WO2017168974A1 - Power system linkage control apparatus and method - Google Patents

Power system linkage control apparatus and method Download PDF

Info

Publication number
WO2017168974A1
WO2017168974A1 PCT/JP2017/001631 JP2017001631W WO2017168974A1 WO 2017168974 A1 WO2017168974 A1 WO 2017168974A1 JP 2017001631 W JP2017001631 W JP 2017001631W WO 2017168974 A1 WO2017168974 A1 WO 2017168974A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
cost
self
load
interconnection control
Prior art date
Application number
PCT/JP2017/001631
Other languages
French (fr)
Japanese (ja)
Inventor
亮介 中村
歩 森田
佐藤 康生
近藤 真一
渡辺 雅浩
冨田 泰志
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2017168974A1 publication Critical patent/WO2017168974A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/40Synchronising a generator for connection to a network or to another generator

Definitions

  • the present invention relates to a power system interconnection control device and method for controlling a transition from a power system to a self-sustained operation and a return to the power system.
  • Patent Document 1 As a content regarding the transition from the electric power system to the self-sustained operation, there is a technique described in JP 2009-219204 PR (Patent Document 1). This publication states that “when a circuit breaker state signal is input, the power supply is started, so that the electric power of the commercial system is cut off by the circuit breaker and the rotating machine generator operates in the autonomous operation control. And a power storage device that compensates for load fluctuations until the shift to “is made”.
  • an object of the present invention is to provide a technique for shifting to a self-sustained operation without a power failure without using a power storage device.
  • a power grid interconnection control device is a power grid interconnection control device that controls a power grid that can be independently operated independently from a backbone grid. Based on the power outage risk calculation unit that estimates the power outage risk of the backbone system, based on the information on the load operating status of the power system, the cost calculation unit during the independent operation that calculates the cost in the independent operation at the time of the power outage, And a self-sustained interconnection mode determination unit that determines whether or not to shift to the self-sustained operation based on the power outage risk and the cost calculation result in the self-sustained operation.
  • the block diagram of the electric power grid connection control apparatus 101 in Example 1 of this invention is shown.
  • the flowchart showing the process of the electric power grid connection control apparatus 101 in Example 1 of this invention is shown.
  • the example of the power failure risk showing the probability density with respect to the cost at the time of a power failure is shown.
  • requiring the cost at the time of an autonomous operation is shown.
  • An example of the power failure cost 502 and the amount of power generated during independent operation is shown.
  • the block diagram of the electric power grid connection control apparatus 101 in Example 2 of this invention is shown.
  • the flowchart showing the process of the electric power grid connection control apparatus 101 in Example 2 of this invention is shown.
  • the block diagram of the electric power grid connection control apparatus 101 in Example 3 of this invention is shown.
  • Example 4 The example of the figure showing the relationship between the electric power demand by several electric power load and the power generation capacity of a power supply is shown.
  • the block diagram of the electric power grid connection control apparatus 101 in Example 4 of this invention is shown.
  • system is shown.
  • FIG. 1 is a configuration diagram of a power system interconnection control device 101 of the present invention.
  • the power grid interconnection control device 101 uses a grid supply and demand tightness information 102 and a weather forecast 103 to calculate a power failure risk calculation unit 104 that calculates a power failure risk that is a set of the cost and the probability distribution at the time of independent operation,
  • the operating condition of the power load 106 and the power source 107 and the equipment information 105 are used to calculate the cost for the autonomous operation cost calculation unit 108, and the conditions for determining whether to operate in the autonomous mode or the interconnection mode are determined.
  • a self-sustained transition / reconnection control unit 113 that receives the information of the power supply and outputs a control command to the power supply 107 and the circuit breaker 112 that cuts off the connection with the power system 111. It made.
  • FIG. 2 shows a flowchart showing processing of the power grid interconnection control apparatus 101 of the present invention.
  • a power outage risk that is a set of the cost and the probability distribution at the time of a power outage is obtained using the information on the grid supply / demand tightness and the weather forecast (201).
  • the cost for the independent operation is calculated using the power load, the operation status of the power source and the facility information (202).
  • the grid supply / demand tightness 102 related to the grid power failure risk calculation unit 104 is information indicating how tight the grid supply / demand is. Specifically, it is information on the surplus capacity of supply capacity with respect to power demand (supply reserve ratio), and information such as power supply tightness warning issued when the value is acquired directly or when the supply reserve ratio falls below the specified value It is.
  • the weather forecast 103 is weather information that may lead to a power failure, for example, information such as a hurricane or a lightning strike.
  • FIG. 3 shows an example of the system power outage risk derived by the system power outage risk calculation unit 104 in the present embodiment.
  • the horizontal axis represents the power outage cost
  • the vertical axis represents the probability for each power outage cost. For example, in the case of a power outage due to lightning, the power outage time is short, so the probability that the power outage cost is high is reduced (301 ). On the other hand, when the supply / demand tightness increases and the probability of a planned power outage over several hours is high, the probability of a location where the power outage cost is low is small, and the probability of a location where the power outage cost is high increases (302). (Delete)
  • a probability distribution representing the power failure time on the horizontal axis and the probability on the vertical axis is obtained from the risk factors of the input information.
  • the distribution is obtained by analyzing past performance data in advance and reading it from the database, or obtaining it by the system power failure risk calculation unit 104 based on the performance data.
  • the power outage cost for each power outage time is obtained. Taking a factory with a production line as an example, if the power outage time is long, production stops accordingly, so the power outage cost is proportional to the power outage time.
  • FIG. 401 represents the amount of power used
  • 402 represents the amount of power generated by the power source 107.
  • 403 is the time when the amount of power used or the amount of power generation is acquired.
  • the usage amount after the next time can be predicted by taking the slope of 401 at time 403 and using linear approximation 404 or the like.
  • the power generation amount is a planned value
  • the difference between the power generation amounts is the amount of power to be generated in the event of a power failure.
  • the cost when the amount is supplemented by the generator is obtained by using the power generation unit price of the generator or, if it is desired to obtain a detailed value, the gas consumption characteristic (which is a characteristic of the cost with respect to the power generation amount).
  • the cost of not having a power outage can be calculated if the power not generated by the generator is covered by the purchase of electricity.
  • the forecast value of the demand amount is expressed as a linear approximation.
  • the demand forecast value obtained in advance by some different means may be used. Data obtained by prediction may be corrected by the power consumption obtained by the power load 106.
  • the independent / interconnection mode determination unit 110 determines whether to shift to the independent operation or to continue the interconnection operation based on the power failure risk by the system power failure risk calculation unit 104 and the cost increase by the cost calculation unit 108 during the independent operation. To do. Since a plurality of evaluation criteria can be considered for this purpose, the user gives the criteria by the mode determination method specifying means 109. In this example, the expected cost increase when power failure occurs without shifting to independent operation is compared with the increase in cost that is increased by shifting to autonomous operation before the power failure, and simply shifts to autonomous operation when the former is large. Then.
  • the comparison is made by the method shown in FIG.
  • the average power failure cost 502 is obtained using a power failure risk 501 representing the relationship between the power failure cost and the probability.
  • the power failure time is obtained by the reverse method shown in the description of the processing of the system power failure risk calculation unit 104.
  • a time 504 is obtained by adding the calculated power outage time to the current time 503 (the time when the power usage amount and the power generation amount are acquired).
  • the amount of power generated by the transition to independent operation is the area between 503 and 506.
  • the self-sustained / interactive mode determination unit 110 compares the average power failure cost 502 with the increase in power generation due to the transition to independent operation. If the former is larger, the power is cut off, and if the latter is larger, the power is lost. Determined to continue system operation.
  • the independent transition / reconnection control unit 113 controls the operation of the power source and the opening / closing of the circuit breaker 112 based on the determination result.
  • Example 2 shows an example in which the present invention is applied to the transition from the independent operation to the reconnection in addition to the transition to the independent operation in the first embodiment.
  • System state 601 is information indicating whether or not the power system can be connected. Specifically, the voltage and frequency of the power supply system. This information is used in the independent / interconnection mode determination unit, and is used to determine whether or not it is possible to shift to independent operation when operating in the interconnection mode.
  • FIG. 7 shows a flowchart of the processing in the second embodiment.
  • the processing from the interconnection mode to the transition to the independent operation is the same as the steps 201 to 205 in FIG. 2 (701).
  • the power failure state of the system is acquired as needed (702).
  • power outage risk which is a set of the cost and probability distribution during a power outage, is obtained using information on the grid supply and demand tightness and weather forecasts.
  • step 201 704
  • the cost for the independent operation is calculated using the power load, the power supply operation plan, and the facility information.
  • the cost calculation method is the same as that in FIG. 4 (705).
  • step 204 based on the information on the power failure risk, the power failure cost, and the mode determination method, it is determined whether to operate in the independent mode or the interconnection mode. This process is the same as step 204 in FIG. 2 (706).
  • step 704 when the mode does not shift to the interconnection mode, the process returns to step 704, and when the mode shifts, the process returns to step 701 again.
  • the process it is possible not only to shift to a self-sustained operation without a power failure without using a power storage device, but also to reconnect at an appropriate timing when the power failure state ends.
  • Example 3 The present embodiment is an example in which a part of the electric power load is selectively cut off and then the operation is shifted to the independent operation.
  • the configuration of the present invention in Example 3 is shown in FIG. The difference from the configuration of the first embodiment is that the interrupt load determining unit 801 is provided.
  • the interrupting load determination unit 801 has a function of determining a load to be interrupted with reference to the power load 106 and the facility information 105.
  • 401 is the time when the amount of power used by the power load is measured. Assume that there are three power loads A, B, and C as the power load 106, 402 is the power consumption of the power load A, 403 is the sum of the power consumption of the power loads A and B, and 404 is the power load A. , B, C represents the sum of power consumption. Reference numeral 405 represents a predicted value of the sum of the power consumptions of the power loads A and B, and reference numeral 406 represents a predicted value of the sum of the power consumptions of the power loads A, B, and C. A straight line 407 represents the total power supply capacity of the power supply 107 given by the facility information 105.
  • the cut load determination unit 801 selects a load from the power loads A, B, and C and cuts off the load. For example, when the power load C is cut off, the predicted value of the power load is 405, so that the power capacity 407 is not exceeded.
  • the method for determining the load to be interrupted by the interrupting load determining unit 801 a plurality of methods are conceivable. For example, there is a method in which priorities are assigned to important loads and the loads are cut off in order from the less important load. Alternatively, in the case of a factory, a method of calculating the cost when the production is stopped in consideration of the production amount among a plurality of products and stopping the equipment related to the product with the smallest loss profit can be considered. However, the load to be cut off is determined by various means without being limited to this method.
  • the autonomous operation cost calculation unit 108 calculates an independent operation cost based on the information. The following two methods are conceivable.
  • the first case is when the calculation is performed in the same manner as in the first embodiment.
  • the power consumption used for the calculation is the same except that the load is partially cut off in advance.
  • the second is a method of adding the loss profit as a cost to the cost during independent operation in consideration of load shedding.
  • the loss cost caused by the interrupted load is obtained.
  • the loss cost is, for example, the amount of profit originally obtained when the production is continued when the load is a production line.
  • the present embodiment is an example for performing stable reconnection by performing phase synchronization for reconnection in addition to the transition to independent operation and timing adjustment to reconnection in Embodiment 2.
  • Example 4 The configuration of the present invention in Example 4 is shown in FIG. The difference from the configuration of the first embodiment is that a phase adjustment unit 801 is provided in addition to the configuration of the second embodiment.
  • the phase adjustment unit 801 acquires phase information as information on the system state 601.
  • information on the phase of the power supply 107 currently in operation is also acquired.
  • the operation of the power source 107 is adjusted so that both phases are matched.
  • the circuit breaker 112 reconnects with the power system 111.
  • An example is shown in FIG. A voltage waveform of the power supply 107 after being disconnected from the system is indicated by 1101, and a voltage waveform of the power system 111 is indicated by 1102.
  • the phase adjustment unit 801 performs processing for phase adjustment of the power source 107. Specifically, for example, in the case of a rotary generator using an internal combustion engine such as cogeneration, control is performed using the following fluctuation equation for the power load.
  • M is the inertia constant of the generator
  • f is the AC frequency
  • Pm is the rotational force of the generator
  • Pe is the electrical output of the generator. Since Pe varies depending on the power load 106, the rotational force Pm of the generator is changed to change the frequency. Since the rotational force of the generator can be changed by changing the amount of gas combustion as long as it consumes gas like cogeneration, the frequency of the power source 107 can be controlled by setting an appropriate control parameter. At this time, since the frequency is changed while the power load 106 is operated, the frequency is controlled within a range that does not affect the behavior of the load 106.
  • this invention is not limited to an above-described Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • Each of the above-described configurations, functions, processing units, processing means, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit.
  • Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor.
  • Information such as programs, tables, and files for realizing each function can be stored in a recording device such as a memory, a hard disk, or an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Economics (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

The present invention provides a technology for shifting to a self-supporting operation without power interruption and without using a power storage device. In order to address this problem, a power system linkage control apparatus according to the present invention, which controls a power system that can be operated in a self-supporting manner independently of a main system, is characterized by being provided with: a system power interruption risk calculation unit that estimates the power interruption risk of the main system on the basis of the operation information of the main system; a self-supporting operation-time cost calculation unit that calculates self-supporting operation costs during power interruption on the basis of information about the load operation status of the power system; and a self-supporting linkage mode determination unit that determines whether to shift to a self-supporting operation on the basis of the calculation results of the power interruption risk and the self-supporting operation costs.

Description

電力系統連系制御装置及び方法Power grid interconnection control apparatus and method
 電力系統からの自立運転への移行、および電力系統への復帰を制御するための電力系統連系制御装置及び方法に関する。 TECHNICAL FIELD The present invention relates to a power system interconnection control device and method for controlling a transition from a power system to a self-sustained operation and a return to the power system.
 電力系統からの自立運転への移行に関する内容として、特開2009-219204号広報(特許文献1)に記載の技術がある。この公報には、「遮断器状態信号が入力された場合に、電力供給を開始することにより、前記遮断器によって商用系統の電力が遮断されてから前記回転機系発電機が自立運転制御の運転に移行するまでの間の負荷変動を補償する蓄電装置とを備えたことを特徴とする」という記載がある。 As a content regarding the transition from the electric power system to the self-sustained operation, there is a technique described in JP 2009-219204 PR (Patent Document 1). This publication states that “when a circuit breaker state signal is input, the power supply is started, so that the electric power of the commercial system is cut off by the circuit breaker and the rotating machine generator operates in the autonomous operation control. And a power storage device that compensates for load fluctuations until the shift to “is made”.
特開2009-219204号JP 2009-219204 A
 基幹系統老朽化、グローバル化、気象災害増大を背景に災害被害額が増大しており、地域系統でのレジリエンシー強化のニーズが増大している。その一環として、基幹系統事故時でもマイクログリッド内の重要負荷を低コストに無停電で維持することが求められている。特許文献1では、自立運転に移行するために、負荷変動を保証する蓄電装置を備えることを必要とする。しかし、蓄電装置である蓄電池やUPSは設備コストが大きい。そのため、本発明では、蓄電装置を用いることなく無停電で自立運転へ移行するための技術を提供することを目的とする。 The amount of disaster damage is increasing against the background of aging, globalization, and increasing weather disasters, and the need for strengthening resiliency in regional systems is increasing. As part of this, it is required to maintain the critical load in the microgrid at a low cost and without a power failure even in the event of a main system failure. In patent document 1, in order to transfer to a self-sustained operation, it is necessary to provide the electrical storage apparatus which guarantees a load fluctuation. However, the storage battery and UPS, which are power storage devices, have high equipment costs. Therefore, an object of the present invention is to provide a technique for shifting to a self-sustained operation without a power failure without using a power storage device.
 上記課題を解決するために、本発明に係る電力系統連系制御装置は、基幹系統から独立して自立運転可能な電力系統を制御する電力系統連系制御装置において、前記基幹系統の運用情報に基づいて、前記基幹系統の停電リスクを推定する系統停電リスク演算部と、前記電力系統の負荷稼働状況の情報に基づいて、停電時の自立運転におけるコストを演算する自立運転時コスト演算部と、前記停電リスクと前記自立運転におけるコストの演算結果に基づいて、自立運転に移行するか否かを決定する自立連系モード決定部とを備えることを特徴とする。 In order to solve the above-described problems, a power grid interconnection control device according to the present invention is a power grid interconnection control device that controls a power grid that can be independently operated independently from a backbone grid. Based on the power outage risk calculation unit that estimates the power outage risk of the backbone system, based on the information on the load operating status of the power system, the cost calculation unit during the independent operation that calculates the cost in the independent operation at the time of the power outage, And a self-sustained interconnection mode determination unit that determines whether or not to shift to the self-sustained operation based on the power outage risk and the cost calculation result in the self-sustained operation.
 本発明によれば、蓄電装置を用いることなく無停電で自立運転へ移行することが可能となる。 According to the present invention, it is possible to shift to a self-sustained operation without a power failure without using a power storage device.
本発明の実施例1における電力系統連系制御装置101の構成図を示す。The block diagram of the electric power grid connection control apparatus 101 in Example 1 of this invention is shown. 本発明の実施例1における電力系統連系制御装置101の処理を表すフローチャートを示す。The flowchart showing the process of the electric power grid connection control apparatus 101 in Example 1 of this invention is shown. 停電時コストに対する確率密度を表わす停電リスクの例を示す。The example of the power failure risk showing the probability density with respect to the cost at the time of a power failure is shown. 自立運転時のコストを求めるための電力需要と発電量の例を示す。The example of the electric power demand and electric power generation amount for calculating | requiring the cost at the time of an autonomous operation is shown. 停電時コスト502と自立運転時発電量の例を示す。An example of the power failure cost 502 and the amount of power generated during independent operation is shown. 本発明の実施例2における電力系統連系制御装置101の構成図を示す。The block diagram of the electric power grid connection control apparatus 101 in Example 2 of this invention is shown. 本発明の実施例2における電力系統連系制御装置101の処理を表すフローチャートを示す。The flowchart showing the process of the electric power grid connection control apparatus 101 in Example 2 of this invention is shown. 本発明の実施例3における電力系統連系制御装置101の構成図を示す。The block diagram of the electric power grid connection control apparatus 101 in Example 3 of this invention is shown. 複数の電力負荷による電力需要と、電源の発電容量との関係を表わす図の例を示す。The example of the figure showing the relationship between the electric power demand by several electric power load and the power generation capacity of a power supply is shown. 本発明の実施例4における電力系統連系制御装置101の構成図を示す。The block diagram of the electric power grid connection control apparatus 101 in Example 4 of this invention is shown. 電力系統に対する電源の電圧位相調整の例を示す。The example of the voltage phase adjustment of the power supply with respect to an electric power grid | system is shown.
 以下、実施例を図面を用いて説明する。 Hereinafter, examples will be described with reference to the drawings.
 図1は、本発明の電力系統連系制御装置101の構成図である。本電力系統連系制御装置101は、系統需給逼迫度の情報102と気象予報103を用いて自立運転時のコストとその確率分布の組である停電リスクを演算する系統停電リスク演算部104と、電力負荷106と電源107の運転状況および設備情報105を用いて自立運転時のコストを演算する自立運転時コスト演算部108と、自立モードと連系モードのどちらで運転するかを決める条件を定めるモード決定方法指定手段109と、停電リスクと停電時コストとモード決定方法の情報を元に自立モードまたは連系モードのどちらで運転するかを決定する自立/連系モード決定部110と、動かすモードの情報を受取り、電力系統111との接続を遮断する遮断器112と電源107への制御指令を出力する自立移行/再連系制御部113からなる。 FIG. 1 is a configuration diagram of a power system interconnection control device 101 of the present invention. The power grid interconnection control device 101 uses a grid supply and demand tightness information 102 and a weather forecast 103 to calculate a power failure risk calculation unit 104 that calculates a power failure risk that is a set of the cost and the probability distribution at the time of independent operation, The operating condition of the power load 106 and the power source 107 and the equipment information 105 are used to calculate the cost for the autonomous operation cost calculation unit 108, and the conditions for determining whether to operate in the autonomous mode or the interconnection mode are determined. A mode determination method designating unit 109, a self-sustained / interactive mode determination unit 110 that determines whether to operate in a self-sustained mode or a connected mode based on information on a power failure risk, a power failure cost, and a mode determination method; A self-sustained transition / reconnection control unit 113 that receives the information of the power supply and outputs a control command to the power supply 107 and the circuit breaker 112 that cuts off the connection with the power system 111. It made.
 続いて、図2は本発明の電力系統連系制御装置101の処理を表わすフローチャートを示す。まず系統需給逼迫度の情報と気象予報を用いて停電時のコストとその確率分布の組である停電リスクを求める(201)。続いて、電力負荷と電源の運転状況および設備情報を用いて自立運転時のコストを演算する(202)。続いて、停電リスクと停電時コストとモード決定方法の情報を元に自立モードまたは連系モードのどちらで運転するかを決定する(203)。続いて、連系運転を続ける場合は再び処理201に戻り、自立運転に移行する場合には処理205に進む(204)。指定されたモードへと移行するように電力系統との接続を遮断する遮断器と電源への制御指令を出力する(205)。 Subsequently, FIG. 2 shows a flowchart showing processing of the power grid interconnection control apparatus 101 of the present invention. First, a power outage risk that is a set of the cost and the probability distribution at the time of a power outage is obtained using the information on the grid supply / demand tightness and the weather forecast (201). Subsequently, the cost for the independent operation is calculated using the power load, the operation status of the power source and the facility information (202). Subsequently, based on the information on the power failure risk, the power failure cost, and the mode determination method, it is determined whether to operate in the independent mode or the interconnection mode (203). Subsequently, when continuing the grid operation, the process returns to the process 201 again, and when shifting to the independent operation, the process proceeds to the process 205 (204). A control command to the circuit breaker for cutting off the connection with the power system and the power source is output so as to shift to the designated mode (205).
 次に、構成図に示した各要素について詳述する。 Next, each element shown in the configuration diagram will be described in detail.
 系統停電リスク演算部104に関連する、系統需給逼迫度102は系統の需給がどれだけ逼迫しているかを表す情報である。具体的には、電力需要に対する供給力の余力に関する情報(供給予備率)であり、その値を直接取得するか、あるいは供給予備率が指定値以下になると発出される電力需給ひっ迫警報等の情報である。気象予報103は、停電につながる恐れのある気象情報で、たとえばハリケーンや落雷などの情報である。 The grid supply / demand tightness 102 related to the grid power failure risk calculation unit 104 is information indicating how tight the grid supply / demand is. Specifically, it is information on the surplus capacity of supply capacity with respect to power demand (supply reserve ratio), and information such as power supply tightness warning issued when the value is acquired directly or when the supply reserve ratio falls below the specified value It is. The weather forecast 103 is weather information that may lead to a power failure, for example, information such as a hurricane or a lightning strike.
 本実施例における系統停電リスク演算部104が導出する系統停電リスクの例を図3に示す。横軸に停電時のコストを、縦軸に各停電コストに対する確率をとったもので、例えば、雷で停電する場合はその停電時間が短いため、停電コストが高い位置の確率が小さくなる(301)。一方で、需給逼迫度が上昇して数時間に及ぶ計画停電が行われる確率が大きい場合は、停電コストが低い位置の確率が小さく、停電コストが高い位置の確率が大きくなる (302)。(削除) FIG. 3 shows an example of the system power outage risk derived by the system power outage risk calculation unit 104 in the present embodiment. The horizontal axis represents the power outage cost, and the vertical axis represents the probability for each power outage cost. For example, in the case of a power outage due to lightning, the power outage time is short, so the probability that the power outage cost is high is reduced (301 ). On the other hand, when the supply / demand tightness increases and the probability of a planned power outage over several hours is high, the probability of a location where the power outage cost is low is small, and the probability of a location where the power outage cost is high increases (302). (Delete)
 系統停電リスク演算部104の処理の例を示す。まず入力情報のリスク要因から横軸に停電時間、縦軸にその確率を表わす確率分布を求める。その分布は過去の実績データを前もって分析して事前に作成したものをデータベースから読み込んだり、あるいは実績データを元に系統停電リスク演算部104により求める。次に、各停電時間に対する停電コストを求める。生産ラインを持つ工場を例にとると、停電時間が長ければその分生産が止まるため、停電コストは停電時間に比例する。あるいは温度管理が必要な製品で数分程度の停止でロット全体の品質が損なわれて廃棄する必要がある場合は、停電時間に比例せず数分の経過で大きな停電コストが生じる。停電時間と停電コストの関係、および停電時間とその確率の関係が与えられるため、これらを用いて、停電コストとその確率の関係である停電リスクが求められる。 An example of processing of the system power failure risk calculation unit 104 is shown. First, a probability distribution representing the power failure time on the horizontal axis and the probability on the vertical axis is obtained from the risk factors of the input information. The distribution is obtained by analyzing past performance data in advance and reading it from the database, or obtaining it by the system power failure risk calculation unit 104 based on the performance data. Next, the power outage cost for each power outage time is obtained. Taking a factory with a production line as an example, if the power outage time is long, production stops accordingly, so the power outage cost is proportional to the power outage time. Alternatively, if a product that requires temperature control is stopped for a few minutes and the quality of the entire lot is damaged and needs to be discarded, a large power outage cost occurs after a few minutes without being proportional to the power outage time. Since the relationship between the power failure time and the power failure cost and the relationship between the power failure time and the probability thereof are given, the power failure risk which is the relationship between the power failure cost and the probability is obtained using these.
 次に自立運転時コスト演算部108の処理の例を示す。本演算部では停電時に追加で発電しなければならない電力を求める。概念図を図4に示す。401は電力使用量を、402は電源107による発電量を表わす。403は電力使用量や発電量を取得した時刻とする。ここで401に関しては、時刻403における401の傾きを取り、直線近似404等により、次時刻以降の使用量を予測できる。一方、発電量については計画値であり、その差分をとったものが停電時に発電すべき電力量である。その分を発電機で補った場合のコストは、発電機の発電単価、もしくは詳細に値を出したいのであればガス消費特性(発電量に対するコストの特性となる)を用いて求められる。停電しない場合のコストは、発電機で発電しない分を買電で賄うとすれば求められる。以上により、停電した場合のコストと停電しない場合のコストを求められるため、その差分を取ることで停電による運転コストの増分が求められる。なお、本実施例では需要量の予測値を直線近似として表わしたが、予め何か異なる手段(記憶ベース推論や重回帰等)で得られた需要予測の値を用いてもいいし、あるいは需要予測で得られたデータを電力負荷106によって得られた電力消費量によって補正したものであってもよい。 Next, an example of processing by the cost calculation unit 108 during the independent operation will be shown. This calculation unit obtains the power that must be additionally generated during a power failure. A conceptual diagram is shown in FIG. 401 represents the amount of power used, and 402 represents the amount of power generated by the power source 107. 403 is the time when the amount of power used or the amount of power generation is acquired. Here, regarding 401, the usage amount after the next time can be predicted by taking the slope of 401 at time 403 and using linear approximation 404 or the like. On the other hand, the power generation amount is a planned value, and the difference between the power generation amounts is the amount of power to be generated in the event of a power failure. The cost when the amount is supplemented by the generator is obtained by using the power generation unit price of the generator or, if it is desired to obtain a detailed value, the gas consumption characteristic (which is a characteristic of the cost with respect to the power generation amount). The cost of not having a power outage can be calculated if the power not generated by the generator is covered by the purchase of electricity. As described above, since the cost when a power failure occurs and the cost when a power failure does not occur are obtained, an increase in the operation cost due to the power failure is obtained by taking the difference. In the present embodiment, the forecast value of the demand amount is expressed as a linear approximation. However, the demand forecast value obtained in advance by some different means (memory-based reasoning, multiple regression, etc.) may be used. Data obtained by prediction may be corrected by the power consumption obtained by the power load 106.
 次に、自立/連系モード決定部110の処理の例を示す。自立/連系モード決定部110は、系統停電リスク演算部104による停電リスクと、自立運転時コスト演算部108によるコスト増分を元に、自立運転に移行するか、連系運転を続けるかを決定する。そのための評価基準は複数考えられるため、その基準はモード決定方法指定手段109によってユーザが与える。本実施例では、自立運転に移行せずに停電した場合のコスト増分期待値と、停電前に自立運転に移行することで増えるコストの増分を比較し、単に前者が大きい場合に自立運転に移行するとした。自立運転移行によるコストの増分は、その運転時間に依存するため、本実施例では図5に示す方法で比較する。まず、停電時コストとその確率の関係を表わす停電リスク501を用いてその平均停電時コスト502を求める。求めた平均停電時コスト502に対して、系統停電リスク演算部104の処理の説明で示したのと逆の方式で停電時間を求める。時刻に対する電力の関係について、現在時刻503(電力使用量や発電量を取得した時刻)に対して、求めた停電時間を足し合わせた時刻504が得られる。自立運転移行による発電量は503~506で挟まれた面積部分となる。そのため、自立運転移行による電源による発電量の増加分を求めることができる。自立/連系モード決定部110は、平均停電時コスト502と、自立運転移行による発電量の増加分とを比較し、前者の方が大きい場合には停電させ、後者の方が大きい場合は連系運転を続けると判定する。自立移行/再連系制御部113はその判定結果を元に、電源の運転および遮断器112の開閉を制御する。 Next, an example of processing of the independent / interconnection mode determination unit 110 will be described. The independent / interconnection mode determination unit 110 determines whether to shift to the independent operation or to continue the interconnection operation based on the power failure risk by the system power failure risk calculation unit 104 and the cost increase by the cost calculation unit 108 during the independent operation. To do. Since a plurality of evaluation criteria can be considered for this purpose, the user gives the criteria by the mode determination method specifying means 109. In this example, the expected cost increase when power failure occurs without shifting to independent operation is compared with the increase in cost that is increased by shifting to autonomous operation before the power failure, and simply shifts to autonomous operation when the former is large. Then. Since the increase in the cost due to the transition to the independent operation depends on the operation time, in this embodiment, the comparison is made by the method shown in FIG. First, the average power failure cost 502 is obtained using a power failure risk 501 representing the relationship between the power failure cost and the probability. For the obtained average power failure cost 502, the power failure time is obtained by the reverse method shown in the description of the processing of the system power failure risk calculation unit 104. With respect to the relationship of power with respect to time, a time 504 is obtained by adding the calculated power outage time to the current time 503 (the time when the power usage amount and the power generation amount are acquired). The amount of power generated by the transition to independent operation is the area between 503 and 506. Therefore, it is possible to obtain an increase in the amount of power generated by the power source due to the transition to independent operation. The self-sustained / interactive mode determination unit 110 compares the average power failure cost 502 with the increase in power generation due to the transition to independent operation. If the former is larger, the power is cut off, and if the latter is larger, the power is lost. Determined to continue system operation. The independent transition / reconnection control unit 113 controls the operation of the power source and the opening / closing of the circuit breaker 112 based on the determination result.
 以上のようにして、蓄電装置を用いることなく無停電で自立運転へ移行することが可能となる。 As described above, it is possible to shift to a self-sustained operation without a power failure without using a power storage device.
 以下、実施例2における本発明について説明する。本実施例は、実施例1における自立運転への移行に加え、自立運転から再連系への移行にも本発明を適用する場合の例を示す。 Hereinafter, the present invention in Example 2 will be described. The present embodiment shows an example in which the present invention is applied to the transition from the independent operation to the reconnection in addition to the transition to the independent operation in the first embodiment.
 実施例2における本発明の構成を図6に示す。実施例1の構成と異なるのは、系統状態601を取得する点である。系統状態601は、電力系統が接続可能な状態かどうかを表わす情報である。具体的には、電源系統の電圧や周波数である。この情報は、自立/連系モード決定部で利用し、連系モードで運転中の場合に自立運転に移行可能かどうかの判別に使用する。 The configuration of the present invention in Example 2 is shown in FIG. The difference from the configuration of the first embodiment is that the system state 601 is acquired. System state 601 is information indicating whether or not the power system can be connected. Specifically, the voltage and frequency of the power supply system. This information is used in the independent / interconnection mode determination unit, and is used to determine whether or not it is possible to shift to independent operation when operating in the interconnection mode.
 実施例2における処理について、そのフローチャートを図7に示す。まず、連系モードからスタートして、自立運転への移行までの処理は図2のステップ201~205と同様である(701)。続いて、図2と同様の処理で自立運転に移行した後は、随時系統の停電状態を取得する(702)。続いて、系統が再連系可能な状態であるかを判断し、系統が停電中で再連系が不可能な場合には再びステップ702に戻り、可能な場合はステップ704に進む(703)。続いて、系統需給逼迫度の情報と気象予報を用いて停電時のコストとその確率分布の組である停電リスクを求める。この処理はステップ201と同様である(704)。続いて、電力負荷、電源の運転計画、設備情報を用いて自立運転時のコストを演算する。このコストの演算方法は図4と同様である(705)。続いて、停電リスクと停電時コストとモード決定方法の情報を元に自立モードまたは連系モードのどちらで運転するかを決定する。この処理は、図2のステップ204と同様である(706)。続いて、連系モードに移行しない場合には、ステップ704に戻り、移行する場合には再びステップ701に戻る。
 以上のようにして、本発明により蓄電装置を用いることなく無停電で自立運転へ移行するだけでなく、停電状態が終了する適切なタイミングで再連系することが可能となる。
FIG. 7 shows a flowchart of the processing in the second embodiment. First, the processing from the interconnection mode to the transition to the independent operation is the same as the steps 201 to 205 in FIG. 2 (701). Subsequently, after shifting to a self-sustaining operation by the same processing as in FIG. 2, the power failure state of the system is acquired as needed (702). Subsequently, it is determined whether or not the system is in a state where reconnection is possible. If the system is out of power and reconnection is impossible, the process returns to step 702 again, and if possible, the process proceeds to step 704 (703). . Next, power outage risk, which is a set of the cost and probability distribution during a power outage, is obtained using information on the grid supply and demand tightness and weather forecasts. This process is the same as step 201 (704). Subsequently, the cost for the independent operation is calculated using the power load, the power supply operation plan, and the facility information. The cost calculation method is the same as that in FIG. 4 (705). Subsequently, based on the information on the power failure risk, the power failure cost, and the mode determination method, it is determined whether to operate in the independent mode or the interconnection mode. This process is the same as step 204 in FIG. 2 (706). Subsequently, when the mode does not shift to the interconnection mode, the process returns to step 704, and when the mode shifts, the process returns to step 701 again.
As described above, according to the present invention, it is possible not only to shift to a self-sustained operation without a power failure without using a power storage device, but also to reconnect at an appropriate timing when the power failure state ends.
 以下、実施例3における本発明について説明する。本実施例は、電力負荷を一部選択遮断してから自立運転に移行する例である。 Hereinafter, the present invention in Example 3 will be described. The present embodiment is an example in which a part of the electric power load is selectively cut off and then the operation is shifted to the independent operation.
 実施例3における本発明の構成を図8に示す。実施例1の構成と異なるのは、遮断負荷決定部801を持つ点である。遮断負荷決定部801は、電力負荷106と設備情報105を参照して遮断する負荷を決定する機能を持つ。 The configuration of the present invention in Example 3 is shown in FIG. The difference from the configuration of the first embodiment is that the interrupt load determining unit 801 is provided. The interrupting load determination unit 801 has a function of determining a load to be interrupted with reference to the power load 106 and the facility information 105.
 その一例について図9に説明する。図9において、401は電力負荷の使用電力量を測定した時点である。そして、電力負荷106として電力負荷A,B,Cの3つがあるとし、402は電力負荷Aの電力消費量を、403は電力負荷AとBの電力消費量の和を、404は電力負荷A,B,Cの電力消費量の和を表わす。そして、405は電力負荷AとBの電力消費量の和の予測値を、406は電力負荷A,B,Cの電力消費量の和の予測値を表わす。そして直線407は設備情報105によって与えられる電源107の全電源容量を表わすとする。自立運転に移行した場合に電力負荷A,B,Cの全てが動き続けると、電力負荷AとBの電力消費量の和の予測値406が電源容量407を超過する。電源容量を超過してしまうと電力不足のため、停電時の自立運転が不可能となるため、遮断負荷決定部801は電力負荷A,B,Cから負荷を選択し遮断する。例えば電力負荷Cを遮断すると、電力負荷の予測値は405となるため電源容量407を超過しなくなる。 An example of this will be described with reference to FIG. In FIG. 9, 401 is the time when the amount of power used by the power load is measured. Assume that there are three power loads A, B, and C as the power load 106, 402 is the power consumption of the power load A, 403 is the sum of the power consumption of the power loads A and B, and 404 is the power load A. , B, C represents the sum of power consumption. Reference numeral 405 represents a predicted value of the sum of the power consumptions of the power loads A and B, and reference numeral 406 represents a predicted value of the sum of the power consumptions of the power loads A, B, and C. A straight line 407 represents the total power supply capacity of the power supply 107 given by the facility information 105. If all of the power loads A, B, and C continue to move when shifting to the independent operation, the predicted value 406 of the sum of the power consumption of the power loads A and B exceeds the power supply capacity 407. If the power supply capacity is exceeded, power is insufficient, so that independent operation at the time of power failure becomes impossible. Therefore, the cut load determination unit 801 selects a load from the power loads A, B, and C and cuts off the load. For example, when the power load C is cut off, the predicted value of the power load is 405, so that the power capacity 407 is not exceeded.
 遮断負荷決定部801が遮断する負荷を決める方式としては、複数の方式が考えられる。例えば、重要な負荷に対して優先順位をつけておき重要度が低い負荷から順に負荷を遮断していく方式がある。あるいは工場である場合は、複数の製品のうち、その製造量も考慮して製造を中止した時のコストを演算し、最も損失利益が小さい製品に関する設備を止める等の方式も考えられる。しかし、この方式に限らず様々な手段で遮断する負荷を決定する。 As the method for determining the load to be interrupted by the interrupting load determining unit 801, a plurality of methods are conceivable. For example, there is a method in which priorities are assigned to important loads and the loads are cut off in order from the less important load. Alternatively, in the case of a factory, a method of calculating the cost when the production is stopped in consideration of the production amount among a plurality of products and stopping the equipment related to the product with the smallest loss profit can be considered. However, the load to be cut off is determined by various means without being limited to this method.
 遮断する負荷を決定した後、自立運転時コスト演算部108はその情報を元に自立運転時のコストを演算する。その方式としては以下の2つが考えられる。 After determining the load to be cut off, the autonomous operation cost calculation unit 108 calculates an independent operation cost based on the information. The following two methods are conceivable.
 1つ目は、実施例1と同様の方式で演算する場合である。この場合は、演算に用いる電力の消費量が予め一部負荷が遮断されたものとなる点以外はすべて同一となる。 The first case is when the calculation is performed in the same manner as in the first embodiment. In this case, the power consumption used for the calculation is the same except that the load is partially cut off in advance.
 2つ目は、負荷遮断することを考慮し、損失利益をコストとして自立運転時コストに加算する方法である。この場合、電源によるコスト増加分の他に、遮断される負荷によって発生する損失コストを求める。損失コストは、例えばその負荷が生産ラインである場合、生産を続けていた場合に本来得られていた利益の額となる。 The second is a method of adding the loss profit as a cost to the cost during independent operation in consideration of load shedding. In this case, in addition to the cost increase due to the power source, the loss cost caused by the interrupted load is obtained. The loss cost is, for example, the amount of profit originally obtained when the production is continued when the load is a production line.
 以上のようにして、本発明により電力負荷を一部選択遮断してから自立運転に移行することが可能となる。 As described above, according to the present invention, it is possible to shift to a self-sustained operation after partially cutting off a power load.
 以下、実施例4における本発明について説明する。本実施例は、実施例2における自立運転への移行と再連系へのタイミング調整に加え、再連系のために位相同期を行って安定的な再連系をするための例である。 Hereinafter, the present invention in Example 4 will be described. The present embodiment is an example for performing stable reconnection by performing phase synchronization for reconnection in addition to the transition to independent operation and timing adjustment to reconnection in Embodiment 2.
 実施例4における本発明の構成を図10に示す。実施例1の構成と異なるのは、実施例2の構成に加えて、位相調整部801を持つ点である。位相調整部801は、系統状態601の情報として位相の情報を取得する。また、現在稼働中である電源107の位相の情報も併せて取得する。そして、両者の位相を合わせるように、電源107の運転を調整する。位相が合った後に、遮断器112により電力系統111との再連系を行う。その例を、図11に示す。系統から切り離された後の電源107の電圧波形を1101に、電力系統111の電圧波形を1102に示す。時刻が0の時点では、2つの波形に位相差があるが、電源107の位相を途中でわずかにずらしているため時刻1103の時点では2つの位相が合っている。位相調整部801は、この電源107の位相調整のための処理を行う。具体的には、例えばコジェネ等の内燃機関による回転発電機の場合には電力負荷に対する以下の動揺方程式を利用した制御を行う。 The configuration of the present invention in Example 4 is shown in FIG. The difference from the configuration of the first embodiment is that a phase adjustment unit 801 is provided in addition to the configuration of the second embodiment. The phase adjustment unit 801 acquires phase information as information on the system state 601. In addition, information on the phase of the power supply 107 currently in operation is also acquired. Then, the operation of the power source 107 is adjusted so that both phases are matched. After the phases are matched, the circuit breaker 112 reconnects with the power system 111. An example is shown in FIG. A voltage waveform of the power supply 107 after being disconnected from the system is indicated by 1101, and a voltage waveform of the power system 111 is indicated by 1102. There is a phase difference between the two waveforms when the time is 0, but the phase of the power source 107 is slightly shifted in the middle, so the two phases are in alignment at the time of time 1103. The phase adjustment unit 801 performs processing for phase adjustment of the power source 107. Specifically, for example, in the case of a rotary generator using an internal combustion engine such as cogeneration, control is performed using the following fluctuation equation for the power load.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 この式において、Mは発電機の慣性定数、fは交流の周波数、Pmは発電機の回転力、Peは発電機の電気出力を表わす。Peは電力負荷106によって変動するため、周波数を変化させるには発電機の回転力Pmを変化させる。発電機の回転力は、コジェネのようにガスを消費するものであればガス燃焼量を変化させることで変えることができるため、適切な制御パラメータを設定することで電源107の周波数を制御できる。この際、電力負荷106を運転しながら周波数を変化させるため、負荷106の挙動に影響が出ない範囲で周波数を制御する。 In this equation, M is the inertia constant of the generator, f is the AC frequency, Pm is the rotational force of the generator, and Pe is the electrical output of the generator. Since Pe varies depending on the power load 106, the rotational force Pm of the generator is changed to change the frequency. Since the rotational force of the generator can be changed by changing the amount of gas combustion as long as it consumes gas like cogeneration, the frequency of the power source 107 can be controlled by setting an appropriate control parameter. At this time, since the frequency is changed while the power load 106 is operated, the frequency is controlled within a range that does not affect the behavior of the load 106.
 以上のようにして、本発明により、再連系のために位相同期を行って安定的な再連系を行うことが可能となる。 As described above, according to the present invention, it is possible to perform stable reconnection by performing phase synchronization for reconnection.
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。また、上記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置、または、ICカード、SDカード、DVD等
の記録媒体に置くことができる。 
In addition, this invention is not limited to an above-described Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment. Each of the above-described configurations, functions, processing units, processing means, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit. Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor. Information such as programs, tables, and files for realizing each function can be stored in a recording device such as a memory, a hard disk, or an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.
101 本発明の電力系統連系制御装置、
102 系統需給逼迫度の情報
103 気象予報
104 系統停電確率演算部
105 設備情報
106 電力負荷
107 電源
108 自立運転時コスト演算部
109 モード決定方法指定手段
110 自立/連系モード決定部
111 コスト期待値評価部
112 遮断器
113 自立移行/再連系制御部
101 Power system interconnection control device of the present invention,
102 Information on system supply / demand tightness 103 Weather forecast 104 System power outage probability calculation unit 105 Equipment information 106 Power load 107 Power supply 108 Cost calculation unit for autonomous operation 109 Mode determination method specifying means 110 Autonomous / connected mode determination unit 111 Evaluation of expected cost Unit 112 circuit breaker 113 self-sustained transition / reconnection control unit

Claims (10)

  1.  基幹系統から独立して自立運転可能な電力系統を制御する電力系統連系制御装置において、
     前記基幹系統の運用情報に基づいて、前記基幹系統の停電リスクを推定する系統停電リスク演算部と、
     前記電力系統の負荷稼働状況の情報に基づいて、停電時の自立運転におけるコストを演算する自立運転時コスト演算部と、
     前記停電リスクと前記自立運転におけるコストの演算結果に基づいて、自立運転に移行するか否かを決定する自立連系モード決定部と
     を備えることを特徴とする電力系統連系制御装置。
    In the power system interconnection control device that controls the power system that can operate independently from the main system,
    Based on the operational information of the backbone system, a power failure risk calculation unit that estimates the power failure risk of the backbone system,
    Based on the information on the load operating status of the power system, the cost calculation unit for the independent operation that calculates the cost in the independent operation at the time of power failure,
    A power grid interconnection control device comprising: a self-sustained interconnection mode determination unit that decides whether or not to shift to a self-sustained operation based on a calculation result of the power failure risk and the cost in the self-sustained operation.
  2.  請求項1記載の電力系統連系制御装置において、
     前記自立連系モード決定部は、前記停電リスクから得られる停電による損失コストの期待値と、前記自立運転を行うことによる運転コストの増加分とを比較することで、自立運転が連系運転かを決定することを特徴とする電力系統連系制御装置。
    In the electric power grid interconnection control device according to claim 1,
    The independent interconnection mode determination unit compares the expected value of the loss cost due to the power failure obtained from the power failure risk with the increase in the operation cost due to the independent operation, so that whether the autonomous operation is the interconnection operation. A power grid interconnection control apparatus characterized by determining
  3.  請求項1記載の電力系統連系制御装置において、
     前記自立連系モード決定部は、系統状態の情報を取得し、前記停電リスクと前記自立運転におけるコストの演算結果を用いて、停電時の自立運転から基幹系統へ再連系運転するか否かを決定することを特徴とする電力系統連系制御装置。
    In the electric power grid interconnection control device according to claim 1,
    Whether the independent interconnection mode determination unit acquires grid state information, and uses the calculation result of the power outage risk and the cost in the independent operation, whether or not to perform the reconnection operation from the independent operation at the time of the power outage to the backbone system A power grid interconnection control apparatus characterized by determining
  4.  請求項1記載の電力系統連系制御装置は、
     基幹系統からの自立運転時に遮断する電力負荷を決定する遮断負荷決定部を更に備え、
     自立運転時コスト演算部は、前記で決定した負荷遮断による損失コストを用いて自立運転時のコストを演算することを特徴とする電力系統連系制御装置。
    The power grid interconnection control device according to claim 1 is:
    Further comprising a cut-off load determination unit for determining a power load to be cut off during the independent operation from the backbone system,
    The autonomous operation cost calculation unit calculates an independent operation cost using the loss cost due to load interruption determined as described above.
  5.  請求項1記載の電力系統連系制御装置は、
     前記電力系統における電源及び前記電力系統の電圧の位相に関する情報を入力とし、前記電力系統の位相に合わせるように前記電源の位相を調整する位相調整部を更に備えることを特徴とする電力系統連系制御装置。
    The power grid interconnection control device according to claim 1 is:
    Power system interconnection characterized by further comprising a phase adjustment unit that receives information on the phase of the power supply in the power system and the voltage of the power system as input, and adjusts the phase of the power supply to match the phase of the power system Control device.
  6.  基幹系統から独立して自立運転可能な電力系統を制御する電力系統連系制御方法において、
     前記基幹系統の運用情報に基づいて、前記基幹系統の停電リスクを推定し、前記電力系統の負荷稼働状況の情報に基づいて、停電時の自立運転におけるコストを演算し、前記停電リスクと前記自立運転におけるコストの演算結果に基づいて、自立運転に移行するか否かを決定することを特徴とする電力系統連系制御方法。
    In the power system interconnection control method for controlling the power system that can be operated independently from the main system,
    Based on the operation information of the main system, the power outage risk of the main system is estimated, and based on the information on the load operation status of the power system, the cost in the independent operation at the time of power outage is calculated, and the power outage risk and the independence A power grid interconnection control method characterized by determining whether or not to shift to a self-sustained operation based on a calculation result of a cost in operation.
  7.  請求項6記載の電力系統連系制御方法において、
     前記停電リスクから得られる停電による損失コストの期待値と、前記自立運転を行うことによる運転コストの増加分とを比較することで、自立運転が連系運転かを決定することを特徴とする電力系統連系制御方法。
    In the electric power grid interconnection control method according to claim 6,
    By comparing the expected value of the loss cost due to the power failure obtained from the power failure risk and the increase in the operation cost due to the independent operation, it is determined whether the independent operation is a grid operation. Grid connection control method.
  8.  請求項6記載の電力系統連系制御方法において、
     系統状態の情報を取得し、前記停電リスクと前記自立運転におけるコストの演算結果を用いて、停電時の自立運転から基幹系統へ再連系運転するか否かを決定することを特徴とする電力系統連系制御方法。
    In the electric power grid interconnection control method according to claim 6,
    Electric power characterized by acquiring grid state information and using the calculation result of the power outage risk and the cost in the independent operation to determine whether or not to re-operate from the independent operation during a power outage to the main system Grid connection control method.
  9.  請求項6記載の電力系統連系制御方法において、
     基幹系統からの自立運転時に遮断する電力負荷を決定し、前記決定した負荷遮断による損失コストを用いて自立運転時のコストを演算することを特徴とする電力系統連系制御方法。
    In the electric power grid interconnection control method according to claim 6,
    A power grid interconnection control method, comprising: determining a power load to be cut off during a self-sustained operation from a backbone system, and calculating a cost during a self-sustained operation using a loss cost due to the determined load cut-off.
  10.  請求項6記載の電力系統連系制御方法において、
     前記電力系統における電源及び前記電力系統の電圧の位相に関する情報を入力とし、前記電力系統の位相に合わせるように前記電源の位相を調整することを特徴とする電力系統連系制御方法。
    In the electric power grid interconnection control method according to claim 6,
    A power system interconnection control method, wherein information relating to a phase of a power source in the power system and a voltage of the power system is input, and the phase of the power source is adjusted to match the phase of the power system.
PCT/JP2017/001631 2016-03-30 2017-01-19 Power system linkage control apparatus and method WO2017168974A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016067038A JP2019134497A (en) 2016-03-30 2016-03-30 Power interconnection controller and method
JP2016-067038 2016-03-30

Publications (1)

Publication Number Publication Date
WO2017168974A1 true WO2017168974A1 (en) 2017-10-05

Family

ID=59964135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/001631 WO2017168974A1 (en) 2016-03-30 2017-01-19 Power system linkage control apparatus and method

Country Status (2)

Country Link
JP (1) JP2019134497A (en)
WO (1) WO2017168974A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009219204A (en) * 2008-03-07 2009-09-24 Shimizu Corp Isolated operation system of distributed power supply
JP2010166702A (en) * 2009-01-15 2010-07-29 Toshiba Corp Power supply risk evaluation system of power facility
JP2014073062A (en) * 2012-10-02 2014-04-21 Toshiba Corp Small-scale power grid power generation plan formation system, and method for the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009219204A (en) * 2008-03-07 2009-09-24 Shimizu Corp Isolated operation system of distributed power supply
JP2010166702A (en) * 2009-01-15 2010-07-29 Toshiba Corp Power supply risk evaluation system of power facility
JP2014073062A (en) * 2012-10-02 2014-04-21 Toshiba Corp Small-scale power grid power generation plan formation system, and method for the same

Also Published As

Publication number Publication date
JP2019134497A (en) 2019-08-08

Similar Documents

Publication Publication Date Title
DK2961022T3 (en) PORTFOLIO MANAGED RESPONSE SYSTEM
US10509374B2 (en) Systems and methods for managing power generation and storage resources
US20210325955A1 (en) Methods and systems for distributed power control of flexible datacenters
US11025060B2 (en) Providing computational resource availability based on power-generation signals
US10282687B2 (en) Systems and methods for managing power generation resources
JP6541672B2 (en) System and method for error monitoring and handling in a control system
EP2525463B1 (en) Reducing demand/response effects implementing volt/var control
EP2525462B1 (en) Demand response management system and method with VAR support
CN112334857B (en) Fuel Cell Power Management
WO2017168974A1 (en) Power system linkage control apparatus and method
US11916394B2 (en) Renewable energy system stabilization system and system stabilization support method
US20210242682A1 (en) Generation of demand response events based on grid operations and faults
WO2018100825A1 (en) Power system control device and power system control method
EP3301773B1 (en) Controlling an energy storage system
JP7019538B2 (en) Phase-advancing capacitor controller, demand controller and program
US20240088688A1 (en) Storage battery management device, storage battery management method, and recording medium
WO2022270249A1 (en) Power grid control device, power grid control system, and power grid control method
Tan et al. Collaborative load management with safety assurance in smart grids
JP7018585B2 (en) Monitoring method, program and demand monitoring system
JP2023086572A (en) Storage battery control device and storage battery control program
JP6547421B2 (en) Control device, control method of control device and program
JP2023069176A (en) Charge discharge system and control method of charge discharge system
US20190369583A1 (en) Centralized voltage controller and centralized voltage control system
Szenes et al. Modelling the dynamics and fragmentation of electric power systems
JP2017010815A (en) Rating current selection system of circuit breaker, rating current selection method for circuit breaker and program

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17773524

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17773524

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP