WO2017168934A1 - Water intake pit and plant - Google Patents

Water intake pit and plant Download PDF

Info

Publication number
WO2017168934A1
WO2017168934A1 PCT/JP2017/000627 JP2017000627W WO2017168934A1 WO 2017168934 A1 WO2017168934 A1 WO 2017168934A1 JP 2017000627 W JP2017000627 W JP 2017000627W WO 2017168934 A1 WO2017168934 A1 WO 2017168934A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
water
pit
flow path
suction port
Prior art date
Application number
PCT/JP2017/000627
Other languages
French (fr)
Japanese (ja)
Inventor
貴司 川野
川根 浩
良三 佐々木
晴治 香川
Original Assignee
三菱日立パワーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立パワーシステムズ株式会社 filed Critical 三菱日立パワーシステムズ株式会社
Priority to CN201780020163.8A priority Critical patent/CN108884649B/en
Priority to MYPI2018703512A priority patent/MY194508A/en
Publication of WO2017168934A1 publication Critical patent/WO2017168934A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B9/00Water-power plants; Layout, construction or equipment, methods of, or apparatus for, making same
    • E02B9/02Water-ways
    • E02B9/04Free-flow canals or flumes; Intakes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Definitions

  • the present invention relates to a water intake pit and a plant provided with a pit main body and a pump that draws up water flowing in the pit main body.
  • a desulfurization apparatus is used to purify exhaust gas.
  • a desulfurization apparatus purifies exhaust gas by letting water (for example, seawater) fall from above the exhaust gas when purifying the exhaust gas.
  • the desulfurization device has a water intake pit equipped with a pit body and a pump that draws up water flowing in the pit body.
  • the pump includes a suction pipe and a suction port provided at the lower end of the suction pipe.
  • the pump is arranged in a water discharge channel for discarding seawater which is cooling water for cooling water supplied to the condenser.
  • the water discharge channel used in the thermal power plant is a water channel having a large size in the depth direction and the width direction.
  • a part of the suction pipe of the pump and the suction port are immersed in seawater flowing in the water discharge channel in the middle of the water discharge channel.
  • As the water discharge channel an overflow type water discharge channel is used.
  • Patent Document 1 discloses a vortex prevention device for a drainage pump for the purpose of suppressing the generation of air suction vortices around a pump arranged at the end of a pit that is not an overflow type.
  • a suction port is arranged at a position close to the inner bottom surface of the water discharge channel. For this reason, it was necessary to lengthen the length of the suction pipe.
  • Patent Document 1 no consideration is given to the problem of the cost increase of such a water intake pit.
  • the distance between the inner bottom surface of the water discharge channel and the lower end of the suction port is conventionally set to a predetermined distance by the plant. Therefore, if the suction port is simply arranged above the inner bottom surface of the water discharge channel than before, the distance between the inner bottom surface of the water discharge channel and the lower end of the suction port becomes larger than before, and there is a risk that countermeasures against vortices may be difficult. Therefore, such a method cannot be used.
  • the present invention can reduce the cost of the intake pit without causing the air suction vortex to be generated and without changing the distance between the bottom surface of the flow path and the lower end of the suction port from the conventional distance.
  • the purpose is to provide a possible intake pit and plant.
  • the water intake pit according to the first aspect of the present invention extends in a predetermined direction, the pit body in which water flows from the upstream side toward the downstream side, and the width direction of the pit body in the pit body And a pump having a suction pipe immersed in water flowing in an upstream region located on the upstream side of the pit body, and a rear wall provided over the rear wall, and a suction port for sucking the water.
  • the suction pipe is disposed so as to penetrate the second plate member.
  • the conventional bottom surface of the pit body and the lower end of the suction port It is possible to shorten the length of the suction pipe immersed in water after matching the distance with the distance between the upper surface of the first plate member and the lower end of the suction port.
  • the second plate member is provided above the suction port so as to extend in the direction from the rear wall toward the upstream side in the state of being immersed in water, whereby the first plate member and the second plate member are provided.
  • the second flow path partitioned between the plate-shaped member and the third flow path that is disposed on the second plate-shaped member and in which the flowing water comes into contact with air can be completely separated. It becomes possible. Thereby, when an air suction vortex is generated in the third flow path, it is possible to suppress the movement of the air suction vortex to the second flow path by the second plate member. Moreover, since it is possible to suppress the water flowing through the second flow path from coming into contact with air, it is possible to suppress the generation of air suction vortices in the water flowing through the second flow path.
  • the rear wall partitions the inside of the pit body into the upstream region and the downstream region, and a part of the water flowing in the upstream region.
  • the overflow weir may have a height that overflows and flows into the downstream region.
  • an overflow dam may be used as the rear wall.
  • the overflow dam is provided in a portion of the overflow weir facing the first flow path, and the water flowing through the first flow path is A communication portion that communicates from the upstream region to the downstream region may be included.
  • the communication part is provided in the overflow weir, and the water flowing through the third flow path is caused by flowing the water flowing through the first flow path from the upstream side to the downstream side of the overflow weir through the communication part.
  • the difference between the flow rate of water and the flow rate of water flowing through the second flow path can be reduced.
  • production of the drift resulting from the difference of the flow volume of the water which flows through the 2nd and 3rd flow path can be suppressed. That is, it is possible to suppress a decrease in pump performance due to drift.
  • the first and second plate-like members may be arranged so as to be parallel to the inner bottom surface of the pit body.
  • first and second plate-like members can be arranged so as to be parallel to the inner bottom surface of the pit body.
  • the second plate-like member is disposed so as to be parallel to the inner bottom surface of the pit main body, and the first plate-like member
  • the upper surface of the first plate-shaped member may be inclined with respect to the inner bottom surface of the pit body so that the depth of the second flow path becomes deeper toward the rear wall. Good.
  • the water in the second flow path is aligned with the upper surface of the first plate-shaped member. Therefore, the water flowing in the second flow path can be guided in the direction toward the suction port.
  • the width direction of the first to third flow paths is defined on a pair of side surfaces located in the width direction of the first and second plate-like members. Side walls may be provided.
  • the width of the first to third flow paths can be reduced.
  • the generation of the underwater vortex can be effectively suppressed by the underwater vortex suppressing member.
  • a vortex suppression member may be arranged.
  • the underwater vortex suppressing member capable of suppressing the generation of the underwater vortex in the second flow path around the suction port arranged in the second flow path, it is caused by the underwater vortex. A decrease in the performance of the pump can be suppressed.
  • a member may be provided.
  • the plant according to the ninth aspect of the present invention may include the intake pit.
  • the plant configured as described above can suppress the generation of air suction vortex, and the cost of the water intake pit can be reduced without changing the distance between the bottom surface of the flow path and the lower end of the suction port from the conventional distance. Can be reduced.
  • the present invention it is possible to suppress the generation of the air suction vortex, and to reduce the cost of the water intake pit without changing the distance between the bottom surface of the flow path and the lower end of the suction port from the conventional distance. Can do.
  • FIG. 2 is a cross-sectional view of the intake pit shown in FIG. 1 in the direction of line A 1 -A 2 .
  • FIG. 2 is a cross-sectional view of the intake pit shown in FIG. 1 in the direction of line A 3 -A 4 .
  • It is sectional drawing which expanded the structure of the suction inlet of the intake pit shown in FIG. 2, and the circumference
  • It is sectional drawing of the principal part of the water intake pit which concerns on the modification of the 1st Embodiment of this invention.
  • FIG. 7 is a cross-sectional view of the intake pit shown in FIG. 6 in the L 1 -L 2 line direction.
  • FIG. 8 is a perspective view of the underwater vortex suppressing member shown in FIGS. 6 and 7. It is sectional drawing of the principal part of the intake pit which concerns on the 3rd Embodiment of this invention. It is sectional drawing of the principal part of the intake pit which concerns on the modification of the 3rd Embodiment of this invention. It is sectional drawing of the principal part of the intake pit which concerns on the 4th Embodiment of this invention. It is sectional drawing of the principal part of the intake pit which concerns on the modification of the 4th Embodiment of this invention.
  • FIG. 1 is a plan view of a main part of a water intake pit according to the first embodiment of the present invention.
  • FIG. 1 illustration of the pump main body 35 and the suction port 38 shown in FIG. 2 constituting the pump 15 is omitted, and only the suction pipe 37 is shown.
  • C is water flowing in the pit body 11 (hereinafter referred to as “water C”)
  • R1 is a pit body 11 (hereinafter referred to as “upstream”) located upstream from the overflow weir 13 (an example of a rear wall).
  • R2 indicates a pit body 11 (hereinafter referred to as “downstream region R2”) positioned downstream of the overflow weir 13.
  • the water C includes seawater and the like.
  • B1 is the direction in which the water C flows upstream of the first and second plate-like members 17 and 18 (hereinafter referred to as “B1 direction”)
  • B2 is the water C in the downstream region R2.
  • the flowing direction (hereinafter referred to as “B2 direction”) and G indicate the flowing direction of water C in the third flow path 28 (hereinafter referred to as “G direction”), respectively.
  • the X direction is the extending direction of the pit body 11
  • the Y direction is the width direction of the pit body 11
  • the Z direction is the depth direction of the pit body 11 (the depth direction of water flowing in the pit body 11). Show.
  • FIG. 2 is a cross-sectional view of the intake pit shown in FIG. 1 in the direction of line A 1 -A 2 .
  • Ca indicates the upper surface of water C flowing through the third flow path 28 (hereinafter referred to as “upper surface Ca”). 2, the same components as those in the structure shown in FIG.
  • FIG. 3 is a cross-sectional view of the intake pit shown in FIG. 1 in the direction of line A 3 -A 4 . 3, the same components as those shown in FIGS. 1 and 2 are denoted by the same reference numerals.
  • FIG. 4 is an enlarged cross-sectional view of the intake port of the intake pit shown in FIG. 2 and the configuration around the intake port.
  • D is the diameter (hereinafter referred to as “diameter D”) of the lower end 38 ⁇ / b> A of the suction port 38
  • I is the central axis (hereinafter referred to as “central axis I”) of the suction pipe 37
  • J is the lower end of the suction port 38.
  • the distance from 38A to the upper surface 17a of the first plate member 17 hereinafter referred to as “distance J”), and K the distance from the central axis I to the overflow weir 13 (hereinafter referred to as “distance K”).
  • the same components as those shown in FIGS. 1 to 3 are denoted by the same reference numerals.
  • the intake pit 10 of the first embodiment is a facility provided in a plant (for example, a thermal power plant or a chemical plant), and is an example of a pit main body 11 and a rear wall.
  • a plant for example, a thermal power plant or a chemical plant
  • Overflow weir 13 pump 15, side walls 16-1 to 16-4, first plate member 17, second plate member 18, first flow path 26, and second flow A path 27, a third flow path 28, and a communication portion 31 are included.
  • the pit body 11 has a bottom plate portion 11A and a pair of side wall portions 11B and 11C.
  • the bottom plate portion 11 ⁇ / b> A extends in the X direction and has an inner bottom surface 11 a of the pit body 11.
  • the pair of side wall portions 11B and 11C are provided at a pair of ends in the Y direction of the bottom plate portion 11A. Thereby, a pair of side wall part 11B, 11C is opposingly arranged in the Y direction.
  • the pit body 11 having the above-described configuration extends in the X direction (predetermined direction), and water C flows from the upstream side toward the downstream side.
  • the overflow weir 13 is provided in the pit body 11 in the Y direction.
  • the lower end of the overflow weir 13 is connected to the inner bottom surface 11a of the bottom plate portion 11A.
  • one end is connected to the side wall portion 11B, and the other end is connected to the side wall portion 11C.
  • the overflow weir 13 divides the pit body 11 into an upstream region R1 and a downstream region R2 in the X direction.
  • the height of the overflow weir 13 is such that a part of the water C flowing through the upstream region R1 can overflow and flow into the downstream region R1.
  • the pump 15 has a pump body 35, a suction pipe 37, and a suction port 38.
  • the pump body 35 has a mechanism (not shown) for pumping water C.
  • the pump body 35 is connected to one end of the suction pipe 37.
  • the suction pipe 37 extends in the Z direction. A part (lower end side) of the suction pipe 37 is immersed in water C flowing upstream of the overflow weir 13. The other end of the suction pipe 37 is disposed between the first plate member 17 and the second plate member 18. The suction pipe 37 is disposed so as to penetrate the second plate member 18.
  • the distance K between the central axis I of the suction pipe 37 and the overflow weir 13 can be appropriately set within a range of 0.75D to 1.0D, for example. It is. By setting the distance K within such a range, generation of underwater vortices in the second flow path 27 can be suppressed.
  • the suction port 38 is provided at the other end of the suction pipe 37.
  • the suction port 38 is disposed between the first plate member 17 and the second plate member 18.
  • the suction port 38 sucks water C flowing through the second flow path 27.
  • the suction port 38 for example, a bell mouth can be used.
  • the diameter D of the lower end 38A of the suction port 38 can be appropriately set according to the purpose.
  • the side walls 16-1 to 16-4 are plate-like members.
  • the side walls 16-1 to 16-4 are predetermined in the order of the side wall 16-1, the side wall 16-2, the side wall 16-3, and the side wall 16-4 in the Y direction in the upstream region R1 in the pit body 11. Are arranged with an interval of.
  • the side walls 16-1 and 16-4 are provided on a pair of side surfaces located in the Y direction (the width direction of the first and second plate members 17 and 18) of the first and second plate members 17 and 18. It has been.
  • the side walls 16-1 and 16-4 define the width direction of the first to third flow paths 26 to 28.
  • the side wall 16-1 faces the side wall portion 11C in a state of being separated from the side wall portion 11C.
  • the side wall 16-4 faces the side wall part 11B in a state of being separated from the side wall part 11B.
  • the distance between the side wall 16-1 and the side wall 16-4 in the Y direction is configured to be smaller than the distance between the side wall part 11B and the side wall part 11C.
  • the side walls 16-1 to 16-4 are orthogonal to the inner bottom surface 11a of the bottom plate portion 11A, and their lower ends are connected to the bottom plate portion 11A.
  • One end of the side walls 16-1 to 16-4 positioned in the X direction is connected to the overflow weir 13.
  • the upper ends of the side walls 16-1 to 16-4 are arranged at a position higher than the upper end of the overflow weir 13.
  • two adjacent side walls define the width direction (Y direction) of the first to third flow paths 26 to 28.
  • the side walls 16-1 to 16-4 that define the width direction of the first to third channels 26 to 28 are narrowed. It becomes possible. Thereby, for example, when the underwater vortex suppressing member that can suppress the generation of the underwater vortex is disposed in the second flow path 27, the generation of the underwater vortex can be effectively suppressed by the underwater vortex suppressing member. .
  • the first plate member 17 is a rectangular plate member.
  • the first plate-like member 17 is provided in the lower part between the side walls 16-1 to 16-4 while being immersed in water C. Both ends in the Y direction of the first plate-like member 17 are connected to two side walls provided at adjacent positions among the side walls 16-1 to 16-4. One end of the first plate member 17 in the X direction is connected to the lower portion of the overflow weir 13.
  • the first plate member 17 extends from the overflow weir 13 toward the upstream side.
  • the first plate-like member 17 is disposed so as to be parallel to the inner bottom surface 11a of the bottom plate portion 11A.
  • the first plate-like member 17 defines the depth direction (Z direction) of the first flow path 26 between the inner bottom surface 11a of the bottom plate portion 11A.
  • the first plate-like member 17 has an upper surface 17a and a lower surface 17b that are flat.
  • the upper surface 17a faces the second plate member 18 with water C interposed therebetween.
  • the lower surface 17b is disposed to face the inner bottom surface 11a of the bottom plate portion 11A with water C interposed therebetween.
  • the upper surface 17 a of the first plate-like member 17 faces the lower end of the suction port 38 and is disposed below the suction port 38.
  • the upper surface 17 a of the first plate member 17 is separated from the suction port 38.
  • the distance J between the lower end 38A of the suction port 38 and the upper surface 17a can be appropriately set within a range of 0.3D to 0.5D, for example. By setting the distance J within such a range, generation of underwater vortices in the second flow path 27 can be suppressed.
  • the thickness of the first plate member 17 can be appropriately set within a range of, for example, 500 mm (when the first plate member 17 is a concrete structure).
  • the material which has water resistance when seawater is used as the water C, the material which has seawater resistance
  • concrete can be used as such a material.
  • the distance between the inner bottom surface of the conventional pit body and the lower end of the suction port, and the upper surface 17a of the first plate-like member 17 and the lower end 38A of the suction port 38 are obtained. It is possible to shorten the length of the suction pipe 37 immersed in the water C after matching the distance J.
  • the cost of the suction pipe 37 can be reduced, and it is not necessary to separately provide a support member (bearing member) (not shown) that supports the suction pipe 37.
  • the cost of the intake pit 10 can be reduced.
  • the second plate-shaped member 18 is a rectangular plate-shaped member.
  • the second plate member 18 is provided between the side walls 16-1 to 16-4 positioned above the first plate member 17 in the state of being immersed in water C.
  • Both ends in the Y direction of the second plate-shaped member 18 are connected to two side walls provided at adjacent positions among the side walls 16-1 to 16-4.
  • One end of the second plate member 18 in the X direction is connected to the upper portion of the overflow weir 13.
  • the second plate-like member 18 extends in the direction from the overflow weir 13 toward the upstream side.
  • the second plate-like member 18 is disposed so as to be parallel to the inner bottom surface 11a of the bottom plate portion 11A.
  • the second plate-like member 18 has an upper surface 18a and a lower surface 18b that are flat, and a through hole 18A.
  • the upper surface 18 a defines the bottom of the third flow path 28.
  • the lower surface 18 b faces the upper surface 17 a of the first plate-like member 17 with water C interposed therebetween.
  • the through hole 18 ⁇ / b> A is a hole for inserting the suction pipe 37.
  • the second plate-like member 18 can be made of, for example, the same thickness and the same material as the first plate-like member 17 described above.
  • the second flow path 27 partitioned between the first plate-shaped member 17 and the second plate-shaped member 18, and the second plate-shaped member It is possible to completely separate the third flow path 28 that is disposed on 18 and in which the flowing water C is in contact with air.
  • the arrangement positions of the first and second plate-like members 17 and 18 in the Z direction can be appropriately set within the range of the height of the overflow weir 13, and are shown in FIGS.
  • the arrangement positions of the first and second plate-like members 17 and 18 are not limited.
  • the first flow path 26 is partitioned by the inner bottom surface 11a of the pit body 11 and the first plate member 17 in the depth direction, and the width direction is adjacent to the side walls 16-1 to 16-4. Are divided by two side walls. In the case of FIG.1 and FIG.3, the three 1st flow paths 26 are arranged with respect to the Y direction.
  • the second flow path 27 is partitioned in the depth direction by the first plate member 17 and the second plate member 18, and the width direction is adjacent to the side walls 16-1 to 16-4. It is divided by two side walls provided in the position.
  • the second flow path 27 is disposed on the first flow path 26 via the first plate member 17. In the case of FIGS. 1 and 3, three second flow paths 27 are arranged in the Y direction.
  • the bottom of the third flow path 28 is defined by the second plate-shaped member 18, and the width direction is defined by two side walls provided at adjacent positions among the side walls 16-1 to 16-4. ing.
  • the third flow path 28 is disposed on the second flow path 27 via the second plate-like member 18. Water C that flows through the overflow weir 13 flows through the third flow path 28.
  • the three 3rd flow paths 28 are arranged with respect to the Y direction.
  • the first to third flow paths 26 to 28 are stacked in the Z direction.
  • the communication portion 31 is provided so as to penetrate a portion of the overflow weir 13 that faces each first flow path 26.
  • the communication unit 31 allows the water C flowing through the first flow path 26 to communicate from the upstream region R1 to the downstream region R22.
  • the opening area of the communication part 31 is, for example, the flow rate of the water C flowing through the first flow channel 26, the flow rate of the water C flowing through the second flow channel 27, and the water C flowing through the third flow channel 28. It is good to determine so that it may become equal to the flow velocity of.
  • the third flow path 28 is made to flow by flowing the water C flowing through the first flow path 26 from the upstream side to the downstream side of the overflow weir 13 via the communication part 31.
  • the difference between the flow rate of the flowing water C and the flow rate of the water C flowing through the second flow path 27 can be reduced.
  • production of the drift resulting from the difference in the flow volume of the water C which flows through the 2nd and 3rd flow paths 27 and 28 can be suppressed. That is, it is possible to suppress a decrease in performance of the pump 15 due to the drift.
  • the water intake pit 10 of the first embodiment it is possible to suppress the generation of the air suction vortex in the second flow path 27 in which the suction port 38 is disposed, and the bottom surface of the second flow path 27
  • the cost of the water intake pit 10 can be reduced without changing the distance J between the upper surface 17a of the first plate-shaped member 17 and the lower end of the suction port 38 from the conventional distance (predetermined distance).
  • the plant for example, a thermal power plant, a chemical plant, etc.
  • the intake pit 10 mentioned above can acquire the effect similar to the intake pit 10 of 1st Embodiment.
  • FIG. 5 is a cross-sectional view of a main part of a water intake pit according to a modification of the first embodiment of the present invention.
  • the same components as those in the structure shown in FIG. 5 are identical to those in the structure shown in FIG. 5.
  • the intake pit 40 according to the modification of the first embodiment has an inner bottom surface of the pit body 11 such that the depth of the second flow path 27 becomes deeper toward the overflow weir 13.
  • the configuration is the same as that of the water intake pit 10 of the first embodiment except that the upper surface 17a of the first plate member 17 is inclined with respect to 11a.
  • the first plate-like member is arranged by inclining the upper surface 17a of the first plate-like member 17 with respect to the inner bottom surface 11a of the pit body 11. Since the water C flows in the second flow path 27 along the upper surface 17 a of the member 17, the water C flowing in the second flow path 27 can be guided in the direction toward the suction port 38.
  • FIG. 6 is a plan view of the main part of the intake pit according to the second embodiment of the present invention. 6, illustration of the pump main body 35 (refer FIG. 7) and the 2nd plate-shaped member 18 (refer FIG. 7) which comprise the pump 15 is abbreviate
  • FIG. 7 is a cross-sectional view of the intake pit shown in FIG. 6 in the L 1 -L 2 line direction.
  • FIG. 7 the same components as those shown in FIGS. 2 and 6 are denoted by the same reference numerals.
  • FIG. 8 is a perspective view of the underwater vortex suppressing member shown in FIGS. 6 and 7. 8, the same components as those shown in FIGS. 6 and 7 are denoted by the same reference numerals.
  • the intake pit 45 of the second embodiment is the same as the intake pit 10 of the first embodiment except that an underwater vortex suppressing member 46 is further provided. It is configured in the same way.
  • the underwater vortex suppressing member 46 is disposed in the second flow path 27 and around the suction pipe 37.
  • the underwater vortex suppressing member 46 includes a cross-shaped bottom plate portion 49 and first to third column portions 51 to 53.
  • the cross-shaped bottom plate portion 49 is a member having a cross shape.
  • the cross-shaped bottom plate portion 49 is disposed on the upper surface 17 a of the first plate-like member 17.
  • the cross-shaped bottom plate portion 49 has an outer surface 49 a that contacts the upper surface 17 a of the first plate-like member 17.
  • An intersecting portion located at the center of the cross-shaped bottom plate portion 49 is disposed below the suction port 38.
  • the cross-shaped bottom plate portion 49 configured as described above suppresses the occurrence of underwater vortices on the lower side of the suction port 38.
  • the first column portion 51 is provided at one end portion disposed on the downstream side of the flow of the water C among the four end portions of the cross-shaped bottom plate portion 49.
  • the first column portion 51 extends in the Z direction and has an outer surface 51 a that faces the surface 13 a of the overflow weir 13.
  • the first column portion 51 having such a configuration suppresses the occurrence of underwater vortices on the downstream side of the suction port 38.
  • the second column part 52 is provided at one end part arranged in the Y direction among the two end parts of the cross-shaped bottom plate part 49 arranged in the Y direction.
  • the second column part 52 extends in the Z direction.
  • the third column portion 53 is provided at the other end portion arranged in the Y direction among the two end portions of the cross-shaped bottom plate portion 49 arranged in the Y direction.
  • the third column portion 53 extends in the Z direction.
  • the third column portion 53 is disposed so as to face the second column portion 52 in the Y direction.
  • the height of the third column portion 53 is the same as that of the second column portion 52.
  • the above-described second and third column parts 52 and 53 suppress the occurrence of underwater vortices in the Y direction of the suction port 38.
  • the underwater vortex suppression capable of suppressing the generation of underwater vortices in the second flow path 27 around the suction port 38 disposed in the second flow path 27.
  • the member 46 By disposing the member 46, it is possible to suppress a decrease in performance of the pump due to the underwater vortex.
  • the intake pit 45 of 2nd Embodiment can acquire the effect similar to the intake pit 10 of 1st Embodiment.
  • the shape of the underwater vortex suppressing member 46 described above is an example, and the shape of the underwater vortex suppressing member 46 is not limited to the shape shown in FIGS.
  • the shape may be such that generation of the underwater vortex at that portion is suppressed.
  • an underwater vortex suppressing member having the same function as the above-described underwater vortex suppressing member 46 may be provided in the intake pit 40 shown in FIG.
  • FIG. 9 is a cross-sectional view of the main part of a water intake pit according to the third embodiment of the present invention. 9, the same components as those shown in FIGS. 1 to 4 are denoted by the same reference numerals.
  • the water intake pit 60 of the third embodiment shortens the length of the first plate-like member 17, is the first plate-like member located in the X direction and on the upstream side. Except that the guide member 61 is provided at the end of 17, the configuration is the same as the intake pit 10 of the first embodiment.
  • the guide member 61 is an L-shaped step forming member, has a shallow depth on the inlet side of the second flow path 27, and the second flow path at the position where the first plate-like member 17 is disposed.
  • 27 is a member for increasing the depth of 27. Thereby, a step is formed between the guide member 61 and the first plate-like member 17.
  • the water C flowing into the second flow path 27 flows along the surface of the guide member 61 that partitions the second flow path 27, and then flows along the upper surface 17 a of the first plate-like member 17. , And supplied to the suction port 38.
  • a material of the guide member 61 for example, a material similar to that of the first plate member 17 can be used.
  • the second flow path 27 in the direction toward the suction port 38 (F direction). It is possible to guide the water C flowing in. That is, the water C can be efficiently pumped from the suction port 38 by suppressing the upward flow of the water C in the second flow path 27.
  • the intake pit 60 of the third embodiment described above can obtain the same effects as the intake pit 10 of the first embodiment.
  • the case where the first plate member 17 and the guide member 61 are separated from each other has been described as an example.
  • the first plate member 17 and the guide member 61 are integrated. It may be.
  • FIG. 10 is a cross-sectional view of the main part of a water intake pit according to a modification of the third embodiment of the present invention.
  • the same components as those of the structure shown in FIG. 10
  • the intake pit 65 of the modification of the third embodiment is different from the guide member 61 constituting the intake pit 60 of the third embodiment except that a guide member 66 is provided. It is comprised similarly to the intake pit 60 of 3rd Embodiment.
  • the guide member 66 is provided at the end of the first plate-like member 17 located in the X direction and on the upstream side.
  • the guide member 66 is a step forming member having a curved shape.
  • the guide member 66 can reduce the depth on the inlet side of the second flow path 27 and increase the depth of the second flow path 27 at the position where the first plate-like member 17 is disposed. It is made into a shape. As a result, the depth of the second flow path 27 gradually increases from the upstream side of the guide member 66 toward the first plate member 17.
  • the water C flowing into the second flow path 27 flows along the surface of the guide member 66 that partitions the second flow path 27, and then flows along the upper surface 17 a of the first plate-like member 17. , And supplied to the suction port 38.
  • the material of the guide member 66 for example, the same material as that of the first plate member 17 can be used.
  • the intake pit 65 of the modification of the third embodiment having the guide member 66 configured as described above can obtain the same effect as the intake pit 60 of the third embodiment described above.
  • FIG. 11 is a cross-sectional view of the main part of a water intake pit according to the fourth embodiment of the present invention.
  • the same components as those shown in FIGS. 1 to 4 are denoted by the same reference numerals.
  • the water intake pit 70 of the fourth embodiment is the same as the water intake pit 10 of the first embodiment except that a guide member 71 is provided on the lower surface 18 b of the second plate-like member 18. It is set as the same structure.
  • the guide member 71 is a member having a quadrangular prism shape extending in the Y direction.
  • the guide member 71 is a member for guiding the moving direction of the water C flowing through the upper part of the second flow path 27 in the direction toward the lower part of the second flow path 27 (the direction toward the suction port 38).
  • the moving direction of the water C flowing through the upper part of the second flow path 27 is directed toward the lower part of the second flow path 27. Can be guided to.
  • the intake pit 70 of the fourth embodiment described above can obtain the same effects as the intake pit 10 of the first embodiment.
  • the case where the first plate member 17 and the guide member 71 are separated is described as an example.
  • the first plate member 17 and the guide member 71 are integrated. It may be configured.
  • FIG. 12 is a cross-sectional view of the main part of a water intake pit according to a modification of the fourth embodiment of the present invention.
  • the same components as those shown in FIGS. 1 to 4 are denoted by the same reference numerals.
  • the water intake pit 75 of the modified example of the fourth embodiment is different from the guide member 71 constituting the water intake pit 70 of the fourth embodiment except that a guide member 76 is provided. It is comprised similarly to the intake pit 70 of 4th Embodiment.
  • the guide member 76 has a curved surface 76a disposed on the upstream side.
  • the curved surface 76 a guides the moving direction of the water C flowing through the upper part of the second flow path 27 in the direction toward the lower part of the second flow path 27.
  • a material of the guide member 76 for example, the same material as that of the second plate member 18 can be used.
  • the water intake pit 75 of the modified example of the fourth embodiment having such a configuration can reduce the impact of water C hitting the guide member 76 by the curved surface 76a. Moreover, the intake pit 75 of the modification of 4th Embodiment can acquire the effect similar to the intake pit 70 of 4th Embodiment.
  • the overflow weir 13 has been described as an example of the rear wall, but instead of the overflow weir 13, the water C flowing through the third flow path 28 overflows.
  • a rear wall (not shown) that does not flow may be used. In this case, the same effect as in the first to fourth embodiments can be obtained.
  • the guide member 71 shown in FIG. 11 or the guide member 76 shown in FIG. 12 may be provided in the intake pits 60 and 65 shown in FIGS. Thereby, the water C flowing in the second flow path 27 in the direction toward the suction port 38 can be reliably guided.
  • the present invention is applicable to a water intake pit and a plant including a pit body and a pump that draws up water flowing in the pit body.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Hooks, Suction Cups, And Attachment By Adhesive Means (AREA)
  • Sewage (AREA)

Abstract

A water intake pit comprises: a first plate member (17) that extends from a rear wall to the upstream side direction with respect to water flow when immersed in water, that comprises an upper face (17a) opposite to the bottom end (38A) of an intake port (38), and that defines a first channel (26) between the first plate member and an inner bottom face (11a) of a pit body (11); a second plate member (18) that extends from the rear wall to the upstream side direction when immersed in the water and that is provided above the intake port (38); a second channel (27) provided between the first plate member (17) and the second plate member (18); and a third channel (28) provided above the second plate member (18) and in which water flows.

Description

取水ピット及びプラントIntake pit and plant
 本発明は、ピット本体、及びピット本体内を流れる水をくみ上げるポンプを備えた取水ピット及びプラントに関する。 The present invention relates to a water intake pit and a plant provided with a pit main body and a pump that draws up water flowing in the pit main body.
 従来、火力発電プラントでは、排気ガスを浄化するために脱硫装置が用いられている。このような脱硫装置は、排気ガスを浄化する際に、排気ガスの上方から水(例えば、海水)を降らせることで、排気ガスの浄化を行う。 Conventionally, in a thermal power plant, a desulfurization apparatus is used to purify exhaust gas. Such a desulfurization apparatus purifies exhaust gas by letting water (for example, seawater) fall from above the exhaust gas when purifying the exhaust gas.
 脱硫装置は、ピット本体、及びピット本体内を流れる水をくみ上げるポンプを備えた取水ピットを有する。ポンプは、吸い込み管、及び吸い込み管の下端に設けられた吸い込み口を含む。 The desulfurization device has a water intake pit equipped with a pit body and a pump that draws up water flowing in the pit body. The pump includes a suction pipe and a suction port provided at the lower end of the suction pipe.
 上記ポンプは、復水器に供給される水を冷却する冷却水である海水を捨てる放水路内に配置されている。火力発電プラントで使用される放水路は、深さ方向及び幅方向において大きなサイズとされた水路である。 The pump is arranged in a water discharge channel for discarding seawater which is cooling water for cooling water supplied to the condenser. The water discharge channel used in the thermal power plant is a water channel having a large size in the depth direction and the width direction.
 ポンプの吸い込み管の一部及び吸い込み口は、放水路の途中であって、放水路内を流れる海水に浸漬されている。上記放水路としては、オーバーフロータイプの放水路が使用されている。このようなポンプを使用する場合、ポンプの性能の低下を抑制する観点から、空気吸い込み渦の発生を抑制することが重要である。 A part of the suction pipe of the pump and the suction port are immersed in seawater flowing in the water discharge channel in the middle of the water discharge channel. As the water discharge channel, an overflow type water discharge channel is used. When using such a pump, it is important to suppress the generation of air suction vortices from the viewpoint of suppressing a decrease in pump performance.
 特許文献1には、オーバーフロータイプではないピットの突き当りに配置されたポンプの周囲において、空気吸い込み渦の発生を抑制することを目的とした排水ポンプの渦防止装置が開示されている。 Patent Document 1 discloses a vortex prevention device for a drainage pump for the purpose of suppressing the generation of air suction vortices around a pump arranged at the end of a pit that is not an overflow type.
特開2001-214898号公報JP 2001-214898 A
 ところで、従来、放水路内に配置されるポンプでは、放水路の内底面に近い位置に吸い込み口を配置させていた。このため、吸い込み管の長さを長くする必要があった。 By the way, conventionally, in a pump arranged in a water discharge channel, a suction port is arranged at a position close to the inner bottom surface of the water discharge channel. For this reason, it was necessary to lengthen the length of the suction pipe.
 このように、吸い込み管の長さを長くする場合、吸い込み管のコストが上昇するとともに、ポンプの主軸が長くなるため、支持部材(軸受部材)を別途設ける必要があり、取水ピットのコスト上昇につながっていた。 As described above, when the length of the suction pipe is increased, the cost of the suction pipe is increased and the main shaft of the pump is lengthened. Therefore, it is necessary to separately provide a support member (bearing member), which increases the cost of the intake pit. It was connected.
 一方、特許文献1では、このような取水ピットのコスト上昇の問題について、なんら考慮されていない。 On the other hand, in Patent Document 1, no consideration is given to the problem of the cost increase of such a water intake pit.
 なお、放水路の内底面と吸い込み口の下端との距離は、従来、プラントによって所定の距離とされている。したがって、単純に従来よりも放水路の内底面の上方に吸い込み口を配置すると、放水路の内底面と吸い込み口の下端との距離が従来よりも大きくなり、渦対策が困難になる恐れがあるため、このような手法を用いることはできない。 In addition, the distance between the inner bottom surface of the water discharge channel and the lower end of the suction port is conventionally set to a predetermined distance by the plant. Therefore, if the suction port is simply arranged above the inner bottom surface of the water discharge channel than before, the distance between the inner bottom surface of the water discharge channel and the lower end of the suction port becomes larger than before, and there is a risk that countermeasures against vortices may be difficult. Therefore, such a method cannot be used.
 そこで、本発明は、空気吸い込み渦の発生を抑制することが可能で、かつ流路の底面と吸い込み口の下端との距離を従来の距離から変化させることなく、取水ピットのコストを低減することの可能な取水ピット及びプラントを提供することを目的とする。 Therefore, the present invention can reduce the cost of the intake pit without causing the air suction vortex to be generated and without changing the distance between the bottom surface of the flow path and the lower end of the suction port from the conventional distance. The purpose is to provide a possible intake pit and plant.
 本発明の第1の態様に係る取水ピットは、所定方向に延在しており、上流側から下流側に向かって水が流通するピット本体と、前記ピット本体内において、該ピット本体の幅方向に亘って設けられた後壁と、前記水を吸い込む吸い込み口を含み、かつ前記ピット本体の前記上流側に位置する上流側領域を流れる水に浸漬された吸い込み管を有するポンプと、前記水に浸漬された状態で、前記後壁から前記上流側に向かう方向に延在して、前記吸い込み口の下方に設けられており、前記吸い込み口の下端と対向する上面を有するとともに、前記ピット本体の内底面との間に第1の流路を区画する第1の板状部材と、前記水に浸漬された状態で、前記後壁から前記上流側に向かう方向に延在して、前記吸い込み口の上方に設けられており、前記第1の板状部材との間に第2の流路を区画する第2の板状部材と、を備え、前記第2の板状部材の上に、前記水が流れる第3の流路を有しており、前記吸い込み管は、前記第2の板状部材を貫通するように配置される。 The water intake pit according to the first aspect of the present invention extends in a predetermined direction, the pit body in which water flows from the upstream side toward the downstream side, and the width direction of the pit body in the pit body And a pump having a suction pipe immersed in water flowing in an upstream region located on the upstream side of the pit body, and a rear wall provided over the rear wall, and a suction port for sucking the water. In the immersed state, it extends in the direction from the rear wall toward the upstream side, is provided below the suction port, has an upper surface facing the lower end of the suction port, and the pit body A first plate-like member that divides a first flow path between an inner bottom surface and the suction port that extends in a direction from the rear wall toward the upstream side in a state immersed in the water; Provided above, and And a second plate member that divides the second flow channel between the first plate member and the third plate having a third flow channel through which the water flows. The suction pipe is disposed so as to penetrate the second plate member.
 このように、ピット本体の内底面よりも上方であって、かつ吸い込み口の下端よりも下方に第1の板状部材を設けることで、従来のピット本体の内底面と吸い込み口の下端との距離と、第1の板状部材の上面と吸い込み口の下端との距離と、を一致させた上で、水に浸漬される吸い込み管の長さを短くすることが可能となる。 Thus, by providing the first plate-like member above the inner bottom surface of the pit body and below the lower end of the suction port, the conventional bottom surface of the pit body and the lower end of the suction port It is possible to shorten the length of the suction pipe immersed in water after matching the distance with the distance between the upper surface of the first plate member and the lower end of the suction port.
 そして、吸い込み管の長さが短くなることで、吸い込み管のコストを低減可能になるとともに、吸い込み管を支持する支持部材(軸受部材)を別途設ける必要がなくなるため、取水ピットのコストを低減できる。 And since the length of a suction pipe becomes short, it becomes possible to reduce the cost of a suction pipe, and since it becomes unnecessary to provide the support member (bearing member) which supports a suction pipe separately, the cost of a water intake pit can be reduced. .
 また、水に浸漬された状態で、後壁から上流側に向かう方向に延在するように、吸い込み口の上方に第2の板状部材を設けることで、第1の板状部材と第2の板状部材との間に区画される第2の流路と、第2の板状部材上に配置され、流れる水が空気と接触する第3の流路と、を完全に分離することが可能となる。これにより、第3の流路で空気吸い込み渦が発生した際に、第2の板状部材で空気吸い込み渦が第2の流路に移動することを抑制可能できる。また、第2の流路を流れる水が空気と接触することを抑制可能となるので、第2の流路内を流れる水に空気吸い込み渦が発生することを抑制できる。 Further, the second plate member is provided above the suction port so as to extend in the direction from the rear wall toward the upstream side in the state of being immersed in water, whereby the first plate member and the second plate member are provided. The second flow path partitioned between the plate-shaped member and the third flow path that is disposed on the second plate-shaped member and in which the flowing water comes into contact with air can be completely separated. It becomes possible. Thereby, when an air suction vortex is generated in the third flow path, it is possible to suppress the movement of the air suction vortex to the second flow path by the second plate member. Moreover, since it is possible to suppress the water flowing through the second flow path from coming into contact with air, it is possible to suppress the generation of air suction vortices in the water flowing through the second flow path.
 また、本発明の第2の態様に係る取水ピットにおいて、前記後壁は、前記ピット本体内を前記上流側領域と下流側領域とに区画するとともに、前記上流側領域を流れる前記水の一部が越流して前記下流側領域に流れ込む高さとされた越流堰であってもよい。 Further, in the water intake pit according to the second aspect of the present invention, the rear wall partitions the inside of the pit body into the upstream region and the downstream region, and a part of the water flowing in the upstream region. The overflow weir may have a height that overflows and flows into the downstream region.
 このように、後壁として、越流堰を用いてもよい。 Thus, an overflow dam may be used as the rear wall.
 また、本発明の第3の態様に係る取水ピットにおいて、前記越流堰のうち、前記第1の流路と対向する部分に設けられており、前記第1の流路を流れる前記水を前記上流側領域から前記下流側領域に連通させる連通部を含んでもよい。 Further, in the intake pit according to the third aspect of the present invention, the overflow dam is provided in a portion of the overflow weir facing the first flow path, and the water flowing through the first flow path is A communication portion that communicates from the upstream region to the downstream region may be included.
 このように、越流堰に連通部を設け、連通部を介して、第1の流路を流れる水を越流堰の上流側から下流側に流すことで、第3の流路を流れる水の流量と第2の流路を流れる水の流量との差を小さくすることが可能となる。これにより、第2及び第3の流路を流れる水の流量の差に起因する偏流の発生を抑制できる。つまり、偏流に起因するポンプ性能の低下を抑制できる。 As described above, the communication part is provided in the overflow weir, and the water flowing through the third flow path is caused by flowing the water flowing through the first flow path from the upstream side to the downstream side of the overflow weir through the communication part. The difference between the flow rate of water and the flow rate of water flowing through the second flow path can be reduced. Thereby, generation | occurrence | production of the drift resulting from the difference of the flow volume of the water which flows through the 2nd and 3rd flow path can be suppressed. That is, it is possible to suppress a decrease in pump performance due to drift.
 また、本発明の第4の態様に係る取水ピットにおいて、前記第1及び第2の板状部材は、前記ピット本体の内底面に対して平行となるように配置してもよい。 In the intake pit according to the fourth aspect of the present invention, the first and second plate-like members may be arranged so as to be parallel to the inner bottom surface of the pit body.
 このように、第1及び第2の板状部材は、ピット本体の内底面に対して平行となるように配置させることができる。 Thus, the first and second plate-like members can be arranged so as to be parallel to the inner bottom surface of the pit body.
 また、本発明の第5の態様に係る取水ピットにおいて、前記第2の板状部材は、前記ピット本体の内底面に対して平行となるように配置されており、前記第1の板状部材は、前記後壁に向かうにつれて、前記第2の流路の深さが深くなるように、前記ピット本体の内底面に対して前記第1の板状部材の上面を傾斜させて配置してもよい。 Further, in the water intake pit according to the fifth aspect of the present invention, the second plate-like member is disposed so as to be parallel to the inner bottom surface of the pit main body, and the first plate-like member The upper surface of the first plate-shaped member may be inclined with respect to the inner bottom surface of the pit body so that the depth of the second flow path becomes deeper toward the rear wall. Good.
 このように、ピット本体の内底面に対して第1の板状部材の上面を傾斜させて配置することで、第1の板状部材の上面に沿うように、第2の流路内を水が流れるため、吸い込み口に向かう方向に第2の流路内を流れる水を案内することができる。 As described above, by arranging the upper surface of the first plate-shaped member to be inclined with respect to the inner bottom surface of the pit main body, the water in the second flow path is aligned with the upper surface of the first plate-shaped member. Therefore, the water flowing in the second flow path can be guided in the direction toward the suction port.
 また、本発明の第6の態様に係る取水ピットにおいて、前記第1及び第2の板状部材の幅方向に位置する一対の側面に、前記第1ないし第3の流路の幅方向を区画する側壁をそれぞれ設けてもよい。 In the water intake pit according to the sixth aspect of the present invention, the width direction of the first to third flow paths is defined on a pair of side surfaces located in the width direction of the first and second plate-like members. Side walls may be provided.
 このように、第1ないし第3の流路の幅方向を区画する側壁を設けることで、第1ないし第3の流路の幅を狭くすることが可能となる。これにより、例えば、第2の流路内に水中渦の発生を抑制可能な水中渦抑制部材を配置させた場合において、水中渦抑制部材により効果的に水中渦の発生を抑制することができる。 Thus, by providing the side walls that define the width direction of the first to third flow paths, the width of the first to third flow paths can be reduced. Thereby, for example, when the underwater vortex suppressing member capable of suppressing the generation of the underwater vortex is disposed in the second flow path, the generation of the underwater vortex can be effectively suppressed by the underwater vortex suppressing member.
 また、本発明の第7の態様に係る取水ピットにおいて、前記第2の流路内に配置された前記吸い込み口の周囲に、前記第2の流路内における水中渦の発生を抑制可能な水中渦抑制部材を配置してもよい。 Further, in the intake pit according to the seventh aspect of the present invention, underwater capable of suppressing the generation of underwater vortices in the second flow path around the suction port arranged in the second flow path. A vortex suppression member may be arranged.
 このように、第2の流路内に配置された吸い込み口の周囲に、第2の流路内における水中渦の発生を抑制可能な水中渦抑制部材を配置することで、水中渦に起因するポンプの性能の低下を抑制することができる。 As described above, by arranging the underwater vortex suppressing member capable of suppressing the generation of the underwater vortex in the second flow path around the suction port arranged in the second flow path, it is caused by the underwater vortex. A decrease in the performance of the pump can be suppressed.
 また、本発明の第8の態様に係る取水ピットにおいて、前記第1の板状部材または前記第2の板状部材に、前記第2の流路を流れる前記水を前記吸い込み口に案内するガイド部材を設けてもよい。 In the water intake pit according to the eighth aspect of the present invention, a guide for guiding the water flowing through the second flow path to the suction port to the first plate-like member or the second plate-like member. A member may be provided.
 このような構成とされたガイド部材を設けることで、吸い込み口に向かう方向に第2の流路内を流れる水を案内することができる。 By providing the guide member having such a configuration, it is possible to guide water flowing in the second flow path in the direction toward the suction port.
 また、本発明の第9の態様に係るプラントは、上記取水ピットを含んでもよい。 Moreover, the plant according to the ninth aspect of the present invention may include the intake pit.
 このような構成とされたプラントは、空気吸い込み渦の発生を抑制することが可能で、かつ流路の底面と吸い込み口の下端との距離を従来の距離から変化させることなく、取水ピットのコストを低減することができる。 The plant configured as described above can suppress the generation of air suction vortex, and the cost of the water intake pit can be reduced without changing the distance between the bottom surface of the flow path and the lower end of the suction port from the conventional distance. Can be reduced.
 本発明によれば、空気吸い込み渦の発生を抑制することが可能で、かつ流路の底面と吸い込み口の下端との距離を従来の距離から変化させることなく、取水ピットのコストを低減することができる。 According to the present invention, it is possible to suppress the generation of the air suction vortex, and to reduce the cost of the water intake pit without changing the distance between the bottom surface of the flow path and the lower end of the suction port from the conventional distance. Can do.
本発明の第1の実施形態に係る取水ピットの主要部の平面図である。It is a top view of the principal part of the intake pit which concerns on the 1st Embodiment of this invention. 図1に示す取水ピットのA-A線方向の断面図である。FIG. 2 is a cross-sectional view of the intake pit shown in FIG. 1 in the direction of line A 1 -A 2 . 図1に示す取水ピットのA-A線方向の断面図である。FIG. 2 is a cross-sectional view of the intake pit shown in FIG. 1 in the direction of line A 3 -A 4 . 図2に示す取水ピットの吸い込み口、及び吸い込み口の周囲の構成を拡大した断面図である。It is sectional drawing which expanded the structure of the suction inlet of the intake pit shown in FIG. 2, and the circumference | surroundings of a suction inlet. 本発明の第1の実施形態の変形例に係る取水ピットの主要部の断面図である。It is sectional drawing of the principal part of the water intake pit which concerns on the modification of the 1st Embodiment of this invention. 本発明の第2の実施形態の取水ピットの主要部の平面図である。It is a top view of the principal part of the intake pit of the 2nd Embodiment of this invention. 図6に示す取水ピットのL-L線方向の断面図である。FIG. 7 is a cross-sectional view of the intake pit shown in FIG. 6 in the L 1 -L 2 line direction. 図6及び図7に示す水中渦抑制部材の斜視図である。FIG. 8 is a perspective view of the underwater vortex suppressing member shown in FIGS. 6 and 7. 本発明の第3の実施形態に係る取水ピットの主要部の断面図である。It is sectional drawing of the principal part of the intake pit which concerns on the 3rd Embodiment of this invention. 本発明の第3の実施形態の変形例に係る取水ピットの主要部の断面図である。It is sectional drawing of the principal part of the intake pit which concerns on the modification of the 3rd Embodiment of this invention. 本発明の第4の実施形態に係る取水ピットの主要部の断面図である。It is sectional drawing of the principal part of the intake pit which concerns on the 4th Embodiment of this invention. 本発明の第4の実施形態の変形例に係る取水ピットの主要部の断面図である。It is sectional drawing of the principal part of the intake pit which concerns on the modification of the 4th Embodiment of this invention.
〔第1の実施形態〕
 図1は、本発明の第1の実施形態に係る取水ピットの主要部の平面図である。図1では、ポンプ15を構成する図2に示すポンプ本体35及び吸い込み口38の図示を省略し、吸い込み管37のみを図示する。図1において、Cはピット本体11内を流れる水(以下、「水C」という)、R1は越流堰13(後壁の一例)よりも上流側に位置するピット本体11(以下、「上流側領域R1」という)、R2は越流堰13よりも下流側に位置するピット本体11(以下、「下流側領域R2」という)をそれぞれ示している。水Cには、海水等も含まれる。
[First Embodiment]
FIG. 1 is a plan view of a main part of a water intake pit according to the first embodiment of the present invention. In FIG. 1, illustration of the pump main body 35 and the suction port 38 shown in FIG. 2 constituting the pump 15 is omitted, and only the suction pipe 37 is shown. In FIG. 1, C is water flowing in the pit body 11 (hereinafter referred to as “water C”), and R1 is a pit body 11 (hereinafter referred to as “upstream”) located upstream from the overflow weir 13 (an example of a rear wall). , R2 indicates a pit body 11 (hereinafter referred to as “downstream region R2”) positioned downstream of the overflow weir 13. The water C includes seawater and the like.
 また、図1において、B1は第1及び第2の板状部材17,18よりも上流側における水Cの流れる方向(以下、「B1方向」という)、B2は下流側領域R2における水Cが流れる方向(以下、「B2方向」という)、Gは第3の流路28内における水Cの流れる方向(以下、「G方向」という)をそれぞれ示している。図1において、X方向はピット本体11の延在方向、Y方向はピット本体11の幅方向、Z方向はピット本体11の深さ方向(ピット本体11内を流れる水の深さ方向)をそれぞれ示している。 In FIG. 1, B1 is the direction in which the water C flows upstream of the first and second plate-like members 17 and 18 (hereinafter referred to as “B1 direction”), and B2 is the water C in the downstream region R2. The flowing direction (hereinafter referred to as “B2 direction”) and G indicate the flowing direction of water C in the third flow path 28 (hereinafter referred to as “G direction”), respectively. In FIG. 1, the X direction is the extending direction of the pit body 11, the Y direction is the width direction of the pit body 11, and the Z direction is the depth direction of the pit body 11 (the depth direction of water flowing in the pit body 11). Show.
 図2は、図1に示す取水ピットのA-A線方向の断面図である。図2において、Caは第3の流路28を流れる水Cの上面(以下、「上面Ca」という)を示している。図2において、図1に示す構造体と同一構成部分には、同一符号を付す。 FIG. 2 is a cross-sectional view of the intake pit shown in FIG. 1 in the direction of line A 1 -A 2 . In FIG. 2, Ca indicates the upper surface of water C flowing through the third flow path 28 (hereinafter referred to as “upper surface Ca”). 2, the same components as those in the structure shown in FIG.
 図3は、図1に示す取水ピットのA-A線方向の断面図である。図3において、図1及び図2に示す構造体と同一構成部分には、同一符号を付す。 3 is a cross-sectional view of the intake pit shown in FIG. 1 in the direction of line A 3 -A 4 . 3, the same components as those shown in FIGS. 1 and 2 are denoted by the same reference numerals.
 図4は、図2に示す取水ピットの吸い込み口、及び吸い込み口の周囲の構成を拡大した断面図である。図4において、Dは吸い込み口38の下端38Aの直径(以下、「直径D」という)、Iは吸い込み管37の中心軸(以下、「中心軸I」という)、Jは吸い込み口38の下端38Aから第1の板状部材17の上面17aまでの距離(以下、「距離J」という)、Kは中心軸Iから越流堰13までの距離(以下、「距離K」という)をそれぞれ示している。図4において、図1~図3に示す構造体と同一構成部分には、同一符号を付す。 FIG. 4 is an enlarged cross-sectional view of the intake port of the intake pit shown in FIG. 2 and the configuration around the intake port. In FIG. 4, D is the diameter (hereinafter referred to as “diameter D”) of the lower end 38 </ b> A of the suction port 38, I is the central axis (hereinafter referred to as “central axis I”) of the suction pipe 37, and J is the lower end of the suction port 38. The distance from 38A to the upper surface 17a of the first plate member 17 (hereinafter referred to as “distance J”), and K the distance from the central axis I to the overflow weir 13 (hereinafter referred to as “distance K”). ing. 4, the same components as those shown in FIGS. 1 to 3 are denoted by the same reference numerals.
 図1~図4を参照するに、第1の実施形態の取水ピット10は、プラント(例えば、火力プラントや化学プラント等)に設けられる設備であり、ピット本体11と、後壁の一例である越流堰13と、ポンプ15と、側壁16-1~16-4と、第1の板状部材17と、第2の板状部材18と、第1の流路26と、第2の流路27と、第3の流路28と、連通部31と、を有する。 With reference to FIGS. 1 to 4, the intake pit 10 of the first embodiment is a facility provided in a plant (for example, a thermal power plant or a chemical plant), and is an example of a pit main body 11 and a rear wall. Overflow weir 13, pump 15, side walls 16-1 to 16-4, first plate member 17, second plate member 18, first flow path 26, and second flow A path 27, a third flow path 28, and a communication portion 31 are included.
 ピット本体11は、底板部11Aと、一対の側壁部11B,11Cと、を有する。底板部11Aは、X方向に延在しており、ピット本体11の内底面11aを有する。一対の側壁部11B,11Cは、底板部11AのY方向の一対の端に設けられている。これにより、一対の側壁部11B,11Cは、Y方向において、対向配置されている。上記構成とされたピット本体11は、X方向(所定方向)に延在しており、上流側から下流側に向かって水Cが流通している。 The pit body 11 has a bottom plate portion 11A and a pair of side wall portions 11B and 11C. The bottom plate portion 11 </ b> A extends in the X direction and has an inner bottom surface 11 a of the pit body 11. The pair of side wall portions 11B and 11C are provided at a pair of ends in the Y direction of the bottom plate portion 11A. Thereby, a pair of side wall part 11B, 11C is opposingly arranged in the Y direction. The pit body 11 having the above-described configuration extends in the X direction (predetermined direction), and water C flows from the upstream side toward the downstream side.
 越流堰13は、ピット本体11内において、Y方向に亘って設けられている。越流堰13の下端は、底板部11Aの内底面11aと接続されている。Y方向に位置する越流堰13の2つの端のうち、一方の端は、側壁部11Bと接続されており、他方の端は、側壁部11Cと接続されている。これにより、越流堰13は、X方向において、ピット本体11内を上流側領域R1と下流側領域R2とに区画している。 The overflow weir 13 is provided in the pit body 11 in the Y direction. The lower end of the overflow weir 13 is connected to the inner bottom surface 11a of the bottom plate portion 11A. Of the two ends of the overflow weir 13 located in the Y direction, one end is connected to the side wall portion 11B, and the other end is connected to the side wall portion 11C. As a result, the overflow weir 13 divides the pit body 11 into an upstream region R1 and a downstream region R2 in the X direction.
 越流堰13の高さは、上流側領域R1を流れる水Cの一部が越流して下流側領域R1に流れ込むことの可能な高さとされている。 The height of the overflow weir 13 is such that a part of the water C flowing through the upstream region R1 can overflow and flow into the downstream region R1.
 ポンプ15は、ポンプ本体35と、吸い込み管37と、吸い込み口38と、を有する。ポンプ本体35は、水Cをくみ上げる機構(図示せず)を有する。ポンプ本体35は、吸い込み管37の一端と接続されている。 The pump 15 has a pump body 35, a suction pipe 37, and a suction port 38. The pump body 35 has a mechanism (not shown) for pumping water C. The pump body 35 is connected to one end of the suction pipe 37.
 吸い込み管37は、Z方向に延在している。吸い込み管37は、一部(下端側)が越流堰13の上流側を流れる水Cに浸漬されている。吸い込み管37の他端は、第1の板状部材17と第2の板状部材18との間に配置されている。吸い込み管37は、第2の板状部材18を貫通するように配置されている。 The suction pipe 37 extends in the Z direction. A part (lower end side) of the suction pipe 37 is immersed in water C flowing upstream of the overflow weir 13. The other end of the suction pipe 37 is disposed between the first plate member 17 and the second plate member 18. The suction pipe 37 is disposed so as to penetrate the second plate member 18.
 吸い込み口38の下端38Aの直径がDの場合、吸い込み管37の中心軸Iと越流堰13との距離Kは、例えば、0.75D~1.0Dの範囲内で適宜設定することが可能である。このような範囲内で距離Kを設定することで、第2の流路27内における水中渦の発生を抑制することができる。 When the diameter of the lower end 38A of the suction port 38 is D, the distance K between the central axis I of the suction pipe 37 and the overflow weir 13 can be appropriately set within a range of 0.75D to 1.0D, for example. It is. By setting the distance K within such a range, generation of underwater vortices in the second flow path 27 can be suppressed.
 吸い込み口38は、吸い込み管37の他端に設けられている。吸い込み口38は、第1の板状部材17と第2の板状部材18との間に配置されている。吸い込み口38は、第2の流路27を流れる水Cを吸い込む。 The suction port 38 is provided at the other end of the suction pipe 37. The suction port 38 is disposed between the first plate member 17 and the second plate member 18. The suction port 38 sucks water C flowing through the second flow path 27.
 吸い込み口38としては、例えば、ベルマウスを用いることが可能である。吸い込み口38の下端38Aの直径Dは、目的に応じて、適宜設定することが可能である。 As the suction port 38, for example, a bell mouth can be used. The diameter D of the lower end 38A of the suction port 38 can be appropriately set according to the purpose.
 側壁16-1~16-4は、板状の部材である。側壁16-1~16-4は、ピット本体11内の上流側領域R1において、Y方向に対して、側壁16-1、側壁16-2、側壁16-3、側壁16-4の順で所定の間隔を空けて配置されている。側壁16-1,16-4は、第1及び第2の板状部材17,18のY方向(第1及び第2の板状部材17,18の幅方向)に位置する一対の側面に設けられている。これにより、側壁16-1,16-4は、第1ないし第3の流路26~28の幅方向を区画している。 The side walls 16-1 to 16-4 are plate-like members. The side walls 16-1 to 16-4 are predetermined in the order of the side wall 16-1, the side wall 16-2, the side wall 16-3, and the side wall 16-4 in the Y direction in the upstream region R1 in the pit body 11. Are arranged with an interval of. The side walls 16-1 and 16-4 are provided on a pair of side surfaces located in the Y direction (the width direction of the first and second plate members 17 and 18) of the first and second plate members 17 and 18. It has been. Thus, the side walls 16-1 and 16-4 define the width direction of the first to third flow paths 26 to 28.
 側壁16-1は、側壁部11Cから離間した状態で、側壁部11Cと対向している。側壁16-4は、側壁部11Bから離間した状態で、側壁部11Bと対向している。これにより、Y方向における側壁16-1と側壁16-4との距離は、側壁部11Bと側壁部11Cとの距離よりも小さくなるように構成されている。 The side wall 16-1 faces the side wall portion 11C in a state of being separated from the side wall portion 11C. The side wall 16-4 faces the side wall part 11B in a state of being separated from the side wall part 11B. Thereby, the distance between the side wall 16-1 and the side wall 16-4 in the Y direction is configured to be smaller than the distance between the side wall part 11B and the side wall part 11C.
 側壁16-1~16-4は、底板部11Aの内底面11aに対して直交するとともに、下端が底板部11Aと接続されている。X方向に位置する側壁16-1~16-4の一方の端部は、越流堰13と接続されている。側壁16-1~16-4の上端は、越流堰13の上端よりも高い位置に配置されている。側壁16-1~16-4のうち、隣り合う2つの側壁は、第1ないし第3の流路26~28の幅方向(Y方向)を区画している。 The side walls 16-1 to 16-4 are orthogonal to the inner bottom surface 11a of the bottom plate portion 11A, and their lower ends are connected to the bottom plate portion 11A. One end of the side walls 16-1 to 16-4 positioned in the X direction is connected to the overflow weir 13. The upper ends of the side walls 16-1 to 16-4 are arranged at a position higher than the upper end of the overflow weir 13. Of the side walls 16-1 to 16-4, two adjacent side walls define the width direction (Y direction) of the first to third flow paths 26 to 28.
 このように、第1ないし第3の流路26~28の幅方向を区画する側壁16-1~16-4を設けることで、第1ないし第3の流路26~28の幅を狭くすることが可能となる。これにより、例えば、第2の流路27内に水中渦の発生を抑制可能な水中渦抑制部材を配置させた場合において、水中渦抑制部材により効果的に水中渦の発生を抑制することができる。 Thus, by providing the side walls 16-1 to 16-4 that define the width direction of the first to third channels 26 to 28, the widths of the first to third channels 26 to 28 are narrowed. It becomes possible. Thereby, for example, when the underwater vortex suppressing member that can suppress the generation of the underwater vortex is disposed in the second flow path 27, the generation of the underwater vortex can be effectively suppressed by the underwater vortex suppressing member. .
 第1の板状部材17は、矩形とされた板状部材である。第1の板状部材17は、水Cに浸漬された状態で、側壁16-1~16-4間の下部に設けられている。第1の板状部材17のY方向の両端は、側壁16-1~16-4のうち、隣り合う位置に設けられた2つの側壁と接続されている。第1の板状部材17のX方向の両端のうち、一方の端は、越流堰13の下部と接続されている。 The first plate member 17 is a rectangular plate member. The first plate-like member 17 is provided in the lower part between the side walls 16-1 to 16-4 while being immersed in water C. Both ends in the Y direction of the first plate-like member 17 are connected to two side walls provided at adjacent positions among the side walls 16-1 to 16-4. One end of the first plate member 17 in the X direction is connected to the lower portion of the overflow weir 13.
 第1の板状部材17は、越流堰13から上流側に向かう方向に延在している。第1の板状部材17は、底板部11Aの内底面11aに対して、平行となるように配置されている。第1の板状部材17は、底板部11Aの内底面11aとの間において、第1の流路26の深さ方向(Z方向)を区画している。 The first plate member 17 extends from the overflow weir 13 toward the upstream side. The first plate-like member 17 is disposed so as to be parallel to the inner bottom surface 11a of the bottom plate portion 11A. The first plate-like member 17 defines the depth direction (Z direction) of the first flow path 26 between the inner bottom surface 11a of the bottom plate portion 11A.
 第1の板状部材17は、平面とされた上面17a及び下面17bを有する。上面17aは、水Cを介して、第2の板状部材18と対向している。下面17bは、水Cを介して、底板部11Aの内底面11aと対向配置されている。第1の板状部材17の上面17aは、吸い込み口38の下端と対向しており、吸い込み口38の下方に配置されている。第1の板状部材17の上面17aは、吸い込み口38から離間している。 The first plate-like member 17 has an upper surface 17a and a lower surface 17b that are flat. The upper surface 17a faces the second plate member 18 with water C interposed therebetween. The lower surface 17b is disposed to face the inner bottom surface 11a of the bottom plate portion 11A with water C interposed therebetween. The upper surface 17 a of the first plate-like member 17 faces the lower end of the suction port 38 and is disposed below the suction port 38. The upper surface 17 a of the first plate member 17 is separated from the suction port 38.
 吸い込み口38の下端38Aの直径がDの場合、吸い込み口38の下端38Aと上面17aとの距離Jは、例えば、0.3D~0.5Dの範囲内で適宜設定することが可能である。このような範囲内で距離Jを設定することで、第2の流路27内における水中渦の発生を抑制することができる。 When the diameter of the lower end 38A of the suction port 38 is D, the distance J between the lower end 38A of the suction port 38 and the upper surface 17a can be appropriately set within a range of 0.3D to 0.5D, for example. By setting the distance J within such a range, generation of underwater vortices in the second flow path 27 can be suppressed.
 第1の板状部材17の厚さは、例えば、500mm(第1の板状部材17がコンクリート構造物の場合)の範囲内で適宜設定することが可能である。また、第1の板状部材17の材料としては、耐水性(水Cとして海水を用いる場合は、耐海水性)を有する材料が好ましい。このような材料としては、例えば、コンクリートを用いることが可能である。 The thickness of the first plate member 17 can be appropriately set within a range of, for example, 500 mm (when the first plate member 17 is a concrete structure). Moreover, as a material of the 1st plate-shaped member 17, the material which has water resistance (when seawater is used as the water C, the material which has seawater resistance) is preferable. As such a material, for example, concrete can be used.
 上述した第1の板状部材17を有することで、従来のピット本体の内底面と吸い込み口の下端との距離と、第1の板状部材17の上面17aと吸い込み口38の下端38Aとの距離Jと、を一致させた上で、水Cに浸漬される吸い込み管37の長さを短くすることが可能となる。 By having the first plate-like member 17 described above, the distance between the inner bottom surface of the conventional pit body and the lower end of the suction port, and the upper surface 17a of the first plate-like member 17 and the lower end 38A of the suction port 38 are obtained. It is possible to shorten the length of the suction pipe 37 immersed in the water C after matching the distance J.
 このように吸い込み管37の長さが短くなることで、吸い込み管37のコストを低減可能になるとともに、吸い込み管37を支持する図示していない支持部材(軸受部材)を別途設ける必要がなくなるため、取水ピット10のコストを低減することができる。 By reducing the length of the suction pipe 37 in this way, the cost of the suction pipe 37 can be reduced, and it is not necessary to separately provide a support member (bearing member) (not shown) that supports the suction pipe 37. The cost of the intake pit 10 can be reduced.
 第2の板状部材18は、矩形とされた板状部材である。第2の板状部材18は、水Cに浸漬された状態で、第1の板状部材17の上方に位置する側壁16-1~16-4間に設けられている。 The second plate-shaped member 18 is a rectangular plate-shaped member. The second plate member 18 is provided between the side walls 16-1 to 16-4 positioned above the first plate member 17 in the state of being immersed in water C.
 第2の板状部材18のY方向の両端は、側壁16-1~16-4のうち、隣り合う位置に設けられた2つの側壁と接続されている。第2の板状部材18のX方向の両端のうち、一方の端は、越流堰13の上部と接続されている。第2の板状部材18は、越流堰13から上流側に向かう方向に延在している。第2の板状部材18は、底板部11Aの内底面11aに対して、平行となるように配置されている。 Both ends in the Y direction of the second plate-shaped member 18 are connected to two side walls provided at adjacent positions among the side walls 16-1 to 16-4. One end of the second plate member 18 in the X direction is connected to the upper portion of the overflow weir 13. The second plate-like member 18 extends in the direction from the overflow weir 13 toward the upstream side. The second plate-like member 18 is disposed so as to be parallel to the inner bottom surface 11a of the bottom plate portion 11A.
 第2の板状部材18は、平面とされた上面18a及び下面18bと、貫通穴18Aと、を有する。上面18aは、第3の流路28の底を区画している。下面18bは、水Cを介して、第1の板状部材17の上面17aと対向している。貫通穴18Aは、吸い込み管37を挿入するための穴である。第2の板状部材18は、例えば、先に説明した第1の板状部材17と同じ厚さ、及び同じ材料で構成することが可能である。 The second plate-like member 18 has an upper surface 18a and a lower surface 18b that are flat, and a through hole 18A. The upper surface 18 a defines the bottom of the third flow path 28. The lower surface 18 b faces the upper surface 17 a of the first plate-like member 17 with water C interposed therebetween. The through hole 18 </ b> A is a hole for inserting the suction pipe 37. The second plate-like member 18 can be made of, for example, the same thickness and the same material as the first plate-like member 17 described above.
 上述した第2の板状部材18を設けることで、第1の板状部材17と第2の板状部材18との間に区画される第2の流路27と、第2の板状部材18上に配置され、流れる水Cが空気と接触する第3の流路28と、を完全に分離することが可能となる。 By providing the second plate-shaped member 18 described above, the second flow path 27 partitioned between the first plate-shaped member 17 and the second plate-shaped member 18, and the second plate-shaped member It is possible to completely separate the third flow path 28 that is disposed on 18 and in which the flowing water C is in contact with air.
 これにより、第3の流路28で空気吸い込み渦が発生した際に、第2の板状部材18で空気吸い込み渦が第2の流路27に移動することを抑制可能できる。また、第2の流路27を流れる水Cが空気と接触することを抑制可能となるので、第2の流路27内を流れる水に空気吸い込み渦が発生することを抑制できる。 Thereby, when an air suction vortex is generated in the third flow path 28, the movement of the air suction vortex to the second flow path 27 by the second plate member 18 can be suppressed. In addition, since it is possible to suppress the water C flowing through the second flow path 27 from coming into contact with air, it is possible to suppress the generation of air suction vortices in the water flowing through the second flow path 27.
 なお、Z方向における第1及び第2の板状部材17,18の配設位置は、越流堰13の高さの範囲内で適宜設定することが可能であり、図2及び図3に示す第1及び第2の板状部材17,18の配設位置に限定されない。 The arrangement positions of the first and second plate- like members 17 and 18 in the Z direction can be appropriately set within the range of the height of the overflow weir 13, and are shown in FIGS. The arrangement positions of the first and second plate- like members 17 and 18 are not limited.
 第1の流路26は、深さ方向がピット本体11の内底面11aと第1の板状部材17で区画されるとともに、幅方向が側壁16-1~16-4のうち、隣り合う位置に設けられた2つの側壁で区画されている。図1及び図3の場合、Y方向に対して、3つの第1の流路26が配列されている。 The first flow path 26 is partitioned by the inner bottom surface 11a of the pit body 11 and the first plate member 17 in the depth direction, and the width direction is adjacent to the side walls 16-1 to 16-4. Are divided by two side walls. In the case of FIG.1 and FIG.3, the three 1st flow paths 26 are arranged with respect to the Y direction.
 第2の流路27は、深さ方向が第1の板状部材17と第2の板状部材18とで区画されるとともに、幅方向が側壁16-1~16-4のうち、隣り合う位置に設けられた2つの側壁で区画されている。第2の流路27は、第1の板状部材17を介して、第1の流路26上に配置されている。図1及び図3の場合、Y方向に対して、3つの第2の流路27が配列されている。 The second flow path 27 is partitioned in the depth direction by the first plate member 17 and the second plate member 18, and the width direction is adjacent to the side walls 16-1 to 16-4. It is divided by two side walls provided in the position. The second flow path 27 is disposed on the first flow path 26 via the first plate member 17. In the case of FIGS. 1 and 3, three second flow paths 27 are arranged in the Y direction.
 第3の流路28は、底が第2の板状部材18で区画されるとともに、幅方向が側壁16-1~16-4のうち、隣り合う位置に設けられた2つの側壁で区画されている。第3の流路28は、第2の板状部材18を介して、第2の流路27上に配置されている。第3の流路28には、越流堰13を越流する水Cが流れる。図1及び図3の場合、Y方向に対して、3つの第3の流路28が配列されている。上述した第1ないし第3の流路26~28は、Z方向に積層配置されている。 The bottom of the third flow path 28 is defined by the second plate-shaped member 18, and the width direction is defined by two side walls provided at adjacent positions among the side walls 16-1 to 16-4. ing. The third flow path 28 is disposed on the second flow path 27 via the second plate-like member 18. Water C that flows through the overflow weir 13 flows through the third flow path 28. In the case of FIG.1 and FIG.3, the three 3rd flow paths 28 are arranged with respect to the Y direction. The first to third flow paths 26 to 28 are stacked in the Z direction.
 連通部31は、越流堰13のうち、各第1の流路26と対向する部分を貫通するように設けられている。連通部31は、第1の流路26を流れる水Cを上流側領域R1から下流側領域R22に連通させる。 The communication portion 31 is provided so as to penetrate a portion of the overflow weir 13 that faces each first flow path 26. The communication unit 31 allows the water C flowing through the first flow path 26 to communicate from the upstream region R1 to the downstream region R22.
 水Cの流れ方向から見たときの連通部31の形状は、例えば、多角形や円形等を用いることが可能である。また、連通部31の開口面積は、例えば、第1の流路26を流れる水Cの流速と、第2の流路27を流れる水Cの流速と、第3の流路28を流れる水Cの流速と、が等しくなるように決定するとよい。 As the shape of the communication part 31 when viewed from the flow direction of the water C, for example, a polygon or a circle can be used. Moreover, the opening area of the communication part 31 is, for example, the flow rate of the water C flowing through the first flow channel 26, the flow rate of the water C flowing through the second flow channel 27, and the water C flowing through the third flow channel 28. It is good to determine so that it may become equal to the flow velocity of.
 上述した連通部31を有することで、連通部31を介して、第1の流路26を流れる水Cを越流堰13の上流側から下流側に流すことで、第3の流路28を流れる水Cの流量と第2の流路27を流れる水Cの流量との差を小さくすることが可能となる。これにより、第2及び第3の流路27,28を流れる水Cの流量の差に起因する偏流の発生を抑制することができる。つまり、上記偏流に起因するポンプ15の性能の低下を抑制できる。 By having the communication part 31 described above, the third flow path 28 is made to flow by flowing the water C flowing through the first flow path 26 from the upstream side to the downstream side of the overflow weir 13 via the communication part 31. The difference between the flow rate of the flowing water C and the flow rate of the water C flowing through the second flow path 27 can be reduced. Thereby, the generation | occurrence | production of the drift resulting from the difference in the flow volume of the water C which flows through the 2nd and 3rd flow paths 27 and 28 can be suppressed. That is, it is possible to suppress a decrease in performance of the pump 15 due to the drift.
 第1の実施形態の取水ピット10によれば、吸い込み口38が配置された第2の流路27における空気吸い込み渦の発生を抑制することが可能で、かつ第2の流路27の底面となる第1の板状部材17の上面17aと吸い込み口38の下端との距離Jを従来の距離(所定の距離)から変化させることなく、取水ピット10のコストを低減することができる。 According to the water intake pit 10 of the first embodiment, it is possible to suppress the generation of the air suction vortex in the second flow path 27 in which the suction port 38 is disposed, and the bottom surface of the second flow path 27 The cost of the water intake pit 10 can be reduced without changing the distance J between the upper surface 17a of the first plate-shaped member 17 and the lower end of the suction port 38 from the conventional distance (predetermined distance).
 また、上述した取水ピット10を備えたプラント(例えば、火力プラントや化学プラント等)は、第1の実施形態の取水ピット10と同様な効果を得ることができる。 Moreover, the plant (for example, a thermal power plant, a chemical plant, etc.) provided with the intake pit 10 mentioned above can acquire the effect similar to the intake pit 10 of 1st Embodiment.
 図5は、本発明の第1の実施形態の変形例に係る取水ピットの主要部の断面図である。図5において、図1に示す構造体と同一構成部分には、同一符号を付す。 FIG. 5 is a cross-sectional view of a main part of a water intake pit according to a modification of the first embodiment of the present invention. In FIG. 5, the same components as those in the structure shown in FIG.
 図5を参照するに、第1の実施形態の変形例の取水ピット40は、越流堰13に向かうにつれて、第2の流路27の深さが深くなるように、ピット本体11の内底面11aに対して第1の板状部材17の上面17aを傾斜させて配置させたこと以外は、第1の実施形態の取水ピット10と同様な構成とされている。 Referring to FIG. 5, the intake pit 40 according to the modification of the first embodiment has an inner bottom surface of the pit body 11 such that the depth of the second flow path 27 becomes deeper toward the overflow weir 13. The configuration is the same as that of the water intake pit 10 of the first embodiment except that the upper surface 17a of the first plate member 17 is inclined with respect to 11a.
 第1の実施形態の変形例の取水ピット40によれば、ピット本体11の内底面11aに対して第1の板状部材17の上面17aを傾斜させて配置することで、第1の板状部材17の上面17aに沿うように、第2の流路27内を水Cが流れるため、吸い込み口38に向かう方向に第2の流路27内を流れる水Cを案内することができる。 According to the intake pit 40 of the modified example of the first embodiment, the first plate-like member is arranged by inclining the upper surface 17a of the first plate-like member 17 with respect to the inner bottom surface 11a of the pit body 11. Since the water C flows in the second flow path 27 along the upper surface 17 a of the member 17, the water C flowing in the second flow path 27 can be guided in the direction toward the suction port 38.
〔第2の実施形態〕
 図6は、本発明の第2の実施形態に係る取水ピットの主要部の平面図である。図6では、説明の便宜上、ポンプ15を構成するポンプ本体35(図7参照)、及び第2の板状部材18(図7参照)の図示を省略する。また、図6では、水中渦抑制部材46と吸い込み管37及び吸い込み口38との位置関係が明確となるように、吸い込み管37及び吸い込み口38を模式的に図示している。図6において、図1に示す構造体と同一構成部分には、同一符号を付す。
[Second Embodiment]
FIG. 6 is a plan view of the main part of the intake pit according to the second embodiment of the present invention. 6, illustration of the pump main body 35 (refer FIG. 7) and the 2nd plate-shaped member 18 (refer FIG. 7) which comprise the pump 15 is abbreviate | omitted for convenience of explanation. Further, in FIG. 6, the suction pipe 37 and the suction port 38 are schematically illustrated so that the positional relationship between the underwater vortex suppressing member 46, the suction pipe 37, and the suction port 38 becomes clear. In FIG. 6, the same components as those in the structure shown in FIG.
 図7は、図6に示す取水ピットのL-L線方向の断面図である。図7において、図2及び図6に示す構造体と同一構成部分には、同一符号を付す。図8は、図6及び図7に示す水中渦抑制部材の斜視図である。図8において、図6及び図7に示す構造体と同一構成部分には、同一符号を付す。 FIG. 7 is a cross-sectional view of the intake pit shown in FIG. 6 in the L 1 -L 2 line direction. In FIG. 7, the same components as those shown in FIGS. 2 and 6 are denoted by the same reference numerals. FIG. 8 is a perspective view of the underwater vortex suppressing member shown in FIGS. 6 and 7. 8, the same components as those shown in FIGS. 6 and 7 are denoted by the same reference numerals.
 図6~図8を参照するに、第2の実施形態の取水ピット45は、第1の実施形態の取水ピット10の構成に、さらに水中渦抑制部材46を設けたこと以外は、取水ピット10と同様に構成される。 With reference to FIGS. 6 to 8, the intake pit 45 of the second embodiment is the same as the intake pit 10 of the first embodiment except that an underwater vortex suppressing member 46 is further provided. It is configured in the same way.
 水中渦抑制部材46は、第2の流路27内であって、吸い込み管37の周囲に配置されている。水中渦抑制部材46は、十字状底板部49と、第1ないし第3の柱部51~53と、を有する。 The underwater vortex suppressing member 46 is disposed in the second flow path 27 and around the suction pipe 37. The underwater vortex suppressing member 46 includes a cross-shaped bottom plate portion 49 and first to third column portions 51 to 53.
 十字状底板部49は、十字形状とされた部材である。十字状底板部49は、第1の板状部材17の上面17aに配置されている。十字状底板部49は、第1の板状部材17の上面17aと接触する外面49aを有する。十字状底板部49の中央に位置する交差部分は、吸い込み口38の下方に配置されている。このような構成とされた十字状底板部49は、吸い込み口38の下方側において、水中渦が発生することを抑制する。 The cross-shaped bottom plate portion 49 is a member having a cross shape. The cross-shaped bottom plate portion 49 is disposed on the upper surface 17 a of the first plate-like member 17. The cross-shaped bottom plate portion 49 has an outer surface 49 a that contacts the upper surface 17 a of the first plate-like member 17. An intersecting portion located at the center of the cross-shaped bottom plate portion 49 is disposed below the suction port 38. The cross-shaped bottom plate portion 49 configured as described above suppresses the occurrence of underwater vortices on the lower side of the suction port 38.
 第1の柱部51は、十字状底板部49の4つの端部のうち、水Cの流れの下流側に配置された1つの端部に設けられている。第1の柱部51は、Z方向に延在しており、越流堰13の面13aと対向する外面51aを有する。このような構成とされた第1の柱部51は、吸い込み口38の下流側において、水中渦が発生することを抑制する。 The first column portion 51 is provided at one end portion disposed on the downstream side of the flow of the water C among the four end portions of the cross-shaped bottom plate portion 49. The first column portion 51 extends in the Z direction and has an outer surface 51 a that faces the surface 13 a of the overflow weir 13. The first column portion 51 having such a configuration suppresses the occurrence of underwater vortices on the downstream side of the suction port 38.
 第2の柱部52は、Y方向に配置された十字状底板部49の2つの端部のうち、Y方向に配置された一方の端部に設けられている。第2の柱部52は、Z方向に延在している。 The second column part 52 is provided at one end part arranged in the Y direction among the two end parts of the cross-shaped bottom plate part 49 arranged in the Y direction. The second column part 52 extends in the Z direction.
 第3の柱部53は、Y方向に配置された十字状底板部49の2つの端部のうち、Y方向に配置されたた他方の端部に設けられている。第3の柱部53は、Z方向に延在している。第3の柱部53は、Y方向において、第2の柱部52と対向するように配置されている。第3の柱部53の高さは、第2の柱部52と同じ高さとされている。 The third column portion 53 is provided at the other end portion arranged in the Y direction among the two end portions of the cross-shaped bottom plate portion 49 arranged in the Y direction. The third column portion 53 extends in the Z direction. The third column portion 53 is disposed so as to face the second column portion 52 in the Y direction. The height of the third column portion 53 is the same as that of the second column portion 52.
 上述した第2及び第3の柱部52,53は、吸い込み口38のY方向において、水中渦が発生することを抑制する。 The above-described second and third column parts 52 and 53 suppress the occurrence of underwater vortices in the Y direction of the suction port 38.
 第2の実施形態の取水ピット45によれば、第2の流路27内に配置された吸い込み口38の周囲に、第2の流路27内における水中渦の発生を抑制可能な水中渦抑制部材46を配置することで、水中渦に起因するポンプの性能の低下を抑制することができる。また、第2の実施形態の取水ピット45は、第1の実施形態の取水ピット10と同様な効果を得ることができる。 According to the water intake pit 45 of the second embodiment, the underwater vortex suppression capable of suppressing the generation of underwater vortices in the second flow path 27 around the suction port 38 disposed in the second flow path 27. By disposing the member 46, it is possible to suppress a decrease in performance of the pump due to the underwater vortex. Moreover, the intake pit 45 of 2nd Embodiment can acquire the effect similar to the intake pit 10 of 1st Embodiment.
 なお、上述した水中渦抑制部材46の形状は、一例であって、水中渦抑制部材46の形状は、図6~図8に示す形状に限定されない。例えば、水中渦が発生しやすい部分が予め分かっているときには、その部分での水中渦の発生を抑制するような形状にしてもよい。 The shape of the underwater vortex suppressing member 46 described above is an example, and the shape of the underwater vortex suppressing member 46 is not limited to the shape shown in FIGS. For example, when a portion where the underwater vortex is likely to be generated is known in advance, the shape may be such that generation of the underwater vortex at that portion is suppressed.
 また、図5に示す取水ピット40に、上述した水中渦抑制部材46と同様な機能を有する水中渦抑制部材を設けてもよい。 Further, an underwater vortex suppressing member having the same function as the above-described underwater vortex suppressing member 46 may be provided in the intake pit 40 shown in FIG.
 (第3の実施形態)
 図9は、本発明の第3の実施形態に係る取水ピットの主要部の断面図である。図9において、図1~図4に示す構造体と同一構成部分には、同一符号を付す。
(Third embodiment)
FIG. 9 is a cross-sectional view of the main part of a water intake pit according to the third embodiment of the present invention. 9, the same components as those shown in FIGS. 1 to 4 are denoted by the same reference numerals.
 図9を参照するに、第3の実施形態の取水ピット60は、第1の板状部材17の長さを短くし、X方向であって、かつ上流側に位置する第1の板状部材17の端に、ガイド部材61を設けたこと以外は、第1の実施形態の取水ピット10と同様な構成とされている。 Referring to FIG. 9, the water intake pit 60 of the third embodiment shortens the length of the first plate-like member 17, is the first plate-like member located in the X direction and on the upstream side. Except that the guide member 61 is provided at the end of 17, the configuration is the same as the intake pit 10 of the first embodiment.
 ガイド部材61は、L字型の段差形成用部材であり、第2の流路27の入口側の深さを浅くし、第1の板状部材17の配設位置において、第2の流路27の深さを深くするための部材である。これにより、ガイド部材61と第1の板状部材17との間には、段差が形成されている。 The guide member 61 is an L-shaped step forming member, has a shallow depth on the inlet side of the second flow path 27, and the second flow path at the position where the first plate-like member 17 is disposed. 27 is a member for increasing the depth of 27. Thereby, a step is formed between the guide member 61 and the first plate-like member 17.
 第2の流路27に流入する水Cは、第2の流路27を区画するガイド部材61の面に沿って流れ、その後、第1の板状部材17の上面17aに沿って流れることで、吸い込み口38に供給される。ガイド部材61の材料としては、例えば、第1の板状部材17と同様な材料を用いることが可能である。 The water C flowing into the second flow path 27 flows along the surface of the guide member 61 that partitions the second flow path 27, and then flows along the upper surface 17 a of the first plate-like member 17. , And supplied to the suction port 38. As a material of the guide member 61, for example, a material similar to that of the first plate member 17 can be used.
 第3の実施形態の取水ピット60によれば、上述したガイド部材61(L字型の段差形成用部材)を有することで、吸い込み口38に向かう方向(F方向)に第2の流路27内に流入した水Cを案内することができる。つまり、第2の流路27内における水Cの流れが上向きになることを抑制して、吸い込み口38から効率良く水Cをくみ上げることができる。また、上述した第3の実施形態の取水ピット60は、第1の実施形態の取水ピット10と同様な効果を得ることができる。 According to the water intake pit 60 of the third embodiment, by having the above-described guide member 61 (L-shaped step forming member), the second flow path 27 in the direction toward the suction port 38 (F direction). It is possible to guide the water C flowing in. That is, the water C can be efficiently pumped from the suction port 38 by suppressing the upward flow of the water C in the second flow path 27. Moreover, the intake pit 60 of the third embodiment described above can obtain the same effects as the intake pit 10 of the first embodiment.
 なお、第3の実施形態では、第1の板状部材17とガイド部材61とを別体にした場合を例に挙げて説明したが、第1の板状部材17とガイド部材61とを一体にしてもよい。 In the third embodiment, the case where the first plate member 17 and the guide member 61 are separated from each other has been described as an example. However, the first plate member 17 and the guide member 61 are integrated. It may be.
 図10は、本発明の第3の実施形態の変形例に係る取水ピットの主要部の断面図である。図10において、図9に示す構造体と同一構成部分には、同一符号を付す。 FIG. 10 is a cross-sectional view of the main part of a water intake pit according to a modification of the third embodiment of the present invention. In FIG. 10, the same components as those of the structure shown in FIG.
 図10を参照するに、第3の実施形態の変形例の取水ピット65は、第3の実施形態の取水ピット60を構成するガイド部材61に替えて、ガイド部材66を設けたこと以外は、第3の実施形態の取水ピット60と同様に構成されている。
 ガイド部材66は、X方向であって、かつ上流側に位置する第1の板状部材17の端に設けられている。
Referring to FIG. 10, the intake pit 65 of the modification of the third embodiment is different from the guide member 61 constituting the intake pit 60 of the third embodiment except that a guide member 66 is provided. It is comprised similarly to the intake pit 60 of 3rd Embodiment.
The guide member 66 is provided at the end of the first plate-like member 17 located in the X direction and on the upstream side.
 ガイド部材66は、湾曲した形状の段差形成用部材である。ガイド部材66は、第2の流路27の入口側の深さを浅くし、第1の板状部材17の配設位置において、第2の流路27の深さを深くすることの可能な形状とされている。これにより、ガイド部材66の上流側から第1の板状部材17に向かうにつれて、第2の流路27の深さは、徐々に深くなる。 The guide member 66 is a step forming member having a curved shape. The guide member 66 can reduce the depth on the inlet side of the second flow path 27 and increase the depth of the second flow path 27 at the position where the first plate-like member 17 is disposed. It is made into a shape. As a result, the depth of the second flow path 27 gradually increases from the upstream side of the guide member 66 toward the first plate member 17.
 第2の流路27に流入する水Cは、第2の流路27を区画するガイド部材66の面に沿って流れ、その後、第1の板状部材17の上面17aに沿って流れることで、吸い込み口38に供給される。ガイド部材66の材料としては、例えば、第1の板状部材17と同様な材料を用いることが可能である。 The water C flowing into the second flow path 27 flows along the surface of the guide member 66 that partitions the second flow path 27, and then flows along the upper surface 17 a of the first plate-like member 17. , And supplied to the suction port 38. As the material of the guide member 66, for example, the same material as that of the first plate member 17 can be used.
 このような構成とされたガイド部材66を有する第3の実施形態の変形例の取水ピット65は、先に説明した第3の実施形態の取水ピット60と同様な効果を得ることができる。 The intake pit 65 of the modification of the third embodiment having the guide member 66 configured as described above can obtain the same effect as the intake pit 60 of the third embodiment described above.
 (第4の実施形態)
 図11は、本発明の第4の実施形態に係る取水ピットの主要部の断面図である。図11において、図1~図4に示す構造体と同一構成部分には、同一符号を付す。
(Fourth embodiment)
FIG. 11 is a cross-sectional view of the main part of a water intake pit according to the fourth embodiment of the present invention. In FIG. 11, the same components as those shown in FIGS. 1 to 4 are denoted by the same reference numerals.
 図11を参照するに、第4の実施形態の取水ピット70は、第2の板状部材18の下面18bに、ガイド部材71を設けたこと以外は、第1の実施形態の取水ピット10と同様な構成とされている。 Referring to FIG. 11, the water intake pit 70 of the fourth embodiment is the same as the water intake pit 10 of the first embodiment except that a guide member 71 is provided on the lower surface 18 b of the second plate-like member 18. It is set as the same structure.
 ガイド部材71は、Y方向に延在する四角柱形状とされた部材である。ガイド部材71は、第2の流路27の上部を流れる水Cの移動方向を第2の流路27の下部に向かう方向(吸い込み口38に向かう方向)に案内するための部材である。 The guide member 71 is a member having a quadrangular prism shape extending in the Y direction. The guide member 71 is a member for guiding the moving direction of the water C flowing through the upper part of the second flow path 27 in the direction toward the lower part of the second flow path 27 (the direction toward the suction port 38).
 第4の実施形態の取水ピット70によれば、上述したガイド部材71を有することで、第2の流路27の上部を流れる水Cの移動方向を第2の流路27の下部に向かう方向に案内することができる。また、上述した第4の実施形態の取水ピット70は、第1の実施形態の取水ピット10と同様な効果を得ることができる。 According to the water intake pit 70 of the fourth embodiment, by having the guide member 71 described above, the moving direction of the water C flowing through the upper part of the second flow path 27 is directed toward the lower part of the second flow path 27. Can be guided to. Moreover, the intake pit 70 of the fourth embodiment described above can obtain the same effects as the intake pit 10 of the first embodiment.
 なお、第4の実施形態では、第1の板状部材17とガイド部材71とを別体にした場合を例に挙げて説明したが、第1の板状部材17とガイド部材71とを一体構成してもよい。 In the fourth embodiment, the case where the first plate member 17 and the guide member 71 are separated is described as an example. However, the first plate member 17 and the guide member 71 are integrated. It may be configured.
 図12は、本発明の第4の実施形態の変形例に係る取水ピットの主要部の断面図である。図12において、図1~図4に示す構造体と同一構成部分には、同一符号を付す。 FIG. 12 is a cross-sectional view of the main part of a water intake pit according to a modification of the fourth embodiment of the present invention. In FIG. 12, the same components as those shown in FIGS. 1 to 4 are denoted by the same reference numerals.
 図12を参照するに、第4の実施形態の変形例の取水ピット75は、第4の実施形態の取水ピット70を構成するガイド部材71に替えて、ガイド部材76を設けたこと以外は、第4の実施形態の取水ピット70と同様に構成されている。 Referring to FIG. 12, the water intake pit 75 of the modified example of the fourth embodiment is different from the guide member 71 constituting the water intake pit 70 of the fourth embodiment except that a guide member 76 is provided. It is comprised similarly to the intake pit 70 of 4th Embodiment.
 ガイド部材76は、上流側に配置された湾曲面76aを有する。湾曲面76aは、第2の流路27の上部を流れる水Cの移動方向を第2の流路27の下部に向かう方向に案内する。ガイド部材76の材料としては、例えば、第2の板状部材18と同じ材料を用いることが可能である。 The guide member 76 has a curved surface 76a disposed on the upstream side. The curved surface 76 a guides the moving direction of the water C flowing through the upper part of the second flow path 27 in the direction toward the lower part of the second flow path 27. As a material of the guide member 76, for example, the same material as that of the second plate member 18 can be used.
 このような構成とされた第4の実施形態の変形例の取水ピット75は、ガイド部材76にぶつかる水Cの衝撃を湾曲面76aにより低減することができる。また、第4の実施形態の変形例の取水ピット75は、第4の実施形態の取水ピット70と同様な効果を得ることができる。 The water intake pit 75 of the modified example of the fourth embodiment having such a configuration can reduce the impact of water C hitting the guide member 76 by the curved surface 76a. Moreover, the intake pit 75 of the modification of 4th Embodiment can acquire the effect similar to the intake pit 70 of 4th Embodiment.
 以上、本発明の好ましい実施形態について詳述したが、本発明はかかる特定の実施形態に限定されるものではなく、特許請求の範囲内に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。 The preferred embodiments of the present invention have been described in detail above, but the present invention is not limited to such specific embodiments, and various modifications can be made within the scope of the gist of the present invention described in the claims. Deformation / change is possible.
 例えば、第1ないし第4の実施形態では、後壁の一例として越流堰13を例に挙げて説明したが、越流堰13に替えて、第3の流路28を流れる水Cが越流しない後壁(図示せず)を用いてもよい。この場合、第1ないし4の実施形態と同様な効果を得ることができる。 For example, in the first to fourth embodiments, the overflow weir 13 has been described as an example of the rear wall, but instead of the overflow weir 13, the water C flowing through the third flow path 28 overflows. A rear wall (not shown) that does not flow may be used. In this case, the same effect as in the first to fourth embodiments can be obtained.
 また、図9及び図10に示す取水ピット60,65に、図11に示すガイド部材71または図12に示すガイド部材76を設けてもよい。これにより、吸い込み口38に向かう方向に第2の流路27内を流れる水Cを確実に案内することができる。 Moreover, the guide member 71 shown in FIG. 11 or the guide member 76 shown in FIG. 12 may be provided in the intake pits 60 and 65 shown in FIGS. Thereby, the water C flowing in the second flow path 27 in the direction toward the suction port 38 can be reliably guided.
 本発明は、ピット本体、及びピット本体内を流れる水をくみ上げるポンプを備えた取水ピット及びプラントに適用可能である。 The present invention is applicable to a water intake pit and a plant including a pit body and a pump that draws up water flowing in the pit body.
 10,40,45,60,65,70,75  取水ピット
 11  ピット本体
 11a  内底面
 11A  底板部
 11B,11C  側壁部
 13  越流堰
 13a  面
 15  ポンプ
 16-1~16-4  側壁
 17  第1の板状部材
 17a,18a,Ca  上面
 17b,18b  下面
 18  第2の板状部材
 18A  貫通穴
 26  第1の流路
 27  第2の流路
 28  第3の流路
 31  連通部
 35  ポンプ本体
 37  吸い込み管
 38  吸い込み口
 38A  下端
 46  水中渦抑制部材
 49  十字状底板部
 49a,51a  外面
 51  第1の柱部
 52  第2の柱部
 53  第3の柱部
 61,66,71,76  ガイド部材
 76a  湾曲面
 B1,B2,E~G  方向
 C  水
 D  直径
 I  中心軸
 J,K  距離
 R1  上流側領域
 R2  下流側領域
10, 40, 45, 60, 65, 70, 75 Intake pit 11 Pit body 11a Inner bottom surface 11A Bottom plate portion 11B, 11C Side wall portion 13 Overflow weir 13a surface 15 Pump 16-1 to 16-4 Side wall 17 First plate 17a, 18a, Ca upper surface 17b, 18b lower surface 18 second plate member 18A through hole 26 first channel 27 second channel 28 third channel 31 communication unit 35 pump body 37 suction pipe 38 Suction port 38A Lower end 46 Submersible vortex suppressing member 49 Cross-shaped bottom plate portion 49a, 51a Outer surface 51 First column portion 52 Second column portion 53 Third column portion 61, 66, 71, 76 Guide member 76a Curved surface B1, B2, E to G directions C Water D Diameter I Central axis J, K Distance R1 Upstream area R2 Downstream area

Claims (9)

  1.  所定方向に延在しており、上流側から下流側に向かって水が流通するピット本体と、
     前記ピット本体内において、該ピット本体の幅方向に亘って設けられた後壁と、
     前記水を吸い込む吸い込み口を含み、かつ前記ピット本体の前記上流側に位置する上流側領域を流れる水に浸漬された吸い込み管を有するポンプと、
     前記水に浸漬された状態で、前記後壁から前記上流側に向かう方向に延在して、前記吸い込み口の下方に設けられており、前記吸い込み口の下端と対向する上面を有するとともに、前記ピット本体の内底面との間に第1の流路を区画する第1の板状部材と、
     前記水に浸漬された状態で、前記後壁から前記上流側に向かう方向に延在して、前記吸い込み口の上方に設けられており、前記第1の板状部材との間に第2の流路を区画する第2の板状部材と、
     を備え、
     前記第2の板状部材の上に、前記水が流れる第3の流路を有しており、
     前記吸い込み管は、前記第2の板状部材を貫通するように配置されている取水ピット。
    A pit body that extends in a predetermined direction and in which water flows from the upstream side toward the downstream side,
    In the pit body, a rear wall provided across the width direction of the pit body,
    A pump having a suction pipe immersed in water flowing through an upstream region located on the upstream side of the pit body, the suction port including the water suction port;
    In the state of being immersed in the water, it extends in the direction from the rear wall toward the upstream side, is provided below the suction port, has an upper surface facing the lower end of the suction port, and A first plate member that divides the first flow path between the inner bottom surface of the pit body;
    In the state immersed in the water, it extends in the direction from the rear wall toward the upstream side, and is provided above the suction port. The second plate is provided between the first plate member and the second plate member. A second plate member that partitions the flow path;
    With
    On the second plate-shaped member, there is a third flow path through which the water flows,
    The intake pipe is a water intake pit disposed so as to penetrate the second plate-like member.
  2.  前記後壁は、前記ピット本体内を前記上流側領域と下流側領域とに区画するとともに、前記上流側領域を流れる前記水の一部が越流して前記下流側領域に流れ込む高さとされた越流堰である請求項1記載の取水ピット。 The rear wall divides the inside of the pit body into the upstream region and the downstream region, and has a height over which a part of the water flowing through the upstream region overflows and flows into the downstream region. The water intake pit according to claim 1, which is a flow weir.
  3.  前記越流堰のうち、前記第1の流路と対向する部分に設けられており、前記第1の流路を流れる前記水を前記上流側領域から前記下流側領域に連通させる連通部を含む請求項2記載の取水ピット。 A communicating portion that is provided in a portion of the overflow weir facing the first flow path and communicates the water flowing through the first flow path from the upstream area to the downstream area; The water intake pit according to claim 2.
  4.  前記第1及び第2の板状部材は、前記ピット本体の内底面に対して平行となるように配置する請求項1ないし3のうち、いずれか1項記載の取水ピット。 The water intake pit according to any one of claims 1 to 3, wherein the first and second plate-like members are arranged so as to be parallel to the inner bottom surface of the pit main body.
  5.  前記第2の板状部材は、前記ピット本体の内底面に対して平行となるように配置されており、
     前記第1の板状部材は、前記後壁に向かうにつれて、前記第2の流路の深さが深くなるように、前記ピット本体の内底面に対して前記第1の板状部材の上面を傾斜させて配置する請求項1ないし3のうち、いずれか1項記載の取水ピット。
    The second plate-like member is disposed so as to be parallel to the inner bottom surface of the pit body,
    The first plate-like member has an upper surface of the first plate-like member with respect to an inner bottom surface of the pit main body so that the depth of the second flow path becomes deeper toward the rear wall. The water intake pit according to any one of claims 1 to 3, wherein the water intake pit is arranged to be inclined.
  6.  前記第1及び第2の板状部材の幅方向に位置する一対の側面に、前記第1ないし第3の流路の幅方向を区画する側壁をそれぞれ設ける請求項1ないし5のうち、いずれか1項記載の取水ピット。 The side wall which divides the width direction of the said 1st thru | or 3rd flow path is provided in a pair of side surface located in the width direction of the said 1st and 2nd plate-shaped member, respectively. The intake pit described in item 1.
  7.  前記第2の流路内に配置された前記吸い込み口の周囲に、前記第2の流路内における水中渦の発生を抑制可能な水中渦抑制部材を配置する請求項1ないし6のうち、いずれか1項記載の取水ピット。 Any one of Claims 1 thru | or 6 which arrange | position the underwater vortex suppression member which can suppress generation | occurrence | production of the underwater vortex in the said 2nd flow path around the said suction inlet arrange | positioned in the said 2nd flow path. The intake pit according to claim 1.
  8.  前記第1の板状部材または前記第2の板状部材に、前記第2の流路を流れる前記水を前記吸い込み口に案内するガイド部材を設ける請求項1ないし7のうち、いずれか1項記載の取水ピット。 8. The guide member according to claim 1, wherein a guide member that guides the water flowing through the second flow path to the suction port is provided on the first plate-like member or the second plate-like member. The intake pit described.
  9.  請求項1ないし8のうち、いずれか1項記載の取水ピットを含むプラント。 A plant including the intake pit according to any one of claims 1 to 8.
PCT/JP2017/000627 2016-03-30 2017-01-11 Water intake pit and plant WO2017168934A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780020163.8A CN108884649B (en) 2016-03-30 2017-01-11 Water taking pit and equipment
MYPI2018703512A MY194508A (en) 2016-03-30 2017-01-11 Water intake pit and plant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016067124A JP6653204B2 (en) 2016-03-30 2016-03-30 Intake pits and plants
JP2016-067124 2016-03-30

Publications (1)

Publication Number Publication Date
WO2017168934A1 true WO2017168934A1 (en) 2017-10-05

Family

ID=59963994

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/000627 WO2017168934A1 (en) 2016-03-30 2017-01-11 Water intake pit and plant

Country Status (4)

Country Link
JP (1) JP6653204B2 (en)
CN (1) CN108884649B (en)
MY (1) MY194508A (en)
WO (1) WO2017168934A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63104700U (en) * 1986-12-26 1988-07-06
JPH0579000U (en) * 1992-03-31 1993-10-26 株式会社クボタ Vortex prevention device for pump water absorption tank
WO1995015440A1 (en) * 1993-11-30 1995-06-08 Ksb Aktiengesellschaft Device for preventing turbulence at pump inlets
JP2002005070A (en) * 2000-06-23 2002-01-09 Ebara Corp Apparatus for preventing air suction vortex of pump

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57197308A (en) * 1981-05-30 1982-12-03 Mitsubishi Heavy Ind Ltd Water intake device
JP2000096539A (en) * 1998-09-22 2000-04-04 Marushima Aqua System:Kk Water intake device
US6533543B2 (en) * 2000-02-02 2003-03-18 Ebara Corporation Vortex prevention apparatus in pump
JP6017774B2 (en) * 2011-11-09 2016-11-02 Koa株式会社 Water intake equipment
CN203879813U (en) * 2014-06-03 2014-10-15 齐宝明 Device for eliminating air pump noise and outputting smooth and steady airflow

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63104700U (en) * 1986-12-26 1988-07-06
JPH0579000U (en) * 1992-03-31 1993-10-26 株式会社クボタ Vortex prevention device for pump water absorption tank
WO1995015440A1 (en) * 1993-11-30 1995-06-08 Ksb Aktiengesellschaft Device for preventing turbulence at pump inlets
JP2002005070A (en) * 2000-06-23 2002-01-09 Ebara Corp Apparatus for preventing air suction vortex of pump

Also Published As

Publication number Publication date
CN108884649A (en) 2018-11-23
MY194508A (en) 2022-11-30
JP2017179822A (en) 2017-10-05
JP6653204B2 (en) 2020-02-26
CN108884649B (en) 2020-09-01

Similar Documents

Publication Publication Date Title
RU2018121612A (en) SENSOR DEVICE
WO2016178436A3 (en) Liquid processing nozzle, liquid processing method using same, gas dissolution method, and gas dissolution device
JP2016114034A (en) Oil mist separator
CN101517347A (en) Heat exchanger and method for manufacturing same
US10690009B2 (en) Water removal device for steam turbine and method for forming slit
JP2005034814A (en) Fine bubble generator
WO2017168934A1 (en) Water intake pit and plant
JP2006037961A (en) Intake casing
CN101042134B (en) Oil pump
JP2010014077A (en) Reverse flow prevention device in centrifugal pump suction pipe
JP6292910B2 (en) Liquid supply type compressor and gas-liquid separator
JP2568887Y2 (en) Intake tank
JP2009281362A (en) Micropump
JP2017155621A (en) Ejector
US20150167475A1 (en) Airfoil of gas turbine engine
KR102473022B1 (en) Exhaust gas guiding device for a construction machine
JP3882409B2 (en) Pump device with vortex generation prevention device
JP4348120B2 (en) Pump equipment
JP2006314890A (en) Hollow fiber membrane module
JP4182349B2 (en) Oil pump
JP2017172495A (en) Casing for pump, pump and method of manufacturing casing for pump
JP2006275312A (en) Fan filter unit
JP2008068185A (en) Apparatus for generating liquid containing air bubble
KR102365183B1 (en) Intake port of engine
JP2014196099A (en) Propulsion unit

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17773484

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17773484

Country of ref document: EP

Kind code of ref document: A1