WO2017169394A1 - Wireless transmission system - Google Patents

Wireless transmission system Download PDF

Info

Publication number
WO2017169394A1
WO2017169394A1 PCT/JP2017/007134 JP2017007134W WO2017169394A1 WO 2017169394 A1 WO2017169394 A1 WO 2017169394A1 JP 2017007134 W JP2017007134 W JP 2017007134W WO 2017169394 A1 WO2017169394 A1 WO 2017169394A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
circuit
unit
antenna
transmission system
Prior art date
Application number
PCT/JP2017/007134
Other languages
French (fr)
Japanese (ja)
Inventor
哲也 楠本
齋藤 隆
高岡 彰
善一 古田
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2017169394A1 publication Critical patent/WO2017169394A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks

Definitions

  • This disclosure relates to a wireless transmission system.
  • Patent Literature 1 discloses a system that includes a power receiving element that receives power transmitted from a power supply apparatus and supplies power corresponding to the received power to a load.
  • the technique described in Patent Document 1 is designed to maintain a sharpness Q, which is the sharpness of resonance with high power, in at least one of the power propagation path to the resonance element of the power feeding device and the power reception power propagation path of the power receiving device.
  • This is a technique that includes a frequency characteristic correction circuit that expands the characteristic to broaden the band.
  • the sharpness Q may be increased to improve the characteristics of the resonator.
  • transmission is increased accordingly.
  • the bandwidth of the frequency at which the characteristics can be regarded as flat becomes narrow. Therefore, the inventor considers a system that can achieve high transmission efficiency by flexibly changing the bandwidth of the frequency at which signals such as power and data are transmitted or received.
  • the bandwidth is fixedly set, and, for example, an operating device for mechanically moving the position of the resonator is required.
  • An object of the present disclosure is to provide a wireless transmission system in which a frequency bandwidth can be flexibly changed.
  • One aspect of the present disclosure provides a wireless transmission system including a transmission device and a reception device.
  • the transmission device includes a signal generation unit and a transmission antenna that transmits a signal generated by the signal generation unit.
  • the receiving device includes a receiving antenna that receives a signal transmitted from the transmitting antenna of the transmitting device, and a signal processing unit that processes a signal received through the receiving antenna.
  • a band limiting circuit is provided in at least one of the signal propagation path from the reception antenna to the signal processing unit of the reception apparatus or the signal propagation path from the transmission antenna to the signal generation unit of the transmission apparatus.
  • the band limiting circuit includes a first capacitor connected in series or in parallel to at least one of the transmission antenna and the reception antenna.
  • the first capacitor unit constitutes a first resonance circuit that resonates in a predetermined frequency band together with the transmission antenna or the reception antenna.
  • the band limiting circuit includes a second resonance circuit that is connected in series to the first resonance circuit, and in which the inductive unit and the second capacitor unit are connected in series or in parallel to resonate in a frequency band that is the same as or close to a predetermined frequency band;
  • An inductive characteristic unit connected between the first resonant circuit and the second resonant circuit and configured such that the inductive characteristic in the operating frequency band is variable. Then, the inductive characteristic unit can change the connectivity between the first resonance circuit and the second resonance circuit.
  • the changing unit changes the inductive characteristic of the inductive characteristic unit of the band limiting circuit, it can change the connectivity between the first resonant circuit and the second resonant circuit, and at the time of signal transmission or signal reception
  • the frequency bandwidth can be changed flexibly.
  • FIG. 1 is a diagram schematically illustrating a wireless transmission system according to the first embodiment.
  • FIG. 2 is a diagram showing a simulation result of frequency characteristics of transmission efficiency according to a change in inductance value.
  • FIG. 3 is a diagram schematically illustrating a wireless transmission system according to the second embodiment.
  • FIG. 4 is a diagram schematically illustrating a wireless transmission system according to the third embodiment.
  • FIG. 5 is a diagram schematically illustrating a wireless transmission system according to the fourth embodiment.
  • FIG. 6 is a diagram schematically illustrating a wireless transmission system according to the fifth embodiment.
  • FIG. 1 is a diagram schematically illustrating a wireless transmission system according to the first embodiment.
  • FIG. 2 is a diagram showing a simulation result of frequency characteristics of transmission efficiency according to a change in inductance value.
  • FIG. 3 is a diagram schematically illustrating a wireless transmission system according to the second embodiment.
  • FIG. 4 is a diagram schematically illustrating a wireless transmission system according to the third embodiment.
  • FIG. 7 is a diagram schematically illustrating a wireless transmission system according to the sixth embodiment.
  • FIG. 8 is a sequence diagram of channel setting processing.
  • FIG. 9 is a diagram schematically illustrating a wireless transmission system according to the seventh embodiment.
  • FIG. 10 is an electrical configuration diagram of the first resonance circuit in the eighth embodiment.
  • FIG. 11 is a first diagram of an electrical configuration of the second resonance circuit in the eighth embodiment.
  • FIG. 12 is part 2 of the electrical configuration diagram of the second resonance circuit in the eighth embodiment.
  • FIG. 13 is a diagram schematically illustrating a wireless transmission system according to the ninth embodiment.
  • FIG. 14 is an explanatory diagram of a substrate mounting example of the receiving device according to the tenth embodiment.
  • the wireless transmission system 101 includes a transmission device 2 and a reception device 3, and the transmission device 2 transmits a signal to the reception device 3 wirelessly.
  • a battery power source serving as a power supply source is connected to the transmission device 2.
  • the transmission device 2 transmits a signal to the reception device 3 wirelessly according to the power of the battery power source.
  • the receiving device 3 operates by using the electric power coupled from the transmitting device 2 by the magnetic field resonance method and transmitted from the transmitting device 2.
  • FIG. 1 mainly shows a characteristic part related to the signal transmission system which is a characteristic of the present embodiment.
  • the transmission device 2 includes a signal generation unit 4 and a transmission antenna 5.
  • the transmission antenna 5 is configured by, for example, a looped conductive wire.
  • the signal generation unit 4 is configured by, for example, a microcomputer, generates a carrier wave signal by a given power supply, for example, modulates the carrier wave signal by a predetermined modulation method, and transmits the data modulation signal to the reception device 3 through the transmission antenna 5. To do.
  • the transmitter 2 generates a large number of carrier signals in the several hundred MHz band as subcarriers, modulates the subcarriers with data using an OFDM (orthogonal frequency-division multiplexing) modulation scheme,
  • the data modulation signal is transmitted as a transmission signal to the reception device 3 through the transmission antenna 5.
  • the receiving device 3 includes a receiving antenna 6, a band limiting circuit 7, and a signal processing unit 8 as a changing unit.
  • the receiving antenna 6 is constituted by, for example, a looped conductive line.
  • the reception antenna 6 is installed in the near field of the transmission antenna 5, and the reception device 3 receives a signal transmitted from the transmission antenna 5 of the transmission device 2 through the reception antenna 6.
  • the receiving device 3 inputs the received signal from the receiving antenna 6 to the signal processing unit 8 through the band limiting circuit 7.
  • the signal processing unit 8 is configured by, for example, a microcomputer and demodulates a data modulation signal received through the receiving antenna 6 and the band limiting circuit 7.
  • the OFDM modulated signal is adjusted so that the aforementioned subcarriers are orthogonal to each other. Therefore, the signal processing unit 8 separates the subcarriers from each other using a fast Fourier transform algorithm, and demodulates the data modulated on the subcarriers.
  • the transmission device 2 can transmit data to the reception device 3.
  • a band limiting circuit 7 is provided between the receiving antenna 6 and the signal processing unit 8.
  • the band limiting circuit 7 is configured by a linear circuit including, for example, variable capacitance diodes (hereinafter abbreviated as diodes) 9 to 11, an inductor 12 as an induction unit, and an inductor 13.
  • the band limiting circuit 7 is a circuit that passes a signal received by the receiving antenna 6 and transmits the signal to the signal processing unit 8.
  • the band limiting circuit 7 passes the transmission signal of the transmission device 2 and has a frequency other than the passing frequency band of the transmission signal. It is composed of a bandpass filter that limits the band.
  • the band limiting circuit 7 is configured by connecting in series between the cathode and anode of the diode 11 and between the anode and cathode of the inductor 12 and the diode 9 between one end of the receiving antenna 6 and the input end of the signal processing unit 8. Yes.
  • the anode of the diode 11 and the inductor 12 are directly connected at the node N1.
  • the capacitance values of the variable capacitance diodes 9 to 11 can be adjusted according to the control of the signal processing unit 8, respectively.
  • the first resonance circuit 14 is configured by the receiving antenna 6 and the diode 11
  • the second resonance circuit 15 is configured by the inductor 12 and the diode 9.
  • An induction characteristic unit 16 is configured between the node N1 and the node N2.
  • the inductive characteristic unit 16 is configured by connecting a diode 10 and an inductor 13 in parallel. This inductive characteristic unit 16 exhibits an inductive characteristic in a band including the frequency of the transmission signal (that is, a used frequency band).
  • the receiving device 3 includes a first resonance circuit 14 that resonates due to the capacitive characteristics of the receiving antenna 6 and the diode 11, and further includes an inductor 12 and a diode 9 connected in series, and the capacitive characteristics of the inductor 12 and the diode 9.
  • the second resonance circuit 15 that resonates is provided.
  • Each element constituting the first and second resonance circuits 14 and 15 is set to a circuit constant having a resonance frequency in a frequency band that is typically the same as the predetermined frequency band or close to the predetermined frequency band within a predetermined range.
  • the resonance frequency can be changed by adjusting the capacitance of the diodes 9 and 11.
  • the predetermined frequency band shown here is the same as or close to the target bandwidth (for example, about 100 MHz) of the band limiting circuit 7.
  • the separation frequency width of the resonance frequencies of the first and second resonance circuits 14 and 15 may be set in accordance with the target bandwidth.
  • the transmission device 2 transmits the data modulation signal to the reception device 3 as a transmission signal. Increasing the data transmission rate requires a wider bandwidth.
  • a first resonance circuit 14 and a second resonance circuit 15 are connected to a signal propagation path between the transmission device 2 and the signal processing unit 8.
  • the sharpness Q of the transmission device 2 viewed from the first resonance circuit 14 is Q1
  • the sharpness Q of the signal processing unit 8 viewed from the second resonance circuit 15 is Q2.
  • the first resonance circuit 14 and the second resonance If the degree of coupling with the circuit 15 is defined as k, k ⁇ SQRT (Q1 ⁇ Q2)> 1 (1) By satisfying the above condition, it can be considered that the bandwidth can be widened.
  • the element values of the components of the band limiting circuit 7, the appropriate distance range between the transmission device 2 and the reception device 3, and the inductances of the transmission antenna 5 and the reception antenna 6 By setting the value or the like, it is possible to increase the bandwidth based on the interaction of each circuit.
  • the transmission apparatus 2 and the reception apparatus 3 perform transmission / reception processing by selecting predetermined one or a plurality of channels from a multi-channel frequency band (for example, several hundred MHz) in a predetermined subcarrier frequency band It is desirable that the frequency bandwidth can be dynamically adjusted using the band limiting circuit 7.
  • the signal transmission efficiency can be improved by increasing the Q value of the frequency band, but if the sharpness Q is increased, the frequency bandwidth tends to become narrower, and conversely, the sharpness Q of the frequency band is lowered. This is because the signal transmission efficiency deteriorates although it is easy to make the frequency bandwidth wide. For this reason, it is desirable to dynamically change the frequency band in order to secure a desired frequency bandwidth, for example, for one channel while increasing the signal transmission efficiency within the frequency band.
  • the band limiting circuit 7 of this embodiment is provided with an inductive characteristic unit 16 in which a diode 10 and an inductor 13 are connected in parallel between nodes N1 and N2.
  • the degree of coupling k in equation (1) is determined according to the capacitance value of these diodes 10 and the inductance value Lm of the inductor 13, and if the inductance value Lm of the inductor 13 is a fixed value, The coupling degree k can be adjusted by changing and controlling the capacitance value.
  • FIG. 2 shows the simulation result of the frequency characteristic of the transmission efficiency according to the change in the inductance value Lm of the inductor 13 when the capacitance value of the diode 10 is a fixed value.
  • the inventor changed the inductive characteristic of the inductive characteristic unit 16 by changing the inductance value Lm of the inductor 13 in the circuit configuration of FIG. 1, and observed the change in the characteristic of the transmission efficiency by simulation.
  • the characteristic shown in FIG. 2 is that the receiving antenna 6 and the inductor 12 have an inductance value of 100 nH, the capacitance values of the diodes 9 and 11 are 5 pF, and the resonance frequencies of the first resonance circuit 14 and the second resonance circuit 15 are the same frequency.
  • the inductance value of the transmission antenna 5 is 20 nH, the coupling coefficient k0 between the transmission antenna 5 and the reception antenna 6 is 0.9, the output impedance Z0 of the signal generation unit 4 is 50 ⁇ , the input impedance Zi of the signal processing unit 8 is 100 ⁇ , Under the conditions, the simulation result is obtained by changing the inductance value Lm of the inductor 13.
  • the frequency band can be made wider by increasing the inductance value Lm of the inductor 13 to, for example, about 60 nH, and the frequency band can be narrowed by reducing the inductance value Lm of the inductor 13 to, for example, about 30 nH. There was found. For this reason, the signal processing unit 8 can adjust the frequency characteristic of the transmission efficiency dynamically by adjusting the inductive characteristic of the inductive characteristic unit 16 in the band limiting circuit 7.
  • the inductive characteristic of the inductive characteristic unit 16 can be adjusted by changing the capacitance value of the diode 10 in the inductive characteristic unit 16, and thereby the frequency characteristic of the transmission efficiency shown in FIG.
  • the bandwidth can be limited similarly to the above.
  • the inductive characteristic unit 16 configured so that the inductive characteristic in the use frequency band can be varied is provided between the first resonant circuit 14 and the second resonant circuit 15. .
  • the degree of coupling k between the first resonance circuit 14 and the second resonance circuit 15 can be changed, and the frequency characteristic of the transmission efficiency can be dynamically changed as shown in FIG.
  • the inductive characteristic unit 16 is preferably configured using the variable capacitance diode 10, and in particular, the inductive characteristic unit 16 may be configured by connecting the inductor 13 and the variable capacitance diode 10 in parallel. At this time, by adjusting the capacitance value of the variable capacitance diode 10 by the signal processing unit 8, the inductance value of the induction characteristic unit 16 in the used frequency band can be easily changed. As a result, the connectivity k between the first resonance circuit 14 and the second resonance circuit 15 can be easily changed.
  • the signal processing unit 8 When the signal processing unit 8 is set so that the connectivity k is high and the sharpness Q is low, the signal processing unit 8 can have a wide band and can have a flat characteristic as much as possible within the band. 8 can adjust the signal transmission efficiency in a frequency selective manner when the connectivity k is set low and the sharpness Q is set high. In particular, even when the band limiting circuit 7 is set to a wide band, it is possible to transmit a signal while increasing the signal transmission efficiency as much as possible. Therefore, it is not necessary to provide an amplifier circuit for amplifying the signal in the subsequent stage. An amplifier circuit may be provided at the subsequent stage of the band limiting circuit 7 in accordance with the required gain.
  • variable capacitance diode 11 is used as the first capacitance section of the first resonance circuit 14, and the variable capacitance diode 9 is used as the second capacitance section of the second resonance circuit 15.
  • the signal processing unit 8 can change the resonance value of the first resonance circuit 14 and the second resonance circuit 15 by changing the capacitance value of the variable capacitance diode 9 or 11, and the frequency characteristic band of the transmission efficiency.
  • the width can be changed flexibly.
  • FIG. 3 shows an additional explanatory diagram of the second embodiment.
  • a wireless transmission system 201 illustrated in FIG. 3 includes a reception device 203, and the reception device 203 includes a band limiting circuit 207.
  • the band limiting circuit 207 includes an induction characteristic unit 216.
  • the induction characteristic unit 216 includes an inductor 13 and an inductor adjustment circuit 220 connected in parallel to the inductor 13.
  • the inductor adjustment circuit 220 includes one or a plurality of inductors 21, 23, 25 and switches 22, 24, 26 connected in series thereto.
  • the inductors 21, 23, and 25 are set to the same or different inductance values, and the switches 22, 24, and 26 can be controlled to be turned on / off from the signal generator 8. 25 can be connected / released between the nodes N1 and N2.
  • the signal generating unit 8 can adjust the combined inductance between the nodes N1 and N2 using the inductive characteristic unit 216, and the same characteristics as in the above-described embodiment can be obtained. As a result, the same effect as the first embodiment can be obtained.
  • FIG. 4 shows an additional explanatory diagram of the third embodiment.
  • the wireless transmission system 301 illustrated in FIG. 4 includes a reception device 303, and the reception device 303 includes a first resonance circuit 314 and a second resonance circuit 315.
  • the first resonance circuit 314 includes the receiving antenna 6 and a capacitor 308.
  • the second resonance circuit 315 includes an inductor 12 and a capacitor 309.
  • Capacitors 309 and 311 are provided in place of the diodes 9 and 11 of the first embodiment, and are configured as fixed capacitors. Although the capacitance values of the capacitors 309 and 311 of this embodiment cannot be changed by the signal processing unit 8, the signal processing unit 8 is configured to be able to change the inductance value of the inductive characteristic unit 16 by the diode 10. The bandwidth of the frequency characteristic can be changed flexibly.
  • FIG. 5 shows an additional explanatory diagram of the fourth embodiment.
  • the wireless transmission system 401 includes a communication device 425 that replaces the transmission device 2 and a communication device 426 that replaces the reception device 3.
  • the communication device 425 includes a signal communication unit 27 and a transmission antenna 5.
  • the signal communication unit 27 has both functions as the signal generation unit 4 and the signal processing unit 8a.
  • the communication device 426 includes a receiving antenna 6, a band limiting circuit 7, and a signal communication unit 28 as a changing unit.
  • the signal communication unit 28 also has both functions as the signal generation unit 4 and the signal processing unit 8.
  • the communication device 425 generates a data modulation signal by a predetermined modulation method by the signal generation unit 4 and transmits the data modulation signal to the communication device 426, and the data modulation signal received from the communication device 426 by the signal processing unit 8a. And a function of acquiring data by demodulating.
  • the signal processing unit 8a does not have a function of changing the capacitance characteristics of the diodes 9 to 11. For this reason, the signal processing unit in the communication device 425 is denoted by reference numeral “8a”.
  • the communication device 426 also generates a data modulation signal with a predetermined modulation method by the signal generation unit 4 and transmits the data modulation signal to the communication device 425.
  • the signal processing unit 8 generates a signal of the communication device 425. And a function of demodulating the data modulation signal received from the unit 4 to acquire data.
  • the signal processing unit 8 of the communication device 426 has a function of changing the capacities of the diodes 9 to 11.
  • the band limiting circuit 7 can change the bandwidth characteristic as shown in FIG. 2 in any case of the transmission / reception processing between the communication devices 425 and 426, and in any case of the transmission / reception processing. Applicable. Therefore, even when data modulated signals are transmitted and received with each other as in the present wireless transmission system 401, the bandwidth of the frequency characteristic of transmission efficiency can be flexibly changed. In addition, the same effects as those of the first embodiment can be obtained.
  • FIG. 6 is an additional explanatory diagram of the fifth embodiment.
  • the wireless transmission system 501 includes a transmission device 502 and a reception device 503.
  • the transmission device 502 includes a matching circuit 29 between the signal generation unit 4 and the transmission antenna 5.
  • the matching circuit 29 is a circuit that matches the impedance mismatch between the output impedance of the signal generation unit 4 and the input impedance of the transmission antenna 5.
  • the receiving device 402 includes a matching circuit 30 between the band limiting circuit 7 and the signal processing unit 8.
  • the matching circuit 30 is a circuit that matches impedance mismatch between the output impedance of the band limiting circuit 7 and the input impedance of the signal processing unit 8. In this case, the signal transmission efficiency can be further improved.
  • the matching circuits 29 and 30 may be provided in any one of the transmission device 502 and the reception device 503.
  • the matching circuits 29 and 30 are at least one of a signal propagation path from the reception antenna 6 to the signal processing unit 8 of the reception device 503 or a signal propagation route from the transmission antenna 5 to the signal generation unit 4 of the transmission device 502. What is necessary is just to provide in either one.
  • (Sixth embodiment) 7 and 8 show additional explanatory views of the sixth embodiment.
  • the configuration examples for changing the bandwidth and the like of the band limiting circuits 7, 207, and 307 have been described.
  • a mode for practically setting a transmission / reception channel using a configuration capable of changing the bandwidth will be described.
  • FIG. 7 shows the system configuration diagram.
  • the wireless transmission system 601 includes communication devices 625 and 626 that function as both a transmission device and a reception device.
  • the communication device 625 includes a signal communication unit 27.
  • the communication device 626 includes a control unit 32 including a signal communication unit 28 and a channel determination circuit 31 as a changing unit.
  • the channel determination circuit 31 is a circuit that determines which channel the signal transmitted from the communication device 625 is, and the signal in the frequency band of any channel among the frequency bands of all channels (for example, CH1 to CH5). Is received.
  • the control unit 32 adjusts the capacities of the diodes 9 to 11 of the respective units 14 to 16 by the signal processing unit 8 of the signal communication unit 28, thereby selectively selecting the frequency band of 1 to all channels among the all channel frequency bands. Adjust the bandwidth. As a result, signals of 1 to all channels including the channel determined by the channel determination circuit 31 can be received.
  • a communication channel assigned in advance includes a total of 5 channels with a 20 MHz bandwidth, and a bandwidth of all 5 channels is 100 MHz.
  • the communication apparatuses 625 and 626 will be described assuming that communication is performed by appropriately selecting a frequency band with less interference waves, and there is no communication channel change arrangement between the communication apparatuses 625 and 626.
  • the signal generation unit 4 of the communication device 625 sets the default transmission channel CH1 in step S1 in the initial setting state.
  • the communication device 626 enters the single channel reception mode in step T1, and switches the bandwidth to the single channel CH1 in step T2.
  • the control unit 32 of the communication device 626 sets the capacitance values of the diodes 9 to 11 so that the bandpass center frequency of the band limiting circuit 7 is matched with the center frequency of the channel CH1 out of the total frequency band 100 MHz of all the channels CH1 to CH5. And the bandwidth of the single channel CH1 is set to 20 MHz. As a result, the channel can be set to CH1.
  • the signal generator 4 of the communication device 625 generates a data modulation signal of the transmission channel CH1 and transmits it to the communication device 626 in step S2.
  • communication device 626 demodulates the data modulated signal by signal processing unit 8 of signal communication unit 28, determines whether or not reception has been completed normally, and has completed reception normally. If it is determined, the signal generator 4 of the signal communication unit 28 generates a data modulation signal of the channel CH1 and transmits an acknowledgment signal to the communication device 625 in step T4.
  • the signal processing unit 8a of the signal communication unit 27 of the communication device 625 can receive and demodulate the data modulation signal of the channel CH1 in step S3 and receive an acknowledgment signal. Thus, the communication device 625 can determine that the channel CH1 can be used.
  • the signal generation unit 4 of the communication device 625 generates a data modulation signal of the transmission channel CH1 in step S4 and transmits the data modulation signal to the communication device 626.
  • the signal processor 8 cannot receive normally and is determined as a reception error in step T5. In this case, since the signal processing unit 8 of the communication device 626 has received some signal but has not completed reception normally, the signal processing unit 8 does not transmit an acknowledgment signal indicating that reception has been completed normally to the communication device 625.
  • the control unit 32 switches to the all-CH reception mode in step T6.
  • the control unit 32 of the communication device 626 adjusts the bandpass center frequency of the band limiting circuit 7 to the center frequency of all frequency bands 100 MHz of all channels CH1 to CH5 and sets the bandwidth of all channels CH1 to CH5 to 100 MHz.
  • the capacitance values of the diodes 9 to 11 are changed.
  • the signal communication unit 27 of the communication device 625 determines that the time is over in step S5 because the signal communication unit 27 of the communication device 625 cannot receive an acknowledgment signal even after a predetermined time has elapsed after transmitting the data modulation signal in step S4. It is determined that some kind of communication failure has occurred. As a result, the signal communication unit 27 of the communication device 625 switches the transmission channel CH1 to, for example, the channel CH3 in step S6. The signal generation unit 4 of the communication device 625 generates a data modulation signal of the transmission channel CH3 in step S7 and transmits the data modulation signal to the communication device 626.
  • the communication device 626 can receive the data modulated signal of the channel CH3 transmitted from the communication device 625.
  • the signal communication unit 28 of the communication device 626 specifies a subcarrier by performing a fast Fourier transform process on the received signal by the signal processing unit 8 and can normally receive data by demodulating the data modulated on the subcarrier. Explore channels. Then, since the signal processing unit 8 of the communication device 626 can normally receive on the channel CH3, the channel determination circuit 31 can determine that the communication device 625 has transmitted the data modulation signal on the channel CH3.
  • the control unit 32 of the communication device 626 sets the band limiting circuit 7 to the center frequency of the channel CH3 in step T10.
  • the capacitance values of the diodes 9 to 11 are set so that the bandpass center frequencies of the first and second bands are matched and the bandwidth of the single channel CH3 is switched to 20 MHz.
  • the signal communication part 28 of the communication apparatus 626 transmits an acknowledgment signal to the communication apparatus 625 by channel CH3 in step T11. Then, the signal processing unit 8a of the communication device 625 can receive this acknowledgment signal on the channel CH3. By using such a flow, communication processing can be established in the channel CH3 in which no disturbing wave is generated, while avoiding communication processing in the channel CH1 in which the disturbing wave is generated. Thereafter, the communication devices 625 and 626 perform normal communication processing on the channel CH3.
  • a method for searching for a communicable channel by sequentially switching the channels CH1 to CH5 on the transmitting side and the receiving side respectively. In this case, the number of trials must be repeated.
  • the control unit 32 controls to change the frequency bandwidth of the band limiting circuit 7 so that the signals of all the plurality of channels CH1 to CH5 can be received, and the channel determination circuit 31 controls the communication device 625. From which channel signal is transmitted. At this time, the communication device 626 can receive by expanding the bandwidth to all the channels CH1 to CH5 using the band limiting circuit 7, so that it is not necessary to search by switching the channels in order as described above.
  • the control unit 32 controls to change the frequency bandwidth of the band limiting circuit 7 to the determined bandwidth of the channel CH3, and the signal communication unit 28 of the communication device 626 switches to the channel CH3 determined by the channel determination circuit 31. By receiving the signal, it is possible to reduce the number of trials and the communication establishment time until communication is established in the channel CH3 where no interference wave is generated.
  • the control unit 32 of the communication device 626 extends the bandwidth of the band limiting circuit 7 to a level exceeding 100 MHz.
  • FIG. 9 shows an additional explanatory diagram of the seventh embodiment.
  • the characteristic part related to the signal transmission system for the transmission device 2 to transmit the data modulation signal to the reception device 3 has been described, but the present invention is also applicable to the case where the main operation power supply power of the reception device 3 is transmitted. it can.
  • FIG. 9 shows a configuration diagram in this case.
  • parts different from the first embodiment will be described.
  • the wireless transmission system 701 includes a power transmission device 702 as a transmission device and a power reception device 703 as a reception device.
  • the power transmission device 702 includes a power signal generation unit 704 and a transmission antenna 5.
  • the power signal generation unit 704 generates AC power in a predetermined frequency band and supplies power to the power receiving device 703 through the transmission antenna 5.
  • the transmission antenna 5 functions as a power transmission antenna.
  • the power receiving device 703 includes a receiving antenna 6, a band limiting circuit 7, a rectifier circuit 33, and a power signal processing unit 708 as a changing unit.
  • the power receiving device 703 includes a rectifier circuit 33 between the band limiting circuit 7 and the signal processing unit 8.
  • the reception antenna 6 receives the AC power generated by the power signal generation unit 704 through the transmission antenna 5, and the band limiting circuit 7 removes the noise superimposed on the received power and outputs it to the rectifier circuit 33.
  • the rectifier circuit 33 outputs the power obtained by rectifying and smoothing the received power to the power signal processing unit 708, and the power signal processing unit 708 supplies this power to the inside of the power receiving device 703.
  • the receiving antenna 6 functions as a power receiving antenna.
  • the power signal processing unit 708 can adjust the capacitance values of the diodes 9 to 11 of the band limiting circuit 7. Therefore, the power signal processing unit 708 can limit the passband width of the AC signal by adjusting the capacitance values of the diodes 9 to 11 of the band limiting circuit 7. In this way, the present invention can also be applied to power transmission. Note that the configuration of the present embodiment can be applied by combining the configurations of the data modulation signals of the first to sixth and eighth to tenth embodiments, for example.
  • FIG. 10 shows additional explanatory views of the eighth embodiment.
  • a modification of the first resonance circuit 14 and the second resonance circuit 15 is shown.
  • the reception antenna 6 and the diode 11 may be connected in parallel between the nodes N1 and N2.
  • the inductor 12 and the variable capacitance diode 9 may be connected in series between the nodes N1 and N2.
  • the diode 9 and the inductor 12 may be connected in parallel between the node N1 and the signal processing unit 8. .
  • the bandpass center frequency or / and the bandwidth of the band limiting circuit 7 can be adjusted in the same manner as in the previous embodiment.
  • the previous embodiment for example, the first embodiment
  • the previous embodiment can be adjusted.
  • similar effects can be obtained.
  • FIG. 13 is an additional explanatory diagram of the eighth embodiment.
  • This embodiment shows a form in which a band limiting circuit 907 is provided in the transmission apparatus 902.
  • the wireless transmission system 901 includes a transmission device 902 and a reception device 903.
  • the transmission device 902 includes a signal generation unit 904, a band limiting circuit 907, and the transmission antenna 5.
  • the receiving device 903 includes a signal processing unit 908 and a receiving antenna 6.
  • the signal processing unit 908 has the same function as the signal processing unit 8 except that the signal processing unit 908 does not include control processing of the capacitance values of the diodes 9 to 11.
  • the transmission device 902 includes a band limiting circuit 907 between the signal generation unit 904 and the transmission antenna 5.
  • the signal generation unit 904 has the same function as the signal generation unit 4, and outputs a data modulation signal to the band limiting circuit 907.
  • the band limiting circuit 907 is configured by a linear circuit including diodes 9 to 11 and inductors 12 and 13, for example.
  • the band limiting circuit 907 is a circuit that passes the data modulation signal generated by the signal generation unit 4 and transmits the data modulation signal to the transmission antenna 5. It is comprised by the band pass filter which restrict
  • the band limiting circuit 907 is configured by connecting in series between the cathode and anode of the diode 9 and between the anode and cathode of the inductor 12 and the diode 11 between the output end of the signal generation unit 904 and one end of the transmission antenna 5. Yes.
  • the inductor 12 and the anode of the diode 11 are directly connected at the node N1.
  • the capacitance values of the diodes 9 to 11 can be adjusted by the signal processing unit 8, respectively.
  • the first resonance circuit 914 is configured by the transmission antenna 5 and the diode 11
  • the second resonance circuit 915 is configured by the inductor 12 and the diode 9.
  • the signal generator 904 and the other end of the transmission antenna 5 are directly connected at the node N2.
  • An induction characteristic unit 916 is configured between the node N1 and the node N2.
  • An inductive characteristic unit 916 is configured by connecting the diode 10 and the inductor 13 in parallel. This inductive characteristic unit 916 exhibits inductive characteristics within the above-described frequency band (that is, the used frequency region).
  • the transmission device 902 includes a first resonance circuit 914 that resonates due to the capacitive characteristics of the transmission antenna 5 and the diode 11, and further includes an inductor 12 and a diode 9 connected in series, and the inductor 12 and the diode 9.
  • a second resonance circuit 915 is provided that resonates due to capacitive. Note that each element constituting the first resonance circuit 914 and the second resonance circuit 915 is normally set to a circuit constant having a resonance frequency in the same predetermined frequency band, and the capacitance of the diodes 9 and 11 is set. By adjusting, the resonance frequency can be changed.
  • the band limiting circuits 7 and 907 are provided on the transmission side or the reception side.
  • the signal generation unit 904 can change the capacitance values of the diodes 9 to 11, the frequency bandwidth can be easily changed, and the center frequency can also be changed. For this reason, the unnecessary radiation based on an unnecessary signal among the signals generated by the signal generator 4 can be reduced.
  • the band limiting circuit 907 is included in the transmitting apparatus 902.
  • a signal propagation path from the transmission antenna 5 to the signal generation unit 904 may be provided. That is, the band limiting circuits 7 and 907 may be provided on at least one of the transmission side and the reception side.
  • FIG. 14 is an additional explanatory diagram of the tenth embodiment. This embodiment shows the installation method of the receiver 3.
  • FIG. 14 shows an example of mounting the receiving device 3.
  • the receiving device 3 includes a receiving antenna 6, a band limiting circuit 7, and a signal processing unit 8.
  • the receiving antenna 6, the band limiting circuit 7 and the signal processing unit 8 are mounted on one flat printed wiring board 34.
  • the receiving antenna 6 of the present embodiment is configured by a pattern antenna in which a looped wiring pattern is formed on the wiring surface of the printed wiring board 34.
  • the first resonance circuit 14 is configured by the diode 11 and the reception antenna 6 and communication processing can be performed by the magnetic field resonance method, it is not necessary to configure a resonance antenna that resonates at the frequency of the transmission signal.
  • the receiving antenna 6 can be configured with a wiring pattern, and the receiving antenna 6 can be configured with a reduced size.
  • the band limiting circuit 7 includes diodes 9 to 11 and inductors 12 and 13 formed of discrete components or an integrated circuit, and the signal processing unit 8 includes an integrated circuit such as a microcomputer. Therefore, the receiving antenna 6, the band limiting circuit 7 and the signal processing unit 8 can be mounted compactly on a single printed wiring board 34.
  • the mounting example of the receiving device 3 described in the first embodiment is illustrated, but the same applies to the receiving devices 203, 303, 403, 503, 603, and 703 of the second to seventh embodiments.
  • the first resonance circuit 14 and the second resonance circuit 15 may be replaced with the first resonance circuit 814 and the second resonance circuits 815a and 815b, respectively.
  • the signal generation unit 4, the band limiting circuit 907, and the transmission antenna 5 of the transmission device 902 may be mounted on the printed wiring board 34. At this time, the transmission antenna 5 can be configured by forming a loop-shaped wiring pattern on the conductive surface of the printed wiring board 34.
  • the present invention is not limited to the above-described embodiment, and for example, the following modifications or expansions are possible.
  • the first resonant circuit 314 and the second resonant circuit 315 are each provided with fixed capacitance capacitors 311 and 309.
  • one of these fixed capacitance capacitors 311 and 309 is replaced with a variable capacitance capacitor ( For example, a variable capacitance diode) may be used instead.
  • the transmission antenna 5 is configured by using a loop-shaped coil
  • a configuration in which a core wire at the tip of a twisted pair cable in which a pair of power transmission lines are twisted together by a twisted portion may be configured. Any configuration may be used as long as a signal can be transmitted to the receiving device 3.
  • the receiving antenna 6 may have a linear configuration instead of a loop shape, and if the signal can be received from the transmission device 2, Any configuration may be used.
  • the variable capacitance diode 10 is shown as being connected in parallel to the inductor 13, it may be connected in series to the inductor 13.
  • the inductive characteristic units 16 and 916 include the single inductor 13 and the variable capacitance diode 10 connected in parallel to the inductor 13, a plurality of inductors 13 may be connected in series or / and in parallel.
  • the variable capacitance diode 10 may be connected in series to the one or more inductors 13.
  • the transmission device 2 and the reception device 3 are coupled to each other by the magnetic field resonance method between the transmission antenna 5 and the reception antenna 6, the method is limited to the magnetic field resonance method as long as the electromagnetic coupling method is used. is not.
  • the band limiting circuit 7 is provided between the reception antenna 6 and the signal processing unit 8.
  • the signal generation unit 4 and the transmission antenna are provided.
  • 5 may be provided with a band limiting circuit 7.
  • 101, 201, 301, 401, 501, 601 and 701 are wireless transmission systems
  • 2, 425 and 502 are transmission devices
  • 625 is a communication device (transmission device)
  • 702 is a power transmission device (transmission device)
  • 3, 203, 303, 426, and 503 are receiving devices
  • 626 is a communication device (receiving device)
  • 703 is a power receiving device (receiving device)
  • 4 904 is a signal generation unit (904 is a changing unit)
  • 704 is a power signal generation.
  • , 5 is a transmitting antenna
  • 6 is a receiving antenna
  • 7, 207 and 307 are band limiting circuits
  • 8 and 8a are signal processing units (8 is a changing unit)
  • 708 is a power signal processing unit (signal processing unit and changing unit).
  • 9 is a variable capacitance diode (second capacitance portion)
  • 309 is a fixed capacitance capacitor (second capacitance portion)
  • 10 is a variable capacitance diode
  • 11 is a variable capacitance diode (first capacitance portion)
  • 311 is a fixed capacitance.
  • Capacitor (first capacitor), 12 an inductor (inductor), 13 an inductor, 14, 814 a first resonance circuit, 15, 815a, 815b a second resonance circuit, 16, 216, 916 an induction characteristic unit, 27 denotes a signal communication unit (signal generation unit) of the transmission device, 28 denotes a signal communication unit (signal processing unit, change unit) of the reception device, 32 denotes a control unit (change unit), and 33 denotes a rectifier circuit.
  • each of the embodiments described above is conceptual, and the functions of one component are distributed to a plurality of components, or the functions of a plurality of components are integrated into one component. May be.
  • at least a part of the configuration of the above-described embodiment may be replaced with a known configuration having a similar function.
  • some or all of the configurations of the two or more embodiments described above may be added in combination with each other or replaced as necessary. Note that the reference numerals in parentheses described in the claims indicate an example of a correspondence relationship with the specific means described in the embodiment described above as one aspect of the present invention, and are technical terms of the present invention. It does not limit the range.

Abstract

In the present invention a band-limiting circuit (7; 207; 307; 907) is equipped with a first capacitance unit (11; 311) connected in series or in parallel to a transmission antenna (5) and/or a reception antenna (6), and is equipped with a first resonance circuit (14; 314; 814; 914) that resonates in a prescribed frequency band with the transmission antenna or the reception antenna. The band-limiting circuit is equipped with a second resonance circuit (15; 315; 815a; 815b; 915) that is formed by connecting in series or in parallel to a second capacitance unit (9; 309) and an inductance unit (12) connected in series to the first resonance circuit, and that resonates in a frequency band identical to or near the prescribed frequency band. An inductance characteristic unit (16; 216; 916) is connected between the first resonance circuit and the second resonance circuit, and is configured such that the inductance characteristic of the frequency band being used can be changed. A change unit (8; 28; 32; 708; 904) changes the inductance characteristic of the inductance characteristic unit of the band-limiting circuit.

Description

無線伝送システムWireless transmission system 関連出願の相互参照Cross-reference of related applications
 本出願は、2016年3月31日に出願された日本特許出願番号2016-071659号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2016-071659 filed on March 31, 2016, the contents of which are incorporated herein by reference.
 本開示は、無線伝送システムに関する。 This disclosure relates to a wireless transmission system.
 近年、ワイヤレス伝送技術の開発が活発化されており、様々な技術が提案されている(例えば、特許文献1参照)。特許文献1記載の技術は、給電装置から送電された電力を受電する受電素子を含み、受電した電力に応じた電力を負荷に供給するシステムを開示している。この特許文献1記載の技術は、給電装置の共振素子への電力伝搬経路、および受電装置の受電電力伝搬経路の少なくとも一方に、電力の高い共振の鋭さである尖鋭度Qを維持しながら、周波数特性を拡大して広帯域化させる周波数特性補正回路を備える技術である。 In recent years, development of wireless transmission technology has been activated, and various technologies have been proposed (for example, see Patent Document 1). The technology described in Patent Literature 1 discloses a system that includes a power receiving element that receives power transmitted from a power supply apparatus and supplies power corresponding to the received power to a load. The technique described in Patent Document 1 is designed to maintain a sharpness Q, which is the sharpness of resonance with high power, in at least one of the power propagation path to the resonance element of the power feeding device and the power reception power propagation path of the power receiving device. This is a technique that includes a frequency characteristic correction circuit that expands the characteristic to broaden the band.
特開2012-034494号公報JP 2012-034494 A
 特許文献1に記載のように、例えばワイヤレス伝送システムでは、伝送効率を上げるため、尖鋭度Qを大きくして共振器の特性を上げれば良いが、尖鋭度Qを大きくすれば、その分、伝送特性をフラットと見做せる周波数の帯域幅が狭くなる。そこで、発明者は、電力、データなどの信号を送信又は受信する周波数の帯域幅を柔軟に変更することで高い伝送効率を達成可能なシステムを考慮している。しかしながら、前記の特許文献1記載の技術を適用しても、帯域幅は固定的に設定されてしまい、例えば共振器の位置を機械的に移動させるための稼働装置を必要としてしまう。 As described in Patent Document 1, for example, in a wireless transmission system, in order to increase transmission efficiency, the sharpness Q may be increased to improve the characteristics of the resonator. However, if the sharpness Q is increased, transmission is increased accordingly. The bandwidth of the frequency at which the characteristics can be regarded as flat becomes narrow. Therefore, the inventor considers a system that can achieve high transmission efficiency by flexibly changing the bandwidth of the frequency at which signals such as power and data are transmitted or received. However, even if the technique described in Patent Document 1 is applied, the bandwidth is fixedly set, and, for example, an operating device for mechanically moving the position of the resonator is required.
 本開示の目的は、周波数の帯域幅を柔軟に変更できるようにした無線伝送システムを提供することにある。
 本開示の一態様は、送信装置と受信装置とを備えた無線伝送システムを提供する。送信装置は信号生成部と信号生成部により生成される信号を送信する送信アンテナとを備える。受信装置は、送信装置の送信アンテナから送信される信号を受信する受信アンテナと受信アンテナを通じて受信する信号を処理する信号処理部とを備える。また、受信装置の受信アンテナから信号処理部までの信号伝搬経路又は送信装置の送信アンテナから信号生成部までの信号伝搬経路のうち少なくとも何れか一方に帯域制限回路を備えている。この帯域制限回路は、送信アンテナ又は受信アンテナの何れか少なくとも一方に直列又は並列に接続される第1容量部を備える。第1容量部は送信アンテナ又は受信アンテナと共に所定周波数帯において共振する第1共振回路を構成する。また、帯域制限回路は、第1共振回路に直列接続され誘導部及び第2容量部を直列又は並列接続して所定周波数帯と同一又は近接する周波数帯において共振する第2共振回路、及び、第1共振回路と第2共振回路との間に接続され使用周波数帯域における誘導性特性が可変可能に構成される誘導特性部、を備える。すると、誘導特性部は第1共振回路と第2共振回路との間の結合性を変更可能になる。このとき、変更部は、帯域制限回路の誘導特性部の誘導性特性を変更するため、第1共振回路と第2共振回路との間の結合性を変更でき、信号送信時又は信号受信時における周波数帯域幅を柔軟に変更できる。
An object of the present disclosure is to provide a wireless transmission system in which a frequency bandwidth can be flexibly changed.
One aspect of the present disclosure provides a wireless transmission system including a transmission device and a reception device. The transmission device includes a signal generation unit and a transmission antenna that transmits a signal generated by the signal generation unit. The receiving device includes a receiving antenna that receives a signal transmitted from the transmitting antenna of the transmitting device, and a signal processing unit that processes a signal received through the receiving antenna. In addition, a band limiting circuit is provided in at least one of the signal propagation path from the reception antenna to the signal processing unit of the reception apparatus or the signal propagation path from the transmission antenna to the signal generation unit of the transmission apparatus. The band limiting circuit includes a first capacitor connected in series or in parallel to at least one of the transmission antenna and the reception antenna. The first capacitor unit constitutes a first resonance circuit that resonates in a predetermined frequency band together with the transmission antenna or the reception antenna. The band limiting circuit includes a second resonance circuit that is connected in series to the first resonance circuit, and in which the inductive unit and the second capacitor unit are connected in series or in parallel to resonate in a frequency band that is the same as or close to a predetermined frequency band; An inductive characteristic unit connected between the first resonant circuit and the second resonant circuit and configured such that the inductive characteristic in the operating frequency band is variable. Then, the inductive characteristic unit can change the connectivity between the first resonance circuit and the second resonance circuit. At this time, since the changing unit changes the inductive characteristic of the inductive characteristic unit of the band limiting circuit, it can change the connectivity between the first resonant circuit and the second resonant circuit, and at the time of signal transmission or signal reception The frequency bandwidth can be changed flexibly.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、第1実施形態における無線伝送システムを概略的に示す図であり、 図2は、インダクタンス値の変化に応じた伝送効率の周波数特性のシミュレーション結果を示す図であり、 図3は、第2実施形態における無線伝送システムを概略的に示す図であり、 図4は、第3実施形態における無線伝送システムを概略的に示す図であり、 図5は、第4実施形態における無線伝送システムを概略的に示す図であり、 図6は、第5実施形態における無線伝送システムを概略的に示す図であり、 図7は、第6実施形態における無線伝送システムを概略的に示す図であり、 図8は、チャンネル設定処理のシーケンス図であり、 図9は、第7実施形態における無線伝送システムを概略的に示す図であり、 図10は、第8実施形態における第1共振回路の電気的構成図であり、 図11は、第8実施形態における第2共振回路の電気的構成図のその1であり、 図12は、第8実施形態における第2共振回路の電気的構成図のその2であり、 図13は、第9実施形態における無線伝送システムを概略的に示す図であり、 図14は、第10実施形態における受信装置の基板搭載例の説明図である。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing
FIG. 1 is a diagram schematically illustrating a wireless transmission system according to the first embodiment. FIG. 2 is a diagram showing a simulation result of frequency characteristics of transmission efficiency according to a change in inductance value. FIG. 3 is a diagram schematically illustrating a wireless transmission system according to the second embodiment. FIG. 4 is a diagram schematically illustrating a wireless transmission system according to the third embodiment. FIG. 5 is a diagram schematically illustrating a wireless transmission system according to the fourth embodiment. FIG. 6 is a diagram schematically illustrating a wireless transmission system according to the fifth embodiment. FIG. 7 is a diagram schematically illustrating a wireless transmission system according to the sixth embodiment. FIG. 8 is a sequence diagram of channel setting processing. FIG. 9 is a diagram schematically illustrating a wireless transmission system according to the seventh embodiment. FIG. 10 is an electrical configuration diagram of the first resonance circuit in the eighth embodiment. FIG. 11 is a first diagram of an electrical configuration of the second resonance circuit in the eighth embodiment. FIG. 12 is part 2 of the electrical configuration diagram of the second resonance circuit in the eighth embodiment. FIG. 13 is a diagram schematically illustrating a wireless transmission system according to the ninth embodiment. FIG. 14 is an explanatory diagram of a substrate mounting example of the receiving device according to the tenth embodiment.
 以下、無線伝送システムの幾つかの実施形態について図面を参照しながら説明する。以下に説明する各実施形態において、同一又は類似の動作を行う構成については、同一又は類似の符号を付している。なお、下記の各実施形態で説明した対応する構成は十の位と一の位に同一符号を付している。これらの対応する構成は互いに同様の機能を備えるため、その個別又は各要素間で連携して実行される機能説明を必要に応じて省略している。 Hereinafter, some embodiments of the wireless transmission system will be described with reference to the drawings. In each embodiment described below, the same or similar reference numerals are given to configurations that perform the same or similar operations. In addition, the corresponding structure demonstrated in each following embodiment attaches | subjects the same code | symbol to the tenth place and the first place. Since these corresponding configurations have the same functions, descriptions of functions executed individually or in cooperation between the elements are omitted as necessary.
 (第1実施形態)
 図1から図2は第1実施形態の説明図を示す。図1に全体構成例を示すように、無線伝送システム101は、送信装置2及び受信装置3を備え、送信装置2が受信装置3に無線により信号を送信する。送信装置2には、図示しないが電力供給源となる例えばバッテリ電源が接続される。送信装置2は、このバッテリ電源の電力に応じて無線により受信装置3に信号を伝送する。受信装置3は、送信装置2により磁界共鳴方式により結合され送信装置2から送電された電力を用いて動作する。
(First embodiment)
1 to 2 are explanatory diagrams of the first embodiment. As illustrated in FIG. 1, the wireless transmission system 101 includes a transmission device 2 and a reception device 3, and the transmission device 2 transmits a signal to the reception device 3 wirelessly. Although not shown, for example, a battery power source serving as a power supply source is connected to the transmission device 2. The transmission device 2 transmits a signal to the reception device 3 wirelessly according to the power of the battery power source. The receiving device 3 operates by using the electric power coupled from the transmitting device 2 by the magnetic field resonance method and transmitted from the transmitting device 2.
 無線伝送システム101は、特に車両用の各種センサ、アクチュエータへの指令信号や、この応答信号などの無線信号の伝送に適用することが望ましい。なお、この図1には、本実施形態の特徴となる信号伝送系に係る特徴部分を主に示している。 It is desirable that the wireless transmission system 101 be applied particularly to transmission of wireless signals such as command signals to various sensors and actuators for vehicles, and response signals. Note that FIG. 1 mainly shows a characteristic part related to the signal transmission system which is a characteristic of the present embodiment.
 送信装置2は、信号生成部4及び送信アンテナ5を備える。送信アンテナ5は、例えばループ状の導電線により構成されている。信号生成部4は、例えばマイクロコンピュータなどにより構成され、与えられる電源により搬送波信号を生成し、例えば当該搬送波信号を所定の変調方式で変調し、データ変調信号を送信アンテナ5を通じて受信装置3に送信する。より具体例を挙げるとすれば、例えば送信装置2は、数百MHz帯の多数の搬送波信号をサブキャリアとして生成し、当該サブキャリアにOFDM(orthogonal frequency-division multiplexing)変調方式によりデータ変調し、このデータ変調信号を送信信号として送信アンテナ5を通じて受信装置3に送信する。 The transmission device 2 includes a signal generation unit 4 and a transmission antenna 5. The transmission antenna 5 is configured by, for example, a looped conductive wire. The signal generation unit 4 is configured by, for example, a microcomputer, generates a carrier wave signal by a given power supply, for example, modulates the carrier wave signal by a predetermined modulation method, and transmits the data modulation signal to the reception device 3 through the transmission antenna 5. To do. To give a more specific example, for example, the transmitter 2 generates a large number of carrier signals in the several hundred MHz band as subcarriers, modulates the subcarriers with data using an OFDM (orthogonal frequency-division multiplexing) modulation scheme, The data modulation signal is transmitted as a transmission signal to the reception device 3 through the transmission antenna 5.
 受信装置3は、受信アンテナ6、帯域制限回路7、及び、変更部として信号処理部8を備える。受信アンテナ6は例えばループ状の導電線により構成される。受信アンテナ6は送信アンテナ5の近傍界に設置されており、受信装置3は、送信装置2の送信アンテナ5から送信される信号を受信アンテナ6を通じて受信する。受信装置3は、この受信アンテナ6の受信信号を帯域制限回路7を通じて信号処理部8に入力する。信号処理部8は、例えばマイクロコンピュータなどにより構成され、受信アンテナ6及び帯域制限回路7を通じて受信されたデータ変調信号を復調する。例えば、OFDM変調信号は前述のサブキャリアが互いに直交するように調整されている。このため、信号処理部8は高速フーリエ変換アルゴリズムを用いてサブキャリアを互いに分離し、サブキャリアに変調されたデータを復調する。これにより、送信装置2は受信装置3にデータ送信できる。 The receiving device 3 includes a receiving antenna 6, a band limiting circuit 7, and a signal processing unit 8 as a changing unit. The receiving antenna 6 is constituted by, for example, a looped conductive line. The reception antenna 6 is installed in the near field of the transmission antenna 5, and the reception device 3 receives a signal transmitted from the transmission antenna 5 of the transmission device 2 through the reception antenna 6. The receiving device 3 inputs the received signal from the receiving antenna 6 to the signal processing unit 8 through the band limiting circuit 7. The signal processing unit 8 is configured by, for example, a microcomputer and demodulates a data modulation signal received through the receiving antenna 6 and the band limiting circuit 7. For example, the OFDM modulated signal is adjusted so that the aforementioned subcarriers are orthogonal to each other. Therefore, the signal processing unit 8 separates the subcarriers from each other using a fast Fourier transform algorithm, and demodulates the data modulated on the subcarriers. Thereby, the transmission device 2 can transmit data to the reception device 3.
 さて、本実施形態においては、受信アンテナ6と信号処理部8との間に帯域制限回路7を設けている。この帯域制限回路7は、例えば可変容量ダイオード(以下、ダイオードと略す)9~11と、誘導部としてインダクタ12と、インダクタ13とを備えた線形回路により構成される。帯域制限回路7は、受信アンテナ6にて受信された信号を通過して信号処理部8に伝送する回路であり、送信装置2の送信信号を通過すると共にこの送信信号の通過周波数帯以外の周波数帯域を制限するバンドパスフィルタにより構成されている。 In the present embodiment, a band limiting circuit 7 is provided between the receiving antenna 6 and the signal processing unit 8. The band limiting circuit 7 is configured by a linear circuit including, for example, variable capacitance diodes (hereinafter abbreviated as diodes) 9 to 11, an inductor 12 as an induction unit, and an inductor 13. The band limiting circuit 7 is a circuit that passes a signal received by the receiving antenna 6 and transmits the signal to the signal processing unit 8. The band limiting circuit 7 passes the transmission signal of the transmission device 2 and has a frequency other than the passing frequency band of the transmission signal. It is composed of a bandpass filter that limits the band.
 帯域制限回路7は、受信アンテナ6の一端と信号処理部8の入力端との間に、ダイオード11のカソード-アノード間、インダクタ12、ダイオード9のアノード-カソード間を直列接続して構成されている。ダイオード11のアノードとインダクタ12とはノードN1において直接接続されている。 The band limiting circuit 7 is configured by connecting in series between the cathode and anode of the diode 11 and between the anode and cathode of the inductor 12 and the diode 9 between one end of the receiving antenna 6 and the input end of the signal processing unit 8. Yes. The anode of the diode 11 and the inductor 12 are directly connected at the node N1.
 可変容量ダイオード9~11は、それぞれ信号処理部8の制御に応じてその容量値を調整可能になっている。ここで、第1共振回路14が受信アンテナ6及びダイオード11により構成され、第2共振回路15がインダクタ12及びダイオード9により構成される。 The capacitance values of the variable capacitance diodes 9 to 11 can be adjusted according to the control of the signal processing unit 8, respectively. Here, the first resonance circuit 14 is configured by the receiving antenna 6 and the diode 11, and the second resonance circuit 15 is configured by the inductor 12 and the diode 9.
 受信アンテナ6の他端と信号処理部8との間がノードN2において直接接続されている。ノードN1とノードN2との間には誘導特性部16が構成されている。誘導特性部16は、ダイオード10とインダクタ13とを並列接続して構成されている。この誘導特性部16は、送信信号の周波数を含む帯域(すなわち使用周波数帯域)では誘導性特性を示す。 The other end of the receiving antenna 6 and the signal processing unit 8 are directly connected at the node N2. An induction characteristic unit 16 is configured between the node N1 and the node N2. The inductive characteristic unit 16 is configured by connecting a diode 10 and an inductor 13 in parallel. This inductive characteristic unit 16 exhibits an inductive characteristic in a band including the frequency of the transmission signal (that is, a used frequency band).
 見方を変えると、受信装置3は、受信アンテナ6とダイオード11の容量性により共振する第1共振回路14を備え、さらに、インダクタ12及びダイオード9を直列接続し当該インダクタ12及びダイオード9の容量性により共振する第2共振回路15を備える。第1及び第2共振回路14及び15を構成する各素子は、標準的には所定周波数帯と同一又はこの所定周波数帯に所定範囲で近接する周波数帯に共振周波数を備える回路定数に設定されており、ダイオード9、11の容量性が調整されることにより共振周波数を変更可能になっている。ここで示した所定周波数帯は帯域制限回路7の目標帯域幅(例えば百MHz程度)と同一又はこれに近似した帯域となっている。逆に目標帯域幅に合わせて第1及び第2共振回路14及び15の各共振周波数の互いの離間周波数幅を設定しても良い。 In other words, the receiving device 3 includes a first resonance circuit 14 that resonates due to the capacitive characteristics of the receiving antenna 6 and the diode 11, and further includes an inductor 12 and a diode 9 connected in series, and the capacitive characteristics of the inductor 12 and the diode 9. The second resonance circuit 15 that resonates is provided. Each element constituting the first and second resonance circuits 14 and 15 is set to a circuit constant having a resonance frequency in a frequency band that is typically the same as the predetermined frequency band or close to the predetermined frequency band within a predetermined range. Thus, the resonance frequency can be changed by adjusting the capacitance of the diodes 9 and 11. The predetermined frequency band shown here is the same as or close to the target bandwidth (for example, about 100 MHz) of the band limiting circuit 7. Conversely, the separation frequency width of the resonance frequencies of the first and second resonance circuits 14 and 15 may be set in accordance with the target bandwidth.
 前述構成の特徴について説明する。送信装置2はデータ変調信号を送信信号として受信装置3に送信する。このデータ伝送レートを高くすればその分広い帯域幅を要する。送信装置2と信号処理部8との間の信号伝搬経路には第1共振回路14及び第2共振回路15が接続されている。第1共振回路14から見た送信装置2の尖鋭度QをQ1とし、第2共振回路15から見た信号処理部8の尖鋭度QをQ2とし、これらの第1共振回路14と第2共振回路15との結合度をkと定義すると、
 k×SQRT(Q1×Q2)>1 …(1)
 の条件を満たすようにすることによって、帯域幅を広帯域化可能にできることが考慮できる。そこで、この(1)式を満たすように、帯域制限回路7の各構成要素の素子値、送信装置2と受信装置3との間の適正距離範囲、さらに、送信アンテナ5及び受信アンテナ6のインダクタンス値等を設定することで、各回路の相互作用に基づく広帯域化を可能にできる。
The characteristics of the above configuration will be described. The transmission device 2 transmits the data modulation signal to the reception device 3 as a transmission signal. Increasing the data transmission rate requires a wider bandwidth. A first resonance circuit 14 and a second resonance circuit 15 are connected to a signal propagation path between the transmission device 2 and the signal processing unit 8. The sharpness Q of the transmission device 2 viewed from the first resonance circuit 14 is Q1, and the sharpness Q of the signal processing unit 8 viewed from the second resonance circuit 15 is Q2. The first resonance circuit 14 and the second resonance If the degree of coupling with the circuit 15 is defined as k,
k × SQRT (Q1 × Q2)> 1 (1)
By satisfying the above condition, it can be considered that the bandwidth can be widened. Therefore, so as to satisfy this equation (1), the element values of the components of the band limiting circuit 7, the appropriate distance range between the transmission device 2 and the reception device 3, and the inductances of the transmission antenna 5 and the reception antenna 6 By setting the value or the like, it is possible to increase the bandwidth based on the interaction of each circuit.
 送信装置2及び受信装置3が、所定のサブキャリア周波数帯の中の多チャンネルの周波数帯域(例えば数百MHz)の中から所定の1又は複数のチャンネルを選択して送受信処理を行う場合には、帯域制限回路7を用いて動的に周波数帯域幅を調整可能にすることが望ましい。 When the transmission apparatus 2 and the reception apparatus 3 perform transmission / reception processing by selecting predetermined one or a plurality of channels from a multi-channel frequency band (for example, several hundred MHz) in a predetermined subcarrier frequency band It is desirable that the frequency bandwidth can be dynamically adjusted using the band limiting circuit 7.
 これは、周波数帯域のQ値を高めることで信号伝送効率を良好にできる反面、尖鋭度Qを高めると周波数帯域幅が狭帯域になりやすく、逆に周波数帯域の尖鋭度Qを低くすることで周波数帯域幅を広帯域にしやすいものの、信号伝送効率が劣化してしまうためである。このため、周波数帯域内の信号伝送効率を高めつつ周波数帯域幅を所望の例えば1チャンネル分だけ確保するには動的に周波数帯域を変更することが望ましい。 This is because the signal transmission efficiency can be improved by increasing the Q value of the frequency band, but if the sharpness Q is increased, the frequency bandwidth tends to become narrower, and conversely, the sharpness Q of the frequency band is lowered. This is because the signal transmission efficiency deteriorates although it is easy to make the frequency bandwidth wide. For this reason, it is desirable to dynamically change the frequency band in order to secure a desired frequency bandwidth, for example, for one channel while increasing the signal transmission efficiency within the frequency band.
 そこで、本実施形態の帯域制限回路7には、ノードN1とN2との間にダイオード10とインダクタ13を並列接続した誘導特性部16を設けている。(1)式の結合度kは、これらのダイオード10の容量値とインダクタ13のインダクタンス値Lmに応じて決定されるものであり、インダクタ13のインダクタンス値Lmを固定値とすれば、ダイオード10の容量値を変更制御することで結合度kを調整できる。 Therefore, the band limiting circuit 7 of this embodiment is provided with an inductive characteristic unit 16 in which a diode 10 and an inductor 13 are connected in parallel between nodes N1 and N2. The degree of coupling k in equation (1) is determined according to the capacitance value of these diodes 10 and the inductance value Lm of the inductor 13, and if the inductance value Lm of the inductor 13 is a fixed value, The coupling degree k can be adjusted by changing and controlling the capacitance value.
 図2はダイオード10の容量値を固定値としたときのインダクタ13のインダクタンス値Lmの変化に応じた伝送効率の周波数特性のシミュレーション結果を示している。発明者は、図1の回路構成において、インダクタ13のインダクタンス値Lmを変更することで、誘導特性部16の誘導性特性を変更し、この伝送効率の特性変化をシミュレーションにより観察した。 FIG. 2 shows the simulation result of the frequency characteristic of the transmission efficiency according to the change in the inductance value Lm of the inductor 13 when the capacitance value of the diode 10 is a fixed value. The inventor changed the inductive characteristic of the inductive characteristic unit 16 by changing the inductance value Lm of the inductor 13 in the circuit configuration of FIG. 1, and observed the change in the characteristic of the transmission efficiency by simulation.
 この図2に示す特性は、受信アンテナ6及びインダクタ12のインダクタンス値を100nH、ダイオード9、11の容量値を5pFとして、第1共振回路14と第2共振回路15との共振周波数を互いに同一周波数とし、送信アンテナ5のインダクタンス値を20nH、送信アンテナ5と受信アンテナ6との結合係数k0を0.9、信号生成部4の出力インピーダンスZ0を50Ω、信号処理部8の入力インピーダンスZiを100Ω、とした条件下において、インダクタ13のインダクタンス値Lmを変化させてシミュレーション結果を得ている。 The characteristic shown in FIG. 2 is that the receiving antenna 6 and the inductor 12 have an inductance value of 100 nH, the capacitance values of the diodes 9 and 11 are 5 pF, and the resonance frequencies of the first resonance circuit 14 and the second resonance circuit 15 are the same frequency. And the inductance value of the transmission antenna 5 is 20 nH, the coupling coefficient k0 between the transmission antenna 5 and the reception antenna 6 is 0.9, the output impedance Z0 of the signal generation unit 4 is 50Ω, the input impedance Zi of the signal processing unit 8 is 100Ω, Under the conditions, the simulation result is obtained by changing the inductance value Lm of the inductor 13.
 この図2に示すように、インダクタ13のインダクタンス値Lmを例えば60nH程度に大きくすることで周波数帯域をより広くでき、インダクタ13のインダクタンス値Lmを例えば30nH程度に小さくすることで周波数帯域を狭くできることが判明した。このため、信号処理部8が帯域制限回路7の中の特に誘導特性部16の誘導性特性を調整することによって伝送効率の周波数特性を動的に調整できる。 As shown in FIG. 2, the frequency band can be made wider by increasing the inductance value Lm of the inductor 13 to, for example, about 60 nH, and the frequency band can be narrowed by reducing the inductance value Lm of the inductor 13 to, for example, about 30 nH. There was found. For this reason, the signal processing unit 8 can adjust the frequency characteristic of the transmission efficiency dynamically by adjusting the inductive characteristic of the inductive characteristic unit 16 in the band limiting circuit 7.
 本実施形態では、誘導特性部16のうちのダイオード10の容量値を変化させることで、誘導特性部16の誘導性特性を調整することができ、これにより、図2に示す伝送効率の周波数特性と同様に帯域制限を図ることができる。 In the present embodiment, the inductive characteristic of the inductive characteristic unit 16 can be adjusted by changing the capacitance value of the diode 10 in the inductive characteristic unit 16, and thereby the frequency characteristic of the transmission efficiency shown in FIG. The bandwidth can be limited similarly to the above.
 以上説明したように、本実施形態によれば、第1共振回路14と第2共振回路15との間に使用周波数帯域における誘導性特性を可変可能に構成した誘導特性部16を設ける構成とした。これにより、第1共振回路14と第2共振回路15との結合度kを変更可能に構成でき、図2に示すように、伝送効率の周波数特性を動的に変化させることができる。 As described above, according to the present embodiment, the inductive characteristic unit 16 configured so that the inductive characteristic in the use frequency band can be varied is provided between the first resonant circuit 14 and the second resonant circuit 15. . As a result, the degree of coupling k between the first resonance circuit 14 and the second resonance circuit 15 can be changed, and the frequency characteristic of the transmission efficiency can be dynamically changed as shown in FIG.
 また、誘導特性部16は可変容量ダイオード10を用いて構成することが望ましく、特に誘導特性部16はインダクタ13と可変容量ダイオード10とを並列に接続して構成すると良い。このとき、信号処理部8が可変容量ダイオード10の容量値を調整することにより、使用周波数帯における誘導特性部16のインダクタンス値を容易に変更できる。この結果、第1共振回路14と第2共振回路15の結合性kを容易に変更できる。 Further, the inductive characteristic unit 16 is preferably configured using the variable capacitance diode 10, and in particular, the inductive characteristic unit 16 may be configured by connecting the inductor 13 and the variable capacitance diode 10 in parallel. At this time, by adjusting the capacitance value of the variable capacitance diode 10 by the signal processing unit 8, the inductance value of the induction characteristic unit 16 in the used frequency band can be easily changed. As a result, the connectivity k between the first resonance circuit 14 and the second resonance circuit 15 can be easily changed.
 信号処理部8は、この結合性kを高く尖鋭度Qを低くするように設定すると、広帯域とすることができると共に当該帯域内で極力フラットな特性とすることができ、逆に、信号処理部8は結合性kを低く尖鋭度Qを高く設定した場合には信号伝送効率を周波数選択的に調整できる。特に、帯域制限回路7は広帯域に設定された場合においても信号伝送効率を極力大きくしながら信号を伝送できるため、後段に信号を増幅する増幅回路を設けなくても良くなる。必要な利得に応じて帯域制限回路7の後段に増幅回路を設けても良い。 When the signal processing unit 8 is set so that the connectivity k is high and the sharpness Q is low, the signal processing unit 8 can have a wide band and can have a flat characteristic as much as possible within the band. 8 can adjust the signal transmission efficiency in a frequency selective manner when the connectivity k is set low and the sharpness Q is set high. In particular, even when the band limiting circuit 7 is set to a wide band, it is possible to transmit a signal while increasing the signal transmission efficiency as much as possible. Therefore, it is not necessary to provide an amplifier circuit for amplifying the signal in the subsequent stage. An amplifier circuit may be provided at the subsequent stage of the band limiting circuit 7 in accordance with the required gain.
 また、第1共振回路14の第1容量部として可変容量ダイオード11を用いて構成し、第2共振回路15の第2容量部として可変容量ダイオード9を用いて構成している。このため、信号処理部8がこれらの可変容量ダイオード9又は11の容量値を変更することで、第1共振回路14、第2共振回路15の共振周波数を変更でき、伝送効率の周波数特性の帯域幅を柔軟に変更できる。 Further, the variable capacitance diode 11 is used as the first capacitance section of the first resonance circuit 14, and the variable capacitance diode 9 is used as the second capacitance section of the second resonance circuit 15. For this reason, the signal processing unit 8 can change the resonance value of the first resonance circuit 14 and the second resonance circuit 15 by changing the capacitance value of the variable capacitance diode 9 or 11, and the frequency characteristic band of the transmission efficiency. The width can be changed flexibly.
 (第2実施形態)
 図3は第2実施形態の追加説明図を示す。図3に示す無線伝送システム201は受信装置203を備え、受信装置203は帯域制限回路207を備える。帯域制限回路207は誘導特性部216を備える。誘導特性部216は、インダクタ13と、このインダクタ13に並列接続されたインダクタ調整回路220と、を備える。
(Second Embodiment)
FIG. 3 shows an additional explanatory diagram of the second embodiment. A wireless transmission system 201 illustrated in FIG. 3 includes a reception device 203, and the reception device 203 includes a band limiting circuit 207. The band limiting circuit 207 includes an induction characteristic unit 216. The induction characteristic unit 216 includes an inductor 13 and an inductor adjustment circuit 220 connected in parallel to the inductor 13.
 インダクタ調整回路220は、1又は複数のインダクタ21、23、25とこれらに直列接続されたスイッチ22、24、26とを備える。インダクタ21、23、25は、それぞれ同一又は異なるインダクタンス値に設定されており、スイッチ22、24、26は、信号生成部8からオン/オフを制御可能になっており、これによりインダクタ21、23、25をノードN1及びN2間に接続/開放可能になっている。このような場合、信号生成部8が、誘導特性部216を用いてノードN1及びN2間の合成インダクタンスを調整できるようになり、前述実施形態と同様の特性を得ることができる。この結果、第1実施形態と同様の作用効果が得られる。 The inductor adjustment circuit 220 includes one or a plurality of inductors 21, 23, 25 and switches 22, 24, 26 connected in series thereto. The inductors 21, 23, and 25 are set to the same or different inductance values, and the switches 22, 24, and 26 can be controlled to be turned on / off from the signal generator 8. 25 can be connected / released between the nodes N1 and N2. In such a case, the signal generating unit 8 can adjust the combined inductance between the nodes N1 and N2 using the inductive characteristic unit 216, and the same characteristics as in the above-described embodiment can be obtained. As a result, the same effect as the first embodiment can be obtained.
 (第3実施形態)
 図4は第3実施形態の追加説明図を示す。図4に示す無線伝送システム301は受信装置303を備え、受信装置303は第1共振回路314と第2共振回路315とを備える。第1共振回路314は受信アンテナ6とキャパシタ308とを備える。第2共振回路315はインダクタ12とキャパシタ309とを備える。キャパシタ309、311は、第1実施形態のダイオード9、11に代えてそれぞれ設けられ固定容量キャパシタとして構成される。本実施形態のキャパシタ309、311は信号処理部8により容量値を変更不能であるものの、信号処理部8はダイオード10により誘導特性部16のインダクタンス値を変更可能に構成されているため、伝送効率の周波数特性の帯域幅を柔軟に変更できる。
(Third embodiment)
FIG. 4 shows an additional explanatory diagram of the third embodiment. The wireless transmission system 301 illustrated in FIG. 4 includes a reception device 303, and the reception device 303 includes a first resonance circuit 314 and a second resonance circuit 315. The first resonance circuit 314 includes the receiving antenna 6 and a capacitor 308. The second resonance circuit 315 includes an inductor 12 and a capacitor 309. Capacitors 309 and 311 are provided in place of the diodes 9 and 11 of the first embodiment, and are configured as fixed capacitors. Although the capacitance values of the capacitors 309 and 311 of this embodiment cannot be changed by the signal processing unit 8, the signal processing unit 8 is configured to be able to change the inductance value of the inductive characteristic unit 16 by the diode 10. The bandwidth of the frequency characteristic can be changed flexibly.
 (第4実施形態)
 図5は第4実施形態の追加説明図を示す。図5に示すように、無線伝送システム401は、送信装置2に代わる通信装置425と、受信装置3に代わる通信装置426とを備える。通信装置425は、信号通信部27、及び、送信アンテナ5を備えている。信号通信部27は、信号生成部4、信号処理部8aとしての両機能を備える。通信装置426は、受信アンテナ6、帯域制限回路7、及び、変更部として信号通信部28を備える。信号通信部28もまた、信号生成部4、信号処理部8としての両機能を備える。
(Fourth embodiment)
FIG. 5 shows an additional explanatory diagram of the fourth embodiment. As illustrated in FIG. 5, the wireless transmission system 401 includes a communication device 425 that replaces the transmission device 2 and a communication device 426 that replaces the reception device 3. The communication device 425 includes a signal communication unit 27 and a transmission antenna 5. The signal communication unit 27 has both functions as the signal generation unit 4 and the signal processing unit 8a. The communication device 426 includes a receiving antenna 6, a band limiting circuit 7, and a signal communication unit 28 as a changing unit. The signal communication unit 28 also has both functions as the signal generation unit 4 and the signal processing unit 8.
 通信装置425は、信号生成部4により所定の変調方式でデータ変調信号を生成し、このデータ変調信号を通信装置426に送信する機能と、信号処理部8aにより通信装置426から受信したデータ変調信号を復調してデータを取得する機能とを備える。信号処理部8aは、ダイオード9~11の容量特性を変更する機能を設けていない。このため通信装置425内の信号処理部には符号「8a」を付している。 The communication device 425 generates a data modulation signal by a predetermined modulation method by the signal generation unit 4 and transmits the data modulation signal to the communication device 426, and the data modulation signal received from the communication device 426 by the signal processing unit 8a. And a function of acquiring data by demodulating. The signal processing unit 8a does not have a function of changing the capacitance characteristics of the diodes 9 to 11. For this reason, the signal processing unit in the communication device 425 is denoted by reference numeral “8a”.
 また、通信装置426もまた、信号生成部4により所定の変調方式でデータ変調信号を生成し、このデータ変調信号を通信装置425に送信する機能と、信号処理部8により通信装置425の信号生成部4から受信したデータ変調信号を復調してデータを取得する機能とを備える。通信装置426の信号処理部8は、ダイオード9~11の容量性を変更する機能を備えている。 The communication device 426 also generates a data modulation signal with a predetermined modulation method by the signal generation unit 4 and transmits the data modulation signal to the communication device 425. The signal processing unit 8 generates a signal of the communication device 425. And a function of demodulating the data modulation signal received from the unit 4 to acquire data. The signal processing unit 8 of the communication device 426 has a function of changing the capacities of the diodes 9 to 11.
 このため、帯域制限回路7は、通信装置425及び426間における送受信処理の何れの場合においても、図2に示されるような帯域幅特性に変更することができ、送受信処理の何れの場合にも適用できる。このため本無線伝送システム401のように、互いにデータ変調信号を送受信する場合においても、伝送効率の周波数特性の帯域幅を柔軟に変更できる。その他、第1実施形態と同様の作用効果が得られる。 For this reason, the band limiting circuit 7 can change the bandwidth characteristic as shown in FIG. 2 in any case of the transmission / reception processing between the communication devices 425 and 426, and in any case of the transmission / reception processing. Applicable. Therefore, even when data modulated signals are transmitted and received with each other as in the present wireless transmission system 401, the bandwidth of the frequency characteristic of transmission efficiency can be flexibly changed. In addition, the same effects as those of the first embodiment can be obtained.
 (第5実施形態)
 図6は第5実施形態の追加説明図を示す。無線伝送システム501は、送信装置502と受信装置503とを備える。送信装置502は、信号生成部4と送信アンテナ5との間に整合回路29を備える。整合回路29は、信号生成部4の出力インピーダンスと送信アンテナ5の入力インピーダンスとの間のインピーダンス不整合を整合する回路である。受信装置402は、帯域制限回路7と信号処理部8との間に整合回路30を備える。整合回路30は、帯域制限回路7の出力インピーダンスと信号処理部8の入力インピーダンスとの間のインピーダンス不整合を整合する回路である。この場合、信号伝送効率をさらに向上できる。
(Fifth embodiment)
FIG. 6 is an additional explanatory diagram of the fifth embodiment. The wireless transmission system 501 includes a transmission device 502 and a reception device 503. The transmission device 502 includes a matching circuit 29 between the signal generation unit 4 and the transmission antenna 5. The matching circuit 29 is a circuit that matches the impedance mismatch between the output impedance of the signal generation unit 4 and the input impedance of the transmission antenna 5. The receiving device 402 includes a matching circuit 30 between the band limiting circuit 7 and the signal processing unit 8. The matching circuit 30 is a circuit that matches impedance mismatch between the output impedance of the band limiting circuit 7 and the input impedance of the signal processing unit 8. In this case, the signal transmission efficiency can be further improved.
 整合回路29、30は、送信装置502、受信装置503の何れか一方に設けても良い。ここで、整合回路29、30は、受信装置503の受信アンテナ6から信号処理部8までの信号伝搬経路、又は、送信装置502の送信アンテナ5から信号生成部4までの信号伝搬経路のうち少なくとも何れか一方に設ければ良い。 The matching circuits 29 and 30 may be provided in any one of the transmission device 502 and the reception device 503. Here, the matching circuits 29 and 30 are at least one of a signal propagation path from the reception antenna 6 to the signal processing unit 8 of the reception device 503 or a signal propagation route from the transmission antenna 5 to the signal generation unit 4 of the transmission device 502. What is necessary is just to provide in either one.
 (第6実施形態)
 図7及び図8は第6実施形態の追加説明図を示す。第1~第5実施形態では、帯域制限回路7、207、307の帯域幅等を変更する構成例を説明した。本実施形態では、帯域幅を変更可能な構成を用いて、送受信チャンネルを実用的に設定するための形態を説明する。
(Sixth embodiment)
7 and 8 show additional explanatory views of the sixth embodiment. In the first to fifth embodiments, the configuration examples for changing the bandwidth and the like of the band limiting circuits 7, 207, and 307 have been described. In the present embodiment, a mode for practically setting a transmission / reception channel using a configuration capable of changing the bandwidth will be described.
 図7はこのシステム構成図を示している。無線伝送システム601は、送信装置としても受信装置としても機能する通信装置625及び626を備える。通信装置625は信号通信部27を備える。他方、通信装置626は信号通信部28とチャンネル判定回路31を備えた制御部32を変更部として備える。 FIG. 7 shows the system configuration diagram. The wireless transmission system 601 includes communication devices 625 and 626 that function as both a transmission device and a reception device. The communication device 625 includes a signal communication unit 27. On the other hand, the communication device 626 includes a control unit 32 including a signal communication unit 28 and a channel determination circuit 31 as a changing unit.
 通信装置625、626は、それぞれ信号通信部27、28を備えているため、当該通信装置625及び626は送信アンテナ5及び受信アンテナ6を通じて互いにデータ変調信号を送受信できる。チャンネル判定回路31は、通信装置625から送信される信号が何れのチャンネルの信号であるか判定する回路であり、全チャンネル(例えばCH1~CH5)の周波数帯のうち何れのチャンネルの周波数帯の信号を受信したかを判定する。 Since the communication devices 625 and 626 include the signal communication units 27 and 28, respectively, the communication devices 625 and 626 can transmit and receive data modulation signals to and from each other through the transmission antenna 5 and the reception antenna 6. The channel determination circuit 31 is a circuit that determines which channel the signal transmitted from the communication device 625 is, and the signal in the frequency band of any channel among the frequency bands of all channels (for example, CH1 to CH5). Is received.
 制御部32は、信号通信部28の信号処理部8により各部14~16のダイオード9~11の容量性を調整することで、全チャンネル周波数帯のうちの1~全チャンネルの周波数帯に選択的に帯域幅を調整する。これにより、チャンネル判定回路31により判定されたチャンネルを含む1~全チャンネルの信号を受信可能になる。 The control unit 32 adjusts the capacities of the diodes 9 to 11 of the respective units 14 to 16 by the signal processing unit 8 of the signal communication unit 28, thereby selectively selecting the frequency band of 1 to all channels among the all channel frequency bands. Adjust the bandwidth. As a result, signals of 1 to all channels including the channel determined by the channel determination circuit 31 can be received.
 前記構成において妨害波を生じていないチャンネルを特定するための動作について図8の通信シーケンス図を用いて説明する。本実施形態では、予め割り当てられた通信チャンネルが20MHz帯域幅のチャンネルを全5チャンネル備え、全5チャンネルの帯域幅が100MHzとなる形態を示す。また、通信装置625及び626は、妨害波の少ない周波数帯を適宜選択して通信するものとし、通信装置625と626との間で通信チャンネルの変更取決めがないものと仮定して説明する。 The operation for specifying a channel that does not generate an interference wave in the above configuration will be described with reference to the communication sequence diagram of FIG. In the present embodiment, there is shown a form in which a communication channel assigned in advance includes a total of 5 channels with a 20 MHz bandwidth, and a bandwidth of all 5 channels is 100 MHz. The communication apparatuses 625 and 626 will be described assuming that communication is performed by appropriately selecting a frequency band with less interference waves, and there is no communication channel change arrangement between the communication apparatuses 625 and 626.
 図8に示すように、通信装置625の信号生成部4は、初期設定状態ではステップS1においてデフォルトの送信チャンネルCH1を設定する。他方、通信装置626はステップT1において単チャンネル受信モードとし、ステップT2において帯域幅を単チャンネルCH1に切替える。 As shown in FIG. 8, the signal generation unit 4 of the communication device 625 sets the default transmission channel CH1 in step S1 in the initial setting state. On the other hand, the communication device 626 enters the single channel reception mode in step T1, and switches the bandwidth to the single channel CH1 in step T2.
 このとき、通信装置626の制御部32は、全チャンネルCH1~CH5の全周波数帯域100MHzのうちチャンネルCH1の中心周波数に帯域制限回路7のバンドパス中心周波数を合わせるようにダイオード9~11の容量値を変更すると共に、単チャンネルCH1の帯域幅20MHzに設定する。これによりチャンネルをCH1に設定できる。 At this time, the control unit 32 of the communication device 626 sets the capacitance values of the diodes 9 to 11 so that the bandpass center frequency of the band limiting circuit 7 is matched with the center frequency of the channel CH1 out of the total frequency band 100 MHz of all the channels CH1 to CH5. And the bandwidth of the single channel CH1 is set to 20 MHz. As a result, the channel can be set to CH1.
 そして、通信装置625の信号生成部4は、ステップS2において送信チャンネルCH1のデータ変調信号を生成し通信装置626に送信する。通信装置626は、ステップT3においてチャンネルCH1のデータ変調信号を受信すると、信号通信部28の信号処理部8によりデータ変調信号を復調し、正常に受信完了したか否かを判定し正常に受信完了したことが判定された場合、ステップT4において、信号通信部28の信号生成部4によりチャンネルCH1のデータ変調信号を生成し肯定応答信号を通信装置625に送信する。 Then, the signal generator 4 of the communication device 625 generates a data modulation signal of the transmission channel CH1 and transmits it to the communication device 626 in step S2. Upon receiving the data modulated signal of channel CH1 in step T3, communication device 626 demodulates the data modulated signal by signal processing unit 8 of signal communication unit 28, determines whether or not reception has been completed normally, and has completed reception normally. If it is determined, the signal generator 4 of the signal communication unit 28 generates a data modulation signal of the channel CH1 and transmits an acknowledgment signal to the communication device 625 in step T4.
 通信装置625の信号通信部27の信号処理部8aは、ステップS3においてチャンネルCH1のデータ変調信号を受信して復調し肯定応答信号を受信できる。これにより、通信装置625はチャンネルCH1を使用可能であると判断できる。 The signal processing unit 8a of the signal communication unit 27 of the communication device 625 can receive and demodulate the data modulation signal of the channel CH1 in step S3 and receive an acknowledgment signal. Thus, the communication device 625 can determine that the channel CH1 can be used.
 次に、受信不能である場合の事例を説明する。通信装置625の信号生成部4は、ステップS4において送信チャンネルCH1のデータ変調信号を生成し、通信装置626に送信するものの、通信装置625の送信波に妨害を生じた場合には、通信装置626の信号処理部8は正常に受信できずステップT5において受信エラーと判定される。この場合、通信装置626の信号処理部8は何らかの信号を受信しているものの正常に受信完了できていないため、正常に受信完了したことを示す肯定応答信号を通信装置625に送信しない。 Next, a case where reception is impossible will be described. The signal generation unit 4 of the communication device 625 generates a data modulation signal of the transmission channel CH1 in step S4 and transmits the data modulation signal to the communication device 626. However, when the transmission wave of the communication device 625 is disturbed, the communication device 626 The signal processor 8 cannot receive normally and is determined as a reception error in step T5. In this case, since the signal processing unit 8 of the communication device 626 has received some signal but has not completed reception normally, the signal processing unit 8 does not transmit an acknowledgment signal indicating that reception has been completed normally to the communication device 625.
 また、通信装置626の信号処理部8が正常に受信できないときには、制御部32はステップT6において全CH受信モードに切替える。通信装置626の制御部32は、全チャンネルCH1~CH5の全周波数帯域100MHzの中心周波数に帯域制限回路7のバンドパス中心周波数を合わせると共に、全チャンネルCH1~CH5の帯域幅100MHzに設定するようにダイオード9~11の容量値を変更する。 Further, when the signal processing unit 8 of the communication device 626 cannot normally receive, the control unit 32 switches to the all-CH reception mode in step T6. The control unit 32 of the communication device 626 adjusts the bandpass center frequency of the band limiting circuit 7 to the center frequency of all frequency bands 100 MHz of all channels CH1 to CH5 and sets the bandwidth of all channels CH1 to CH5 to 100 MHz. The capacitance values of the diodes 9 to 11 are changed.
 他方、通信装置625の信号通信部27は、ステップS4においてデータ変調信号を送信したにも拘わらず、その後に所定時間経過しても肯定応答信号を受信できないため、ステップS5においてタイムオーバーと判定し、何らかの通信障害を生じたと判断する。この結果、通信装置625の信号通信部27は、ステップS6において送信チャンネルCH1を例えばチャンネルCH3に切替える。通信装置625の信号生成部4は、ステップS7において送信チャンネルCH3のデータ変調信号を生成し通信装置626に送信する。 On the other hand, the signal communication unit 27 of the communication device 625 determines that the time is over in step S5 because the signal communication unit 27 of the communication device 625 cannot receive an acknowledgment signal even after a predetermined time has elapsed after transmitting the data modulation signal in step S4. It is determined that some kind of communication failure has occurred. As a result, the signal communication unit 27 of the communication device 625 switches the transmission channel CH1 to, for example, the channel CH3 in step S6. The signal generation unit 4 of the communication device 625 generates a data modulation signal of the transmission channel CH3 in step S7 and transmits the data modulation signal to the communication device 626.
 このとき、通信装置626は、ステップT7において全チャンネルCH1~CH5を受信可能な帯域幅に設定しているため、通信装置625から送信されたチャンネルCH3のデータ変調信号を受信できる。通信装置626の信号通信部28は、信号処理部8により受信信号を高速フーリエ変換処理することでサブキャリアを特定し、このサブキャリアに変調されたデータを復調することで正常に受信可能となるチャンネルを探索する。すると、通信装置626の信号処理部8はチャンネルCH3にて正常に受信できるため、チャンネル判定回路31により通信装置625がチャンネルCH3にてデータ変調信号を送信したことを判定できる。 At this time, since the communication device 626 sets all the channels CH1 to CH5 to the receivable bandwidth in step T7, the communication device 626 can receive the data modulated signal of the channel CH3 transmitted from the communication device 625. The signal communication unit 28 of the communication device 626 specifies a subcarrier by performing a fast Fourier transform process on the received signal by the signal processing unit 8 and can normally receive data by demodulating the data modulated on the subcarrier. Explore channels. Then, since the signal processing unit 8 of the communication device 626 can normally receive on the channel CH3, the channel determination circuit 31 can determine that the communication device 625 has transmitted the data modulation signal on the channel CH3.
 通信装置626の信号処理部28は、チャンネル判定回路31からチャンネルCH3で受信した旨の判定を受け付けると、通信装置626の制御部32は、ステップT10において、チャンネルCH3の中心周波数に帯域制限回路7のバンドパス中心周波数を合わせると共に単チャンネルCH3の帯域幅20MHzに切替えるようにダイオード9~11の容量値を設定する。 When the signal processing unit 28 of the communication device 626 receives a determination from the channel determination circuit 31 that it has been received on the channel CH3, the control unit 32 of the communication device 626 sets the band limiting circuit 7 to the center frequency of the channel CH3 in step T10. The capacitance values of the diodes 9 to 11 are set so that the bandpass center frequencies of the first and second bands are matched and the bandwidth of the single channel CH3 is switched to 20 MHz.
 そして、通信装置626の信号通信部28はステップT11においてチャンネルCH3にて肯定応答信号を通信装置625に送信する。すると通信装置625の信号処理部8aは、チャンネルCH3にてこの肯定応答信号を受信できる。このような流れを用いることで、妨害波を生じているチャンネルCH1における通信処理を回避しながら、妨害波を生じていないチャンネルCH3にて通信処理を確立できる。その後、通信装置625及び626はチャンネルCH3において通常の通信処理を行う。 And the signal communication part 28 of the communication apparatus 626 transmits an acknowledgment signal to the communication apparatus 625 by channel CH3 in step T11. Then, the signal processing unit 8a of the communication device 625 can receive this acknowledgment signal on the channel CH3. By using such a flow, communication processing can be established in the channel CH3 in which no disturbing wave is generated, while avoiding communication processing in the channel CH1 in which the disturbing wave is generated. Thereafter, the communication devices 625 and 626 perform normal communication processing on the channel CH3.
 例えば、妨害波が到来したことにより通信確立が途絶えると、例えば中心周波数だけしか変更できない場合には、送信側及び受信側でそれぞれチャンネルCH1~CH5を順に切り替えて通信可能なチャンネルを探索する方法を考慮できるが、この場合、試行回数を重ねなければならない。 For example, when the establishment of communication is interrupted due to the arrival of an interference wave, for example, when only the center frequency can be changed, a method for searching for a communicable channel by sequentially switching the channels CH1 to CH5 on the transmitting side and the receiving side respectively. In this case, the number of trials must be repeated.
 本実施形態によれば、まず制御部32が全ての複数のチャンネルCH1~CH5の信号を受信可能にするように帯域制限回路7の周波数帯域幅を変更制御し、チャンネル判定回路31により通信装置625から何れのチャンネルの信号が送信されたか判定するようにしている。このとき、通信装置626は帯域制限回路7を用いて帯域幅を全チャンネルCH1~CH5に拡張して受信できるため、前述のようにチャンネルを順に切り替えて探索しなくても良くなる。制御部32は、判定されたチャンネルCH3の帯域幅に帯域制限回路7の周波数帯域幅を変更制御し、通信装置626の信号通信部28が、チャンネル判定回路31により判定されたチャンネルCH3に切り替えて信号を受信することで、妨害波を生じていないチャンネルCH3において通信確立するまでの試行回数、通信確立時間を削減できる。 According to the present embodiment, first, the control unit 32 controls to change the frequency bandwidth of the band limiting circuit 7 so that the signals of all the plurality of channels CH1 to CH5 can be received, and the channel determination circuit 31 controls the communication device 625. From which channel signal is transmitted. At this time, the communication device 626 can receive by expanding the bandwidth to all the channels CH1 to CH5 using the band limiting circuit 7, so that it is not necessary to search by switching the channels in order as described above. The control unit 32 controls to change the frequency bandwidth of the band limiting circuit 7 to the determined bandwidth of the channel CH3, and the signal communication unit 28 of the communication device 626 switches to the channel CH3 determined by the channel determination circuit 31. By receiving the signal, it is possible to reduce the number of trials and the communication establishment time until communication is established in the channel CH3 where no interference wave is generated.
 なお、図8のステップT6の全CH受信モードでは、例えば図2のLm=60nHの特性に示すように、通信装置626の制御部32は帯域制限回路7の帯域幅を100MHzを超える程度まで拡張するものの、他の特性(例えばLm=30nH~50nH)に比較するとわずかに利得が低下することがわかる。このため、特別に帯域幅を拡張する以外の用途で使用するときには、単チャンネルモードとして帯域幅を狭くしアンテナ利得を稼ぐことが望ましい。 In the all-CH reception mode in step T6 in FIG. 8, for example, as shown in the characteristic of Lm = 60 nH in FIG. 2, the control unit 32 of the communication device 626 extends the bandwidth of the band limiting circuit 7 to a level exceeding 100 MHz. However, it can be seen that the gain slightly decreases compared to other characteristics (for example, Lm = 30 nH to 50 nH). For this reason, when used for purposes other than extending the bandwidth, it is desirable to narrow the bandwidth and increase the antenna gain as the single channel mode.
 (第7実施形態)
 図9は第7実施形態の追加説明図を示す。例えば第1実施形態では、送信装置2が受信装置3にデータ変調信号を送信するための信号伝送系に係る特徴部分を説明したが、受信装置3の主動作用電源電力を伝送する場合についても適用できる。この場合の構成図を図9に示す。以下、第1実施形態と異なる部分について説明する。
(Seventh embodiment)
FIG. 9 shows an additional explanatory diagram of the seventh embodiment. For example, in the first embodiment, the characteristic part related to the signal transmission system for the transmission device 2 to transmit the data modulation signal to the reception device 3 has been described, but the present invention is also applicable to the case where the main operation power supply power of the reception device 3 is transmitted. it can. FIG. 9 shows a configuration diagram in this case. Hereinafter, parts different from the first embodiment will be described.
 無線伝送システム701は、送信装置としての送電装置702と受信装置としての受電装置703を備える。送電装置702は電力信号生成部704と送信アンテナ5とを備える。電力信号生成部704は、所定周波数帯の交流電力を生成し送信アンテナ5を通じて受電装置703に給電する。本実施形態では送信アンテナ5は送電アンテナとして機能する。 The wireless transmission system 701 includes a power transmission device 702 as a transmission device and a power reception device 703 as a reception device. The power transmission device 702 includes a power signal generation unit 704 and a transmission antenna 5. The power signal generation unit 704 generates AC power in a predetermined frequency band and supplies power to the power receiving device 703 through the transmission antenna 5. In this embodiment, the transmission antenna 5 functions as a power transmission antenna.
 受電装置703は、受信アンテナ6と、帯域制限回路7と、整流回路33と、変更部としての電力信号処理部708と、を備える。受電装置703は、帯域制限回路7と信号処理部8との間に整流回路33を備える。受信アンテナ6が電力信号生成部704により生成された交流電力を送信アンテナ5を通じて受電し、帯域制限回路7がこの受電電力に重畳したノイズを除去し、整流回路33に出力する。整流回路33は受電電力を整流し平滑化した電力を電力信号処理部708に出力し、電力信号処理部708はこの電力を受電装置703の内部に供給する。本実施形態では受信アンテナ6は受電アンテナとして機能する。 The power receiving device 703 includes a receiving antenna 6, a band limiting circuit 7, a rectifier circuit 33, and a power signal processing unit 708 as a changing unit. The power receiving device 703 includes a rectifier circuit 33 between the band limiting circuit 7 and the signal processing unit 8. The reception antenna 6 receives the AC power generated by the power signal generation unit 704 through the transmission antenna 5, and the band limiting circuit 7 removes the noise superimposed on the received power and outputs it to the rectifier circuit 33. The rectifier circuit 33 outputs the power obtained by rectifying and smoothing the received power to the power signal processing unit 708, and the power signal processing unit 708 supplies this power to the inside of the power receiving device 703. In this embodiment, the receiving antenna 6 functions as a power receiving antenna.
 電力信号処理部708が帯域制限回路7のダイオード9~11の容量値を調整可能になっている。このため、電力信号処理部708が、帯域制限回路7のダイオード9~11の容量値を調整することで交流信号の通過帯域幅を制限できる。このようにして、電力伝送する場合にも適用できる。なお、本実施形態の構成は、例えば第1~第6、第8~第10実施形態のデータ変調信号を信号伝送する形態の構成を組み合わせて適用できる。 The power signal processing unit 708 can adjust the capacitance values of the diodes 9 to 11 of the band limiting circuit 7. Therefore, the power signal processing unit 708 can limit the passband width of the AC signal by adjusting the capacitance values of the diodes 9 to 11 of the band limiting circuit 7. In this way, the present invention can also be applied to power transmission. Note that the configuration of the present embodiment can be applied by combining the configurations of the data modulation signals of the first to sixth and eighth to tenth embodiments, for example.
 (第8実施形態)
 図10から図12は第8実施形態の追加説明図を示す。本実施形態では、第1共振回路14、第2共振回路15の変形例を示す。図10に第1共振回路14の変形例を第1共振回路814として示すように、受信アンテナ6とダイオード11とはノードN1及びN2間に並列接続しても良い。また、図11に第2共振回路15の変形例を第2共振回路815aとして示すように、インダクタ12と可変容量ダイオード9とがノードN1及びN2間に直列接続されていても良い。また、図12に第2共振回路15の変形例を第2共振回路815bとして示すように、ダイオード9とインダクタ12とが、ノードN1と信号処理部8との間に並列接続されていても良い。
(Eighth embodiment)
10 to 12 show additional explanatory views of the eighth embodiment. In the present embodiment, a modification of the first resonance circuit 14 and the second resonance circuit 15 is shown. As shown in FIG. 10 as a first resonance circuit 814 as a modification of the first resonance circuit 14, the reception antenna 6 and the diode 11 may be connected in parallel between the nodes N1 and N2. Further, as shown in FIG. 11 as a modified example of the second resonance circuit 15 as a second resonance circuit 815a, the inductor 12 and the variable capacitance diode 9 may be connected in series between the nodes N1 and N2. In addition, as shown in FIG. 12 as a second resonance circuit 815b as a modification of the second resonance circuit 15, the diode 9 and the inductor 12 may be connected in parallel between the node N1 and the signal processing unit 8. .
 このような接続形態を用いた場合であっても、前述実施形態と同様に帯域制限回路7のバンドパス中心周波数又は/及び帯域幅を調整でき、この結果、前述実施形態(例えば第1実施形態)と同様の作用効果を得られる。 Even when such a connection form is used, the bandpass center frequency or / and the bandwidth of the band limiting circuit 7 can be adjusted in the same manner as in the previous embodiment. As a result, the previous embodiment (for example, the first embodiment) can be adjusted. ) And similar effects can be obtained.
 (第9実施形態)
 図13は第8実施形態の追加説明図を示す。本実施形態は、送信装置902に帯域制限回路907を設けた形態を示す。無線伝送システム901は、送信装置902と受信装置903とを備える。送信装置902は、信号生成部904と、帯域制限回路907と、送信アンテナ5とを備える。受信装置903は信号処理部908と受信アンテナ6とを備える。信号処理部908はダイオード9~11の容量値の制御処理を備えていないこと以外は信号処理部8と同様の機能を備える。
(Ninth embodiment)
FIG. 13 is an additional explanatory diagram of the eighth embodiment. This embodiment shows a form in which a band limiting circuit 907 is provided in the transmission apparatus 902. The wireless transmission system 901 includes a transmission device 902 and a reception device 903. The transmission device 902 includes a signal generation unit 904, a band limiting circuit 907, and the transmission antenna 5. The receiving device 903 includes a signal processing unit 908 and a receiving antenna 6. The signal processing unit 908 has the same function as the signal processing unit 8 except that the signal processing unit 908 does not include control processing of the capacitance values of the diodes 9 to 11.
 送信装置902は、信号生成部904と送信アンテナ5との間に帯域制限回路907を備える。信号生成部904は、信号生成部4と同様の機能を備えており、データ変調信号を帯域制限回路907に出力する。帯域制限回路907は、帯域制限回路7と同様に、例えばダイオード9~11、インダクタ12、13を備えた線形回路により構成される。帯域制限回路907は、信号生成部4により生成されたデータ変調信号を通過して送信アンテナ5に伝送する回路であり、信号生成部4による生成信号を通過すると共にこの生成信号の通過周波数帯以外の周波数帯域を制限するバンドパスフィルタにより構成されている。 The transmission device 902 includes a band limiting circuit 907 between the signal generation unit 904 and the transmission antenna 5. The signal generation unit 904 has the same function as the signal generation unit 4, and outputs a data modulation signal to the band limiting circuit 907. Similarly to the band limiting circuit 7, the band limiting circuit 907 is configured by a linear circuit including diodes 9 to 11 and inductors 12 and 13, for example. The band limiting circuit 907 is a circuit that passes the data modulation signal generated by the signal generation unit 4 and transmits the data modulation signal to the transmission antenna 5. It is comprised by the band pass filter which restrict | limits the frequency band of this.
 帯域制限回路907は、信号生成部904の出力端と送信アンテナ5の一端との間に、ダイオード9のカソード-アノード間、インダクタ12、ダイオード11のアノード-カソード間を直列接続して構成されている。インダクタ12とダイオード11のアノードとはノードN1において直接接続されている。 The band limiting circuit 907 is configured by connecting in series between the cathode and anode of the diode 9 and between the anode and cathode of the inductor 12 and the diode 11 between the output end of the signal generation unit 904 and one end of the transmission antenna 5. Yes. The inductor 12 and the anode of the diode 11 are directly connected at the node N1.
 ダイオード9~11は、それぞれ信号処理部8によりその容量値を調整可能になっている。ここで、第1共振回路914が送信アンテナ5及びダイオード11により構成され、第2共振回路915がインダクタ12及びダイオード9により構成されている。 The capacitance values of the diodes 9 to 11 can be adjusted by the signal processing unit 8, respectively. Here, the first resonance circuit 914 is configured by the transmission antenna 5 and the diode 11, and the second resonance circuit 915 is configured by the inductor 12 and the diode 9.
 信号生成部904と送信アンテナ5の他端との間がノードN2において直接接続されている。ノードN1とノードN2との間には誘導特性部916が構成されている。誘導特性部916が、ダイオード10とインダクタ13とを並列接続して構成されている。この誘導特性部916は、前述の周波数帯域(すなわち使用周波数領域)内では誘導性特性を示す。 The signal generator 904 and the other end of the transmission antenna 5 are directly connected at the node N2. An induction characteristic unit 916 is configured between the node N1 and the node N2. An inductive characteristic unit 916 is configured by connecting the diode 10 and the inductor 13 in parallel. This inductive characteristic unit 916 exhibits inductive characteristics within the above-described frequency band (that is, the used frequency region).
 また、見方を変えると、送信装置902は、送信アンテナ5とダイオード11の容量性により共振する第1共振回路914を備え、さらに、インダクタ12及びダイオード9を直列接続し当該インダクタ12及びダイオード9の容量性により共振する第2共振回路915を備える。なお、第1共振回路914及び第2共振回路915を構成する各素子は、標準的には同一の所定周波数帯に共振周波数を備える回路定数に設定されており、ダイオード9、11の容量性が調整されることにより共振周波数を変更可能になっている。 In other words, the transmission device 902 includes a first resonance circuit 914 that resonates due to the capacitive characteristics of the transmission antenna 5 and the diode 11, and further includes an inductor 12 and a diode 9 connected in series, and the inductor 12 and the diode 9. A second resonance circuit 915 is provided that resonates due to capacitive. Note that each element constituting the first resonance circuit 914 and the second resonance circuit 915 is normally set to a circuit constant having a resonance frequency in the same predetermined frequency band, and the capacitance of the diodes 9 and 11 is set. By adjusting, the resonance frequency can be changed.
 第1実施形態の無線伝送システム101と本実施形態の無線伝送システム901とでは、帯域制限回路7、907が、送信側に設けられているか受信側に設けられているか、の差異を生じているものである。本実施形態では、信号生成部904が各ダイオード9~11の容量値を変更できるため、周波数帯域幅を容易に変更でき、さらに中心周波数をも変更できる。このため、信号生成部4により生成された信号のうち不要な信号に基づく不要輻射を低減できる。 In the wireless transmission system 101 of the first embodiment and the wireless transmission system 901 of the present embodiment, there is a difference between whether the band limiting circuits 7 and 907 are provided on the transmission side or the reception side. Is. In the present embodiment, since the signal generation unit 904 can change the capacitance values of the diodes 9 to 11, the frequency bandwidth can be easily changed, and the center frequency can also be changed. For this reason, the unnecessary radiation based on an unnecessary signal among the signals generated by the signal generator 4 can be reduced.
 第1実施形態、第9実施形態を考慮すれば、帯域制限回路7を受信装置3の受信アンテナ6から信号処理部8までの信号伝搬経路に備えても、帯域制限回路907を送信装置902の送信アンテナ5から信号生成部904までの信号伝搬経路に備えても良い。すなわち、帯域制限回路7、907は送信側、受信側の少なくとも何れか一方に備えていれば良い。 Considering the first embodiment and the ninth embodiment, even if the band limiting circuit 7 is provided in the signal propagation path from the receiving antenna 6 to the signal processing unit 8 of the receiving apparatus 3, the band limiting circuit 907 is included in the transmitting apparatus 902. A signal propagation path from the transmission antenna 5 to the signal generation unit 904 may be provided. That is, the band limiting circuits 7 and 907 may be provided on at least one of the transmission side and the reception side.
 (第10実施形態)
 図14は第10実施形態の追加説明図を示す。本実施形態は受信装置3の設置方法を示す。図14は受信装置3の搭載例を示している。受信装置3は、図1に示すように、受信アンテナ6、帯域制限回路7、及び信号処理部8を備える。
(10th Embodiment)
FIG. 14 is an additional explanatory diagram of the tenth embodiment. This embodiment shows the installation method of the receiver 3. FIG. 14 shows an example of mounting the receiving device 3. As shown in FIG. 1, the receiving device 3 includes a receiving antenna 6, a band limiting circuit 7, and a signal processing unit 8.
 図14に示すように、これらの受信アンテナ6、帯域制限回路7及び信号処理部8は、1枚の平板状のプリント配線基板34に搭載されている。本実施形態の受信アンテナ6は、プリント配線基板34の配線面にループ状の配線パターンを構成したパターンアンテナにより構成される。 As shown in FIG. 14, the receiving antenna 6, the band limiting circuit 7 and the signal processing unit 8 are mounted on one flat printed wiring board 34. The receiving antenna 6 of the present embodiment is configured by a pattern antenna in which a looped wiring pattern is formed on the wiring surface of the printed wiring board 34.
 前述したように、第1共振回路14をダイオード11及び受信アンテナ6により構成して磁界共鳴方式により通信処理可能となっているため、送信信号の周波数に共振する共振アンテナを構成する必要がなくなり、受信アンテナ6を配線パターンにより構成でき、受信アンテナ6を小型化して構成できる。 As described above, since the first resonance circuit 14 is configured by the diode 11 and the reception antenna 6 and communication processing can be performed by the magnetic field resonance method, it is not necessary to configure a resonance antenna that resonates at the frequency of the transmission signal. The receiving antenna 6 can be configured with a wiring pattern, and the receiving antenna 6 can be configured with a reduced size.
 また、帯域制限回路7は、ダイオード9~11及びインダクタ12、13をディスクリート部品又は集積回路により構成し、信号処理部8は例えばマイクロコンピュータなどの集積回路により構成される。したがって、これらの受信アンテナ6、帯域制限回路7及び信号処理部8は、一枚のプリント配線基板34の上にコンパクトに搭載できる。 The band limiting circuit 7 includes diodes 9 to 11 and inductors 12 and 13 formed of discrete components or an integrated circuit, and the signal processing unit 8 includes an integrated circuit such as a microcomputer. Therefore, the receiving antenna 6, the band limiting circuit 7 and the signal processing unit 8 can be mounted compactly on a single printed wiring board 34.
 本実施形態では、第1実施形態で説明した受信装置3の搭載例を例示しているが、第2~第7実施形態の受信装置203、303、403、503、603、703においても同様に適用でき、第8実施形態に示すように第1共振回路14、第2共振回路15を、それぞれ第1共振回路814、第2共振回路815a、815bに置き換えて構成しても良い。また、第9実施形態に示したように、送信装置902の信号生成部4、帯域制限回路907及び送信アンテナ5がプリント配線基板34に搭載されていても良い。このとき、プリント配線基板34の導電面にループ状の配線パターンを構成することで送信アンテナ5を構成できる。 In this embodiment, the mounting example of the receiving device 3 described in the first embodiment is illustrated, but the same applies to the receiving devices 203, 303, 403, 503, 603, and 703 of the second to seventh embodiments. As shown in the eighth embodiment, the first resonance circuit 14 and the second resonance circuit 15 may be replaced with the first resonance circuit 814 and the second resonance circuits 815a and 815b, respectively. Further, as shown in the ninth embodiment, the signal generation unit 4, the band limiting circuit 907, and the transmission antenna 5 of the transmission device 902 may be mounted on the printed wiring board 34. At this time, the transmission antenna 5 can be configured by forming a loop-shaped wiring pattern on the conductive surface of the printed wiring board 34.
 (他の実施形態)
 前述実施形態に限定されるものではなく、例えば、以下に示す変形又は拡張が可能である。第3実施形態では、第1共振回路314、第2共振回路315がそれぞれ固定容量キャパシタ311、309を備える構成としたが、これらの固定容量キャパシタ311、309のうちの一方を可変容量のキャパシタ(例えば可変容量ダイオード)に代えて構成しても良い。
(Other embodiments)
The present invention is not limited to the above-described embodiment, and for example, the following modifications or expansions are possible. In the third embodiment, the first resonant circuit 314 and the second resonant circuit 315 are each provided with fixed capacitance capacitors 311 and 309. However, one of these fixed capacitance capacitors 311 and 309 is replaced with a variable capacitance capacitor ( For example, a variable capacitance diode) may be used instead.
 送信アンテナ5をループ状のコイルを用いて構成した形態を示したが、例えば一対の送電線を撚部で撚り合わせたツイステッドペアケーブルの先端部の芯線を接続した形態により構成しても良いし、受信装置3に信号を送信できるのであれば、どのような構成を用いても良い。 Although the configuration in which the transmission antenna 5 is configured by using a loop-shaped coil has been shown, for example, a configuration in which a core wire at the tip of a twisted pair cable in which a pair of power transmission lines are twisted together by a twisted portion may be configured. Any configuration may be used as long as a signal can be transmitted to the receiving device 3.
 受信アンテナ6をループ状のコイルを用いて構成した形態を示したが、受信アンテナ6はループ状でなく線条の構成であっても良いし、送信装置2から信号を受信できるのであれば、どのような構成であっても良い。可変容量ダイオード10は、インダクタ13に並列接続されている形態を示したが、インダクタ13に直列接続してもよい。 Although the configuration in which the receiving antenna 6 is configured using a loop-shaped coil has been shown, the receiving antenna 6 may have a linear configuration instead of a loop shape, and if the signal can be received from the transmission device 2, Any configuration may be used. Although the variable capacitance diode 10 is shown as being connected in parallel to the inductor 13, it may be connected in series to the inductor 13.
 誘導特性部16、916が、1つのインダクタ13及びインダクタ13に並列に接続される可変容量ダイオード10を備える形態を示したが、複数のインダクタ13を直列又は/及び並列に接続しても良いし、この1又は複数のインダクタ13に直列に可変容量ダイオード10を接続して構成しても良い。 Although the inductive characteristic units 16 and 916 include the single inductor 13 and the variable capacitance diode 10 connected in parallel to the inductor 13, a plurality of inductors 13 may be connected in series or / and in parallel. The variable capacitance diode 10 may be connected in series to the one or more inductors 13.
 送信装置2と受信装置3とが送信アンテナ5と受信アンテナ6との間で磁界共鳴方式により結合する形態を示したが、電磁的に結合する形態であれば方式は磁界共鳴方式に限られるものではない。 Although the transmission device 2 and the reception device 3 are coupled to each other by the magnetic field resonance method between the transmission antenna 5 and the reception antenna 6, the method is limited to the magnetic field resonance method as long as the electromagnetic coupling method is used. is not.
 例えば第1実施形態においては、受信アンテナ6と信号処理部8との間に帯域制限回路7を設けた形態を示したが、これに代えて又はこれに加えて、信号生成部4と送信アンテナ5との間に帯域制限回路7を設けても良い。これは、前述した他の実施形態(例えば第2~第7実施形態)の帯域制限回路7、207、307においても同様である。 For example, in the first embodiment, the band limiting circuit 7 is provided between the reception antenna 6 and the signal processing unit 8. However, instead of or in addition to this, the signal generation unit 4 and the transmission antenna are provided. 5 may be provided with a band limiting circuit 7. The same applies to the band limiting circuits 7, 207, and 307 of the other embodiments described above (for example, the second to seventh embodiments).
 なお、図面中、101、201、301、401、501、601、701は無線伝送システム、2、425、502は送信装置、625は通信装置(送信装置)、702は送電装置(送信装置)、3、203、303、426、503は受信装置、626は通信装置(受信装置)、703は受電装置(受信装置)、4、904は信号生成部(904は変更部)、704は電力信号生成部、5は送信アンテナ、6は受信アンテナ、7、207、307は帯域制限回路、8、8aは信号処理部(8は変更部)、708は電力信号処理部(信号処理部、変更部)、9は可変容量ダイオード(第2容量部)、309は固定容量キャパシタ(第2容量部)、10は可変容量ダイオード、11は可変容量ダイオード(第1容量部)、311は固定容量キャパシタ(第1容量部)、12はインダクタ(誘導部)、13はインダクタ、14、814は第1共振回路、15、815a、815bは第2共振回路、16、216、916は誘導特性部、27は送信装置の信号通信部(信号生成部)、28は受信装置の信号通信部(信号処理部、変更部)、32は制御部(変更部)、33は整流回路、を示す。 In the drawings, 101, 201, 301, 401, 501, 601 and 701 are wireless transmission systems, 2, 425 and 502 are transmission devices, 625 is a communication device (transmission device), 702 is a power transmission device (transmission device), 3, 203, 303, 426, and 503 are receiving devices, 626 is a communication device (receiving device), 703 is a power receiving device (receiving device), 4, 904 is a signal generation unit (904 is a changing unit), and 704 is a power signal generation. , 5 is a transmitting antenna, 6 is a receiving antenna, 7, 207 and 307 are band limiting circuits, 8 and 8a are signal processing units (8 is a changing unit), and 708 is a power signal processing unit (signal processing unit and changing unit). , 9 is a variable capacitance diode (second capacitance portion), 309 is a fixed capacitance capacitor (second capacitance portion), 10 is a variable capacitance diode, 11 is a variable capacitance diode (first capacitance portion), and 311 is a fixed capacitance. Capacitor (first capacitor), 12 an inductor (inductor), 13 an inductor, 14, 814 a first resonance circuit, 15, 815a, 815b a second resonance circuit, 16, 216, 916 an induction characteristic unit, 27 denotes a signal communication unit (signal generation unit) of the transmission device, 28 denotes a signal communication unit (signal processing unit, change unit) of the reception device, 32 denotes a control unit (change unit), and 33 denotes a rectifier circuit.
 例えば、前述の各実施形態の構成は概念的なものであり、一つの構成要素が有する機能を複数の構成要素に分散させたり、複数の構成要素が有する機能を一つの構成要素に統合させたりしてもよい。また、前述の実施形態の構成の少なくとも一部を、同様の機能を有する公知の構成に置き換えてもよい。また、前述の2以上の実施形態の構成の一部又は全部を必要に応じて互いに組み合わせて付加しても置換しても良い。なお、特許請求の範囲に記載した括弧内の符号は、本発明の一つの態様として前述する実施形態に記載の具体的手段との対応関係の一例を示すものであって、本発明の技術的範囲を限定するものではない。 For example, the configuration of each of the embodiments described above is conceptual, and the functions of one component are distributed to a plurality of components, or the functions of a plurality of components are integrated into one component. May be. In addition, at least a part of the configuration of the above-described embodiment may be replaced with a known configuration having a similar function. In addition, some or all of the configurations of the two or more embodiments described above may be added in combination with each other or replaced as necessary. Note that the reference numerals in parentheses described in the claims indicate an example of a correspondence relationship with the specific means described in the embodiment described above as one aspect of the present invention, and are technical terms of the present invention. It does not limit the range.
 本開示は、前述した実施形態に準拠して記述されたが、本開示は当該実施形態や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範畴や思想範囲に入るものである。 Although the present disclosure has been described based on the above-described embodiment, it is understood that the present disclosure is not limited to the embodiment or the structure. The present disclosure includes various modifications and modifications within the equivalent range. In addition, various combinations and forms, as well as other combinations and forms including one element, more or less, are within the scope and spirit of the present disclosure.

Claims (10)

  1.  信号生成部(4;27;704)と前記信号生成部により生成される信号を送信する送信アンテナ(5)とを備える送信装置(2;425;502;625;702;902)と、
     前記送信装置の送信アンテナから送信される信号を受信する受信アンテナ(6)と前記受信アンテナを通じて受信する信号を処理する信号処理部(8;8a;28)とを備える受信装置(3;203;303;426;503;626;703;903)と、を備え、
     前記送信アンテナ(5)又は前記受信アンテナ(6)の何れか少なくとも一方に直列又は並列に接続される第1容量部(11;311)を備え、前記送信アンテナ又は前記受信アンテナと共に所定周波数帯において共振する第1共振回路(14;314;814;914)を構成し、前記第1共振回路に直列接続され誘導部(12)及び第2容量部(9;309)を直列又は並列接続して前記所定周波数帯と同一又は近接する周波数帯において共振する第2共振回路(15;315;815a;815b;915)、及び、前記第1共振回路と前記第2共振回路との間に接続され使用周波数帯域における誘導性特性が可変可能に構成された誘導特性部(16;216;916)、を備える帯域制限回路(7;207;307;907)を、
     前記受信装置の前記受信アンテナから前記信号処理部までの信号伝搬経路又は前記送信装置の前記送信アンテナから前記信号生成部までの信号伝搬経路のうち少なくとも何れか一方に備え、
     前記帯域制限回路の誘導特性部の誘導性特性を変更する変更部(8;28;32;708;904)、を備える無線伝送システム。
    A transmitter (2; 425; 502; 625; 702; 902) comprising a signal generator (4; 27; 704) and a transmission antenna (5) for transmitting the signal generated by the signal generator;
    A receiving device (3; 203; comprising a receiving antenna (6) for receiving a signal transmitted from a transmitting antenna of the transmitting device and a signal processing unit (8; 8a; 28) for processing a signal received through the receiving antenna; 303; 426; 503; 626; 703; 903), and
    A first capacitor (11; 311) connected in series or in parallel to at least one of the transmission antenna (5) and the reception antenna (6), and in a predetermined frequency band together with the transmission antenna or the reception antenna A resonating first resonance circuit (14; 314; 814; 914) is configured, and the induction unit (12) and the second capacitor unit (9; 309) are connected in series or in parallel to the first resonance circuit. A second resonance circuit (15; 315; 815a; 815b; 915) that resonates in a frequency band that is the same as or close to the predetermined frequency band, and is connected between the first resonance circuit and the second resonance circuit. A band limiting circuit (7; 207; 307; 907) comprising an inductive characteristic section (16; 216; 916) configured such that the inductive characteristics in the frequency band can be varied;
    Provided in at least one of a signal propagation path from the reception antenna of the reception device to the signal processing unit or a signal propagation route from the transmission antenna of the transmission device to the signal generation unit,
    A wireless transmission system comprising: a changing unit (8; 28; 32; 708; 904) that changes the inductive characteristic of the inductive characteristic unit of the band limiting circuit.
  2.  前記帯域制限回路(7;307;907)の誘導特性部(16;916)は、1又は複数のインダクタ(13)及び前記インダクタに直列又は/及び並列に接続される可変容量ダイオード(10)を備えて構成される請求項1記載の無線伝送システム。 The inductive characteristic section (16; 916) of the band limiting circuit (7; 307; 907) includes one or a plurality of inductors (13) and a variable capacitance diode (10) connected in series or in parallel to the inductors. The wireless transmission system according to claim 1, comprising:
  3.  前記帯域制限回路(207)の誘導特性部(216)は、複数のインダクタ(13、21、23、25)及びこれらのインダクタを直列又は/及び並列に接続/開放可能にするスイッチ(22、24、26)を備えて構成される請求項1記載の無線伝送システム。 The inductive characteristic section (216) of the band limiting circuit (207) includes a plurality of inductors (13, 21, 23, 25) and switches (22, 24) that allow these inductors to be connected / opened in series or / and in parallel. 26) The wireless transmission system according to claim 1, wherein the wireless transmission system is configured to include:
  4.  前記第1容量部(11)又は/及び前記第2容量部(9)は可変容量ダイオードを備えて構成される請求項1から3の何れか一項に記載の無線伝送システム。 The wireless transmission system according to any one of claims 1 to 3, wherein the first capacitor unit (11) and / or the second capacitor unit (9) includes a variable capacitance diode.
  5.  前記第1容量部(311)又は/及び前記第2容量部(309)は固定容量キャパシタにより構成されている請求項1から3の何れか一項に記載の無線伝送システム。 The wireless transmission system according to any one of claims 1 to 3, wherein the first capacitor unit (311) and / or the second capacitor unit (309) is configured by a fixed capacitor.
  6.  前記受信装置(3)は、前記受信アンテナ(6)としてプリント配線基板(34)に構成される配線パターンを用いる請求項1から5の何れか一項に記載の無線伝送システム。 The wireless transmission system according to any one of claims 1 to 5, wherein the receiving device (3) uses a wiring pattern configured on a printed wiring board (34) as the receiving antenna (6).
  7.  前記送信装置(425)は前記信号処理部(8a)の機能も備えると共に、前記受信装置(426)は前記信号生成部(4)の機能も備える請求項1から6の何れか一項に記載の無線伝送システム。 The said transmitting apparatus (425) is provided with the function of the said signal processing part (8a), and the said receiving apparatus (426) is also provided with the function of the said signal generation part (4), It is any one of Claim 1 to 6 characterized by the above-mentioned. Wireless transmission system.
  8.  前記受信装置(503)の前記受信アンテナ(6)から前記信号処理部(8)までの信号伝搬経路、又は、前記送信装置(502)の前記送信アンテナ(5)から前記信号生成部(4)までの信号伝搬経路のうち少なくとも何れか一方に整合回路(29、30)をさらに備える請求項1から7の何れか一項に記載の無線伝送システム。 A signal propagation path from the receiving antenna (6) to the signal processing unit (8) of the receiving device (503), or from the transmitting antenna (5) of the transmitting device (502) to the signal generating unit (4) The wireless transmission system according to any one of claims 1 to 7, further comprising a matching circuit (29, 30) in at least one of the signal propagation paths up to.
  9.  前記送信装置(702)の信号生成部(704)は、前記受信装置(703)に給電するための電力信号を生成する電力信号生成部(704)を備えて構成され、
     前記受信装置(703)は、前記送信装置(702)から送信される電力信号を整流する整流回路(33)をさらに備え、前記信号処理部(708)は、前記整流回路により整流された電力信号を処理する電力信号処理部(708)を備える請求項1から8の何れか一項に記載の無線伝送システム。
    The signal generation unit (704) of the transmission device (702) includes a power signal generation unit (704) that generates a power signal for supplying power to the reception device (703).
    The receiver (703) further includes a rectifier circuit (33) that rectifies the power signal transmitted from the transmitter (702), and the signal processor (708) is a power signal rectified by the rectifier circuit. The wireless transmission system according to any one of claims 1 to 8, further comprising a power signal processing unit (708) for processing
  10.  前記受信装置(626)は前記帯域制限回路(7)と、前記送信装置(625)から送信される信号が何れのチャンネルの信号であるか判定するチャンネル判定回路(31)を備えて前記帯域制限回路の周波数帯域幅を変更制御する制御部(32)とを備え、互いに周波数帯域の異なる複数のチャンネル(CH1~CH5)の信号を受信可能で且つ前記制御部により制御される周波数帯域幅で前記送信装置(625)から送信される信号を受信可能に構成され、
     前記制御部(32)は、全ての前記複数のチャンネルの信号を受信可能にするように前記帯域制限回路の周波数帯域幅を変更制御し、前記チャンネル判定回路により前記送信装置(625)から何れのチャンネルの信号が送信されたか判定し、当該判定されたチャンネルの帯域幅に前記帯域制限回路の周波数帯域幅を変更制御し、
     前記受信装置(626)の信号処理部(8)は、前記チャンネル判定回路により判定されたチャンネルに切り替えて信号を受信する請求項1記載の無線伝送システム。
    The receiving device (626) includes the band limiting circuit (7) and a channel determination circuit (31) for determining which channel the signal transmitted from the transmitting device (625) is. A control unit (32) for changing and controlling the frequency bandwidth of the circuit, and capable of receiving signals of a plurality of channels (CH1 to CH5) having different frequency bands and having a frequency bandwidth controlled by the control unit. It is configured to be able to receive a signal transmitted from the transmission device (625),
    The control unit (32) controls to change the frequency bandwidth of the band limiting circuit so as to be able to receive signals of all the plurality of channels, and the channel determination circuit causes any one of the transmission devices (625) to It is determined whether a channel signal is transmitted, and the frequency bandwidth of the band limiting circuit is changed and controlled to the determined channel bandwidth,
    The radio transmission system according to claim 1, wherein the signal processing unit (8) of the receiving device (626) receives the signal by switching to the channel determined by the channel determination circuit.
PCT/JP2017/007134 2016-03-31 2017-02-24 Wireless transmission system WO2017169394A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-071659 2016-03-31
JP2016071659A JP6564340B2 (en) 2016-03-31 2016-03-31 Wireless transmission system

Publications (1)

Publication Number Publication Date
WO2017169394A1 true WO2017169394A1 (en) 2017-10-05

Family

ID=59963177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/007134 WO2017169394A1 (en) 2016-03-31 2017-02-24 Wireless transmission system

Country Status (2)

Country Link
JP (1) JP6564340B2 (en)
WO (1) WO2017169394A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7043007B2 (en) * 2018-10-11 2022-03-29 豊田合成株式会社 Transmission equipment, power receiving equipment, and wireless power supply system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011130083A (en) * 2009-12-16 2011-06-30 Mitsubishi Electric Corp Variable filter
WO2014130334A1 (en) * 2013-02-25 2014-08-28 Qualcomm Incorporated Impedance transformation network for improved driver circuit performance
WO2014174785A1 (en) * 2013-04-22 2014-10-30 パナソニックIpマネジメント株式会社 Wireless power transfer device
WO2015140917A1 (en) * 2014-03-18 2015-09-24 三菱電機エンジニアリング株式会社 Resonance power transmission apparatus, transmission-side power transmission apparatus, and reception-side power transmission apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011130083A (en) * 2009-12-16 2011-06-30 Mitsubishi Electric Corp Variable filter
WO2014130334A1 (en) * 2013-02-25 2014-08-28 Qualcomm Incorporated Impedance transformation network for improved driver circuit performance
WO2014174785A1 (en) * 2013-04-22 2014-10-30 パナソニックIpマネジメント株式会社 Wireless power transfer device
WO2015140917A1 (en) * 2014-03-18 2015-09-24 三菱電機エンジニアリング株式会社 Resonance power transmission apparatus, transmission-side power transmission apparatus, and reception-side power transmission apparatus

Also Published As

Publication number Publication date
JP2017184537A (en) 2017-10-05
JP6564340B2 (en) 2019-08-21

Similar Documents

Publication Publication Date Title
JP5640530B2 (en) Wireless power supply system
US10320235B2 (en) Power feeding device, power receiving device and wireless power feeding system
JP7050968B2 (en) Methods and systems for controlling modal antennas
US8917782B2 (en) Vehicular power line communication system
US20150145744A1 (en) Tunable antenna
US6577205B2 (en) High-frequency filter device, filter device combined to a transmit-receive antenna, and wireless apparatus using the same
MXPA00011254A (en) Device for the contactless transmission of data.
US10088508B2 (en) Wireless power transfer method and apparatus and method of detecting resonant frequency used in wireless power transfer
US9768991B2 (en) Multi-mode active circuit control and activation system
US10873122B2 (en) Communication device
EP3832892B1 (en) Multi-channel near-field electromagnetic induction device
CN109842215B (en) Wireless power transmitting device and wireless power receiving device capable of realizing multiple simultaneous charging
EP3787192B1 (en) Quality-factor control for a near-field wireless device
CN113490858A (en) Participant of a communication system with a magnetic antenna
JP6564340B2 (en) Wireless transmission system
JP7085850B2 (en) Antenna module and transmission system
JP2007208431A (en) Antenna and communication system
KR20200076485A (en) Tunable antenna and control method thereof
US7242361B2 (en) Antenna structure with filter effect
WO2021157456A1 (en) Wireless power supply device and wireless power supply system
JP2016046548A (en) Communication device
JP2023511513A (en) Radio frequency (RF) amplifier circuit for antenna systems with modal antennas
US20170155285A1 (en) Open type resonance coil without dual loops having serial type in-phase direct power feeding method without dual loops
JP2004120768A (en) Noise reduction for am antenna
US20080111607A1 (en) Amplitude-linear differential phase shift circuit

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17773939

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17773939

Country of ref document: EP

Kind code of ref document: A1