WO2017169188A1 - Photoacoustic measurement device - Google Patents

Photoacoustic measurement device Download PDF

Info

Publication number
WO2017169188A1
WO2017169188A1 PCT/JP2017/005099 JP2017005099W WO2017169188A1 WO 2017169188 A1 WO2017169188 A1 WO 2017169188A1 JP 2017005099 W JP2017005099 W JP 2017005099W WO 2017169188 A1 WO2017169188 A1 WO 2017169188A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
unit
photoacoustic
detection
light source
Prior art date
Application number
PCT/JP2017/005099
Other languages
French (fr)
Japanese (ja)
Inventor
覚 入澤
村越 大
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2018508527A priority Critical patent/JP6534493B2/en
Publication of WO2017169188A1 publication Critical patent/WO2017169188A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography

Definitions

  • the present invention relates to a photoacoustic measurement device that measures a photoacoustic wave generated in a subject, and in particular, by measuring a photoacoustic wave emitted from a tip of an insert that is inserted into a subject. It is related with the photoacoustic measuring device which enabled confirmation of the front-end
  • photoacoustic imaging As a kind of image inspection method capable of non-invasively inspecting the state inside a living body, photoacoustic imaging is known in which the inside of a living body is imaged using a photoacoustic effect.
  • pulsed laser light such as a laser pulse
  • the living tissue absorbs the energy of the pulsed laser light
  • ultrasonic waves photoacoustic waves
  • Photoacoustic imaging is a technique for visualizing the inside of a living body based on a photoacoustic wave by detecting the photoacoustic wave with an ultrasonic probe or the like and constructing a photoacoustic image based on a detection signal.
  • Japanese Patent Application Laid-Open No. 2004-260260 discloses a technique that enables the tip position of an insert such as a puncture needle to be confirmed by applying the above-described photoacoustic imaging.
  • a light absorber such as an optical fiber that reaches the vicinity of the tip of the insert is disposed in an insert such as a puncture needle, and the light absorber covers the tip of the light guide member at the tip of the insert.
  • a configuration is disclosed in which the light propagating through the light guide member is incident on the light absorber from the front end of the light guide member.
  • the tip By making light incident on the light absorber from the tip of the light guide member, generating a photoacoustic wave from the light absorber, detecting the photoacoustic wave and displaying a photoacoustic image of the light absorber, The tip, that is, the tip of the insert can be confirmed.
  • an object of the present invention is to provide a photoacoustic measurement device that can detect a defect in a photoacoustic wave generation unit including a light guide member and a light absorber.
  • the photoacoustic measurement apparatus of the present invention includes a light source that emits light, a long light guide member that is connected to the light source and guides light incident from the proximal end to the distal end, and at least the distal end portion is in the subject.
  • a photoacoustic wave detection unit that detects a photoacoustic wave emitted from the distal end portion of the insert inserted into the subject, a light detection unit that detects leakage light from the distal end portion of the insert, and a light detection unit And a determination unit that determines an abnormality of the photoacoustic wave generation unit including the light guide member and the light absorber based on the amount of the leaked light detected in step (b).
  • the determination unit determines that the photoacoustic wave generation unit is abnormal when the amount of leaked light detected by the light detection unit is greater than a predetermined reference value. It may be configured.
  • the light detection unit includes an optical filter that transmits only a wavelength region of light emitted from the light source on the light incident surface.
  • the light detection unit may be configured to start detection of leaked light based on a trigger signal indicating driving of the light source.
  • a light source drive notification unit that performs a light source drive notification indicating the drive of the light source.
  • the light source drive notification unit may be configured to perform light source drive notification based on a trigger signal that instructs driving of the light source.
  • the photoacoustic measuring device of the present invention includes a light source drive notification unit
  • the light source drive notification unit also serves as an abnormality notification unit, and when the determination unit determines that the photoacoustic wave generation unit is abnormal
  • the abnormality notification may be performed so as to be distinguishable from the light source drive notification.
  • the photoacoustic measurement apparatus of the present invention may include a light source drive switch that instructs driving start and stop of the light source.
  • a light guide member is connected, an optical coupling unit in which the light guide member is optically coupled to the light source, and a connection detection unit that detects a connection between the light guide member and the optical coupling unit. It is preferable to further comprise.
  • the photoacoustic measurement device of the present invention includes a connection detection unit
  • the light source can be driven only when the connection detection unit detects the connection between the light guide member and the optical coupling unit.
  • the connection between the light guide member and the optical coupling unit is notified when the connection detection unit detects the connection between the light guide member and the optical coupling unit. It is preferable to further include a connection notification unit.
  • connection notification unit also serves as an abnormality notification unit, and when the determination unit determines that the photoacoustic wave generation unit is abnormal, notification and identification of the connection between the light guide member and the optical coupling unit You may be comprised so that abnormality notification may be performed as possible.
  • the photoacoustic measurement device further includes an abnormality notification unit that performs abnormality notification when the determination unit determines that the photoacoustic wave generation unit is abnormal.
  • the photoacoustic measurement apparatus further includes a mode changeover switch for switching on / off an abnormality detection mode in which light detection is performed by the light detection unit.
  • the photoacoustic wave detection unit detects the photoacoustic wave when the photodetection unit has an abnormality detection mode in which light detection is performed and the abnormality detection mode is on.
  • the sensitivity of the light detection unit during the period may be set to be greater than the sensitivity of the light detection unit during the period in which the photoacoustic wave detection is performed by the photoacoustic wave detection unit.
  • the photoacoustic wave detection unit detects the photoacoustic wave when the photodetection unit has an abnormality detection mode in which light detection is performed and the abnormality detection mode is on.
  • the value of at least one light source driving condition selected from the number of light emission, the pulse width, and the current is the value of at least one light source driving condition in the period in which the photoacoustic wave detection is performed by the photoacoustic wave detection unit. You may be comprised so that it may set smaller than a value.
  • the light detection unit is configured to detect the connection between the light guide member and the light coupling unit based on detection of the connection between the light guide member and the light coupling unit by the connection detection unit.
  • the light detection may be performed for a certain period from the start of the connection, and the determination unit may be configured to determine the abnormality of the photoacoustic wave generation unit based on the amount of leaked light detected by the light detection unit during the certain period.
  • the photodetection unit is configured to stop light detection and start detection of the photoacoustic wave by the photoacoustic wave detection unit. It may be.
  • the photoacoustic image generation apparatus of the present invention includes a light source that emits light, a long light guide member that is connected to the light source and guides light incident from the proximal end to the distal end, and at least the distal end portion within the subject.
  • a photoacoustic wave detector that detects a photoacoustic wave emitted from the tip of the insert inserted into the subject, a light detector that detects light leaked from the tip of the insert, and light detection And a determination unit that determines an abnormality of the photoacoustic wave generation unit including the light guide member and the light absorber based on the amount of leaked light detected by the unit, so that the light including the light guide member and the light absorber It is possible to easily confirm a defect in the acoustic wave generation unit.
  • FIG. 1 is a block diagram showing the configuration of the photoacoustic measurement apparatus 10 of the present embodiment.
  • the photoacoustic measuring device 10 has a function of generating a photoacoustic image based on a photoacoustic signal as an example.
  • an ultrasonic probe 11 (ultrasonic probe), an ultrasonic wave
  • the sound wave unit 12, the laser unit 13, the image display part 14, and the puncture needle 15 which is an example of an insert are provided.
  • a light absorber 17 that generates a photoacoustic wave is disposed in the vicinity of the distal end of the puncture needle 15, and a long light guide member 16 such as an optical fiber that guides light to the light absorber 17 has a base end that is a laser. Connected to the unit 13.
  • the photoacoustic measurement apparatus 10 detects a photoacoustic wave emitted from a tip 15b (see FIG. 2) of a puncture needle 15 inserted into a subject and images the photoacoustic image as a photoacoustic image.
  • the tip position of the needle 15 can be detected.
  • Light guided by the light guide member 16 is applied to the light absorber 17, and the light absorber 17 absorbs the light to generate a photoacoustic wave.
  • laser light is generally used.
  • causes of the failure of the photoacoustic wave generation unit include breakage of the light guide member 16, displacement of the connection between the light guide member 16 and the light absorber 17, or partial omission or loss of the light absorber 17. It is done. When these abnormalities occur, if laser light is input to the photoacoustic wave generator 18, the laser light leaks to the outside, and the user such as the operator and the subject are exposed to unnecessary laser light. .
  • the present photoacoustic measurement device 10 includes an abnormality detection means 51 for detecting an abnormality in the photoacoustic wave generation unit 18 including the light guide member 16 and the light absorber 17, and an abnormality detection.
  • a mode changeover switch 58 for turning on and off an abnormality detection mode described later by the means 51 is provided, and is configured to prevent the use of the puncture needle 15 provided with the photoacoustic wave generation unit 18 in which an abnormality has occurred. Yes.
  • the laser unit 13 includes a light source 35 that emits infrared light, particularly near-infrared laser light.
  • the light source 35 is a light source for generating a photoacoustic wave.
  • each element of this photoacoustic measuring device 10 is demonstrated.
  • the puncture needle 15 is an example of an insert in which at least the tip is inserted into the subject.
  • FIG. 2 is a view showing a cross section of the puncture needle 15.
  • the puncture needle 15 is made of, for example, a hollow tubular needle tube made of a metal such as stainless steel or a synthetic resin.
  • the puncture needle 15 has a hollow portion 15a extending in the tube axis direction over the entire length.
  • the puncture needle 15 has a tip 15b that is cut obliquely with respect to the tube axis. The puncture needle 15 is punctured into the subject from the tip 15b.
  • the distal end 16a of the long light guide member 16 that receives light that generates a photoacoustic wave from the proximal end and guides the light to the distal end 16a is disposed in the vicinity of the puncture needle distal end 15b.
  • a base end one end to which light from the light guide member 16 is input
  • a distal end one end to which light from the light guide member 16 is input
  • a light absorber 17 connected to the tip 16a of the light guide member 16 is disposed in the vicinity of the puncture needle tip 15b.
  • the vicinity of the puncture needle tip 15b is a position where a photoacoustic wave that can image the tip of the puncture needle 15 with the accuracy required for the puncture operation when the light absorber 17 is disposed at that position. It means that. For example, it refers to the range of 0 mm to 3 mm from the distal end of the puncture needle 15 to the proximal end side.
  • the light absorber 17 is made of a material that absorbs light (here, in particular, infrared light), for example, a synthetic resin such as an epoxy resin, a fluorine resin, or a polyurethane resin mixed with a black pigment, and is in a molten state as a light guide member. After being supplied to the inner wall of the puncture needle 15 so as to cover the 16 tips 16a, it is solidified. Thus, in this example, the vicinity of the tip of the light guide member 16 is fixed to the inner wall of the puncture needle 15 by the light absorber 17. The other part of the light guide member 16 may be appropriately fixed to the inner wall of the puncture needle with another adhesive or the like.
  • the light guide member 16 is constituted by, for example, an optical fiber, and may be constituted by a single optical fiber continuous from the base end to the distal end, or a plurality of optical fibers are connected in series by an optical connector or the like. It may be configured.
  • the proximal end of the light guide member 16 When the proximal end of the light guide member 16 is optically connected to the light source 35 of the laser unit 13, laser light emitted from the light source 35 is input from the proximal end of the light guide member 16, and the laser light is guided. The light is emitted from the tip 16 a of the member 16 and is irradiated on the light absorber 17.
  • the light absorber 17 absorbs the irradiated infrared light and generates a photoacoustic wave.
  • a portion of the light guide member 16 that is not included in the puncture needle 15 is included in a flexible protective member 19 (see FIG. 3) such as a protective tube.
  • the protection member 19 is transparent with respect to visible light. By doing in this way, it becomes easy to confirm the presence or absence of the damage of the light guide member 16 with the naked eye.
  • the ultrasonic probe 11 is a photoacoustic wave detection unit that detects a photoacoustic wave emitted from the distal end portion of an insert (here, the puncture needle 15) inserted into the subject.
  • the probe 11 has, for example, a plurality of ultrasonic transducers arranged one-dimensionally.
  • the probe 11 transmits an acoustic wave (ultrasonic wave) to the subject and receives a reflected acoustic wave (reflected ultrasonic wave) with respect to the transmitted ultrasonic wave.
  • acoustic wave ultrasonic wave
  • the ultrasonic unit 12 includes a laser trigger transmission unit 22, an ultrasonic transmission unit 23, a signal reception unit 24, a photoacoustic image generation unit 25, an ultrasonic image generation unit 26, and a control unit 28 for controlling them.
  • the laser trigger transmitter 22 transmits a laser trigger to the laser unit 13 in response to an instruction from the controller 28.
  • the ultrasonic transmission unit 23 receives the ultrasonic transmission trigger signal from the control unit 28 and causes the probe 11 to transmit ultrasonic waves.
  • the signal receiving unit 24 receives the photoacoustic wave detection signal and the reflected ultrasonic detection signal detected by the probe 11.
  • the signal receiving unit 24 starts sampling of the photoacoustic wave or the reflected ultrasonic wave based on the sampling trigger signal and the sampling clock signal from the control unit 28, and detects the photoacoustic wave or the reflected ultrasonic wave at a predetermined sampling period. Is sampled.
  • the photoacoustic image generation unit 25 generates a photoacoustic image based on the photoacoustic wave detection signal detected by the probe 11.
  • the generation of the photoacoustic image includes, for example, image reconstruction such as phase matching addition, detection, logarithmic conversion, and the like.
  • the photoacoustic image generation unit 25 outputs the generated photoacoustic image data to the image display unit 14.
  • the ultrasonic image generation unit 26 generates an ultrasonic image (reflected acoustic wave image) based on the detection signal of the reflected ultrasonic wave detected by the probe 11.
  • the generation of an ultrasonic image also includes image reconstruction such as phase matching addition, detection, logarithmic conversion, and the like.
  • the ultrasonic image generation unit 26 outputs the generated ultrasonic image data to the image display unit 14.
  • the control unit 28 controls each unit in the ultrasonic unit 12. When acquiring the photoacoustic image, the control unit 28 sends a laser trigger signal to the laser unit 13 via the laser trigger transmission unit 22 to emit infrared light from the light source 35. Then, a sampling trigger signal is sent to the signal receiving unit 24 in accordance with the laser light irradiation, and photoacoustic wave sampling is started.
  • the control unit 28 sends an ultrasonic transmission trigger signal for instructing ultrasonic transmission to the ultrasonic transmission unit 23, and transmits ultrasonic waves from the probe 11 to the ultrasonic transmission unit 23. Send it. Then, a sampling trigger signal is sent to the signal receiving unit 24 in synchronization with the timing of ultrasonic transmission, and sampling of reflected ultrasonic waves is started.
  • the image display unit 14 displays the photoacoustic image and the ultrasonic image separately or as a combined composite image based on the data input from the ultrasonic unit 12.
  • the laser unit 13 includes a trigger input unit 32, a light source driving circuit 33, an optical coupling unit 36, and a connection detection unit 37 as light source driving means 31 including a light source 35.
  • the laser unit 13 includes a light detection unit 52 that detects light output from the light source 35, a determination unit 54, and an abnormality notification unit 56 as the abnormality detection unit 51.
  • the laser unit 13 includes a connection notification unit 38 that notifies the user of the connection between the light guide member 16 and the optical coupling unit 36, and a mode changeover switch 58 that switches on / off of an abnormality detection mode described later.
  • the light detection unit 52 includes an optical filter 52a that transmits the wavelength range of the light output from the light source 35 on the light incident surface.
  • the light source driving means 31 including the light source 35 will be described.
  • the light source 35 is a flash lamp-excited Q-switched solid-state laser such as an alexandrite laser or a YAG (YttriumnetAluminum Garnet) laser, and emits laser light having a wavelength in the infrared region (above 700 nm) as measurement light irradiated on the subject.
  • the light source 35 is configured to receive a trigger signal from the control unit 28 of the ultrasonic unit 12 and output a laser beam.
  • the light source 35 is YAG-SHG (Yttrium Aluminum Garnet-Second harmonic generation) that can output laser light in the near-infrared wavelength region in addition to an alexandrite laser.
  • YAG-SHG Yttrium Aluminum Garnet-Second harmonic generation
  • An OPO (Optical Parametric Oscillation) laser, a Ti-Sapphire (titanium-sapphire) laser, or the like can also be used.
  • the light source 35 is not necessarily a solid-state laser light source, and may be another type of laser light source.
  • the light source 35 may be a laser diode light source (semiconductor laser light source).
  • the light source 35 may be an optical amplification type laser light source using a laser diode light source as a seed light source.
  • the laser unit 13 when the laser unit 13 is configured to include an optical amplification type laser light source, the laser unit 13 includes a semiconductor laser light source that emits pulsed laser light as seed light, and an excitation semiconductor that emits excitation laser light.
  • An optical isolator for preventing oscillation connected to the optical amplifier and an optical wavelength conversion element for converting the pulse laser beam output from the optical isolator into a second harmonic having a wavelength of 1 ⁇ 2 may be provided.
  • the trigger input unit 32 receives the laser trigger signal from the ultrasonic unit 12 and transmits the trigger signal to the light source drive circuit 33.
  • the light source drive circuit 33 receives the laser trigger signal and drives the light source 35, and emits laser light from the light source 35 at a desired timing.
  • the optical coupling unit 36 includes a condensing optical system and an optical connector for causing the light from the light source 35 to enter the light guide member 16.
  • the connection detection unit 37 detects that the light guide member 16 is connected to the optical coupling unit 36.
  • the connection detection unit 37 detects the connection by a contact type sensor such as a micro switch or a photo sensor type detection element such as a photo interrupter provided in the connection part 61 between the light guide member 16 and the optical coupling unit 36, for example.
  • the light source driving means 31 can drive the light source 35 only when the light coupling member 16 is connected to the optical coupling unit 36, and when the light guiding member 16 is not connected to the optical coupling unit 36.
  • the light source driving means 31 is preferably configured to stop driving the light source 35.
  • a connection detection signal is transmitted from the connection detection unit 37 to the ultrasonic unit 12. .
  • the ultrasonic unit 12 does not transmit a laser trigger signal by the control unit 28 unless it receives a connection detection signal.
  • the control unit 28 is configured to stop the transmission of the laser trigger signal. Since the light source 35 is not driven in a state where the light guide member 16 is not connected to the optical coupling unit 36, even if the light source 35 is a laser light source, the surgeon can safely detect an abnormality in the photoacoustic wave generation unit 18 and to be described later. It is possible to perform the photoacoustic wave detection process.
  • the connection notification unit 38 can be constituted by a light emitting element such as an LED (Light Emitting Diode), for example.
  • the light emitting element is turned on in the connected state, and the light emitting element is turned off in the disconnected state.
  • a user such as a person can visually check the connection state.
  • a multi-color LED may be used as the connection notification unit 38 to emit light in red when connected to the light source 35 and yellow when not connected.
  • connection notification unit 38 may be provided not only in the laser unit 13 but also in any part of the photoacoustic measurement device 10, but may be in the vicinity of the connection unit 61 that connects the light guide member 16 of the laser unit 13. It is easy to confirm and is preferable.
  • the light detection unit 52 includes a photoelectric conversion element such as a photodiode that can detect light emitted from the light source 35.
  • the light detection part 52 can be comprised with the element which can detect the light radiate
  • the light detection unit 52 starts light detection based on the connection notification from the connection notification unit 38 and sends the light amount detected for a certain period to the determination unit 54.
  • the certain period can be set to 10 to 30 seconds, for example.
  • the light detection unit 52 may start detection when an object is detected within a predetermined distance from the light detection unit 52 by driving of the light source 35 or by a proximity sensor provided separately. In this case as well, the detection may be performed for an arbitrary fixed period such as several seconds to several tens of seconds. For example, the accumulation operation may be started for a certain period from the detection of light, and the light amount may be detected. For example, in the case where the accumulation operation is performed for a certain period from the detection of light, the certain period can be set to 10 to 100 nsec corresponding to the pulse width of the laser.
  • the optical filter 52 a is a band pass filter that cuts light other than the light emission wavelength of the light source 35 in order to eliminate the influence of light other than the light source 35.
  • the determination unit 54 determines whether the photoacoustic wave generation unit 18 is abnormal based on the detected light amount received from the light detection unit 52.
  • the determination unit 54 has a determination threshold value as a predetermined reference value, and determines whether the photoacoustic wave generation unit 18 is abnormal by comparing the detected light amount with the determination threshold value. For example, it is determined that the photoacoustic wave generation unit 18 is abnormal when the detected light amount exceeds the determination threshold. By determining the presence / absence of an abnormality based on the determination threshold, the presence / absence of the abnormality can be easily determined.
  • the abnormality notification unit 56 notifies the determination result by the determination unit 54 to the user.
  • the abnormality notification unit 56 can be configured by a light emitting element such as an LED or a beep sound generating means.
  • a light emitting element such as an LED or a beep sound generating means.
  • the determination result is “abnormal (abnormal)”
  • the light emitting element is continuously lit or blinking, or a beep sound is generated by a beep sound generating means.
  • the determination result is “no abnormality (normal)”
  • a multicolor light emitting LED may be used as the light emitting element, and it may be lit red when abnormal and green when normal.
  • the image display unit 14 may be configured to display characters and marks such as “abnormality detection”. Further, the light emitting element may be turned on and off during the abnormality determination period so that the user can grasp whether the abnormality is being determined.
  • connection notification unit 38 may also be configured to serve as the abnormality notification unit 56 described above.
  • the abnormality notification is performed so as to be distinguishable from the notification of the connection between the light guide member 16 and the optical coupling unit 36. do it. This makes it possible to notify the user of the presence / absence of connection and the result of abnormality detection without increasing the number of parts.
  • a multi-color light emitting LED may be used as the connection notification unit 38 to emit light in different colors, such as yellow when not connected, green when connected, and red when there is an abnormality notification.
  • the mode switch 58 is a switch for switching on / off of the abnormality detection mode.
  • the state in which the abnormality detection mode is on is a state in which the light detection unit 52 is driven, waiting for an instruction to start light detection for a certain period for abnormality detection, and a state in which light detection is actually performed. .
  • the state in which the abnormality detection mode is off is a state in which the light detection unit 52 is not driven.
  • the mode changeover switch 58 may be provided in any of the laser unit 13, the ultrasonic unit 12, and the ultrasonic probe 11, or may be provided as another unit.
  • the mode switch 58 may adopt an arbitrary configuration that can accept a user operation and can instruct the detection start and detection stop of the light detection unit 52 according to the accepted operation.
  • the mode changeover switch 58 also serves as a mode notification unit, and includes a light emitting element covered with a transparent member.
  • the mode changeover switch 58 is lit when the abnormality detection mode is on, and is turned off when the abnormality detection mode is off.
  • the mode notification unit may be omitted or provided separately from the mode switch 58.
  • the mode changeover switch 58 may be provided in any of the laser unit 13, the ultrasonic unit 12, and the ultrasonic probe 11, or may be provided as another unit.
  • FIG. 3 is a diagram showing a specific external appearance of the photoacoustic measurement apparatus 10 according to the first embodiment of the present invention.
  • the ultrasonic unit 12 is a computer including a processor, a memory, and an input unit, and is configured as an apparatus integrated with the image display unit 14.
  • the ultrasonic unit 12 includes the above-described laser trigger transmission unit 22, ultrasonic transmission unit 23, signal reception unit 24, photoacoustic image generation unit 25, ultrasonic image generation unit 26, and control unit 28. And a program related to ultrasonic image generation.
  • the probe 11 is connected to the ultrasonic unit 12, and the laser unit 13 is connected to the ultrasonic unit 12 via a USB (Universal Serial Bus) port 29 described later.
  • USB Universal Serial Bus
  • the laser unit 13 has a connection portion 61 that is a connection port for connecting the light guide member 16.
  • the light guide member 16 is connected to the optical coupling portion 36 by being attached to the connection portion 61.
  • a light detection unit 52 is provided on the surface of the laser unit 13, and further, a mode changeover switch 58, an abnormality notification unit 56 including a light emitting element, and a connection notification unit 38 are provided.
  • the trigger input unit 32 of the laser unit 13 is connected to the signal output line of the ultrasonic unit 12.
  • the trigger input terminal which is the trigger input unit 32 is configured as a USB connector, for example.
  • the ultrasonic unit 12 has a USB port 29 (receptacle), and a signal output from the ultrasonic unit 12 is supplied by inserting a USB connector including a trigger input terminal into the USB port.
  • FIG. 4 is a flowchart of photoacoustic detection processing by the photoacoustic measurement apparatus 10 according to the first embodiment. First, the photoacoustic wave detection process in the photoacoustic measurement apparatus 10 will be described with reference to FIG.
  • image acquisition conditions such as the frame rate, the number of laser emission per frame, and the balance of the number of frames of the reflected acoustic wave signal and the photoacoustic image signal per frame are not shown for the ultrasonic unit 12.
  • the light source driving conditions such as the laser emission timing, the number of laser pulses, and the current are determined by the control unit 28 so as to correspond to the image acquisition conditions, and are used for driving the light source 35 by the light source driving means 31.
  • the photoacoustic wave detection process starts with the light guide member 16 connected to the optical coupling unit 36.
  • the control unit 28 of the ultrasonic unit 12 sends a trigger signal to the laser unit 13.
  • the laser unit 13 Upon receiving the trigger signal, the laser unit 13 starts laser oscillation and emits pulsed laser light.
  • the pulsed laser light emitted from the laser unit 13 is guided to the vicinity of the tip 15b of the puncture needle 15 by the light guide member 16 and irradiated to the light absorber 17 (step A1).
  • the light absorber 17 absorbs the pulsed laser light and generates an acoustic wave.
  • a user such as a doctor punctures the subject with the puncture needle 15 at an arbitrary timing such as before and after driving the light source 35.
  • the probe 11 detects the photoacoustic wave generated from the light absorber 17 by the laser light irradiation (step A2).
  • the signal receiving unit 24 receives the photoacoustic wave detection signal from the probe 11, samples and stores the photoacoustic wave detection signal, and transmits the stored photoacoustic wave detection signal to the photoacoustic image generation unit 25.
  • the photoacoustic image generation unit 25 generates a photoacoustic image based on the photoacoustic wave detection signal, and the photoacoustic image is displayed on the image display unit 14.
  • an ultrasonic image may be acquired following the acquisition of the photoacoustic image.
  • the ultrasonic image acquisition process is performed as follows.
  • the control unit 28 transmits an ultrasonic transmission trigger signal to the ultrasonic transmission unit 23, and the ultrasonic transmission unit 23 transmits ultrasonic waves from the probe 11 in response thereto (step A4).
  • the probe 11 detects the reflected ultrasonic wave after transmitting the ultrasonic wave (step A5).
  • the signal reception unit 24 receives the detection signal, samples and stores the reflected ultrasonic detection signal, and transmits the stored reflected ultrasonic detection signal to the ultrasonic image generation unit 26.
  • the ultrasonic image generation unit 26 generates an ultrasonic image based on the detection signal of the reflected ultrasonic wave (step A6), and the ultrasonic image is displayed on the image display unit 14 (A7).
  • the image display unit 14 may combine and display the photoacoustic wave image and the ultrasonic image. By doing in this way, it becomes possible to confirm where the tip 15b of the puncture needle 15 is in the living body, so that accurate and safe puncture is possible.
  • acquisition of ultrasonic image data can be performed in a different mode independently of acquisition of photoacoustic image data.
  • FIG. 5 is a flowchart of an abnormality detection process performed by the photoacoustic measurement apparatus 10 according to the first embodiment. The abnormality detection process performed by the photoacoustic measurement apparatus 10 will be described with reference to FIG.
  • the control unit 28 of the ultrasonic unit 12 sends a trigger signal to the laser unit 13.
  • the laser unit 13 Upon receiving the trigger signal, the laser unit 13 starts laser oscillation and emits pulsed laser light.
  • the pulsed laser light emitted from the laser unit 13 is guided to the vicinity of the tip 15b of the puncture needle 15 by the light guide member 16 and irradiated to the light absorber 17 (step B1). If there is an abnormality such as the tip 15b of the puncture needle 15 being detached from the light absorber 17, light leaks from the tip 15b of the puncture needle 15.
  • the light detection unit 52 is based on the condition that the optical coupling unit 36 and the light guide member 16 are connected based on the connection notification signal of the connection detection unit 37 and the abnormality detection mode is on. It is configured to perform light detection only when the condition is satisfied. Thereby, the abnormality detection process is executed in a state where the mode change switch 58 is switched and the abnormality detection mode is turned on by a user operation, and is not executed in a state where the abnormality detection mode is turned off. In addition, the abnormality detection process is executed in a state where the light guide member 16 is connected to the optical coupling unit 36, and is not executed in a state where the light guide member 16 is not connected to the optical coupling unit 36.
  • the determination as to whether or not such a condition is satisfied and the execution control of the light detection unit 52 according to the determination result may be performed by the control unit 28, for example, by a circuit provided in the abnormality detection unit 51 or the like. It may be done by any method.
  • the light detection unit 52 Based on the trigger signal indicating the driving of the light source 35 from the light source driving circuit 33, the light detection unit 52 performs light detection for a certain period from the start of driving of the light source 35 (step B2). It should be noted that the tip 15b of the puncture needle 15 is placed over the light detection unit 52 by the user during at least a part of the certain period. During the determination, the abnormality notification unit 56 blinks in green until the determination result is output after the light detection unit 52 starts the light detection.
  • the light detection unit 52 when the light detection unit 52 receives a trigger signal indicating driving of the light source 35 from the light source drive circuit 33, the light detection unit 52 starts light detection, and leaks light from the tip 15b of the puncture needle 15. Detect for a certain period. Thus, the user can smoothly perform the abnormality detection process according to the driving of the light source 35.
  • an arbitrary condition can be set as a start condition for the light detection unit 52 to start light detection for a certain period for abnormality detection.
  • the light detection unit 52 detects light for a certain period from the start of the connection between the light guide member 16 and the optical coupling unit 36 based on the detection of the connection between the light guide member 16 and the optical coupling unit 36 by the connection detection unit 37.
  • the determination unit 54 may be configured to determine abnormality of the photoacoustic wave generation unit 18 based on the amount of leaked light detected by the light detection unit 52 during a certain period.
  • an abnormality detection process is performed each time the connection between the light guide member 16 and the optical coupling unit 36 is detected, so that an abnormality is detected each time a new puncture needle 15 is connected to the laser unit 13. Therefore, it is possible to suitably prevent the defective insert from being inserted into the subject. As a result, the procedure can be redone and the burden on the subject can be reduced.
  • the ultrasonic unit 12 is provided with an abnormality detection start button or the like, and when the detection signal of the ON operation of the abnormality detection start button by a user operation is transmitted, the light detection unit 52 is configured to start light detection. Also good.
  • a proximity detection sensor (not shown) may be provided, and when the detection signal indicating that the puncture needle 15 has approached within a predetermined distance is transmitted by the proximity detection sensor, the light detection unit 52 starts light detection. Good.
  • the detected light amount accumulated from the light detection unit 52 is transmitted to the determination unit 54, and the determination unit 54 compares the detected light amount with a determination threshold value.
  • the determination unit 54 determines that the input detection light amount is larger than the determination threshold value, and determines that the input is normal, and determines that the detected light amount is normal if the input detection light amount is equal to or less than the determination threshold value (step B3).
  • the determination result in the determination part 54 is notified to a user by the abnormality notification part 56 (step B4).
  • the abnormality notification unit 56 lights red when the determination result is abnormal, and lights green when the determination result is normal, and notifies the determination result by the abnormality detection unit 51. The process ends.
  • the abnormality notification unit 56 the user takes measures such as replacing the puncture needle 15.
  • the photoacoustic measurement device 10 detects the light when the determination unit 54 determines that the photoacoustic wave generation unit 18 is not abnormal based on the amount of leaked light detected by the light detection unit 52 during a certain period.
  • the optical detection of the part 52 can be stopped, and the probe 11 can be configured to detect the photoacoustic wave. In this case, when there is no abnormality in the insert, it is possible to improve the efficiency of the operation of a user such as an operator by automatically transitioning to a state in which the photoacoustic wave can be detected. .
  • the abnormality notification unit 56 performs an abnormality notification requesting a user's confirmation input, and can continue the abnormality notification until the confirmation input is received.
  • the light source driving means 31 can be configured not to drive the light source 35 until a confirmation input is received.
  • the control unit 28 displays “continuous photoacoustic wave measurement” on the display screen of the image display unit 14. Display the message and confirmation button until a user's confirmation input is accepted.
  • the control unit 28 transmits the laser stop instruction to the laser trigger transmission unit 22 and does not drive the light source 35 until the confirmation input is received.
  • the photoacoustic wave detection process can be executed regardless of whether the abnormality detection mode is on or off.
  • the photoacoustic wave detection process and the abnormality detection process can be executed while the abnormality detection mode is on, abnormality detection of the tip 15b of the puncture needle 15 is performed immediately before the puncture needle 15 is inserted into the subject.
  • the photoacoustic wave detection process can be performed by confirming the defect of the insert at an arbitrary timing. Furthermore, it is good also as a structure which starts a photoacoustic wave detection process based on the detection of the connection of the light guide member 16 and the optical coupling part 36 by the connection detection part 37 irrespective of ON / OFF of abnormality detection mode.
  • the abnormality detection process may be started based on connection detection, or the photoacoustic wave detection process and the abnormality detection process may be started. Furthermore, based on the detection of the connection, the state of the apparatus is changed from a state where only an image other than a photoacoustic image such as an ultrasonic image or a Doppler image can be acquired to a state where a photoacoustic image can be acquired. It may be configured. By doing in this way, user operation required in order to start a photoacoustic wave detection process or an abnormality detection process can be reduced.
  • the light source driving condition when the photoacoustic wave detection process is executed while the abnormality detection mode is on may be different from the light source driving condition when the photoacoustic wave detection process is not executed.
  • the value of at least one light source driving condition selected from the number of emitted light, the pulse width, and the current is in the first period when the photoacoustic wave is not detected by the probe 11.
  • the probe 11 may be set to be smaller than the value of at least one light source driving condition in the second period in which photoacoustic wave detection is performed.
  • the light quantity of the light source 35 is increased to suitably realize the photoacoustic wave measurement performance, and in the first period in which the photoacoustic wave is not detected.
  • the inspection of the photoacoustic wave generation unit 18 can be performed safely by suppressing the amount of light from the light source 35 within a range in which the amount of light necessary for abnormality detection can be secured.
  • the abnormality detection mode is on, in the first period, the value of at least one light source driving condition selected from the number of light emission, pulse width, and current is the value of at least one light source driving condition in the second period. It is good also as a structure set larger than this. In this case, the accuracy of abnormality detection can be increased in the first period.
  • the light source drive condition is set at an arbitrary timing as long as the value of the at least one light source drive condition can be set different from the value of the light source drive condition of the second period at least in the first period. It's okay.
  • the value of the light source driving condition may be set differently between the execution period of the photoacoustic wave detection process and the other period.
  • the light detection unit 52 detects the photoacoustic wave by the probe 11 when the sensitivity of the light detection unit 52 is not detected by the probe 11. It may be set so as to be larger than the sensitivity of the light detection unit 52 during the period in which the light detection is performed.
  • the sensitivity of the light detection unit 52 can be increased to improve the accuracy of abnormality detection.
  • the sensitivity of the light detection unit 52 is set to be higher than the sensitivity during the period in which the photoacoustic wave is detected by the probe 11 at least during the period in which the photoacoustic wave is not detected by the probe 11. If it is a thing, you may change the sensitivity of the photon detection part 52 at arbitrary timings. For example, the sensitivity of the light detection unit 52 may be set differently between the execution period of the photoacoustic wave detection process and the other period.
  • the light source driving means 31 and the abnormality detecting means 51 are described as being included in the laser unit 13, but each of these means may be provided separately.
  • the abnormality detection unit 51 is provided in the ultrasonic probe 11 and the ultrasonic unit 12 will be described.
  • FIG. 6 is a block diagram illustrating a configuration of the photoacoustic measurement apparatus 10 according to the second embodiment.
  • FIG. 7 illustrates a configuration in which the light detection unit 52 is provided in a part of the ultrasonic probe 11 in the second embodiment. It is a schematic diagram which shows a structural example.
  • the laser unit 13 may include the light source driving unit 31 and the abnormality detecting unit 51 may be included in the probe 11.
  • the operator can inspect the abnormality of the puncture needle 15 at hand. Both the ultrasonic probe 11 and the puncture needle 15 need to be used in a clean environment. If the light detection unit 52 is provided in a part of the ultrasonic probe 11, the abnormality detection can also be performed in the clean environment. This is particularly preferred because
  • FIG. 8 is a block diagram illustrating a configuration of the photoacoustic measurement apparatus 10 according to the third embodiment.
  • the photoacoustic measurement device 10 includes a point that the abnormality detection unit 51 is provided in the ultrasonic unit 12, a point that a light source drive notification unit 39 is provided instead of the connection notification unit 38, and the ultrasonic unit 12. It differs from the photoacoustic measuring device 10 of 1st Embodiment by the point provided with the light source drive switch 42 which is an external switch connected to. Other components and their functions are the same as those of the photoacoustic measurement apparatus 10 of the first embodiment.
  • the laser unit 13 may include the light source driving unit 31 and the abnormality detecting unit 51 may be included in the ultrasonic unit 12.
  • the abnormality detection means 51 including the light detection unit 52, the determination unit 54, and the abnormality notification unit 56 is provided in the ultrasonic unit 12 as in the present embodiment, an assistant who assists the operator performs abnormality detection. In some cases, the operation becomes easy.
  • the light detection part 52, the determination part 54, and the abnormality notification part 56 may be provided in a mutually different location.
  • the light detection unit 52 is provided in the laser unit 13
  • the determination unit 54 is provided in the ultrasonic unit 12, and the abnormality notification unit 56 is provided in the image display unit 14.
  • the light source drive switch 42 is a foot switch for switching the laser trigger signal on and off.
  • the photoacoustic measuring device 10 includes the light source drive switch 42, the user can easily control the drive of the light source 35, and the inspection of the photoacoustic wave generator 18 can be performed safely.
  • the light source drive switch 42 is connected to the ultrasonic unit 12 and is configured to be able to switch the on / off signal of the laser trigger signal, any other type of external switch can be adopted. .
  • the light source drive notification unit 39 notifies the user that the light source 35 is being driven, that is, the laser beam is being output.
  • the photoacoustic measuring device 10 includes the light source drive notification unit 39, the user can easily recognize whether the laser is output, and the photoacoustic wave generation unit 18 can be safely inspected. Can do.
  • the light source drive notification unit 39 is a light emitting element such as an LED that blinks each time a trigger pulse is received from the trigger input unit 32.
  • the light source drive notification unit 39 blinks every time a trigger pulse is received from the trigger input unit 32, it is preferable that the user can recognize in detail whether the laser is outputting or not.
  • the abnormality notification unit 56 described above may also serve as the light source drive notification unit 39.
  • the light source drive notification unit 39 may perform abnormality notification so as to be distinguishable from the light source drive notification. This makes it possible to notify the user of the presence / absence of connection and the result of abnormality detection without increasing the number of parts.
  • the light source drive notification may be flashing green, and the abnormality notification may be flashing red.
  • the various notification units such as the abnormality notification unit 56, the connection notification unit 38, the light source drive notification unit 39, and the mode notification unit may be configured independently of each other, or two or three functions may be combined into one notification unit. May be configured to serve as both.
  • the various notification units such as the abnormality notification unit 56, the connection notification unit 38, the light source drive notification unit 39, and the mode notification unit may be configured independently of each other, or two or three functions may be combined into one notification unit. May be configured to serve as both.
  • a plurality of pieces of information are notified by a single notification unit, it is only necessary to change the emission color for each information using a multicolor LED or distinguish between continuous lighting and blinking lighting.
  • the various notification units such as the abnormality notification unit 56, the connection notification unit 38, the light source drive notification unit 39, and the mode notification unit provided in the photoacoustic measurement device 10 are not only configured by light emitting elements, Various notification display means may be used. Further, the abnormality notification unit 56, the connection notification unit 38, the light source drive notification unit 39, the mode notification unit, the connection detection unit 37, and the mode changeover switch 58 are not essential components and may be omitted.
  • the puncture needle is taken as an example of the insert, but the present invention is not limited to this.
  • the insert may be a radiofrequency ablation needle that accommodates an electrode used for radiofrequency ablation, or a catheter that is inserted into a blood vessel. It may be a guide wire of a catheter inserted into a blood vessel. Alternatively, an optical fiber for laser treatment may be used.
  • Photoacoustic Measuring Device 11 Ultrasonic Probe (Photoacoustic Wave Detection Unit) 12 Ultrasonic unit 13 Laser unit 14 Image display unit 15 Puncture needle (insert) 15a hollow portion 15b of puncture needle 16 tip of puncture needle 16 light guide member 16a tip 17 of light guide member light absorber 18 photoacoustic wave generator 19 protective member 22 laser trigger transmitter 23 ultrasonic transmitter 24 signal receiver 25 photoacoustic Image generating unit 26 Ultrasonic image generating unit 28 Control unit 29 USB port 31 Light source driving means (light source driving unit) 32 Trigger input unit 33 Light source drive circuit 35 Light source 36 Optical coupling unit 37 Connection detection unit 38 Connection notification unit 39 Light source drive notification unit 42 Light source drive switch 51 Abnormality detection means (abnormality detection unit) 52 Photodetector 52a Optical filter 54 Judgment unit 56 Abnormality notification unit 58 Mode switch 61 Connection unit

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

[Problem] To provide a photoacoustic measurement device capable of detecting defects in a photoacoustic wave generation unit comprising a light guiding member and a light absorbing body. [Solution] This device has: a light source (35) for emitting light; a light guiding member (16) for guiding light entering from a base end to a leading end; an insert (15), at least a leading end part of which is inserted into a test subject, and which encloses at least the leading end of the light guiding member (16) and a light absorbing body (17) that is connected to the leading end and that absorbs light guided by the light guiding member to generate a photoacoustic wave; a photoacoustic wave detection unit (11) for detecting the photoacoustic wave generated from the leading end part of the insert (15) inserted into the test subject; a light detection unit (52) for detecting light leakage from the leading end part of the insert (15); and a determination unit (54) for determining abnormality of a photoacoustic wave generation unit (18) comprising the light guiding member (16) and the light absorbing body (17) on the basis of the amount of the light leakage.

Description

光音響計測装置Photoacoustic measuring device
 本発明は、被検体内で発生した光音響波を計測する光音響計測装置に関し、特には、被検体内に挿入される挿入物の先端から発せられる光音響波を計測することにより、挿入物の先端位置を確認可能とした光音響計測装置に関するものである。 The present invention relates to a photoacoustic measurement device that measures a photoacoustic wave generated in a subject, and in particular, by measuring a photoacoustic wave emitted from a tip of an insert that is inserted into a subject. It is related with the photoacoustic measuring device which enabled confirmation of the front-end | tip position.
 生体内部の状態を非侵襲で検査できる画像検査法の一種として、光音響効果を利用して生体の内部を画像化する光音響イメージングが知られている。レーザパルスなどのパルスレーザ光を生体内に照射すると、生体組織がパルスレーザ光のエネルギーを吸収し、そのエネルギーによる断熱膨張により超音波(光音響波)が発生する。この光音響波を超音波プローブなどで検出し、検出信号に基づいて光音響画像を構成することで、光音響波に基づく生体内の可視化する技術が光音響イメージングである。 As a kind of image inspection method capable of non-invasively inspecting the state inside a living body, photoacoustic imaging is known in which the inside of a living body is imaged using a photoacoustic effect. When a living body is irradiated with pulsed laser light such as a laser pulse, the living tissue absorbs the energy of the pulsed laser light, and ultrasonic waves (photoacoustic waves) are generated by adiabatic expansion due to the energy. Photoacoustic imaging is a technique for visualizing the inside of a living body based on a photoacoustic wave by detecting the photoacoustic wave with an ultrasonic probe or the like and constructing a photoacoustic image based on a detection signal.
 また、従来、生体である被検体に各種穿刺針を穿刺して、手術や試料採取、さらには薬液注入等の処置がなされている。 Conventionally, various puncture needles have been punctured into a subject that is a living body, and procedures such as surgery, sample collection, and chemical injection have been performed.
 穿刺針を使って各種処置を行う際には、被検体の安全のために、穿刺針の先端位置を確認可能としておくことが望まれる。特許文献1には、上述した光音響イメージングを適用して穿刺針などの挿入物の先端位置を確認可能とした技術が開示されている。特許文献1には、穿刺針等の挿入物内に、その挿入物の先端近傍まで達する光ファイバ等の導光部材を配設し、挿入物の先端に導光部材の先端を覆う光吸収体を配置し、導光部材を伝搬させた光を導光部材先端から光吸収体に入射させるようにした構成が開示されている。導光部材先端から光を光吸収体に入射させて光吸収体から光音響波を発生させ、その光音響波を検出して光吸収体の光音響画像を表示させることにより、導光部材の先端、つまりは挿入物の先端が確認可能となる。 When performing various treatments using a puncture needle, it is desirable to be able to confirm the tip position of the puncture needle for the safety of the subject. Japanese Patent Application Laid-Open No. 2004-260260 discloses a technique that enables the tip position of an insert such as a puncture needle to be confirmed by applying the above-described photoacoustic imaging. In Patent Document 1, a light absorber such as an optical fiber that reaches the vicinity of the tip of the insert is disposed in an insert such as a puncture needle, and the light absorber covers the tip of the light guide member at the tip of the insert. A configuration is disclosed in which the light propagating through the light guide member is incident on the light absorber from the front end of the light guide member. By making light incident on the light absorber from the tip of the light guide member, generating a photoacoustic wave from the light absorber, detecting the photoacoustic wave and displaying a photoacoustic image of the light absorber, The tip, that is, the tip of the insert can be confirmed.
特開2015-37519号公報JP 2015-37519 A
 上述の特許文献1の構成において、光ファイバ等の導光部材が破損した場合、あるいは導光部材と光吸収体との接続が外れた場合には、挿入物の先端から光音響波を発生させるための光が外部に漏れ出ることとなる。挿入物から漏れ光による術者や被検者への無用な曝露は、好ましくない。また、導光部材と光吸収体との接続のズレや光吸収体の一部欠落などが生じると、光音響波の発生位置にずれが生じたり、光音響波の信号強度が低下したりするために、被検体内における挿入物の先端位置を正確に検出することができなくなる恐れがある。 When the light guide member such as an optical fiber is broken or the connection between the light guide member and the light absorber is disconnected in the configuration of the above-described Patent Document 1, a photoacoustic wave is generated from the tip of the insert. The light for leaking out. Unnecessary exposure to the operator or subject due to light leaking from the insert is undesirable. In addition, if the connection between the light guide member and the light absorber is shifted or a part of the light absorber is lost, the position where the photoacoustic wave is generated shifts or the signal intensity of the photoacoustic wave decreases. Therefore, there is a possibility that the tip position of the insert in the subject cannot be accurately detected.
 本発明は上記事情に鑑み、導光部材及び光吸収体からなる光音響波発生部の不良を検出可能とした光音響計測装置を提供することを目的とする。 In view of the above circumstances, an object of the present invention is to provide a photoacoustic measurement device that can detect a defect in a photoacoustic wave generation unit including a light guide member and a light absorber.
 本発明の光音響計測装置は、光を出射する光源と、光源に接続され、基端から入射された光を先端に導光する長尺な導光部材と、少なくとも先端部が被検体内に挿入される挿入物であって、導光部材の少なくとも先端と、先端に接続され、導光部材により導光された光を吸収して光音響波を発生する光吸収体とを内包する挿入物と、被検体内に挿入された挿入物の先端部から発せられる光音響波を検出する光音響波検出部と、挿入物の先端部からの漏れ光を検出する光検出部と、光検出部で検出された漏れ光の光量に基づいて導光部材及び光吸収体からなる光音響波発生部の異常を判定する判定部とを備える。 The photoacoustic measurement apparatus of the present invention includes a light source that emits light, a long light guide member that is connected to the light source and guides light incident from the proximal end to the distal end, and at least the distal end portion is in the subject. An insert that is inserted and includes at least a tip of a light guide member and a light absorber that is connected to the tip and absorbs light guided by the light guide member and generates a photoacoustic wave. A photoacoustic wave detection unit that detects a photoacoustic wave emitted from the distal end portion of the insert inserted into the subject, a light detection unit that detects leakage light from the distal end portion of the insert, and a light detection unit And a determination unit that determines an abnormality of the photoacoustic wave generation unit including the light guide member and the light absorber based on the amount of the leaked light detected in step (b).
 本発明の光音響計測装置においては、判定部は、光検出部で検出された漏れ光の光量が予め定められた基準値よりも大きい場合に光音響波発生部が異常であると判定するよう構成されていてもよい。 In the photoacoustic measurement device of the present invention, the determination unit determines that the photoacoustic wave generation unit is abnormal when the amount of leaked light detected by the light detection unit is greater than a predetermined reference value. It may be configured.
 本発明の光音響計測装置においては、光検出部は、光源から出射される光の波長域のみを透過する光学フィルタを光入射面に備えることが好ましい。 In the photoacoustic measurement apparatus of the present invention, it is preferable that the light detection unit includes an optical filter that transmits only a wavelength region of light emitted from the light source on the light incident surface.
 本発明の光音響計測装置においては、光検出部は、光源の駆動を示すトリガ信号に基づいて、漏れ光の検出を開始するよう構成されていてもよい。 In the photoacoustic measurement apparatus of the present invention, the light detection unit may be configured to start detection of leaked light based on a trigger signal indicating driving of the light source.
 本発明の光音響計測装置においては、光源の駆動を示す光源駆動通知を行う光源駆動通知部をさらに備えることが好ましい。 In the photoacoustic measuring device of the present invention, it is preferable to further include a light source drive notification unit that performs a light source drive notification indicating the drive of the light source.
 本発明の光音響計測装置が光源駆動通知部を備える場合には、光源駆動通知部は、光源の駆動を指示するトリガ信号に基づいて、光源駆動通知を行うよう構成されていてもよい。 When the photoacoustic measurement device of the present invention includes a light source drive notification unit, the light source drive notification unit may be configured to perform light source drive notification based on a trigger signal that instructs driving of the light source.
 本発明の光音響計測装置が光源駆動通知部を備える場合には、光源駆動通知部は、異常通知部を兼ねており、判定部により光音響波発生部が異常であると判定された場合に、光源駆動通知と識別可能に異常通知を行うよう構成されていてもよい。 When the photoacoustic measuring device of the present invention includes a light source drive notification unit, the light source drive notification unit also serves as an abnormality notification unit, and when the determination unit determines that the photoacoustic wave generation unit is abnormal The abnormality notification may be performed so as to be distinguishable from the light source drive notification.
 本発明の光音響計測装置においては、光源の駆動開始と駆動停止を指示する光源駆動スイッチを備えてもよい。 The photoacoustic measurement apparatus of the present invention may include a light source drive switch that instructs driving start and stop of the light source.
 本発明の光音響計測装置においては、導光部材が接続され、導光部材が光源と光学的に結合される光結合部と、導光部材と光結合部との接続を検知する接続検知部をさらに備えることが好ましい。 In the photoacoustic measurement device of the present invention, a light guide member is connected, an optical coupling unit in which the light guide member is optically coupled to the light source, and a connection detection unit that detects a connection between the light guide member and the optical coupling unit. It is preferable to further comprise.
 本発明の光音響計測装置が接続検知部を備える場合には、接続検知部により導光部材と光結合部との接続が検知されている場合にのみ、光源が駆動可能となることが好ましい。 When the photoacoustic measurement device of the present invention includes a connection detection unit, it is preferable that the light source can be driven only when the connection detection unit detects the connection between the light guide member and the optical coupling unit.
 本発明の光音響計測装置が接続検知部を備える場合には、接続検知部により導光部材と光結合部との接続が検知された場合に、導光部材と光結合部との接続を通知する接続通知部をさらに備えることが好ましい。 When the photoacoustic measuring device of the present invention includes a connection detection unit, the connection between the light guide member and the optical coupling unit is notified when the connection detection unit detects the connection between the light guide member and the optical coupling unit. It is preferable to further include a connection notification unit.
 上記場合に、接続通知部は、異常通知部を兼ねており、判定部により光音響波発生部が異常であると判定された場合に、導光部材と光結合部との接続の通知と識別可能に異常通知を行うよう構成されていてもよい。 In the above case, the connection notification unit also serves as an abnormality notification unit, and when the determination unit determines that the photoacoustic wave generation unit is abnormal, notification and identification of the connection between the light guide member and the optical coupling unit You may be comprised so that abnormality notification may be performed as possible.
 本発明の光音響計測装置においては、判定部により光音響波発生部が異常であると判定された場合に異常通知を行う異常通知部をさらに備えることが好ましい。 In the photoacoustic measurement device of the present invention, it is preferable that the photoacoustic measurement device further includes an abnormality notification unit that performs abnormality notification when the determination unit determines that the photoacoustic wave generation unit is abnormal.
 本発明の光音響計測装置においては、光検出部により光検出を行う異常検出モードのオンオフを切り替えるモード切替スイッチをさらに備えることが好ましい。 In the photoacoustic measurement apparatus of the present invention, it is preferable that the photoacoustic measurement apparatus further includes a mode changeover switch for switching on / off an abnormality detection mode in which light detection is performed by the light detection unit.
 本発明の光音響計測装置においては、光検出部により光検出を行う異常検出モードを有し、異常検出モードがオンの場合に、光音響波検出部による光音響波の検出が実行されていない期間の前記光検出部の感度が、光音響波検出部による光音響波の検出が実行されている期間の光検出部の感度よりも大きく設定されるよう構成されていてもよい。 In the photoacoustic measuring device according to the present invention, the photoacoustic wave detection unit detects the photoacoustic wave when the photodetection unit has an abnormality detection mode in which light detection is performed and the abnormality detection mode is on. The sensitivity of the light detection unit during the period may be set to be greater than the sensitivity of the light detection unit during the period in which the photoacoustic wave detection is performed by the photoacoustic wave detection unit.
 本発明の光音響計測装置においては、光検出部により光検出を行う異常検出モードを有し、異常検出モードがオンの場合に、光音響波検出部による光音響波の検出が実行されていない期間には、発光数、パルス幅及び電流から選択される少なくとも1つの光源駆動条件の値が、光音響波検出部による光音響波の検出が実行されている期間における少なくとも1つの光源駆動条件の値よりも小さく設定されるよう構成されていてもよい。 In the photoacoustic measuring device according to the present invention, the photoacoustic wave detection unit detects the photoacoustic wave when the photodetection unit has an abnormality detection mode in which light detection is performed and the abnormality detection mode is on. In the period, the value of at least one light source driving condition selected from the number of light emission, the pulse width, and the current is the value of at least one light source driving condition in the period in which the photoacoustic wave detection is performed by the photoacoustic wave detection unit. You may be comprised so that it may set smaller than a value.
 本発明の光音響計測装置が接続検知部を備える場合に、光検出部は、接続検知部による導光部材と光結合部との接続の検知に基づいて、導光部材と光結合部との接続の開始から一定期間光検出を行い、判定部は、一定期間に光検出部で検出された漏れ光の光量に基づいて光音響波発生部の異常を判定するよう構成されていてもよい。 When the photoacoustic measuring device of the present invention includes the connection detection unit, the light detection unit is configured to detect the connection between the light guide member and the light coupling unit based on detection of the connection between the light guide member and the light coupling unit by the connection detection unit. The light detection may be performed for a certain period from the start of the connection, and the determination unit may be configured to determine the abnormality of the photoacoustic wave generation unit based on the amount of leaked light detected by the light detection unit during the certain period.
 上記場合において、判定部により光音響波発生部の異常が検知されなかった場合には、光検出部が光検出を停止し、光音響波検出部による光音響波の検出を開始するよう構成されていてもよい。 In the above case, when no abnormality of the photoacoustic wave generation unit is detected by the determination unit, the photodetection unit is configured to stop light detection and start detection of the photoacoustic wave by the photoacoustic wave detection unit. It may be.
 本発明の光音響画像生成装置は、光を出射する光源と、光源に接続され、基端から入射された光を先端に導光する長尺な導光部材と、少なくとも先端部が被検体内に挿入される挿入物であって、導光部材の少なくとも先端と、先端に接続され、導光部材により導光された光を吸収して光音響波を発生する光吸収体とを内包する挿入物と、被検体内に挿入された挿入物の先端部から発せられる光音響波を検出する光音響波検出部と、挿入物の先端部からの漏れ光を検出する光検出部と、光検出部で検出された漏れ光の光量に基づいて導光部材及び光吸収体からなる光音響波発生部の異常を判定する判定部とを備えているので、導光部材及び光吸収体からなる光音響波発生部の不良を容易に確認することができる。 The photoacoustic image generation apparatus of the present invention includes a light source that emits light, a long light guide member that is connected to the light source and guides light incident from the proximal end to the distal end, and at least the distal end portion within the subject. An insert that is inserted into the light guide member and includes at least a tip of the light guide member and a light absorber that is connected to the tip and absorbs light guided by the light guide member to generate a photoacoustic wave. A photoacoustic wave detector that detects a photoacoustic wave emitted from the tip of the insert inserted into the subject, a light detector that detects light leaked from the tip of the insert, and light detection And a determination unit that determines an abnormality of the photoacoustic wave generation unit including the light guide member and the light absorber based on the amount of leaked light detected by the unit, so that the light including the light guide member and the light absorber It is possible to easily confirm a defect in the acoustic wave generation unit.
本発明の第1実施形態に係る光音響計測装置を示すブロック図。The block diagram which shows the photoacoustic measuring device which concerns on 1st Embodiment of this invention. 穿刺針を示す断面図。Sectional drawing which shows a puncture needle. レーザユニットを含む光音響計測装置の外観を示す図。The figure which shows the external appearance of the photoacoustic measuring device containing a laser unit. 第1実施形態に係る光音響計測装置による光音響検出処理のフローチャート。The flowchart of the photoacoustic detection process by the photoacoustic measuring device which concerns on 1st Embodiment. 第1実施形態に係る光音響計測装置による異常検出処理のフローチャート。The flowchart of the abnormality detection process by the photoacoustic measuring device which concerns on 1st Embodiment. 本発明の第2実施形態に係る光音響画像生成装置を示すブロック図。The block diagram which shows the photoacoustic image generating apparatus which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る光検出部の配置形態の例を示す図。The figure which shows the example of the arrangement | positioning form of the photon detection part which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る光音響画像生成装置を示すブロック図。The block diagram which shows the photoacoustic image generating apparatus which concerns on 3rd Embodiment of this invention.
 以下、図面を参照し、本発明の実施の形態を詳細に説明する。また、各図において対応する要素には同じ番号を付して詳細な説明を省略する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, corresponding elements in the drawings are denoted by the same reference numerals, and detailed description thereof is omitted.
 図1は、本実施形態の光音響計測装置10の構成を示すブロック図である。本光音響計測装置10は、一例として、光音響信号に基づいて光音響画像を生成する機能を有するものであり、図1に示すように、超音波プローブ11(超音波探触子)、超音波ユニット12、レーザユニット13、画像表示部14及び挿入物の一例である穿刺針15を備えている。穿刺針15の先端近傍には光音響波を発生する光吸収体17が配置されており、光吸収体17に光を導光する光ファイバなどの長尺な導光部材16は基端がレーザユニット13と接続される。 FIG. 1 is a block diagram showing the configuration of the photoacoustic measurement apparatus 10 of the present embodiment. The photoacoustic measuring device 10 has a function of generating a photoacoustic image based on a photoacoustic signal as an example. As shown in FIG. 1, an ultrasonic probe 11 (ultrasonic probe), an ultrasonic wave The sound wave unit 12, the laser unit 13, the image display part 14, and the puncture needle 15 which is an example of an insert are provided. A light absorber 17 that generates a photoacoustic wave is disposed in the vicinity of the distal end of the puncture needle 15, and a long light guide member 16 such as an optical fiber that guides light to the light absorber 17 has a base end that is a laser. Connected to the unit 13.
 本光音響計測装置10は、被検体に挿入された穿刺針15の先端15b(図2を参照。)から発せられる光音響波をプローブ11により検出して光音響画像として画像化することにより穿刺針15の先端位置を検出可能に構成されている。導光部材16により導光された光が光吸収体17に照射され、この光吸収体17が光を吸収して光音響波を発生する。この光音響波を発生させる光としては、レーザ光を用いることが一般的である。光音響波発生部の不良の原因としては、導光部材16の破損、導光部材16と光吸収体17との接続のズレ、又は、光吸収体17の一部欠落又はハズレなどが、挙げられる。これらの異常が生じているときには、レーザ光を光音響波発生部18に入力すると、レーザ光が外部に漏れ、術者などのユーザ及び被検体が不要なレーザ光に曝されることとなり好ましくない。 The photoacoustic measurement apparatus 10 detects a photoacoustic wave emitted from a tip 15b (see FIG. 2) of a puncture needle 15 inserted into a subject and images the photoacoustic image as a photoacoustic image. The tip position of the needle 15 can be detected. Light guided by the light guide member 16 is applied to the light absorber 17, and the light absorber 17 absorbs the light to generate a photoacoustic wave. As light for generating this photoacoustic wave, laser light is generally used. Causes of the failure of the photoacoustic wave generation unit include breakage of the light guide member 16, displacement of the connection between the light guide member 16 and the light absorber 17, or partial omission or loss of the light absorber 17. It is done. When these abnormalities occur, if laser light is input to the photoacoustic wave generator 18, the laser light leaks to the outside, and the user such as the operator and the subject are exposed to unnecessary laser light. .
 本光音響計測装置10においては、本光音響計測装置10は、導光部材16と光吸収体17とからなる光音響波発生部18の異常を検出するための異常検出手段51、及び異常検出手段51による後述の異常検出モードをオンオフするモード切替スイッチ58を備えており、異常が生じた光音響波発生部18が配設された穿刺針15が使用されるのを防止可能に構成されている。 In the present photoacoustic measurement device 10, the present photoacoustic measurement device 10 includes an abnormality detection means 51 for detecting an abnormality in the photoacoustic wave generation unit 18 including the light guide member 16 and the light absorber 17, and an abnormality detection. A mode changeover switch 58 for turning on and off an abnormality detection mode described later by the means 51 is provided, and is configured to prevent the use of the puncture needle 15 provided with the photoacoustic wave generation unit 18 in which an abnormality has occurred. Yes.
 レーザユニット13は、赤外光、特には近赤外域のレーザ光を出射する光源35を備えている。光源35は、光音響波を発生させるための光源である。以下、本光音響計測装置10の各要素について説明する。 The laser unit 13 includes a light source 35 that emits infrared light, particularly near-infrared laser light. The light source 35 is a light source for generating a photoacoustic wave. Hereinafter, each element of this photoacoustic measuring device 10 is demonstrated.
 既述の通り、穿刺針15は少なくとも先端部が被検体内に挿入される挿入物の一例である。図2は穿刺針15の断面を示す図である。穿刺針15は、例えば、ステンレス等の金属あるいは合成樹脂から形成された中空管状の針管からなる。穿刺針15は、全長に亘って管軸方向に延びる中空部15aを有している。また、穿刺針15は管軸に対して斜めにカットされた先端15bを有している。穿刺針15は、先端15bから被検体に穿刺される。 As described above, the puncture needle 15 is an example of an insert in which at least the tip is inserted into the subject. FIG. 2 is a view showing a cross section of the puncture needle 15. The puncture needle 15 is made of, for example, a hollow tubular needle tube made of a metal such as stainless steel or a synthetic resin. The puncture needle 15 has a hollow portion 15a extending in the tube axis direction over the entire length. The puncture needle 15 has a tip 15b that is cut obliquely with respect to the tube axis. The puncture needle 15 is punctured into the subject from the tip 15b.
 中空部15a内には、光音響波を発生させる光が基端から入力されて先端16aに導光する長尺な導光部材16の先端16aが穿刺針先端15bの近傍に位置するように配置されている。なお、本明細書においては、導光部材16の光が入力される一端を基端、光を出射する他端を先端と称している。この穿刺針先端15bの近傍には、この導光部材16の先端16aに接続された光吸収体17が配置されている。ここで、穿刺針先端15bの近傍とは、その位置に光吸収体17が配置された場合に、穿刺作業に必要な精度で穿刺針15の先端を画像化できる光音響波を発生可能な位置であることを意味する。例えば、穿刺針15の先端から基端側へ0mm~3mmの範囲内のことを指す。 In the hollow portion 15a, the distal end 16a of the long light guide member 16 that receives light that generates a photoacoustic wave from the proximal end and guides the light to the distal end 16a is disposed in the vicinity of the puncture needle distal end 15b. Has been. In the present specification, one end to which light from the light guide member 16 is input is referred to as a base end, and the other end from which light is emitted is referred to as a distal end. A light absorber 17 connected to the tip 16a of the light guide member 16 is disposed in the vicinity of the puncture needle tip 15b. Here, the vicinity of the puncture needle tip 15b is a position where a photoacoustic wave that can image the tip of the puncture needle 15 with the accuracy required for the puncture operation when the light absorber 17 is disposed at that position. It means that. For example, it refers to the range of 0 mm to 3 mm from the distal end of the puncture needle 15 to the proximal end side.
 光吸収体17は、光(ここでは、特に赤外光)を吸収する材料、例えば黒色顔料が混合されたエポキシ樹脂、フッ素樹脂、又はポリウレタン樹脂等の合成樹脂からなり、溶融状態で導光部材16の先端16aを覆うように穿刺針15の内壁に供給された後、固化したものである。このようにして、本例では、導光部材16の先端近傍部分はこの光吸収体17によって穿刺針15の内壁に固定されている。なお、導光部材16のその他の部分は、別の接着剤等によって適宜、穿刺針の内壁に固定されていてもよい。 The light absorber 17 is made of a material that absorbs light (here, in particular, infrared light), for example, a synthetic resin such as an epoxy resin, a fluorine resin, or a polyurethane resin mixed with a black pigment, and is in a molten state as a light guide member. After being supplied to the inner wall of the puncture needle 15 so as to cover the 16 tips 16a, it is solidified. Thus, in this example, the vicinity of the tip of the light guide member 16 is fixed to the inner wall of the puncture needle 15 by the light absorber 17. The other part of the light guide member 16 may be appropriately fixed to the inner wall of the puncture needle with another adhesive or the like.
 導光部材16は、例えば、光ファイバにより構成され、その基端から先端まで連続した1本の光ファイバで構成されていてもよいし、複数の光ファイバが光コネクタなどで直列に接続されて構成されていてもよい。 The light guide member 16 is constituted by, for example, an optical fiber, and may be constituted by a single optical fiber continuous from the base end to the distal end, or a plurality of optical fibers are connected in series by an optical connector or the like. It may be configured.
 導光部材16の基端がレーザユニット13の光源35と光学的に接続されているとき、光源35から出射されるレーザ光が導光部材16の基端から入力され、そのレーザ光が導光部材16の先端16aから出射されて光吸収体17に照射される。光吸収体17は照射された赤外光を吸収して光音響波を生じる。導光部材16は、穿刺針15に内包されていない部分は保護チューブなどの可撓性の保護部材19(図3を参照。)に内包されている。なお、保護部材19は可視光に対して透明であることが好ましく、このようにすることで、肉眼で導光部材16の破損の有無を確認しやすくなる。 When the proximal end of the light guide member 16 is optically connected to the light source 35 of the laser unit 13, laser light emitted from the light source 35 is input from the proximal end of the light guide member 16, and the laser light is guided. The light is emitted from the tip 16 a of the member 16 and is irradiated on the light absorber 17. The light absorber 17 absorbs the irradiated infrared light and generates a photoacoustic wave. A portion of the light guide member 16 that is not included in the puncture needle 15 is included in a flexible protective member 19 (see FIG. 3) such as a protective tube. In addition, it is preferable that the protection member 19 is transparent with respect to visible light. By doing in this way, it becomes easy to confirm the presence or absence of the damage of the light guide member 16 with the naked eye.
 超音波プローブ11は、被検体内に挿入された挿入物(ここでは、穿刺針15)の先端部から発せられる光音響波を検出する光音響波検出部である。プローブ11は、例えば一次元的に配列された複数の超音波振動子を有している。また、プローブ11は、光音響波の検出に加えて、被検体に対する音響波(超音波)の送信、及び送信した超音波に対する反射音響波(反射超音波)の受信を行う。これにより、光音響画像データのみならず、超音波画像データを取得することができる。 The ultrasonic probe 11 is a photoacoustic wave detection unit that detects a photoacoustic wave emitted from the distal end portion of an insert (here, the puncture needle 15) inserted into the subject. The probe 11 has, for example, a plurality of ultrasonic transducers arranged one-dimensionally. In addition to detecting the photoacoustic wave, the probe 11 transmits an acoustic wave (ultrasonic wave) to the subject and receives a reflected acoustic wave (reflected ultrasonic wave) with respect to the transmitted ultrasonic wave. Thereby, not only photoacoustic image data but also ultrasonic image data can be acquired.
 超音波ユニット12は、レーザトリガ送信部22と、超音波送信部23、信号受信部24、光音響画像生成部25、超音波画像生成部26及びこれらを制御する制御部28を備えている。 The ultrasonic unit 12 includes a laser trigger transmission unit 22, an ultrasonic transmission unit 23, a signal reception unit 24, a photoacoustic image generation unit 25, an ultrasonic image generation unit 26, and a control unit 28 for controlling them.
 レーザトリガ送信部22は、制御部28からの指示を受けてレーザユニット13にレーザトリガを送信する。 The laser trigger transmitter 22 transmits a laser trigger to the laser unit 13 in response to an instruction from the controller 28.
 超音波送信部23は、制御部28からの超音波送信トリガ信号を受信して、プローブ11から超音波を送信させる。 The ultrasonic transmission unit 23 receives the ultrasonic transmission trigger signal from the control unit 28 and causes the probe 11 to transmit ultrasonic waves.
 信号受信部24は、プローブ11で検出された光音響波の検出信号、及び反射超音波の検出信号を受信する。信号受信部24は、制御部28からのサンプリングトリガ信号及びサンプリングクロック信号に基づいて、光音響波あるいは反射超音波のサンプリングを開始し、所定のサンプリング周期で光音響波あるいは反射超音波の検出信号をサンプリングする。 The signal receiving unit 24 receives the photoacoustic wave detection signal and the reflected ultrasonic detection signal detected by the probe 11. The signal receiving unit 24 starts sampling of the photoacoustic wave or the reflected ultrasonic wave based on the sampling trigger signal and the sampling clock signal from the control unit 28, and detects the photoacoustic wave or the reflected ultrasonic wave at a predetermined sampling period. Is sampled.
 光音響画像生成部25は、プローブ11で検出された光音響波の検出信号に基づいて光音響画像を生成する。光音響画像の生成には、例えば、位相整合加算などの画像再構成や、検波、対数変換などを含む。光音響画像生成部25は、生成された光音響画像のデータを画像表示部14に出力する。 The photoacoustic image generation unit 25 generates a photoacoustic image based on the photoacoustic wave detection signal detected by the probe 11. The generation of the photoacoustic image includes, for example, image reconstruction such as phase matching addition, detection, logarithmic conversion, and the like. The photoacoustic image generation unit 25 outputs the generated photoacoustic image data to the image display unit 14.
 超音波画像生成部26は、プローブ11で検出された反射超音波の検出信号に基づいて超音波画像(反射音響波画像)を生成する。超音波画像の生成も、位相整合加算などの画像再構成や、検波、対数変換などを含む。超音波画像生成部26は、生成された超音波画像のデータを画像表示部14に出力する。 The ultrasonic image generation unit 26 generates an ultrasonic image (reflected acoustic wave image) based on the detection signal of the reflected ultrasonic wave detected by the probe 11. The generation of an ultrasonic image also includes image reconstruction such as phase matching addition, detection, logarithmic conversion, and the like. The ultrasonic image generation unit 26 outputs the generated ultrasonic image data to the image display unit 14.
 制御部28は、超音波ユニット12内の各部を制御するものである。制御部28は、光音響画像を取得する場合は、レーザトリガ送信部22を介してレーザユニット13にレーザトリガ信号を送り、光源35から赤外光を出射させる。そして、レーザ光の照射に合わせて、信号受信部24にサンプリングトリガ信号を送り、光音響波のサンプリングを開始させる。 The control unit 28 controls each unit in the ultrasonic unit 12. When acquiring the photoacoustic image, the control unit 28 sends a laser trigger signal to the laser unit 13 via the laser trigger transmission unit 22 to emit infrared light from the light source 35. Then, a sampling trigger signal is sent to the signal receiving unit 24 in accordance with the laser light irradiation, and photoacoustic wave sampling is started.
 また、制御部28は、超音波画像を取得する場合は、超音波送信部23に超音波送信を指示する旨の超音波送信トリガ信号を送り、超音波送信部23にプローブ11による超音波を送信させる。そして、超音波送信のタイミングに合わせて信号受信部24にサンプリングトリガ信号を送り、反射超音波のサンプリングを開始させる。 In addition, when acquiring an ultrasonic image, the control unit 28 sends an ultrasonic transmission trigger signal for instructing ultrasonic transmission to the ultrasonic transmission unit 23, and transmits ultrasonic waves from the probe 11 to the ultrasonic transmission unit 23. Send it. Then, a sampling trigger signal is sent to the signal receiving unit 24 in synchronization with the timing of ultrasonic transmission, and sampling of reflected ultrasonic waves is started.
 画像表示部14は、超音波ユニット12から入力されたデータに基づいて光音響画像及び超音波画像を別々に、あるいは合成された合成画像として表示する。 The image display unit 14 displays the photoacoustic image and the ultrasonic image separately or as a combined composite image based on the data input from the ultrasonic unit 12.
 レーザユニット13は、光源35を含む光源駆動手段31として、トリガ入力部32、光源駆動回路33、光結合部36及び接続検知部37を有する。また、レーザユニット13は、異常検出手段51として、光源35から出力された光を検出する光検出部52、判定部54及び異常通知部56を有する。さらに、レーザユニット13は、導光部材16と光結合部36との接続をユーザに通知する接続通知部38と、後述の異常検出モードのオンオフを切り替えるモード切替スイッチ58とを有する。なお、光検出部52は光入射面に、光源35から出力される光の波長域を透過する光学フィルタ52aを備えている。 The laser unit 13 includes a trigger input unit 32, a light source driving circuit 33, an optical coupling unit 36, and a connection detection unit 37 as light source driving means 31 including a light source 35. In addition, the laser unit 13 includes a light detection unit 52 that detects light output from the light source 35, a determination unit 54, and an abnormality notification unit 56 as the abnormality detection unit 51. Further, the laser unit 13 includes a connection notification unit 38 that notifies the user of the connection between the light guide member 16 and the optical coupling unit 36, and a mode changeover switch 58 that switches on / off of an abnormality detection mode described later. The light detection unit 52 includes an optical filter 52a that transmits the wavelength range of the light output from the light source 35 on the light incident surface.
 まず、光源35を含む光源駆動手段31について説明する。 First, the light source driving means 31 including the light source 35 will be described.
 光源35は、例えばアレキサンドライトレーザ又はYAG(Yttrium Aluminum Garnet)レーザ等のフラッシュランプ励起Qスイッチ固体レーザであり、被検体に照射する測定光として赤外域(700nm超)の波長を有するレーザ光を発する。光源35は、超音波ユニット12の制御部28からのトリガ信号を受けてレーザ光を出力するように構成されている。 The light source 35 is a flash lamp-excited Q-switched solid-state laser such as an alexandrite laser or a YAG (YttriumnetAluminum Garnet) laser, and emits laser light having a wavelength in the infrared region (above 700 nm) as measurement light irradiated on the subject. The light source 35 is configured to receive a trigger signal from the control unit 28 of the ultrasonic unit 12 and output a laser beam.
 なお光源35は、アレキサンドライトレーザの他、同様に近赤外波長域のレーザ光を出力可能なYAG-SHG(Yttrium Aluminum Garnet-Second harmonic generation:イットリウム・アルミニウム・ガーネット-第二次高調波発生)-OPO(Optical Parametric Oscillation:光パラメトリック発振)レーザや、Ti-Sapphire(チタン-サファイア)レーザ等を用いて構成することもできる。 The light source 35 is YAG-SHG (Yttrium Aluminum Garnet-Second harmonic generation) that can output laser light in the near-infrared wavelength region in addition to an alexandrite laser. An OPO (Optical Parametric Oscillation) laser, a Ti-Sapphire (titanium-sapphire) laser, or the like can also be used.
 なお、光源35は固体レーザ光源である必要はなく、その他のタイプのレーザ光源であってもよい。例えば、光源35は、レーザダイオード光源(半導体レーザ光源)であってもよい。また、光源35が、レーザダイオード光源を種光源とする光増幅型レーザ光源であってもよい。 Note that the light source 35 is not necessarily a solid-state laser light source, and may be another type of laser light source. For example, the light source 35 may be a laser diode light source (semiconductor laser light source). The light source 35 may be an optical amplification type laser light source using a laser diode light source as a seed light source.
 一例として、レーザユニット13を光増幅型レーザ光源を搭載した構成とする場合には、レーザユニット13は、種光としてのパルスレーザ光を発する半導体レーザ光源と、励起用レーザ光を発する励起用半導体レーザ光源と、パルスレーザ光及び励起用レーザ光を合波する合波器と、例えばEr(エルビウム)がドープされたコアを有し、上記合波器に接続されたファイバ光増幅器と、このファイバ光増幅器に接続された発振防止のための光アイソレータと、この光アイソレータから出力されたパルスレーザ光を波長が1/2の第2高調波に変換する光波長変換素子とを備えればよい。 As an example, when the laser unit 13 is configured to include an optical amplification type laser light source, the laser unit 13 includes a semiconductor laser light source that emits pulsed laser light as seed light, and an excitation semiconductor that emits excitation laser light. A laser light source, a multiplexer for combining pulsed laser light and excitation laser light, a fiber optical amplifier having a core doped with, for example, Er (erbium), and connected to the multiplexer, and the fiber An optical isolator for preventing oscillation connected to the optical amplifier and an optical wavelength conversion element for converting the pulse laser beam output from the optical isolator into a second harmonic having a wavelength of ½ may be provided.
 トリガ入力部32は超音波ユニット12からのレーザトリガ信号を受信し、光源駆動回路33にトリガ信号を伝達する。光源駆動回路33は、レーザトリガ信号を受信して光源35を駆動するものであり、所望のタイミングで光源35からレーザ光を出射させる。光結合部36は、光源35からの光を導光部材16に入射させるための集光光学系及び光コネクタからなる。そして、接続検知部37は、導光部材16が光結合部36に接続されていることを検知するものである。接続検知部37は、例えば、導光部材16と光結合部36との接続部61に設けられたマイクロスイッチ等の接点式やフォトインターラプタ等の光センサ式の検出素子により接続を検知する。 The trigger input unit 32 receives the laser trigger signal from the ultrasonic unit 12 and transmits the trigger signal to the light source drive circuit 33. The light source drive circuit 33 receives the laser trigger signal and drives the light source 35, and emits laser light from the light source 35 at a desired timing. The optical coupling unit 36 includes a condensing optical system and an optical connector for causing the light from the light source 35 to enter the light guide member 16. The connection detection unit 37 detects that the light guide member 16 is connected to the optical coupling unit 36. The connection detection unit 37 detects the connection by a contact type sensor such as a micro switch or a photo sensor type detection element such as a photo interrupter provided in the connection part 61 between the light guide member 16 and the optical coupling unit 36, for example.
 なお、光結合部36に導光部材16が接続されている場合にのみ、光源駆動手段31は、光源35を駆動可能となり、光結合部36に導光部材16が接続されていない場合には、光源駆動手段31は、光源35の駆動を停止するように構成されていることが好ましい。例えば、本光音響計測装置10においては、導光部材16と光結合部36との接続を接続検知部37が検知したとき、接続検知部37から超音波ユニット12に接続検知信号が送信される。超音波ユニット12は接続検知信号を受信しない限り、制御部28によるレーザトリガ信号の送信はしない。すなわち、導光部材16が光結合部36と接続されていないときには、制御部28によりレーザトリガ信号の送信が停止されるように構成されている。光結合部36に導光部材16が接続されていない状態では光源35が駆動されないので、光源35がレーザ光源であっても、術者が安全に光音響波発生部18の異常検出処理及び後述の光音響波検出処理をすることができ、好ましい。 The light source driving means 31 can drive the light source 35 only when the light coupling member 16 is connected to the optical coupling unit 36, and when the light guiding member 16 is not connected to the optical coupling unit 36. The light source driving means 31 is preferably configured to stop driving the light source 35. For example, in the photoacoustic measurement device 10, when the connection detection unit 37 detects the connection between the light guide member 16 and the optical coupling unit 36, a connection detection signal is transmitted from the connection detection unit 37 to the ultrasonic unit 12. . The ultrasonic unit 12 does not transmit a laser trigger signal by the control unit 28 unless it receives a connection detection signal. In other words, when the light guide member 16 is not connected to the optical coupling unit 36, the control unit 28 is configured to stop the transmission of the laser trigger signal. Since the light source 35 is not driven in a state where the light guide member 16 is not connected to the optical coupling unit 36, even if the light source 35 is a laser light source, the surgeon can safely detect an abnormality in the photoacoustic wave generation unit 18 and to be described later. It is possible to perform the photoacoustic wave detection process.
 接続通知部38は、例えば、LED(Light Emitting Diode)等の発光素子により構成することができ、接続状態のとき発光素子を点灯させ、非接続状態のとき、発光素子を消灯させることにより、術者などのユーザが接続状態を視覚により確認可能とする。接続通知部38として多色LEDを用い、光源35に接続されているときに赤、未接続のときに黄色などで発光するようにしてもよい。 The connection notification unit 38 can be constituted by a light emitting element such as an LED (Light Emitting Diode), for example. The light emitting element is turned on in the connected state, and the light emitting element is turned off in the disconnected state. A user such as a person can visually check the connection state. A multi-color LED may be used as the connection notification unit 38 to emit light in red when connected to the light source 35 and yellow when not connected.
 接続通知部38は、レーザユニット13のみならず、光音響計測装置10のどの部分に備えられていてもよいが、レーザユニット13の導光部材16を接続させる接続部61の近傍であることが、確認容易であり好ましい。 The connection notification unit 38 may be provided not only in the laser unit 13 but also in any part of the photoacoustic measurement device 10, but may be in the vicinity of the connection unit 61 that connects the light guide member 16 of the laser unit 13. It is easy to confirm and is preferable.
 次に異常検出手段51について説明する。 Next, the abnormality detection means 51 will be described.
 光検出部52は、光源35から出射される光を検出可能なフォトダイオード等の光電変換素子で構成されている。光検出部52は、光源35から出射される光を検出可能な素子で構成することができ、サーモパイル等の熱電変換素子により構成してもよい。光検出部52は、接続通知部38による接続通知に基づいて光検出を開始し、一定期間検出した光量を判定部54に送出する。接続通知部38による接続通知から一定期間蓄積動作を行う場合には、一定期間は例えば10~30secとすることができる。光検出部52は、光源35の駆動開始又は別途設けられた近接センサによって光検出部52から所定距離内に物体が検出された場合に、検出を開始してもよい。この場合も、数秒~数十秒など任意の一定期間検出を行うよう構成すればよい。また、例えば、光の検出から一定期間蓄積動作を開始し、光量を検出してもよい。例えば、光の検出から一定期間蓄積動作を行う場合には、一定期間はレーザのパルス幅に相当する10~100nsecとすることができる。光学フィルタ52aは、光源35以外の光の影響をなくすため、光源35の発光光波長以外をカットするバンドパスフィルタである。 The light detection unit 52 includes a photoelectric conversion element such as a photodiode that can detect light emitted from the light source 35. The light detection part 52 can be comprised with the element which can detect the light radiate | emitted from the light source 35, and may be comprised with thermoelectric conversion elements, such as a thermopile. The light detection unit 52 starts light detection based on the connection notification from the connection notification unit 38 and sends the light amount detected for a certain period to the determination unit 54. When the accumulation operation is performed from the connection notification by the connection notification unit 38 for a certain period, the certain period can be set to 10 to 30 seconds, for example. The light detection unit 52 may start detection when an object is detected within a predetermined distance from the light detection unit 52 by driving of the light source 35 or by a proximity sensor provided separately. In this case as well, the detection may be performed for an arbitrary fixed period such as several seconds to several tens of seconds. For example, the accumulation operation may be started for a certain period from the detection of light, and the light amount may be detected. For example, in the case where the accumulation operation is performed for a certain period from the detection of light, the certain period can be set to 10 to 100 nsec corresponding to the pulse width of the laser. The optical filter 52 a is a band pass filter that cuts light other than the light emission wavelength of the light source 35 in order to eliminate the influence of light other than the light source 35.
 判定部54は、光検出部52から受信した検出光量に基づいて、光音響波発生部18の異常の有無を判定する。判定部54は、予め定められた基準値として判定閾値を有し、検出光量を判定閾値と比較することで、光音響波発生部18の異常の有無を判定する。例えば、検出光量が判定閾値を超える場合に光音響波発生部18が異常であると判定する。判定閾値により異常の有無を判定することにより、容易に異常の有無を判断することができる。 The determination unit 54 determines whether the photoacoustic wave generation unit 18 is abnormal based on the detected light amount received from the light detection unit 52. The determination unit 54 has a determination threshold value as a predetermined reference value, and determines whether the photoacoustic wave generation unit 18 is abnormal by comparing the detected light amount with the determination threshold value. For example, it is determined that the photoacoustic wave generation unit 18 is abnormal when the detected light amount exceeds the determination threshold. By determining the presence / absence of an abnormality based on the determination threshold, the presence / absence of the abnormality can be easily determined.
 異常通知部56は判定部54による判定結果をユーザに通知する。異常通知部56は、LED等の発光素子やビープ音発生手段により構成することができる。判定結果が「異常あり(異常)」であるとき、発光素子を連続点灯もしくは点滅点灯させる、あるいはビープ音発生手段によりビープ音を発生させる。判定結果が「異常なし(正常)」であるときは、通知しなくてもよいし、発光素子の点灯方法、ビープ音発生手段によるビープ音を異常の場合と異ならせるなどにより通知してもよい。また、発光素子として多色発光型LEDを用い、異常時は赤、正常時は緑で点灯させてもよい。なお、画像表示部14に「異常検出」等の文字やマークを表示させるように構成することもできる。また、異常判定中か否かをユーザが把握できるように、異常判定期間中は、発光素子を点滅点灯させてもよい。 The abnormality notification unit 56 notifies the determination result by the determination unit 54 to the user. The abnormality notification unit 56 can be configured by a light emitting element such as an LED or a beep sound generating means. When the determination result is “abnormal (abnormal)”, the light emitting element is continuously lit or blinking, or a beep sound is generated by a beep sound generating means. When the determination result is “no abnormality (normal)”, it is not necessary to notify, or may be notified by changing the lighting method of the light emitting element, the beep sound generated by the beep sound generation means, and the like. . Further, a multicolor light emitting LED may be used as the light emitting element, and it may be lit red when abnormal and green when normal. The image display unit 14 may be configured to display characters and marks such as “abnormality detection”. Further, the light emitting element may be turned on and off during the abnormality determination period so that the user can grasp whether the abnormality is being determined.
 なお、接続通知部38が上述の異常通知部56を兼ねるように構成してもよい。この場合には、判定部54により光音響波発生部18が異常であると判定された場合に、導光部材16と光結合部36との接続の通知と識別可能に異常通知を行うよう構成すればよい。このことにより、部品点数を増加させないで、ユーザに接続の有無及び異常検出の結果を通知することができる。また、接続通知部38として多色発光型LEDを用いて、例えば、未接続で黄色、接続で緑、異常通知は赤などそれぞれを異なる色で発光させればよい。 Note that the connection notification unit 38 may also be configured to serve as the abnormality notification unit 56 described above. In this case, when it is determined by the determination unit 54 that the photoacoustic wave generation unit 18 is abnormal, the abnormality notification is performed so as to be distinguishable from the notification of the connection between the light guide member 16 and the optical coupling unit 36. do it. This makes it possible to notify the user of the presence / absence of connection and the result of abnormality detection without increasing the number of parts. Further, a multi-color light emitting LED may be used as the connection notification unit 38 to emit light in different colors, such as yellow when not connected, green when connected, and red when there is an abnormality notification.
 モード切替スイッチ58は、異常検出モードのオンオフを切り替えるスイッチである。異常検出モードがオンの状態は、光検出部52が駆動され、異常検出のための一定期間の光検出の開始の指示を待機している状態及び実際に光検出が実行されている状態である。異常検出モードがオフの状態は、光検出部52を駆動しない状態である。モード切替スイッチ58を備えた場合には、異常検出モードのオンオフをユーザが制御できるので、光音響波発生部18の検査を安全に実施することができる。なお、モード切替スイッチ58はレーザユニット13、超音波ユニット12及び超音波プローブ11のいずれに設けられていてもよく、さらに別のユニットとして設けられてもよい。モード切替スイッチ58は、ユーザ操作を受け付けて、受け付けた操作に応じて、光検出部52の検出開始及び検出停止を指示できる任意の構成を採用してもよい。 The mode switch 58 is a switch for switching on / off of the abnormality detection mode. The state in which the abnormality detection mode is on is a state in which the light detection unit 52 is driven, waiting for an instruction to start light detection for a certain period for abnormality detection, and a state in which light detection is actually performed. . The state in which the abnormality detection mode is off is a state in which the light detection unit 52 is not driven. When the mode changeover switch 58 is provided, the user can control on / off of the abnormality detection mode, so that the inspection of the photoacoustic wave generator 18 can be performed safely. The mode changeover switch 58 may be provided in any of the laser unit 13, the ultrasonic unit 12, and the ultrasonic probe 11, or may be provided as another unit. The mode switch 58 may adopt an arbitrary configuration that can accept a user operation and can instruct the detection start and detection stop of the light detection unit 52 according to the accepted operation.
 また、ここでは、モード切替スイッチ58は、モード通知部を兼ねており、透明部材で覆われた発光素子を備えて構成される。モード切替スイッチ58は、異常検出モードがオンの場合には点灯し、異常検出モードがオフの場合には消灯する。モード通知部を備えた場合には、ユーザが容易に動作モードを認識することができ、好ましい。なお、モード通知部は、省略しても良く、モード切替スイッチ58とは別個に設けてもよい。また、モード切替スイッチ58は、レーザユニット13、超音波ユニット12及び超音波プローブ11のいずれに設けられていてもよく、さらに別のユニットとして設けられてもよい。 In addition, here, the mode changeover switch 58 also serves as a mode notification unit, and includes a light emitting element covered with a transparent member. The mode changeover switch 58 is lit when the abnormality detection mode is on, and is turned off when the abnormality detection mode is off. When the mode notification unit is provided, it is preferable because the user can easily recognize the operation mode. Note that the mode notification unit may be omitted or provided separately from the mode switch 58. The mode changeover switch 58 may be provided in any of the laser unit 13, the ultrasonic unit 12, and the ultrasonic probe 11, or may be provided as another unit.
 図3は、本発明の第1実施形態に係る光音響計測装置10の具体的な外観を示す図である。 FIG. 3 is a diagram showing a specific external appearance of the photoacoustic measurement apparatus 10 according to the first embodiment of the present invention.
 図3に示すように、本光音響計測装置10においては、超音波ユニット12は、プロセッサとメモリと入力部を備えたコンピュータであり、画像表示部14と一体型の装置として構成されている。超音波ユニット12には、既述のレーザトリガ送信部22、超音波送信部23、信号受信部24、光音響画像生成部25、超音波画像生成部26及び制御部28を含む光音響画像生成及び超音波画像生成に関するプログラムが組み込まれている。プローブ11は超音波ユニット12に接続されており、レーザユニット13は後述のUSB(Universal Serial Bus)ポート29を介して超音波ユニット12に接続されている。 As shown in FIG. 3, in the present photoacoustic measurement apparatus 10, the ultrasonic unit 12 is a computer including a processor, a memory, and an input unit, and is configured as an apparatus integrated with the image display unit 14. The ultrasonic unit 12 includes the above-described laser trigger transmission unit 22, ultrasonic transmission unit 23, signal reception unit 24, photoacoustic image generation unit 25, ultrasonic image generation unit 26, and control unit 28. And a program related to ultrasonic image generation. The probe 11 is connected to the ultrasonic unit 12, and the laser unit 13 is connected to the ultrasonic unit 12 via a USB (Universal Serial Bus) port 29 described later.
 レーザユニット13は、導光部材16を接続するための接続口である接続部61を有する。導光部材16は接続部61に装着されることにより光結合部36と接続される。 The laser unit 13 has a connection portion 61 that is a connection port for connecting the light guide member 16. The light guide member 16 is connected to the optical coupling portion 36 by being attached to the connection portion 61.
 また、レーザユニット13の表面には光検出部52が設けられており、さらに、モード切替スイッチ58、発光素子からなる異常通知部56及び接続通知部38が設けられている。 Further, a light detection unit 52 is provided on the surface of the laser unit 13, and further, a mode changeover switch 58, an abnormality notification unit 56 including a light emitting element, and a connection notification unit 38 are provided.
 レーザユニット13のトリガ入力部32は、超音波ユニット12の信号出力ラインに接続される。トリガ入力部32であるトリガ入力端子は、例えばUSBコネクタとして構成される。超音波ユニット12はUSBポート29(レセプタクル)を有しており、USBポートにトリガ入力端子を含むUSBコネクタを差し込むことで、超音波ユニット12から出力される信号が供給される。 The trigger input unit 32 of the laser unit 13 is connected to the signal output line of the ultrasonic unit 12. The trigger input terminal which is the trigger input unit 32 is configured as a USB connector, for example. The ultrasonic unit 12 has a USB port 29 (receptacle), and a signal output from the ultrasonic unit 12 is supplied by inserting a USB connector including a trigger input terminal into the USB port.
 以上のように構成されている本実施形態の光音響計測装置10における処理を説明する。 A process in the photoacoustic measurement apparatus 10 of the present embodiment configured as described above will be described.
 図4は、第1実施形態に係る光音響計測装置10による光音響検出処理のフローチャートである。図4を用いて、まず、本光音響計測装置10における、光音響波検出処理を説明する。 FIG. 4 is a flowchart of photoacoustic detection processing by the photoacoustic measurement apparatus 10 according to the first embodiment. First, the photoacoustic wave detection process in the photoacoustic measurement apparatus 10 will be described with reference to FIG.
 光音響波検出処理において、フレームレート、1フレームあたりのレーザ発光数、及び1フレームあたりの反射音響波信号と光音響画像信号のフレーム数バランスなどの画像取得条件は、超音波ユニット12の不図示のメモリに予め記憶されている。また、この画像取得条件に対応するように、制御部28により、レーザ発光タイミング、レーザパルス数及び電流などの光源駆動条件が決定されて、光源駆動手段31による光源35の駆動に用いられる。 In the photoacoustic wave detection processing, image acquisition conditions such as the frame rate, the number of laser emission per frame, and the balance of the number of frames of the reflected acoustic wave signal and the photoacoustic image signal per frame are not shown for the ultrasonic unit 12. In advance. Further, the light source driving conditions such as the laser emission timing, the number of laser pulses, and the current are determined by the control unit 28 so as to correspond to the image acquisition conditions, and are used for driving the light source 35 by the light source driving means 31.
 光音響波検出処理は、導光部材16が光結合部36に接続された状態で開始する。超音波ユニット12の制御部28は、レーザユニット13にトリガ信号を送る。レーザユニット13は、トリガ信号を受けると、レーザ発振を開始し、パルスレーザ光を出射する。レーザユニット13から出射したパルスレーザ光は、導光部材16によって穿刺針15の先端15bの近傍まで導光され、光吸収体17に照射される(ステップA1)。光吸収体17はパルスレーザ光を吸収して音響波を発生する。なお、光音響波検出処理において、医師などのユーザにより、光源35の駆動の前後等の任意のタイミングで穿刺針15が被検体に穿刺される。 The photoacoustic wave detection process starts with the light guide member 16 connected to the optical coupling unit 36. The control unit 28 of the ultrasonic unit 12 sends a trigger signal to the laser unit 13. Upon receiving the trigger signal, the laser unit 13 starts laser oscillation and emits pulsed laser light. The pulsed laser light emitted from the laser unit 13 is guided to the vicinity of the tip 15b of the puncture needle 15 by the light guide member 16 and irradiated to the light absorber 17 (step A1). The light absorber 17 absorbs the pulsed laser light and generates an acoustic wave. In the photoacoustic wave detection process, a user such as a doctor punctures the subject with the puncture needle 15 at an arbitrary timing such as before and after driving the light source 35.
 プローブ11は、レーザ光の照射により光吸収体17から発生した光音響波を検出する(ステップA2)。信号受信部24はプローブ11から光音響波の検出信号を受け取り、光音響波の検出信号を、サンプリングして格納し、格納された光音響波の検出信号を光音響画像生成部25に送信する(ステップA3)。光音響画像生成部25は、光音響波の検出信号に基づいて光音響画像を生成し、その光音響画像が画像表示部14に表示される。 The probe 11 detects the photoacoustic wave generated from the light absorber 17 by the laser light irradiation (step A2). The signal receiving unit 24 receives the photoacoustic wave detection signal from the probe 11, samples and stores the photoacoustic wave detection signal, and transmits the stored photoacoustic wave detection signal to the photoacoustic image generation unit 25. (Step A3). The photoacoustic image generation unit 25 generates a photoacoustic image based on the photoacoustic wave detection signal, and the photoacoustic image is displayed on the image display unit 14.
 なお、光音響波検出処理の際には、上記の光音響画像の取得に続いて超音波画像の取得を行ってもよい。超音波画像取得処理は次のように行われる。制御部28が、超音波送信部23に超音波送信トリガ信号を送り、超音波送信部23は、それに応答してプローブ11から超音波を送信させる(ステップA4)。プローブ11は、超音波の送信後、反射超音波を検出する(ステップA5)。その検出信号を信号受信部24が受け取り、反射超音波の検出信号をサンプリングして格納し、格納された反射超音波の検出信号を超音波画像生成部26に送信する。超音波画像生成部26は、反射超音波の検出信号に基づいて超音波画像を生成し(ステップA6)、その超音波画像が画像表示部14に表示される(A7)。 In the photoacoustic wave detection process, an ultrasonic image may be acquired following the acquisition of the photoacoustic image. The ultrasonic image acquisition process is performed as follows. The control unit 28 transmits an ultrasonic transmission trigger signal to the ultrasonic transmission unit 23, and the ultrasonic transmission unit 23 transmits ultrasonic waves from the probe 11 in response thereto (step A4). The probe 11 detects the reflected ultrasonic wave after transmitting the ultrasonic wave (step A5). The signal reception unit 24 receives the detection signal, samples and stores the reflected ultrasonic detection signal, and transmits the stored reflected ultrasonic detection signal to the ultrasonic image generation unit 26. The ultrasonic image generation unit 26 generates an ultrasonic image based on the detection signal of the reflected ultrasonic wave (step A6), and the ultrasonic image is displayed on the image display unit 14 (A7).
 なお、画像表示部14においては、光音響波画像と超音波画像とを合成して表示するようにしてもよい。このようにすることで、穿刺針15の先端15bが生体内のどこにあるかを確認することができるようになるため、正確で安全な穿刺が可能になる。なお、本光音響計測装置10においては、超音波画像データの取得は光音響画像データの取得と独立して別モードにて行うこともできる。 The image display unit 14 may combine and display the photoacoustic wave image and the ultrasonic image. By doing in this way, it becomes possible to confirm where the tip 15b of the puncture needle 15 is in the living body, so that accurate and safe puncture is possible. In this photoacoustic measuring device 10, acquisition of ultrasonic image data can be performed in a different mode independently of acquisition of photoacoustic image data.
 図5は、第1実施形態に係る光音響計測装置10による異常検出処理のフローチャートである。図5を用いて、光音響計測装置10による異常検出処理について説明する。 FIG. 5 is a flowchart of an abnormality detection process performed by the photoacoustic measurement apparatus 10 according to the first embodiment. The abnormality detection process performed by the photoacoustic measurement apparatus 10 will be described with reference to FIG.
 超音波ユニット12の制御部28は、レーザユニット13にトリガ信号を送る。レーザユニット13は、トリガ信号を受けると、レーザ発振を開始し、パルスレーザ光を出射する。レーザユニット13から出射したパルスレーザ光は、導光部材16によって穿刺針15の先端15bの近傍まで導光され、光吸収体17に照射される(ステップB1)。もし、穿刺針15の先端15bが光吸収体17から外れているなど異常が生じている場合には、穿刺針15の先端15bから漏れ光が生じる。 The control unit 28 of the ultrasonic unit 12 sends a trigger signal to the laser unit 13. Upon receiving the trigger signal, the laser unit 13 starts laser oscillation and emits pulsed laser light. The pulsed laser light emitted from the laser unit 13 is guided to the vicinity of the tip 15b of the puncture needle 15 by the light guide member 16 and irradiated to the light absorber 17 (step B1). If there is an abnormality such as the tip 15b of the puncture needle 15 being detached from the light absorber 17, light leaks from the tip 15b of the puncture needle 15.
 なお、ここでは、光検出部52は、接続検知部37の接続通知信号に基づいて、光結合部36と導光部材16とが接続されており、かつ、異常検出モードがオンであるという条件を満たす場合にのみ、光検出を行うよう構成されている。これにより、異常検出処理は、ユーザ操作により、モード切替スイッチ58が切り替えられて異常検出モードがオンにされた状態で実行され、異常検出モードがオフにされた状態では実行されない。また、異常検出処理は、導光部材16が光結合部36に接続されている状態で実行され、導光部材16が光結合部36に接続されていない状態では実行されない。このような条件を満たすか否かの判定とその判定結果に応じた光検出部52の実行の制御は、例えば、制御部28で行ってもよく、異常検出手段51に設けられた回路等で行ってもよく、任意の方法で行ってよい。 Here, the light detection unit 52 is based on the condition that the optical coupling unit 36 and the light guide member 16 are connected based on the connection notification signal of the connection detection unit 37 and the abnormality detection mode is on. It is configured to perform light detection only when the condition is satisfied. Thereby, the abnormality detection process is executed in a state where the mode change switch 58 is switched and the abnormality detection mode is turned on by a user operation, and is not executed in a state where the abnormality detection mode is turned off. In addition, the abnormality detection process is executed in a state where the light guide member 16 is connected to the optical coupling unit 36, and is not executed in a state where the light guide member 16 is not connected to the optical coupling unit 36. The determination as to whether or not such a condition is satisfied and the execution control of the light detection unit 52 according to the determination result may be performed by the control unit 28, for example, by a circuit provided in the abnormality detection unit 51 or the like. It may be done by any method.
 光源駆動回路33からの光源35の駆動を示すトリガ信号に基づいて、光検出部52は光源35の駆動開始から一定期間光検出を行う(ステップB2)。なお、係る一定期間の少なくとも一部期間において、ユーザによって穿刺針15の先端15bが光検出部52にかざした状態とされる。異常通知部56は、判定中は、光検出部52による光検出の開始から判定結果が出るまでの間は緑色に点滅点灯する。 Based on the trigger signal indicating the driving of the light source 35 from the light source driving circuit 33, the light detection unit 52 performs light detection for a certain period from the start of driving of the light source 35 (step B2). It should be noted that the tip 15b of the puncture needle 15 is placed over the light detection unit 52 by the user during at least a part of the certain period. During the determination, the abnormality notification unit 56 blinks in green until the determination result is output after the light detection unit 52 starts the light detection.
 本実施形態では、光源駆動回路33からの光源35の駆動を示すトリガ信号を光検出部52が受信すると、光検出部52は光検出を開始し、穿刺針15の先端15bからの漏れ光を一定期間検出する。このことにより、光源35の駆動に応じて、ユーザがスムーズに異常検出処理を行うことができる。 In the present embodiment, when the light detection unit 52 receives a trigger signal indicating driving of the light source 35 from the light source drive circuit 33, the light detection unit 52 starts light detection, and leaks light from the tip 15b of the puncture needle 15. Detect for a certain period. Thus, the user can smoothly perform the abnormality detection process according to the driving of the light source 35.
 なお、光検出部52が異常検出のために一定期間の光検出を開始する開始条件として、任意の条件を設定可能である。例えば、光検出部52は、接続検知部37による導光部材16と光結合部36との接続の検知に基づいて、導光部材16と光結合部36との接続の開始から一定期間光検出を開始し、判定部54は、一定期間に光検出部52で検出された漏れ光の光量に基づいて光音響波発生部18の異常を判定するよう構成してもよい。この場合には、導光部材16と光結合部36との接続が検知される度に異常検出処理を行うことで、新たな穿刺針15がレーザユニット13に接続される度に異常検出を行うことができるため、不良挿入物が被検者に挿入されることを好適に防ぐことができる。また、この結果、手技のやり直しや被検者の負担を低減することができる。 It should be noted that an arbitrary condition can be set as a start condition for the light detection unit 52 to start light detection for a certain period for abnormality detection. For example, the light detection unit 52 detects light for a certain period from the start of the connection between the light guide member 16 and the optical coupling unit 36 based on the detection of the connection between the light guide member 16 and the optical coupling unit 36 by the connection detection unit 37. The determination unit 54 may be configured to determine abnormality of the photoacoustic wave generation unit 18 based on the amount of leaked light detected by the light detection unit 52 during a certain period. In this case, an abnormality detection process is performed each time the connection between the light guide member 16 and the optical coupling unit 36 is detected, so that an abnormality is detected each time a new puncture needle 15 is connected to the laser unit 13. Therefore, it is possible to suitably prevent the defective insert from being inserted into the subject. As a result, the procedure can be redone and the burden on the subject can be reduced.
 さらなる例として、超音波ユニット12に異常検出開始ボタンなどを設け、ユーザ操作による異常検出開始ボタンのオン動作の検知信号が送信されると、光検出部52が光検出を開始するよう構成してもよい。或いは、不図示の近接検知センサを設けて、近接検知センサにより穿刺針15が所定距離内に近づいたことを示す検知信号が送信されると、光検出部52が光検出を開始する構成としてもよい。 As a further example, the ultrasonic unit 12 is provided with an abnormality detection start button or the like, and when the detection signal of the ON operation of the abnormality detection start button by a user operation is transmitted, the light detection unit 52 is configured to start light detection. Also good. Alternatively, a proximity detection sensor (not shown) may be provided, and when the detection signal indicating that the puncture needle 15 has approached within a predetermined distance is transmitted by the proximity detection sensor, the light detection unit 52 starts light detection. Good.
 続いて、光検出部52から蓄積された検出光量が判定部54に送信され、判定部54ではこの検出光量と判定閾値との比較が行われる。判定部54は、入力された検出光量が判定閾値よりも大きいとき、異常と判定し、判定閾値以下であれば正常と判定する(ステップB3)。その後、判定部54における判定結果が異常通知部56によりユーザに通知される(ステップB4)。なお、異常通知部56は、判定結果が異常である場合には赤色に点灯し、判定結果が正常である場合には緑色に点灯して判定結果を通知して、異常検出手段51による異常検出処理が終了する。なお、異常通知部56により異常が通知された場合には、ユーザは穿刺針15を交換するなどの対応を行う。 Subsequently, the detected light amount accumulated from the light detection unit 52 is transmitted to the determination unit 54, and the determination unit 54 compares the detected light amount with a determination threshold value. The determination unit 54 determines that the input detection light amount is larger than the determination threshold value, and determines that the input is normal, and determines that the detected light amount is normal if the input detection light amount is equal to or less than the determination threshold value (step B3). Then, the determination result in the determination part 54 is notified to a user by the abnormality notification part 56 (step B4). The abnormality notification unit 56 lights red when the determination result is abnormal, and lights green when the determination result is normal, and notifies the determination result by the abnormality detection unit 51. The process ends. In addition, when an abnormality is notified by the abnormality notification unit 56, the user takes measures such as replacing the puncture needle 15.
 なお、光音響計測装置10は、一定期間に光検出部52で検出された漏れ光の光量に基づいて、判定部54により光音響波発生部18が異常でないと判定された場合に、光検出部52の光検出を停止し、プローブ11により光音響波の検出を行うよう構成することができる。この場合には、挿入物に異常が無い場合には、自動的に光音響波を検出可能な状態に遷移する構成とすることで、術者などのユーザの作業の効率化を図ることができる。 The photoacoustic measurement device 10 detects the light when the determination unit 54 determines that the photoacoustic wave generation unit 18 is not abnormal based on the amount of leaked light detected by the light detection unit 52 during a certain period. The optical detection of the part 52 can be stopped, and the probe 11 can be configured to detect the photoacoustic wave. In this case, when there is no abnormality in the insert, it is possible to improve the efficiency of the operation of a user such as an operator by automatically transitioning to a state in which the photoacoustic wave can be detected. .
 さらに、異常通知部56は、判定部54に異常であると判定された場合に、ユーザの確認入力を求める異常通知を行い、確認入力を受け付けるまで異常通知を継続することができる。また、光源駆動手段31は、確認入力を受け付けるまで、光源35を駆動しないように構成することができる。例えば、制御部28の一部が異常通知部56を兼ねており、制御部28は、異常であると判定された場合に、画像表示部14の表示画面に、「続けて光音響波の測定を行う場合には確認ボタンを押してください」というメッセージと確認ボタンを表示して、ユーザの確認入力を受け付けるまで、上記メッセージと確認ボタンの表示を継続すればよい。さらに、確認入力を受け付けるまで、制御部28がレーザトリガ送信部22にレーザ停止指示を送信させ、光源35を駆動しないよう構成することが考えられる。異常があると判定された場合に、ユーザの確認を促すことで、光音響計測装置10の使用の安全性を高めることができる。 Furthermore, when it is determined that the determination unit 54 is abnormal, the abnormality notification unit 56 performs an abnormality notification requesting a user's confirmation input, and can continue the abnormality notification until the confirmation input is received. The light source driving means 31 can be configured not to drive the light source 35 until a confirmation input is received. For example, when a part of the control unit 28 also serves as the abnormality notification unit 56 and the control unit 28 determines that the abnormality is present, the control unit 28 displays “continuous photoacoustic wave measurement” on the display screen of the image display unit 14. Display the message and confirmation button until a user's confirmation input is accepted. Further, it is conceivable that the control unit 28 transmits the laser stop instruction to the laser trigger transmission unit 22 and does not drive the light source 35 until the confirmation input is received. When it is determined that there is an abnormality, it is possible to improve the safety of use of the photoacoustic measurement device 10 by prompting the user for confirmation.
 また、光音響波検出処理は異常検出モードがオンオフにかかわらず実行可能に構成されている。異常検出モードがオンの状態で、光音響波検出処理と異常検出処理をそれぞれ実行可能とすることで、穿刺針15を被検体に挿入する直前に穿刺針15の先端15bの異常検出を行うなど、挿入物の不良を任意のタイミングで確認して光音響波検出処理を行うことができる。さらに、異常検出モードのオンオフにかかわらず接続検知部37による導光部材16と光結合部36との接続の検知に基づいて、光音響波検出処理を開始する構成としてもよい。異常検出モードがオンの場合には、接続の検知に基づいて異常検出処理を開始するように構成してもよいし、光音響波検出処理と異常検出処理をそれぞれ開始してもよい。さらには、接続の検知に基づいて、装置の状態を、たとえば超音波画像やドップラー画像などの光音響画像以外の画像のみを取得可能な状態から光音響画像を取得可能な状態に遷移させるように構成してもよい。このようにすることで、光音響波検出処理あるいは異常検出処理を開始するために必要なユーザ操作を軽減することができる。 Also, the photoacoustic wave detection process can be executed regardless of whether the abnormality detection mode is on or off. By enabling the photoacoustic wave detection process and the abnormality detection process to be executed while the abnormality detection mode is on, abnormality detection of the tip 15b of the puncture needle 15 is performed immediately before the puncture needle 15 is inserted into the subject. The photoacoustic wave detection process can be performed by confirming the defect of the insert at an arbitrary timing. Furthermore, it is good also as a structure which starts a photoacoustic wave detection process based on the detection of the connection of the light guide member 16 and the optical coupling part 36 by the connection detection part 37 irrespective of ON / OFF of abnormality detection mode. When the abnormality detection mode is on, the abnormality detection process may be started based on connection detection, or the photoacoustic wave detection process and the abnormality detection process may be started. Furthermore, based on the detection of the connection, the state of the apparatus is changed from a state where only an image other than a photoacoustic image such as an ultrasonic image or a Doppler image can be acquired to a state where a photoacoustic image can be acquired. It may be configured. By doing in this way, user operation required in order to start a photoacoustic wave detection process or an abnormality detection process can be reduced.
 また、異常検出モードがオンの状態で、光音響波検出処理を実行する場合の光源駆動条件は、光音響波検出処理を実行していない場合の光源駆動条件と異ならせてもよい。例えば、異常検出モードがオンの場合に、プローブ11による光音響波の検出が実行されていない第1期間には、発光数、パルス幅及び電流から選択される少なくとも1つの光源駆動条件の値が、プローブ11による光音響波の検出が実行されている第2期間における少なくとも1つの光源駆動条件の値よりも小さく設定される構成とすることができる。この場合には、光音響波を検出している第2期間においては、光源35の光量を高めて光音響波の計測性能を好適に実現し、光音響波を検出していない第1期間においては、異常検出に必要な光量を確保できる範囲で光源35の光量を抑えることで、光音響波発生部18の検査を安全に実施することができる。一方、異常検出モードがオンの場合に、第1期間には、発光数、パルス幅及び電流から選択される少なくとも1つの光源駆動条件の値が、第2期間における少なくとも1つの光源駆動条件の値よりも大きく設定される構成としてもよい。この場合には、第1期間において、異常検出の精度を高めることができる。 Further, the light source driving condition when the photoacoustic wave detection process is executed while the abnormality detection mode is on may be different from the light source driving condition when the photoacoustic wave detection process is not executed. For example, when the abnormality detection mode is on, the value of at least one light source driving condition selected from the number of emitted light, the pulse width, and the current is in the first period when the photoacoustic wave is not detected by the probe 11. The probe 11 may be set to be smaller than the value of at least one light source driving condition in the second period in which photoacoustic wave detection is performed. In this case, in the second period in which the photoacoustic wave is detected, the light quantity of the light source 35 is increased to suitably realize the photoacoustic wave measurement performance, and in the first period in which the photoacoustic wave is not detected. The inspection of the photoacoustic wave generation unit 18 can be performed safely by suppressing the amount of light from the light source 35 within a range in which the amount of light necessary for abnormality detection can be secured. On the other hand, when the abnormality detection mode is on, in the first period, the value of at least one light source driving condition selected from the number of light emission, pulse width, and current is the value of at least one light source driving condition in the second period. It is good also as a structure set larger than this. In this case, the accuracy of abnormality detection can be increased in the first period.
 なお、少なくとも第1期間において、上記の少なくとも1つの光源駆動条件の値を、第2期間の光源駆動条件の値と異ならせて設定できるものであれば、任意のタイミングで光源駆動条件を設定してよい。例えば、光音響波検出処理の実行期間とそれ以外の期間で、光源駆動条件の値を異ならせて設定すればよい。 Note that the light source drive condition is set at an arbitrary timing as long as the value of the at least one light source drive condition can be set different from the value of the light source drive condition of the second period at least in the first period. It's okay. For example, the value of the light source driving condition may be set differently between the execution period of the photoacoustic wave detection process and the other period.
 また、光検出部52は、異常検出モードがオンの場合に、プローブ11による光音響波の検出が実行されていない期間の光検出部52の感度が、プローブ11による光音響波の検出が実行されている期間の光検出部52の感度よりも大きくなるよう設定されていてもよい。光音響波の検出と異常検出とを並行して実行する可能性がある場合には、光検出部52の感度を必要以上に大きくすることによる誤検出を防ぎ、光音響波の検出を行わないで異常検出を行う場合は、光検出部52の感度を上げて異常検出の精度を高めることができる。 In addition, when the abnormality detection mode is on, the light detection unit 52 detects the photoacoustic wave by the probe 11 when the sensitivity of the light detection unit 52 is not detected by the probe 11. It may be set so as to be larger than the sensitivity of the light detection unit 52 during the period in which the light detection is performed. When there is a possibility of executing photoacoustic wave detection and abnormality detection in parallel, false detection by increasing the sensitivity of the photodetection unit 52 more than necessary is prevented, and photoacoustic wave detection is not performed. In the case where abnormality detection is performed, the sensitivity of the light detection unit 52 can be increased to improve the accuracy of abnormality detection.
 なお、少なくとも、プローブ11による光音響波の検出が実行されていない期間において、光検出部52の感度が、プローブ11による光音響波の検出が実行されている期間の感度よりも大きく設定されるものであれば、任意のタイミングで光検出部52の感度を変更してよい。例えば、光音響波検出処理の実行期間とそれ以外の期間で、光検出部52の感度を異ならせて設定すればよい。 Note that the sensitivity of the light detection unit 52 is set to be higher than the sensitivity during the period in which the photoacoustic wave is detected by the probe 11 at least during the period in which the photoacoustic wave is not detected by the probe 11. If it is a thing, you may change the sensitivity of the photon detection part 52 at arbitrary timings. For example, the sensitivity of the light detection unit 52 may be set differently between the execution period of the photoacoustic wave detection process and the other period.
 また、上記実施形態においては、レーザユニット13中に光源駆動手段31及び異常検出手段51が内包されているものとして説明したが、これらの各手段はそれぞれ別体として備えられていてもよい。第2及び第3の実施形態として、異常検出手段51が超音波プローブ11及び超音波ユニット12にそれぞれ設けられた例を説明する。 In the above embodiment, the light source driving means 31 and the abnormality detecting means 51 are described as being included in the laser unit 13, but each of these means may be provided separately. As the second and third embodiments, an example in which the abnormality detection unit 51 is provided in the ultrasonic probe 11 and the ultrasonic unit 12 will be described.
 図6は、第2の実施形態の光音響計測装置10の構成を示すブロック図であり、図7は、第2の実施形態において超音波プローブ11の一部に光検出部52が設けられた構成例を示す模式図である。図6に示すように、光音響計測装置10においては、レーザユニット13中に光源駆動手段31を備え、異常検出手段51をプローブ11に備えてもよい。 FIG. 6 is a block diagram illustrating a configuration of the photoacoustic measurement apparatus 10 according to the second embodiment. FIG. 7 illustrates a configuration in which the light detection unit 52 is provided in a part of the ultrasonic probe 11 in the second embodiment. It is a schematic diagram which shows a structural example. As shown in FIG. 6, in the photoacoustic measurement apparatus 10, the laser unit 13 may include the light source driving unit 31 and the abnormality detecting unit 51 may be included in the probe 11.
 図6及び7に示すように、超音波プローブ11の一部に光検出部52を備えた場合、術者が手元で穿刺針15の異常を検査することが可能となる。超音波プローブ11及び穿刺針15はいずれも清潔環境下で使用する必要があり、超音波プローブ11の一部に光検出部52を設けていれば、異常検出も清潔環境下で実施することができるので、特に好ましい。 As shown in FIGS. 6 and 7, when the light detection unit 52 is provided in a part of the ultrasonic probe 11, the operator can inspect the abnormality of the puncture needle 15 at hand. Both the ultrasonic probe 11 and the puncture needle 15 need to be used in a clean environment. If the light detection unit 52 is provided in a part of the ultrasonic probe 11, the abnormality detection can also be performed in the clean environment. This is particularly preferred because
 本発明の第3の実施形態の光音響計測装置10について説明する。図8は、第3の実施形態の光音響計測装置10の構成を示すブロック図である。 A photoacoustic measurement apparatus 10 according to a third embodiment of the present invention will be described. FIG. 8 is a block diagram illustrating a configuration of the photoacoustic measurement apparatus 10 according to the third embodiment.
 第3の実施形態の光音響計測装置10は、異常検出手段51を超音波ユニット12に備えた点と、接続通知部38の代わりに光源駆動通知部39を備えた点と、超音波ユニット12に接続される外部スイッチである光源駆動スイッチ42を備えた点で第1の実施形態の光音響計測装置10と異なる。その他の構成要素及びそれらの機能は第1の実施形態の光音響計測装置10と同様である。 The photoacoustic measurement device 10 according to the third embodiment includes a point that the abnormality detection unit 51 is provided in the ultrasonic unit 12, a point that a light source drive notification unit 39 is provided instead of the connection notification unit 38, and the ultrasonic unit 12. It differs from the photoacoustic measuring device 10 of 1st Embodiment by the point provided with the light source drive switch 42 which is an external switch connected to. Other components and their functions are the same as those of the photoacoustic measurement apparatus 10 of the first embodiment.
 図8に示すように、光音響計測装置10においては、レーザユニット13中に光源駆動手段31を備え、異常検出手段51を超音波ユニット12に備えてもよい。本実施形態のように、光検出部52、判定部54及び異常通知部56を含む異常検出手段51を超音波ユニット12に備えた場合には、術者を補助する補助者が異常検出を行う場合に操作が容易となる。なお、第1乃至第3の実施形態に限定されず、光検出部52、判定部54及び異常通知部56が、互いに異なる箇所に設けられていてもよい。例えば、光検出部52がレーザユニット13、判定部54が超音波ユニット12、異常通知部56が画像表示部14にそれぞれ設けられるなどである。 As shown in FIG. 8, in the photoacoustic measurement apparatus 10, the laser unit 13 may include the light source driving unit 31 and the abnormality detecting unit 51 may be included in the ultrasonic unit 12. When the abnormality detection means 51 including the light detection unit 52, the determination unit 54, and the abnormality notification unit 56 is provided in the ultrasonic unit 12 as in the present embodiment, an assistant who assists the operator performs abnormality detection. In some cases, the operation becomes easy. In addition, it is not limited to 1st thru | or 3rd embodiment, The light detection part 52, the determination part 54, and the abnormality notification part 56 may be provided in a mutually different location. For example, the light detection unit 52 is provided in the laser unit 13, the determination unit 54 is provided in the ultrasonic unit 12, and the abnormality notification unit 56 is provided in the image display unit 14.
 光源駆動スイッチ42は、レーザトリガ信号のオン、オフを切り替えるためのフットスイッチである。このように、光音響計測装置10が光源駆動スイッチ42を備えた場合には、容易に光源35の駆動をユーザが制御でき、光音響波発生部18の検査を安全に実施することができる。光源駆動スイッチ42は、光源駆動スイッチ42は超音波ユニット12に接続されて、レーザトリガ信号のオンオフ信号を切り替え可能に構成されていれば、他の任意のタイプの外部スイッチを採用することができる。 The light source drive switch 42 is a foot switch for switching the laser trigger signal on and off. Thus, when the photoacoustic measuring device 10 includes the light source drive switch 42, the user can easily control the drive of the light source 35, and the inspection of the photoacoustic wave generator 18 can be performed safely. As long as the light source drive switch 42 is connected to the ultrasonic unit 12 and is configured to be able to switch the on / off signal of the laser trigger signal, any other type of external switch can be adopted. .
 光源駆動通知部39は、光源35が駆動中、すなわちレーザ光が出力中であることをユーザに通知する。光音響計測装置10が光源駆動通知部39を備えた場合には、レーザが出力されているかどうかをユーザは容易に認識することができ、光音響波発生部18の検査を安全に実施することができる。本実施形態では、光源駆動通知部39は、トリガ入力部32からのトリガパルスを受け取るたびに点滅するLED等の発光素子である。光源駆動通知部39が、トリガ入力部32からのトリガパルスを受け取るたびに点滅する場合には、レーザが出力の有無をユーザは詳細に認識することができ、好ましい。 The light source drive notification unit 39 notifies the user that the light source 35 is being driven, that is, the laser beam is being output. When the photoacoustic measuring device 10 includes the light source drive notification unit 39, the user can easily recognize whether the laser is output, and the photoacoustic wave generation unit 18 can be safely inspected. Can do. In the present embodiment, the light source drive notification unit 39 is a light emitting element such as an LED that blinks each time a trigger pulse is received from the trigger input unit 32. When the light source drive notification unit 39 blinks every time a trigger pulse is received from the trigger input unit 32, it is preferable that the user can recognize in detail whether the laser is outputting or not.
 また、上述の異常通知部56が、光源駆動通知部39を兼ねてもよい。この場合、光源駆動通知部39は、判定部54により光音響波発生部18が異常であると判定された場合に、光源駆動通知と識別可能に異常通知を行えばよい。このことにより、部品点数を増加させないで、ユーザに接続の有無及び異常検出の結果を通知することができる。例えば、光源駆動通知は緑の点滅、異常通知は赤の点滅などとすることができる。 Further, the abnormality notification unit 56 described above may also serve as the light source drive notification unit 39. In this case, when the determination unit 54 determines that the photoacoustic wave generation unit 18 is abnormal, the light source drive notification unit 39 may perform abnormality notification so as to be distinguishable from the light source drive notification. This makes it possible to notify the user of the presence / absence of connection and the result of abnormality detection without increasing the number of parts. For example, the light source drive notification may be flashing green, and the abnormality notification may be flashing red.
 なお、異常通知部56、接続通知部38、光源駆動通知部39及びモード通知部などの各種通知部は、それぞれ独立に構成されていてもよいし、2つもしくは3つの機能を1つの通知部が兼ねるように構成されていてもよい。1つの通知部で複数の情報を通知させる場合には、多色発光型LEDを用いて情報毎で発光色を変えたり、連続点灯と点滅点灯とで区別したりすればよい。 Note that the various notification units such as the abnormality notification unit 56, the connection notification unit 38, the light source drive notification unit 39, and the mode notification unit may be configured independently of each other, or two or three functions may be combined into one notification unit. May be configured to serve as both. When a plurality of pieces of information are notified by a single notification unit, it is only necessary to change the emission color for each information using a multicolor LED or distinguish between continuous lighting and blinking lighting.
 本光音響計測装置10に備えられる異常通知部56、接続通知部38、光源駆動通知部39及びモード通知部などの各種通知部は発光素子で構成されるのみならず、画像表示部14への各種通知表示手段であってもよい。また、異常通知部56、接続通知部38、光源駆動通知部39及びモード通知部、接続検知部37、モード切替スイッチ58は必須の構成ではなく、省略してもよい。 The various notification units such as the abnormality notification unit 56, the connection notification unit 38, the light source drive notification unit 39, and the mode notification unit provided in the photoacoustic measurement device 10 are not only configured by light emitting elements, Various notification display means may be used. Further, the abnormality notification unit 56, the connection notification unit 38, the light source drive notification unit 39, the mode notification unit, the connection detection unit 37, and the mode changeover switch 58 are not essential components and may be omitted.
 上記各実施形態では、挿入物として穿刺針を例に挙げたが、これには限定されない。特開2015-37519号公報に記載の通り、挿入物は、内部にラジオ波焼灼術に用いられる電極を収容するラジオ波焼灼用針であってもよいし、血管内に挿入されるカテーテルであってもよいし、血管内に挿入されるカテーテルのガイドワイヤであってもよい。あるいは、レーザ治療用の光ファイバであってもよい。 In each of the above embodiments, the puncture needle is taken as an example of the insert, but the present invention is not limited to this. As described in JP-A-2015-37519, the insert may be a radiofrequency ablation needle that accommodates an electrode used for radiofrequency ablation, or a catheter that is inserted into a blood vessel. It may be a guide wire of a catheter inserted into a blood vessel. Alternatively, an optical fiber for laser treatment may be used.
 以上、本発明の光音響計測装置について詳細に説明したが、本発明において、以上の例には限定されず、本発明の要旨を逸脱しない範囲において、各種の改良や変形を行ってもよい。 The photoacoustic measurement device of the present invention has been described in detail above. However, the present invention is not limited to the above examples, and various improvements and modifications may be made without departing from the gist of the present invention.
10  光音響計測装置
11  超音波プローブ(光音響波検出部)
12  超音波ユニット
13  レーザユニット
14  画像表示部
15  穿刺針(挿入物)
15a  穿刺針の中空部
15b  穿刺針先端
16  導光部材
16a  導光部材の先端
17  光吸収体
18  光音響波発生部
19  保護部材
22  レーザトリガ送信部
23  超音波送信部
24  信号受信部
25  光音響画像生成部
26  超音波画像生成部
28  制御部
29  USBポート
31  光源駆動手段(光源駆動部)
32  トリガ入力部
33  光源駆動回路
35  光源
36  光結合部
37  接続検知部
38  接続通知部
39  光源駆動通知部
42  光源駆動スイッチ
51  異常検出手段(異常検出部)
52  光検出部
52a 光学フィルタ
54  判定部
56  異常通知部
58  モード切替スイッチ
61  接続部
10 Photoacoustic Measuring Device 11 Ultrasonic Probe (Photoacoustic Wave Detection Unit)
12 Ultrasonic unit 13 Laser unit 14 Image display unit 15 Puncture needle (insert)
15a hollow portion 15b of puncture needle 16 tip of puncture needle 16 light guide member 16a tip 17 of light guide member light absorber 18 photoacoustic wave generator 19 protective member 22 laser trigger transmitter 23 ultrasonic transmitter 24 signal receiver 25 photoacoustic Image generating unit 26 Ultrasonic image generating unit 28 Control unit 29 USB port 31 Light source driving means (light source driving unit)
32 Trigger input unit 33 Light source drive circuit 35 Light source 36 Optical coupling unit 37 Connection detection unit 38 Connection notification unit 39 Light source drive notification unit 42 Light source drive switch 51 Abnormality detection means (abnormality detection unit)
52 Photodetector 52a Optical filter 54 Judgment unit 56 Abnormality notification unit 58 Mode switch 61 Connection unit

Claims (18)

  1.  光を出射する光源と、
     前記光源に接続され、基端から入射された前記光を先端に導光する長尺な導光部材と、
     少なくとも先端部が被検体内に挿入される挿入物であって、前記導光部材の少なくとも前記先端と、該先端に接続され、前記導光部材により導光された光を吸収して光音響波を発生する光吸収体とを内包する挿入物と、
     前記被検体内に挿入された前記挿入物の前記先端部から発せられる光音響波を計測する光音響波検出部と、
     前記挿入物の前記先端部からの漏れ光を検出する光検出部と、
     該光検出部で検出された前記漏れ光の光量に基づいて前記導光部材及び前記光吸収体からなる光音響波発生部の異常を判定する判定部とを備えた光音響計測装置。
    A light source that emits light;
    A long light guide member connected to the light source and guiding the light incident from the base end to the tip;
    At least a distal end portion is an insert inserted into a subject, and at least the distal end of the light guide member and the light that is connected to the distal end and guided by the light guide member and absorbs the photoacoustic wave An insert containing a light absorber that generates
    A photoacoustic wave detector that measures a photoacoustic wave emitted from the tip of the insert inserted into the subject;
    A light detection unit for detecting leakage light from the tip of the insert;
    A photoacoustic measurement apparatus comprising: a determination unit that determines an abnormality of the photoacoustic wave generation unit including the light guide member and the light absorber based on a light amount of the leakage light detected by the light detection unit.
  2.  前記判定部は、前記光検出部で検出された前記漏れ光の光量が予め定められた基準値よりも大きい場合に前記光音響波発生部が異常であると判定する請求項1に記載の光音響計測装置。 2. The light according to claim 1, wherein the determination unit determines that the photoacoustic wave generation unit is abnormal when a light amount of the leakage light detected by the light detection unit is larger than a predetermined reference value. Acoustic measuring device.
  3.  前記光検出部は、前記光源から出射される光の波長域のみを透過する光学フィルタを光入射面に備えている請求項1又は2に記載の光音響計測装置。 The photoacoustic measuring device according to claim 1 or 2, wherein the light detection unit includes an optical filter that transmits only a wavelength region of light emitted from the light source on a light incident surface.
  4.  前記光検出部は、前記光源の駆動を示すトリガ信号に基づいて、前記漏れ光の検出を開始する請求項1から3いずれか1項に記載の光音響計測装置。 The photoacoustic measurement device according to any one of claims 1 to 3, wherein the light detection unit starts detection of the leakage light based on a trigger signal indicating driving of the light source.
  5.  前記光源の駆動を示す光源駆動通知を行う光源駆動通知部をさらに備えた請求項1から4いずれか1項に記載の光音響計測装置。 5. The photoacoustic measurement device according to claim 1, further comprising a light source drive notification unit that performs a light source drive notification indicating the drive of the light source.
  6.  前記光源駆動通知部は、前記光源の駆動を指示するトリガ信号に基づいて、前記光源駆動通知を行う請求項5に記載の光音響計測装置。 The photoacoustic measurement device according to claim 5, wherein the light source drive notification unit performs the light source drive notification based on a trigger signal instructing driving of the light source.
  7.  前記光源駆動通知部は、異常通知部を兼ねており、前記判定部により前記光音響波発生部が異常であると判定された場合に、前記光源駆動通知と識別可能に異常通知を行う請求項5又は6に記載の光音響計測装置。 The light source drive notification unit also serves as an abnormality notification unit, and when the determination unit determines that the photoacoustic wave generation unit is abnormal, performs an abnormality notification so as to be distinguishable from the light source drive notification. The photoacoustic measuring device according to 5 or 6.
  8.  前記光源の駆動開始と駆動停止を指示する光源駆動スイッチを備えた請求項1から7のいずれか1項に記載の光音響計測装置。 The photoacoustic measuring device according to any one of claims 1 to 7, further comprising a light source drive switch that instructs to start and stop driving the light source.
  9.  前記導光部材が接続され、該導光部材が前記光源と光学的に結合される光結合部と、
     前記導光部材と前記光結合部との接続を検知する接続検知部をさらに備えた請求項1から6のいずれか1項に記載の光音響計測装置。
    An optical coupling portion to which the light guide member is connected, and the light guide member is optically coupled to the light source;
    The photoacoustic measuring device of any one of Claim 1 to 6 further provided with the connection detection part which detects the connection of the said light guide member and the said optical coupling part.
  10.  前記接続検知部により前記導光部材と前記光結合部との接続が検知されている場合にのみ、前記光源が駆動可能となる請求項9記載の光音響計測装置。 The photoacoustic measurement device according to claim 9, wherein the light source can be driven only when the connection between the light guide member and the optical coupling unit is detected by the connection detection unit.
  11.  前記接続検知部により前記導光部材と前記光結合部との接続が検知された場合に、前記導光部材と前記光結合部との接続を通知する接続通知部をさらに備えた請求項9又は10に記載の光音響計測装置。 The connection notification part which notifies the connection of the said light guide member and the said optical coupling part when the connection of the said light guide member and the said optical coupling part is detected by the said connection detection part or Claim 9 or further provided 10. The photoacoustic measuring device according to 10.
  12.  前記接続通知部は、異常通知部を兼ねており、前記判定部により前記光音響波発生部が異常であると判定された場合に、前記導光部材と前記光結合部との接続の通知と識別可能に異常通知を行う請求項11に記載の光音響計測装置。 The connection notification unit also serves as an abnormality notification unit, and when the determination unit determines that the photoacoustic wave generation unit is abnormal, a notification of connection between the light guide member and the optical coupling unit; The photoacoustic measuring device of Claim 11 which performs abnormality notification so that identification is possible.
  13.  前記判定部により前記光音響波発生部が異常であると判定された場合に異常通知を行う異常通知部をさらに備えた請求項1から6のいずれか1項に記載の光音響計測装置。 The photoacoustic measurement device according to any one of claims 1 to 6, further comprising an abnormality notification unit that performs abnormality notification when the determination unit determines that the photoacoustic wave generation unit is abnormal.
  14.  前記光検出部により光検出を行う異常検出モードのオンオフを切り替えるモード切替スイッチをさらに備える請求項1から13のいずれか1項記載の光音響計測装置。 The photoacoustic measuring device according to any one of claims 1 to 13, further comprising a mode changeover switch for switching on and off an abnormality detection mode in which light detection is performed by the light detection unit.
  15.  前記光検出部により光検出を行う異常検出モードを有し、該異常検出モードがオンの場合に、前記光音響波検出部による光音響波の検出が実行されていない期間の前記光検出部の感度が、前記光音響波検出部による光音響波の検出が実行されている期間の前記光検出部の感度よりも大きく設定される請求項1から13のいずれか1項に記載の光音響計測装置。 The photodetection unit has an abnormality detection mode in which light detection is performed by the photodetection unit, and the photoacoustic wave detection by the photoacoustic wave detection unit is not performed when the abnormality detection mode is on. The photoacoustic measurement according to any one of claims 1 to 13, wherein the sensitivity is set to be greater than the sensitivity of the photodetection unit during a period in which the photoacoustic wave detection is performed by the photoacoustic wave detection unit. apparatus.
  16.  前記光検出部により光検出を行う異常検出モードを有し、該異常検出モードがオンの場合に、前記光音響波検出部による光音響波の検出が実行されていない期間には、発光数、パルス幅及び電流から選択される少なくとも1つの光源駆動条件の値が、前記光音響波検出部による光音響波の検出が実行されている期間における前記少なくとも1つの光源駆動条件の値よりも小さく設定される請求項1から13のいずれか1項に記載の光音響計測装置。 In the period in which the photoacoustic wave detection by the photoacoustic wave detection unit is not performed when the anomaly detection mode has an abnormality detection mode for performing light detection by the light detection unit, The value of at least one light source driving condition selected from the pulse width and current is set smaller than the value of the at least one light source driving condition during a period in which photoacoustic wave detection is performed by the photoacoustic wave detection unit. The photoacoustic measuring device according to any one of claims 1 to 13.
  17.  前記光検出部は、前記接続検知部による前記導光部材と前記光結合部との接続の検知に基づいて、前記導光部材と前記光結合部との接続の開始から一定期間光検出を行い、
     前記判定部は、前記一定期間に前記光検出部で検出された前記漏れ光の光量に基づいて前記光音響波発生部の異常を判定する請求項9から11のいずれか1項に記載の光音響計測装置。
    The light detection unit performs light detection for a certain period from the start of the connection between the light guide member and the optical coupling unit based on detection of the connection between the light guiding member and the optical coupling unit by the connection detection unit. ,
    The light according to claim 9, wherein the determination unit determines an abnormality of the photoacoustic wave generation unit based on a light amount of the leakage light detected by the light detection unit during the certain period. Acoustic measuring device.
  18.  前記判定部により前記光音響波発生部が異常でないと判定された場合に、前記光検出部が光検出を停止し、前記光音響波検出部による光音響波の検出を開始する請求項17に記載の光音響計測装置。 18. When the determination unit determines that the photoacoustic wave generation unit is not abnormal, the light detection unit stops light detection and starts detection of the photoacoustic wave by the photoacoustic wave detection unit. The photoacoustic measuring device of description.
PCT/JP2017/005099 2016-03-29 2017-02-13 Photoacoustic measurement device WO2017169188A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018508527A JP6534493B2 (en) 2016-03-29 2017-02-13 Photoacoustic measurement device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016066024 2016-03-29
JP2016-066024 2016-03-29

Publications (1)

Publication Number Publication Date
WO2017169188A1 true WO2017169188A1 (en) 2017-10-05

Family

ID=59963889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/005099 WO2017169188A1 (en) 2016-03-29 2017-02-13 Photoacoustic measurement device

Country Status (2)

Country Link
JP (1) JP6534493B2 (en)
WO (1) WO2017169188A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018180223A1 (en) * 2017-03-29 2018-10-04 富士フイルム株式会社 Photoacoustic image generation device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5714465U (en) * 1980-06-30 1982-01-25
JPH04161149A (en) * 1990-10-26 1992-06-04 Topcon Corp Laser device
JP2008307171A (en) * 2007-06-13 2008-12-25 Olympus Corp Illumination device and endoscope
JP2015037519A (en) * 2013-01-09 2015-02-26 富士フイルム株式会社 Photoacoustic image generation device and insert

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5714465U (en) * 1980-06-30 1982-01-25
JPH04161149A (en) * 1990-10-26 1992-06-04 Topcon Corp Laser device
JP2008307171A (en) * 2007-06-13 2008-12-25 Olympus Corp Illumination device and endoscope
JP2015037519A (en) * 2013-01-09 2015-02-26 富士フイルム株式会社 Photoacoustic image generation device and insert

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018180223A1 (en) * 2017-03-29 2018-10-04 富士フイルム株式会社 Photoacoustic image generation device
JPWO2018180223A1 (en) * 2017-03-29 2020-01-09 富士フイルム株式会社 Photoacoustic image generation device
US11642030B2 (en) 2017-03-29 2023-05-09 Fujifilm Corporation Photoacoustic image generation apparatus for detecting a tip portion of an insert

Also Published As

Publication number Publication date
JPWO2017169188A1 (en) 2018-07-26
JP6534493B2 (en) 2019-06-26

Similar Documents

Publication Publication Date Title
JP6041832B2 (en) Photoacoustic image generating apparatus and operating method thereof
JP4373651B2 (en) Diagnostic light irradiation device
US20110230719A1 (en) Image capturing method and apparatus
WO2015111280A1 (en) Photoacoustic signal-processing device, photoacoustic signal-processing system, and photoacoustic signal-processing method
JP2003070722A (en) Probe and fluorescence diagnostic system
JP6254907B2 (en) Laser light guide system
JP2011000258A (en) Endoscope system, endoscope, and distance-irradiation angle measuring method
JP2006317319A (en) Spectroscopic probe for blood vessel diagnosis
JP6374012B2 (en) Photoacoustic image generator
JP2012147860A (en) Endoscope apparatus, and safety management method of endoscope apparatus
WO2015107794A1 (en) Photoacoustic measurement apparatus and signal-processing device and signal-processing method used in same
WO2016158095A1 (en) Biopsy needle and photoacoustic measurement device
JP6602460B2 (en) Photoacoustic measuring device
JP5407896B2 (en) Diagnostic aid and optical probe
WO2017169188A1 (en) Photoacoustic measurement device
US20230355102A1 (en) Insert, photoacoustic measurement device comprising insert, and method for manufacturing insert
JP6211497B2 (en) Photoacoustic image generator
JP6250510B2 (en) Photoacoustic image generator
JP2011101763A (en) Image display device
JPH04131746A (en) Laser diagnostic device
JP6704510B2 (en) Photoacoustic image generator
JP2016187484A (en) Injection needle and photoacoustic measurement device
JP2006141733A (en) Endoscope system

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018508527

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17773736

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17773736

Country of ref document: EP

Kind code of ref document: A1