による影響が最小限であり、培地や微細藻類を含む溶液のハンドリングが容易である。 When performing dispersion culture, if the liquid medium has a deep water depth, there is a problem in that light does not reach and stirring efficiency deteriorates. However, in the case of liquid surface suspension culture, since microalgae grow on the liquid surface with high density, there is no need to supply light to the deep part of the culture vessel, and basically no agitation is performed. For this reason, the water depth can be reduced. Thereby, since the amount of water used is small and handling efficiency is improved, it is preferable to reduce the water depth. The water depth is preferably 0.4 cm or more, more preferably 1 cm to 10 m, further preferably 2 cm to 1 m, and most preferably 4 cm to 30 cm. When the water depth is 0.4 cm or more, a biofilm can be formed, and when the water depth is 10 m or less, handling is easy. When the water depth is 4 cm to 30 cm, the influence of water evaporation is minimal, and handling of a solution containing a medium and microalgae is easy.
 培養温度は、微細藻類の種類に応じて選択することができ、特に限定はしないが、0℃以上90℃以下であることが好ましく、15℃以上50℃以下がより好ましく、20℃以上40℃未満が最も好ましい。培養温度が20℃以上40℃未満であると、微細藻類を好適に増殖させることができる。 The culture temperature can be selected according to the type of microalgae and is not particularly limited, but is preferably 0 ° C. or higher and 90 ° C. or lower, more preferably 15 ° C. or higher and 50 ° C. or lower, and 20 ° C. or higher and 40 ° C. or lower. Less than is most preferred. When the culture temperature is 20 ° C. or higher and lower than 40 ° C., microalgae can be suitably grown.
 培養開始時に使用する微細藻類量は、細胞数としては培養範囲内において1個あれば、時間をかけさえすれば増殖は可能であるため、その制限は特に設けないが、好ましくは1個/cm3以上であり、より好ましくは1000個/cm3以上であり、さらに好ましくは1×104個/cm3以上である。あるいは単位面積当たりの微細藻類重量で使用量を規定することもできる。この場合も時間をかけさえすれば増殖は可能であるため、同様に特に制限はないが、生産性の観点から好ましくは0.05g/m2以上であり、より好ましくは0.1g/m2以上であり、さらに好ましくは1g/m2以上である。 The amount of microalgae used at the start of the culture is not particularly limited because the number of cells is one in the culture range and can be grown as long as time is spent. 3 or more, more preferably 1000 pieces / cm 3 or more, and further preferably 1 × 10 4 pieces / cm 3 or more. Alternatively, the amount used can be defined by the weight of microalgae per unit area. In this case also possible proliferation if only over time is not particularly limited as well, preferably in view of productivity and at 0.05 g / m 2 or more, more preferably 0.1 g / m 2 Or more, more preferably 1 g / m 2 or more.
 本発明での前培養期間、本培養期間は、微細藻類の種類に応じて選択することができ、特に限定はしないが、1日以上100日以下が好ましく、3日以上50日以下がより好ましく、7日以上31日以下がさらに好ましい。 The pre-culture period and the main culture period in the present invention can be selected according to the type of microalgae and are not particularly limited, but are preferably 1 day or more and 100 days or less, more preferably 3 days or more and 50 days or less. 7 days or more and 31 days or less are more preferable.
[液面上に形成された微細藻類バイオフィルムの大きさと増殖速度]
 微細藻類バイオフィルムの大きさは0.1cm2以上であることが好ましく、1cm2以上がより好ましく、10cm2以上がさらに好ましく、培養容器の液面面積と等しいことが最も好ましい。0.1cm2以上であれば、培養開始時の微細藻類量に対する培養終了時の微細藻類量との比を短時間で大きくすることができることから好ましい。
 また、微細藻類バイオフィルムは、培養領域内で複数個存在していても良い。
 微細藻類バイオフィルムの厚さは、1μm~10000μmの範囲であることが好ましく、1μm~1000μmの範囲であることがより好ましく、10μm~1000μmの範囲であることが最も好ましい。10μm~1000μmの範囲であると、強度が高く、十分な量のバイオフィルムを収穫することができる。
[Size and growth rate of microalgal biofilm formed on the liquid surface]
Preferably the size of the microalgae biofilm is 0.1 cm 2 or more, more preferably 1 cm 2 or more, more preferably 10 cm 2 or more, and most preferably equal to the liquid surface area of the culture vessel. If it is 0.1 cm 2 or more, the ratio of the amount of microalgae at the end of culture to the amount of microalgae at the start of culture can be increased in a short time.
A plurality of microalgal biofilms may exist in the culture region.
The thickness of the microalgal biofilm is preferably in the range of 1 μm to 10000 μm, more preferably in the range of 1 μm to 1000 μm, and most preferably in the range of 10 μm to 1000 μm. When the thickness is in the range of 10 μm to 1000 μm, the strength is high and a sufficient amount of biofilm can be harvested.
 本発明に係るバイオフィルムが、フィルム状構造体の一部又は複数の部分で気泡状に盛り上がることで形成された立体的な三次元状構造体である場合、培地の液面を基準とした該三次元状構造体の一般的な高さは、0.01mm~100mmの範囲であることが好ましく、0.1mm~20mmの範囲であることがより好ましく、5mm~20mmの範囲であることが最も好ましい。5mm~20mmの範囲であると、含水率を十分に下げることができ、培養容器の高さを低く抑えることができる。
 また本発明にかかる微細藻類は、液面上における増殖速度が大きいことが好ましく、対数増殖期における増殖速度(すなわち、対数増殖期の期間における一日あたりの平均増殖速度)が、乾燥重量で0.1g/m2/日以上であることが好ましく、0.5g/m2/日以上であることがより好ましく、1g/m2/日以上であることがさらに好ましく、3g/m2/日以上であることが最も好ましい。微細藻類の対数増殖期における増殖速度は、乾燥重量で一般的に10~30g/m2/日以下である。
When the biofilm according to the present invention is a three-dimensional three-dimensional structure formed by rising in a bubble shape in a part or a plurality of parts of the film-like structure, the liquid film of the medium is used as a reference. The general height of the three-dimensional structure is preferably in the range of 0.01 mm to 100 mm, more preferably in the range of 0.1 mm to 20 mm, and most preferably in the range of 5 mm to 20 mm. preferable. When the thickness is in the range of 5 mm to 20 mm, the water content can be sufficiently lowered, and the height of the culture vessel can be kept low.
The microalgae according to the present invention preferably has a high growth rate on the liquid surface, and the growth rate in the logarithmic growth phase (that is, the average growth rate per day during the logarithmic growth phase) is 0 by dry weight. is preferably .1g / m 2 / day or more, more preferably 0.5 g / m 2 / day or more, more preferably 1 g / m 2 / day or more, 3 g / m 2 / day The above is most preferable. The growth rate of microalgae in the logarithmic growth phase is generally 10 to 30 g / m 2 / day or less in terms of dry weight.
 本発明に係るバイオフィルムの単位面積あたりの乾燥藻体重量は、0.01g/m2以上であることが好ましく、1g/m2以上であることがより好ましく、10g/m2以上であることが特に好ましい。最も好ましくは、50g/m2以上である。単位面積あたりの乾燥藻体重量が大きい方が、得られるオイル等のバイオマスの量が大きくなることが見込まれるからである。バイオフィルムの単位面積あたりの乾燥藻体重量は通常20~300g/m2である。 The dry algal body weight per unit area of the biofilm according to the present invention is preferably 0.01 g / m 2 or more, more preferably 1 g / m 2 or more, and 10 g / m 2 or more. Is particularly preferred. Most preferably, it is 50 g / m 2 or more. This is because it is expected that the amount of biomass such as oil obtained is larger when the dry alga body weight per unit area is larger. The dry alga body weight per unit area of the biofilm is usually 20 to 300 g / m 2 .
 また本発明の微細藻類としては、上記の構造や、上記範囲の面積、厚さ、高さ、増殖速度、単位面積あたりの乾燥藻体重量を有するバイオフィルムを液面上に形成可能な微細藻類であることが、上記と同様の理由で好ましい。 Further, as the microalgae of the present invention, the microalgae capable of forming a biofilm having the above structure, the above-mentioned area, thickness, height, growth rate, and dry alga body weight per unit area on the liquid surface. It is preferable for the same reason as described above.
[回収]
 液面上の微細藻類バイオフィルムの回収は、培養容器内の液面がバイオフィルムで部分的に覆われている状態で実施することも可能であるが、微細藻類の藻体量が多いことから、培養容器内の液面が全てバイオフィルムで覆われてから実施することが好ましい。また、バイオフィルムが液面を全て覆いつくした後に、しばらく培養を継続してから回収を行っても良い。
[Recovery]
The microalgae biofilm on the liquid surface can be collected in a state where the liquid surface in the culture vessel is partially covered with the biofilm, but the amount of microalgae is large. It is preferable to carry out after the liquid level in the culture vessel is entirely covered with the biofilm. In addition, after the biofilm covers the entire liquid surface, the culture may be continued for a while and then recovered.
 特に、液面上に三次元の構造体が形成された後に回収することが好ましい。三次元状構造体は、フィルム状構造体がさらに増殖した時に見られる構造であり、二次元的なフィルム状構造体と比較して、回収可能な微細藻類の量が多いこと、及び含水率がより低いことから好ましい。また、液面上のバイオフィルムのみ回収しても良いし、液面上のバイオフィルム、及び底面上の微細藻類の少なくとも一部の両方を回収しても良い。これは、液面上の微細藻類も底面上の微細藻類もバイオマスとして利用が可能だからである。ただし、一般的には、有用物質としてオイルを考慮すると、液面上の微細藻類の方が底面上の微細藻類よりもオイル含有量は高くなる。従って、底面藻を回収することは可能な限り避けた方が良い。 In particular, it is preferable to recover after a three-dimensional structure is formed on the liquid surface. The three-dimensional structure is a structure that is seen when the film-like structure further grows. Compared with the two-dimensional film-like structure, the amount of microalgae that can be recovered is large, and the moisture content is high. It is preferable because it is lower. Further, only the biofilm on the liquid surface may be collected, or at least a part of the biofilm on the liquid surface and the microalgae on the bottom surface may be collected. This is because microalgae on the liquid surface and microalgae on the bottom surface can be used as biomass. However, in general, when oil is considered as a useful substance, the oil content of the microalgae on the liquid surface is higher than that of the microalgae on the bottom surface. Therefore, it is better to avoid collecting bottom algae as much as possible.
 上述の回収方法は、液面上に形成されたバイオフィルムの70%以上を回収することが好ましく、より好ましくは80%以上を回収することであり、さらに好ましくは90%以上を回収することであり、最も好ましくは100%回収することである。液面上に形成されたバイオフィルムの回収率は、例えば、目視で確認することができる。 The above-described collection method preferably collects 70% or more of the biofilm formed on the liquid surface, more preferably 80% or more, and more preferably 90% or more. Yes, most preferably 100% recovery. The recovery rate of the biofilm formed on the liquid surface can be confirmed visually, for example.
[乾燥藻体]
 本発明における乾燥藻体は、本発明によって得られた微細藻類回収物を乾燥させたものである。
 当該微細藻類回収物を乾燥させる方法としては、微細藻類回収物中の水分を減らすことができる方法であれば、いかなる公知の方法を用いることができ、特に制限されない。例えば、微細藻類回収物を天日干しにする方法、微細藻類回収物を加熱乾燥させる方法、微細藻類回収物を凍結乾燥(フリーズドライ)する方法、微細藻類回収物に乾燥空気を吹き付ける方法等があげられる。これらのうち、微細藻類回収物に含まれる成分の分解を抑制できる観点から凍結乾燥、短時間で効率的に乾燥できる観点から加熱乾燥又は天日干しする方法が好ましい。
[Dry algae]
The dry alga body in the present invention is obtained by drying the collected microalgae obtained by the present invention.
As a method for drying the microalgae collection product, any known method can be used as long as it can reduce the moisture in the microalgae collection product, and is not particularly limited. For example, a method of drying the microalgae collected in the sun, a method of heating and drying the microalgae recovered, a method of freeze-drying (freeze drying) the microalgae recovered, a method of blowing dry air on the microalgae recovered, etc. It is done. Among these, freeze drying is preferable from the viewpoint of suppressing decomposition of components contained in the microalgae collection, and heat drying or sun drying is preferable from the viewpoint of efficient drying in a short time.
[含水率]
 本発明での含水率とは、回収物中に含まれる水分の重量を、回収物の重量で割って、100を掛けたものである。本発明での微細藻類バイオフィルムの含水率は、99~60%が好ましく、95~80%がさらに好ましく、90~85%が最も好ましい。なお、貫通状構造体を用いて培養した場合には、この限りではない。
 分散培養で培養し、遠心分離機を用いて微細藻類を回収した場合の含水率は、一般的に90%程度とされ、本発明での培養法によって得られた液面上バイオフィルムの含水率は、それよりも低く、従来法と比べて優れている点である。なお、フィルム状構造体よりも三次元状構造体の方が含水率は低い。これは、三次元状構造体の方が液面から離れており、かつ、光源に近く、ある程度の乾燥が進行していることが原因と推定している。
[Moisture content]
The water content in the present invention is obtained by dividing the weight of water contained in the recovered material by the weight of the recovered material and multiplying by 100. The water content of the microalgal biofilm in the present invention is preferably 99 to 60%, more preferably 95 to 80%, and most preferably 90 to 85%. However, this does not apply when culturing using a penetrating structure.
The water content when the microalgae are collected by culturing in a dispersed culture and using a centrifuge is generally about 90%, and the water content of the biofilm on the liquid surface obtained by the culture method of the present invention Is lower than that and is superior to the conventional method. Note that the water content of the three-dimensional structure is lower than that of the film-like structure. This is presumed to be caused by the fact that the three-dimensional structure is farther from the liquid surface, closer to the light source, and a certain degree of drying has progressed.
[有用物質]
 本発明での有用物質とは、微細藻類由来のバイオマスの一種で、バイオマスから抽出工程、精製工程等の工程を経由することによって得られた産業にとって有益な物質の総称である。この様な物質として、医薬品や化粧品や健康食品等の最終生成物や中間物や原料、化学合成物の原料、中間物や最終生成物、炭化水素化合物、さらにはオイル、アルコール化合物、水素やメタン等のエネルギー代替物質、酵素、タンパク、核酸、糖やDHA等の脂質化合物、アスタキサンチン等を含む。有用物質は、有用物質蓄積工程によって、微細藻類中に蓄積させることもできる。
[Useful substances]
The useful substance in the present invention is a kind of biomass derived from microalgae, and is a general term for substances useful for industries obtained from biomass through an extraction process, a purification process, and the like. Such substances include final products, intermediates and raw materials such as pharmaceuticals, cosmetics and health foods, raw materials for chemical compounds, intermediates and final products, hydrocarbon compounds, oils, alcohol compounds, hydrogen and methane. Energy substitute substances such as enzymes, proteins, nucleic acids, sugars and lipid compounds such as DHA, astaxanthin and the like. The useful substance can be accumulated in the microalgae by the useful substance accumulation process.
[バイオマス及びオイル]
 本発明でのバイオマスとは、化石資源を除いた再生可能な生物由来の有機性資源をいい、例えば、生物由来の物質、食料、資材、燃料、資源等をあげることができる。藻類バイオマスには、微細藻類自体(バイオフィルム状であってもよい。)、有用物質を採取した後の微細藻類残滓が含まれる。
 本発明でのオイルとは、可燃性の流動性物質のことであり、主として、炭素、水素から構成された化合物のことであり、場合によっては、酸素原子、窒素原子等を含む物質のことである。オイルは、一般的に混合物であり、ヘキサンやアセトン等の低極性溶媒を用いて抽出される物質である。その組成は、炭化水素化合物や脂肪酸、トリグリセリド等から構成される場合や、これらから選ばれる複数種の組成から構成されている場合もある。また、エステル化して、バイオディーゼルとして使用することもできる。
[Biomass and oil]
Biomass in the present invention refers to organic resources derived from renewable organisms excluding fossil resources, and examples thereof include biological substances, foods, materials, fuels, resources, and the like. The algal biomass includes microalgae itself (may be in the form of a biofilm) and microalgae residue after collecting useful substances.
The oil in the present invention is a combustible fluid substance, which is a compound mainly composed of carbon and hydrogen, and in some cases, a substance containing oxygen atoms, nitrogen atoms, etc. is there. Oil is generally a mixture and is a substance that is extracted using a low polarity solvent such as hexane or acetone. The composition may be composed of a hydrocarbon compound, a fatty acid, a triglyceride or the like, or may be composed of a plurality of kinds of compositions selected from these. It can also be esterified and used as biodiesel.
 微細藻類回収物中に含まれる有用物質やオイルを採取する方法としては、本発明の効果を損なうものでなければ特に制限されない。 The method for collecting useful substances and oil contained in the microalgae collection is not particularly limited as long as the effects of the present invention are not impaired.
 オイルの一般的な抽出方法は、最終回収物を加熱乾燥させて、乾燥藻体を得た後、細胞破砕を行い、有機溶媒を用いてオイルを抽出する。抽出したオイルは、一般的に、クロロフィル等の不純物を含むため精製を行う。精製は、シリカゲルカラムクロマトグラフィーによるもの、蒸留(例えば、特表2010-539300に記載の蒸留方法)によるもの等がある。本発明でもこの様な方法を用いることができる。 In general oil extraction methods, the final recovered material is dried by heating to obtain dried alga bodies, followed by cell disruption and extraction of the oil using an organic solvent. The extracted oil is generally refined because it contains impurities such as chlorophyll. Purification includes silica gel column chromatography and distillation (for example, the distillation method described in JP-T 2010-539300). Such a method can also be used in the present invention.
 また、超音波処理によって微細藻類を破砕したり、プロテアーゼや酵素等によって微細藻類を溶解したりした後、有機溶媒を用いて藻体内のオイルを抽出する方法もある(例えば、特表2010-530741に記載の方法)。本発明でもこの様な方法を用いることができる。 In addition, there is a method in which microalgae are crushed by ultrasonic treatment, or microalgae are dissolved by protease, enzyme, or the like, and then the oil in the algal bodies is extracted using an organic solvent (for example, JP 2010-530741 A). Method). Such a method can also be used in the present invention.
 また本発明に係るバイオフィルムは、バイオマスとしての有用性の観点から、オイル含有量が高いことが好ましい。具体的には、バイオフィルムの乾燥藻体あたりのオイル含有量が5質量%以上であることが好ましく、10質量%以上であることがより好ましく、15質量%以上であることが特に好ましい。バイオフィルムの乾燥藻体あたりのオイル含有量は通常80質量%以下である。 In addition, the biofilm according to the present invention preferably has a high oil content from the viewpoint of usefulness as biomass. Specifically, the oil content per dry algal body of the biofilm is preferably 5% by mass or more, more preferably 10% by mass or more, and particularly preferably 15% by mass or more. The oil content per dry alga body of the biofilm is usually 80% by mass or less.
 以下の実施例により本発明をさらに具体的に説明するが、本発明は以下の実施例によって限定されるものではない。 The present invention will be described more specifically with reference to the following examples, but the present invention is not limited to the following examples.
[実施例1]
(第1の前培養)
 第1の前培養として、PS製ケース28号(アズワン株式会社、4-5605-05)にCSiFF04培地(組成を下表に示す。本実施例において、以下、単に「培地」という場合がある。)40mLとクロロコックム(Chlorococcum)sp.FFG039株(FERMBP-22262株)との混合物を入れ(藻体濃度1.2mg/mLの分散液1mL)、15000ルクスの蛍光灯照射下(12時間ごとに光照射ON-OFF)、23℃、二酸化炭素濃度5%で静置培養を行った。なお、培養温度の制御は、23℃に設定したエアコンを用いて行った。14日後、PS製ケース28号の短径と同じ長さのナイロンフィルム(厚さ1mm)を用いて、液面上の微細藻類バイオフィルムを回収した。
[Example 1]
(First preculture)
As the first pre-culture, CSiFF04 medium (composition is shown in the table below) in PS Case No. 28 (As One Co., Ltd., 4-5605-05). In this example, hereinafter, it may be simply referred to as “medium”. ) 40 mL and Chlorococcum sp. Put a mixture with FFG039 strain (FERMBP-22262 strain) (1 mL of dispersion liquid with algal body concentration of 1.2 mg / mL), under irradiation of fluorescent light of 15000 lux (light irradiation ON-OFF every 12 hours), 23 ° C., Static culture was performed at a carbon dioxide concentration of 5%. The culture temperature was controlled using an air conditioner set at 23 ° C. Fourteen days later, the microalgae biofilm on the liquid surface was collected using a nylon film (thickness 1 mm) having the same length as the short diameter of PS Case 28.
(第2の前培養)
 第1の前培養で得た微細藻類を用いて、第1の前培養と同様にして、第2の前培養を行った。ただし、培養容器としては、30cm×23cm×7cmのプラスチック製バットを用い、2800mLの培地に第一培養で回収した藻の半分量を添加して、第2の培養を行った。14日後、液面上の微細藻類バイオフィルムを回収し、CSiFF04培地が300ml入った500mlプラスチック製容器に移し、プラスチック容器を手で振った後、超音波処理を5分間行い、種藻分散液を得た。この種藻分散液5mlをろ過、乾燥(130℃、1時間)して藻体重量を求め、ここから分散液中の種藻濃度(mg/ml)を算出した。
(Second preculture)
A second preculture was performed in the same manner as the first preculture using the microalgae obtained in the first preculture. However, as the culture vessel, a plastic bat of 30 cm × 23 cm × 7 cm was used, and the second culture was performed by adding half of the algae recovered in the first culture to 2800 mL of the medium. After 14 days, the microalgae biofilm on the liquid surface was collected, transferred to a 500 ml plastic container containing 300 ml of CSiFF04 medium, shaken by the plastic container by hand, and then subjected to sonication for 5 minutes to obtain a seed algae dispersion. Obtained. 5 ml of this seed algae dispersion was filtered and dried (130 ° C., 1 hour) to determine the alga body weight, and the seed algae concentration (mg / ml) in the dispersion was calculated therefrom.
(本培養)
 前記プラスチック製バットに、2.8LのCSiFF04培地のNO3イオン濃度を1/2倍にした培地(b)(組成を下表に示す。)を水深5cmになるように入れた。藻体量が0.17g/m2になるように、第2の前培養によって準備した種藻分散液を添加した。15000ルクスの蛍光灯照射下(12時間ごとに光照射ON-OFF)、23℃、二酸化炭素濃度5%で静置培養を行った。培養日数は31日とした。なお、本培養の開始時の藻体量(g/m2)を初期藻体量という(以下の実施例、比較例において同じ。)。
(Main culture)
Medium (b) (the composition is shown in the table below) in which the NO 3 ion concentration of 2.8 L of CSiFF04 medium was halved was placed in the plastic vat so that the water depth was 5 cm. The seed algae dispersion prepared by the second preculture was added so that the amount of algal bodies was 0.17 g / m 2 . Static culture was performed at 23 ° C. and a carbon dioxide concentration of 5% under irradiation of a fluorescent lamp of 15000 lux (light irradiation ON / OFF every 12 hours). The number of culture days was 31 days. In addition, the algal body amount (g / m 2 ) at the start of the main culture is referred to as the initial algal body amount (the same applies to the following examples and comparative examples).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(バイオフィルムの回収)
 図1の工程の第二の基板として容器の大きさに合わせたプラスチック板を用意し、このプラスチック板を培養容器の端からバイオフィルムの下まで挿入し、該プラスチック板を容器の反対側に寄せていくことで形成されたバイオフィルムを第二の基板上に堆積させることで、培地水面に形成されたバイオフィルムを全量すくい取った。このバイオフィルムを定温乾燥機中130℃で3時間乾燥させ、その重量を測定することで藻体量(g)を求めた。これの重量を容器面積(m2)及び培養日数で割った値を藻体生産性(g/m2・日)とした。
(Recovery of biofilm)
As a second substrate in the process of FIG. 1, prepare a plastic plate that matches the size of the container, insert this plastic plate from the end of the culture container to the bottom of the biofilm, and bring the plastic plate to the opposite side of the container The biofilm formed by depositing was deposited on the second substrate, thereby scooping up all the biofilm formed on the surface of the culture medium. The biofilm was dried at 130 ° C. for 3 hours in a constant temperature dryer, and the weight was measured to obtain the algal mass (g). The value obtained by dividing the weight by the container area (m 2 ) and the number of culture days was defined as algal body productivity (g / m 2 · day).
(含油率・油生産性)
 前記回収工程で得られた乾燥藻体約50mgを精秤し、これを乳鉢、乳棒を用いて5分間かけて十分にすり潰した。これをメタノール(1mlを2回)、クロロホルム(4mlを1回)で洗浄して、これを集め、遠心分離処理を行った。得られた上澄みの溶媒を揮発させ、残存物の重量を精秤し、これと処理前の乾燥藻体重量から含油率(g/g乾燥重量 dry%)を求めた。
(Oil content / oil productivity)
About 50 mg of dried alga bodies obtained in the collecting step were precisely weighed, and this was sufficiently ground using a mortar and pestle for 5 minutes. This was washed with methanol (1 ml twice) and chloroform (4 ml once), and this was collected and centrifuged. The solvent of the obtained supernatant was volatilized, the weight of the residue was precisely weighed, and the oil content (g / g dry weight dry%) was determined from this and the dry alga body weight before treatment.
 先に求めた藻体生産性(g/m2・日)に含油率を乗じることによって、油生産性(g/m2・日)を算出した。 The oil productivity (g / m 2 · day) was calculated by multiplying the previously obtained algal body productivity (g / m 2 · day) by the oil content.
(評価)
 油生産性は培養条件によっても変化するため、同一の培養条件(初期藻体量、培養日数、水深、及び光量が同じであることをいう。)の比較例との間で油生産性を比較した。比較例に対して、油生産性が1.1倍未満のものを(E)、1.1倍以上1.2倍未満のものを(D)、1.2倍以上1.3倍未満のものを(C)、1.3倍以上1.4倍未満のものを(B)、1.4倍以上のものを(A)として評価した。
(Evaluation)
Since oil productivity also changes depending on culture conditions, oil productivity is compared with comparative examples under the same culture conditions (the initial algal mass, culture days, water depth, and light intensity are the same). did. Compared to the comparative example, the oil productivity is less than 1.1 times (E), 1.1 times to less than 1.2 times (D), 1.2 times to less than 1.3 times The product was evaluated as (C), the product of 1.3 times to less than 1.4 times as (B), and the product of 1.4 times or more as (A).
 同一の培養条件の比較例1と比べて、藻体生産性、含油率、及び油生産性において顕著な向上効果が認められた。 Compared with Comparative Example 1 under the same culture conditions, a remarkable improvement effect was observed in algal body productivity, oil content, and oil productivity.
[実施例2]
 実施例1と同様の第1の前培養、及び第2の前培養を行った。
[Example 2]
A first preculture and a second preculture similar to those in Example 1 were performed.
(本培養)
 直径13.4cm、高さ21cmの円柱のプラスチック容器に2.7LのCSiFF04培地のNO3イオン濃度を1/4倍にした培地(c)を入れ(水深20cm)、藻体量が4g/m2になるように第2の前培養によって準備した種藻分散液を添加した。22000ルクスの蛍光灯照射下(12時間ごとに光照射ON-OFF)、23℃、二酸化炭素濃度5%で静置培養を行った。培養日数は14日とした。これを実施例1と同様の培養・回収・評価を行った。
(Main culture)
A cylindrical plastic container having a diameter of 13.4 cm and a height of 21 cm is charged with a medium (c) in which the NO 3 ion concentration of 2.7 L of CSiFF04 medium is 1/4 times (water depth 20 cm), and the algal mass is 4 g / m. The seed algae dispersion prepared by the second pre-culture was added so as to be 2. Static culture was performed at 2 ° C. under a carbon dioxide concentration of 5% under irradiation of a fluorescent lamp of 22,000 lux (light irradiation ON / OFF every 12 hours). The culture days were 14 days. This was cultured, recovered and evaluated in the same manner as in Example 1.
[実施例3]
 実施例2の本培養の培地をCSiFF04培地のNO3イオン濃度を1/2倍にした培地(b)に変更した以外は、実施例2と同様の培養を行った。
[Example 3]
Culture was performed in the same manner as in Example 2 except that the medium for main culture in Example 2 was changed to a medium (b) in which the NO 3 ion concentration of CSiFF04 medium was halved.
 実施例2、実施例3は同一培養条件の比較例6と比べて藻体生産性、含油率、油生産性ともに大きな向上効果が認められた。 Example 2 and Example 3 were significantly improved in algal body productivity, oil content, and oil productivity as compared with Comparative Example 6 under the same culture conditions.
[実施例4]
 実施例2の本培養において、初期藻体量を2g/m2に変更し、培地としてCSiFF04培地のNO3イオン濃度を1/4倍に変更し、かつリン酸イオン濃度を1/2倍に変更したものを用い、かつ光量を19000ルクスに変更した以外は、実施例2と同様の培養を行った。
 同一の培養条件の比較例7~比較例10と比べて、藻体生産性、含油率、及び油生産性において向上効果が認められた。
[Example 4]
In the main culture of Example 2, the initial algal mass was changed to 2 g / m 2 , the NO 3 ion concentration of the CSiFF04 medium was changed to ¼ times, and the phosphate ion concentration was halved as the medium. The same culture as in Example 2 was performed except that the changed one was used and the light intensity was changed to 19000 lux.
Compared to Comparative Examples 7 to 10 under the same culture conditions, an improvement effect was observed in algal body productivity, oil content, and oil productivity.
[実施例5]
 実施例4の本培養において、初期藻体量を4g/m2に変更し、光量を20000ルクスに変更し、培養日数を21日とした以外は、実施例4と同様の培養を行った。
[Example 5]
In the main culture of Example 4, the same culture as in Example 4 was performed except that the initial algal body amount was changed to 4 g / m 2 , the light intensity was changed to 20000 lux, and the culture days were changed to 21 days.
[実施例6]
 実施例5の本培養において、培地としてCSiFF04培地のNO3イオン濃度を0.11倍に変更したものを用いた以外は、実施例5と同様の培養を行った。
[Example 6]
In the main culture of Example 5, the same culture as in Example 5 was performed except that the medium in which the NO 3 ion concentration of the CSiFF04 medium was changed to 0.11 times was used.
[実施例7]
 実施例5の本培養において、培地としてCSiFF04培地のNO3イオン濃度を1/4倍に変更した培地(c)を用いた以外は、実施例5と同様の培養を行った。
[Example 7]
In the main culture of Example 5, the same culture as that of Example 5 was performed except that the medium (c) in which the NO 3 ion concentration of the CSiFF04 medium was changed to 1/4 times was used as the medium.
[実施例8]
 実施例5の本培養において、培地としてCSiFF04培地のNO3イオン濃度を1/2倍に変更した培地(b)を用いた以外は、実施例5と同様の培養を行った。
[Example 8]
In the main culture of Example 5, the same culture as in Example 5 was performed except that the medium (b) in which the NO 3 ion concentration of the CSiFF04 medium was changed to ½ was used as the medium.
 実施例5、7及び8は、同一培養条件の比較例14、比較例15と比べて藻体生産性、含油率、油生産性ともに大きな向上効果が認められた。
 実施例6は、同一培養条件の比較例14、比較例15と比べて、含油率に大きな向上効果が認められた。
In Examples 5, 7 and 8, significant improvement effects were observed in algal body productivity, oil content, and oil productivity compared to Comparative Example 14 and Comparative Example 15 under the same culture conditions.
In Example 6, as compared with Comparative Example 14 and Comparative Example 15 under the same culture conditions, a large improvement effect in the oil content was recognized.
[比較例1]
 実施例1の本培養の培地を、CSiFF04培地(a)に変更する以外は実施例1と同様の培養・回収・評価を行った。
[Comparative Example 1]
Cultivation / collection / evaluation was performed in the same manner as in Example 1, except that the main culture medium of Example 1 was changed to CSiFF04 medium (a).
[比較例2]
 実施例1の本培養において、初期藻体量を4g/m2に変更し、培地をCSiFF04培地のNO3イオン濃度を0.85倍にしたものに変更し、光量を13000ルクスに変更し、かつ培養日数を14日に変更する以外は実施例1と同様の培養・回収・評価を行った。
[Comparative Example 2]
In the main culture of Example 1, the initial amount of algal bodies was changed to 4 g / m 2 , the medium was changed to a CSiFF04 medium in which the NO 3 ion concentration was 0.85 times, and the light intensity was changed to 13000 lux. In addition, the same culture, recovery and evaluation as in Example 1 were performed except that the culture days were changed to 14 days.
[比較例3]
 実施例1の本培養において、初期藻体量を4g/m2に変更し、培地をCSiFF04培地のNO3イオン濃度を0.85倍にしたものに変更し、光量を13000ルクスに変更し、かつ培養日数を14日に変更する以外は実施例1と同様の培養・回収・評価を行った。
[Comparative Example 3]
In the main culture of Example 1, the initial amount of algal bodies was changed to 4 g / m 2 , the medium was changed to a CSiFF04 medium in which the NO 3 ion concentration was 0.85 times, and the light intensity was changed to 13000 lux. In addition, the same culture, recovery and evaluation as in Example 1 were performed except that the culture days were changed to 14 days.
[比較例4]
 実施例2の本培養において、培地をCSiFF04培地のNO3イオン濃度を0.7倍にしたものに変更し、水深を15cmに変更し、光量を20000ルクスに変更する以外は実施例2と同様の培養・回収・評価を行った。
[Comparative Example 4]
In the main culture of Example 2, the medium was changed to one in which the NO 3 ion concentration of the CSiFF04 medium was 0.7 times, the water depth was changed to 15 cm, and the light intensity was changed to 20000 lux. Were cultured, collected and evaluated.
 比較例2~比較例4は何れも類似条件の実施例1、実施例3、実施例4に対して、油生産性が低かった。 In Comparative Examples 2 to 4, the oil productivity was lower than those in Examples 1, 3 and 4 under similar conditions.
[比較例5]
 実施例2の本培養において、培地をCSiFF04培地(a)に変更し、水深を15cmに変更し、光量を20000ルクスに変更する以外は実施例2と同様の培養・回収・評価を行った。
[比較例6]
 実施例2の本培養の培地をCSiFF04培地(a)に変更する以外は、実施例2と同様の培養を行った。
[Comparative Example 5]
In the main culture of Example 2, the same culture, collection, and evaluation as in Example 2 were performed except that the medium was changed to CSiFF04 medium (a), the water depth was changed to 15 cm, and the light intensity was changed to 20000 lux.
[Comparative Example 6]
Culture was performed in the same manner as in Example 2 except that the main culture medium in Example 2 was changed to CSiFF04 medium (a).
[比較例7]
 実施例4において、本培養の培地をCSiFF04培地のNO3イオン濃度を0.85倍にしたものに変更する以外は実施例4と同様の培養・回収・評価を行った。
[Comparative Example 7]
In Example 4, the same culture, collection, and evaluation as in Example 4 were performed, except that the main culture medium was changed to a CSiFF04 medium in which the NO 3 ion concentration was 0.85 times.
[比較例8]
 実施例4において、本培養の培地をCSiFF04培地のNO3イオン濃度を0.7倍にしたものに変更する以外は実施例4と同様の培養・回収・評価を行った。
[比較例9]
 実施例4において、本培養の培地をCSiFF04培地のNO3イオン濃度を0.45倍、リン酸イオン濃度を4.5倍にしたものに変更する以外は実施例4と同様の培養・回収・評価を行った。
[Comparative Example 8]
In Example 4, the same culture, recovery and evaluation as in Example 4 were performed, except that the main culture medium was changed to a CSiFF04 medium in which the NO 3 ion concentration was 0.7 times.
[Comparative Example 9]
In Example 4, the culture / recovery / recovery method of Example 4 was changed except that the main culture medium was changed to a CSiFF04 medium with a NO 3 ion concentration of 0.45 times and a phosphate ion concentration of 4.5 times. Evaluation was performed.
[比較例10]
 実施例4において、本培養の培地をCSiFF04培地(a)に変更する以外は実施例4と同様の培養・回収・評価を行った。
[Comparative Example 10]
In Example 4, the same culture, collection and evaluation as in Example 4 were performed except that the medium for main culture was changed to CSiFF04 medium (a).
[比較例11]
 実施例5の本培養において、培地をCSiFF04培地のNO3イオン濃度を1/8倍にしたものに変更し、かつ培養日数を14日とする以外は実施例5と同様の培養・回収・評価を行った。
[比較例12]
 実施例5の本培養において、培地をCSiFF04培地のNO3イオン濃度を1/8倍、リン酸イオン濃度を1/4倍にしたものに変更し、かつ培養日数を14日とする以外は実施例5と同様の培養・回収・評価を行った。
[Comparative Example 11]
In the main culture of Example 5, the culture medium was changed to one in which the NO 3 ion concentration of the CSiFF04 medium was 1/8 times, and the culture period was the same as in Example 5, except that the culture period was 14 days. Went.
[Comparative Example 12]
In the main culture of Example 5, the medium was changed to a CSiFF04 medium in which the NO 3 ion concentration was changed to 1/8 times and the phosphate ion concentration was set to 1/4 times, and the culture days were changed to 14 days. The same culture, collection and evaluation as in Example 5 were performed.
[比較例13]
 実施例5の本培養において、培地をCSiFF04培地(a)に変更し、かつ培養日数を14日とする以外は実施例5と同様の培養・回収・評価を行った。
[Comparative Example 13]
In the main culture of Example 5, the same culture, collection, and evaluation as in Example 5 were performed except that the medium was changed to CSiFF04 medium (a) and the number of culture days was 14 days.
[比較例14]
 実施例5において、本培養の培地をCSiFF04培地のNO3イオン濃度を0.7倍にしたものに変更する以外は実施例5と同様の培養・回収・評価を行った。
[Comparative Example 14]
In Example 5, the same culture, collection, and evaluation as in Example 5 were performed, except that the main culture medium was changed to a CSiFF04 medium in which the NO 3 ion concentration was 0.7 times.
[比較例15]
 実施例5において、本培養の培地をCSiFF04培地(a)に変更する以外は実施例5と同様の培養・回収・評価を行った。
[Comparative Example 15]
In Example 5, the same culture, collection and evaluation as in Example 5 were performed except that the medium for main culture was changed to CSiFF04 medium (a).
 実施例及び比較例の結果を下表及び図2に示した。 The results of Examples and Comparative Examples are shown in the table below and FIG.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002

Claims (10)

  1. 有用物質生産性である微細藻類の培養方法であって、
    硝酸イオンのリン酸イオンに対するモル濃度比(N/P比)が0.7~4.0であり、かつ培養面積当たりの硝酸イオン量が0.2mol/m2以上である培地中で微細藻類を培養し、培地の液面にバイオフィルムを形成させる工程
    を含む、微細藻類の培養方法。
    A method for culturing microalgae that is useful substance productivity,
    Microalgae in a medium in which the molar concentration ratio of nitrate ion to phosphate ion (N / P ratio) is 0.7 to 4.0 and the amount of nitrate ion per culture area is 0.2 mol / m 2 or more. A method for culturing microalgae, comprising a step of cultivating and forming a biofilm on a liquid surface of a medium.
  2. 前記N/P比が1.0~4.0であり、前記培養面積当たりの硝酸イオン量が0.2mol/m2~1.5mol/m2である、請求項1に記載の培養方法。 The N / P ratio is 1.0 to 4.0, nitrate ion per the culture area is 0.2mol / m 2 ~ 1.5mol / m 2, the culture method of claim 1.
  3. 前記培養が、静置培養により行われる、請求項1又は2に記載の培養方法。 The culture method according to claim 1 or 2, wherein the culture is performed by stationary culture.
  4. 前記バイオフィルムが三次元構造を有する、請求項1~3のいずれか1項に記載の培養方法。 The culture method according to any one of claims 1 to 3, wherein the biofilm has a three-dimensional structure.
  5. 培地交換を行わない、請求項1~4のいずれか1項に記載の培養方法。 The culture method according to any one of claims 1 to 4, wherein the medium is not exchanged.
  6. 前記微細藻類が緑藻である、請求項1~5のいずれか1項に記載の培養方法。 The culture method according to any one of claims 1 to 5, wherein the microalgae are green algae.
  7. 前記微細藻類が、Botryococcus sp.、Chlamydomonas sp.、Chlorococcum sp、Chlamydomonad sp.、Tetracystis sp.、Characium sp.又はProtosiphon sp.に属するものである、請求項1~6のいずれか1項に記載の培養方法。 The microalgae is Botryococcus sp. , Chlamydomonas sp. , Chlorococcum sp, Chlamydomonad sp. Tetracystis sp. , Characium sp. Or Protosiphon sp. The culture method according to any one of claims 1 to 6, which belongs to the above.
  8. 前記微細藻類が、Botryococcus sudeticus FERM BP-11420、又はChlorococcum sp. FERM BP-22262と同じ種に属するものである、請求項1~7のいずれか1項に記載の培養方法。 The microalgae is Botryococcus sudueticus FERM BP-11420, or Chlorococcus sp. The culture method according to any one of claims 1 to 7, which belongs to the same species as FERM BP-22262.
  9. 請求項1~8のいずれか1項に記載の培養方法を含む培養工程;及び
    形成された前記バイオフィルムを回収する工程;
    を含む、藻類バイオマスの製造方法。
    A culture step comprising the culture method according to any one of claims 1 to 8; and a step of recovering the formed biofilm;
    A method for producing algal biomass.
  10. 前記藻類バイオマスが、オイルである、請求項9に記載の製造方法。 The production method according to claim 9, wherein the algal biomass is oil.
PCT/JP2017/010090 2016-03-29 2017-03-14 Method for culturing microalga and method for producing algal biomass WO2017169713A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018508950A JPWO2017169713A1 (en) 2016-03-29 2017-03-14 Method for culturing microalgae and method for producing algal biomass

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016065981 2016-03-29
JP2016-065981 2016-03-29

Publications (1)

Publication Number Publication Date
WO2017169713A1 true WO2017169713A1 (en) 2017-10-05

Family

ID=59964192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/010090 WO2017169713A1 (en) 2016-03-29 2017-03-14 Method for culturing microalga and method for producing algal biomass

Country Status (2)

Country Link
JP (1) JPWO2017169713A1 (en)
WO (1) WO2017169713A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0889279A (en) * 1994-09-22 1996-04-09 Chikyu Kankyo Sangyo Gijutsu Kenkyu Kiko Production of lutein by chlorophyta
JP2010011838A (en) * 2008-07-07 2010-01-21 Morio Hirano Production method of docosahexaenoic acid and eicosapentaenoic acid by prasinophyte
JP2013523188A (en) * 2010-04-14 2013-06-17 ソラザイム ロケット ニュートリショナルズ, エルエルシー High lipid microalgae powder food composition
JP2013226063A (en) * 2012-04-24 2013-11-07 Fujifilm Corp Method for cultivating microalgae, biofilm formed on liquid surface by the method, biomass and oil obtained from the biofilm, method for retrieving the biofilm, and method for producing biomass fuel
JP2015015918A (en) * 2013-07-10 2015-01-29 株式会社デンソー Novel microalgae
JP2015142575A (en) * 2008-12-19 2015-08-06 アルファ−ジェイ リサーチ リミテッド パートナーシップ Optimization of algal product production through uncoupling cell proliferation and algal product production
JP2015192647A (en) * 2013-09-20 2015-11-05 富士フイルム株式会社 Liquid-surface floating culture method of microalgae in which microalgae on bottom surface is used as seed algae, manufacturing method of algal biomass, and microalgae

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015041351A1 (en) * 2013-09-20 2015-03-26 富士フイルム株式会社 Culture method for microalgae that improves oil content ratio, method for manufacturing algal biomass, and novel microalga

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0889279A (en) * 1994-09-22 1996-04-09 Chikyu Kankyo Sangyo Gijutsu Kenkyu Kiko Production of lutein by chlorophyta
JP2010011838A (en) * 2008-07-07 2010-01-21 Morio Hirano Production method of docosahexaenoic acid and eicosapentaenoic acid by prasinophyte
JP2015142575A (en) * 2008-12-19 2015-08-06 アルファ−ジェイ リサーチ リミテッド パートナーシップ Optimization of algal product production through uncoupling cell proliferation and algal product production
JP2013523188A (en) * 2010-04-14 2013-06-17 ソラザイム ロケット ニュートリショナルズ, エルエルシー High lipid microalgae powder food composition
JP2013226063A (en) * 2012-04-24 2013-11-07 Fujifilm Corp Method for cultivating microalgae, biofilm formed on liquid surface by the method, biomass and oil obtained from the biofilm, method for retrieving the biofilm, and method for producing biomass fuel
JP2015015918A (en) * 2013-07-10 2015-01-29 株式会社デンソー Novel microalgae
JP2015192647A (en) * 2013-09-20 2015-11-05 富士フイルム株式会社 Liquid-surface floating culture method of microalgae in which microalgae on bottom surface is used as seed algae, manufacturing method of algal biomass, and microalgae

Also Published As

Publication number Publication date
JPWO2017169713A1 (en) 2019-01-10

Similar Documents

Publication Publication Date Title
Das et al. Two phase microalgae growth in the open system for enhanced lipid productivity
JP6240051B2 (en) Method for culturing microalgae with improved oil content, method for producing algal biomass, and novel microalgae
Feng et al. Lipid accumulation and growth of Chlorella zofingiensis in flat plate photobioreactors outdoors
Shen et al. Microalgae mass production methods
Singh et al. Mechanism and challenges in commercialisation of algal biofuels
Gim et al. Comparison of biomass production and total lipid content of freshwater green microalgae cultivated under various culture conditions
US20100255541A1 (en) Advanced Algal Photosynthesis-Driven Bioremediation Coupled with Renewable Biomass and Bioenergy Production
CN104185678A (en) Production of astaxanthin and docosahexaenoic acid in mixotrophic mode using schizochytrium
WO2014088010A1 (en) Method for collecting seed algae from microalgae on liquid surface, and for performing culturing in separate culture vessel, in method for culturing microalgae on liquid surface
WO2015041349A1 (en) Method for liquid-surface floating culture of microalgae using microalgae on bottom surface as seed algae, method for producing algal biomass, and microalga
WO2013161832A1 (en) Method for culturing microalga, biofilm formed on surface of liquid by said culturing method, biomass and oil both produced from said biofilm, method for collecting said biofilm, method for producing biomass fuel, microalga capable of forming biofilm on surface of liquid, biofilm formed on surface of liquid using said microalga, and biomass and oil both produced from said biofilm
Sahay et al. Microalgae based biodiesel production–current and future scenario
JP6047300B2 (en) Microalgae culture method, biofilm formed on the liquid surface by the culture method, oil production method, biofilm recovery method, and biomass fuel production method
JPWO2017217116A1 (en) New microalgae with aggregation ability
CN107384800B (en) Clermann dipteridium krameri (Chlamydododium SP.) and its use
US20140242641A1 (en) Method for obtaining an open phototrophic culture with improved storage compound production capacity
WO2015041350A1 (en) Novel method for adherent culture in region formed between water-absorbent polymer gel and substrate, method for manufacturing biomass, and novel microalga
KR20190101623A (en) Auxenochlorella protothecoides MM0011 and use thereof
JP2015057991A (en) Method for liquid-surface floating culture of microalgae using structure with penetrated portion, and collection method
WO2017169713A1 (en) Method for culturing microalga and method for producing algal biomass
JP2015057990A (en) Multistage culture method by liquid-surface floating culture
JP2014113083A (en) Method for culturing microalgae on the liquid surface characterized in that microalgae on the liquid surface is collected onto a board to be transferred and cultured in another culture vessel
TWI589693B (en) Chlamydopodium sp. and uses thereof
CN108660079B (en) Micromangnesia (Microbatium SP.) and its use
JP6047299B2 (en) Microalgae capable of forming biofilm on liquid surface, biofilm formed on liquid surface by microalgae, and method for producing oil

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018508950

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17774257

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17774257

Country of ref document: EP

Kind code of ref document: A1