WO2017167922A1 - Dispositif d'obturation électro-optique à double état de transmission optimisé sur l'ensemble de la bande spectrale du visible - Google Patents

Dispositif d'obturation électro-optique à double état de transmission optimisé sur l'ensemble de la bande spectrale du visible Download PDF

Info

Publication number
WO2017167922A1
WO2017167922A1 PCT/EP2017/057613 EP2017057613W WO2017167922A1 WO 2017167922 A1 WO2017167922 A1 WO 2017167922A1 EP 2017057613 W EP2017057613 W EP 2017057613W WO 2017167922 A1 WO2017167922 A1 WO 2017167922A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
cells
optical
cell
guest
Prior art date
Application number
PCT/EP2017/057613
Other languages
English (en)
Inventor
Jean-Louis De Bougrenet De La Tocnaye
Laurent Dupont
Samir ABBAS
Original Assignee
Institut Mines Telecom
Eyes Triple Shut
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut Mines Telecom, Eyes Triple Shut filed Critical Institut Mines Telecom
Publication of WO2017167922A1 publication Critical patent/WO2017167922A1/fr

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
    • G02F1/13475Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells in which at least one liquid crystal cell or layer is doped with a pleochroic dye, e.g. GH-LC cell
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13731Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on a field-induced phase transition
    • G02F1/13737Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on a field-induced phase transition in liquid crystals doped with a pleochroic dye

Definitions

  • the field of the invention is that of the design and production of optical components using liquid crystal materials.
  • the invention relates to the production of an electro-optic obturation device (also called optical attenuator-obturators) using liquid crystal-based mixtures, and in particular an electro-optical shutter device.
  • electro-optic obturation device also called optical attenuator-obturators
  • two transmission states to achieve high levels of contrast are polarizer-less (light attenuator / modulator) devices using a mixture of a host cholesic liquid crystal and a guest neutral dichroic dye.
  • a cholesteric liquid crystal can be obtained either from a nematic liquid crystal consisting of chiral molecules or from a pure nematic liquid crystal to which a chiral dopant has been added.
  • the invention applies in particular, but not exclusively, to the realization of night viewfinder obturator, anti-glare glasses, active 3D glasses and fast programmable shutters, liquid crystal display panels, etc.
  • the device according to the invention is particularly well suited, but not exclusively, to white synthetic light sources, such as white light-emitting diodes (LEDs), which have a non-uniform emission spectral band.
  • white synthetic light sources such as white light-emitting diodes (LEDs)
  • LEDs white light-emitting diodes
  • the shutter devices in general comprise a set of three superposed color filters (RGB) such as: a first filter comprising a first crystal-based material a cholesteric liquid selected to reflect the incident light at a first wavelength range (corresponding to the color Red for example), a second filter comprising a second cholesteric liquid crystal material selected to reflect the incident light on a second wavelength range (corresponding to the green color for example), and a third filter comprising a third cholesteric liquid crystal material selected to reflect the incident light on a third range of given wavelengths (corresponding to the color Blue for example).
  • RGB superposed color filters
  • one objective is to provide an electro-optical shutter device with two transmission states (planar and homeotropic state) high attenuation contrast, over the entire spectral band. visible.
  • one objective is to provide an electro-optical shutter device that is simple and inexpensive to implement.
  • an electro-optical closure device comprising a pair of superposed optical cells such that: a first cell of said pair comprises a first material comprising a first host cholesteric liquid crystal, a guest chiral dopant and a first guest neutral dichroic dye, such as:
  • the birefringence of the first cholesteric liquid crystal is greater than 0.20;
  • the concentration of the chiral dopant is between 1 and 2% by weight of the first material so that the first material has a helical pitch in the range 450 nm to 460 nm;
  • the first neutral dichroic dye has a concentration of between 2 and
  • a second cell of said pair comprises a second material comprising a second host cholesteric liquid crystal, a guest nematic liquid crystal, and a second guest neutral dichroic dye, such as:
  • the birefringence of the second cholesteric liquid crystal is greater than 0.20;
  • the concentration of the nematic liquid crystal is between 14 and 20% by weight of the second material so that the second material has a helical pitch in the range 550 nm to 580 nm;
  • the second neutral dichroic dye has a concentration of between 2 and
  • an electro-optical closure device combining two liquid crystal materials of specific compositions, which, when addressed electrically in an appropriate manner, allows for a complementary light-intensity filtering function on any the visible spectral band.
  • the principle of the invention consists in acting on three types of parameters taken in combination to optimize the performances of the blocking state of the device, and on distinct ranges of values for each cell to ensure maximum attenuation in specific spectral bands. and complementary in the visible.
  • the choice of these three types of parameters, the specification of their ranges of values and the combination of two cellu specific and complementary ch romatic, is at the heart of the inventive concept.
  • the idea is to optimize the performance of the blocking state of each cell so as to achieve maximum attenuation of the incident light, by simultaneously combining the absorption and reflection effects by a clever combination of these parameters.
  • the combination of a high birefringence, a suitable helical pitch, the use of a neutral dichroic dye has the effect of obtaining an optimization of the absorption and reflection of the planar state, so allow the realization of two semi-reflective Bragg mirrors in two spectral bands complementary to the visible.
  • this particular embodiment of the invention is based on a completely new and inventive approach based on a combination of two materials each having a specific set of parameters making it possible to respond both to low control voltage constraints. and cell response time optical, while optimizing the blocking state of the electro-optical shutter device on a spectral band covering all the visible.
  • each of said first and second cells comprises, between two blades of optically transparent material, respectively a layer of said first and second material of thickness between
  • the first material is of right chirality and the second material is of left chirality, or vice versa.
  • left chirality or right chirality is meant the left or right circular polarization state respectively of the material under consideration.
  • the first and second materials are likewise chirality and a half-wave plate is disposed between said first and second cells.
  • This variant makes it possible to use two cholesteric liquid crystals host of the same chirality (that is to say of the same circular polarization) and to make them complementary from the spectral filtering point of view thanks to the half-wave plate.
  • the first and second cholesteric liquid crystal hosts each have:
  • differential dielectric permittivity greater than 15 makes it possible to reduce the voltage values applied to reach the homeotropic state.
  • the two blades of optically transparent material of each of the first and second cells are covered with a polymer-based diffusion-resistant layer.
  • the anti-diffusion layer is a polymer layer which has not undergone any surface treatment after deposition, such as brushing, for example.
  • An unbrushed layer has a relatively rough surface that reduces the scattering of incident light.
  • the device comprises means for applying an electrical voltage signal between two optically transparent electrodes each disposed on one of the two blades of optically transparent material of each of the first and second cells, the application means being configured to selectively achieve one of the following states to said first and second cells, depending on the applied voltage signal:
  • a homeotropic state substantially transparent and associated with a first transmittance value
  • this device when electrically addressed in an appropriate manner, allows, for each cell, the creation of two states:
  • a planar state which corresponds, according to the invention, to the blocking state of the cell obtained by combining the absorption and reflection effects (as discussed above), allowing the production of a semi-reflective Bragg mirror in a a spectral band given in the visible, each cell of the pair of superposed cells being configured so that the passing state is obtained over the whole of the spectral band of the visible; a homeotropic state which corresponds according to the invention to the on state of the cell.
  • the characteristics of the device thus make it possible to achieve a level of contrast between the blocking state and the relatively high on-state. These states are maintained by the application of an electric field or are stable states intrinsic to the material.
  • the application means are configured so that the voltage signal has:
  • V a first level of amplitude equal to 0 V, to reach the planar state at said first and second cells
  • V2 a second level of amplitude between 35 and 50 V, to reach the homeotropic state at said first and second cells.
  • the first transmittance value may be greater than or equal to 70% and the second transmittance value may be equal to or less than 1%.
  • the contrast obtained in this spectral band is therefore optimal.
  • FIG. 1 shows the simplified structure of an electro-optic obturation device according to a particular embodiment of the invention
  • FIG. 2 illustrates the known structure of a cholesteric liquid crystal
  • FIG. 3 represents a reflection spectrogram for the planar state of two complementary optical cells (filters), according to a particular embodiment of the invention
  • FIG. 4 represents a reflection spectrogram for the planar state of the device according to the invention, resulting from the superposition of the two optical cells (filters) illustrated in FIG.
  • the incident light (represented by the arrow A), which arrives on the closure device 100, is unpolarized and has a broad spectral band in the visible, substantially between 400 nm and 700 nm. It is considered, for example, that it is a white light synthesized from a white electroluminescent diode (LED): it has a characteristic non-u niform emission spectral band, comprising a first peak significant emission at around 410-480 nm and a second significant emission peak at around 540-560 nm.
  • LED white electroluminescent diode
  • the electro-optical blocking device 100 comprises a pair of optical cells 10, 20 superimposed on one another.
  • the first optical cell 10 comprises, between two blades of optically transparent material 12, 13 (for example optical glass slides), a layer of material 14 (the composition of which is discussed in detail below) switchable between two characteristic states ( homeotropic (El) and planar (E2)).
  • the layer of the material 14 has a thickness of between 3 and 5 ⁇ .
  • the electro-optical shutter device 100 also comprises means 15 for applying a voltage signal V between two electrodes each disposed on one of the two blades 12, 13. For example, each blade
  • V are configured to selectively reach one of E1 and E2 to the first cell 10, depending on the applied voltage signal. They include, for example, a voltage source 16 generating a variable amplitude voltage signal, for example between 0V and 35V) and a switch 17 enabling the voltage signal to be applied or not.
  • V on the electrodes according to its position (open position or closed position).
  • the frequency of the applied voltage signal is in the range of 0.5 Hz to 100 Hz.
  • the first material 14 comprises a host cholesteric liquid crystal, a guest chiral dopant and a guest neutral ichroic dye, with the following characteristics:
  • the birefringence is typically greater than 0.20;
  • the viscosity is typically less than or equal to 40 mm 2 / s at a temperature substantially equal to 20 ° C .;
  • a differential electrical permittivity ⁇ greater than 15 (the higher the value the lower the applied voltages, the differential dielectric permittivity ⁇ (without an iteration) is defined as the difference between the permittivities ⁇ and ⁇ // corresponding to the extraordinary waves and ord inary respectively);
  • the concentration is typically between 1 and 2% by weight of the material 14 so that the first material has a helical pitch in the range 450 to 460 nm (also called “Bragg wavelength”);
  • the concentration is typically between 2 and 2.5% by weight of the first material
  • the dichroic ratio is typically greater than or equal to 8.
  • the material 14 is in the form of several layers, each characterized by a particular orientation of the molecules according to a "director" (the director refers to the average orientation of the molecules in each layer).
  • the director of the different layers evolves to form a helix.
  • the pitch of this helix in English “pitch”, denoted by P
  • the pitch of the helix can be modified according to the concentration of chiral dopant in the mixture 14.
  • the choice of the neutral dichroic dye is conditioned by its absorption characteristic (as neutral as possible), its miscibility and its dichroic ratio.
  • the dichroic ratio or dichroic yield is defined by Al / A // for a given material thickness, where:
  • ⁇ Xj_ e ⁇ A ⁇ d : absorption coefficient for the extraordinary axis
  • V planar state
  • V2 a second level amplitude typically between 35 and 50 V, to reach the homeotropic state (E2) to the first cell 10 (for example when the switch 17 is closed).
  • the homeotropic state (E2) is substantially transparent and associated with a first transmittance value
  • the planar state (El) is substantially opaque and associated with a second transmittance value less than the first transmittance value.
  • the first transmittance value may be greater than or equal to 70% and the second Transmittance value may be equal to or less than 1%.
  • the contrast obtained in this spectral band is therefore optimal.
  • the first cellu 10 of the electro-optical shutter device 100 thus has a light intensity filtering function ensuring maximum attenuation in a first specific spectral band.
  • the second optical cell 20 comprises, between two blades of optically transparent material 22, 23 (for example optical glass slides), a layer of material 24 (the composition of which is discussed in detail below) switchable between two characteristic states ( homeotropic (El) and planar (E2)).
  • the layer of the material 24 is of thickness between 3 and 5 ⁇ .
  • the electro-optical shutter device 100 also comprises means 25 for applying a voltage signal V between two electrodes each disposed on one of the two blades 22, 23.
  • each blade 22, 23 comprises, on its inner surface, a layer of indium tin oxide (optically transparent and electrically conductive material) forming a conductive electrode (not shown).
  • the means 25 for applying the voltage signal V are configured to selectively reach one of the states E1 and E2 to the second cell 20, as a function of the applied voltage signal. They comprise, for example, a voltage source 26 generating a voltage signal of variable amplitude, for example between 0V and 35V) and a switch 27 enabling the voltage signal V to be applied or not to the electrodes as a function of its position. (open position or closed position).
  • the frequency of the applied voltage signal is in the range of 0.5 Hz to 100 Hz.
  • the first material 24 comprises a host cholesteric liquid crystal, a guest nematic liquid crystal, a guest neutral dichroic dye, with the following characteristics:
  • the birefringence is typically greater than 0.20; * the viscosity is typically less than or equal to 40 mm / s at a temperature substantially equal to 20 ° C;
  • a differential electrical permittivity ⁇ greater than 15 (the higher the value the lower the applied voltages, the differential dielectric permittivity ⁇ (without an iteration) is defined as the difference between the permittivities ⁇ and ⁇ // corresponding to the extraordinary waves and ord inary respectively);
  • the concentration is between 14 and 20% by weight of the material 24 so that the material 24 has a helical pitch in the range 550 to 580 nm (Bragg wavelength);
  • the concentration is typically between 2 and 2.5% by weight of the first material
  • the dichroic ratio is typically greater than or equal to 8.
  • V2 a second level of amplitude typically between 35 and 50 V, to reach the homeotropic state (E2) to the first cell 20 (for example when the switch 27 is closed).
  • the homeotropic state (E2) is substantially transparent and associated with a first transmittance value
  • the planar state (El) is substantially opaque and associated with a second transmittance value less than the first transmittance value.
  • the first transmittance value may be greater than or equal to 70% and the second transmittance value may be equal to or less than 1%.
  • the contrast obtained in this spectral band is therefore optimal.
  • the second cell 20 of the electro-optical shutter device 100 thus also has a light intensity filtering function ensuring maximum attenuation in a second specific spectral band, but complementary to the first band.
  • nematic liquid crystal contained in the cell 20 in particular that will allow here to define the position of the filter in the spectral band by acting on the pitch of the helix of the material (as explained later in connection with the figures 3 and 4).
  • the idea is to obtain an optimal blocking (attenuation) state in the planar state (El), by combining two effects: absorption and reflection. This is possible by optimizing, in particular, the size of the pitch of the helix (Bragg length), the birefringence and the concentration of neutral ichroic dye of each cell, aiming to optimize the absorption of the planar state (El) and the achromatization of said cell as a mirror.
  • the electro-optical blocking device 100 has a filtering function of complementary light intensity over the entire visible spectral band, as illustrated in FIGS. 3 and 4.
  • FIG. 3 represents a reflection spectrogram for the planar state (El) of the cells 10 and 20 taken separately: the neck 310 corresponds to the spectral response of the first cell 10 and the neck 320 corresponds to the spectral response of the second cell 20 of the electro-optical shutter device 100. As to FIG 4, it represents the reflection spectrogram resulting from the superposition of these two optical cells 10, 20 (curve 400).
  • the spectral responses show the impact of the selected parameters on the blocking state obtained for each of the two optical cells 10, 20 in the planar regime (El).
  • the innovative nature of the invention is based on the fact that three types of parameters taken in combination are used to optimize the performances of the blocking state of the device 100, and on distinct ranges of values for each cell 10. , 20 to provide maximum attenuation in specific and complementary spectral bands in the visible.
  • the choice of these three types of parameters, the specification of their ranges of values and the combination of two specific and complementary chromatic cells is at the heart of the inventive concept.
  • These three Parameter types are (a) the birefringence of the host liquid crystal, (b) the pitch value of the helix, and (c) the concentration and dichroic ratio of the ichroic dye.
  • the parameters chosen for the cell 10 allow to obtain a reflection of the incident light on a relatively wide spectral band between about 400 and 520 nm (curve 310). Those chosen for the cell 20 make it possible to obtain a reflection of the incident light over a relatively wide spectral band of between approximately 500 and 600 nm (curve 320). It is the pitch of the propeller in particular that determines the position of the filter in the spectral band. The bandwidth is cond ition Avenue in particular by the level of birefringence of the cell.
  • the overlap of the two spectral responses is essential to cover the entire visible band without resorting to the use of an additional filter.
  • a superposition of two semi-reflective Bragg mirrors in two spectral bands complementary to the visible and which overlap is essential to cover the entire visible band without resorting to the use of an additional filter.
  • the idea here is to optimize the performance of the blocking state of each cell so as to achieve maximum attenuation of the incident light, by simultaneously combining the absorption and reflection effects by a clever combination of the parameters of the present invention. -above.
  • the level of absorption of the cell is in particular a function of the thickness of the optical cell and the dopant concentration.
  • a blanket of the entire visible band requires three filters.
  • a coverage of the visible band from two filters therefore assumes the broadening of the bandwidth of the two selected filters and their optimal coverage as shown in FIG. 4.
  • the thickness of the material layers 14 and 24 (typically between 3 and 5 ⁇ ) is chosen as a function of the desired shutter response time and voltage level (between 35 and 50V for example to switch from the planar state). in the homeotropic state).
  • a layer of polymer (not shown in the figures) having not undergone any surface treatment (such as brushing for example) may be deposited thereon.
  • a layer has a relatively rough surface that reduces the scattering of incident light, hence its anti-diffusing function.
  • the chiral dopant contained in the cell 10 is of right chirality and that the cholesteric liquid crystal of the material contained in the cell 20 is of left chirality (or vice versa).
  • the materials contained in the cells 10 and 20 are likewise chirality.
  • the electro-optical shutter device 100 further comprises a half wave plate disposed between the cells 10 and 20 to obtain the same effect.
  • compositions makes it possible to envisage a particularly interesting solution for a shutter for a viewfinder, particularly suitable for the lights emitted by the white LEDs.
  • a shutter for a viewfinder
  • Numerous other uses of the invention may be envisaged without departing from the scope of the invention, such as for example for producing a pair of anti-glare glasses, a shutter (or a cell) with liquid crystals. variable transmission rate, a pair of 3D active glasses, etc.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Liquid Crystal (AREA)

Abstract

Il est proposé un dispositif d'obturation électro-optique comprenant un couple de cellules optiques superposées. Une première cellule (10) comprend un premier matériau comprenant un cristal liquide cholestérique hôte, un dopant chiral invité de 1 et 2 % en poids du premier matériau pour que le premier matériau ait un pas d'hélice compris dans la plage 450 nm à 460 nm, ainsi qu'un colorant dichroïque neutre invité. Une seconde cellule (20) comprend un second matériau comprenant un second cristal liquide cholestérique hôte, un second colorant dichroïque neutre invité, et un cristal liquide nématique invité ayant une concentration comprise entre 14 et 20 % en poids du second matériau pour que le second matériau ait un pas d'hélice compris dans la plage 550 nm à 580 nm.

Description

Dispositif d'obturation électro-optique à double état de transmission optimisé sur l'ensemble de la bande spectrale du visible
1. DOMAINE DE L'INVENTION
Le domaine de l'invention est celui de la conception et la réalisation de composants optiques mettant en œuvre des matériaux à base de cristal liquide.
Plus précisément, l'invention concerne la réalisation d'u n d ispositif d'obtu ration électro-optique (aussi appelés atténuateurs-obtu rateurs optiques) utilisant des mélanges à base de cristal liquide, et en particulier un dispositif d'obturation électro-optique à deux états de transmission permettant d'atteindre des niveaux de contraste élevés. Il s'agit de dispositifs (atténuateurs/modulateurs de lumière) sans polariseur, utilisant un mélange composé d'un cristal liqu ide cholestique hôte et d'un colorant dich roïque neutre invité. U n cristal liquide cholestérique peut être obtenu soit à partir d'un cristal liquide nématique constitué de molécules chirales soit d'un cristal liquide nématique pur auquel on a ajouté un dopant ch iral. Pour de tels dispositifs, il existe un besoin de disposer de deux états de transmission avec des niveaux de contraste élevés, et en particulier d'un état bloquant optimisé de façon à réaliser une atténuation maximale de la lu mière incidente sur une large bande spectrale couvant tout le spectre visible (compris entre 400 et 700 nm).
L'invention s'applique notamment, mais non exclusivement, à la réalisation d'obtu rateur de viseur de nuit, de lunettes anti-éblouissement, lunettes 3D actives et obturateurs programmables rapides, pan neaux d'affichages à cristaux liqu ides ...
Le dispositif selon l'invention est particulièrement bien adapté, mais non exclusivement, aux sources lumineuses blanches de synthèse, comme par exemple les diodes électroluminescentes (LED) blanches, qui présentent une bande spectrale d'émission non-uniforme.
2. ARRIÈRE-PLAN TECHNOLOGIQUE
La plupart des dispositifs d'obturation électro-optiques utilisés de nos jou rs sont réalisés à base de cristaux liquides, dont les propriétés optiques (comme la biréfringence par exemple) peuvent être modifiées en leur appliquant un champ électrique. Pour obtenir un double état de transmission sur l'ensemble de la bande spectrale du visible, les dispositifs d'obturation en général comprennent un ensemble de trois filtres chromatiques (RVB) superposés tels que : un premier filtre comprenant un premier matériau à base de cristal liquide cholestétrique choisi de façon à réfléchir la lumière incidente sur u ne première plage de longueur d'onde donnée (correspondant à la couleur Rouge par exemple), un deuxième filtre comprenant un deuxième matériau à base de cristal liqu ide cholestétrique choisi de façon à réfléchir la lumière incidente sur une deuxième plage de longueur d'onde donnée (correspondant à la couleur Verte par exemple), et un troisième filtre comprenant u n troisième matériau à base de cristal liquide cholestétrique choisi de façon à réfléchir la lumière incidente sur une troisième plage de longueurs d'onde donnée (correspondant à la couleur Bleue par exemple).
Toutefois, l'assemblage de trois filtres de couleurs distinctes implique un dispositif de grande épaisseur, ce qui n'est pas optimal en termes d'encombrement et de poids. De plus, ce type dispositif d'obturation ne semble pas bien adapté pour assu rer un fort contraste d'atténuation.
On connaît, dans l'état de la technique, comme illustré dans le document Chun-Ta Wang and Tsu ng-Hsien Lin, "Bistable reflective polarizer-free optical switch based in dye- doped cholesteric liquid crystal" (Optical Material Express, 2011, Vol.l, N°8 - 2011), une solution consistant à combiner, au sein d'une même cellule optique, un matériau à base de cristal liquide cholestérique avec u n dopant dichroïque, afin de combiner les deux effets souhaités. Cet article propose d'exploiter et de commuter entre deux états stables obtenus avec un pas d'hélice de 220 nm : u n état planaire, considéré comme l'état opaque (« dark state »), et u n état transparent (« bright state »).
Mais cet article ne cherche pas à obtenir un état bloquant optimal dans l'état planaire de façon à réaliser une atténuation maximale sur une large bande spectrale couvant tout le visible.
3. OBJECTIFS DE L'INVENTION
L'invention, dans au moins un mode de réalisation, a notamment pour objectif de pallier ces différents inconvénients de l'état de la technique. Plus précisément, dans au moins un mode de réalisation de l'invention, un objectif est de fournir un dispositif d'obturation électro-optique à deux états de transmission (état planaire et homéotrope) contraste d'atténuation élevé, sur toute la bande spectrale visible.
Dans au moins un autre mode de réalisation de l'invention, un objectif est de fournir un dispositif d'obturation électro-optique qui soit simple et peu coûteux à mettre en œuvre.
4. EXPOSÉ DE L'INVENTION
Dans un mode de réalisation particulier de l'invention, il est proposé un dispositif d'obturation électro-optique comprenant un couple de cellules optiques superposées telles que : une première cellule dudit couple comprend un premier matériau comprenant un premier cristal liquide cholestétrique hôte, un dopant chiral invité et un premier colorant dichroïque neutre invité, telle que :
* la biréfringence du premier cristal liquide cholestétrique est supérieure à 0,20 ;
* la concentration du dopant chiral est comprise entre 1 et 2 % en poids du premier matériau pour que le premier matériau ait un pas d'hélice compris dans la plage 450 nm à 460 nm;
* le premier colorant dichroïque neutre a une concentration comprise entre 2 et
2,5% en poids du premier matériau et un rapport dichroïque supérieur ou égal à 8 ;
une seconde cellule dudit couple comprend un second matériau comprenant un second cristal liquide cholestétrique hôte, un cristal liquide nématique invité, et un second colorant dichroïque neutre invité, telle que :
* la biréfringence du second cristal liquide cholestérique est supérieure à 0,20 ;
* la concentration du cristal liquide nématique est comprise entre 14 et 20 % en poids du second matériau pour que le second matériau ait un pas d'hélice compris dans la plage 550 nm à 580 nm ;
* le second colorant dichroïque neutre a une concentration comprise entre 2 et
2,5% en poids du second matériau et un rapport dichroïque supérieur ou égal à 8. Ainsi, il est proposé un dispositif d'obturation électro-optique combinant deux matériaux à cristal liquide de compositions spécifiques, qui, lorsqu'ils sont adressés électriquement de manière appropriée, permet de réaliser une fonction de filtrage d'intensité lu mineuse complémentaire sur toute la bande spectrale visible.
Le principe de l'invention consiste à agir sur trois types de paramètres pris en combinaison pour optimiser les performances de l'état bloquant du dispositif, et sur des plages de valeu rs distinctes pour chaque cellule pour assurer une atténuation maximale dans des bandes spectrales spécifiques et complémentaires dans le visible. Le choix de ces trois types de paramètres, la spécification de leurs plages de valeurs et la combinaison de deux cellu les ch romatiques spécifiques et complémentaires, est au cœur du concept inventif.
Ces trois types de paramètres sont (a) la biréfringence du cristal liquide hôte, (b) la valeur du pas de l'hélice, et (c) la concentration et le rapport dich roïque du colorant dichroïque.
L'idée est d'optimiser les performances de l'état bloquant de chaque cellule de façon à réaliser une atténuation maximale de la lumière incidente, en combinant simultanément les effets d'absorption et de réflexion grâce une combinaison astucieuse de ces paramètres.
La combinaison d'une biréfringence élevée, d'un pas d'hélice adapté, de l'utilisation d'un colorant dichroïque neutre, a pou r effet d'obtenir une optimisation de l'absorption et la réflexion de l'état planaire, de sorte permettre la réalisation de deux miroirs de Bragg semi-réfléchissants dans deux bandes spectrales complémentaires du visible.
Enfin l'utilisation de deux filtres optiques uniquement permet de réduire le poids du dispositif, ainsi que sont coût de fabrication, en réduisant la consommation électrique.
Ainsi, ce mode de réalisation particulier de l'invention repose su r une approche tout à fait nouvelle et inventive basée sur une combinaison de deux matériaux ayant chacun un jeu de paramètres spécifique permettant de répondre à la fois à des contraintes de faible tension de commande et de temps de réponse des cellules optiques, tout en optimisant l'état bloquant du dispositif d'obturation électro-optique sur une bande spectrale couvant tout le visible.
Selon un aspect particulier de l'invention, chacune desdites première et seconde cellules comprend, entre deux lames de matériau optiquement transparent, respectivement une couche dudit premier et second matériau d'épaisseur comprise entre
3 et 5 μιη.
Ainsi, on optimise l'absorption de chaque cellule optique et donc les performances du dispositif.
Selon un aspect particulier de l'invention, le premier matériau est de chiralité droite et le second matériau est de chiralité gauche, ou inversement.
On entend par chiralité gauche ou chiralité droite, l'état de polarisation circulaire gauche ou droite respectivement du matériau considéré.
Ainsi, en plus de constituer un complément d'atténuation dans l'état bloquant du dispositif, on tire profit de la complémentarité de polarisations offerte par les matériaux pour pouvoir séparer au maximum les deux bandes spectrales de réflexion de façon à couvrir l'ensemble du visible tout en assurant un recouvrement minimal suffisant des deux bandes. La couverture de la bande visible à partir des deux filtres optiques (cellules) suppose effectivement un élargissement de la bande des deux filtres et leur recouvrement partiel.
Selon une variante de mise en œuvre, les premier et second matériaux sont de même chiralité et une lame demi-onde est disposée entre lesdites première et seconde cellules.
Cette variante permet d'utiliser deux cristaux liquides cholestériques hôte de même chiralité (c'est-à-dire de même polarisation circulaire) et de les rendre complémentaires du point de vue filtrage spectral grâce la lame demi-onde.
Selon une caractéristique particulière, les premier et second cristaux liquide cholestétrique hôtes possèdent chacun :
une viscosité inférieure ou égale à 40 mm2/s à une température sensiblement égale à 20°C;
- une permittivité diélectrique différentielle supérieure à 15. De cette façon, on améliore encore les performances du dispositif. Le fait de disposer permittivité diélectrique différentielle supérieure à permet de réduire les valeurs de tension appliquées pour atteindre l'état homéotrope.
Selon une caractéristique particulière, les deux lames de matériau optiquement transparent de chacune des première et seconde cellules sont recouvertes d'une couche anti-diffusion à base de polymère.
Ceci permet d'éviter toute diffusion parasite de lumière sur les lames de matériaux optiquement transparents. Ces dernières peuvent être à base oxyde d'indium dopé à l'étain (ITO) par exemple (mais d'autres types de matériau réalisation la même fonction peuvent être bien sûr envisagés). La couche anti-diffusion est une couche de polymère qui n'a subi aucun traitement de surface après dépôt, comme un brossage par exemple. Une couche non brossée présente une surface relativement rugueuse qui permet de réduire la diffusion de la lumière incidente.
Selon un aspect particulier de l'invention, le dispositif comprend des moyens d'application d'un signal de tension électrique entre deux électrodes optiquement transparentes disposées chacune sur l'une des deux lames de matériau optiquement transparent de chacune des première et seconde cellules, les moyens d'application étant configurés pour faire atteindre sélectivement un des états suivants à ladite première et seconde cellule, en fonction du signal de tension appliqué :
- un état homéotrope sensiblement transparent et associé à une première valeur de transmittance,
un état planaire sensiblement opaque et associé à une deuxième valeur de transmittance inférieure à la première valeur de transmittance.
Ainsi, ce dispositif, lorsqu'il est adressé électriquement de manière appropriée, permet, pour chaque cellule, la création de deux états :
- un état planaire qui correspond selon l'invention à l'état bloquant de la cellule obtenu par combinaison des effets d'absorption et de réflexion (comme discutés plus haut), permettant la réalisation d'un miroir de Bragg semi-réfléchissant dans une bande spectrale donnée dans le visible, chaque cellule du couple de cellules superposées étant configurée pour que l'état passant soit obtenu sur l'ensemble de la bande spectrale du visible ; - un état homéotrope qui correspond selon l'invention à l'état passant de la cellu le.
Les caractéristiques du dispositif permettent ainsi d'atteind re un niveau de contraste entre l'état bloquant et l'état passant relativement élevé. Ces états sont maintenus par l'application d'un champ électrique ou bien sont des états stables intrinsèques au matériau.
Selon un aspect particulier de l'invention, les moyens d'application sont configurés pour que le signal de tension possède :
un premier niveau (VI) d'amplitude égale à 0 V, pou r faire atteindre l'état planaire à auxdites première et second cellules ;
- un deuxième niveau (V2) d'amplitude comprise entre 35 et 50 V, pour faire atteindre l'état homéotrope auxdites première et second cellules.
Ainsi, pour une longueu r d'onde comprise entre 400 et 700 nm, la première valeur de transmittance peut être supérieure ou égale à 70% et la deuxième valeur de transmittance peut être égale ou inférieu re à 1%. Le contraste obtenu dans cette bande spectrale est donc optimal.
Diverses utilisations du dispositif précité sont possibles, et notamment (mais non exclusivement) :
pour la réalisation d'un obturateur de viseur de nuit,
pour la réalisation d'une paire de lunettes anti-éblouissement,
- pour la réalisation d'une paire de lunettes 3D actives,
pour la réalisation d'un panneau d'affichage.
5. LISTE DES FIGU RES
D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description suivante, don née à titre d'exemple indicatif et non limitatif, et des dessins annexés, dans lesquels :
la figure 1 présente la structu re simplifiée d'un d ispositif d'obtu ration électro-optique selon un mode de réalisation particu lier de l'invention ;
la figure 2 illustre la structure connue d'u n cristal liquide cholestérique ; la figure 3 représente un spectrogramme de réflexion pour l'état planaire de deux cellu les optiques (filtres) complémentaires, selon un mode de réalisation particulier de l'invention ;
la figure 4 représente u n spectrogramme de réflexion pour l'état planaire du dispositif selon l'invention, résultant de la superposition des deux cellules optiques (filtres) illustrées à la figure 3.
6. DESCRIPTION DÉTAILLÉE
Sur toutes les figures du présent document, les éléments et étapes identiques sont désignés par une même référence numérique.
On présente, en relation avec la figure 1, la structure simplifiée d'un dispositif d'obtu ration électro-optique 100 selon un mode de réalisation particulier de l'invention.
On considère, par exemple, que la lumière incidente (représentée par la flèche A), qui arrive sur le dispositif d'obturation 100, est non polarisée et présente une bande spectrale large dans le visible, sensiblement comprise entre 400 nm et 700 nm. On considère, par exemple, qu'il s'agit d'une lumière blanche de synthèse issue d'une d iode électroluminescente (LED) blanche : elle présente u ne bande spectrale d'émission caractéristique non-u niforme, comprenant un premier pic d'émission significatif aux alentours de 410-480 nm et un deuxième pic d'émission sign ificatif aux alentours de 540- 560 n m.
Le dispositif d'obtu ration électro-optique 100 comprend un couple de cellules optiques 10, 20 superposées l'une sur l'autre.
Première cellule optique
La première cellule optique 10 comprend, entre deux lames de matériau optiquement transparent 12, 13 (par exemple des lames de verre optique), une couche de matériau 14 (dont la composition est discutée en détail ci-après) commutable entre deux états caractéristiques (homéotrope (El) et planaire (E2)). La couche du matériau 14 est d'épaisseur comprise entre 3 et 5 μιη. Le dispositif d'obturation électro-optique 100 comprend également des moyens 15 d'application d'un signal de tension V entre deux électrodes disposées chacune sur l'une des deux lames 12, 13. Par exemple, chaque lame
12, 13 comprend, sur sa su rface interne, une couche d'oxyde d'indiu m-étain (matériau optiquement transparent et conducteu r d'électricité, aussi appelé « ITO ») formant électrode conductrice (non représentée). Les moyens 15 d'application du signal de tension
V sont configu rés pou r faire atteindre sélectivement u n des états El et E2 à la première cellule 10, en fonction du signal de tension appliqué. Ils comprennent par exemple une source de tension 16 générant u n signal de tension d'amplitude variable, par exemple entre 0V et 35V) et u n interrupteur 17 permettant d'appliquer ou non le signal de tension
V sur les électrodes en fonction de sa position (position ouverte ou position fermée). La fréquence du signal de tension appliqué est comprise en 0,5 Hz et 100 Hz.
Dans une implémentation particulière, le premier matériau 14 comprend un cristal liquide cholestétrique hôte, un dopant ch iral invité et un colorant d ichroïque neutre invité, avec les caractéristiques suivantes :
pour le cristal liquide cholestétrique hôte :
* la biréfringence est typiquement supérieure à 0,20 ;
* la viscosité est typiquement inférieure ou égale à 40 mm2/s à une température sensiblement égale à 20°C;
* une permittivité d iélectrique différentielle Δε supérieure à 15 (plus la valeur est élevée plus les tensions appliquées sont faibles ; la permittivité diélectrique différentielle Δε (sans un ité) est définie comme la différence entre les permittivités εΐ et ε// correspondant aux ondes extraordinaire et ord inaire respectivement) ;
pour le dopant chiral invité:
* la concentration est typiquement comprise entre 1 et 2 % en poids du matériau 14 pour que le premier matériau ait un pas d'hélice compris dans la plage 450 à 460 nm (aussi appelée « longueur d'onde de Bragg »);
* le type du dopant chiral utilisé : S811 (chiralité gauche) ou R811 (chiralité d roite) ; pour le colorant dichroïque neutre invité :
* la concentration est typiquement comprise entre 2 et 2,5% en poids du premier matériau ;
* le rapport dichroïque est typiquement supérieur ou égal à 8.
Le matériau 14 se présente sous la forme de plusieurs couches, caractérisées chacu ne par une orientation particulière des molécules selon u n « directeur » (le directeur désigne l'orientation moyenne des molécules dans chaque couche). Comme illustré sur la figure 2, le directeur des différentes couches évolue de manière à former une hélice. Par définition, le pas de cette hélice (en anglais « pitch », noté P) correspond à la longueur (nm) entre deux couches Cl, C2 de même directeur (i.e. même direction et même sens Dl = D2). Le pas de l'hélice peut être modifié selon la concentration de dopant chiral dans le mélange 14.
Le choix du colorant dichroïque neutre est conditionné par sa caractéristique d'absorption (la plus neutre possible), sa miscibilité et son rapport dichroïque. On définit le rapport dichroïque ou rendement dichroïque par Al / A// pour une épaisseur de matériau donnée, où :
<Xj_ = e~A±^d : coefficient d'absorption pour l'axe extraordinaire ;
et// = e~A//^d: coefficient d'absorption pour l'axe ordinaire ;
avec d l'épaisseur du matériau traversé et C la concentration du colorant.
Ainsi, il est possible d'ajuster le taux de transmission de la cellule 10 en sélectionnant la concentration du colorant (C), l'épaisseur de matériau 14 et le rendement dichroïque (Al / A//).
L'adressage de l'état planaire (El) et de l'état homéotrope (E2) pour la cellule 10 est réalisé en fonction du signal de tension V appliqué à la cellule 10 via les moyens d'application 15. Dans une implémentation particulière, les moyens d'application 15 sont configurés pour que le signal de tension V possède :
un premier niveau (VI) d'amplitude égale à 0 V, pour faire atteindre l'état planaire (El) à la première cellule 10 (par exemple lorsque l'interrupteur 17 est ouvert) ;
un deuxième niveau (V2) d'amplitude typiquement comprise entre 35 et 50 V, pour faire atteindre l'état homéotrope (E2) à la première cellule 10 (par exemple lorsque l'interrupteur 17 est fermé).
L'état homéotrope (E2) est sensiblement transparent et associé à une première valeur de transmittance, et l'état planaire (El) est sensiblement opaque et associé à une deuxième valeur de transmittance inférieure à la première valeur de transmittance.
Pour une longueur d'onde comprise entre 400 et 700 nm de la lumière incidente, la première valeur de transmittance peut être supérieure ou égale à 70% et la deuxième valeur de transmittance peut être égale ou inférieure à 1%. Le contraste obtenu dans cette bande spectrale est donc optimal.
La première cellu le 10 du dispositif d'obturation électro-optique 100 présente donc une fonction de filtrage d'intensité lumineuse assurant une atténuation maximale dans une première bande spectrale spécifique.
C'est le dopant chiral contenu dans le matériau de la cellule 10 notamment qui permet ici de définir la position du filtre dans la bande spectrale (comme expliqué plus loin en relation avec les figures 3 et 4).
Deuxième cellule optique
La deuxième cellule optique 20 comprend, entre deux lames de matériau optiquement transparent 22, 23 (par exemple des lames de verre optique), une couche de matériau 24 (dont la composition est discutée en détail ci-après) commutable entre deux états caractéristiques (homéotrope (El) et planaire (E2)). La couche du matériau 24 est d'épaisseur comprise entre 3 et 5 μιη. Le dispositif d'obturation électro-optique 100 comprend également des moyens 25 d'application d'un signal de tension V entre deux électrodes disposées chacune sur l'une des deux lames 22, 23. Par exemple, chaque lame 22, 23 comprend, sur sa su rface interne, une couche d'oxyde d'ind ium-étain (matériau optiquement transparent et conducteur d'électricité) formant électrode conductrice (non représentée). Les moyens 25 d'application du signal de tension V sont configurés pour faire atteindre sélectivement un des états El et E2 à la deuxième cellule 20, en fonction du signal de tension appliqué. Ils comprennent par exemple une source de tension 26 générant un signal de tension d'amplitude variable, par exemple entre 0V et 35V) et un interrupteu r 27 permettant d'appliquer ou non le signal de tension V sur les électrodes en fonction de sa position (position ouverte ou position fermée). La fréquence du signal de tension appliqué est comprise en 0,5 Hz et 100 Hz.
Dans une implémentation particulière, le premier matériau 24 comprend un cristal liquide cholestétrique hôte, un cristal liquide nématique invité, un colorant dichroïque neutre invité, avec les caractéristiques suivantes :
pour le cristal liquide cholestétrique hôte :
* la biréfringence est typiquement supérieure à 0,20 ; * la viscosité est typiquement inférieure ou égale à 40 mm /s à une température sensiblement égale à 20°C;
* une permittivité d iélectrique différentielle Δε supérieure à 15 (plus la valeur est élevée plus les tensions appliquées sont faibles ; la permittivité diélectrique différentielle Δε (sans un ité) est définie comme la différence entre les permittivités εΐ et ε// correspondant aux ondes extraordinaire et ord inaire respectivement) ;
pour le cristal liquide nématique invité :
* la concentration est comprise entre 14 et 20 % en poids du matériau 24 pour que le matériau 24 ait un pas d'hélice compris dans la plage 550 à 580 nm (longueur d'onde de Bragg) ;
pour le colorant dichroïque neutre invité :
* la concentration est typiquement comprise entre 2 et 2,5% en poids du premier matériau
* le rapport dichroïque est typiquement supérieur ou égal à 8.
L'adressage de l'état planaire (El) et de l'état homéotrope (E2) pour la cellule 20 est réalisé en fonction du signal de tension V appliqué à la cellule 20 via les moyens d'application 25. Dans une implémentation particu lière, les moyens d'application 25 sont configurés pou r que le signal de tension V possède :
- un premier n iveau (VI) d'amplitude égale à 0 V, pour faire atteindre l'état planaire
(El) à la première cellule 20 (par exemple lorsque l'interrupteu r 27 est ouvert) ;
un deuxième niveau (V2) d'amplitude typiquement comprise entre 35 et 50 V, pour faire atteind re l'état homéotrope (E2) à la première cellule 20 (par exemple lorsque l'interrupteur 27 est fermé).
L'état homéotrope (E2) est sensiblement transparent et associé à u ne première valeur de transmittance, et l'état planaire (El) est sensiblement opaque et associé à une deuxième valeur de transmittance inférieure à la première valeur de transmittance.
Pour u ne longueur d'onde comprise entre 400 et 700 nm de la lumière incidente, la première valeur de transmittance peut être supérieure ou égale à 70% et la deuxième valeur de transmittance peut être égale ou inférieure à 1%. Le contraste obtenu dans cette bande spectrale est donc optimal. La seconde cellule 20 du dispositif d'obturation électro-optique 100 présente donc également une fonction de filtrage d'intensité lumineuse assurant une atténuation maximale dans une deuxième bande spectrale spécifique, mais complémentaire de la première bande.
C'est la quantité de cristal liquide nématique contenu dans la cellule 20 notamment qui va permettre ici de définir la position du filtre dans la bande spectrale en jouant sur le pas de l'hélice du matériau (comme expliqué plus loin en relation avec les figures 3 et 4).
L'idée consiste à obtenir u n état bloquant (atténuation) optimal dans l'état planaire (El), en combinant deux effets : l'absorption et la réflexion. Ceci est possible en optimisant notamment la taille du pas de l'hélice (longueur de Bragg), la biréfringence et la concentration de colorant d ichroïque neutre de chaque cellule, visant à optimiser l'absorption de l'état planaire (El) et l'achromatisation de ladite cellule en tant que miroir.
Ainsi, en combinant deux cellules optiques avec de tels paramètres, le dispositif d'obtu ration électro-optique 100 selon l'invention présente une fonction de filtrage d'intensité lumineuse complémentaire su r toute la bande spectrale visible, comme illustré su r les figures 3 et 4.
La figure 3 représente u n spectrogramme de réflexion pour l'état planaire (El) des cellules 10 et 20 prises séparément : la cou rbe 310 correspond à la réponse spectrale de la première cellule 10 et la cou rbe 320 correspond à la réponse spectrale de la deuxième cellule 20 du d ispositif d'obturation électro-optique 100. Quant à la figu re 4, elle représente le spectrogramme de réflexion résultant de la superposition de ces deux cellules optiques 10, 20 (courbe 400).
Les réponses spectrales montrent l'impact des paramètres choisis sur l'état bloquant obtenu pour chacune des deux cellu les optiques 10, 20 en régime planaire (El).
On rappelle que le caractère innovant de l'invention repose sur le fait qu'on agit sur trois types de paramètres pris en combinaison pour optimiser les performances de l'état bloquant du dispositif 100, et sur des plages de valeurs distinctes pour chaque cellule 10, 20 pour assurer une atténuation maximale dans des bandes spectrales spécifiques et complémentaires dans le visible. Le choix de ces trois types de paramètres, la spécification de leurs plages de valeurs et la combinaison de deux cellu les chromatiques spécifiques et complémentaires, est au cœur du concept inventif. Ces trois types de paramètres sont (a) la biréfringence du cristal liquide hôte, (b) la valeur du pas de l'hélice, et (c) la concentration et le rapport dichroïque du colorant d ichroïque.
Les paramètres choisis pour la cellu le 10 permettent d'obtenir une réflexion de la lumière incidente sur une bande spectrale relativement large comprise entre 400 et 520 nm environ (courbe 310). Ceux choisis pour la cellule 20 permettent d'obtenir une réflexion de la lumière incidente sur une bande spectrale relativement large comprise entre 500 et 600 nm environ (courbe 320). C'est le pas de l'hélice notamment qui détermine la position du filtre dans la bande spectrale. La largeur de bande est cond itionnée notamment par le niveau de biréfringence de la cellule.
Le chevauchement des deux réponses spectrales est primordial pour couvrir toute la bande visible sans avoir recours à l'utilisation d'un filtre supplémentaire. Par su perposition des deux cellules 10, 20, on réalise ainsi une superposition de deux miroirs de Bragg semi-réfléch issants dans deux bandes spectrales complémentaires du visible et qui se chevauchent.
L'idée ici est d'optimiser les performances de l'état bloquant de chaque cellule de façon à réaliser une atténuation maximale de la lumière incidente, en combinant simultanément les effets d'absorption et de réflexion grâce une combinaison astucieuse des paramètres d iscutés ci-dessus.
Le niveau d'absorption de la cellu le est notamment fonction de l'épaisseur de la cellule optique et la concentration de dopant.
En général, u ne couvertu re de toute la bande visible nécessite trois filtres. Pour certaines applications pour des raisons de poids, de coût et de qualité optique (on doit obtenir le moins de pertes de transmission optique possible), il faut réduire le nombre de filtres. U ne couverture de la bande visible à partir de deux filtres suppose donc l'élargissement de la bande passante des deux filtres sélectionné et leur recouvrement optimal comme cela est montré su r la figure 4.
L'épaisseur des couches de matériau 14 et 24 (typiquement comprise entre 3 et 5 μιη) est choisie en fonction du temps de réponse d'obturation et du niveau de tension désirés (entre 35 et 50V par exemple pour basculer de l'état planaire à l'état homéotrope).
Selon une particularité de l'invention, pour éviter les diffusions parasites au niveau de la couche d'oxyde d'indiu m-étain formant électrode conductrice, une couche de polymère (non représentée sur les figures) n'ayant subi aucun traitement de surface (tel qu'un brossage par exemple) peut être déposée sur celle-ci. Une telle couche présente une su rface relativement rugueuse qui permet de réduire la diffusion de la lumière incidente, d'où sa fonction anti-diffusante.
Selon une implémentation particulièrement avantageuse, on prévoit que le dopant chiral contenu dans la cellule 10 est de chiralité droite et que le cristal liquide cholestérique du matériau contenu dans la cellule 20 est de chiralité gauche (ou inversement). Ceci permet de tirer profit de la complémentarité des polarisations dans la zone où se chevauchent spectralement les deux filtres optiques, afin de pourvoir les écarter l'un de l'autre au maximu m.
Selon une implémentation en variante, les matériaux contenus dans les cellules 10 et 20 sont de même chiralité. Dans ce cas, le dispositif d'obturation électro-optique 100 comprend en outre une lame demi-onde disposée entre les cellules 10 et 20 afin d'obtenir le même effet.
Dans l'exemple illustré ici, la combinaison de compositions permet d'envisager une solution particulièrement intéressante d'obturateu r pour viseur de nu it, particulièrement bien adapté pou r les lumières émises par les LED blanches. De nombreuses autres utilisations de l'invention peuvent être envisagées sans sortir du cadre de l'invention, comme par exemple pour la réalisation d'une paire de lunettes anti-éblou issement, d'u n obturateur (ou une cellule) à cristaux liquides à taux de transmission variable, une paire de lunettes 3D actives, etc.

Claims

REVENDICATIONS
1. Dispositif d'obturation électro-optique caractérisé en ce qu'il comprend un cou ple de cellules optiques superposées telles que : - une première cellule (10) dudit cou ple comprend un premier matériau comprenant u n premier cristal liqu ide cholestétrique hôte, u n dopant chiral invité et u n premier colorant dichroïque neutre invité, telle que :
* la biréfringence du premier cristal liquide cholestétrique est supérieure à 0,20 ;
* la concentration du dopant chiral est comprise entre 1 et 2 % en poids du premier matériau pour que le premier matériau ait un pas d'hélice compris dans la plage
450 nm à 460 nm;
* le premier colorant dichroïque neutre a une concentration comprise entre 2 et
2,5% en poids du premier matériau et un rapport dichroïque supérieur ou égal à 8 ; - une seconde cellule (20) dudit couple comprend un second matériau comprenant u n second cristal liquide cholestétrique hôte, un cristal liquide nématique invité, et u n second colorant dich roïque neutre invité, telle que :
* la biréfringence du second cristal liquide cholestérique est supérieure à 0,20 ;
* la concentration du cristal liquide nématique est comprise entre 14 et 20 % en poids du second matériau pour que le second matériau ait un pas d'hélice compris dans la plage 550 nm à 580 nm ;
* le second colorant dichroïque neutre a une concentration comprise entre 2 et 2,5% en poids du second matériau et un rapport dich roïque supérieur ou égal à 8. 2. Dispositif selon la revendication 1, dans lequel chacune desdites première et seconde cellules comprend, entre deux lames de matériau optiquement transparent, respectivement une couche dudit premier et second matériau d'épaisseur comprise entre 3 et 5 μιη.
3. Dispositif selon l'une quelconque des revendications 1 et 2, dans lequel le premier matériau est de chiralité droite et le second matériau est de chiralité gauche, ou inversement.
4. Dispositif selon l'une quelconque des revendications 1 et 2, dans lequel les premier et second matériaux sont de même chiralité et une lame demi-onde est disposée entre lesd ites première et seconde cellules.
5. Dispositif selon l'une quelconque des revendications 1 à 4, dans lequel les premier et second cristaux liqu ides cholestétriques hôtes hôte possèdent chacu n :
une viscosité inférieure ou égale à 40 mm2/s à une température sensiblement égale à 20°C;
une permittivité diélectrique différentielle supérieure à 15.
6. Dispositif selon l'une quelconque des revend ications 2 à 5, dans lequel les deux lames de matériau optiquement transparent de chacu ne des première et seconde cellules sont recouvertes d'une couche anti-diffusion à base de polymère.
7. Dispositif selon l'une quelconque des revend ications 2 à 6, comprenant des moyens (15 ; 25) d'application d'u n signal de tension électrique entre deux électrodes optiquement transparentes disposées chacune sur l'u ne des deux lames de matériau optiquement transparent de chacune des première et seconde cellules, les moyens d'application étant configurés pou r faire atteind re sélectivement un des états suivants à ladite première et seconde cellule, en fonction du signal de tension appliqué :
un état homéotrope sensiblement transparent et associé à une première valeu r de transmittance,
un état planaire sensiblement opaque et associé à une deuxième valeur de transmittance inférieure à la première valeu r de transmittance.
8. Dispositif selon la revendication 7, dans lequel les moyens d'application sont configurés pou r que le signal de tension possède : un premier niveau (VI) d'amplitude égale à 0 V, pou r faire atteindre l'état planaire à auxdites première et second cellules ;
un deuxième niveau (V2) d'amplitude comprise entre 35 et 50 V, pour faire atteindre l'état homéotrope auxdites première et second cellules.
PCT/EP2017/057613 2016-04-01 2017-03-30 Dispositif d'obturation électro-optique à double état de transmission optimisé sur l'ensemble de la bande spectrale du visible WO2017167922A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1652857A FR3049727B1 (fr) 2016-04-01 2016-04-01 Dispositif d'obturation electro-optique a double etat de transmission optimise sur l'ensemble de la bande spectrale du visible
FR1652857 2016-04-01

Publications (1)

Publication Number Publication Date
WO2017167922A1 true WO2017167922A1 (fr) 2017-10-05

Family

ID=56741142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2017/057613 WO2017167922A1 (fr) 2016-04-01 2017-03-30 Dispositif d'obturation électro-optique à double état de transmission optimisé sur l'ensemble de la bande spectrale du visible

Country Status (2)

Country Link
FR (1) FR3049727B1 (fr)
WO (1) WO2017167922A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4508427A (en) * 1982-10-22 1985-04-02 International Standard Electric Corporation Liquid crystal display device
US20060088667A1 (en) * 2004-10-26 2006-04-27 Xerox Corporation Device with multiple liquid crystal layers
FR3021418A1 (fr) * 2014-05-22 2015-11-27 Inst Mines Telecom Telecom Bretagne Dispositif d'obturation electro-optique a double mode d'attenuation
WO2016139150A1 (fr) * 2015-03-03 2016-09-09 Institut Mines Telecom Matériau destiné à la réalisation d'un dispositif d'obturation électro-optique à trois états de transmission, dispositif et utilisations correspondants

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4508427A (en) * 1982-10-22 1985-04-02 International Standard Electric Corporation Liquid crystal display device
US20060088667A1 (en) * 2004-10-26 2006-04-27 Xerox Corporation Device with multiple liquid crystal layers
FR3021418A1 (fr) * 2014-05-22 2015-11-27 Inst Mines Telecom Telecom Bretagne Dispositif d'obturation electro-optique a double mode d'attenuation
WO2016139150A1 (fr) * 2015-03-03 2016-09-09 Institut Mines Telecom Matériau destiné à la réalisation d'un dispositif d'obturation électro-optique à trois états de transmission, dispositif et utilisations correspondants

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHUN-TA WANG; TSUNG-HSIEN LIN: "Bistable reflective polarizer-free optical switch based in dye-doped cholesteric liquid crystal", OPTICAL MATERIAL EXPRESS, vol. L, no. 8, 2011

Also Published As

Publication number Publication date
FR3049727B1 (fr) 2018-04-27
FR3049727A1 (fr) 2017-10-06

Similar Documents

Publication Publication Date Title
EP0872759B1 (fr) Dispositif d&#39;affichage à cristaux liquides destiné notamment à former un écran d&#39;affichage d&#39;images en couleur
EP2366125B1 (fr) Element optique a puissance variable
EP3146386B1 (fr) Dispositif d&#39;obturation électro-optique à double mode d&#39;atténuation
EP3452871B1 (fr) Lentille ophtalmique integrant une matrice active transparente a reseau desordonne
EP1074863A1 (fr) Dispositif optique à réflexion de Bragg et procédés pour sa fabrication
EP3265541A1 (fr) Matériau destiné à la réalisation d&#39;un dispositif d&#39;obturation électro-optique à trois états de transmission, dispositif et utilisations correspondants
CA2409619C (fr) Dispositif bistable d&#39;affichage en reflexion
WO2017167922A1 (fr) Dispositif d&#39;obturation électro-optique à double état de transmission optimisé sur l&#39;ensemble de la bande spectrale du visible
EP0384829B1 (fr) Ecran plat d&#39;affichage polychrome électroluminescent à effet mémoire
EP1430357B1 (fr) Dispositif d&#39;affichage bistable a cristal liquide nematique a masque optique perfectionne
FR2693004A1 (fr) Dispositif de collimation de faible encombrement, en particulier pour visuel de casque.
EP2745169A1 (fr) Procédé de réalisation d&#39;un dispositif de phase à base de cristal liquide twisté à structure optimisée fonctionnant en lumière non polarisée
WO2014187890A1 (fr) Dispositif à transmission de lumière variable à base de cristal liquide dichroïque
EP1174756B1 (fr) Ensemble d&#39;affichage comportant une cellule électro-optique et une cellule photovoltaique
EP0167424B1 (fr) Afficheur dichroique à cristal liquide à fort contraste lumineux
EP0176384B1 (fr) Ecran matriciel polychrome sans couplage entre les lignes et les colonnes
FR3021800A1 (fr) Dispositif d&#39;affichage reflectif a tres haute luminosite et a surface photovoltaique integree
WO2016075386A1 (fr) Cellule a cristal liquide cholesterique a reflectivite augmentee
WO2016066931A1 (fr) Cellule reflechissante a reflectivite modulable
WO2021205280A1 (fr) Dispositif de contrôle de la réflectivité infrarouge
EP1690130A1 (fr) Dispositif d&#39;affichage a ecran de type nematique bistable optimisant le blanc et procede de definition de ce dispositif
WO2015040289A1 (fr) Dispositif d&#39;affichage reflectif et photovoltaique
EP1209512A1 (fr) Dispositif d&#39;affichage réflectif à cristaux liquides présentant un contraste d&#39;affichage amélioré
EP1202109A1 (fr) Dispositif d&#39;affichage à cristaux liquides à coefficient de réflexion de la lumière élevé
CH631269A5 (fr) Procede de fabrication d&#39;un dispositif electrochrome par evaporation sous pression controlee et dispositif obtenu par ce procede.

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17713330

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17713330

Country of ref document: EP

Kind code of ref document: A1