WO2017168714A1 - Base station, terminal device, communications system, and communications method - Google Patents

Base station, terminal device, communications system, and communications method Download PDF

Info

Publication number
WO2017168714A1
WO2017168714A1 PCT/JP2016/060797 JP2016060797W WO2017168714A1 WO 2017168714 A1 WO2017168714 A1 WO 2017168714A1 JP 2016060797 W JP2016060797 W JP 2016060797W WO 2017168714 A1 WO2017168714 A1 WO 2017168714A1
Authority
WO
WIPO (PCT)
Prior art keywords
block
base station
terminal device
unit
signal
Prior art date
Application number
PCT/JP2016/060797
Other languages
French (fr)
Japanese (ja)
Inventor
横山 仁
村田 博康
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2016/060797 priority Critical patent/WO2017168714A1/en
Publication of WO2017168714A1 publication Critical patent/WO2017168714A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/01Equalisers

Definitions

  • the present invention relates to a base station, a terminal device, a communication system, and a communication method.
  • F-OFDM Frtered-Orthogonal Frequency Division Multiplexing
  • one carrier may include blocks for different communication applications such as a V2X (Vehicle-to-Everything) communication block and an IoT (Internet of Things) communication block.
  • V2X Vehicle-to-Everything
  • IoT Internet of Things
  • the technique disclosed in the present application has an object to suppress deterioration in communication quality of a block that receives interference even in a situation where the block receives interference in F-OFDM.
  • the setting unit sets the OFDM symbol length of each block in a plurality of different frequency bands generated on one carrier so that the OFDM symbol length of each block is an integral multiple of the shortest OFDM symbol length among the blocks.
  • the calculation unit calculates the position of the subcarrier of the second block where the out-of-band interference from the first block to the second block is a null point.
  • the signal processing unit inserts a reference signal used for channel estimation of the radio propagation path into the subcarrier at the position calculated by the calculation unit, and transmits the reference signal to the terminal device.
  • FIG. 1 is a diagram illustrating an example of a communication system according to the first embodiment.
  • FIG. 2 is a diagram for explaining an example of a block of a frequency band and a radio frame of each block used in the communication system according to the first embodiment.
  • FIG. 3 is a diagram for explaining an example of a null point of out-of-band interference in the communication system according to the first embodiment.
  • FIG. 4 is a diagram for explaining an example of an RS insertion position in the communication system according to the first embodiment.
  • FIG. 5 is a diagram illustrating an example of the base station according to the first embodiment.
  • FIG. 6 is a diagram illustrating an example of the terminal device according to the first embodiment.
  • FIG. 7 is a diagram illustrating an example of hardware of the base station according to the first embodiment.
  • FIG. 1 is a diagram illustrating an example of a communication system according to the first embodiment.
  • FIG. 2 is a diagram for explaining an example of a block of a frequency band and a radio frame of each block
  • FIG. 8 is a diagram illustrating an example of hardware of the terminal device according to the first embodiment.
  • FIG. 9 is a flowchart illustrating an example of a processing procedure of the base station according to the first embodiment.
  • FIG. 10 is a flowchart illustrating an example of a processing procedure of the terminal device according to the first embodiment.
  • FIG. 11 is a schematic diagram illustrating an example of an RS insertion position in the communication system according to the second embodiment.
  • FIG. 12 is a schematic diagram illustrating an example of an RS insertion position in the communication system according to the third embodiment.
  • FIG. 13 is a diagram for explaining an example of frequency band allocation to each block in the communication system according to the fourth embodiment.
  • FIG. 14 is a diagram for explaining an example of out-of-band interference from DL to UL in the base station according to the fifth embodiment.
  • FIG. 15 is a diagram for explaining an example of time synchronization of rising edges of OFDM symbols of DL and UL blocks in the communication system according to the fifth embodiment.
  • FIG. 16 is a schematic diagram illustrating an example of an RS insertion position in the communication system according to the fifth embodiment.
  • FIG. 17 is a diagram illustrating an example of a base station according to the fifth embodiment.
  • FIG. 18 is a diagram illustrating an example of a terminal device according to the fifth embodiment.
  • FIG. 19 is a flowchart illustrating an example of a processing procedure of the base station according to the fifth embodiment.
  • FIG. 20 is a flowchart illustrating an example of a processing procedure of the terminal device according to the fifth embodiment.
  • FIG. 21 is a diagram for explaining an example of an RS insertion position in the communication system according to the sixth embodiment.
  • FIG. 22 is a schematic diagram illustrating an example of an RS insertion position in the communication system according to the seventh embodiment.
  • FIG. 23 is a diagram for explaining an example of frequency band allocation to each block in the communication system according to the eighth embodiment.
  • FIG. 24 is a diagram illustrating an example of the base station according to the ninth embodiment.
  • FIG. 25 is a diagram illustrating an example of the terminal device according to the ninth embodiment.
  • FIG. 26 is a diagram illustrating an example of received power in the communication system and the base station according to the tenth embodiment.
  • FIG. 21 is a diagram for explaining an example of an RS insertion position in the communication system according to the sixth embodiment.
  • FIG. 22 is a schematic diagram illustrating an example of an RS insertion position in the communication system according to
  • FIG. 27 is a diagram for explaining an example of out-of-band interference in the communication system according to the tenth embodiment.
  • FIG. 28 is a schematic diagram illustrating an example of an RS insertion position in the communication system according to the tenth embodiment.
  • FIG. 29 is a diagram illustrating an example of a base station according to the tenth embodiment.
  • FIG. 30 is a diagram illustrating an example of the terminal device according to the tenth embodiment.
  • FIG. 31 is a flowchart illustrating an example of a processing procedure of the base station according to the tenth embodiment.
  • FIG. 32 is a flowchart illustrating an example of a processing procedure of the terminal device according to the tenth embodiment.
  • FIG. 1 is a diagram illustrating an example of a communication system according to the first embodiment.
  • FIG. 2 is a diagram for explaining an example of a block of a frequency band and a radio frame of each block used in the communication system according to the first embodiment.
  • FIG. 3 is a diagram for explaining an example of a null point of out-of-band interference in the communication system according to the first embodiment.
  • FIG. 4 is a diagram for explaining an example of an RS insertion position in the communication system according to the first embodiment.
  • the communication system 1 includes a terminal device 10 and a base station 20, for example, as shown in FIG.
  • the terminal device 10 is connected to the base station 20 by wireless communication, and communicates with other devices via the base station 20.
  • the base station 20 relays wireless communication of the terminal device 10.
  • the base station 20 transfers data received from the terminal device 10 by wireless communication to the counterpart device via the core network, and transfers data addressed to the terminal device 10 received from the core network to the terminal device 10 by wireless communication. To do.
  • UL UpLink
  • DL DownLink
  • each block can be used for different communication applications. If the application of communication is different, there may be a difference in the transmission power of each block as shown in FIG. FIG. 2A illustrates a DL block. For example, as shown in FIG. 2, when there is a difference in the transmission power of each block, out-of-band interference from a block with high transmission power (for example, block # 1) to a block with low transmission power (for example, block # 2) May occur.
  • the OFDM symbol of interest is There is a characteristic that interference from an OFDM symbol becomes null.
  • the OFDM symbol length of block # 1 is set to have a 1/4 relationship with the OFDM symbol length of block # 2. That is, the entire symbol of block # 1 is set to fit in the FFT interval of block # 2.
  • a location where the out-of-band interference from block # 1 is null (null point) is included for every four subcarriers.
  • the RS Reference Signal
  • RS is an example of a reference signal used for channel estimation of a radio propagation path.
  • the interference is a null point.
  • RS is inserted into the subcarrier at the position.
  • RS information information indicating the position of the subcarrier in which the RS of the block that receives interference is inserted is, for example, because the base station 20 receives F-OFDM. Is notified to the terminal device 10 together with the filtering information.
  • the filtering information includes the frequency band of each block, the center frequency of each block, and the OFDM symbol length of each block. For this notification, a channel not subjected to F-OFDM filtering is used. Thereby, the terminal device 10 can acquire the information of RS of the block reliably.
  • the communication system 1 since it is possible to suppress a decrease in the estimation accuracy of the radio propagation path even in a block receiving out-of-band interference from other blocks, it is possible to improve the decoding accuracy of the received signal. it can. As a result, the communication system 1 can suppress a decrease in communication quality of a block that receives interference even in a situation where the block receives interference in F-OFDM.
  • FIG. 5 is a diagram illustrating an example of the base station according to the first embodiment.
  • the base station 20 includes an antenna, an RF receiving unit 210, an RF transmitting unit 211, an oscillator, a block setting unit 220, an UL F-OFDM unit 221, an UL signal processing unit 222, a radio control signal processing unit 223, and a DL signal processing unit. 224.
  • the base station 20 includes a DL F-OFDM unit 225, a radio scheduler unit 226, a DL RS insertion calculation unit 227, and an IP (Internet Protocol) processing unit 230.
  • IP Internet Protocol
  • the block setting unit 220 is an example of a setting unit
  • the DL signal processing unit 224 is an example of a signal processing unit
  • the DL F-OFDM unit 225 is an example of a filtering unit
  • the DL RS insertion calculation unit 227 calculates It is an example of a part.
  • FIG. 5 two oscillators are shown, but these oscillators generate a carrier wave having a common frequency. Therefore, one oscillator may be provided in common for the RF reception unit 210 and the RF transmission unit 211.
  • one DL signal processing unit 224 and one DL F-OFDM unit 225 are provided for each block of DL signals to be filtered. Further, in the base station 20 illustrated in FIG. 5, one UL F-OFDM unit 221 and one UL signal processing unit 222 are provided for each block of the UL signal to be filtered.
  • the antenna transmits and receives radio signals to and from the terminal device 10.
  • the antenna outputs a radio signal received from the terminal device 10 to the RF reception unit 210 and transmits a radio signal output from the RF transmission unit 211 to the terminal device 10.
  • the RF receiver 210 receives a radio signal transmitted from the terminal device 10 via an antenna.
  • a radio signal transmitted from the terminal apparatus 10 to the base station 20 is referred to as a UL signal
  • a radio signal transmitted from the base station 20 to the terminal apparatus 10 is referred to as a DL signal.
  • the RF receiving unit 210 down-converts the UL signal received from the terminal device 10 via the antenna using the local signal generated by the oscillator. Then, the RF receiving unit 210 converts the down-converted UL signal into a digital signal and outputs the digital signal to the UL F-OFDM unit 221.
  • the block setting unit 220 includes filtering information including setting information indicating which communication (for example, V2X communication, IoT communication) uses which frequency band among a plurality of different frequency band blocks generated for one carrier. Keep information. Then, the block setting unit 220 sets filtering for the UL F-OFDM unit 221 and the DL F-OFDM unit 225 using the filtering information. This filtering information is notified to the terminal device 10 by the radio control signal processing unit 223, for example.
  • the block setting unit 220 notifies the DL RS insertion calculation unit 227 of the filtering information, and the DL RS insertion calculation unit 227 provides sub-carriers in which interference from adjacent blocks becomes a null point for each block. RS information indicating the position of is received. Then, the block setting unit 220 notifies the radio control signal processing unit 223 of the received RS information of each block and filtering information of each block.
  • the UL F-OFDM unit 221 performs filtering processing on the block of the UL signal and outputs the filtered signal to the UL signal processing unit 222.
  • the UL F-OFDM unit 221 performs filtering on the F-OFDM in units of blocks using the filter set by the block setting unit 220 and outputs the result to the UL signal processing unit 222.
  • the DL RS insertion calculation unit 227 calculates RS information indicating the position of the subcarrier into which the RS is inserted among the subcarriers of the block that receives out-of-band interference. .
  • the position of the subcarrier into which the RS is inserted may be referred to as a subcarrier position.
  • the DL RS insertion calculation unit 227 considers out-of-band interference from a block having a subcarrier to which high power is allocated to an adjacent block, and causes interference in the adjacent block. Is calculated as a null point.
  • the DL RS insertion calculation unit 227 calculates the subcarrier position of the block # 2 where the interference from the block # 1 to the block # 2 illustrated in FIG. Then, the DL RS insertion calculation unit 227 notifies the DL signal processing unit 224 of the corresponding block (for example, block # 2) as the RS information of the subcarrier position where the calculated interference is a null point. That is, the DL RS insertion calculation unit 227 notifies the DL signal processing unit 224 of the subcarrier position into which RS is inserted in the block that receives out-of-band interference as RS information.
  • the DL signal processing unit 224 performs various processes related to the DL signal. For example, the DL signal processing unit 224 divides and combines a UL feedback signal or a DL IP packet into a transmittable size, and generates an encoded digital signal. Also, the DL signal processing unit 224 receives the RS information from the DL RS insertion calculation unit 227, and inserts the RS into the DL subcarrier at the position indicated by the RS information. Then, the DL signal processing unit 224 outputs the DL signal into which the RS is inserted to the DL F-OFDM unit 225.
  • the UL signal processing unit 222 performs various processes related to the UL signal. For example, the UL signal processing unit 222 demodulates and decodes the digital signal after the filtering process, and outputs the demodulated signal to the IP processing unit 230.
  • the radio control signal processing unit 223 generates a radio control signal. For example, the radio control signal processing unit 223 generates an ACK response when the UL signal is correctly decoded by the UL signal processing unit 222, and generates a NACK response when the UL signal is not correctly decoded. Then, the radio control signal processing unit 223 outputs the generated response to the DL signal processing unit 224 as a feedback signal of the UL signal. Further, the radio control signal processing unit 223 transmits the RS information and filtering information notified by the block setting unit 220 and the DL signal processing unit 224 to the terminal device 10. In the present embodiment, the RS information and the filtering information are included in the broadcast information transmitted from the base station 20 to the terminal device 10.
  • the wireless scheduler unit 226 schedules wireless communication with the terminal device 10. Specifically, the radio scheduler unit 226 collects SINR estimation information of a signal via the DL from the DL feedback signal received by the UL signal processing unit 222. The radio scheduler unit 226 also collects UL SINR estimation information received by the UL signal processing unit 222. Then, the radio scheduler unit 226 calculates the amount of data per unit time that can be transmitted via the radio propagation path with the terminal device 10 using the collected DL and UL SINR estimation information. Thereafter, the wireless scheduler unit 226 controls the data amount transmitted per unit time in the DL signal processing unit 224 using the calculated data amount per unit time. In addition, the wireless scheduler unit 226 notifies the terminal device 10 of wireless communication schedule information, and controls the amount of data transmitted per unit time on the terminal device 10 side.
  • the IP processing unit 230 processes IP packets. For example, the IP processing unit 230 constructs an IP packet from the UL signal output from the UL signal processing unit 222, and outputs the constructed IP packet to the core network. Further, when receiving the IP packet output from the core network, the IP processing unit 230 outputs the IP packet to the DL signal processing unit 224 of the block corresponding to the data type of the IP packet.
  • the DL signal processing unit 224 performs various processes related to the DL signal. For example, the DL signal processing unit 224 generates a DL signal by dividing and combining a UL feedback signal or DL IP packet received from the terminal device 10 into a transmittable size, and performing encoding and modulation. . Then, the DL signal processing unit 224 outputs the generated DL signal to the DL F-OFDM unit 225.
  • the DL F-OFDM unit 225 performs a filtering process for each block of the DL signal and outputs it to the RF transmission unit 211.
  • the DL F-OFDM unit 225 filters the DL signal in units of blocks using the filter set by the block setting unit 220, and outputs the DL signal to the RF transmission unit 211.
  • the RF transmission unit 211 wirelessly transmits a DL signal to the terminal device 10 via the antenna.
  • the RF transmission unit 211 is connected to an oscillator, and the DL signal output from the DL F-OFDM unit 225 is converted into an analog signal, and then up-converted by a local signal generated by the oscillator. Via the terminal device 10.
  • the oscillator generates a local oscillation signal having the same frequency as the carrier of the DL signal to be transmitted.
  • FIG. 6 is a diagram illustrating an example of the terminal device according to the first embodiment.
  • the terminal device 10 is realized by, for example, a mobile phone, a smartphone, a personal computer, or the like.
  • the terminal device 10 includes an antenna, an RF receiver 110, an RF transmitter 111, and an oscillator. Also, the terminal device 10 includes a block receiving unit 120, a DL F-OFDM unit 121, a DL signal processing unit 122, a radio control signal processing unit 123, a UL signal processing unit 124, a UL F-OFDM unit 125, and a DL An RS information receiving unit 126 is provided. In addition, the terminal device 10 includes an application processing unit 131 and an IP processing unit 130.
  • the DL signal processing unit 122 is an example of a signal processing unit
  • the DL RS information receiving unit 126 is an example of a receiving unit.
  • one DL F-OFDM unit 121 and one DL signal processing unit 122 are provided for each block of the DL signal to be filtered. Further, in the terminal device 10 illustrated in FIG. 6, one UL signal processing unit 124 and one UL F-OFDM unit 125 are provided for each block of the UL signal to be filtered.
  • the antenna transmits and receives radio signals to and from the base station 20.
  • the antenna outputs a DL signal received from the base station 20 to the RF reception unit 110 and outputs a UL signal output from the RF transmission unit 111 to the base station 20.
  • the RF receiving unit 110 receives the DL signal transmitted from the base station 20.
  • the RF receiving unit 110 is connected to an oscillator, and down-converts the received DL signal using a local signal generated by the oscillator. Then, RF receiving section 110 converts the down-converted DL signal into a digital signal and outputs the digital signal to DL F-OFDM section 121.
  • the radio control signal processing unit 123 generates a radio control signal. For example, the radio control signal processing unit 123 generates an ACK response when the DL signal is correctly decoded by the DL signal processing unit 122, and generates a NACK response when the DL signal is not correctly decoded. Then, the radio control signal processing unit 123 outputs the generated response to the UL signal processing unit 124 as a DL signal feedback signal.
  • the radio control signal processing unit 123 acquires filtering information and RS information of each block from the broadcast information received via the DL signal processing unit 122. Then, radio control signal processing section 123 notifies filtering information to block receiving section 120 and notifies RS information to DL RS information receiving section 126.
  • the radio control signal processing unit 123 collects the SINR estimation information of the DL signal received from the DL signal processing unit 122 and outputs it to the UL signal processing unit 124 as a feedback signal.
  • the block receiving unit 120 receives the filtering information of each block notified from the radio control signal processing unit 123. Then, the block receiving unit 120 sets filtering for the DL F-OFDM unit 121 and the UL F-OFDM unit 125 using the filtering information.
  • the DL F-OFDM unit 121 performs a filtering process for each block of the DL signal and outputs the result to the DL signal processing unit 122. For example, the DL F-OFDM unit 121 performs filtering on the block basis for F-OFDM using the filter set by the block receiving unit 120, and outputs the result to the DL signal processing unit 122.
  • the DL RS information receiving unit 126 notifies the DL signal processing unit 122 of the RS information notified from the radio control signal processing unit 123.
  • the DL signal processing unit 122 performs various processes related to the DL signal. For example, the DL signal processing unit 122 receives the RS inserted in the subcarrier at the position indicated by the RS information notified from the DL RS information receiving unit 126. Then, the DL signal processing unit 122 estimates the channel of the radio propagation path between the base station 20 and the terminal device 10 based on the received RS, and assigns it to other subcarriers using the estimated channel information. The received signal is demodulated and decoded. Then, the DL signal processing unit 122 outputs the decoded DL signal to the IP processing unit 130.
  • the application processing unit 131 executes various processes using an application program. For example, the application processing unit 131 outputs the application data to the UL signal processing unit 124 via the IP processing unit 130 when application data for the communication partner device of the terminal device 10 is generated. In addition, the application processing unit 131 executes various processes on the data received from the DL signal processing unit 122 via the IP processing unit 130.
  • the IP processing unit 130 processes IP packets. For example, the IP processing unit 130 constructs an IP packet from the DL signal output from the DL signal processing unit 122 and outputs the constructed IP packet to the application processing unit 131 as application data. In addition, the IP processing unit 130 outputs the IP packet of the application data output from the application processing unit 131 to the UL signal processing unit 124 of the block corresponding to the data type of the application data.
  • the UL signal processing unit 124 performs various processes related to the UL signal. For example, the UL signal processing unit 124 divides and combines IP packets into sizes that can be transmitted based on information notified from the radio scheduler unit 226 of the base station 20, and performs encoding, modulation, etc. Is generated. Then, the UL signal processing unit 124 outputs the generated UL signal to the UL F-OFDM unit 125.
  • the UL F-OFDM unit 125 performs filtering on the block of the UL signal and outputs the filtered block to the RF transmission unit 111.
  • the UL F-OFDM unit 125 filters the UL signal in units of blocks using the filter set by the block reception unit 120 and outputs the filtered UL signal to the RF transmission unit 111.
  • the RF transmitter 111 wirelessly transmits a UL signal to the base station 20 via the antenna.
  • the RF transmitter 111 is connected to an oscillator, and the UL signal output from the DL F-OFDM unit 121 is converted into an analog signal, and then up-converted by a local signal generated by the oscillator, Is transmitted to the base station 20 via the network.
  • the oscillator generates a local oscillation signal having the same frequency as the carrier of the UL signal to be transmitted.
  • FIG. 7 is a diagram illustrating an example of hardware of the base station according to the first embodiment.
  • the base station 20 is realized by a device including an antenna, an RF module 21, a DSP (Digital Signal Processor) 22, an NWP (NetWork Processor) 23, and a memory 24, for example.
  • DSP Digital Signal Processor
  • NWP NetworkWork Processor
  • the RF module 21 is a module including, for example, the oscillator, the RF transmission unit 211, and the RF reception unit 210 illustrated in FIG.
  • the DSP 22 includes, for example, the block setting unit 220, the UL F-OFDM unit 221, the UL signal processing unit 222, the radio control signal processing unit 223, the DL signal processing unit 224, the DL F-OFDM unit 225, and the like illustrated in FIG.
  • the NWP 23 is a chip including the IP processing unit 230 illustrated in FIG. 5, for example.
  • the memory 24 stores filtering information, RS information, and the like. In addition, the memory 24 temporarily holds packets after IP in DL communication.
  • the memory 24 erases the temporarily held packet from the memory 24.
  • the memory 24 temporarily holds a UL signal in UL communication.
  • the NWP 23 transmits an IP packet constructed from the UL signal to the core network and receives the TCP ACK of the packet, the memory 24 erases the temporarily retained UL signal from the memory 24.
  • FIG. 8 is a diagram illustrating an example of hardware of the terminal device according to the first embodiment.
  • the terminal device 10 is realized by a device including an antenna, an RF module 11, a DSP 12, a MPU (Micro Processing Unit) 13, and a memory 14, for example.
  • the RF module 11 is a module including, for example, the oscillator, the RF receiving unit 110, and the RF transmitting unit 111 illustrated in FIG.
  • the DSP 12 is a chip including, for example, the DL F-OFDM unit 121, the DL signal processing unit 122, the radio control signal processing unit 123, the UL signal processing unit 124, and the UL F-OFDM unit 125 illustrated in FIG.
  • the MPU 13 is a chip including, for example, the IP processing unit 130 and the application processing unit 131 illustrated in FIG.
  • the memory 14 stores filtering information, RS information, data handled by the application processing unit 131, and the like.
  • terminal devices and base station hardware included in the communication system 1 according to the second to tenth embodiments described below are the same as the terminal device and base station hardware included in the communication system 1 according to the first embodiment. Is omitted.
  • FIG. 9 is a flowchart illustrating an example of a processing procedure of the base station according to the first embodiment.
  • the base station 20 determines a DL F-OFDM block and its filter (S1), and calculates a DL RS insertion interval (S2). That is, in step S1, the base station 20 determines DL F-OFDM blocks and filtering information indicating the filters. Then, the DL RS insertion calculation unit 227 calculates RS information indicating the subcarrier position where the RS is inserted in the block that receives out-of-band interference based on the filtering information determined in step S1.
  • the base station 20 notifies the terminal device 10 of DL filtering information and DL RS information (S3). That is, the block setting unit 220 of the base station 20 notifies the DL F-OFDM filtering information determined in step S1 to the DL F-OFDM unit 225. Also, the DL RS insertion calculation unit 227 of the base station 20 notifies the DL signal processing unit 224 of the DL RS information determined in step S2. Accordingly, broadcast information including DL filtering information and RS information is transmitted to the terminal device 10.
  • the base station 20 applies filtering information and RS information (S4), and transmits DL data (S5). That is, the DL signal processing unit 224 of each block of the base station 20 inserts an RS into the DL subcarrier at the position indicated by the DL RS information notified in step S3. Then, the DL signal processing unit 224 outputs the DL signal after the RS insertion to the DL F-OFDM unit 225 that performs filtering of the corresponding block. The DL F-OFDM unit 225 of each block applies a filter based on the DL filtering information notified in step S3. Then, the DL F-OFDM unit 225 performs a filtering process on the DL signal output from the DL signal processing unit 224. Thereafter, the RF transmission unit 211 transmits the DL signal after the filtering process to the terminal device 10.
  • the DL signal processing unit 224 of each block of the base station 20 inserts an RS into the DL subcarrier at the position indicated by the DL
  • FIG. 10 is a flowchart illustrating an example of a processing procedure of the terminal device according to the first embodiment.
  • the terminal device 10 receives broadcast information from the base station 20 (S11). That is, the DL signal processing unit 122 of the terminal device 10 receives broadcast information from the base station 20.
  • the terminal device 10 extracts DL filtering information and DL RS information from the broadcast information received in step S11 (S12). That is, the radio control signal processing unit 123 of the terminal device 10 extracts DL filtering information and RS information of each block from the broadcast information received by the DL signal processing unit 122.
  • step S12 the terminal device 10 applies filtering information and RS information (S13), and receives DL data (S14).
  • the block receiving unit 120 of the terminal device 10 notifies the DL F-OFDM unit 121 of the DL filtering information extracted in step S12. Based on the notified filtering information, the DL F-OFDM unit 121 performs a filtering process on the DL signal received by the RF receiving unit 110 and outputs the filtered signal to the DL signal processing unit 122. Also, the DL RS information receiving unit 126 of the terminal device 10 notifies the DL signal processing unit 122 of the DL RS information extracted in step S12. The DL signal processing unit 122 receives the RS inserted in the subcarrier at the position indicated by the RS information notified from the DL RS information receiving unit 126.
  • the DL signal processing unit 122 estimates the channel of the radio propagation path between the base station 20 and the terminal device 10 based on the received RS, and assigns it to other subcarriers using the estimated channel information.
  • the received DL data is demodulated.
  • the terminal apparatus 10 can acquire the RS of the block that receives the interference even in a situation where the block receives interference in F-OFDM.
  • the communication system 1 of a present Example can improve the estimation precision of the channel of a radio propagation path.
  • the communication system 1 of a present Example can improve the decoding precision of a received signal.
  • the communication system 1 can suppress a decrease in communication quality of a block that receives interference even in a situation where the block receives interference in F-OFDM.
  • FIG. 11 is a diagram for explaining an example of an RS insertion position in the communication system according to the second embodiment.
  • the DL RS insertion calculation unit 227 of the base station 20 according to the second embodiment performs subcarriers at positions that are integer multiples of the null point of interference from adjacent blocks in the DL signal on the frequency axis. Is the RS insertion position.
  • RSs may not be inserted in all subcarriers at positions that are integer multiples of the null point of interference from adjacent blocks in the DL signal on the frequency axis.
  • the RS is preferably inserted into, for example, about 15 to 20% of subcarriers included in the block of the DL signal.
  • the base station 20 can avoid excessive insertion of RSs in the DL signal, and thus can suppress a decrease in the data communication speed of the DL signal.
  • FIG. 12 is a diagram for explaining an example of an RS insertion position in the communication system according to the third embodiment.
  • the DL RS insertion calculation unit 227 of the base station 20 according to the third embodiment inserts RSs into subcarriers arranged at the null points of interference from adjacent blocks in the DL signal.
  • DL RS insertion calculation section 227 sets the power of subcarriers arranged at the null point of interference from adjacent blocks in the DL signal to be lower than the power of other subcarriers.
  • the DL RS insertion calculation unit 227 increases the power of the subcarrier at the peak point of interference from the adjacent block by the amount by which the power of the subcarrier arranged at the null point is decreased.
  • the interference signal from the adjacent block has a peak at, for example, an intermediate position between adjacent null points on the frequency axis.
  • the DL RS insertion calculation unit 227 increases the power of subcarriers arranged at a position intermediate between adjacent null points.
  • the subcarrier into which the RS is inserted at the interference null point is assigned with power that allows channel estimation of the radio propagation path, and the remaining power is assigned to the subcarrier with strong interference.
  • FIG. 13 is a diagram for explaining an example of frequency band allocation to each block in the communication system according to the fourth embodiment.
  • the block setting unit 220 of the base station 20 according to the fourth embodiment determines the center frequency of the frequency band assigned to the block according to the OFDM symbol length of each block.
  • the block setting unit 220 of the base station 20 assigns a block having a short OFDM symbol length from the lowest frequency band in the transmission band. In this manner, the OFDM symbols are sequentially assigned in ascending order of the OFDM symbol length from the lowest frequency band.
  • the block setting unit 220 assigns frequency bands in the order of block # 1 ⁇ block # 2 ⁇ block # 3 from a low frequency band, for example, as shown in FIG.
  • each block divided by filtering the OFDM signal is assigned to UL or DL for each block, and multiplexed communication of UL and DL is performed.
  • the power of the block allocated to the DL is much larger than the power of the block allocated to the UL. For this reason, it is conceivable that the signal of the block assigned to DL becomes interference of the signal of the block assigned to UL.
  • FIG. 14 is a diagram for explaining an example of out-of-band interference from DL to UL in the base station according to the fifth embodiment.
  • the power per subcarrier at the antenna end of the base station is greater in the DL block than in the UL block. That is, since the UL block received by the base station is received via the radio propagation path, the power is small.
  • the DL block transmitted from the base station has high power because it is transmitted with power including propagation loss so that the terminal device 10 receives the DL block with predetermined power via the radio propagation path.
  • interference caused by the power difference between UL and DL in such a base station is caused by the base station placing UL and DL on different frequency carriers and separating them by RF filters in the RF receiver. Avoided. Also, in TDD (Time Division Duplex), the base station switches the transmission / reception circuit at the switching timing of UL and DL, so there is no problem.
  • FDD Frequency Division Duplex
  • UL and DL are always multiplexed on one carrier
  • UL and DL are separated using a circulator that separates in the traveling direction of electromagnetic waves.
  • the separation performance of the circulator is not absolute.
  • the DL signal transmitted from the RF transmitter of the base station is a predetermined amount toward the RF receiver. It may leak.
  • the RF receiving unit may have a higher power per subcarrier in the leakage block from the DL than in the UL block.
  • out-of-band interference from the DL block leaks to the UL block band, and the UL communication quality may be degraded.
  • FIG. 15 is a diagram for explaining an example of time synchronization of rising edges of OFDM symbols of DL and UL blocks in the communication system according to the fifth embodiment.
  • FIG. 16 is a schematic diagram illustrating an example of an RS insertion position in the communication system according to the fifth embodiment.
  • the DL # 1 and DL # 2 blocks and the UL # 1 and UL # 2 blocks are used, and the power difference between the DL block and the UL block is determined.
  • the DL FFT symbol section is included in the UL FFT section for out-of-band interference. I can't.
  • FFT is performed at the UL OFDM symbol timing, no null point appears in the frequency component outside the DL band.
  • the rise times of the OFDM symbols of the respective blocks of DL and UL are synchronized.
  • the relationship between the OFDM symbol of interest and the length of other OFDM symbols is 1 / n. Therefore, in the communication system 1, it is possible to insert an RS at a null point of interference from other OFDM symbols.
  • the RSs of the UL # 1 and # 2 blocks are inserted at the null points of interference from the DL # 1 block. Thereby, in the communication system 1, the degradation of the communication quality of UL # 1 and # 2 that receives interference from DL # 1 and # 2 can be suppressed.
  • FIG. 17 is a diagram illustrating an example of a base station according to the fifth embodiment. Except for the points described below, in FIG. 17, blocks denoted by the same reference numerals as those in FIG. 5 have the same or similar functions as the blocks in FIG.
  • the base station 20a includes a circulator and a synchronization unit 228. Further, the base station 20 a includes a UL RS insertion calculation unit 229 instead of the DL RS insertion calculation unit 227.
  • the circulator separates UL and DL in the traveling direction of the electromagnetic wave, outputs the UL signal output from the antenna to the RF reception unit 210, and outputs the DL signal output from the RF transmission unit 211 to the antenna.
  • the synchronization unit 228 synchronizes the rising edge of the OFDM symbol of each block. That is, when the synchronization unit 228 acquires the UL signal reception time from the UL signal processing unit 222, the synchronization unit 228 detects a difference from the rise time of the OFDM symbol in the DL signal processing. Then, the synchronization unit 228 generates TA (Timing Advance) information so as to fill the detected difference, and outputs the TA (Timing Advance) information to the radio control signal processing unit 223.
  • the radio control signal processing unit 223 converts the TA information output from the synchronization unit 228 into an appropriate information element and notifies the DL signal processing unit 224 of the TA information.
  • the DL signal processing unit 224 transmits the information converted by the radio control signal processing unit 223 to the terminal device 10a as a feedback signal from the base station 20a.
  • the UL RS insertion calculation unit 229 performs UL subcarrier position at which interference from the DL block becomes a null point for out-of-band interference leaking from the block included in the DL signal to the UL block band based on the filtering information. Is calculated. Then, the UL RS insertion calculation unit 229 notifies the UL signal processing unit 222 of each block as the RS information of the subcarrier position where the calculated interference is a null point. Also, the UL RS insertion calculation unit 229 notifies the block setting unit 220 of the RS information. The block setting unit 220 notifies the radio control signal processing unit 223 of RS information for each block of UL in addition to filtering information for each block. Then, the radio control signal processing unit 223 transmits broadcast information including filtering information for each block and RS information for each block of the UL to the terminal device 10a via the DL signal processing unit 224.
  • the UL signal processing unit 222 estimates the UL radio channel based on the RS information notified from the UL RS insertion calculation unit 229, and performs demodulation of the UL signal based on the estimated channel information. Do.
  • FIG. 18 is a diagram illustrating an example of a terminal device according to the fifth embodiment. Except for the points described below, in FIG. 18, blocks denoted by the same reference numerals as those in FIG. 6 have the same or similar functions as the blocks in FIG.
  • the terminal device 10a includes a circulator, a TA receiving unit 128, and a delay unit 129. Further, the terminal device 10 a includes a UL RS information receiving unit 127 instead of the DL RS information receiving unit 126.
  • the circulator separates UL and DL in the traveling direction of the electromagnetic wave, outputs the DL signal output from the antenna to the RF receiving unit 110, and outputs the UL signal output from the RF transmitting unit 111 to the antenna.
  • the TA receiver 128 receives the TA information notified from the base station 20a via the DL signal processor 122 and the radio control signal processor 123. Then, the TA receiving unit 128 notifies the delay unit 129 of the time offset value notified by the TA information.
  • the delay unit 129 delays the timing of the UL signal output from the UL signal processing unit 124 based on the time offset value notified by the TA receiving unit 128 and outputs the UL signal to the UL F-OFDM unit 125.
  • the UL RS information receiving unit 127 When receiving RS information for each block of UL included in the broadcast information received by the radio control signal processing unit 123, the UL RS information receiving unit 127 notifies the UL signal processing unit 124 of the received RS information.
  • the UL signal processing unit 124 inserts the RS into the UL subcarrier at the position indicated by the RS information notified from the UL RS information receiving unit 127, and transmits it via the Delay unit 129 and the UL F-OFDM unit 125. To do.
  • the base station 20a determines the UL RS from the signal received from the terminal device 10a even if the UL receives interference from the DL due to the multiplex communication of DL and UL. Can be acquired. Thereby, in the communication system 1, since the decoding accuracy of UL can be improved when performing multiplex communication of DL and UL using one carrier, it is possible to suppress a decrease in UL communication quality.
  • the base station 20 when there is a difference in the rise time of the OFDM symbol of each block of DL and UL, synchronization is taken at the antenna end of the base station 20 so as to fill this difference. Thereby, since the base station 20 can acquire the RS inserted in the UL subcarrier at the position of the null point of interference from the DL block, it suppresses the deterioration of the communication quality of the UL block. Can do.
  • FIG. 19 is a flowchart illustrating an example of a processing procedure of the base station according to the fifth embodiment.
  • FIG. 20 is a flowchart illustrating an example of a processing procedure of the terminal device according to the fifth embodiment.
  • the base station 20a determines DL and UL F-OFDM blocks and their filters (S21). That is, in step S21, the base station 20a determines filtering information indicating DL and UL F-OFDM blocks and their filters. The DL and UL filtering information determined in S21 is held in the block setting unit 220.
  • the base station 20a calculates a UL RS insertion interval (S22). That is, the UL RS insertion calculation unit 229 of the base station 20a determines RS information indicating the subcarrier position into which the RS is inserted in the UL block, based on the DL and UL filtering information determined in step S21.
  • the base station 20a notifies UL filtering information and UL RS information (S23). That is, the block setting unit 220 of the base station 20a notifies the UL F-OFDM unit 221 of the DL and UL filtering information determined in step S21. Also, the UL RS insertion calculation unit 229 of the base station 20a notifies the UL signal processing unit 222 of the UL RS information determined in step S22. Further, the base station 20a transmits broadcast information including UL filtering information and UL RS information to the terminal device 10a.
  • the base station 20a applies filtering information and UL RS information (S24), and receives UL data (S25). That is, the UL F-OFDM unit 221 of the base station 20a applies a filter to the UL signal output from the RF receiving unit 210 based on the UL filtering information notified in step S23. Then, the UL F-OFDM unit 221 outputs the filtered UL signal to the UL signal processing unit 222.
  • the UL signal processing unit 222 estimates the UL radio propagation channel based on the UL RS information notified in step S23, and demodulates the UL signal based on the estimated channel information.
  • the terminal device 10a receives broadcast information from the base station 20a (S31). That is, the DL signal processing unit 122 of the terminal device 10a receives broadcast information from the base station 20a.
  • the terminal device 10a extracts UL filtering information and UL RS information from the broadcast information received in step S31 (S32). That is, the radio control signal processing unit 123 of the terminal device 10 a extracts UL filtering information and UL RS information of each block from the broadcast information received by the DL signal processing unit 122.
  • the terminal device 10a After step S32, the terminal device 10a applies UL filtering information and UL RS information (S33), and transmits UL data (S34). That is, the block receiving unit 120 of the terminal device 10a notifies the UL F-OFDM unit 125 of the UL filtering information extracted in step S32. Also, the UL RS information receiving unit 127 of the terminal device 10a notifies the UL signal processing unit 124 of the UL RS information extracted in step S32.
  • the UL signal processing unit 124 inserts the RS into the UL subcarrier at the position indicated by the notified RS information, and outputs the RS to the Delay unit 129.
  • the delay unit 129 delays the timing based on the time offset value notified from the TA receiving unit 128 and outputs the UL signal output from the UL signal processing unit 124 to the UL F-OFDM unit 125.
  • the UL F-OFDM unit 125 performs filtering processing on the UL signal based on the filtering information notified from the block reception unit 120 and transmits the filtered UL signal to the base station 20 via the RF transmission unit 111.
  • the base station 20a uses the UL RS from the signal received from the terminal device 10a even if the UL receives interference from the DL due to the multiplex communication of DL and UL. Can be obtained. Thereby, in the communication system 1, since the decoding accuracy of UL can be improved when performing multiplex communication of DL and UL using one carrier, it is possible to suppress a decrease in UL communication quality.
  • FIG. 21 is a diagram for explaining an example of an RS insertion position in the communication system according to the sixth embodiment.
  • the UL RS insertion calculation unit 229 of the base station 20 a according to the sixth embodiment uses an integer multiple of the null point of interference from a DL block on the frequency axis among UL subcarriers.
  • the subcarrier at the position of (2) is the UL RS insertion position.
  • FIG. 22 is a diagram for explaining an example of an RS insertion position in the communication system according to the seventh embodiment.
  • the UL signal processing unit 124 of the terminal device 10 according to the seventh embodiment inserts an RS into the UL subcarrier at the position indicated by the RS information.
  • UL signal processing section 124 sets the power of subcarriers arranged at the null point of interference from the DL signal to be lower than the power of other subcarriers in the UL signal.
  • the UL signal processing unit 124 increases the power of the subcarrier at the peak point of interference from the DL signal by the amount by which the power of the subcarrier arranged at the null point is reduced.
  • the peak point of interference is, for example, an intermediate point between adjacent null points of interference signals from adjacent blocks on the frequency axis.
  • the base station 20 assigns power sufficient to allow channel estimation of the radio propagation path to the subcarrier in which the RS is inserted at the interference null point, and assigns the remaining power to the subcarrier having strong interference.
  • FIG. 23 is a diagram for explaining an example of frequency band allocation to each block in the communication system according to the eighth embodiment.
  • the block setting unit 220 of the base station 20a according to the eighth embodiment determines a frequency band to be allocated to the block according to the OFDM symbol length of the block.
  • the block setting unit 220 of the base station 20a allocates a block having a short OFDM symbol length from the lowest frequency band in the communication band.
  • the OFDM symbol length is assigned sequentially from the lowest frequency band in ascending order.
  • the block setting unit 220 assigns frequency bands in the order of a block of UL # 1, a block of UL # 2, and a block of UL # 3 from a low frequency band.
  • the block setting unit 220 assigns the highest frequency band to the DL block. Accordingly, for example, as illustrated in FIG. 23, a UL block having a short symbol length is arranged away from a DL block serving as a large interference source in the communication band.
  • the UL block in which the difference in OFDM symbol length is short and the interference in the subcarrier unit is difficult to avoid is arranged away from the DL block that causes a large interference, so The influence of interference received from the block can be reduced.
  • the terminal device 10a inserts an RS into the UL based on the UL RS information notified from the base station 20a, but the disclosed technology is not limited to this.
  • the terminal device of the communication system 1 may calculate the subcarrier position where the RS is inserted in the UL based on the filtering information notified from the base station, and may insert the RS into the calculated subcarrier position.
  • Example 9 An example in this case will be described below as Example 9.
  • FIG. 24 is a diagram illustrating an example of a base station according to the ninth embodiment.
  • FIG. 25 is a diagram illustrating an example of the terminal device according to the ninth embodiment. Except as described below, blocks denoted by the same reference numerals in FIG. 24 as those in FIG. 17 have the same or similar functions as the blocks in FIG. In addition, except for the points described below, blocks denoted by the same reference numerals in FIG. 25 as those in FIG. 18 have the same or similar functions as the blocks in FIG.
  • the communication system 1 includes a base station 20b and a terminal device 10b.
  • the base station 20b of the present embodiment does not notify the terminal device 10b of UL RS information. Therefore, for example, the UL RS insertion calculation unit 229 of the base station 20b illustrated in FIG. 24 does not notify the block setting unit 220 of UL RS information. Further, the radio control signal processing unit 223 does not include UL RS information in the broadcast information to the terminal device 10b.
  • the terminal device 10 b includes a UL RS insertion calculation unit 127 b instead of the UL RS information reception unit 127.
  • the UL RS insertion calculating unit 127b uses the filtering information notified from the block receiving unit 120 to calculate the subcarrier position where the RS is inserted in the UL, and notifies the UL signal processing unit 124 of the result as RS information. .
  • the UL RS insertion calculation unit 127b calculates the subcarrier position into which the RS is inserted in the UL using the same calculation method as the UL RS insertion calculation unit 229 of the base station 20b.
  • the base station 20b does not need to notify the terminal device 10b of the RS information because the subcarrier position at which the RS is inserted in the UL is calculated on the terminal device 10b side. Therefore, the data amount of the broadcast information transmitted from the base station 20b to the terminal device 10b can be reduced.
  • out-of-band interference may occur in adjacent UL blocks due to a power difference between UL blocks.
  • an RS may be inserted into a subcarrier at a null point of out-of-band interference in a block that receives UL interference.
  • FIG. 26 is a diagram illustrating an example of received power in the communication system and the base station according to the tenth embodiment.
  • FIG. 27 is a diagram for explaining an example of out-of-band interference in the communication system according to the tenth embodiment.
  • FIG. 28 is a schematic diagram illustrating an example of an RS insertion position in the communication system according to the tenth embodiment.
  • the communication system 1 includes a base station 20c and a terminal device 10c, and the terminal device 10c will be described as an example of a data communication terminal and a meter reading device.
  • the frequency band block used by the data communication terminal for the UL is, for example, an f2 block
  • the frequency band block used by the meter reading unit for the UL is, for example, an f1 block. is there.
  • power control during transmission of the UL signal is performed on the terminal device 10c side in order to maintain the reception quality of the UL signal in the base station 20c.
  • a UL signal is transmitted with high power in order to send as much data as possible at a time.
  • a UL signal is transmitted with low power in order to transmit data while suppressing power consumption as much as possible. Therefore, for example, as shown in FIG. 26, the received power from the data communication terminal in the base station 20c is higher than the received power from the meter-reading device in the base station 20c.
  • out-of-band interference occurs in the base station 20c. That is, for example, as shown in FIG. 27B, when the OFDM symbol length is different between the f2 block and the f1 block, for example, as shown in FIG. 27A, the bandwidth from the f2 block to the f1 block External interference occurs.
  • the terminal device 10 c of the communication system 1 inserts an RS into a subcarrier at a position where out-of-band interference from the f2 block becomes a null point among the subcarriers of the f1 block. .
  • the communication system 1 can suppress a decrease in communication quality of the UL block even when out-of-band interference occurs in the UL block due to a power difference between the UL blocks. it can.
  • FIG. 29 is a diagram illustrating an example of a base station according to the tenth embodiment.
  • FIG. 30 is a diagram illustrating an example of the terminal device according to the tenth embodiment. Except for the points described below, in FIG. 29, blocks denoted by the same reference numerals as those in FIG. 5 or FIG. 17 have the same or similar functions as the blocks in FIG. Also, except for the points described below, in FIG. 30, blocks denoted by the same reference numerals as those in FIG. 6 or FIG. 18 have the same or similar functions as the blocks in FIG.
  • the base station 20c includes a UL RS insertion calculation unit 229 as illustrated in FIG. 29, for example.
  • the base station 20c calculates which subcarrier position of the UL block the RS is to be inserted into by the UL RS insertion calculation unit 229, the base station 20c notifies the terminal device 10c of RS information indicating the calculation result.
  • the terminal device 10c includes a UL RS information receiving unit 127 as shown in FIG. 30, for example.
  • the terminal device 10c receives the RS information from the base station 20c by the UL RS information receiving unit 127, the terminal device 10c inserts an RS into the UL signal based on the received RS information, and transmits the RS signal to the base station 20c.
  • FIG. 31 is a flowchart illustrating an example of a processing procedure of the base station according to the tenth embodiment.
  • the base station 20c determines a UL F-OFDM block and its filter (S41), and calculates a UL RS insertion interval (S42). That is, when the base station 20c determines the UL F-OFDM block and its filter, the UL RS insertion calculation unit 229 determines the subcarrier position where the RS is inserted in the UL block based on the determined block and its filter. The RS information to be shown is determined.
  • the base station 20c notifies UL filtering information and UL RS information (S43). That is, the block setting unit 220 of the base station 20c notifies the UL F-OFDM unit 221 of the UL F-OFDM block determined in step S41 and the filtering information indicating the filter. Also, the UL RS insertion calculating unit 229 of the base station 20c notifies the UL signal processing unit 222 of the RS information determined in step S42. Further, the base station 20c transmits broadcast information including UL filtering information and UL RS information to the terminal device 10c.
  • the base station 20c applies UL filtering information and UL RS information (S44), and receives UL data transmitted from the terminal device 10c (S45). That is, the UL F-OFDM unit 221 of the base station 20c applies the filter based on the UL filtering information notified in step S43. Then, when the RF receiving unit 210 receives the UL signal in which the RS is inserted by the terminal device 10c, the UL F-OFDM unit 221 performs a filtering process on the UL signal. Thereafter, the UL signal processing unit 222 estimates the UL radio propagation channel based on the UL RS information notified in step S43, and demodulates the UL signal based on the estimated channel information.
  • FIG. 32 is a flowchart illustrating an example of a processing procedure of the terminal device according to the tenth embodiment.
  • the terminal device 10c receives the broadcast information transmitted from the base station 20c (S51). That is, the DL signal processing unit 122 of the terminal device 10c receives the broadcast information transmitted from the base station 20c.
  • the terminal device 10c extracts UL filtering information and UL RS information from the broadcast information received in step S51 (S52). That is, the radio control signal processing unit 123 of the terminal device 10c extracts UL filtering information and UL RS information from the broadcast information received by the DL signal processing unit 122.
  • the terminal device 10c applies UL filtering information and UL RS information (S53), and transmits UL data (S54).
  • the block receiving unit 120 of the terminal device 10c notifies the UL F-OFDM unit 125 of the UL filtering information extracted in step S52.
  • the UL RS information receiving unit 127 of the terminal device 10c notifies the UL signal processing unit 124 of the UL RS information extracted in step S52.
  • the UL signal processing unit 124 inserts the RS into the UL subcarrier at the position indicated by the notified RS information, and outputs it to the UL F-OFDM unit 125.
  • the UL F-OFDM unit 125 performs filtering processing on the UL signal output from the UL signal processing unit 124 based on the notified filtering information.
  • the RF transmission unit 111 transmits the filtered UL signal to the base station 20c.
  • each component of each illustrated device is functionally conceptual and may not necessarily be physically configured as illustrated.
  • the specific form of distribution / integration of each device is not limited to that shown in the figure, and all or a part thereof may be functionally or physically distributed or arbitrarily distributed in arbitrary units according to various loads or usage conditions. Can be integrated and configured.
  • all or any part of each processing function performed in each device may be realized by a CPU and a program analyzed and executed by the CPU, or may be realized as hardware by wired logic.
  • the communication method described in each embodiment can be realized by executing a program prepared in advance by a processor included in the base station and the terminal device.
  • This program can be distributed via a network such as the Internet.
  • the program can also be executed by being recorded on a computer-readable recording medium and being read from the recording medium by a processor included in the base station and the terminal device.
  • Examples of the computer-readable recording medium include a hard disk, a flexible disk (FD), a CD-ROM (Compact Disc-Read Only Memory), an MO (Magneto-Optical disc), and a DVD (Digital Versatile Disc).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A base station (20) performing wireless communications between same and a terminal device comprises: a block setting unit (220), a DL RS insertion calculation unit (227), and a DL signal processing unit (224). The block setting unit (220) sets the OFDM symbol length for each block among a plurality of blocks generated in one carrier and having different frequency bands, setting same such that the OFDM symbol length for each block is an integer multiple of the block having the shortest OFDM symbol length among the blocks. The DL RS insertion calculation unit (227) calculates a second block subcarrier position at which the out-of-band interference from a first block to the second block becomes a null point. The DL signal processing unit (224) inserts a reference signal used in channel estimation for a wireless propagation path, into the subcarrier at the position calculated by the DL RS insertion calculation unit (227), and sends same to the terminal device.

Description

基地局、端末装置、通信システム、および、通信方法Base station, terminal device, communication system, and communication method
 本発明は、基地局、端末装置、通信システム、および、通信方法に関する。 The present invention relates to a base station, a terminal device, a communication system, and a communication method.
 新しい無線通信の規格として5G(第5世代移動体通信)の検討が始まったが、より柔軟に無線帯域を利用するために、F-OFDM(Filtered-Orthogonal Frequency Division Multiplexing)が提案されている。このF-OFDMは、1つのキャリアに異なるパラメータが設定されたOFDM信号をブロックとして乗せ、そのブロックが互いに非直交となった場合でもフィルタリング処理によってブロック間の干渉を低減させる技術である。 5G (5th generation mobile communication) has been studied as a new wireless communication standard, but F-OFDM (Filtered-Orthogonal Frequency Division Multiplexing) has been proposed in order to use the wireless band more flexibly. F-OFDM is a technique for reducing interference between blocks by filtering processing even when OFDM signals in which different parameters are set on one carrier are placed as blocks and the blocks become non-orthogonal to each other.
 ここで、例えば、F-OFDMにおいて1つのキャリアにV2X(Vehicle-to-Everything)通信のブロックやIoT(Internet of Things)通信のブロック等、異なる通信用途のブロックが含まれる場合もある。このような場合、V2X通信のブロックでは、人命にも影響する可能性のあるデータが扱われる場合があるため、IoT通信のブロックよりも送信電力を高くすることで高い通信品質を実現することが考えられる。 Here, for example, in F-OFDM, one carrier may include blocks for different communication applications such as a V2X (Vehicle-to-Everything) communication block and an IoT (Internet of Things) communication block. In such a case, data that may affect human life may be handled in the V2X communication block. Therefore, it is possible to achieve high communication quality by increasing the transmission power compared to the IoT communication block. Conceivable.
 しかし、1つのキャリアにおけるブロック間での送信電力の差が大きいと、フィルタリング処理を行ったとしても、送信電力の大きいブロックから送信電力の小さいブロックへの帯域外干渉は無視できないものになってしまうおそれがある。 However, if the transmission power difference between blocks in one carrier is large, out-of-band interference from a block with high transmission power to a block with low transmission power cannot be ignored even if filtering processing is performed. There is a fear.
 本願に開示の技術は、F-OFDMにおいてブロックが干渉を受ける状況にあっても、干渉を受けるブロックの通信品質の低下を抑制することを課題とする。 The technique disclosed in the present application has an object to suppress deterioration in communication quality of a block that receives interference even in a situation where the block receives interference in F-OFDM.
 1つの側面では、端末装置との間で無線通信を行う基地局は、設定部、算出部、および信号処理部を備える。設定部は、1つのキャリアに生成された複数の異なる周波数帯域のブロックそれぞれのOFDMシンボル長を、ブロックのうち、最もOFDMシンボル長の短いブロックの整数倍となるようブロックそれぞれのOFDMシンボル長を設定する。算出部は、第1のブロックから第2のブロックへの帯域外干渉がヌル点となる第2のブロックのサブキャリアの位置を算出する。信号処理部は、ダウンリンクの信号において、算出部により算出された位置のサブキャリアに、無線伝搬路のチャネル推定に用いられるリファレンスシグナルを挿入し、端末装置へ送信する。 In one aspect, a base station that performs wireless communication with a terminal device includes a setting unit, a calculation unit, and a signal processing unit. The setting unit sets the OFDM symbol length of each block in a plurality of different frequency bands generated on one carrier so that the OFDM symbol length of each block is an integral multiple of the shortest OFDM symbol length among the blocks. To do. The calculation unit calculates the position of the subcarrier of the second block where the out-of-band interference from the first block to the second block is a null point. In the downlink signal, the signal processing unit inserts a reference signal used for channel estimation of the radio propagation path into the subcarrier at the position calculated by the calculation unit, and transmits the reference signal to the terminal device.
 1実施形態によれば、F-OFDMにおいてブロックが干渉を受ける状況にあっても、干渉を受けるブロックの通信品質の低下を抑制することができる。 According to one embodiment, it is possible to suppress a decrease in communication quality of a block that receives interference even in a situation where the block receives interference in F-OFDM.
図1は、実施例1の通信システムの一例を示す図である。FIG. 1 is a diagram illustrating an example of a communication system according to the first embodiment. 図2は、実施例1の通信システムで用いられる周波数帯域のブロックおよびそれぞれのブロックの無線フレームの一例を説明するための図である。FIG. 2 is a diagram for explaining an example of a block of a frequency band and a radio frame of each block used in the communication system according to the first embodiment. 図3は、実施例1の通信システムにおける帯域外干渉のヌル点の一例を説明するための図である。FIG. 3 is a diagram for explaining an example of a null point of out-of-band interference in the communication system according to the first embodiment. 図4は、実施例1の通信システムにおけるRSの挿入位置の一例を説明するための図である。FIG. 4 is a diagram for explaining an example of an RS insertion position in the communication system according to the first embodiment. 図5は、実施例1の基地局の一例を示す図である。FIG. 5 is a diagram illustrating an example of the base station according to the first embodiment. 図6は、実施例1の端末装置の一例を示す図である。FIG. 6 is a diagram illustrating an example of the terminal device according to the first embodiment. 図7は、実施例1の基地局のハードウェアの一例を示す図である。FIG. 7 is a diagram illustrating an example of hardware of the base station according to the first embodiment. 図8は、実施例1の端末装置のハードウェアの一例を示す図である。FIG. 8 is a diagram illustrating an example of hardware of the terminal device according to the first embodiment. 図9は、実施例1の基地局の処理手順の一例を示すフローチャートである。FIG. 9 is a flowchart illustrating an example of a processing procedure of the base station according to the first embodiment. 図10は、実施例1の端末装置の処理手順の一例を示すフローチャートである。FIG. 10 is a flowchart illustrating an example of a processing procedure of the terminal device according to the first embodiment. 図11は、実施例2の通信システムにおけるRSの挿入位置の一例を説明するための図である。FIG. 11 is a schematic diagram illustrating an example of an RS insertion position in the communication system according to the second embodiment. 図12は、実施例3の通信システムにおけるRSの挿入位置の一例を説明するための図である。FIG. 12 is a schematic diagram illustrating an example of an RS insertion position in the communication system according to the third embodiment. 図13は、実施例4の通信システムにおける各ブロックへの周波数帯域の割り当ての一例を説明するための図である。FIG. 13 is a diagram for explaining an example of frequency band allocation to each block in the communication system according to the fourth embodiment. 図14は、実施例5の基地局におけるDLからULへの帯域外干渉の一例を説明するための図である。FIG. 14 is a diagram for explaining an example of out-of-band interference from DL to UL in the base station according to the fifth embodiment. 図15は、実施例5の通信システムにおけるDLおよびULの各ブロックのOFDMシンボルの立ち上がりの時間同期の一例を説明するための図である。FIG. 15 is a diagram for explaining an example of time synchronization of rising edges of OFDM symbols of DL and UL blocks in the communication system according to the fifth embodiment. 図16は、実施例5の通信システムにおけるRSの挿入位置の一例を説明するための図である。FIG. 16 is a schematic diagram illustrating an example of an RS insertion position in the communication system according to the fifth embodiment. 図17は、実施例5の基地局の一例を示す図である。FIG. 17 is a diagram illustrating an example of a base station according to the fifth embodiment. 図18は、実施例5の端末装置の一例を示す図である。FIG. 18 is a diagram illustrating an example of a terminal device according to the fifth embodiment. 図19は、実施例5の基地局の処理手順の一例を示すフローチャートである。FIG. 19 is a flowchart illustrating an example of a processing procedure of the base station according to the fifth embodiment. 図20は、実施例5の端末装置の処理手順の一例を示すフローチャートである。FIG. 20 is a flowchart illustrating an example of a processing procedure of the terminal device according to the fifth embodiment. 図21は、実施例6の通信システムにおけるRSの挿入位置の一例を説明するための図である。FIG. 21 is a diagram for explaining an example of an RS insertion position in the communication system according to the sixth embodiment. 図22は、実施例7の通信システムにおけるRSの挿入位置の一例を説明するための図である。FIG. 22 is a schematic diagram illustrating an example of an RS insertion position in the communication system according to the seventh embodiment. 図23は、実施例8の通信システムにおける各ブロックへの周波数帯域の割り当ての一例を説明するための図である。FIG. 23 is a diagram for explaining an example of frequency band allocation to each block in the communication system according to the eighth embodiment. 図24は、実施例9の基地局の一例を示す図である。FIG. 24 is a diagram illustrating an example of the base station according to the ninth embodiment. 図25は、実施例9の端末装置の一例を示す図である。FIG. 25 is a diagram illustrating an example of the terminal device according to the ninth embodiment. 図26は、実施例10の通信システムおよび基地局における受信電力の一例を示す図である。FIG. 26 is a diagram illustrating an example of received power in the communication system and the base station according to the tenth embodiment. 図27は、実施例10の通信システムにおける帯域外干渉の一例を説明するための図である。FIG. 27 is a diagram for explaining an example of out-of-band interference in the communication system according to the tenth embodiment. 図28は、実施例10の通信システムにおけるRSの挿入位置の一例を説明するための図である。FIG. 28 is a schematic diagram illustrating an example of an RS insertion position in the communication system according to the tenth embodiment. 図29は、実施例10の基地局の一例を示す図である。FIG. 29 is a diagram illustrating an example of a base station according to the tenth embodiment. 図30は、実施例10の端末装置の一例を示す図である。FIG. 30 is a diagram illustrating an example of the terminal device according to the tenth embodiment. 図31は、実施例10の基地局の処理手順の一例を示すフローチャートである。FIG. 31 is a flowchart illustrating an example of a processing procedure of the base station according to the tenth embodiment. 図32は、実施例10の端末装置の処理手順の一例を示すフローチャートである。FIG. 32 is a flowchart illustrating an example of a processing procedure of the terminal device according to the tenth embodiment.
 以下、図面を参照しながら、本願の開示する基地局、端末装置、通信システム、および、通信方法の実施例を説明する。なお、以下の実施例は開示の技術を限定するものではない。また、各実施例は、処理内容を矛盾させない範囲で適宜組み合わせることが可能である。 Hereinafter, embodiments of a base station, a terminal device, a communication system, and a communication method disclosed in the present application will be described with reference to the drawings. The following examples do not limit the disclosed technology. In addition, the embodiments can be appropriately combined within a range in which processing contents are not contradictory.
 まず、実施例1の通信システム1の概要を説明する。図1は、実施例1の通信システムの一例を示す図である。図2は、実施例1の通信システムで用いられる周波数帯域のブロックおよびそれぞれのブロックの無線フレームの一例を説明するための図である。図3は、実施例1の通信システムにおける帯域外干渉のヌル点の一例を説明するための図である。図4は、実施例1の通信システムにおけるRSの挿入位置の一例を説明するための図である。 First, an outline of the communication system 1 according to the first embodiment will be described. FIG. 1 is a diagram illustrating an example of a communication system according to the first embodiment. FIG. 2 is a diagram for explaining an example of a block of a frequency band and a radio frame of each block used in the communication system according to the first embodiment. FIG. 3 is a diagram for explaining an example of a null point of out-of-band interference in the communication system according to the first embodiment. FIG. 4 is a diagram for explaining an example of an RS insertion position in the communication system according to the first embodiment.
 通信システム1は、例えば、図1に示すように、端末装置10と、基地局20とを備える。端末装置10は、無線通信により基地局20に接続し、基地局20経由で他の機器との通信を行う。基地局20は、端末装置10の無線通信を中継する。例えば、基地局20は、端末装置10から無線通信により受信したデータをコアネットワーク経由で相手先の機器へ転送し、コアネットワークから受信した端末装置10宛のデータを無線通信により端末装置10に転送する。 The communication system 1 includes a terminal device 10 and a base station 20, for example, as shown in FIG. The terminal device 10 is connected to the base station 20 by wireless communication, and communicates with other devices via the base station 20. The base station 20 relays wireless communication of the terminal device 10. For example, the base station 20 transfers data received from the terminal device 10 by wireless communication to the counterpart device via the core network, and transfers data addressed to the terminal device 10 received from the core network to the terminal device 10 by wireless communication. To do.
 なお、以下の説明において、端末装置10から基地局20への通信をUL(UpLink)と呼び、基地局20から端末装置10への通信をDL(DownLink)と呼ぶ。 In the following description, communication from the terminal device 10 to the base station 20 is referred to as UL (UpLink), and communication from the base station 20 to the terminal device 10 is referred to as DL (DownLink).
 ここで、通信システム1では、例えば図2(a)に示すように、異なる設定のOFDM信号が周波数帯域の異なる複数のブロック#1,#2,および#3に分けられ、1つのキャリア(搬送波)で送信される。すなわち、通信システム1では異なるOFDM信号が複数の周波数帯域のブロックごとにフィルタリングされて1つのキャリアを用いて送信される。ここで、それぞれのブロックは、異なる通信用途に用いることができる。通信の用途が異なると、図2(a)に示すようにそれぞれのブロックの送信電力にも差が生じる場合がある。図2(a)では、DLのブロックが例示されている。例えば図2に示すように、それぞれのブロックの送信電力に差が生じる場合、送信電力の大きいブロック(例えば、ブロック#1)から送信電力の小さいブロック(例えば、ブロック#2)への帯域外干渉が生じるおそれがある。 Here, in the communication system 1, for example, as shown in FIG. 2A, OFDM signals having different settings are divided into a plurality of blocks # 1, # 2, and # 3 having different frequency bands, and one carrier (carrier wave) is obtained. ). That is, in the communication system 1, different OFDM signals are filtered for each block of a plurality of frequency bands and transmitted using one carrier. Here, each block can be used for different communication applications. If the application of communication is different, there may be a difference in the transmission power of each block as shown in FIG. FIG. 2A illustrates a DL block. For example, as shown in FIG. 2, when there is a difference in the transmission power of each block, out-of-band interference from a block with high transmission power (for example, block # 1) to a block with low transmission power (for example, block # 2) May occur.
 ここで、着目するOFDMシンボルのFFT(Fast Fourier Transform)区間において、他のOFDMシンボル長が1/n(nは整数)の関係を保てば、着目するOFDMシンボルは、n周期ごとに他のOFDMシンボルからの干渉がヌルとなる特性がある。 Here, in the FFT (Fast Fourier Transform) section of the OFDM symbol of interest, if the relationship of other OFDM symbol lengths is 1 / n (n is an integer), the OFDM symbol of interest is There is a characteristic that interference from an OFDM symbol becomes null.
 例えば、図2(b)に示すように、ブロック#2のFFT区間において、ブロック#1のOFDMシンボル長は、ブロック#2のOFDMシンボル長の1/4の関係となるように設定される。つまり、ブロック#2のFFT区間内にブロック#1のシンボル全体が4つ収まるように設定される。これにより、例えば、図3に示すように、ブロック#2では、4つのサブキャリアごとに、ブロック#1からの帯域外干渉がヌルとなる箇所(ヌル点)が含まれることになる。 For example, as shown in FIG. 2B, in the FFT interval of block # 2, the OFDM symbol length of block # 1 is set to have a 1/4 relationship with the OFDM symbol length of block # 2. That is, the entire symbol of block # 1 is set to fit in the FFT interval of block # 2. Thus, for example, as shown in FIG. 3, in block # 2, a location where the out-of-band interference from block # 1 is null (null point) is included for every four subcarriers.
 そこで、通信システム1では、このような特性を生かし、干渉を受けるブロック(例えば、図2、図3に示したブロック#2)の通信品質の低下を抑制するため、当該ブロックにおいてRS(Reference Signal)を上記のヌル点の位置に挿入する。これは、通信システム1において、通信に用いられる信号を復号する上で重要な情報は、無線伝搬路のチャネル情報のためである。RSは、無線伝搬路のチャネル推定に用いられるリファレンスシグナルの一例である。 Therefore, in the communication system 1, taking advantage of such characteristics, in order to suppress deterioration in communication quality of a block that receives interference (for example, block # 2 shown in FIGS. 2 and 3), the RS (Reference Signal) is used in the block. ) Is inserted at the position of the null point. This is because information important in decoding a signal used for communication in the communication system 1 is channel information of a radio propagation path. RS is an example of a reference signal used for channel estimation of a radio propagation path.
 本実施例の通信システム1では、例えば図4に示すように、隣接ブロック(例えば、ブロック#1)からの干渉を受けるブロック(例えば、ブロック#2)のサブキャリアのうち、干渉がヌル点となる位置のサブキャリアに、RSが挿入される。 In the communication system 1 according to the present embodiment, for example, as illustrated in FIG. 4, among the subcarriers of a block (for example, block # 2) that receives interference from an adjacent block (for example, block # 1), the interference is a null point. RS is inserted into the subcarrier at the position.
 なお、干渉を受けるブロックのRSが当該ブロックのどの位置のサブキャリアに挿入されているかを示す情報(以下では、RS情報と記載する)は、例えば、基地局20がF‐OFDMを受信するためのフィルタリング情報とともに端末装置10へ通知される。フィルタリング情報には、各ブロックの周波数帯域、各ブロックの中心周波数、および、各ブロックのOFDMシンボル長が含まれる。この通知には、F‐OFDMのフィルタリングがされていないチャネルが用いられる。これにより、端末装置10は、当該ブロックのRSの情報を確実に取得することができる。 Note that information (hereinafter referred to as RS information) indicating the position of the subcarrier in which the RS of the block that receives interference is inserted is, for example, because the base station 20 receives F-OFDM. Is notified to the terminal device 10 together with the filtering information. The filtering information includes the frequency band of each block, the center frequency of each block, and the OFDM symbol length of each block. For this notification, a channel not subjected to F-OFDM filtering is used. Thereby, the terminal device 10 can acquire the information of RS of the block reliably.
 上記の通信システム1によれば、他のブロックからの帯域外干渉を受けているブロックであっても、無線伝搬路の推定精度の低下を抑制できるので、受信信号の復号精度を向上させることができる。その結果、通信システム1は、F-OFDMにおいてブロックが干渉を受ける状況にあっても、干渉を受けるブロックの通信品質の低下を抑制することができる。 According to the communication system 1 described above, since it is possible to suppress a decrease in the estimation accuracy of the radio propagation path even in a block receiving out-of-band interference from other blocks, it is possible to improve the decoding accuracy of the received signal. it can. As a result, the communication system 1 can suppress a decrease in communication quality of a block that receives interference even in a situation where the block receives interference in F-OFDM.
(基地局)
 次に、図5を用いて、基地局20の一例を説明する。図5は、実施例1の基地局の一例を示す図である。基地局20は、アンテナ、RF受信部210、RF送信部211、発振器、ブロック設定部220、UL用F‐OFDM部221、UL信号処理部222、無線制御信号処理部223、およびDL信号処理部224を備える。また、基地局20は、DL用F‐OFDM部225、無線スケジューラ部226、DL用RS挿入算出部227、およびIP(Internet Protocol)処理部230を備える。ブロック設定部220は設定部の一例であり、DL信号処理部224は信号処理部の一例であり、DL用F‐OFDM部225はフィルタリング部の一例であり、DL用RS挿入算出部227は算出部の一例である。なお、図5では、2つの発振器が図示されているが、これらの発振器は、共通の周波数の搬送波を生成する。そのため、発振器は、RF受信部210およびRF送信部211に共通に1つ設けられてもよい。
(base station)
Next, an example of the base station 20 will be described with reference to FIG. FIG. 5 is a diagram illustrating an example of the base station according to the first embodiment. The base station 20 includes an antenna, an RF receiving unit 210, an RF transmitting unit 211, an oscillator, a block setting unit 220, an UL F-OFDM unit 221, an UL signal processing unit 222, a radio control signal processing unit 223, and a DL signal processing unit. 224. The base station 20 includes a DL F-OFDM unit 225, a radio scheduler unit 226, a DL RS insertion calculation unit 227, and an IP (Internet Protocol) processing unit 230. The block setting unit 220 is an example of a setting unit, the DL signal processing unit 224 is an example of a signal processing unit, the DL F-OFDM unit 225 is an example of a filtering unit, and the DL RS insertion calculation unit 227 calculates It is an example of a part. In FIG. 5, two oscillators are shown, but these oscillators generate a carrier wave having a common frequency. Therefore, one oscillator may be provided in common for the RF reception unit 210 and the RF transmission unit 211.
 なお、図5に例示した基地局20において、DL信号処理部224およびDL用F‐OFDM部225は、フィルタリングされるDL信号のブロック毎に1つずつ設けられている。また、図5に例示した基地局20において、UL用F‐OFDM部221およびUL信号処理部222は、フィルタリングされるUL信号のブロック毎に1つずつ設けられている。 In the base station 20 illustrated in FIG. 5, one DL signal processing unit 224 and one DL F-OFDM unit 225 are provided for each block of DL signals to be filtered. Further, in the base station 20 illustrated in FIG. 5, one UL F-OFDM unit 221 and one UL signal processing unit 222 are provided for each block of the UL signal to be filtered.
 アンテナは、端末装置10との間での無線信号の送受信を行う。例えば、アンテナは、端末装置10から受信した無線信号をRF受信部210へ出力し、RF送信部211から出力された無線信号を端末装置10へ送信する。 The antenna transmits and receives radio signals to and from the terminal device 10. For example, the antenna outputs a radio signal received from the terminal device 10 to the RF reception unit 210 and transmits a radio signal output from the RF transmission unit 211 to the terminal device 10.
 RF受信部210は、アンテナを介して端末装置10から送信された無線信号を受信する。以下では、端末装置10から基地局20へ送信された無線信号をUL信号と呼び、基地局20から端末装置10へ送信された無線信号をDL信号と呼ぶ。RF受信部210は、アンテナ経由で受信した端末装置10からのUL信号を、発振器によって生成された局発信号を用いてダウンコンバートする。そして、RF受信部210は、ダウンコンバート後のUL信号を、ディジタル信号に変換し、UL用F‐OFDM部221へ出力する。 The RF receiver 210 receives a radio signal transmitted from the terminal device 10 via an antenna. Hereinafter, a radio signal transmitted from the terminal apparatus 10 to the base station 20 is referred to as a UL signal, and a radio signal transmitted from the base station 20 to the terminal apparatus 10 is referred to as a DL signal. The RF receiving unit 210 down-converts the UL signal received from the terminal device 10 via the antenna using the local signal generated by the oscillator. Then, the RF receiving unit 210 converts the down-converted UL signal into a digital signal and outputs the digital signal to the UL F-OFDM unit 221.
 ブロック設定部220は、1つのキャリアに生成された複数の異なる周波数帯域のブロックのうち、どの通信(例えば、V2X通信、IoT通信)がどの周波数帯域のブロックを用いるかを示す設定情報を含むフィルタリング情報を保持する。そして、ブロック設定部220は、このフィルタリング情報を用いて、UL用F‐OFDM部221およびDL用F‐OFDM部225にフィルタリングの設定を行う。なお、このフィルタリング情報は、例えば、無線制御信号処理部223により、端末装置10へ通知される。 The block setting unit 220 includes filtering information including setting information indicating which communication (for example, V2X communication, IoT communication) uses which frequency band among a plurality of different frequency band blocks generated for one carrier. Keep information. Then, the block setting unit 220 sets filtering for the UL F-OFDM unit 221 and the DL F-OFDM unit 225 using the filtering information. This filtering information is notified to the terminal device 10 by the radio control signal processing unit 223, for example.
 また、ブロック設定部220は、DL用RS挿入算出部227に対し、フィルタリング情報を通知し、DL用RS挿入算出部227から、各ブロックについて、隣接するブロックからの干渉がヌル点となるサブキャリアの位置を示すRS情報を受け取る。そして、ブロック設定部220は、受け取った各ブロックのRS情報と、各ブロックのフィルタリング情報とを無線制御信号処理部223へ通知する。 Further, the block setting unit 220 notifies the DL RS insertion calculation unit 227 of the filtering information, and the DL RS insertion calculation unit 227 provides sub-carriers in which interference from adjacent blocks becomes a null point for each block. RS information indicating the position of is received. Then, the block setting unit 220 notifies the radio control signal processing unit 223 of the received RS information of each block and filtering information of each block.
 UL用F‐OFDM部221は、UL信号のブロックをフィルタリング処理し、UL信号処理部222へ出力する。例えば、UL用F‐OFDM部221は、ブロック設定部220により設定されたフィルタにより、F‐OFDMに対してブロック単位でのフィルタリング処理を行い、UL信号処理部222へ出力する。 The UL F-OFDM unit 221 performs filtering processing on the block of the UL signal and outputs the filtered signal to the UL signal processing unit 222. For example, the UL F-OFDM unit 221 performs filtering on the F-OFDM in units of blocks using the filter set by the block setting unit 220 and outputs the result to the UL signal processing unit 222.
 DL用RS挿入算出部227は、ブロック設定部220から出力されたフィルタリング情報に基づき、帯域外干渉を受けるブロックのサブキャリアのうち、RSが挿入されるサブキャリアの位置を示すRS情報を算出する。なお、以下では、RSが挿入されるサブキャリアの位置を、サブキャリア位置と記載する場合がある。 Based on the filtering information output from the block setting unit 220, the DL RS insertion calculation unit 227 calculates RS information indicating the position of the subcarrier into which the RS is inserted among the subcarriers of the block that receives out-of-band interference. . Hereinafter, the position of the subcarrier into which the RS is inserted may be referred to as a subcarrier position.
 例えば、DL用RS挿入算出部227は、DLに複数のブロックが含まれる場合、高い電力が割り当てられたサブキャリアを持つブロックから隣接するブロックへの帯域外干渉を考慮し、隣接するブロックにおける干渉がヌル点となるサブキャリア位置を算出する。 For example, when a plurality of blocks are included in the DL, the DL RS insertion calculation unit 227 considers out-of-band interference from a block having a subcarrier to which high power is allocated to an adjacent block, and causes interference in the adjacent block. Is calculated as a null point.
 一例を挙げると、DL用RS挿入算出部227は、例えば図3に示すブロック#1からブロック#2への干渉がヌル点となるブロック#2のサブキャリア位置を算出する。そして、DL用RS挿入算出部227は、算出した干渉がヌル点となるサブキャリア位置をRS情報として、該当するブロック(例えば、ブロック#2)のDL信号処理部224に通知する。つまり、DL用RS挿入算出部227は、帯域外干渉を受けるブロックにおいてRSを挿入するサブキャリア位置をRS情報としてDL信号処理部224に通知する。 For example, the DL RS insertion calculation unit 227 calculates the subcarrier position of the block # 2 where the interference from the block # 1 to the block # 2 illustrated in FIG. Then, the DL RS insertion calculation unit 227 notifies the DL signal processing unit 224 of the corresponding block (for example, block # 2) as the RS information of the subcarrier position where the calculated interference is a null point. That is, the DL RS insertion calculation unit 227 notifies the DL signal processing unit 224 of the subcarrier position into which RS is inserted in the block that receives out-of-band interference as RS information.
 DL信号処理部224は、DL信号に関する様々な処理を行う。例えば、DL信号処理部224は、ULのフィードバック信号やDLのIPパケットを、送信可能なサイズに分割および結合し、符号化したディジタル信号を生成する。また、DL信号処理部224は、DL用RS挿入算出部227からRS情報を受け取り、RS情報で示される位置のDLのサブキャリアにRSを挿入する。そして、DL信号処理部224は、RSを挿入したDL信号をDL用F‐OFDM部225に出力する。 The DL signal processing unit 224 performs various processes related to the DL signal. For example, the DL signal processing unit 224 divides and combines a UL feedback signal or a DL IP packet into a transmittable size, and generates an encoded digital signal. Also, the DL signal processing unit 224 receives the RS information from the DL RS insertion calculation unit 227, and inserts the RS into the DL subcarrier at the position indicated by the RS information. Then, the DL signal processing unit 224 outputs the DL signal into which the RS is inserted to the DL F-OFDM unit 225.
 UL信号処理部222は、UL信号に関する様々な処理を行う。例えば、UL信号処理部222は、フィルタリング処理後のディジタル信号を復調および復号し、IP処理部230へ出力する。 The UL signal processing unit 222 performs various processes related to the UL signal. For example, the UL signal processing unit 222 demodulates and decodes the digital signal after the filtering process, and outputs the demodulated signal to the IP processing unit 230.
 無線制御信号処理部223は、無線制御信号を生成する。例えば、無線制御信号処理部223は、UL信号処理部222でUL信号を正しく復号できた場合はACK応答を、UL信号を正しく復号できなかった場合は、NACK応答を生成する。そして、無線制御信号処理部223は、生成した応答を、UL信号のフィードバック信号としてDL信号処理部224に出力する。また、無線制御信号処理部223は、ブロック設定部220により通知されたRS情報およびフィルタリング情報、DL信号処理部224経由で端末装置10へ送信する。なお、本実施例において、RS情報およびフィルタリング情報は、基地局20から端末装置10へ送信される報知情報に含まれる。 The radio control signal processing unit 223 generates a radio control signal. For example, the radio control signal processing unit 223 generates an ACK response when the UL signal is correctly decoded by the UL signal processing unit 222, and generates a NACK response when the UL signal is not correctly decoded. Then, the radio control signal processing unit 223 outputs the generated response to the DL signal processing unit 224 as a feedback signal of the UL signal. Further, the radio control signal processing unit 223 transmits the RS information and filtering information notified by the block setting unit 220 and the DL signal processing unit 224 to the terminal device 10. In the present embodiment, the RS information and the filtering information are included in the broadcast information transmitted from the base station 20 to the terminal device 10.
 無線スケジューラ部226は、端末装置10との間の無線通信のスケジューリングを行う。具体的には、無線スケジューラ部226は、UL信号処理部222で受信した、DLのフィードバック信号から、DLを経由した信号のSINR推定情報を収集する。また、無線スケジューラ部226は、UL信号処理部222で受信したULのSINR推定情報を収集する。そして、無線スケジューラ部226は、収集したDLおよびULのSINR推定情報を用いて端末装置10との間の無線伝搬路を介して伝送できる単位時間当たりのデータ量を算出する。その後、無線スケジューラ部226は、算出した単位時間当たりのデータ量を用いて、DL信号処理部224において単位時間当たりに送信するデータ量を制御する。また、無線スケジューラ部226は、無線通信のスケジュールの情報を端末装置10に通知し、端末装置10側で単位時間当たりに送信されるデータ量を制御する。 The wireless scheduler unit 226 schedules wireless communication with the terminal device 10. Specifically, the radio scheduler unit 226 collects SINR estimation information of a signal via the DL from the DL feedback signal received by the UL signal processing unit 222. The radio scheduler unit 226 also collects UL SINR estimation information received by the UL signal processing unit 222. Then, the radio scheduler unit 226 calculates the amount of data per unit time that can be transmitted via the radio propagation path with the terminal device 10 using the collected DL and UL SINR estimation information. Thereafter, the wireless scheduler unit 226 controls the data amount transmitted per unit time in the DL signal processing unit 224 using the calculated data amount per unit time. In addition, the wireless scheduler unit 226 notifies the terminal device 10 of wireless communication schedule information, and controls the amount of data transmitted per unit time on the terminal device 10 side.
 IP処理部230は、IPパケットの処理を行う。例えば、IP処理部230は、UL信号処理部222から出力されたUL信号からIPパケットを構築し、構築されたIPパケットをコアネットワークへ出力する。また、IP処理部230は、コアネットワークから出力されたIPパケットを受け取ると、当該IPパケットを、当該IPパケットのデータ種別に対応するブロックのDL信号処理部224に出力する。 The IP processing unit 230 processes IP packets. For example, the IP processing unit 230 constructs an IP packet from the UL signal output from the UL signal processing unit 222, and outputs the constructed IP packet to the core network. Further, when receiving the IP packet output from the core network, the IP processing unit 230 outputs the IP packet to the DL signal processing unit 224 of the block corresponding to the data type of the IP packet.
 DL信号処理部224は、DL信号に関する様々な処理を行う。例えば、DL信号処理部224は、端末装置10から受信したULのフィードバック信号やDLのIPパケットを、送信可能なサイズに分割および結合し、符号化および変調等を行うことによりDL信号を生成する。そして、DL信号処理部224は、生成したDL信号をDL用F‐OFDM部225に出力する。 The DL signal processing unit 224 performs various processes related to the DL signal. For example, the DL signal processing unit 224 generates a DL signal by dividing and combining a UL feedback signal or DL IP packet received from the terminal device 10 into a transmittable size, and performing encoding and modulation. . Then, the DL signal processing unit 224 outputs the generated DL signal to the DL F-OFDM unit 225.
 DL用F‐OFDM部225は、DL信号のブロック毎にフィルタリング処理を行い、RF送信部211へ出力する。例えば、DL用F‐OFDM部225は、ブロック設定部220により設定されたフィルタにより、DL信号をブロック単位でフィルタリングし、RF送信部211へ出力する。 The DL F-OFDM unit 225 performs a filtering process for each block of the DL signal and outputs it to the RF transmission unit 211. For example, the DL F-OFDM unit 225 filters the DL signal in units of blocks using the filter set by the block setting unit 220, and outputs the DL signal to the RF transmission unit 211.
 RF送信部211は、アンテナを介して端末装置10へDL信号を無線送信する。RF送信部211には、発振器が接続され、DL用F‐OFDM部225から出力されたDL信号は、アナログ信号に変換された後、発振器によって生成された局発信号によりアップコンバートされ、アンテナを介して端末装置10へ送信される。発振器は、送信対象のDL信号のキャリアと同一の周波数の局発信号を生成する。 The RF transmission unit 211 wirelessly transmits a DL signal to the terminal device 10 via the antenna. The RF transmission unit 211 is connected to an oscillator, and the DL signal output from the DL F-OFDM unit 225 is converted into an analog signal, and then up-converted by a local signal generated by the oscillator. Via the terminal device 10. The oscillator generates a local oscillation signal having the same frequency as the carrier of the DL signal to be transmitted.
(端末装置)
 次に、図6を用いて、端末装置10の一例を説明する。図6は、実施例1の端末装置の一例を示す図である。端末装置10は、例えば、携帯電話機、スマートフォン、パーソナルコンピュータ等により実現される。
(Terminal device)
Next, an example of the terminal device 10 will be described with reference to FIG. FIG. 6 is a diagram illustrating an example of the terminal device according to the first embodiment. The terminal device 10 is realized by, for example, a mobile phone, a smartphone, a personal computer, or the like.
 端末装置10は、アンテナ、RF受信部110、RF送信部111、および発振器を備える。また、端末装置10は、ブロック受信部120、DL用F‐OFDM部121、DL信号処理部122、無線制御信号処理部123、UL信号処理部124、UL用F‐OFDM部125、およびDL用RS情報受信部126を備える。また、端末装置10は、アプリケーション処理部131およびIP処理部130を備える。DL信号処理部122は信号処理部の一例であり、DL用RS情報受信部126は受信部の一例である。 The terminal device 10 includes an antenna, an RF receiver 110, an RF transmitter 111, and an oscillator. Also, the terminal device 10 includes a block receiving unit 120, a DL F-OFDM unit 121, a DL signal processing unit 122, a radio control signal processing unit 123, a UL signal processing unit 124, a UL F-OFDM unit 125, and a DL An RS information receiving unit 126 is provided. In addition, the terminal device 10 includes an application processing unit 131 and an IP processing unit 130. The DL signal processing unit 122 is an example of a signal processing unit, and the DL RS information receiving unit 126 is an example of a receiving unit.
 なお、図6に例示した端末装置10において、DL用F‐OFDM部121およびDL信号処理部122は、フィルタリングされるDL信号のブロック毎に1つずつ設けられている。また、図6に例示した端末装置10において、UL信号処理部124およびUL用F‐OFDM部125は、フィルタリングされるUL信号のブロック毎に1つずつ設けられている。 In the terminal device 10 illustrated in FIG. 6, one DL F-OFDM unit 121 and one DL signal processing unit 122 are provided for each block of the DL signal to be filtered. Further, in the terminal device 10 illustrated in FIG. 6, one UL signal processing unit 124 and one UL F-OFDM unit 125 are provided for each block of the UL signal to be filtered.
 アンテナは、基地局20との間での無線信号の送受信を行う。例えば、アンテナは基地局20から受信したDL信号をRF受信部110へ出力し、RF送信部111から出力されたUL信号を基地局20へ出力する。 The antenna transmits and receives radio signals to and from the base station 20. For example, the antenna outputs a DL signal received from the base station 20 to the RF reception unit 110 and outputs a UL signal output from the RF transmission unit 111 to the base station 20.
 RF受信部110は、基地局20から送信されたDL信号を受信する。RF受信部110には、発振器が接続され、受信したDL信号を、発振器により生成された局発信号を用いてダウンコンバートする。そして、RF受信部110は、ダウンコンバート後のDL信号をディジタル信号に変換し、DL用F‐OFDM部121へ出力する。 The RF receiving unit 110 receives the DL signal transmitted from the base station 20. The RF receiving unit 110 is connected to an oscillator, and down-converts the received DL signal using a local signal generated by the oscillator. Then, RF receiving section 110 converts the down-converted DL signal into a digital signal and outputs the digital signal to DL F-OFDM section 121.
 無線制御信号処理部123は、無線制御信号を生成する。例えば、無線制御信号処理部123は、DL信号処理部122でDL信号を正しく復号できた場合はACK応答を、DL信号を正しく復号できなかった場合は、NACK応答を生成する。そして、無線制御信号処理部123は、生成した応答を、DL信号のフィードバック信号としてUL信号処理部124に出力する。 The radio control signal processing unit 123 generates a radio control signal. For example, the radio control signal processing unit 123 generates an ACK response when the DL signal is correctly decoded by the DL signal processing unit 122, and generates a NACK response when the DL signal is not correctly decoded. Then, the radio control signal processing unit 123 outputs the generated response to the UL signal processing unit 124 as a DL signal feedback signal.
 また、無線制御信号処理部123は、DL信号処理部122経由で受信した報知情報から、各ブロックのフィルタリング情報およびRS情報を取得する。そして、無線制御信号処理部123は、フィルタリング情報をブロック受信部120へ通知し、RS情報をDL用RS情報受信部126へ通知する。 Also, the radio control signal processing unit 123 acquires filtering information and RS information of each block from the broadcast information received via the DL signal processing unit 122. Then, radio control signal processing section 123 notifies filtering information to block receiving section 120 and notifies RS information to DL RS information receiving section 126.
 さらに、無線制御信号処理部123は、DL信号処理部122から受信したDL信号のSINR推定情報を収集し、フィードバック信号としてUL信号処理部124に出力する。 Furthermore, the radio control signal processing unit 123 collects the SINR estimation information of the DL signal received from the DL signal processing unit 122 and outputs it to the UL signal processing unit 124 as a feedback signal.
 ブロック受信部120は、無線制御信号処理部123から通知された各ブロックのフィルタリング情報を受信する。そして、ブロック受信部120は、フィルタリング情報を用いて、DL用F‐OFDM部121およびUL用F‐OFDM部125にフィルタリングの設定を行う。 The block receiving unit 120 receives the filtering information of each block notified from the radio control signal processing unit 123. Then, the block receiving unit 120 sets filtering for the DL F-OFDM unit 121 and the UL F-OFDM unit 125 using the filtering information.
 DL用F‐OFDM部121は、DL信号のブロック毎にフィルタリング処理を行い、DL信号処理部122へ出力する。例えば、DL用F‐OFDM部121は、ブロック受信部120によって設定されたフィルタにより、F‐OFDMに対してブロック単位でのフィルタリング処理を行い、DL信号処理部122へ出力する。 The DL F-OFDM unit 121 performs a filtering process for each block of the DL signal and outputs the result to the DL signal processing unit 122. For example, the DL F-OFDM unit 121 performs filtering on the block basis for F-OFDM using the filter set by the block receiving unit 120, and outputs the result to the DL signal processing unit 122.
 DL用RS情報受信部126は、無線制御信号処理部123から通知されたRS情報を、DL信号処理部122に通知する。 The DL RS information receiving unit 126 notifies the DL signal processing unit 122 of the RS information notified from the radio control signal processing unit 123.
 DL信号処理部122は、DL信号に関する様々な処理を行う。例えば、DL信号処理部122は、DL用RS情報受信部126から通知されたRS情報で示される位置のサブキャリアに挿入されたRSを受信する。そして、DL信号処理部122は、受信したRSに基づいて、基地局20と端末装置10との間の無線伝搬路のチャネルを推定し、推定したチャネル情報を用いて、他のサブキャリアに割り当てられた信号を復調および復号する。そして、DL信号処理部122は、復号後のDL信号をIP処理部130へ出力する。 The DL signal processing unit 122 performs various processes related to the DL signal. For example, the DL signal processing unit 122 receives the RS inserted in the subcarrier at the position indicated by the RS information notified from the DL RS information receiving unit 126. Then, the DL signal processing unit 122 estimates the channel of the radio propagation path between the base station 20 and the terminal device 10 based on the received RS, and assigns it to other subcarriers using the estimated channel information. The received signal is demodulated and decoded. Then, the DL signal processing unit 122 outputs the decoded DL signal to the IP processing unit 130.
 アプリケーション処理部131は、アプリケーションプログラムを用いて様々な処理を実行する。例えば、アプリケーション処理部131は、端末装置10の通信相手の機器向けのアプリケーションデータが発生すると、アプリケーションデータをIP処理部130経由でUL信号処理部124に出力する。また、アプリケーション処理部131は、DL信号処理部122からIP処理部130経由で受け取ったデータに対し様々な処理を実行する。 The application processing unit 131 executes various processes using an application program. For example, the application processing unit 131 outputs the application data to the UL signal processing unit 124 via the IP processing unit 130 when application data for the communication partner device of the terminal device 10 is generated. In addition, the application processing unit 131 executes various processes on the data received from the DL signal processing unit 122 via the IP processing unit 130.
 IP処理部130は、IPパケットの処理を行う。例えば、IP処理部130は、DL信号処理部122から出力されたDL信号からIPパケットを構築し、構築したIPパケットをアプリケーション処理部131にアプリケーションデータとして出力する。また、IP処理部130は、アプリケーション処理部131から出力されたアプリケーションデータのIPパケットを、当該アプリケーションデータのデータ種別に対応するブロックのUL信号処理部124に出力する。 The IP processing unit 130 processes IP packets. For example, the IP processing unit 130 constructs an IP packet from the DL signal output from the DL signal processing unit 122 and outputs the constructed IP packet to the application processing unit 131 as application data. In addition, the IP processing unit 130 outputs the IP packet of the application data output from the application processing unit 131 to the UL signal processing unit 124 of the block corresponding to the data type of the application data.
 UL信号処理部124は、UL信号に関する様々な処理を行う。例えば、UL信号処理部124は、基地局20の無線スケジューラ部226から通知された情報に基づき、IPパケットを、送信可能なサイズに分割および結合し、符号化および変調等を行うことによりUL信号を生成する。そして、UL信号処理部124は、生成したUL信号をUL用F‐OFDM部125に出力する。 The UL signal processing unit 124 performs various processes related to the UL signal. For example, the UL signal processing unit 124 divides and combines IP packets into sizes that can be transmitted based on information notified from the radio scheduler unit 226 of the base station 20, and performs encoding, modulation, etc. Is generated. Then, the UL signal processing unit 124 outputs the generated UL signal to the UL F-OFDM unit 125.
 UL用F‐OFDM部125は、UL信号のブロックをフィルタリング処理し、RF送信部111へ出力する。例えば、UL用F‐OFDM部125は、ブロック受信部120により設定されたフィルタにより、UL信号をブロック単位でフィルタリングし、RF送信部111へ出力する。 The UL F-OFDM unit 125 performs filtering on the block of the UL signal and outputs the filtered block to the RF transmission unit 111. For example, the UL F-OFDM unit 125 filters the UL signal in units of blocks using the filter set by the block reception unit 120 and outputs the filtered UL signal to the RF transmission unit 111.
 RF送信部111は、アンテナを介して基地局20へUL信号を無線送信する。RF送信部111には、発振器に接続され、DL用F‐OFDM部121から出力されたUL信号は、アナログ信号に変換された後、発振器によって生成された局発信号によりアップコンバートされ、アンテナを介して基地局20へ送信される。発振器は、送信対象のUL信号のキャリアと同一の周波数の局発信号を生成する。 The RF transmitter 111 wirelessly transmits a UL signal to the base station 20 via the antenna. The RF transmitter 111 is connected to an oscillator, and the UL signal output from the DL F-OFDM unit 121 is converted into an analog signal, and then up-converted by a local signal generated by the oscillator, Is transmitted to the base station 20 via the network. The oscillator generates a local oscillation signal having the same frequency as the carrier of the UL signal to be transmitted.
 以上説明した通信システム1によれば、F-OFDMにおいてブロックが干渉を受ける状況にあっても、干渉を受けるブロックの通信品質の低下を抑制することができる。 According to the communication system 1 described above, it is possible to suppress a decrease in communication quality of a block that receives interference even in a situation where the block receives interference in F-OFDM.
(ハードウェア)
 次に、図7を用いて、基地局20のハードウェアを説明する。図7は、実施例1の基地局のハードウェアの一例を示す図である。基地局20は、例えば、アンテナ、RFモジュール21、DSP(Digital Signal Processor)22、NWP(NetWork Processor)23、およびメモリ24を備える装置により実現される。
(hardware)
Next, the hardware of the base station 20 will be described with reference to FIG. FIG. 7 is a diagram illustrating an example of hardware of the base station according to the first embodiment. The base station 20 is realized by a device including an antenna, an RF module 21, a DSP (Digital Signal Processor) 22, an NWP (NetWork Processor) 23, and a memory 24, for example.
 RFモジュール21は、例えば図5に示した発振器、RF送信部211、およびRF受信部210を含むモジュールである。DSP22は、例えば図5に示したブロック設定部220、UL用F‐OFDM部221、UL信号処理部222、無線制御信号処理部223、DL信号処理部224、DL用F‐OFDM部225、および無線スケジューラ部226を含むチップである。NWP23は、例えば図5に示したIP処理部230を含むチップである。メモリ24は、フィルタリング情報やRS情報等を格納する。また、メモリ24は、DLの通信において、IP後のパケットを一時的に保持する。そして、DSP22がパケットを送信した後、そのパケットに対するACKの受信が確認された場合に、メモリ24は一時的に保持していたパケットをメモリ24から消去する。また、このメモリ24は、ULの通信において、UL信号を一時的に保持する。そして、NWP23がUL信号から構築されたIPパケットをコアネットワークへ送信し、そのパケットのTCP ACKを受信した場合に、メモリ24は、一時的に保持していたUL信号をメモリ24から消去する。 The RF module 21 is a module including, for example, the oscillator, the RF transmission unit 211, and the RF reception unit 210 illustrated in FIG. The DSP 22 includes, for example, the block setting unit 220, the UL F-OFDM unit 221, the UL signal processing unit 222, the radio control signal processing unit 223, the DL signal processing unit 224, the DL F-OFDM unit 225, and the like illustrated in FIG. A chip including a wireless scheduler unit 226. The NWP 23 is a chip including the IP processing unit 230 illustrated in FIG. 5, for example. The memory 24 stores filtering information, RS information, and the like. In addition, the memory 24 temporarily holds packets after IP in DL communication. Then, after the DSP 22 transmits a packet, when it is confirmed that ACK is received for the packet, the memory 24 erases the temporarily held packet from the memory 24. The memory 24 temporarily holds a UL signal in UL communication. When the NWP 23 transmits an IP packet constructed from the UL signal to the core network and receives the TCP ACK of the packet, the memory 24 erases the temporarily retained UL signal from the memory 24.
 次に、図8を用いて、端末装置10のハードウェアの一例を説明する。図8は、実施例1の端末装置のハードウェアの一例を示す図である。端末装置10は、例えば、アンテナ、RFモジュール11、DSP12、MPU(Micro Processing Unit)13、およびメモリ14を備える装置により実現される。 Next, an example of the hardware of the terminal device 10 will be described with reference to FIG. FIG. 8 is a diagram illustrating an example of hardware of the terminal device according to the first embodiment. The terminal device 10 is realized by a device including an antenna, an RF module 11, a DSP 12, a MPU (Micro Processing Unit) 13, and a memory 14, for example.
 RFモジュール11は、例えば図6に示した発振器、RF受信部110およびRF送信部111を含むモジュールである。DSP12は、例えば図6に示したDL用F-OFDM部121、DL信号処理部122、無線制御信号処理部123、UL信号処理部124、およびUL用F‐OFDM部125を含むチップである。MPU13は、例えば図6に示したIP処理部130、およびアプリケーション処理部131を含むチップである。メモリ14は、フィルタリング情報やRS情報、アプリケーション処理部131で扱うデータ等を格納する。 The RF module 11 is a module including, for example, the oscillator, the RF receiving unit 110, and the RF transmitting unit 111 illustrated in FIG. The DSP 12 is a chip including, for example, the DL F-OFDM unit 121, the DL signal processing unit 122, the radio control signal processing unit 123, the UL signal processing unit 124, and the UL F-OFDM unit 125 illustrated in FIG. The MPU 13 is a chip including, for example, the IP processing unit 130 and the application processing unit 131 illustrated in FIG. The memory 14 stores filtering information, RS information, data handled by the application processing unit 131, and the like.
 なお、以下に説明する実施例2~実施例10の通信システム1が備える端末装置および基地局のハードウェアも、実施例1の通信システム1が備える端末装置および基地局のハードウェアと同様なので説明を省略する。 Note that the terminal devices and base station hardware included in the communication system 1 according to the second to tenth embodiments described below are the same as the terminal device and base station hardware included in the communication system 1 according to the first embodiment. Is omitted.
(処理手順)
 次に、図9を用いて、基地局20の処理手順を説明する。図9は、実施例1の基地局の処理手順の一例を示すフローチャートである。基地局20は、DLのF‐OFDMのブロックとそのフィルタを決定し(S1)、DLのRSの挿入間隔の算出を行う(S2)。つまり、基地局20は、ステップS1において、DLのF‐OFDMのブロックとそのフィルタを示すフィルタリング情報を決定する。そして、DL用RS挿入算出部227は、ステップS1で決定されたフィルタリング情報に基づき、帯域外干渉を受けるブロックにおいてRSを挿入するサブキャリア位置を示すRS情報を算出する。
(Processing procedure)
Next, the processing procedure of the base station 20 will be described with reference to FIG. FIG. 9 is a flowchart illustrating an example of a processing procedure of the base station according to the first embodiment. The base station 20 determines a DL F-OFDM block and its filter (S1), and calculates a DL RS insertion interval (S2). That is, in step S1, the base station 20 determines DL F-OFDM blocks and filtering information indicating the filters. Then, the DL RS insertion calculation unit 227 calculates RS information indicating the subcarrier position where the RS is inserted in the block that receives out-of-band interference based on the filtering information determined in step S1.
 そして、基地局20は、DLのフィルタリング情報とDLのRS情報とを端末装置10に通知する(S3)。つまり、基地局20のブロック設定部220は、ステップS1で決定されたDLのF‐OFDMのフィルタリング情報を、DL用F‐OFDM部225に通知する。また、基地局20のDL用RS挿入算出部227は、ステップS2で決定されたDLのRS情報をDL信号処理部224に通知する。これにより、DLのフィルタリング情報とRS情報とを含む報知情報が、端末装置10へ送信される。 Then, the base station 20 notifies the terminal device 10 of DL filtering information and DL RS information (S3). That is, the block setting unit 220 of the base station 20 notifies the DL F-OFDM filtering information determined in step S1 to the DL F-OFDM unit 225. Also, the DL RS insertion calculation unit 227 of the base station 20 notifies the DL signal processing unit 224 of the DL RS information determined in step S2. Accordingly, broadcast information including DL filtering information and RS information is transmitted to the terminal device 10.
 ステップS3の後、基地局20は、フィルタリング情報とRS情報とを適用し(S4)、DLデータを送信する(S5)。つまり、基地局20の各ブロックのDL信号処理部224は、ステップS3で通知されたDLのRS情報で示される位置のDLのサブキャリアに、RSを挿入する。そして、DL信号処理部224は、RS挿入後のDL信号を、該当するブロックのフィルタリングを行うDL用F‐OFDM部225へ出力する。各ブロックのDL用F‐OFDM部225は、ステップS3で通知されたDLのフィルタリング情報に基づきフィルタを適用する。そして、DL用F‐OFDM部225は、DL信号処理部224から出力されたDL信号に対してフィルタリング処理を行う。その後、RF送信部211は、フィルタリング処理後のDL信号を端末装置10へ送信する。 After step S3, the base station 20 applies filtering information and RS information (S4), and transmits DL data (S5). That is, the DL signal processing unit 224 of each block of the base station 20 inserts an RS into the DL subcarrier at the position indicated by the DL RS information notified in step S3. Then, the DL signal processing unit 224 outputs the DL signal after the RS insertion to the DL F-OFDM unit 225 that performs filtering of the corresponding block. The DL F-OFDM unit 225 of each block applies a filter based on the DL filtering information notified in step S3. Then, the DL F-OFDM unit 225 performs a filtering process on the DL signal output from the DL signal processing unit 224. Thereafter, the RF transmission unit 211 transmits the DL signal after the filtering process to the terminal device 10.
 次に、図10を用いて、端末装置10の処理手順を説明する。図10は、実施例1の端末装置の処理手順の一例を示すフローチャートである。端末装置10は、基地局20からの報知情報を受信する(S11)。つまり、端末装置10のDL信号処理部122は、基地局20からの報知情報を受信する。 Next, the processing procedure of the terminal device 10 will be described with reference to FIG. FIG. 10 is a flowchart illustrating an example of a processing procedure of the terminal device according to the first embodiment. The terminal device 10 receives broadcast information from the base station 20 (S11). That is, the DL signal processing unit 122 of the terminal device 10 receives broadcast information from the base station 20.
 ステップS11の後、端末装置10は、ステップS11で受信した報知情報からDLのフィルタリング情報とDLのRS情報を抽出する(S12)。つまり、端末装置10の無線制御信号処理部123は、DL信号処理部122で受信した報知情報から各ブロックのDLのフィルタリング情報とRS情報とを抽出する。 After step S11, the terminal device 10 extracts DL filtering information and DL RS information from the broadcast information received in step S11 (S12). That is, the radio control signal processing unit 123 of the terminal device 10 extracts DL filtering information and RS information of each block from the broadcast information received by the DL signal processing unit 122.
 ステップS12の後、端末装置10は、フィルタリング情報とRS情報とを適用し(S13)、DLデータを受信する(S14)。 After step S12, the terminal device 10 applies filtering information and RS information (S13), and receives DL data (S14).
 つまり、端末装置10のブロック受信部120は、ステップS12で抽出されたDLのフィルタリング情報をDL用F‐OFDM部121に通知する。DL用F‐OFDM部121は、通知されたフィルタリング情報に基づき、RF受信部110で受信したDL信号に対しフィルタリング処理を行い、DL信号処理部122へ出力する。また、端末装置10のDL用RS情報受信部126は、ステップS12で抽出されたDLのRS情報をDL信号処理部122に通知する。DL信号処理部122は、DL用RS情報受信部126から通知されたRS情報で示される位置のサブキャリアに挿入されたRSを受信する。そして、DL信号処理部122は、受信したRSに基づいて、基地局20と端末装置10との間の無線伝搬路のチャネルを推定し、推定したチャネル情報を用いて、他のサブキャリアに割り当てられたDLデータを復調する。 That is, the block receiving unit 120 of the terminal device 10 notifies the DL F-OFDM unit 121 of the DL filtering information extracted in step S12. Based on the notified filtering information, the DL F-OFDM unit 121 performs a filtering process on the DL signal received by the RF receiving unit 110 and outputs the filtered signal to the DL signal processing unit 122. Also, the DL RS information receiving unit 126 of the terminal device 10 notifies the DL signal processing unit 122 of the DL RS information extracted in step S12. The DL signal processing unit 122 receives the RS inserted in the subcarrier at the position indicated by the RS information notified from the DL RS information receiving unit 126. Then, the DL signal processing unit 122 estimates the channel of the radio propagation path between the base station 20 and the terminal device 10 based on the received RS, and assigns it to other subcarriers using the estimated channel information. The received DL data is demodulated.
(実施例1の効果)
 実施例1の通信システム1によれば、F-OFDMにおいてブロックが干渉を受ける状況にあっても、端末装置10は、干渉を受けるブロックのRSを取得することができる。これにより、本実施例の通信システム1は、無線伝搬路のチャネルの推定精度を向上させることができる。これにより、本実施例の通信システム1は、受信信号の復号精度を向上させることができる。その結果、通信システム1は、F-OFDMにおいてブロックが干渉を受ける状況にあっても、干渉を受けるブロックの通信品質の低下を抑制することができる。
(Effect of Example 1)
According to the communication system 1 of the first embodiment, the terminal apparatus 10 can acquire the RS of the block that receives the interference even in a situation where the block receives interference in F-OFDM. Thereby, the communication system 1 of a present Example can improve the estimation precision of the channel of a radio propagation path. Thereby, the communication system 1 of a present Example can improve the decoding precision of a received signal. As a result, the communication system 1 can suppress a decrease in communication quality of a block that receives interference even in a situation where the block receives interference in F-OFDM.
 図11は、実施例2の通信システムにおけるRSの挿入位置の一例を説明するための図である。実施例2の基地局20のDL用RS挿入算出部227は、例えば、図11に示すように、周波数軸上において、DL信号における隣接ブロックからの干渉のヌル点の整数倍の位置のサブキャリアをRSの挿入位置とする。なお、周波数軸上において、DL信号における隣接ブロックからの干渉のヌル点の整数倍となる位置の全てのサブキャリアにRSが挿入されなくてもよい。RSは、DL信号のブロックに含まるサブキャリアのうち、例えば15~20%程度のサブキャリアに挿入されることが好ましい。 FIG. 11 is a diagram for explaining an example of an RS insertion position in the communication system according to the second embodiment. For example, as illustrated in FIG. 11, the DL RS insertion calculation unit 227 of the base station 20 according to the second embodiment performs subcarriers at positions that are integer multiples of the null point of interference from adjacent blocks in the DL signal on the frequency axis. Is the RS insertion position. Note that RSs may not be inserted in all subcarriers at positions that are integer multiples of the null point of interference from adjacent blocks in the DL signal on the frequency axis. The RS is preferably inserted into, for example, about 15 to 20% of subcarriers included in the block of the DL signal.
(実施例2の効果)
 実施例2の通信システム1によれば、基地局20は、DL信号にRSが過剰に挿入されることを回避できるので、DL信号のデータ通信速度の低下を抑制することができる。
(Effect of Example 2)
According to the communication system 1 of the second embodiment, the base station 20 can avoid excessive insertion of RSs in the DL signal, and thus can suppress a decrease in the data communication speed of the DL signal.
 図12は、実施例3の通信システムにおけるRSの挿入位置の一例を説明するための図である。実施例3の基地局20のDL用RS挿入算出部227は、例えば、図12に示すように、DL信号における隣接ブロックからの干渉のヌル点に配置されるサブキャリアにRSを挿入する。このとき、DL用RS挿入算出部227は、DL信号における隣接ブロックからの干渉のヌル点に配置されるサブキャリアの電力を、他のサブキャリアの電力よりも低く設定する。 FIG. 12 is a diagram for explaining an example of an RS insertion position in the communication system according to the third embodiment. For example, as illustrated in FIG. 12, the DL RS insertion calculation unit 227 of the base station 20 according to the third embodiment inserts RSs into subcarriers arranged at the null points of interference from adjacent blocks in the DL signal. At this time, DL RS insertion calculation section 227 sets the power of subcarriers arranged at the null point of interference from adjacent blocks in the DL signal to be lower than the power of other subcarriers.
 一方、DL用RS挿入算出部227は、ヌル点に配置されるサブキャリアの電力を低下させた分、隣接ブロックからの干渉のピーク点のサブキャリアの電力を増加させる。隣接ブロックからの干渉信号は、例えば、周波数軸上において、隣接するヌル点の中間の位置でピークとなる。そのため、本実施例のDL用RS挿入算出部227は、隣接するヌル点の中間の位置に配置されるサブキャリアの電力を増加させる。これにより、干渉のヌル点においてRSが挿入されたサブキャリアには無線伝搬路のチャネル推定が可能な程度の電力が割り当てられ、残りの電力が干渉の強いサブキャリアに割り当てられる。 On the other hand, the DL RS insertion calculation unit 227 increases the power of the subcarrier at the peak point of interference from the adjacent block by the amount by which the power of the subcarrier arranged at the null point is decreased. The interference signal from the adjacent block has a peak at, for example, an intermediate position between adjacent null points on the frequency axis. For this reason, the DL RS insertion calculation unit 227 according to the present embodiment increases the power of subcarriers arranged at a position intermediate between adjacent null points. As a result, the subcarrier into which the RS is inserted at the interference null point is assigned with power that allows channel estimation of the radio propagation path, and the remaining power is assigned to the subcarrier with strong interference.
(実施例3の効果)
 実施例3の通信システム1によれば、DL信号において隣接ブロックからの干渉を受けた場合でも、無線伝搬路のチャネルの推定精度を向上させることができると共に、受信信号の復号精度をさらに向上させることができる。
(Effect of Example 3)
According to the communication system 1 of the third embodiment, it is possible to improve the estimation accuracy of the channel of the radio propagation path and further improve the decoding accuracy of the received signal even when the DL signal receives interference from adjacent blocks. be able to.
 図13は、実施例4の通信システムにおける各ブロックへの周波数帯域の割り当ての一例を説明するための図である。実施例4の基地局20のブロック設定部220は、各ブロックのOFDMシンボル長に応じて、当該ブロックに割り当てる周波数帯域の中心周波数を決定する。 FIG. 13 is a diagram for explaining an example of frequency band allocation to each block in the communication system according to the fourth embodiment. The block setting unit 220 of the base station 20 according to the fourth embodiment determines the center frequency of the frequency band assigned to the block according to the OFDM symbol length of each block.
 例えば、図13に示すように、20MHzの周波数帯域内にブロック#1,#2,#3の3つのブロックが割り当てられる場合を考える。ここで、ブロック#3のOFDMシンボル長は、ブロック#2のOFDMシンボル長よりも長いものと仮定する。また、ブロック#2のOFDMシンボル長は、ブロック#1のOFDMシンボル長よりも長いものと仮定する。 For example, as shown in FIG. 13, consider a case where three blocks # 1, # 2, and # 3 are allocated within a 20 MHz frequency band. Here, it is assumed that the OFDM symbol length of block # 3 is longer than the OFDM symbol length of block # 2. Also, it is assumed that the OFDM symbol length of block # 2 is longer than the OFDM symbol length of block # 1.
 この場合、基地局20のブロック設定部220は、送信帯域内において、OFDMシンボル長が短いブロックを、最も低い周波数帯域から割り当てる。このように、OFDMシンボル長の短い順に、低い周波数帯域から順次割り当てる。本実施例では、ブロック設定部220は、例えば図13に示すように、低い周波数帯域から、ブロック#1→ブロック#2→ブロック#3の順に周波数帯域を割り当てる。 In this case, the block setting unit 220 of the base station 20 assigns a block having a short OFDM symbol length from the lowest frequency band in the transmission band. In this manner, the OFDM symbols are sequentially assigned in ascending order of the OFDM symbol length from the lowest frequency band. In the present embodiment, the block setting unit 220 assigns frequency bands in the order of block # 1 → block # 2 → block # 3 from a low frequency band, for example, as shown in FIG.
(実施例4の効果)
 実施例4の通信システム1によれば、OFDMシンボル長が短く、サブキャリア単位における干渉が回避しにくいブロックほど、干渉となる他のブロックから離して配置することによって、他のブロックから受ける干渉の影響を軽減することができる。
(Effect of Example 4)
According to the communication system 1 of the fourth embodiment, a block having a short OFDM symbol length and in which interference in subcarrier units is difficult to avoid is arranged away from other blocks that cause interference, so that interference received from other blocks is reduced. The impact can be reduced.
 上記した実施例1~4では、DLにおいて、OFDM信号をフィルタリングすることにより分割されたそれぞれのブロックの送信電力の違いにより、送信電力の低いブロックが、送信電力の高いブロックから干渉を受ける場合を例に説明した。ここで、OFDM信号をフィルタリングすることにより分割されたそれぞれのブロックを、ブロック毎にULまたはDLに割り当て、ULとDLの多重通信を行うことが考えられる。この場合、基地局20のアンテナ端で見た場合、DLに割り当てられたブロックの電力は、ULに割り当てられたブロックの電力よりもずっと大きい。そのため、DLに割り当てられたブロックの信号が、ULに割り当てられたブロックの信号の干渉となることが考えられる。 In the first to fourth embodiments described above, a case where a block with low transmission power receives interference from a block with high transmission power due to a difference in transmission power of each block divided by filtering an OFDM signal in DL. Explained in the example. Here, it is conceivable that each block divided by filtering the OFDM signal is assigned to UL or DL for each block, and multiplexed communication of UL and DL is performed. In this case, when viewed at the antenna end of the base station 20, the power of the block allocated to the DL is much larger than the power of the block allocated to the UL. For this reason, it is conceivable that the signal of the block assigned to DL becomes interference of the signal of the block assigned to UL.
 このことを、図14を用いて説明する。図14は、実施例5の基地局におけるDLからULへの帯域外干渉の一例を説明するための図である。例えば、基地局のアンテナ端におけるサブキャリア当たりの電力は、ULのブロックよりもDLのブロックの方が大きい。つまり、基地局が受信するULのブロックは無線伝搬路を介して受信されるため電力が小さい。一方、基地局から送信されるDLのブロックは、無線伝搬路を介して端末装置10において所定の電力で受信されるように、伝搬損失を加味した電力で送信されるため、電力が大きい。 This will be described with reference to FIG. FIG. 14 is a diagram for explaining an example of out-of-band interference from DL to UL in the base station according to the fifth embodiment. For example, the power per subcarrier at the antenna end of the base station is greater in the DL block than in the UL block. That is, since the UL block received by the base station is received via the radio propagation path, the power is small. On the other hand, the DL block transmitted from the base station has high power because it is transmitted with power including propagation loss so that the terminal device 10 receives the DL block with predetermined power via the radio propagation path.
 このような基地局におけるUL、DLの電力差による干渉は、FDD(Frequency Division Duplex)では、基地局がUL、DLをそれぞれ異なる周波数のキャリアに乗せ、RF受信部内のRFフィルタで分離することにより回避される。また、TDD(Time Division Duplex)では、基地局がUL、DLの切り替えタイミングで送受信回路を切り替えるため、問題とはならない。 In the FDD (Frequency Division Duplex), interference caused by the power difference between UL and DL in such a base station is caused by the base station placing UL and DL on different frequency carriers and separating them by RF filters in the RF receiver. Avoided. Also, in TDD (Time Division Duplex), the base station switches the transmission / reception circuit at the switching timing of UL and DL, so there is no problem.
 しかしながら、1つのキャリアに常時ULとDLを多重するケースでは、いずれの手法も利用することが困難である。1つのキャリアに常時ULとDLを多重するケースでは、例えば図14に示すように、電磁波の進行方向で分離するサーキュレータを用いてULとDLとが分離される。ところが、サーキュレータの分離性能は絶対的なものではなく、例えば、図14の矢印1401に示すように、基地局のRF送信部から送信されるDLの信号が、所定量、RF受信部側方向へ漏れ込んでしまうことがある。このため、例えば、DLとULの通信が同時に発生した場合、RF受信部において、ULのブロックよりもDLからの漏れ込みブロックの方がサブキャリア当りの電力が高いという状況も発生してしまう。その結果、例えば、図14の吹き出し1402に示すように、ULのブロックの帯域にDLのブロックからの帯域外干渉が漏洩し、ULの通信品質が低下するおそれがある。 However, in the case where UL and DL are always multiplexed on one carrier, it is difficult to use either method. In a case where UL and DL are always multiplexed on one carrier, for example, as shown in FIG. 14, UL and DL are separated using a circulator that separates in the traveling direction of electromagnetic waves. However, the separation performance of the circulator is not absolute. For example, as indicated by an arrow 1401 in FIG. 14, the DL signal transmitted from the RF transmitter of the base station is a predetermined amount toward the RF receiver. It may leak. For this reason, for example, when DL and UL communication occur at the same time, the RF receiving unit may have a higher power per subcarrier in the leakage block from the DL than in the UL block. As a result, for example, as shown in a balloon 1402 in FIG. 14, out-of-band interference from the DL block leaks to the UL block band, and the UL communication quality may be degraded.
 したがって、F-OFDMのブロック毎にULまたはDLを割り当て、ULとDLの多重通信を行う場合も、前述の実施例1~4で述べたRSの挿入方法を実施することで、基地局において、ULの通信品質の低下を抑制することができる。 Therefore, even when UL or DL is assigned to each F-OFDM block and UL and DL multiplex communication is performed, by performing the RS insertion method described in the first to fourth embodiments, in the base station, A decrease in UL communication quality can be suppressed.
 また、前述の実施例1~4で述べたように、他のブロックからの干渉のヌル点のサブキャリアにRSを挿入するためには、各ブロックのOFDMシンボルの立ち上がりの時間同期をとることが重要である。このことを、図15および図16を用いて説明する。図15は、実施例5の通信システムにおけるDLおよびULの各ブロックのOFDMシンボルの立ち上がりの時間同期の一例を説明するための図である。図16は、実施例5の通信システムにおけるRSの挿入位置の一例を説明するための図である。 In addition, as described in the first to fourth embodiments, in order to insert an RS into a subcarrier at a null point of interference from another block, time synchronization of the rising edge of the OFDM symbol of each block may be taken. is important. This will be described with reference to FIGS. 15 and 16. FIG. 15 is a diagram for explaining an example of time synchronization of rising edges of OFDM symbols of DL and UL blocks in the communication system according to the fifth embodiment. FIG. 16 is a schematic diagram illustrating an example of an RS insertion position in the communication system according to the fifth embodiment.
 ここで、例えば図15(a)に示すように、DL#1およびDL#2のブロックと、UL#1およびUL#2のブロックとを用い、DLのブロックとULのブロックとの電力差によりULのブロックへの干渉が発生する場合を考える。この場合、例えば図15(b)に示すように、DLおよびULのブロック間でOFDMシンボルの立ち上がりの時間同期がとれていないと、帯域外干渉についてULのFFT区間にDLのOFDMシンボル区間が含まれない。その結果、ULのOFDMシンボルタイミングでFFTを実行すると、DLの帯域外の周波数成分には、ヌル点が現れない。 Here, for example, as shown in FIG. 15A, the DL # 1 and DL # 2 blocks and the UL # 1 and UL # 2 blocks are used, and the power difference between the DL block and the UL block is determined. Consider a case where interference to a UL block occurs. In this case, for example, as shown in FIG. 15B, if the time synchronization of the rising edge of the OFDM symbol is not established between the DL and UL blocks, the DL FFT symbol section is included in the UL FFT section for out-of-band interference. I can't. As a result, when FFT is performed at the UL OFDM symbol timing, no null point appears in the frequency component outside the DL band.
 そこで、本実施例の通信システム1では、例えば図15(c)に示すように、DLおよびULのそれぞれのブロックのOFDMシンボルの立ち上がり時間の同期をとられる。これにより、例えば、UL#2のFFT区間において、着目するOFDMシンボルに対して他のOFDMシンボル長が1/nの関係となる。よって、通信システム1では、他のOFDMシンボルからの干渉のヌル点にRSを挿入することができる。 Therefore, in the communication system 1 according to the present embodiment, for example, as shown in FIG. 15C, the rise times of the OFDM symbols of the respective blocks of DL and UL are synchronized. Thereby, for example, in the FFT interval of UL # 2, the relationship between the OFDM symbol of interest and the length of other OFDM symbols is 1 / n. Therefore, in the communication system 1, it is possible to insert an RS at a null point of interference from other OFDM symbols.
 例えば、図15において、着目するOFDMシンボルの周波数軸上のサブキャリアに対して、DL#1のブロックから4サブキャリアにつき1つのヌル点があることになる。また、DL#2のブロックでは周波数軸上において全てのサブキャリアでヌル点があることになる。これらを考慮すると、DL#1のブロックからの干渉のヌル点には、サブキャリア当りの電力の高いDLからの干渉が一切入らない。よって、通信システム1では、例えば、図16に示すように、DL#1のブロックからの干渉のヌル点に、UL#1および#2のブロックのRSが挿入される。これにより、通信システム1では、DL#1および#2からの干渉を受けるUL#1および#2の通信品質の低下を抑制することができる。 For example, in FIG. 15, there is one null point for every 4 subcarriers from the block of DL # 1 for the subcarrier on the frequency axis of the OFDM symbol of interest. In the DL # 2 block, all subcarriers have null points on the frequency axis. Considering these, no interference from the DL with high power per subcarrier enters the null point of interference from the block of DL # 1. Therefore, in the communication system 1, for example, as shown in FIG. 16, the RSs of the UL # 1 and # 2 blocks are inserted at the null points of interference from the DL # 1 block. Thereby, in the communication system 1, the degradation of the communication quality of UL # 1 and # 2 that receives interference from DL # 1 and # 2 can be suppressed.
(基地局)
 次に、図17を用いて、実施例5の通信システムにおける基地局20aの一例を説明する。図17は、実施例5の基地局の一例を示す図である。なお、以下に説明する点を除き、図17において、図5と同じ符号を付したブロックは、図5におけるブロックと同一または同様の機能を有するため説明を省略する。
(base station)
Next, an example of the base station 20a in the communication system according to the fifth embodiment will be described with reference to FIG. FIG. 17 is a diagram illustrating an example of a base station according to the fifth embodiment. Except for the points described below, in FIG. 17, blocks denoted by the same reference numerals as those in FIG. 5 have the same or similar functions as the blocks in FIG.
 基地局20aは、サーキュレータ、同期部228を備える。また、基地局20aは、DL用RS挿入算出部227に代えて、UL用RS挿入算出部229を備える。 The base station 20a includes a circulator and a synchronization unit 228. Further, the base station 20 a includes a UL RS insertion calculation unit 229 instead of the DL RS insertion calculation unit 227.
 サーキュレータは、電磁波の進行方向でULとDLを分離し、アンテナから出力されたUL信号をRF受信部210へ出力し、RF送信部211から出力されたDL信号をアンテナへ出力する。 The circulator separates UL and DL in the traveling direction of the electromagnetic wave, outputs the UL signal output from the antenna to the RF reception unit 210, and outputs the DL signal output from the RF transmission unit 211 to the antenna.
 同期部228は、各ブロックのOFDMシンボルの立ち上がりの同期をとる。すなわち、同期部228は、UL信号処理部222からULの信号の受信時間を取得すると、DL信号処理におけるOFDMシンボルの立ち上がり時間との差分を検出する。そして、同期部228は、検出した差分を埋めるようにTA(Timing Advance)情報を生成し、無線制御信号処理部223へ出力する。無線制御信号処理部223は、同期部228から出力されたTA情報を適切な情報要素に変換し、DL信号処理部224に通知する。DL信号処理部224は、無線制御信号処理部223によって変換された情報を基地局20aからのフィードバック信号として端末装置10aに送信する。 The synchronization unit 228 synchronizes the rising edge of the OFDM symbol of each block. That is, when the synchronization unit 228 acquires the UL signal reception time from the UL signal processing unit 222, the synchronization unit 228 detects a difference from the rise time of the OFDM symbol in the DL signal processing. Then, the synchronization unit 228 generates TA (Timing Advance) information so as to fill the detected difference, and outputs the TA (Timing Advance) information to the radio control signal processing unit 223. The radio control signal processing unit 223 converts the TA information output from the synchronization unit 228 into an appropriate information element and notifies the DL signal processing unit 224 of the TA information. The DL signal processing unit 224 transmits the information converted by the radio control signal processing unit 223 to the terminal device 10a as a feedback signal from the base station 20a.
 UL用RS挿入算出部229は、フィルタリング情報に基づいて、DL信号に含まれるブロックからULのブロックの帯域に漏洩する帯域外干渉について、DLブロックからの干渉がヌル点となるULのサブキャリア位置を算出する。そして、UL用RS挿入算出部229は、算出した干渉がヌル点となるサブキャリア位置をRS情報として各ブロックのUL信号処理部222に通知する。また、UL用RS挿入算出部229は、RS情報をブロック設定部220に通知する。ブロック設定部220は、各ブロックに対するフィルタリング情報に加え、ULの各ブロックに対するRS情報を無線制御信号処理部223に通知する。そして、無線制御信号処理部223は、各ブロックに対するフィルタリング情報とULの各ブロックに対するRS情報を含む報知情報を、DL信号処理部224経由で端末装置10aに送信する。 The UL RS insertion calculation unit 229 performs UL subcarrier position at which interference from the DL block becomes a null point for out-of-band interference leaking from the block included in the DL signal to the UL block band based on the filtering information. Is calculated. Then, the UL RS insertion calculation unit 229 notifies the UL signal processing unit 222 of each block as the RS information of the subcarrier position where the calculated interference is a null point. Also, the UL RS insertion calculation unit 229 notifies the block setting unit 220 of the RS information. The block setting unit 220 notifies the radio control signal processing unit 223 of RS information for each block of UL in addition to filtering information for each block. Then, the radio control signal processing unit 223 transmits broadcast information including filtering information for each block and RS information for each block of the UL to the terminal device 10a via the DL signal processing unit 224.
 また、UL信号処理部222は、UL用RS挿入算出部229から通知されたRS情報に基づき、ULの無線伝搬路のチャネルを推定し、推定したチャネル情報に基づいてULの信号の復調等を行う。 The UL signal processing unit 222 estimates the UL radio channel based on the RS information notified from the UL RS insertion calculation unit 229, and performs demodulation of the UL signal based on the estimated channel information. Do.
(端末装置)
 次に、図18を用いて、実施例5の通信システム1における端末装置10aの一例を説明する。図18は、実施例5の端末装置の一例を示す図である。なお、以下に説明する点を除き、図18において、図6と同じ符号を付したブロックは、図6におけるブロックと同一または同様の機能を有するため説明を省略する。
(Terminal device)
Next, an example of the terminal device 10a in the communication system 1 according to the fifth embodiment will be described with reference to FIG. FIG. 18 is a diagram illustrating an example of a terminal device according to the fifth embodiment. Except for the points described below, in FIG. 18, blocks denoted by the same reference numerals as those in FIG. 6 have the same or similar functions as the blocks in FIG.
 端末装置10aは、サーキュレータ、TA受信部128、Delay部129を備える。また、端末装置10aは、DL用RS情報受信部126に代えて、UL用RS情報受信部127を備える。 The terminal device 10a includes a circulator, a TA receiving unit 128, and a delay unit 129. Further, the terminal device 10 a includes a UL RS information receiving unit 127 instead of the DL RS information receiving unit 126.
 サーキュレータは、電磁波の進行方向でULとDLを分離し、アンテナから出力されたDL信号をRF受信部110へ出力し、RF送信部111から出力されたUL信号をアンテナへ出力する。 The circulator separates UL and DL in the traveling direction of the electromagnetic wave, outputs the DL signal output from the antenna to the RF receiving unit 110, and outputs the UL signal output from the RF transmitting unit 111 to the antenna.
 TA受信部128は、DL信号処理部122および無線制御信号処理部123経由で、基地局20aから通知されたTA情報を受信する。そして、TA受信部128は、TA情報により通知された時間オフセット値をDelay部129に通知する。 The TA receiver 128 receives the TA information notified from the base station 20a via the DL signal processor 122 and the radio control signal processor 123. Then, the TA receiving unit 128 notifies the delay unit 129 of the time offset value notified by the TA information.
 Delay部129は、UL信号処理部124から出力されたUL信号について、TA受信部128により通知された時間オフセット値に基づき、タイミングを遅らせて、UL用F‐OFDM部125へ出力する。 The delay unit 129 delays the timing of the UL signal output from the UL signal processing unit 124 based on the time offset value notified by the TA receiving unit 128 and outputs the UL signal to the UL F-OFDM unit 125.
 UL用RS情報受信部127は、無線制御信号処理部123が受信した報知情報に含まれるULの各ブロックに対するRS情報を受け取ると、受け取ったRS情報をUL信号処理部124に通知する。UL信号処理部124は、UL用RS情報受信部127から通知されたRS情報で示される位置のULのサブキャリアに、RSを挿入し、Delay部129およびUL用F‐OFDM部125経由で送信する。 When receiving RS information for each block of UL included in the broadcast information received by the radio control signal processing unit 123, the UL RS information receiving unit 127 notifies the UL signal processing unit 124 of the received RS information. The UL signal processing unit 124 inserts the RS into the UL subcarrier at the position indicated by the RS information notified from the UL RS information receiving unit 127, and transmits it via the Delay unit 129 and the UL F-OFDM unit 125. To do.
 以上説明した通信システム1によれば、DLとULの多重通信により、ULがDLからの干渉を受ける状況にあっても、基地局20aは、端末装置10aから受信した信号から、ULのRSを取得することができる。これにより、通信システム1では、1つのキャリアを用いてDLとULの多重通信を行う場合において、ULの復号精度を向上させることができるので、ULの通信品質の低下を抑制することができる。 According to the communication system 1 described above, the base station 20a determines the UL RS from the signal received from the terminal device 10a even if the UL receives interference from the DL due to the multiplex communication of DL and UL. Can be acquired. Thereby, in the communication system 1, since the decoding accuracy of UL can be improved when performing multiplex communication of DL and UL using one carrier, it is possible to suppress a decrease in UL communication quality.
 また、通信システム1では、DLおよびULの各ブロックのOFDMシンボルの立ち上がり時間に差があるとき、基地局20のアンテナ端において、この差分を埋めるよう同期がとられる。これにより、基地局20は、DLのブロックからの干渉のヌル点の位置において、ULのサブキャリアに挿入されたRSを取得することができるので、ULのブロックの通信品質の低下を抑制することができる。 Further, in the communication system 1, when there is a difference in the rise time of the OFDM symbol of each block of DL and UL, synchronization is taken at the antenna end of the base station 20 so as to fill this difference. Thereby, since the base station 20 can acquire the RS inserted in the UL subcarrier at the position of the null point of interference from the DL block, it suppresses the deterioration of the communication quality of the UL block. Can do.
 なお、実施例5の通信システム1におけるULデータの送信および受信は、例えば、以下の図19、図20に示す処理手順により行われる。図19は、実施例5の基地局の処理手順の一例を示すフローチャートである。図20は、実施例5の端末装置の処理手順の一例を示すフローチャートである。まず、図19を用いて、基地局20aの処理手順を説明する。 In addition, transmission and reception of UL data in the communication system 1 according to the fifth embodiment are performed, for example, according to processing procedures illustrated in FIGS. 19 and 20 below. FIG. 19 is a flowchart illustrating an example of a processing procedure of the base station according to the fifth embodiment. FIG. 20 is a flowchart illustrating an example of a processing procedure of the terminal device according to the fifth embodiment. First, the processing procedure of the base station 20a will be described with reference to FIG.
 基地局20aは、DLおよびULのF‐OFDMのブロックとそのフィルタを決定する(S21)。つまり、基地局20aは、ステップS21において、DLおよびULのF‐OFDMのブロックとそのフィルタを示すフィルタリング情報を決定する。S21で決定されたDLおよびULのフィルタリング情報は、ブロック設定部220において保持される。 The base station 20a determines DL and UL F-OFDM blocks and their filters (S21). That is, in step S21, the base station 20a determines filtering information indicating DL and UL F-OFDM blocks and their filters. The DL and UL filtering information determined in S21 is held in the block setting unit 220.
 次に、基地局20aは、ULのRSの挿入間隔の算出を行う(S22)。つまり、基地局20aのUL用RS挿入算出部229は、ステップS21で決定されたDLおよびULのフィルタリング情報に基づき、ULのブロックにおいてRSを挿入するサブキャリア位置を示すRS情報を決定する。 Next, the base station 20a calculates a UL RS insertion interval (S22). That is, the UL RS insertion calculation unit 229 of the base station 20a determines RS information indicating the subcarrier position into which the RS is inserted in the UL block, based on the DL and UL filtering information determined in step S21.
 そして、基地局20aは、ULのフィルタリング情報とULのRS情報とを通知する(S23)。つまり、基地局20aのブロック設定部220は、ステップS21で決定したDLおよびULのフィルタリング情報を、UL用F‐OFDM部221に通知する。また、基地局20aのUL用RS挿入算出部229は、ステップS22で決定されたULのRS情報をUL信号処理部222に通知する。さらに、基地局20aは、ULのフィルタリング情報とULのRS情報とを含む報知情報を端末装置10aへ送信する。 The base station 20a notifies UL filtering information and UL RS information (S23). That is, the block setting unit 220 of the base station 20a notifies the UL F-OFDM unit 221 of the DL and UL filtering information determined in step S21. Also, the UL RS insertion calculation unit 229 of the base station 20a notifies the UL signal processing unit 222 of the UL RS information determined in step S22. Further, the base station 20a transmits broadcast information including UL filtering information and UL RS information to the terminal device 10a.
 次に、基地局20aは、フィルタリング情報とULのRS情報を適用し(S24)、ULデータを受信する(S25)。つまり、基地局20aのUL用F‐OFDM部221は、RF受信部210から出力されたUL信号に対し、ステップS23で通知されたULのフィルタリング情報に基づきフィルタを適用する。そして、UL用F‐OFDM部221は、フィルタリング処理後のUL信号をUL信号処理部222へ出力する。UL信号処理部222は、ステップS23で通知されたULのRS情報に基づき、ULの無線伝搬路のチャネルを推定し、推定したチャネル情報に基づいてUL信号を復調する。 Next, the base station 20a applies filtering information and UL RS information (S24), and receives UL data (S25). That is, the UL F-OFDM unit 221 of the base station 20a applies a filter to the UL signal output from the RF receiving unit 210 based on the UL filtering information notified in step S23. Then, the UL F-OFDM unit 221 outputs the filtered UL signal to the UL signal processing unit 222. The UL signal processing unit 222 estimates the UL radio propagation channel based on the UL RS information notified in step S23, and demodulates the UL signal based on the estimated channel information.
 次に、図20を用いて、端末装置10aの処理手順を説明する。まず、端末装置10aは、基地局20aからの報知情報を受信する(S31)。つまり、端末装置10aのDL信号処理部122は、基地局20aからの報知情報を受信する。 Next, the processing procedure of the terminal device 10a will be described with reference to FIG. First, the terminal device 10a receives broadcast information from the base station 20a (S31). That is, the DL signal processing unit 122 of the terminal device 10a receives broadcast information from the base station 20a.
 次に、端末装置10aは、ステップS31で受信した報知情報からULのフィルタリング情報とULのRS情報を抽出する(S32)。つまり、端末装置10aの無線制御信号処理部123は、DL信号処理部122で受信した報知情報から各ブロックのULのフィルタリング情報とULのRS情報を抽出する。 Next, the terminal device 10a extracts UL filtering information and UL RS information from the broadcast information received in step S31 (S32). That is, the radio control signal processing unit 123 of the terminal device 10 a extracts UL filtering information and UL RS information of each block from the broadcast information received by the DL signal processing unit 122.
 ステップS32の後、端末装置10aは、ULのフィルタリング情報とULのRS情報を適用し(S33)、ULデータを送信する(S34)。つまり、端末装置10aのブロック受信部120は、ステップS32で抽出されたULのフィルタリング情報をUL用F‐OFDM部125に通知する。また、端末装置10aのUL用RS情報受信部127は、ステップS32で抽出されたULのRS情報をUL信号処理部124に通知する。 After step S32, the terminal device 10a applies UL filtering information and UL RS information (S33), and transmits UL data (S34). That is, the block receiving unit 120 of the terminal device 10a notifies the UL F-OFDM unit 125 of the UL filtering information extracted in step S32. Also, the UL RS information receiving unit 127 of the terminal device 10a notifies the UL signal processing unit 124 of the UL RS information extracted in step S32.
 そして、UL信号処理部124は、通知されたRS情報で示される位置のULのサブキャリアにRSを挿入し、Delay部129に出力する。Delay部129は、TA受信部128から通知された時間オフセット値に基づき、タイミングを遅らせて、UL信号処理部124から出力されたUL信号をUL用F‐OFDM部125へ出力する。UL用F‐OFDM部125は、ブロック受信部120から通知されたフィルタリング情報に基づき、UL信号に対しフィルタリング処理を行い、RF送信部111経由で基地局20へ送信する。 Then, the UL signal processing unit 124 inserts the RS into the UL subcarrier at the position indicated by the notified RS information, and outputs the RS to the Delay unit 129. The delay unit 129 delays the timing based on the time offset value notified from the TA receiving unit 128 and outputs the UL signal output from the UL signal processing unit 124 to the UL F-OFDM unit 125. The UL F-OFDM unit 125 performs filtering processing on the UL signal based on the filtering information notified from the block reception unit 120 and transmits the filtered UL signal to the base station 20 via the RF transmission unit 111.
(実施例5の効果)
 実施例5の通信システム1によれば、DLとULの多重通信により、ULがDLからの干渉を受ける状況にあっても、基地局20aは、端末装置10aから受信した信号から、ULのRSを取得することができる。これにより、通信システム1では、1つのキャリアを用いてDLとULの多重通信を行う場合において、ULの復号精度を向上させることができるので、ULの通信品質の低下を抑制することができる。
(Effect of Example 5)
According to the communication system 1 of the fifth embodiment, the base station 20a uses the UL RS from the signal received from the terminal device 10a even if the UL receives interference from the DL due to the multiplex communication of DL and UL. Can be obtained. Thereby, in the communication system 1, since the decoding accuracy of UL can be improved when performing multiplex communication of DL and UL using one carrier, it is possible to suppress a decrease in UL communication quality.
 図21は、実施例6の通信システムにおけるRSの挿入位置の一例を説明するための図である。実施例6の基地局20aのUL用RS挿入算出部229は、例えば、図21に示すように、ULのサブキャリアのうち、周波数軸上において、DLのブロックからの干渉のヌル点の整数倍の位置のサブキャリアを、ULのRSの挿入位置とする。 FIG. 21 is a diagram for explaining an example of an RS insertion position in the communication system according to the sixth embodiment. For example, as illustrated in FIG. 21, the UL RS insertion calculation unit 229 of the base station 20 a according to the sixth embodiment uses an integer multiple of the null point of interference from a DL block on the frequency axis among UL subcarriers. The subcarrier at the position of (2) is the UL RS insertion position.
(実施例6の効果)
 実施例6の通信システム1によれば、UL信号にRSが過剰に挿入されないので、UL信号のデータ通信速度の低下を抑制することができる。
(Effect of Example 6)
According to the communication system 1 of the sixth embodiment, since the RS is not excessively inserted into the UL signal, it is possible to suppress a decrease in the data communication speed of the UL signal.
 図22は、実施例7の通信システムにおけるRSの挿入位置の一例を説明するための図である。実施例7の端末装置10のUL信号処理部124は、RS情報で示される位置のULのサブキャリアにRSを挿入する。このとき、UL信号処理部124は、UL信号において、DL信号からの干渉のヌル点に配置されるサブキャリアの電力を、他のサブキャリアの電力よりも低く設定する。一方、UL信号処理部124は、ヌル点に配置されるサブキャリアの電力を低下させた分、DL信号からの干渉のピーク点のサブキャリアの電力を増加させる。干渉のピーク点とは、例えば、周波数軸上において、隣接ブロックからの干渉信号の隣接するヌル点の中間点である。基地局20は、干渉のヌル点においてRSが挿入されたサブキャリアには無線伝搬路のチャネル推定が可能な程度の電力を割り当て、残りの電力を干渉の強いサブキャリアに割り当てる。 FIG. 22 is a diagram for explaining an example of an RS insertion position in the communication system according to the seventh embodiment. The UL signal processing unit 124 of the terminal device 10 according to the seventh embodiment inserts an RS into the UL subcarrier at the position indicated by the RS information. At this time, UL signal processing section 124 sets the power of subcarriers arranged at the null point of interference from the DL signal to be lower than the power of other subcarriers in the UL signal. On the other hand, the UL signal processing unit 124 increases the power of the subcarrier at the peak point of interference from the DL signal by the amount by which the power of the subcarrier arranged at the null point is reduced. The peak point of interference is, for example, an intermediate point between adjacent null points of interference signals from adjacent blocks on the frequency axis. The base station 20 assigns power sufficient to allow channel estimation of the radio propagation path to the subcarrier in which the RS is inserted at the interference null point, and assigns the remaining power to the subcarrier having strong interference.
(実施例7の効果)
 実施例7の通信システム1によれば、ULがDLのブロックからの干渉を受けた場合でも、ULの無線伝搬路のチャネルの推定精度を向上させることができると共に、UL信号の復号精度をさらに向上させることができる。
(Effect of Example 7)
According to the communication system 1 of the seventh embodiment, even when the UL receives interference from the DL block, it is possible to improve the estimation accuracy of the channel of the UL radio channel and further improve the decoding accuracy of the UL signal. Can be improved.
 図23は、実施例8の通信システムにおける各ブロックへの周波数帯域の割り当ての一例を説明するための図である。実施例8の基地局20aのブロック設定部220は、ブロックのOFDMシンボル長に応じて、当該ブロックに割り当てる周波数帯域を決定する。 FIG. 23 is a diagram for explaining an example of frequency band allocation to each block in the communication system according to the eighth embodiment. The block setting unit 220 of the base station 20a according to the eighth embodiment determines a frequency band to be allocated to the block according to the OFDM symbol length of the block.
 例えば図23に示すように、20MHzの周波数帯域内にUL#1,#2,#3のブロックとDLのブロックとの4つのブロックが割り当てられる場合を考える。ここで、UL#3のブロックのOFDMシンボル長は、UL#2のブロックのOFDMシンボル長よりも長いものと仮定する。また、UL#2のブロックのOFDMシンボル長は、UL#1のブロックのOFDMシンボル長よりも長いものと仮定する。  For example, as shown in FIG. 23, consider a case where four blocks of UL # 1, # 2, # 3 and DL block are allocated within a 20 MHz frequency band. Here, it is assumed that the OFDM symbol length of the UL # 3 block is longer than the OFDM symbol length of the UL # 2 block. Further, it is assumed that the OFDM symbol length of the UL # 2 block is longer than the OFDM symbol length of the UL # 1 block. *
 この場合、基地局20aのブロック設定部220は、通信帯域内において、OFDMシンボル長が短いブロックを、最も低い周波数帯域から割り当てる。このように、OFDMシンボル長が短い順に、低い周波数帯域から順次割り当てる。具体的には、ブロック設定部220は、例えば図23に示すように、低い周波数帯域から、UL#1のブロック→UL#2のブロック→UL#3のブロックの順に周波数帯域を割り当てる。また、ブロック設定部220は、DLのブロックについては、最も高い周波数帯域を割り当てる。これにより、例えば図23に示すように、通信帯域内において、シンボル長が短いULのブロックが、大きな干渉源となるDLのブロックから離して配置される。 In this case, the block setting unit 220 of the base station 20a allocates a block having a short OFDM symbol length from the lowest frequency band in the communication band. Thus, the OFDM symbol length is assigned sequentially from the lowest frequency band in ascending order. Specifically, for example, as illustrated in FIG. 23, the block setting unit 220 assigns frequency bands in the order of a block of UL # 1, a block of UL # 2, and a block of UL # 3 from a low frequency band. The block setting unit 220 assigns the highest frequency band to the DL block. Accordingly, for example, as illustrated in FIG. 23, a UL block having a short symbol length is arranged away from a DL block serving as a large interference source in the communication band.
(実施例8の効果)
 実施例8の通信システム1によれば、OFDMシンボル長の差が短く、サブキャリア単位における干渉が回避しにくいULのブロックほど、大きな干渉となるDLのブロックから離して配置することで、DLのブロックから受ける干渉の影響を軽減することができる。   
(Effect of Example 8)
According to the communication system 1 of the eighth embodiment, the UL block in which the difference in OFDM symbol length is short and the interference in the subcarrier unit is difficult to avoid is arranged away from the DL block that causes a large interference, so The influence of interference received from the block can be reduced.
 なお、上記した実施例5~8において、端末装置10aは、基地局20aから通知されたULのRS情報に基づき、ULにRSを挿入するが、開示の技術はこれに限定されない。例えば、通信システム1の端末装置は、基地局から通知されたフィルタリング情報に基づき、ULにおいてRSを挿入するサブキャリア位置を算出し、算出したサブキャリア位置にRSを挿入してもよい。この場合の実施例を実施例9として以下に説明する。 In the fifth to eighth embodiments described above, the terminal device 10a inserts an RS into the UL based on the UL RS information notified from the base station 20a, but the disclosed technology is not limited to this. For example, the terminal device of the communication system 1 may calculate the subcarrier position where the RS is inserted in the UL based on the filtering information notified from the base station, and may insert the RS into the calculated subcarrier position. An example in this case will be described below as Example 9.
 図24は、実施例9の基地局の一例を示す図である。図25は、実施例9の端末装置の一例を示す図である。なお、以下に説明する点を除き、図24において図17と同じ符号を付したブロックは、図17におけるブロックと同一または同様の機能を有するため説明を省略する。また、以下に説明する点を除き、図25において図18と同じ符号を付したブロックは、図18におけるブロックと同一または同様の機能を有するため説明を省略する。 FIG. 24 is a diagram illustrating an example of a base station according to the ninth embodiment. FIG. 25 is a diagram illustrating an example of the terminal device according to the ninth embodiment. Except as described below, blocks denoted by the same reference numerals in FIG. 24 as those in FIG. 17 have the same or similar functions as the blocks in FIG. In addition, except for the points described below, blocks denoted by the same reference numerals in FIG. 25 as those in FIG. 18 have the same or similar functions as the blocks in FIG.
 実施例9の通信システム1は、基地局20bと端末装置10bとを備える。本実施例の基地局20bは、端末装置10bへULのRS情報を通知しない。したがって、例えば図24に示す基地局20bのUL用RS挿入算出部229は、ブロック設定部220へULのRS情報を通知しない。また、無線制御信号処理部223は、端末装置10bへの報知情報にULのRS情報を含めない。 The communication system 1 according to the ninth embodiment includes a base station 20b and a terminal device 10b. The base station 20b of the present embodiment does not notify the terminal device 10b of UL RS information. Therefore, for example, the UL RS insertion calculation unit 229 of the base station 20b illustrated in FIG. 24 does not notify the block setting unit 220 of UL RS information. Further, the radio control signal processing unit 223 does not include UL RS information in the broadcast information to the terminal device 10b.
 また、例えば図25に示すように、端末装置10bは、UL用RS情報受信部127に代えて、UL用RS挿入算出部127bを備える。UL用RS挿入算出部127bは、ブロック受信部120から通知されたフィルタリング情報を用いて、ULにおいてRSを挿入するサブキャリア位置を算出し、その結果をRS情報としてUL信号処理部124に通知する。なお、このUL用RS挿入算出部127bは、基地局20bのUL用RS挿入算出部229と同様の算出方法を用いて、ULにおいてRSを挿入するサブキャリア位置を算出する。 For example, as illustrated in FIG. 25, the terminal device 10 b includes a UL RS insertion calculation unit 127 b instead of the UL RS information reception unit 127. The UL RS insertion calculating unit 127b uses the filtering information notified from the block receiving unit 120 to calculate the subcarrier position where the RS is inserted in the UL, and notifies the UL signal processing unit 124 of the result as RS information. . The UL RS insertion calculation unit 127b calculates the subcarrier position into which the RS is inserted in the UL using the same calculation method as the UL RS insertion calculation unit 229 of the base station 20b.
(実施例9の効果)
 実施例9の通信システム1によれば、端末装置10b側でULにおいてRSを挿入するサブキャリア位置を算出するので、基地局20bは、端末装置10bへRS情報を通知しなくてもよい。よって、基地局20bから端末装置10bへ送信される報知情報のデータ量を削減できる。
(Effect of Example 9)
According to the communication system 1 of the ninth embodiment, the base station 20b does not need to notify the terminal device 10b of the RS information because the subcarrier position at which the RS is inserted in the UL is calculated on the terminal device 10b side. Therefore, the data amount of the broadcast information transmitted from the base station 20b to the terminal device 10b can be reduced.
 なお、通信システム1において、ULのブロック間の電力差により、隣接するULのブロックに帯域外干渉が発生する場合がある。このような場合、通信システム1では、ULの干渉を受けるブロックにおいて、帯域外干渉のヌル点のサブキャリアにRSを挿入してもよい。この場合の実施例を実施例10として以下に説明する。以下では、実施例1~9と同じ構成は、同じ符号を付して説明を省略する。 In the communication system 1, out-of-band interference may occur in adjacent UL blocks due to a power difference between UL blocks. In such a case, in the communication system 1, an RS may be inserted into a subcarrier at a null point of out-of-band interference in a block that receives UL interference. An embodiment in this case will be described below as a tenth embodiment. In the following, the same components as those in the first to ninth embodiments are denoted by the same reference numerals and description thereof is omitted.
 図26は、実施例10の通信システムおよび基地局における受信電力の一例を示す図である。図27は、実施例10の通信システムにおける帯域外干渉の一例を説明するための図である。図28は、実施例10の通信システムにおけるRSの挿入位置の一例を説明するための図である。 FIG. 26 is a diagram illustrating an example of received power in the communication system and the base station according to the tenth embodiment. FIG. 27 is a diagram for explaining an example of out-of-band interference in the communication system according to the tenth embodiment. FIG. 28 is a schematic diagram illustrating an example of an RS insertion position in the communication system according to the tenth embodiment.
 まず、ULのブロック間の電力差により、隣接するULのブロックに帯域外干渉が発生する状況を、図26および図27を用いて説明する。ここでは、通信システム1は、基地局20cと端末装置10cとを備え、端末装置10cは、データ通信端末と、検針器である場合を例に説明する。また、図26および図27に例示した通信システム1において、データ通信端末がULに用いる周波数帯域のブロックは例えばf2のブロックであり、検針器がULに用いる周波数帯域のブロックは例えばf1のブロックである。 First, a situation where out-of-band interference occurs in adjacent UL blocks due to a power difference between UL blocks will be described with reference to FIGS. 26 and 27. FIG. Here, the communication system 1 includes a base station 20c and a terminal device 10c, and the terminal device 10c will be described as an example of a data communication terminal and a meter reading device. In the communication system 1 illustrated in FIGS. 26 and 27, the frequency band block used by the data communication terminal for the UL is, for example, an f2 block, and the frequency band block used by the meter reading unit for the UL is, for example, an f1 block. is there.
 本実施例の通信システム1では、基地局20cにおいてULの信号の受信品質を保つため、端末装置10c側でULの信号の送信時の電力制御が行われる。 In the communication system 1 of the present embodiment, power control during transmission of the UL signal is performed on the terminal device 10c side in order to maintain the reception quality of the UL signal in the base station 20c.
 例えば、端末装置10cがデータ通信端末である場合、一度にできるだけ多くのデータを送りたいため、高い電力でULの信号が送信される。一方、端末装置10cが検針器である場合、できるだけ消費電力を抑えてデータを送りたいため、低い電力でULの信号が送信される。したがって、例えば図26に示すように、基地局20cにおけるデータ通信端末からの受信電力は、基地局20cにおける検針器からの受信電力よりも高くなる。 For example, when the terminal device 10c is a data communication terminal, a UL signal is transmitted with high power in order to send as much data as possible at a time. On the other hand, when the terminal device 10c is a meter-reading device, a UL signal is transmitted with low power in order to transmit data while suppressing power consumption as much as possible. Therefore, for example, as shown in FIG. 26, the received power from the data communication terminal in the base station 20c is higher than the received power from the meter-reading device in the base station 20c.
 ここで、端末装置10cそれぞれにF‐OFDMにより別々のブロックが割り当てられ、かつ、それぞれのブロックのOFDMシンボル長が異なる場合、基地局20cで帯域外干渉が発生する。つまり、例えば図27(b)に示すように、f2のブロックとf1のブロックとでOFDMシンボル長が異なる場合、例えば図27(a)に示すように、f2のブロックからf1のブロックへの帯域外干渉が発生する。特に、f2のブロックとf1のブロックとで基地局20cにおける受信電力の差が大きいほど、この帯域外干渉は無視できないものとなる。 Here, when different blocks are allocated to each terminal apparatus 10c by F-OFDM and the OFDM symbol length of each block is different, out-of-band interference occurs in the base station 20c. That is, for example, as shown in FIG. 27B, when the OFDM symbol length is different between the f2 block and the f1 block, for example, as shown in FIG. 27A, the bandwidth from the f2 block to the f1 block External interference occurs. In particular, the greater the difference in received power at the base station 20c between the block f2 and the block f1, the more this out-of-band interference cannot be ignored.
 そこで、通信システム1の端末装置10cは、例えば図28に示すように、f1のブロックのサブキャリアのうち、f2のブロックからの帯域外干渉がヌル点となる位置のサブキャリアにRSを挿入する。このようにすることで、通信システム1は、ULのブロック間の電力差により、ULのブロックに帯域外干渉が発生する場合であっても、ULのブロックの通信品質の低下を抑制することができる。 Therefore, for example, as illustrated in FIG. 28, the terminal device 10 c of the communication system 1 inserts an RS into a subcarrier at a position where out-of-band interference from the f2 block becomes a null point among the subcarriers of the f1 block. . By doing in this way, the communication system 1 can suppress a decrease in communication quality of the UL block even when out-of-band interference occurs in the UL block due to a power difference between the UL blocks. it can.
 図29は、実施例10の基地局の一例を示す図である。図30は、実施例10の端末装置の一例を示す図である。以下に説明する点を除き、図29において、図5または図17と同じ符号を付したブロックは、図5または図17におけるブロックと同一または同様の機能を有するため説明を省略する。また、以下に説明する点を除き、図30において、図6または図18と同じ符号を付したブロックは、図6または図18におけるブロックと同一または同様の機能を有するため説明を省略する。 FIG. 29 is a diagram illustrating an example of a base station according to the tenth embodiment. FIG. 30 is a diagram illustrating an example of the terminal device according to the tenth embodiment. Except for the points described below, in FIG. 29, blocks denoted by the same reference numerals as those in FIG. 5 or FIG. 17 have the same or similar functions as the blocks in FIG. Also, except for the points described below, in FIG. 30, blocks denoted by the same reference numerals as those in FIG. 6 or FIG. 18 have the same or similar functions as the blocks in FIG.
 実施例10の基地局20cは、例えば図29に示すように、UL用RS挿入算出部229を備える。基地局20cは、UL用RS挿入算出部229によりULのブロックのどのサブキャリア位置にRSを挿入するかを算出すると、算出の結果を示すRS情報を端末装置10cに通知する。また、端末装置10cは、例えば図30に示すように、UL用RS情報受信部127を備える。端末装置10cは、UL用RS情報受信部127により基地局20cからRS情報を受信すると、受信したRS情報に基づきUL信号にRSを挿入し、基地局20cへ送信する。 The base station 20c according to the tenth embodiment includes a UL RS insertion calculation unit 229 as illustrated in FIG. 29, for example. When the base station 20c calculates which subcarrier position of the UL block the RS is to be inserted into by the UL RS insertion calculation unit 229, the base station 20c notifies the terminal device 10c of RS information indicating the calculation result. Further, the terminal device 10c includes a UL RS information receiving unit 127 as shown in FIG. 30, for example. When the terminal device 10c receives the RS information from the base station 20c by the UL RS information receiving unit 127, the terminal device 10c inserts an RS into the UL signal based on the received RS information, and transmits the RS signal to the base station 20c.
(処理手順)
 次に、図31を用いて、基地局20cの処理手順を説明する。図31は、実施例10の基地局の処理手順の一例を示すフローチャートである。基地局20cは、ULのF‐OFDMのブロックとそのフィルタを決定し(S41)、ULのRSの挿入間隔の算出を行う(S42)。つまり、基地局20cがULのF‐OFDMのブロックとそのフィルタを決定すると、UL用RS挿入算出部229は、決定したブロックとそのフィルタに基づき、ULのブロックにおいてRSを挿入するサブキャリア位置を示すRS情報を決定する。
(Processing procedure)
Next, the processing procedure of the base station 20c will be described with reference to FIG. FIG. 31 is a flowchart illustrating an example of a processing procedure of the base station according to the tenth embodiment. The base station 20c determines a UL F-OFDM block and its filter (S41), and calculates a UL RS insertion interval (S42). That is, when the base station 20c determines the UL F-OFDM block and its filter, the UL RS insertion calculation unit 229 determines the subcarrier position where the RS is inserted in the UL block based on the determined block and its filter. The RS information to be shown is determined.
 そして、基地局20cは、ULのフィルタリング情報とULのRS情報とを通知する(S43)。つまり、基地局20cのブロック設定部220は、ステップS41で決定されたULのF‐OFDMのブロックとそのフィルタを示すフィルタリング情報を、UL用F‐OFDM部221に通知する。また、基地局20cのUL用RS挿入算出部229は、ステップS42で決定されたRS情報をUL信号処理部222に通知する。さらに、基地局20cは、ULのフィルタリング情報とULのRS情報とを含む報知情報を端末装置10cへ送信する。 Then, the base station 20c notifies UL filtering information and UL RS information (S43). That is, the block setting unit 220 of the base station 20c notifies the UL F-OFDM unit 221 of the UL F-OFDM block determined in step S41 and the filtering information indicating the filter. Also, the UL RS insertion calculating unit 229 of the base station 20c notifies the UL signal processing unit 222 of the RS information determined in step S42. Further, the base station 20c transmits broadcast information including UL filtering information and UL RS information to the terminal device 10c.
 次に、基地局20cは、ULのフィルタリング情報とULのRS情報を適用し(S44)、端末装置10cから送信されたULデータを受信する(S45)。つまり、基地局20cのUL用F‐OFDM部221は、ステップS43で通知されたULのフィルタリング情報に基づきフィルタを適用する。そして、RF受信部210が、端末装置10cによってRSが挿入されたUL信号を受信すると、UL用F‐OFDM部221は、このUL信号にフィルタリング処理を行う。その後、UL信号処理部222は、ステップS43で通知されたULのRS情報に基づき、ULの無線伝搬路のチャネルを推定し、推定したチャネル情報に基づいてUL信号を復調する。 Next, the base station 20c applies UL filtering information and UL RS information (S44), and receives UL data transmitted from the terminal device 10c (S45). That is, the UL F-OFDM unit 221 of the base station 20c applies the filter based on the UL filtering information notified in step S43. Then, when the RF receiving unit 210 receives the UL signal in which the RS is inserted by the terminal device 10c, the UL F-OFDM unit 221 performs a filtering process on the UL signal. Thereafter, the UL signal processing unit 222 estimates the UL radio propagation channel based on the UL RS information notified in step S43, and demodulates the UL signal based on the estimated channel information.
 次に、図32を用いて、端末装置10cの処理手順を説明する。図32は、実施例10の端末装置の処理手順の一例を示すフローチャートである。端末装置10cは、基地局20cから送信された報知情報を受信する(S51)。つまり、端末装置10cのDL信号処理部122は、基地局20cから送信された報知情報を受信する。 Next, the processing procedure of the terminal device 10c will be described with reference to FIG. FIG. 32 is a flowchart illustrating an example of a processing procedure of the terminal device according to the tenth embodiment. The terminal device 10c receives the broadcast information transmitted from the base station 20c (S51). That is, the DL signal processing unit 122 of the terminal device 10c receives the broadcast information transmitted from the base station 20c.
 次に、端末装置10cは、ステップS51で受信した報知情報からULのフィルタリング情報とULのRS情報とを抽出する(S52)。つまり、端末装置10cの無線制御信号処理部123は、DL信号処理部122が受信した報知情報からULのフィルタリング情報とULのRS情報とを抽出する。 Next, the terminal device 10c extracts UL filtering information and UL RS information from the broadcast information received in step S51 (S52). That is, the radio control signal processing unit 123 of the terminal device 10c extracts UL filtering information and UL RS information from the broadcast information received by the DL signal processing unit 122.
 次に、端末装置10cは、ULのフィルタリング情報とULのRS情報を適用し(S53)、ULデータを送信する(S54)。 Next, the terminal device 10c applies UL filtering information and UL RS information (S53), and transmits UL data (S54).
 つまり、端末装置10cのブロック受信部120は、ステップS52で抽出されたULのフィルタリング情報をUL用F‐OFDM部125に通知する。また、端末装置10cのUL用RS情報受信部127は、ステップS52で抽出されたULのRS情報をUL信号処理部124に通知する。その後、UL信号処理部124は、通知されたRS情報で示される位置のULのサブキャリアにRSを挿入し、UL用F‐OFDM部125へ出力する。そして、UL用F‐OFDM部125は、通知されたフィルタリング情報に基づき、UL信号処理部124から出力されたUL信号にフィルタリング処理を行う。その後、RF送信部111は、フィルタリング処理後のUL信号を基地局20cへ送信する。 That is, the block receiving unit 120 of the terminal device 10c notifies the UL F-OFDM unit 125 of the UL filtering information extracted in step S52. Also, the UL RS information receiving unit 127 of the terminal device 10c notifies the UL signal processing unit 124 of the UL RS information extracted in step S52. Thereafter, the UL signal processing unit 124 inserts the RS into the UL subcarrier at the position indicated by the notified RS information, and outputs it to the UL F-OFDM unit 125. The UL F-OFDM unit 125 performs filtering processing on the UL signal output from the UL signal processing unit 124 based on the notified filtering information. Thereafter, the RF transmission unit 111 transmits the filtered UL signal to the base station 20c.
(実施例10の効果)
 実施例10の通信システム1によれば、ULのブロック間の電力差により、ULのブロックに帯域外干渉が発生する場合であっても、ULのブロックの通信品質の低下を抑制することができる。
(Effect of Example 10)
According to the communication system 1 of the tenth embodiment, even when out-of-band interference occurs in the UL block due to the power difference between the UL blocks, it is possible to suppress a decrease in the communication quality of the UL block. .
(その他)
 なお、開示の技術は、上記した各実施例に限定されるものではなく、その要旨の範囲内で数々の変形が可能である。例えば、上記した各実施例において説明した処理のうち、自動的に行われるものとして説明した処理の全部または一部を手動的に行うこともでき、あるいは、手動的に行われるものとして説明した処理の全部または一部を公知の方法で自動的に行うこともできる。この他、上記文書中や図面中で示した処理手順、制御手順、具体的名称、各種のデータやパラメータを含む情報については、特記する場合を除いて任意に変更することができる。
(Other)
The disclosed technology is not limited to the above-described embodiments, and various modifications are possible within the scope of the gist. For example, among the processes described in the above-described embodiments, all or part of the processes described as being performed automatically can be performed manually, or the processes described as being performed manually All or a part of the above can be automatically performed by a known method. In addition, the processing procedure, control procedure, specific name, and information including various data and parameters shown in the above-described document and drawings can be arbitrarily changed unless otherwise specified.
 また、図示した各装置の各構成要素は機能概念的なものであり、必ずしも物理的に図示の如く構成されていなくてもよい。すなわち、各装置の分散・統合の具体的形態は図示のものに限られず、その全部または一部を、各種の負荷や使用状況などに応じて、任意の単位で機能的または物理的に分散・統合して構成することができる。さらに、各装置にて行なわれる各処理機能は、その全部または任意の一部が、CPUおよび当該CPUにて解析実行されるプログラムにて実現され、あるいは、ワイヤードロジックによるハードウェアとして実現され得る。 Also, each component of each illustrated device is functionally conceptual and may not necessarily be physically configured as illustrated. In other words, the specific form of distribution / integration of each device is not limited to that shown in the figure, and all or a part thereof may be functionally or physically distributed or arbitrarily distributed in arbitrary units according to various loads or usage conditions. Can be integrated and configured. Further, all or any part of each processing function performed in each device may be realized by a CPU and a program analyzed and executed by the CPU, or may be realized as hardware by wired logic.
 なお、各実施例で説明した通信方法は、あらかじめ用意されたプログラムを基地局および端末装置が有するプロセッサで実行することによって実現することができる。このプログラムは、インターネットなどのネットワークを介して配布することができる。また、このプログラムは、コンピュータで読み取り可能な記録媒体に記録され、基地局および端末装置が有するプロセッサによって該記録媒体から読み出されることによって実行することもできる。コンピュータで読み取り可能な記録媒体とは、例えば、ハードディスク、フレキシブルディスク(FD)、CD-ROM(Compact Disc-Read Only Memory)、MO(Magneto-Optical disc)、DVD(Digital Versatile Disc)などである。 Note that the communication method described in each embodiment can be realized by executing a program prepared in advance by a processor included in the base station and the terminal device. This program can be distributed via a network such as the Internet. The program can also be executed by being recorded on a computer-readable recording medium and being read from the recording medium by a processor included in the base station and the terminal device. Examples of the computer-readable recording medium include a hard disk, a flexible disk (FD), a CD-ROM (Compact Disc-Read Only Memory), an MO (Magneto-Optical disc), and a DVD (Digital Versatile Disc).
 10,10a,10b,10c 端末装置
 11,21  RFモジュール
 12,22  DSP
 13  MPU
 14,24 メモリ
 20,20a,20b,20c 基地局
 23  NWP
 110,210 RF受信部
 111,211 RF送信部
 120 ブロック受信部
 121,225 DL用F‐OFDM部
 122,224 DL信号処理部
 123,223 無線制御信号処理部
 124,222 UL信号処理部
 125,221 UL用F‐OFDM部
 126 DL用RS情報受信部
 127 UL用RS情報受信部
 127b,229 UL用RS挿入算出部
 128 TA受信部
 129 Delay部
 130,230 IP処理部
 131 アプリケーション処理部
 220 ブロック設定部
 226 無線スケジューラ部
 227 DL用RS挿入算出部
 228 同期部
10, 10a, 10b, 10c Terminal device 11, 21 RF module 12, 22 DSP
13 MPU
14, 24 Memory 20, 20a, 20b, 20c Base station 23 NWP
110, 210 RF receiver 111, 211 RF transmitter 120 Block receiver 121, 225 F-OFDM unit for DL 122, 224 DL signal processor 123, 223 Radio control signal processor 124, 222 UL signal processor 125, 221 UL F-OFDM unit 126 DL RS information receiving unit 127 UL RS information receiving unit 127b, 229 UL RS insertion calculating unit 128 TA receiving unit 129 Delay unit 130, 230 IP processing unit 131 Application processing unit 220 Block setting unit 226 Radio scheduler unit 227 DL RS insertion calculation unit 228 synchronization unit

Claims (9)

  1.  端末装置との間で無線通信を行う基地局であって、
     1つのキャリアに生成された複数の異なる周波数帯域のブロックそれぞれのOFDMシンボル長を、前記ブロックのうち、最もOFDMシンボル長の短いブロックの整数倍となるようブロックそれぞれのOFDMシンボル長を設定する設定部と、
     第1のブロックから第2のブロックへの帯域外干渉がヌル点となる前記第2のブロックのサブキャリアの位置を算出する算出部と、
     ダウンリンクの信号において、前記算出部により算出された位置のサブキャリアに、無線伝搬路のチャネル推定に用いられるリファレンスシグナルを挿入し、前記端末装置へ送信する信号処理部と、
     を備えることを特徴とする基地局。
    A base station that performs wireless communication with a terminal device,
    A setting unit that sets the OFDM symbol length of each block so that the OFDM symbol length of each of the blocks of different frequency bands generated in one carrier is an integral multiple of the shortest OFDM symbol length among the blocks. When,
    A calculation unit that calculates a position of a subcarrier of the second block at which out-of-band interference from the first block to the second block becomes a null point;
    In a downlink signal, a signal processing unit that inserts a reference signal used for channel estimation of a radio propagation path into a subcarrier at a position calculated by the calculation unit, and transmits the reference signal to the terminal device;
    A base station comprising:
  2.  基地局との間で無線通信を行う端末装置であって、
     前記基地局から送信される複数の異なる周波数帯域のブロックのうち、第1のブロックから第2のブロックへの帯域外干渉がヌル点となる前記第2のブロックのサブキャリアの位置に挿入された、無線伝搬路の推定に用いられるリファレンスシグナルを受信する受信部と、
     前記リファレンスシグナルを用いて、前記基地局から送信されるダウンリンクの無線伝搬路のチャネルを推定し、推定されたチャネルを用いて前記ダウンリンクの信号の受信処理を行う信号処理部と、
     を備えることを特徴とする端末装置。
    A terminal device that performs wireless communication with a base station,
    Out of a plurality of blocks in different frequency bands transmitted from the base station, out-of-band interference from the first block to the second block is inserted at a subcarrier position of the second block that becomes a null point. A receiver for receiving a reference signal used for estimating a radio propagation path;
    A signal processing unit that estimates a channel of a downlink radio propagation path transmitted from the base station using the reference signal, and performs reception processing of the downlink signal using the estimated channel;
    A terminal device comprising:
  3.  端末装置および基地局を有する通信システムであって、
     前記基地局は、
     1つのキャリアに生成された複数の異なる周波数帯域のブロックそれぞれのOFDMシンボル長を、前記ブロックのうち、最もOFDMシンボル長の短いブロックの整数倍となるようブロックそれぞれのOFDMシンボル長を設定する設定部と、
     第1のブロックから第2のブロックへの帯域外干渉がヌル点となる前記第2のブロックのサブキャリアの位置を算出する算出部と、
     ダウンリンクの信号において、前記算出部により算出された位置のサブキャリアに、無線伝搬路のチャネル推定に用いられるリファレンスシグナルを挿入し、前記端末装置へ送信する第1の信号処理部と、
     を備え、
     前記端末装置は、
     前記基地局から送信されたダウンリンクの信号に含まれるリファレンスシグナルを受信する受信部と、
     前記リファレンスシグナルを用いて、前記ダウンリンクの信号の受信処理を行う第2の信号処理部と、
     を備えることを特徴とする通信システム。
    A communication system having a terminal device and a base station,
    The base station
    A setting unit that sets the OFDM symbol length of each block so that the OFDM symbol length of each of the blocks of different frequency bands generated in one carrier is an integral multiple of the shortest OFDM symbol length among the blocks. When,
    A calculation unit that calculates a position of a subcarrier of the second block at which out-of-band interference from the first block to the second block becomes a null point;
    In a downlink signal, a first signal processing unit that inserts a reference signal used for channel estimation of a radio propagation path into a subcarrier at a position calculated by the calculation unit, and transmits the reference signal to the terminal device;
    With
    The terminal device
    A receiving unit for receiving a reference signal included in a downlink signal transmitted from the base station;
    A second signal processing unit that performs reception processing of the downlink signal using the reference signal;
    A communication system comprising:
  4.  端末装置および基地局を有する通信システムにおいて、
     前記基地局が、
     1つのキャリアに生成された複数の異なる周波数帯域のブロックそれぞれのOFDMシンボル長を、前記ブロックのうち、最もOFDMシンボル長の短いブロックの整数倍となるようブロックそれぞれのOFDMシンボル長を設定し、
     第1のブロックから第2のブロックへの帯域外干渉がヌル点となる前記第2のブロックのサブキャリアの位置を算出し、
     ダウンリンクの信号において、算出された位置のサブキャリアに、無線伝搬路のチャネル推定に用いられるリファレンスシグナルを挿入し、前記端末装置へ送信する
     処理を実行し、
     前記端末装置が、
     前記基地局から送信されたダウンリンクの信号に含まれる前記リファレンスシグナルを受信し、
     前記リファレンスシグナルを用いて、前記ダウンリンクの信号の受信処理を行う
     処理を実行することを特徴とする通信方法。
    In a communication system having a terminal device and a base station,
    The base station is
    Setting the OFDM symbol length of each block of a plurality of different frequency bands generated on one carrier to be an integral multiple of the shortest block of the OFDM symbol length among the blocks,
    Calculating the position of the subcarrier of the second block where the out-of-band interference from the first block to the second block is a null point;
    In the downlink signal, insert a reference signal used for channel estimation of the radio propagation path into the subcarrier at the calculated position, and execute processing to transmit to the terminal device,
    The terminal device is
    Receiving the reference signal included in the downlink signal transmitted from the base station;
    A communication method comprising: performing reception processing of the downlink signal using the reference signal.
  5.  端末装置との間で無線通信を行う基地局であって、
     1つのキャリアに生成された複数の異なる周波数帯域のブロックそれぞれのOFDMシンボル長を、前記ブロックのうち、最もOFDMシンボル長の短いブロックの整数倍となるようブロックそれぞれのOFDMシンボル長を設定する設定部と、
     ダウンリンクに割り当てられた第1のブロックから、アップリンクに割り当てられた第2のブロックへの帯域外干渉がヌル点となる前記第2のブロックのサブキャリアの位置を算出する算出部と、
     前記算出部により算出されたサブキャリアの位置を、前記第2のブロックの無線伝搬路のチャネル推定に用いられるリファレンスシグナルの挿入位置として、前記端末装置へ通知する信号処理部と、
     を備えることを特徴とする基地局。
    A base station that performs wireless communication with a terminal device,
    A setting unit that sets the OFDM symbol length of each block so that the OFDM symbol length of each of the blocks of different frequency bands generated in one carrier is an integral multiple of the shortest OFDM symbol length among the blocks. When,
    A calculating unit that calculates a position of a subcarrier of the second block from which the out-of-band interference to the second block allocated to the uplink becomes a null point from the first block allocated to the downlink;
    A signal processing unit that notifies the terminal device of the position of the subcarrier calculated by the calculation unit as a reference signal insertion position used for channel estimation of the radio propagation path of the second block;
    A base station comprising:
  6.  前記基地局は、さらに、
     前記ブロックそれぞれのOFDMシンボルの立ち上がりの同期をとる同期部を備えることを特徴とする請求項5に記載の基地局。
    The base station further includes:
    The base station according to claim 5, further comprising a synchronization unit that synchronizes rising edges of OFDM symbols of the respective blocks.
  7.  基地局との間で無線通信を行う端末装置であって、
     前記基地局から送信される複数の異なる周波数帯域のブロックのうち、アップリンクに割り当てられたブロックの無線伝搬路のチャネル推定に用いられるリファレンスシグナルの挿入位置となるサブキャリアの位置を受信するRS情報受信部と、
     アップリンクの信号において、受信した前記アップリンクに割り当てられたブロックのサブキャリアの位置に、前記リファレンスシグナルを挿入し、前記基地局へ送信する信号処理部と、
     を備えることを特徴とする端末装置。
    A terminal device that performs wireless communication with a base station,
    RS information for receiving a position of a subcarrier serving as an insertion position of a reference signal used for channel estimation of a radio channel of a block allocated to an uplink among a plurality of blocks of different frequency bands transmitted from the base station A receiver,
    In an uplink signal, a signal processing unit that inserts the reference signal at a position of a subcarrier of a block allocated to the received uplink and transmits the signal to the base station;
    A terminal device comprising:
  8.  端末装置および基地局を有する通信システムであって、
     前記基地局は、
     1つのキャリアに生成された複数の異なる周波数帯域のブロックそれぞれのOFDMシンボル長を、前記ブロックのうち、最もOFDMシンボル長の短いブロックの整数倍となるようブロックそれぞれのOFDMシンボル長を設定する設定部と、
     ダウンリンクに割り当てられた第1のブロックから、アップリンクに割り当てられた第2のブロックへの帯域外干渉がヌル点となる前記第2のブロックのサブキャリアの位置を算出する算出部と、
     前記算出部により算出されたサブキャリアの位置を、無線伝搬路のチャネル推定に用いられるリファレンスシグナルの挿入位置として、前記端末装置へ通知する第1の信号処理部と、
     を備え、
     前記端末装置は、
     前記基地局から、前記リファレンスシグナルの挿入位置となるサブキャリアの位置を受信するRS情報受信部と、
     アップリンクの信号において、受信した前記サブキャリアの位置に、前記リファレンスシグナルを挿入し、前記基地局へ送信する第2の信号処理部と、
     を備えることを特徴とする通信システム。
    A communication system having a terminal device and a base station,
    The base station
    A setting unit that sets the OFDM symbol length of each block so that the OFDM symbol length of each of the blocks of different frequency bands generated in one carrier is an integral multiple of the shortest OFDM symbol length among the blocks. When,
    A calculating unit that calculates a position of a subcarrier of the second block from which the out-of-band interference to the second block allocated to the uplink becomes a null point from the first block allocated to the downlink;
    A first signal processing unit that notifies the terminal device of the position of the subcarrier calculated by the calculation unit as an insertion position of a reference signal used for channel estimation of a radio propagation path;
    With
    The terminal device
    From the base station, an RS information receiving unit that receives a position of a subcarrier to be the insertion position of the reference signal
    A second signal processing unit that inserts the reference signal at a position of the received subcarrier in an uplink signal and transmits the signal to the base station;
    A communication system comprising:
  9.  端末装置および基地局を有する通信システムにおいて、
     前記基地局が、
     1つのキャリアに生成された複数の異なる周波数帯域のブロックそれぞれのOFDMシンボル長を、前記ブロックのうち、最もOFDMシンボル長の短いブロックの整数倍となるようブロックそれぞれのOFDMシンボル長を設定し、
     ダウンリンクに割り当てられた第1のブロックから、アップリンクに割り当てられた第2のブロックへの帯域外干渉がヌル点となる前記第2のブロックのサブキャリアの位置を算出し、
     算出された前記サブキャリアの位置を、無線伝搬路のチャネル推定に用いられるリファレンスシグナルの挿入位置として、前記端末装置へ通知する
     処理を実行し、
     前記端末装置が、
     前記基地局から、前記リファレンスシグナルの挿入位置となるサブキャリアの位置を受信し、
     アップリンクの信号において、受信した前記サブキャリアの位置に、前記リファレンスシグナルを挿入し、前記基地局へ送信する
     処理を実行することを特徴とする通信方法。
    In a communication system having a terminal device and a base station,
    The base station is
    Setting the OFDM symbol length of each block of a plurality of different frequency bands generated on one carrier to be an integral multiple of the shortest block of the OFDM symbol length among the blocks,
    From the first block assigned to the downlink, calculate the subcarrier position of the second block where the out-of-band interference to the second block assigned to the uplink is a null point;
    A process of notifying the terminal device of the calculated position of the subcarrier as a reference signal insertion position used for channel estimation of a radio propagation path;
    The terminal device is
    From the base station, the position of the subcarrier that is the insertion position of the reference signal is received,
    In the uplink signal, the communication method which performs the process which inserts the said reference signal in the position of the received said subcarrier, and transmits to the said base station is performed.
PCT/JP2016/060797 2016-03-31 2016-03-31 Base station, terminal device, communications system, and communications method WO2017168714A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/060797 WO2017168714A1 (en) 2016-03-31 2016-03-31 Base station, terminal device, communications system, and communications method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/060797 WO2017168714A1 (en) 2016-03-31 2016-03-31 Base station, terminal device, communications system, and communications method

Publications (1)

Publication Number Publication Date
WO2017168714A1 true WO2017168714A1 (en) 2017-10-05

Family

ID=59963769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/060797 WO2017168714A1 (en) 2016-03-31 2016-03-31 Base station, terminal device, communications system, and communications method

Country Status (1)

Country Link
WO (1) WO2017168714A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112804167A (en) * 2019-10-28 2021-05-14 上海交通大学 RS inserting method and system suitable for LTE communication system and RS inserting method and system suitable for LTE communication system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008045781A1 (en) * 2006-10-10 2008-04-17 Qualcomm Incorporated Uplink pilot multiplexing in su-mimo and sdma for sc-fdma systems
WO2014085710A1 (en) * 2012-11-29 2014-06-05 Interdigital Patent Holdings, Inc. Reduction of spectral leakage in an ofdm system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008045781A1 (en) * 2006-10-10 2008-04-17 Qualcomm Incorporated Uplink pilot multiplexing in su-mimo and sdma for sc-fdma systems
WO2014085710A1 (en) * 2012-11-29 2014-06-05 Interdigital Patent Holdings, Inc. Reduction of spectral leakage in an ofdm system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BENJEBBOUR ANASS ET AL.: "A Study of Alternative Multi-Carrier Waveforms for 5G", IEICE TECHNICAL REPORT, vol. 115, no. 233, 1 October 2015 (2015-10-01), pages 119 - 124 *
ISAO HORIKOSHI: "2020*2-tsu no Scenario 5G ga Motarasu Nippon no Kiro", NIKKEI COMMUNICATIONS, 29 June 2015 (2015-06-29), pages 22 - 29 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112804167A (en) * 2019-10-28 2021-05-14 上海交通大学 RS inserting method and system suitable for LTE communication system and RS inserting method and system suitable for LTE communication system
CN112804167B (en) * 2019-10-28 2022-06-24 上海交通大学 RS inserting and sending method and system suitable for LTE communication system

Similar Documents

Publication Publication Date Title
KR101523030B1 (en) Channel quality indicator reporting
US8681833B2 (en) Communication system, transmitter, receiver and communication method
EP1956771B1 (en) Wireless communication system and wireless communication method
EP3245771B1 (en) Apparatus and method of providing a flexible guard interval for block single carrier transmission
KR101364783B1 (en) Communication apparatus, communication method, and integrated circuit
US11985086B2 (en) Communication apparatus and reference signal reception method
CN110972303B (en) Communication method, device, equipment, system and storage medium
EP3242514B1 (en) Transmission method and device for control information
WO2017076351A1 (en) Data transmission method
US10880069B2 (en) Techniques for processing multiple division duplexing schemes within a transmission time interval
EP2356841A1 (en) Structure for ota enb-enb communication
KR20120115605A (en) Apparatus and method for scheduling in carrier aggregated communication systems based on a transmit-receive-frequency gap band
CN110959302A (en) Base station, terminal device, first terminal device, method, program, recording medium, and system
EP2566081B1 (en) Wireless communication apparatus and wireless communication method
JP6904512B2 (en) Methods, base stations, and terminals for transmitting carrier information
JP5027176B2 (en) Radio base station apparatus, mobile terminal apparatus and radio access method
WO2015141266A1 (en) Terminal apparatus, base station apparatus, and integrated circuit
WO2017168714A1 (en) Base station, terminal device, communications system, and communications method
WO2018059356A1 (en) Information transmission method and apparatus
WO2017168713A1 (en) Base station, terminal device, communications system, and communications method
WO2015141438A1 (en) Terminal device and integrated circuit
WO2018020727A1 (en) Communication device, control method and program
JP2016129335A (en) Receiver, transmitter and radio communication method
Miyamoto et al. Low latency symbol level transmission scheme for mobile fronthaul with intra PHY split RAN architecture
CN107592278A (en) The small base station down receiving terminal channel estimation methods of TDD/FDD LTE

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16896931

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16896931

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP