WO2017169408A1 - Multijoint robot system - Google Patents

Multijoint robot system Download PDF

Info

Publication number
WO2017169408A1
WO2017169408A1 PCT/JP2017/007268 JP2017007268W WO2017169408A1 WO 2017169408 A1 WO2017169408 A1 WO 2017169408A1 JP 2017007268 W JP2017007268 W JP 2017007268W WO 2017169408 A1 WO2017169408 A1 WO 2017169408A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
robot system
electromotive force
motor
electromagnetic brake
Prior art date
Application number
PCT/JP2017/007268
Other languages
French (fr)
Japanese (ja)
Inventor
政弘 岡本
国敏 森田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2017169408A1 publication Critical patent/WO2017169408A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • H02P5/46Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors for speed regulation of two or more dynamo-electric motors in relation to one another

Definitions

  • the present disclosure relates to an articulated robot system, and particularly to an articulated robot system having a motor and a brake in each of a plurality of joints.
  • FIG. 7 is a schematic diagram showing a circuit configuration of a conventional robot system.
  • a six-axis vertical articulated robot having motors M1 to M6 and brakes B1 to B6 corresponding to the motors M1 to M6 is disclosed.
  • the brakes B1 to B6 are connected in parallel, and a DC voltage source 901, a switch 902, and a lamp 903 are connected in series to the brakes B1 to B6.
  • Brakes B1 to B6 are electromagnetic brakes. When a DC voltage is applied to the excitation coils inside the brakes B1 to B6, the brakes B1 to B6 are turned off and the motors M1 to M6 can be rotated. On the other hand, when no DC voltage is applied to the exciting coils of the brakes B1 to B6, the brakes B1 to B6 are turned on, and the motors M1 to M6 cannot rotate (lock state).
  • Patent Document 1 is known as prior art document information related to this application.
  • An articulated robot system having a plurality of joints includes a first motor, a first electromagnetic brake, a second motor, a second electromagnetic brake, a switch, a DC voltage source, and a first diode. And a counter electromotive force consuming member.
  • the first motor drives the first joint.
  • the first electromagnetic brake has a first coil and stops the first motor.
  • the second motor drives the second joint.
  • the second electromagnetic brake is connected in parallel with the first electromagnetic brake, has a second coil, and stops the second motor.
  • the switch is connected in series with the first electromagnetic brake.
  • the DC voltage source is connected in series to the first electromagnetic brake and the second electromagnetic brake.
  • the first diode is connected in series to the second electromagnetic brake, and is connected in the forward direction to a DC voltage from a DC voltage source.
  • the back electromotive force consuming member is connected in parallel to the first electromagnetic brake and the second electromagnetic brake.
  • the capacity of the second coil is smaller than the capacity of the first coil.
  • FIG. 1 is a configuration diagram of an articulated robot system according to an embodiment.
  • FIG. 2 is a schematic diagram illustrating a circuit configuration of the articulated robot system according to the embodiment.
  • FIG. 3 is a schematic diagram illustrating a part of the circuit configuration of the articulated robot system according to the embodiment.
  • FIG. 4 is a schematic diagram illustrating a part of the circuit configuration of the articulated robot system according to the embodiment.
  • FIG. 5 is a schematic diagram illustrating another circuit configuration of the articulated robot system according to the embodiment.
  • FIG. 6 is a schematic diagram illustrating still another circuit configuration of the articulated robot system according to the embodiment.
  • FIG. 7 is a schematic diagram showing a circuit configuration of a conventional robot system.
  • FIG. 1 is a configuration diagram of an articulated robot system 50 according to the present embodiment.
  • An articulated robot system 50 illustrated in FIG. 1 includes a manipulator 10, a controller 20 that controls the manipulator 10, and a teaching pendant 30 that is connected to the controller 20.
  • the manipulator 10 is configured as a six-axis vertical articulated robot, for example.
  • the arrows in FIG. 1 indicate the rotation direction of the shaft.
  • the manipulator 10 includes an arm 11 that can turn, an arm 12 that can rotate in the vertical direction with respect to the arm 11, and an arm 13 that can rotate in the vertical direction with respect to the arm 12.
  • the manipulator 10 includes an arm 14 that can rotate in the twist direction with respect to the arm 13, an arm 15 that can rotate in the vertical direction with respect to the arm 14, and an arm 16 that can rotate in the twist direction with respect to the arm 15. have.
  • a plurality of shafts provided in the manipulator are each driven by a motor.
  • Each of these motors is provided with an electromagnetic brake.
  • the electromagnetic brake By applying a voltage from the controller 20, the electromagnetic brake is released and the motor can be driven.
  • the motor is driven by supplying a drive signal and applying a motor drive voltage. Further, the electromagnetic brake is operated by stopping the voltage for releasing the electromagnetic brake, and the motor is stopped.
  • a motor with a different capacity may be used for each arm. In that case, brakes having different capacities are used.
  • FIG. 2 is a schematic diagram showing a circuit configuration of the articulated robot system 50 according to the embodiment.
  • An articulated robot system 50 having a plurality of joints includes a motor 301 (first motor), a brake 201 (first electromagnetic brake), a motor 306 (second motor), and a brake 206 (second electromagnetic). Brake), a switch 102, a power supply unit 103 (DC voltage source), a diode D5 (first diode), and a back electromotive force consuming member 101.
  • the motor 301 drives the first joint.
  • the brake 201 has a coil 401 (first coil) and stops the motor 301.
  • the motor 306 drives the second joint.
  • the brake 206 is connected in parallel with the brake 201, has a coil 406 (second coil), and stops the motor 306.
  • the switch 102 is connected to the brake 201 in series.
  • the power supply unit 103 is connected to the brake 201 and the brake 206 in series.
  • the diode D5 is connected in series to the brake 206 and is connected to the DC voltage from the power supply unit 103 in the forward direction.
  • the back electromotive force consuming member 101 is connected to the brake 201 and the brake 206 in parallel.
  • the capacity of the coil 406 is smaller than the capacity of the coil 401.
  • the brakes 201 to 206 (electromagnetic brakes) and the motors 301 to 306 are mounted on the manipulator 10.
  • the brakes 201 to 206 have coils 401 to 406 (electromagnetic brake coils), respectively.
  • the brakes 201 to 203 stop the 2 kW motors 301 to 303.
  • the brakes 204 and 205 stop the 400 W motors 304 and 305.
  • the brake 206 stops the 100 W motor 305.
  • the capacity of the coils 401 to 403 is larger than the capacity of the coils 404 to 405, and the capacity of the coils 404 to 405 is larger than the capacity of the coil 406.
  • the brake 201 and the motor 301 may be integrally formed.
  • the brake 202 and the motor 302 may be integrally formed.
  • the brake 203 and the motor 303 may be integrally formed.
  • the brake 204 and the motor 304 may be integrally formed.
  • the brake 205 and the motor 305 may be integrally formed.
  • the brake 206 and the motor 306 may be integrally formed.
  • a power supply unit 103 is installed in the controller 20.
  • the power supply unit 103 may have a function of driving the switch 102 that is an open / close element.
  • the switch 102 is off (open)
  • no voltage is applied to the brakes 201 to 206. Therefore, the brakes 201 to 206 are turned on. That is, the motor shafts of the motors 301 to 306 are locked by the brakes 201 to 206.
  • the power supply unit 103 and the switch 102 are connected to the coils 401 to 406 in series.
  • the diode D1 is connected in series to the coil 402 and is oriented in the forward direction with respect to the DC voltage from the DC voltage source.
  • the diode D2 is connected in series to the coil 403 and is in a forward direction with respect to the DC voltage from the DC voltage source.
  • the diode D3 is connected in series to the coil 404 and is oriented in the forward direction with respect to the DC voltage from the DC voltage source.
  • the diode D4 is connected in series to the coil 405 and is oriented in the forward direction with respect to the DC voltage from the DC voltage source.
  • the diode D5 is connected in series with the coil 406 and is oriented in the forward direction with respect to the DC voltage from the DC voltage source.
  • the diode has a current rating of 2A.
  • the back electromotive force consuming member 101 is connected to the coils 401 to 406 in parallel. As shown in FIG. 2, a coil 601 is used as the back electromotive force consuming member 101.
  • the power consumption of the coil 406 is 4 W, and the capacity is smaller than the power consumption 22 W of the coils 401 to 403.
  • Coils 401 to 406 generate back electromotive force when the power is shut off. Since the coils 401 to 403 have a large coil capacity, the back electromotive force is also large. Therefore, when the diodes D1 to D5 are not provided, the coil 406 having a small capacity is excited.
  • the diodes D1 to D5 can prevent the excitation of the coil 406 having a small capacity due to the back electromotive force of the coils 401 to 403 having a large capacity. Further, back electromotive force energy can be consumed by the back electromotive force consuming member 101 connected in parallel with the coils 401 to 406. As a result, it is possible to make it difficult to cause a time shift of the lock of each motor shaft. That is, when the switch 102 is turned off (opened) and the brakes 201 to 206 are turned on, the motor shafts of the motors 301 to 306 are locked almost simultaneously, and the motors 301 to 306 are stopped.
  • the capacity of the back electromotive force consuming member 101 is preferably equal to or less than the capacity of the coil 406.
  • 3 and 4 are schematic views showing a part of the circuit configuration of the articulated robot system 50 according to the embodiment.
  • FIGS. 3 and 4 only the coils 401 and 406 are shown for simplicity.
  • the diode D5 is connected in series to the coil 406 of the electromagnetic brake 206, and is connected in the forward direction to a DC voltage from the power supply unit 103 (DC voltage source). Therefore, the current 503 hardly flows in the direction from the coil 406 to the diode D5.
  • the current 505 flows to the counter electromotive force consuming member 101. That is, the counter electromotive force is consumed by the counter electromotive force consuming member 101.
  • FIG. 5 is a schematic diagram showing another circuit configuration of the articulated robot system 50 according to the embodiment.
  • the diode D6 (second diode) is connected in series to the back electromotive force consuming member 101, and is connected in the reverse direction to the DC voltage from the power supply unit 103 (DC voltage source).
  • the electromagnetic brakes 201 to 206 are released, unnecessary power consumption in the back electromotive force consuming member 101 can be suppressed. That is, only the counter electromotive force generated by the electromagnetic brakes 201 to 206 can be consumed by the counter electromotive force consuming member 101 and the power from the power supply unit 103 can be prevented from being consumed. As a result, the counter electromotive force is consumed more stably in the counter electromotive force consuming member 101.
  • the coil 601 and the diode D6 may be combined to serve as a counter electromotive force consuming member. That is, the back electromotive force consuming member may have a structure including the coil 601 and the diode D6.
  • the diode D6 (second diode) is connected in series to the coil 601 and is connected in the reverse direction to the DC voltage from the power supply unit 103 (DC voltage source).
  • FIG. 6 is a schematic diagram showing still another circuit configuration of the articulated robot system according to the embodiment.
  • a resistor 701 may be used as the back electromotive force consuming member 101. That is, the back electromotive force consuming member may be any member that can consume back electromotive force energy.
  • the back electromotive force consuming member may have a structure having a resistor 701 and a diode D6.
  • the diode D6 (second diode) is connected in series to the resistor 701, and is connected in the opposite direction to the DC voltage from the power supply unit 103 (DC voltage source).
  • the back electromotive force consuming member may have a structure having a coil 601 and a resistor 701 in series.
  • the counter electromotive force consuming member may have a structure including a coil 601, a resistor 701, and a diode D6 in series.
  • the articulated robot system of the present disclosure is less likely to cause a shift in stop time for each joint even when brakes having different capacities are used for each joint.
  • the circuit configuration according to the present disclosure is industrially useful because it has a simple structure and is less likely to cause stop displacement for each joint due to a brake.

Abstract

A multijoint robot system of the present invention is provided with a first motor, first electromagnetic brake, second motor, second electromagnetic brake, switch, direct-current voltage source, first diode, and back electromotive force consumption member. The first electromagnetic brake has a first coil, and stops the first motor. The second electromagnetic brake is connected in parallel to the first electromagnetic brake, has a second coil, and stops the second motor. The back electromotive force consumption member is connected in parallel to the first electromagnetic brake and the second electromagnetic brake. The capacity of the second coil is smaller than the capacity of the first coil.

Description

多関節ロボットシステムArticulated robot system
 本開示は、多関節ロボットシステムに関し、特に、複数の関節のそれぞれにモータおよびブレーキを有する多関節ロボットシステムに関する。 The present disclosure relates to an articulated robot system, and particularly to an articulated robot system having a motor and a brake in each of a plurality of joints.
 図7を用いて、従来のロボットシステムについて説明する。図7は、従来のロボットシステムの回路構成を示す模式図である。 A conventional robot system will be described with reference to FIG. FIG. 7 is a schematic diagram showing a circuit configuration of a conventional robot system.
 従来のロボットシステムとして、モータM1~M6と、モータM1~M6に対応したブレーキB1~B6とを有する6軸の垂直多関節型ロボットが開示されている。図7に示すように、ブレーキB1~B6は並列に接続されており、直流電圧源901とスイッチ902とランプ903とが、ブレーキB1~B6に対して直列に接続されている。 As a conventional robot system, a six-axis vertical articulated robot having motors M1 to M6 and brakes B1 to B6 corresponding to the motors M1 to M6 is disclosed. As shown in FIG. 7, the brakes B1 to B6 are connected in parallel, and a DC voltage source 901, a switch 902, and a lamp 903 are connected in series to the brakes B1 to B6.
 ブレーキB1~B6は電磁ブレーキである。ブレーキB1~B6の内部の励磁コイルに直流電圧が印加されている場合、ブレーキB1~B6はオフになり、モータM1~M6が回転できる状態になる。逆に、ブレーキB1~B6の励磁コイルに直流電圧が印加されていない場合、ブレーキB1~B6はオンになり、モータM1~M6が回転できない状態(ロック状態)になる。この出願に関連する先行技術文献情報として、例えば、特許文献1が知られている。 Brakes B1 to B6 are electromagnetic brakes. When a DC voltage is applied to the excitation coils inside the brakes B1 to B6, the brakes B1 to B6 are turned off and the motors M1 to M6 can be rotated. On the other hand, when no DC voltage is applied to the exciting coils of the brakes B1 to B6, the brakes B1 to B6 are turned on, and the motors M1 to M6 cannot rotate (lock state). For example, Patent Document 1 is known as prior art document information related to this application.
特開2011-62792号公報JP 2011-62792 A
 複数の関節を有する多関節ロボットシステムは、第1のモータと、第1の電磁ブレーキと、第2のモータと、第2の電磁ブレーキと、スイッチと、直流電圧源と、第1のダイオードと、逆起電力消費部材と、を備えている。 An articulated robot system having a plurality of joints includes a first motor, a first electromagnetic brake, a second motor, a second electromagnetic brake, a switch, a DC voltage source, and a first diode. And a counter electromotive force consuming member.
 第1のモータは、第1の関節を駆動する。第1の電磁ブレーキは、第1のコイルを有し、第1のモータを停止する。 The first motor drives the first joint. The first electromagnetic brake has a first coil and stops the first motor.
 第2のモータは、第2の関節を駆動する。第2の電磁ブレーキは、第1の電磁ブレーキと並列に接続され、第2のコイルを有し、第2のモータを停止する。 The second motor drives the second joint. The second electromagnetic brake is connected in parallel with the first electromagnetic brake, has a second coil, and stops the second motor.
 スイッチは、第1の電磁ブレーキに直列に接続されている。 The switch is connected in series with the first electromagnetic brake.
 直流電圧源は、第1の電磁ブレーキおよび第2の電磁ブレーキに直列に接続されている。 The DC voltage source is connected in series to the first electromagnetic brake and the second electromagnetic brake.
 第1のダイオードは、第2の電磁ブレーキに直列に接続され、かつ、直流電圧源からの直流電圧に順方向に接続されている。 The first diode is connected in series to the second electromagnetic brake, and is connected in the forward direction to a DC voltage from a DC voltage source.
 逆起電力消費部材は、第1の電磁ブレーキおよび第2の電磁ブレーキに並列に接続されている。 The back electromotive force consuming member is connected in parallel to the first electromagnetic brake and the second electromagnetic brake.
 第2のコイルの容量は、第1のコイルの容量よりも小さい。 The capacity of the second coil is smaller than the capacity of the first coil.
図1は、実施の形態の多関節ロボットシステムの構成図である。FIG. 1 is a configuration diagram of an articulated robot system according to an embodiment. 図2は、実施の形態の多関節ロボットシステムの回路構成を示す模式図である。FIG. 2 is a schematic diagram illustrating a circuit configuration of the articulated robot system according to the embodiment. 図3は、実施の形態の多関節ロボットシステムの回路構成の一部を示す模式図である。FIG. 3 is a schematic diagram illustrating a part of the circuit configuration of the articulated robot system according to the embodiment. 図4は、実施の形態の多関節ロボットシステムの回路構成の一部を示す模式図である。FIG. 4 is a schematic diagram illustrating a part of the circuit configuration of the articulated robot system according to the embodiment. 図5は、実施の形態の多関節ロボットシステムの他の回路構成を示す模式図である。FIG. 5 is a schematic diagram illustrating another circuit configuration of the articulated robot system according to the embodiment. 図6は、実施の形態の多関節ロボットシステムのさらに他の回路構成を示す模式図である。FIG. 6 is a schematic diagram illustrating still another circuit configuration of the articulated robot system according to the embodiment. 図7は、従来のロボットシステムの回路構成を示す模式図である。FIG. 7 is a schematic diagram showing a circuit configuration of a conventional robot system.
 特許文献1に記載された従来のロボットシステムでは、ブレーキB1~B6を動作させ、モータにブレーキをかける場合に、スイッチ902を開いて、すべてのブレーキB1~B6への直流電圧を停止する。しかし、モータM1~M6の容量が異なっていると、ブレーキB1~B6に要求される制動力が異なる。そのため、ブレーキB1~B6の励磁コイルの容量も異なる。そして、励磁コイルの容量が大きいブレーキによる逆起電力によって、励磁コイルの容量が小さいブレーキに電流が流れてしまう。その結果、励磁コイルの容量が小さいブレーキがオンになる動作が遅れてしまう。 In the conventional robot system described in Patent Document 1, when the brakes B1 to B6 are operated and the motor is braked, the switch 902 is opened to stop the DC voltage to all the brakes B1 to B6. However, if the capacities of the motors M1 to M6 are different, the braking force required for the brakes B1 to B6 is different. Therefore, the capacities of the exciting coils of the brakes B1 to B6 are also different. A current flows through a brake having a small excitation coil capacity due to a back electromotive force generated by a brake having a large excitation coil capacity. As a result, the operation of turning on the brake having a small excitation coil capacity is delayed.
 (実施の形態)
 図1は、本実施の形態の多関節ロボットシステム50の構成図である。図1に示す多関節ロボットシステム50は、マニピュレータ10と、マニピュレータ10を制御するコントローラ20、コントローラ20に接続されたティーチングペンダント30とを有している。
(Embodiment)
FIG. 1 is a configuration diagram of an articulated robot system 50 according to the present embodiment. An articulated robot system 50 illustrated in FIG. 1 includes a manipulator 10, a controller 20 that controls the manipulator 10, and a teaching pendant 30 that is connected to the controller 20.
 マニピュレータ10は、たとえば6軸の垂直多関節ロボットとして構成されている。図1における矢印は、軸の回転方向を示している。マニピュレータ10は、旋回可能なアーム11と、アーム11に対して上下方向に回転可能なアーム12と、アーム12に対して上下方向に回転可能なアーム13とを有している。さらに、マニピュレータ10は、アーム13に対して捻り方向に回転可能なアーム14と、アーム14に対して上下方向に回転可能なアーム15と、アーム15に対して捻り方向に回転可能なアーム16とを有している。 The manipulator 10 is configured as a six-axis vertical articulated robot, for example. The arrows in FIG. 1 indicate the rotation direction of the shaft. The manipulator 10 includes an arm 11 that can turn, an arm 12 that can rotate in the vertical direction with respect to the arm 11, and an arm 13 that can rotate in the vertical direction with respect to the arm 12. Further, the manipulator 10 includes an arm 14 that can rotate in the twist direction with respect to the arm 13, an arm 15 that can rotate in the vertical direction with respect to the arm 14, and an arm 16 that can rotate in the twist direction with respect to the arm 15. have.
 マニピュレータに設けられている複数の軸はそれぞれモータによって駆動される。これらのモータには、それぞれ電磁ブレーキが設けられている。コントローラ20から電圧を印加することにより、電磁ブレーキを解除し、モータを駆動できる状態にする。そして、駆動信号の供給とモータ駆動用電圧の印加により、モータを駆動する。また、電磁ブレーキを解除する電圧を遮断することにより、電磁ブレーキを動作させ、モータを停止する。 A plurality of shafts provided in the manipulator are each driven by a motor. Each of these motors is provided with an electromagnetic brake. By applying a voltage from the controller 20, the electromagnetic brake is released and the motor can be driven. The motor is driven by supplying a drive signal and applying a motor drive voltage. Further, the electromagnetic brake is operated by stopping the voltage for releasing the electromagnetic brake, and the motor is stopped.
 マニピュレータ10において、アームごとに異なる容量のモータを用いる場合がある。その場合、容量の異なるブレーキが用いられる。 In the manipulator 10, a motor with a different capacity may be used for each arm. In that case, brakes having different capacities are used.
 図2は、実施の形態の多関節ロボットシステム50の回路構成を示す模式図である。複数の関節を有する多関節ロボットシステム50は、モータ301(第1のモータ)と、ブレーキ201(第1の電磁ブレーキ)と、モータ306(第2のモータ)と、ブレーキ206(第2の電磁ブレーキ)と、スイッチ102と、電源供給部103(直流電圧源)と、ダイオードD5(第1のダイオード)と、逆起電力消費部材101と、を備えている。 FIG. 2 is a schematic diagram showing a circuit configuration of the articulated robot system 50 according to the embodiment. An articulated robot system 50 having a plurality of joints includes a motor 301 (first motor), a brake 201 (first electromagnetic brake), a motor 306 (second motor), and a brake 206 (second electromagnetic). Brake), a switch 102, a power supply unit 103 (DC voltage source), a diode D5 (first diode), and a back electromotive force consuming member 101.
 モータ301は、第1の関節を駆動する。ブレーキ201は、コイル401(第1のコイル)を有し、モータ301を停止する。 The motor 301 drives the first joint. The brake 201 has a coil 401 (first coil) and stops the motor 301.
 モータ306は、第2の関節を駆動する。ブレーキ206は、ブレーキ201と並列に接続され、コイル406(第2のコイル)を有し、モータ306を停止する。 The motor 306 drives the second joint. The brake 206 is connected in parallel with the brake 201, has a coil 406 (second coil), and stops the motor 306.
 スイッチ102は、ブレーキ201に直列に接続されている。 The switch 102 is connected to the brake 201 in series.
 電源供給部103は、ブレーキ201およびブレーキ206に直列に接続されている。 The power supply unit 103 is connected to the brake 201 and the brake 206 in series.
 ダイオードD5は、ブレーキ206に直列に接続され、かつ、電源供給部103からの直流電圧に順方向に接続されている。 The diode D5 is connected in series to the brake 206 and is connected to the DC voltage from the power supply unit 103 in the forward direction.
 逆起電力消費部材101は、ブレーキ201およびブレーキ206に並列に接続されている。 The back electromotive force consuming member 101 is connected to the brake 201 and the brake 206 in parallel.
 コイル406の容量は、コイル401の容量よりも小さい。 The capacity of the coil 406 is smaller than the capacity of the coil 401.
 次に多関節ロボットシステム50について詳細に説明する。ここでは、第1の関節と第2の関節の他にさらに4つの関節、すなわち合計6つの関節を持つ多関節ロボットシステムについて説明する。ブレーキ201~206(電磁ブレーキ)とモータ301~306は、マニピュレータ10に搭載されている。ブレーキ201~206は、それぞれコイル401~406(電磁ブレーキ用コイル)を有している。たとえば、ブレーキ201~203により、2kWのモータ301~303が停止される。ブレーキ204、205により、400Wのモータ304、305が停止される。ブレーキ206により、100Wのモータ305が停止される。そのため、コイル401~403の容量は、コイル404~405の容量よりも大きく、コイル404~405の容量は、コイル406の容量よりも大きい。ここで、ブレーキ201とモータ301は一体に形成されていてもよい。ブレーキ202とモータ302は一体に形成されていてもよい。ブレーキ203とモータ303は一体に形成されていてもよい。ブレーキ204とモータ304は一体に形成されていてもよい。ブレーキ205とモータ305は一体に形成されていてもよい。ブレーキ206とモータ306は一体に形成されていてもよい。 Next, the articulated robot system 50 will be described in detail. Here, an articulated robot system having four joints in addition to the first joint and the second joint, that is, a total of six joints will be described. The brakes 201 to 206 (electromagnetic brakes) and the motors 301 to 306 are mounted on the manipulator 10. The brakes 201 to 206 have coils 401 to 406 (electromagnetic brake coils), respectively. For example, the brakes 201 to 203 stop the 2 kW motors 301 to 303. The brakes 204 and 205 stop the 400 W motors 304 and 305. The brake 206 stops the 100 W motor 305. Therefore, the capacity of the coils 401 to 403 is larger than the capacity of the coils 404 to 405, and the capacity of the coils 404 to 405 is larger than the capacity of the coil 406. Here, the brake 201 and the motor 301 may be integrally formed. The brake 202 and the motor 302 may be integrally formed. The brake 203 and the motor 303 may be integrally formed. The brake 204 and the motor 304 may be integrally formed. The brake 205 and the motor 305 may be integrally formed. The brake 206 and the motor 306 may be integrally formed.
 電源供給部103がコントローラ20に設置されている。電源供給部103は開閉素子であるスイッチ102を駆動する機能を有していてもよい。スイッチ102がオフ(オープン)の場合、ブレーキ201~206には電圧が印加されない。そのため、ブレーキ201~206は、オンの状態になる。すなわち、ブレーキ201~206により、モータ301~306のモータ軸がロックされる。 A power supply unit 103 is installed in the controller 20. The power supply unit 103 may have a function of driving the switch 102 that is an open / close element. When the switch 102 is off (open), no voltage is applied to the brakes 201 to 206. Therefore, the brakes 201 to 206 are turned on. That is, the motor shafts of the motors 301 to 306 are locked by the brakes 201 to 206.
 電源供給部103およびスイッチ102はコイル401~406に直列に接続されている。ダイオードD1は、コイル402に直列に接続され、直流電圧源からの直流電圧に順方向の向きである。同様に、ダイオードD2は、コイル403に直列に接続され、直流電圧源からの直流電圧に順方向の向きである。ダイオードD3は、コイル404に直列に接続され、直流電圧源からの直流電圧に順方向の向きである。ダイオードD4は、コイル405に直列に接続され、直流電圧源からの直流電圧に順方向の向きである。ダイオードD5は、コイル406に直列に接続され、直流電圧源からの直流電圧に順方向の向きである。たとえば、ダイオードは2Aの電流定格を有する。逆起電力消費部材101は、コイル401~406に並列に接続されている。図2に示すように、逆起電力消費部材101として、コイル601が用いられる。例えば、コイル406の消費電力は4Wであり、コイル401~403の消費電力22Wに比べて容量が小さい。 The power supply unit 103 and the switch 102 are connected to the coils 401 to 406 in series. The diode D1 is connected in series to the coil 402 and is oriented in the forward direction with respect to the DC voltage from the DC voltage source. Similarly, the diode D2 is connected in series to the coil 403 and is in a forward direction with respect to the DC voltage from the DC voltage source. The diode D3 is connected in series to the coil 404 and is oriented in the forward direction with respect to the DC voltage from the DC voltage source. The diode D4 is connected in series to the coil 405 and is oriented in the forward direction with respect to the DC voltage from the DC voltage source. The diode D5 is connected in series with the coil 406 and is oriented in the forward direction with respect to the DC voltage from the DC voltage source. For example, the diode has a current rating of 2A. The back electromotive force consuming member 101 is connected to the coils 401 to 406 in parallel. As shown in FIG. 2, a coil 601 is used as the back electromotive force consuming member 101. For example, the power consumption of the coil 406 is 4 W, and the capacity is smaller than the power consumption 22 W of the coils 401 to 403.
 コイル401~406には、電源遮断時に逆起電力が発生する。コイル401~403は、コイルの容量が大きいので、逆起電力も大きい。そのため、ダイオードD1~D5がない場合、容量の小さいコイル406が励磁してしまう。 Coils 401 to 406 generate back electromotive force when the power is shut off. Since the coils 401 to 403 have a large coil capacity, the back electromotive force is also large. Therefore, when the diodes D1 to D5 are not provided, the coil 406 having a small capacity is excited.
 その結果、モータ軸をロックするように制御しているにもかかわらず、モータ軸のロックが短時間の間、解除されてしまう。 As a result, although the motor shaft is controlled to be locked, the motor shaft is unlocked for a short time.
 これに対して、本実施の形態ではダイオードD1~D5により、容量の大きいコイル401~403の逆起電力による容量の小さいコイル406の励磁を防止できる。さらに、コイル401~406と並列に接続された逆起電力消費部材101により、逆起電力のエネルギーを消費できる。この結果、各モータ軸のロックの時間的なズレを生じにくくすることができる。すなわち、スイッチ102をオフ(オープン)にして、ブレーキ201~206をオンにした場合、殆ど同時にモータ301~306のモータ軸がロックされ、モータ301~306が停止する。 In contrast, in the present embodiment, the diodes D1 to D5 can prevent the excitation of the coil 406 having a small capacity due to the back electromotive force of the coils 401 to 403 having a large capacity. Further, back electromotive force energy can be consumed by the back electromotive force consuming member 101 connected in parallel with the coils 401 to 406. As a result, it is possible to make it difficult to cause a time shift of the lock of each motor shaft. That is, when the switch 102 is turned off (opened) and the brakes 201 to 206 are turned on, the motor shafts of the motors 301 to 306 are locked almost simultaneously, and the motors 301 to 306 are stopped.
 なお、逆起電力消費部材101の容量は、コイル406の容量以下であるのが好ましい。 Note that the capacity of the back electromotive force consuming member 101 is preferably equal to or less than the capacity of the coil 406.
 次に、上記の事をわかりやすく説明する。図3、図4は、実施の形態の多関節ロボットシステム50の回路構成の一部を示す模式図である。図3、図4では、簡略化のために、コイル401、406だけ図示している。 Next, explain the above in an easy-to-understand manner. 3 and 4 are schematic views showing a part of the circuit configuration of the articulated robot system 50 according to the embodiment. In FIGS. 3 and 4, only the coils 401 and 406 are shown for simplicity.
 スイッチ102がオン(クローズ)の場合、例えば図3に示すような電流501が流れる。 When the switch 102 is on (closed), for example, a current 501 as shown in FIG. 3 flows.
 その後、スイッチ102をオフ(オープン)にした場合、図4に示すように、コイル401、406に逆起電力が生じる。そして、コイル401の容量は、コイル406の容量よりも大きいので、電流503が流れようとする。 Thereafter, when the switch 102 is turned off (opened), back electromotive force is generated in the coils 401 and 406 as shown in FIG. And since the capacity | capacitance of the coil 401 is larger than the capacity | capacitance of the coil 406, the electric current 503 tends to flow.
 しかし、ダイオードD5は、電磁ブレーキ206のコイル406に直列に接続され、かつ、電源供給部103(直流電圧源)からの直流電圧に順方向に接続されている。そのため、コイル406からダイオードD5の方向には電流503は殆ど流れない。 However, the diode D5 is connected in series to the coil 406 of the electromagnetic brake 206, and is connected in the forward direction to a DC voltage from the power supply unit 103 (DC voltage source). Therefore, the current 503 hardly flows in the direction from the coil 406 to the diode D5.
 一方、電流505は、逆起電力消費部材101に流れる。すなわち、逆起電力消費部材101により、逆起電力が消費される。 On the other hand, the current 505 flows to the counter electromotive force consuming member 101. That is, the counter electromotive force is consumed by the counter electromotive force consuming member 101.
 図5は、実施の形態の多関節ロボットシステム50の他の回路構成を示す模式図である。図5では、ダイオードD6(第2のダイオード)は、逆起電力消費部材101に直列に接続され、電源供給部103(直流電圧源)からの直流電圧に逆方向に接続されている。このような構成にすることにより、電磁ブレーキ201~206を解除した際に、逆起電力消費部材101における余計な電力消費を抑制できる。すなわち、電磁ブレーキ201~206で発生した逆起電力のみを逆起電力消費部材101で消費し、電源供給部103からの電力を消費させないようにできる。その結果、逆起電力は、逆起電力消費部材101において、より安定に消費される。 FIG. 5 is a schematic diagram showing another circuit configuration of the articulated robot system 50 according to the embodiment. In FIG. 5, the diode D6 (second diode) is connected in series to the back electromotive force consuming member 101, and is connected in the reverse direction to the DC voltage from the power supply unit 103 (DC voltage source). With this configuration, when the electromagnetic brakes 201 to 206 are released, unnecessary power consumption in the back electromotive force consuming member 101 can be suppressed. That is, only the counter electromotive force generated by the electromagnetic brakes 201 to 206 can be consumed by the counter electromotive force consuming member 101 and the power from the power supply unit 103 can be prevented from being consumed. As a result, the counter electromotive force is consumed more stably in the counter electromotive force consuming member 101.
 ここで、コイル601とダイオードD6を合わせて、逆起電力消費部材としてもよい。すなわち、逆起電力消費部材は、コイル601とダイオードD6を有する構造でもよい。ここで、ダイオードD6(第2のダイオード)は、コイル601に直列に接続され、電源供給部103(直流電圧源)からの直流電圧に逆方向に接続されている。 Here, the coil 601 and the diode D6 may be combined to serve as a counter electromotive force consuming member. That is, the back electromotive force consuming member may have a structure including the coil 601 and the diode D6. Here, the diode D6 (second diode) is connected in series to the coil 601 and is connected in the reverse direction to the DC voltage from the power supply unit 103 (DC voltage source).
 図6は、実施の形態の多関節ロボットシステムのさらに他の回路構成を示す模式図である。図6に示すように、逆起電力消費部材101として、抵抗701を用いてもよい。すなわち、逆起電力消費部材としては、逆起電力のエネルギーを消費できるものであればよい。 FIG. 6 is a schematic diagram showing still another circuit configuration of the articulated robot system according to the embodiment. As shown in FIG. 6, a resistor 701 may be used as the back electromotive force consuming member 101. That is, the back electromotive force consuming member may be any member that can consume back electromotive force energy.
 また、逆起電力消費部材は、抵抗701とダイオードD6とを有する構造でもよい。ここで、ダイオードD6(第2のダイオード)は、抵抗701に直列に接続され、電源供給部103(直流電圧源)からの直流電圧に逆方向に接続されている。 Further, the back electromotive force consuming member may have a structure having a resistor 701 and a diode D6. Here, the diode D6 (second diode) is connected in series to the resistor 701, and is connected in the opposite direction to the DC voltage from the power supply unit 103 (DC voltage source).
 さらに、逆起電力消費部材は、コイル601と抵抗701を直列に有する構造でもよい。また、逆起電力消費部材は、コイル601と抵抗701とダイオードD6を直列に有する構造でもよい。 Further, the back electromotive force consuming member may have a structure having a coil 601 and a resistor 701 in series. The counter electromotive force consuming member may have a structure including a coil 601, a resistor 701, and a diode D6 in series.
 上記のように、本開示の多関節ロボットシステムは、関節ごとに容量が異なるブレーキを用いても、関節ごとの停止時間のズレが生じにくい。 As described above, the articulated robot system of the present disclosure is less likely to cause a shift in stop time for each joint even when brakes having different capacities are used for each joint.
 本開示に係る回路構成によると、シンプルな構造で、ブレーキによる関節ごとの停止ズレが生じにくく、産業上有用である。 The circuit configuration according to the present disclosure is industrially useful because it has a simple structure and is less likely to cause stop displacement for each joint due to a brake.
10 マニピュレータ
11~16 アーム
20 コントローラ
30 ティーチングペンダント
50 多関節ロボットシステム
101 逆起電力消費部材
102 スイッチ
103 電源供給部
201~206 ブレーキ
301~306 モータ
401~406 コイル
501,503,505 電流
701 抵抗
901 直流電圧源
902 スイッチ
903 ランプ
M1~M6 モータ
B1~B6 ブレーキ
D1~D6 ダイオード
10 Manipulators 11 to 16 Arm 20 Controller 30 Teaching pendant 50 Articulated robot system 101 Back electromotive force consuming member 102 Switch 103 Power supply unit 201 to 206 Brake 301 to 306 Motor 401 to 406 Coil 501, 503, 505 Current 701 Resistance 901 DC Voltage source 902 Switch 903 Lamp M1 to M6 Motor B1 to B6 Brake D1 to D6 Diode

Claims (8)

  1. 複数の関節を有する多関節ロボットシステムにおいて、
    第1の関節を駆動する第1のモータと、
    第1のコイルを有し、前記第1のモータを停止する、第1の電磁ブレーキと、
    第2の関節を駆動する第2のモータと、
    前記第1の電磁ブレーキと並列に接続され、第2のコイルを有し、前記第2のモータを停止する、第2の電磁ブレーキと、
    前記第1の電磁ブレーキに直列に接続されたスイッチと、
    前記第1の電磁ブレーキおよび前記第2の電磁ブレーキに直列に接続された直流電圧源と、
    前記第2の電磁ブレーキに直列に接続され、かつ、前記直流電圧源からの直流電圧に順方向に接続された第1のダイオードと、
    前記第1の電磁ブレーキおよび前記第2の電磁ブレーキに並列に接続された逆起電力消費部材と、を備え、
    前記第2のコイルの容量は、前記第1のコイルの容量よりも小さい
    多関節ロボットシステム。
    In an articulated robot system having a plurality of joints,
    A first motor for driving the first joint;
    A first electromagnetic brake having a first coil and stopping the first motor;
    A second motor for driving the second joint;
    A second electromagnetic brake connected in parallel with the first electromagnetic brake, having a second coil, and stopping the second motor;
    A switch connected in series to the first electromagnetic brake;
    A DC voltage source connected in series to the first electromagnetic brake and the second electromagnetic brake;
    A first diode connected in series to the second electromagnetic brake and connected in a forward direction to a DC voltage from the DC voltage source;
    A back electromotive force consuming member connected in parallel to the first electromagnetic brake and the second electromagnetic brake,
    An articulated robot system in which the capacity of the second coil is smaller than the capacity of the first coil.
  2. 前記逆起電力消費部材は第3のコイルを有する
    請求項1に記載の多関節ロボットシステム。
    The articulated robot system according to claim 1, wherein the counter electromotive force consuming member has a third coil.
  3. 前記第3のコイルの容量は、前記第2のコイルの容量以下である
    請求項2に記載の多関節ロボットシステム。
    The articulated robot system according to claim 2, wherein a capacity of the third coil is equal to or less than a capacity of the second coil.
  4. 前記逆起電力消費部材に直列に接続され、前記直流電圧源からの直流電圧に逆方向に接続された第2のダイオードをさらに備えた
    請求項2に記載の多関節ロボットシステム。
    The articulated robot system according to claim 2, further comprising a second diode connected in series to the counter electromotive force consuming member and connected in a reverse direction to a DC voltage from the DC voltage source.
  5. 前記逆起電力消費部材はさらに第2のダイオードを有しており、
    前記第2のダイオードは、前記第3のコイルに直列に接続され、前記直流電圧源からの直流電圧に逆方向に接続されている
    請求項2に記載の多関節ロボットシステム。
    The back electromotive force consuming member further comprises a second diode;
    3. The articulated robot system according to claim 2, wherein the second diode is connected in series to the third coil, and is connected in a reverse direction to a DC voltage from the DC voltage source.
  6. 前記逆起電力消費部材はさらに抵抗を有する
    請求項5に記載の多関節ロボットシステム。
    The articulated robot system according to claim 5, wherein the counter electromotive force consuming member further has a resistance.
  7. 前記逆起電力消費部材は抵抗を有する
    請求項1に記載の多関節ロボットシステム。
    The articulated robot system according to claim 1, wherein the counter electromotive force consuming member has a resistance.
  8. 前記逆起電力消費部材はさらに第2のダイオードを有しており、
    前記第2のダイオードは、前記抵抗に直列に接続され、前記直流電圧源からの直流電圧に逆方向に接続されている
    請求項7に記載の多関節ロボットシステム。
    The back electromotive force consuming member further comprises a second diode;
    The articulated robot system according to claim 7, wherein the second diode is connected in series to the resistor and is connected in a reverse direction to a DC voltage from the DC voltage source.
PCT/JP2017/007268 2016-03-28 2017-02-27 Multijoint robot system WO2017169408A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016062986 2016-03-28
JP2016-062986 2016-03-28

Publications (1)

Publication Number Publication Date
WO2017169408A1 true WO2017169408A1 (en) 2017-10-05

Family

ID=59963139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/007268 WO2017169408A1 (en) 2016-03-28 2017-02-27 Multijoint robot system

Country Status (1)

Country Link
WO (1) WO2017169408A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110034638A (en) * 2018-01-12 2019-07-19 发那科株式会社 Motor drive and fault detection method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0560103A (en) * 1991-04-11 1993-03-09 Shimadzu Corp Driving circuit of duty valve
JPH05124228A (en) * 1991-11-05 1993-05-21 Seiko Epson Corp Impact head driver
JPH06335255A (en) * 1993-05-18 1994-12-02 Tokyo Electric Co Ltd Secondary dc power generator
JP2005209061A (en) * 2004-01-26 2005-08-04 Yaskawa Electric Corp Automatic machine control unit
JP2009240056A (en) * 2008-03-26 2009-10-15 Tai-Her Yang Series-parallel connection operation control electric circuit of multiset electromagnetic starter
JP2013067009A (en) * 2013-01-23 2013-04-18 Denso Wave Inc Electromagnetic brake control device of robot
JP2014054695A (en) * 2012-09-12 2014-03-27 Daihen Corp Brake releasing circuit for industrial robot, and method of use for brake releasing circuit of industrial robot
JP2014096894A (en) * 2012-11-08 2014-05-22 Fanuc Ltd Brake drive controlling device for quickly changing state of brake from released state to fastened state

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0560103A (en) * 1991-04-11 1993-03-09 Shimadzu Corp Driving circuit of duty valve
JPH05124228A (en) * 1991-11-05 1993-05-21 Seiko Epson Corp Impact head driver
JPH06335255A (en) * 1993-05-18 1994-12-02 Tokyo Electric Co Ltd Secondary dc power generator
JP2005209061A (en) * 2004-01-26 2005-08-04 Yaskawa Electric Corp Automatic machine control unit
JP2009240056A (en) * 2008-03-26 2009-10-15 Tai-Her Yang Series-parallel connection operation control electric circuit of multiset electromagnetic starter
JP2014054695A (en) * 2012-09-12 2014-03-27 Daihen Corp Brake releasing circuit for industrial robot, and method of use for brake releasing circuit of industrial robot
JP2014096894A (en) * 2012-11-08 2014-05-22 Fanuc Ltd Brake drive controlling device for quickly changing state of brake from released state to fastened state
JP2013067009A (en) * 2013-01-23 2013-04-18 Denso Wave Inc Electromagnetic brake control device of robot

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110034638A (en) * 2018-01-12 2019-07-19 发那科株式会社 Motor drive and fault detection method
JP2019126107A (en) * 2018-01-12 2019-07-25 ファナック株式会社 Motor drive device and failure detection method
US10715059B2 (en) 2018-01-12 2020-07-14 Fanuc Corporation Motor driving device and failure detecting method
CN110034638B (en) * 2018-01-12 2020-08-21 发那科株式会社 Motor driving device and failure detection method

Similar Documents

Publication Publication Date Title
JP4297971B2 (en) Electric motor control device
WO2015045300A1 (en) Multiaxial robot power shut-off device and multiaxial robot
CN102044904B (en) A kind of aircraft electric power network
US9889990B2 (en) Power drive unit with power-off dynamic brake
WO2015132956A1 (en) Electric motor with brake
JP2008538492A (en) Electric current supply device for electric motor and driving method of electric motor
JP6581335B2 (en) Remote wireless motor control law processing system
WO2017169408A1 (en) Multijoint robot system
JP2005057852A (en) Driving device of brushless motor
US20180087292A1 (en) Robot, robot system, and robot control apparatus
JP2010112438A (en) Shutoff valve
WO2018142829A1 (en) Motor drive device and electric power steering device
JP5797983B2 (en) Electric vehicle capacitor discharge device
JP2011218552A (en) Electric gripper drive with torsional compliance device
WO2017094839A1 (en) Motor drive device and method for controlling motor drive device
WO2019181849A1 (en) Short-circuiting device and robot system provided with same
JP6921374B2 (en) Vacuum valve
JP4876162B2 (en) Dynamic brake circuit and motor controller with failure detection function
WO2018154763A1 (en) Motor drive device and regenerative resistance selection device
JP6036087B2 (en) Robot system
JP4695924B2 (en) Motor drive device
TW201624159A (en) Motor driving system
JP2020058170A (en) Motor control device and motor device
Divakar et al. A Study on DC motor operations and speed control using microcontroller
Hasanah et al. Design and construction of a single-arm crane miniature for stevedoring

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17773953

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17773953

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP