WO2017167243A1 - 随机接入的方法及装置、计算机存储介质 - Google Patents

随机接入的方法及装置、计算机存储介质 Download PDF

Info

Publication number
WO2017167243A1
WO2017167243A1 PCT/CN2017/078862 CN2017078862W WO2017167243A1 WO 2017167243 A1 WO2017167243 A1 WO 2017167243A1 CN 2017078862 W CN2017078862 W CN 2017078862W WO 2017167243 A1 WO2017167243 A1 WO 2017167243A1
Authority
WO
WIPO (PCT)
Prior art keywords
extended
random access
length
access subframe
preamble sequence
Prior art date
Application number
PCT/CN2017/078862
Other languages
English (en)
French (fr)
Inventor
王雯芳
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017167243A1 publication Critical patent/WO2017167243A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/004Transmission of channel access control information in the uplink, i.e. towards network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • H04J13/0055ZCZ [zero correlation zone]
    • H04J13/0059CAZAC [constant-amplitude and zero auto-correlation]
    • H04J13/0062Zadoff-Chu

Definitions

  • the present invention relates to the field of communications, and in particular to a method and apparatus for random access and a computer storage medium.
  • the random access technology is an important technology for receiver access control in the communication system.
  • the receiver completes the uplink timing synchronization correction and user power adjustment through the random access procedure. And application for user resource requirements.
  • the uplink random access preamble of LTE uses a cyclic shift (Ncs) sequence of a ZC (Zadoff-Chu) sequence, and the random access preamble is derived based on the ZC sequence by selecting different cyclic shifts.
  • Ncs cyclic shift
  • ZC Zadoff-Chu
  • 1 is a schematic diagram of a format of a random access subframe in the related art. As shown in FIG. 1 , a random access subframe is composed of three parts, namely, a Cyclic Prefix (CP) part, a preamble sequence part, and protection. Guard Interval (GI for short).
  • CP Cyclic Prefix
  • GI Guard Interval
  • the existing LTE system supports five formats (Format), which are Format0-4, and each format corresponds to different cell coverage.
  • the cell coverage radius is determined by the cyclic shift of the sequence and the GI.
  • the cyclic shift determines whether the cell edge user can distinguish different cyclic shift windows.
  • the selection of the cyclic shift must ensure that the preamble sequence and the local sequence correlation peak of the cell edge user fall within the time window corresponding to the cyclic shift.
  • the length of the time window is T Ncs ;
  • Nzc is the length of the ZC sequence.
  • Nzc is 839.
  • Nzc is 139.
  • T SEQ is the length of the RACH leader sequence.
  • the cell coverage radius determined by Ncs can be obtained by the following formula.
  • the time reference to the receiver end already has a delay of D1.
  • D physical random access channel
  • the cell radius is also related to the GI.
  • the length of the CP and the GI determines that the random access channel (RACH) subframe of the cell edge user does not interfere with the subsequent subframe.
  • RACH random access channel
  • the cell radius is determined by the combination of Ncs and GI length:
  • CellRadius min(CellRadius1,CellRadius2)
  • the embodiment of the present invention provides a method and a device for random access, and a computer storage medium, to at least solve the problem that the cell coverage of the cell supported by the five formats supported by the LTE system in the related art is fixed, and the maximum can only support within 100 km. The problem of coverage.
  • a method for random access including: when the size of a cell coverage radius supported by a current random access subframe is greater than a preset radius, according to the current random connection
  • the size of the required coverage cell coverage radius of the preamble sequence in the incoming subframe determines the length of the preamble sequence in the extended random access subframe; according to the CP and GI required in the current random access subframe
  • the size of the coverage radius of the cell determines the length of the CP and the GI in the extended random access subframe; the sampling rate of the system in which the current random access subframe is located, the length of the preamble sequence, and the length of the CP
  • the extended preamble sequence obtained by the length of the GI, the extended GI, and the number of sampling points of the extended CP determining a time domain format of the extended random access subframe; and expanding according to the current random access subframe Determining the length of the preamble sequence and the frequency domain resource size of the preamble sequence to obtain the frequency
  • the number of the preamble sequences is one or more.
  • the length of the extended CP satisfies one of the following conditions: less than the length of the extended GI, greater than the length of the extended GI, and equal to the length of the extended GI.
  • the extended CP and the extended GI need to support the cell coverage half.
  • the size of the path is greater than or equal to the size of the cell coverage radius to be supported by the extended preamble sequence.
  • the length of the extended preamble sequence and the length of the extended CP and the extended GI are integer multiples of the current system subframe length.
  • the frequency domain format of the extended random access subframe includes a frequency domain ZC sequence and a protection carrier of the preamble sequence.
  • a random access apparatus including: a first determining module, configured to: when a size of a cell coverage radius supported by a current random access subframe is greater than a preset radius Determining, according to the size of the required cell coverage radius of the preamble sequence in the current random access subframe, the length of the preamble sequence in the extended random access subframe; the second determining module is configured to be according to the current The length of the cell coverage radius that is required to be supported by the CP and the GI in the random access subframe determines the length of the CP and the GI in the extended random access subframe; and the third determining module is configured to Determining the expanded sampling rate, the length of the preamble, the length of the CP, and the length of the GI, the extended preamble obtained by the length of the current random access subframe, the extended GI, and the number of samples of the extended CP are determined.
  • the fourth determining module is configured to: according to the length of the extended preamble sequence of the current random access subframe and the frequency domain resource of the preamble sequence
  • the frequency domain ZC sequence length of the extended preamble sequence obtained by the small is determined by the frequency domain format of the extended random access subframe
  • the sending module is configured to adopt the frequency domain format and/or time of the extended random access subframe.
  • the domain format sends a random access subframe.
  • the number of the preamble sequences is one or more.
  • the length of the extended CP satisfies one of the following conditions: less than the length of the extended GI, greater than the length of the extended GI, and equal to the length of the extended GI.
  • the size of the cell coverage radius supported by the extended CP and the extended GI is greater than or equal to the size of the cell coverage radius to be supported by the extended preamble sequence.
  • the length of the extended preamble sequence and the extended CP and extension is an integer multiple of the length of the current system subframe.
  • the frequency domain format of the extended random access subframe includes a frequency domain ZC sequence and a protection carrier of the preamble sequence.
  • a computer storage medium storing a computer program configured to perform the random access method described above is provided.
  • the size of the cell coverage radius supported by the current random access subframe is greater than the preset radius, according to the extended preamble sequence, the extended GI, and the extended CP.
  • the number of sampling points determines the time domain format of the extended random access subframe, and the length of the frequency domain ZC sequence of the extended preamble sequence obtained according to the length of the extended preamble sequence and the frequency domain resource size of the preamble sequence, and the extended length is determined. Randomly accessing the frequency domain format of the subframe, and then transmitting the random access subframe according to the frequency domain format and/or the time domain format of the extended random access subframe; thereby solving the five technologies supported by the LTE system in the related art.
  • the cell coverage of the cells supported by the format is fixed, and the problem of coverage within 100 km can be supported at most, and the effect of expanding the coverage of the cell is achieved.
  • FIG. 1 is a schematic diagram of a format of a random access subframe in the related art
  • FIG. 3 is a block diagram showing the structure of a device for random access according to an embodiment of the present invention.
  • FIG. 4 is a flowchart of a method for obtaining a random access subframe format according to an alternative embodiment of the present invention
  • FIG. 5 is a first time format diagram 1 of an extended random access subframe according to an alternative embodiment of the present invention.
  • FIG. 6 is a second schematic diagram of a frequency domain format of an extended random access subframe according to an alternative embodiment of the present invention.
  • FIG. 7 is a block diagram showing the structure of a receiver in accordance with an alternative embodiment of the present invention.
  • FIG. 2 is a flowchart of a method for random access according to an embodiment of the present invention. As shown in FIG. 2, the process includes the following steps:
  • Step S202 After the size of the coverage radius of the cell to be supported by the current random access subframe is greater than the preset radius, determine the extent of the coverage radius of the cell supported by the preamble sequence in the current random access subframe. The length of the preamble sequence in the random access subframe;
  • Step S204 determining, according to the size of the cell coverage radius supported by the CP and the GI in the current random access subframe, the lengths of the CP and the GI in the extended random access subframe;
  • Step S206 Determine, according to the sampling rate of the current random access subframe, the length of the preamble sequence, the length of the CP, and the length of the GI, the extended preamble, the extended GI, and the number of samples of the extended CP.
  • Step S208 Obtain the frequency domain ZC sequence length of the extended preamble sequence according to the length of the extended preamble sequence of the current random access subframe and the frequency domain resource size of the preamble sequence, and determine the frequency of the extended random access subframe. Domain format
  • Step S210 Send a random access subframe by using a frequency domain format and/or a time domain format of the extended random access subframe.
  • the current random access subframe is adopted.
  • the time domain format of the extended random access subframe is determined according to the extended preamble sequence, the extended GI, and the number of samples of the extended CP, and Determining the frequency domain ZC sequence length of the extended preamble sequence according to the length of the extended preamble sequence and the frequency domain resource size of the preamble sequence, and determining the frequency domain format of the extended random access subframe, and then according to the extended random connection
  • the method of transmitting the random access subframe in the frequency domain format and/or the time domain format of the incoming subframe thereby solving the fixed coverage of the cell supported by the five formats supported by the LTE system in the related art, and supporting only 100 km at most The problem of coverage within the scope has achieved the effect of expanding the coverage of the cell.
  • the preset radius of the preset radius is 100 km in the preferred embodiment of the present embodiment. Radius sizes are also within the scope of the invention and are provided merely for illustration.
  • the body that performs the action in this embodiment may be a receiver.
  • the specific application scenario may be implemented as follows:
  • the receiver may determine the length of the preamble sequence in the extended random access subframe according to the number of current preamble sequences included in the extended random access subframe, where the number of the current preamble sequence is one or more. That is, the preamble portion is repeatable to obtain performance gains;
  • the length of the CP and the GI in the extended random access subframe is determined according to the size of the cell coverage radius supported by the CP and the GI in the current random access subframe.
  • the method can be implemented in the following manner in a specific application scenario;
  • the length of the extended CP in the above steps S202 and S204 is less than or equal to the length of the extended GI.
  • the size of the cell coverage radius supported by the extended CP and the extended GI is greater than or equal to the size of the cell coverage radius to be supported by the extended preamble sequence.
  • the length of the preamble sequence and the length of the extended CP and the extended GI are integer multiples of the current system subframe length.
  • the sequence of the extended preamble, the extended GI, and the extended CP obtained according to the sampling rate of the system in which the current random access subframe is located, the length of the preamble sequence, the length of the CP, and the length of the GI involved in step S206
  • the method of determining the time domain format of the extended random access subframe may be implemented in the following manner in the specific application scenario of the embodiment;
  • the time domain format of the extended random access subframe is determined, and the time domain length is:
  • T PRACH (T CP_NUM + T SEQ_NUM + TGI_NUM) ⁇ T s.
  • the length of the preamble sequence and the frequency domain resource size of the preamble sequence are obtained by the length of the frequency domain ZC sequence of the extended preamble sequence, and the manner of determining the frequency domain format of the extended random access subframe is determined in this embodiment.
  • the application scenario can be implemented as follows:
  • the frequency domain resource size of the preamble sequence is BW_PRACH (KHz)
  • the number of REs occupied by the preamble frequency domain is RE_PRACH:
  • the frequency domain Nzc of the preamble sequence is the largest prime number smaller than the value, and the remaining carriers are guard carriers.
  • the frequency domain format of the extended random access subframe involved in the foregoing includes a frequency domain ZC sequence of the preamble sequence and a guard carrier.
  • the number of preamble sequences involved in this embodiment may be one or more.
  • the length of the extended CP involved in this embodiment satisfies one of the following conditions: less than the length of the extended GI, greater than the length of the extended GI, and equal to the length of the extended GI.
  • the size of the cell coverage radius supported by the extended CP and the extended GI or the size of the cell coverage radius to be supported by the extended preamble sequence wherein the length of the extended preamble sequence and the extended CP
  • the length of the extended GI is an integer multiple of the current system subframe length.
  • the frequency domain format of the extended random access subframe involved in this embodiment includes a frequency domain ZC sequence of the preamble sequence and a guard carrier.
  • the method according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, by hardware, but in many cases, the former is A better implementation.
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk, CD-ROM, including a number of instructions to make a terminal device (can It is a mobile phone, a computer, a server, or a network device, etc.) that performs the methods described in various embodiments of the present invention.
  • a device for random access is also provided, which is used to implement the foregoing embodiments and preferred embodiments, and is not described again.
  • the term "module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 3 is a structural block diagram of a device for random access according to an embodiment of the present invention.
  • the device includes: a first determining module 302 configured to cover a radius of a cell supported by a current random access subframe. When the size is greater than the preset radius, the length of the preamble sequence in the extended random access subframe is determined according to the required coverage radius of the preamble sequence in the current random access subframe; the second determining module 304, The first determining module 302 is coupled to the first determining module 302, configured to determine the lengths of the CP and the GI in the extended random access subframe according to the size of the cell coverage radius supported by the CP and the GI in the current random access subframe; The determining module 306 is coupled to the second determining module 304 and configured to be configured according to the sampling rate of the system in which the current random access subframe is located, the length of the preamble sequence, the length of the CP, and the length of the GI, and the extended preamble sequence.
  • the GI and the number of samples of the extended CP determine the time domain format of the extended random access subframe; the fourth determining module 308 is configured to expand according to the current random access subframe.
  • the length of the subsequent preamble sequence and the frequency domain resource size of the preamble sequence obtain the length of the frequency domain ZC sequence of the extended preamble sequence, and determine the frequency domain format of the extended random access subframe;
  • the sending module 310, and the third determining module 306 and/or a fourth determining module 308 is coupled coupled to transmit a random access subframe in a frequency domain format and/or a time domain format of the extended random access subframe.
  • the number of preamble sequences is one or more.
  • the length of the extended CP satisfies one of the following conditions: less than the length of the extended GI, greater than the length of the extended GI, and equal to the length of the extended GI.
  • the size of the cell coverage radius supported by the extended CP and the extended GI is greater than or equal to the size of the cell coverage radius to be supported by the extended preamble sequence.
  • the length of the extended preamble sequence and the length of the extended CP and the extended GI are integer multiples of the current system subframe length.
  • the frequency domain format of the extended random access subframe includes a frequency domain ZC sequence of the preamble sequence and a guard carrier.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the modules are located in multiple In the processor.
  • the present invention provides a method and a receiver for obtaining a random access subframe format, where the method of the optional embodiment includes:
  • Step S302 The receiver determines the length of the preamble sequence in the extended random access subframe according to the size of the cell coverage radius to be supported by the preamble sequence in the current random access subframe.
  • Step S304 The receiver determines the lengths of the CP and the GI in the extended random access subframe according to the size of the cell coverage radius to be supported by the current CP and the GI.
  • the length of the CP may be less than or equal to the length of the GI.
  • the size of the cell coverage radius to be supported by the CP and the GI may be greater than or equal to the size of the cell coverage radius to be supported by the preamble sequence;
  • the receiver adjusts the lengths of the CP and the GI according to the length of the current system subframe, so that the length of the preamble sequence and the length of the CP and the GI are integer multiples of the system subframe length;
  • Step S306 The receiver calculates the number of sampling points of the preamble sequence, the GI, and the CP according to the sampling rate of the system, the length of the preamble sequence, the length of the CP, and the length of the GI, and determines the time domain of the extended random access subframe. format;
  • Step S308 The receiver determines the frequency domain Nzc of the preamble sequence according to the length of the preamble sequence and the frequency domain resource size of the preamble sequence, and determines a frequency domain format of the extended random access subframe.
  • the frequency domain format of the extended random access subframe includes a frequency domain ZC sequence of the preamble sequence and a guard carrier;
  • the receiver selects the time domain format of the random access subframe according to the parameters of the system in which it is located, and if the existing format cannot support the currently supported cell, the extended random access subframe time domain is used.
  • the format sends a random access subframe.
  • the receiver selects a frequency domain format of the random access subframe according to the parameter of the system, and if the existing format cannot support the currently supported cell, the extended random access subframe frequency domain format is used to send the random access subframe. .
  • the present invention further provides a receiver, the receiver comprising: a first determining module, a second determining module, a first format determining module, and a second format determining module, wherein:
  • a first determining module configured to determine, according to a size of a cell coverage radius to be supported by the preamble sequence in the current random access subframe, a length of the preamble sequence in the extended random access subframe;
  • a second determining module configured to determine a length of a CP and a GI in the extended random access subframe according to a size of a cell coverage radius to be supported by the current CP and the GI;
  • a first format determining module configured to calculate, according to a sampling rate of the system, a length of the preamble sequence, a length of the CP, and a length of the GI, the number of sampling points of the preamble sequence, the GI, and the CP, and determine the expanded random number
  • the time domain format of the access subframe
  • the second format determining module is configured to determine a frequency domain Nzc of the preamble sequence according to a length of the preamble sequence and a frequency domain resource size of the preamble sequence, and determine a frequency domain format of the extended random access subframe.
  • the first determining module is configured to determine the length of the preamble sequence in the extended random access subframe according to the following manner: determining the length of the current preamble sequence according to the size of the cell coverage radius to be supported by the preamble sequence; The number of current preamble sequences included in the extended random access subframe determines the length of the preamble sequence in the extended random access subframe, and the number is one or more.
  • the second determining module is configured to determine the extended following according to the following manner
  • the length of the CP and the GI in the access subframe is determined according to the size of the cell coverage radius to be supported by the current CP and the GI; the length of the CP may be less than or equal to the GI. length.
  • the coverage radius of the cell to be supported by the CP and the GI may be greater than or equal to the coverage radius of the cell to be supported by the preamble sequence
  • the receiver adjusts the lengths of the CP and the GI according to the length of the current system subframe, so that the length of the preamble sequence and the length of the CP and the GI are integer multiples of the system subframe length;
  • the frequency domain format of the extended random access subframe in the second format determining module includes a frequency domain ZC sequence of the preamble sequence and two parts of the protection carrier;
  • the receiver further includes a sending module, where: the sending module is configured to select a time domain format of the random access subframe according to parameters of the system, if the existing format cannot support the current support The cell transmits the random access subframe using the extended random access subframe time domain format. And, in the frequency domain format for selecting a random access subframe according to the parameter of the system, if the existing format cannot support the currently supported cell, the random access subframe is used to send the random access subframe in the frequency domain format. frame.
  • the coverage radius of the cell is increased by using the extended random access subframe format.
  • any cell radius can be covered, and the random access sub-interface can be flexibly configured.
  • the time domain and frequency domain resources of the frame. The method of the presently optional implementation can solve the problem that the related technology cannot support the ultra-long coverage exceeding 100 km.
  • Step S401 after the receiver is powered on, performing cell search and downlink synchronization
  • Step S402 Select a format of the random access subframe according to the parameter of the system where the receiver is located. If the existing five formats cannot support the required cell coverage, the extended random access subframe format needs to be selected.
  • the process of obtaining the random access subframe format includes Steps S4021-S4024, FIG. 4 is a flowchart of a method for obtaining a random access subframe format according to an alternative embodiment of the present invention.
  • Step S4021 The receiver determines, according to the size of the cell coverage radius to be supported by the preamble sequence in the current random access subframe, the length of the preamble sequence in the extended random access subframe.
  • the length T SEQ of the current preamble sequence is determined according to the cell coverage radius CellRadius_Seq to be supported by the preamble sequence:
  • the receiver may determine, according to the number of current preamble sequences included in the extended random access subframe, the length of the preamble sequence in the extended random access subframe, where the number is one or more, that is, the preamble sequence is Can be repeated to obtain performance gains;
  • Step S4022 The receiver determines, according to the size of the cell coverage radius to be supported by the current CP and the GI, the lengths of the CP and the GI in the extended random access subframe.
  • Step S4023 Calculate the number of sampling points of the preamble sequence, the GI, and the CP, and determine the time domain format of the extended random access subframe according to the sampling rate of the system, the length of the preamble sequence, the length of the CP, and the length of the GI.
  • the random access preamble, the number of sampling points of the GI and the CP are calculated according to the values of the sampling rates T s , T SEQ , T GI , and T CP of the system;
  • the time domain format of the extended random access subframe is determined, and the time domain length is:
  • T PRACH (T CP_NUM + T SEQ_NUM + T GI_NUM) ⁇ T s
  • Step S4024 Determine a frequency domain Nzc of the preamble sequence according to a length of the preamble sequence and a frequency domain resource size of the preamble sequence, and determine a frequency domain format of the extended random access subframe.
  • the frequency domain resource size of the preamble sequence is BW_PRACH (KHz)
  • the number of REs occupied by the preamble frequency domain is RE_PRACH:
  • the frequency domain Nzc of the preamble sequence is the largest prime number smaller than the value, and the remaining carriers are guard carriers.
  • S4021-S4024 in step S402 in the alternative embodiment does not represent a strict sequence, and may also have other combinations, such as at least the following sequence:
  • step S402 may also be in the order of S4021, S4024, S4022, S4023;
  • Step S402 in the order of S4021, S4022, S4024, and S4423;
  • Step S402 in the order of S4022, S4021, S4023, and S4024;
  • Step S402 in the order of S4022, S4021, S4024, and S4023;
  • Step S403 Send a random access subframe according to the extended random access subframe format selected in step S402.
  • the foregoing random access method uses the extended random access subframe format to increase the coverage radius of the cell. According to the foregoing extension principle, any cell radius can be covered, and the time domain of the random access subframe can be flexibly configured. And frequency domain resources.
  • Step S501 after the receiver is powered on, performing cell search and downlink synchronization
  • the receiver can obtain a reference time of 5ms, and then by searching for the secondary synchronization sequence, the receiver can obtain the frame synchronization and the physical layer cell group, and finally, through the reference signal, the receiver obtains the physical layer cell identity (Identification, referred to as For ID), the downlink synchronization is completed, and the time reference T 0 is obtained ;
  • Step S502 assuming that the preamble sequence needs to support cell coverage of 150 km, the CP and the GI should support the cell coverage of 300 km, and the frequency domain resource is 1.08 M.
  • the existing Format cannot be supported, so the redesigned extended random access subframe format is as follows :
  • T SEQ 1 ms.
  • the lengths of the CP and the GI in the random access subframe are determined, wherein the length of the CP may be less than or equal to the length of the GI,
  • T s 1/30.72 ⁇ s
  • T GI the length of T SEQ , T GI is calculated as the number of sampling points of the random access preamble, GI and CP;
  • FIG. 5 is a first schematic diagram of a time domain format of an extended random access subframe according to an alternative embodiment of the present invention.
  • the frequency domain of the preamble sequence is obtained according to the length of the preamble sequence and the frequency domain resource size of the preamble sequence.
  • the number of PRACH REs occupied is RE_PRACH:
  • FIG. 6 is a schematic diagram 2 of a frequency domain format of an extended random access subframe according to an alternative embodiment of the present invention.
  • Step S503 Send a random access subframe according to the extended random access subframe format obtained in step S502.
  • FIG. 7 is a schematic structural diagram of a receiver according to an alternative embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of an embodiment of a receiver according to the present invention.
  • the receiver includes: a first determining module 71, a second determining module 72, The first format determining module 73 and the second format determining module 74, wherein:
  • the first determining module 71 is configured to: determine, according to a size of a cell coverage radius to be supported by the preamble sequence in the current random access subframe, a length of the preamble sequence in the extended random access subframe;
  • the second determining module 72 is configured to: determine the lengths of the CP and the GI in the extended random access subframe according to the size of the cell coverage radius to be supported by the current CP and the GI;
  • the first format determining module 73 is configured to: according to the sampling rate of the system, the length of the preamble sequence, the length of the CP, and the length of the GI, calculate the number of sampling points of the preamble sequence, the GI, and the CP, and determine the expanded The time domain format of the random access subframe;
  • the second format determining module 74 is configured to: determine the frequency domain Nzc of the preamble sequence according to the length of the preamble sequence and the frequency domain resource size of the preamble sequence, and determine the frequency domain of the extended random access subframe. format.
  • the first determining module 71 is configured to determine, according to the manner, the length of the preamble sequence in the extended random access subframe according to the size of the cell coverage radius to be supported by the preamble sequence in the current random access subframe, and determine the extended Length of the preamble sequence in the random access subframe; determining the length of the preamble sequence in the extended random access subframe according to the number of current preamble sequences included in the extended random access subframe, the number of which is one or more One.
  • the second determining module 72 is configured to determine the lengths of the CP and the GI in the extended random access subframe according to the following manner: determining the extended random access subframe according to the size of the cell coverage radius to be supported by the current CP and the GI The length of the CP and the GI; wherein the length of the CP may be less than or equal to the length of the GI;
  • the receiver may adjust the lengths of the CP and the GI according to the length of the current system subframe, such that the length of the preamble sequence and the length of the CP and the GI are integer multiples of the system subframe length;
  • the frequency domain format of the extended random access subframe in the second format determining module 74 includes a frequency domain ZC sequence of the preamble sequence and two parts of the protection carrier;
  • the receiver further includes: a sending module 75, selecting a time domain format of the random access subframe according to parameters of the system, and if the existing format cannot support the currently supported cell, using the extended random connection
  • the incoming subframe time domain format transmits a random access subframe.
  • the sending module 75 is further configured to: select a frequency domain format of the random access subframe according to the parameter of the system, and if the existing format cannot support the currently supported cell, use the extended random access subframe frequency domain.
  • the format sends a random access subframe.
  • An embodiment of the present invention further provides a terminal including the foregoing receiver.
  • the receiver and terminal can be applied to a long term evolution system.
  • the receiver and the terminal use the extended random access subframe format to increase the coverage radius of the cell; according to the foregoing expansion principle, any cell radius can be guaranteed to be covered, and
  • the time domain and frequency domain resources of the random access subframe are flexibly configured.
  • Embodiments of the present invention also provide a computer storage medium.
  • the above computer storage medium may be arranged to store program code for performing the following steps:
  • Step S1 After the size of the coverage radius of the cell to be supported by the current random access subframe is larger than the preset radius, determine the size of the coverage radius of the cell supported by the preamble sequence in the current random access subframe. The length of the preamble sequence in the random access subframe;
  • Step S2 determining, according to the size of the cell coverage radius supported by the CP and the GI in the current random access subframe, the lengths of the CP and the GI in the extended random access subframe;
  • Step S3 determining, according to the sampling rate of the current random access subframe, the length of the preamble sequence, the length of the CP, and the length of the GI, the extended preamble, the extended GI, and the number of samples of the extended CP.
  • Step S4 The length of the frequency domain ZC sequence of the extended preamble sequence is obtained according to the length of the extended preamble sequence of the current random access subframe and the frequency domain resource size of the preamble sequence, and the frequency of the extended random access subframe is determined. Domain format
  • Step S5 Send a random access subframe by using a frequency domain format and/or a time domain format of the extended random access subframe.
  • modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module.
  • the invention is not limited to any particular The combination of hardware and software.
  • the technical solution of the embodiment of the present invention adopts sampling of the extended preamble sequence, the extended GI, and the extended CP when the size of the cell coverage radius supported by the current random access subframe is greater than the preset radius.
  • the number of points determines the time domain format of the extended random access subframe, and the length of the frequency domain ZC sequence of the extended preamble sequence is obtained according to the length of the extended preamble sequence and the frequency domain resource size of the preamble sequence, and the extended random number is determined.
  • the cell coverage of the cell supported by the format is fixed, and the maximum coverage of the cell within 100 km can be achieved, and the effect of expanding the coverage of the cell is achieved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种随机接入的方法及装置、计算机存储介质,其中,该方法包括:在当前随机接入子帧所需支持的小区覆盖半径的大小大于预设半径大小时,根据扩展后的前导序列、扩展后的保护间隔GI以及扩展后的循环前缀CP的采样点数确定扩展后的随机接入子帧的时域格式,以及根据扩展后的前导序列的长度和前导序列的频域资源大小得到扩展后的前导序列的频域Zaodoff-Chu (ZC)序列长度,确定扩展后的随机接入子帧的频域格式,进而根据扩展后的随机接入子帧的频域格式和/或时域格式发送随机接入子帧。

Description

随机接入的方法及装置、计算机存储介质
相关申请的交叉引用
本申请基于申请号为201610194232.4、申请日为2016年03月30日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及通信领域,具体而言,涉及一种随机接入的方法及装置、计算机存储介质。
背景技术
在长期演进(Long Term Evolution,简称为LTE)系统中,随机接入技术是通信系统中接收机接入控制的一项重要技术,接收机通过随机接入过程完成上行定时同步校正、用户功率调整和用户资源需求的申请。
LTE的上行随机接入前导使用的是ZC(Zadoff-Chu)序列的循环移位(Ncs)序列,随机接入前导码是基于ZC序列通过选取不同的循环移位衍生的。图1是相关技术中随机接入子帧的格式示意图,如图1所示,随机接入子帧由三部分组成,分别是循环前缀(Cyclic Prefix,简称为CP)部分,前导序列部分和保护间隔(Guard Interval,简称为GI)部分。
根据小区覆盖的不同,所要求的CP长度不同,前导和GI长度也不同。现有LTE系统支持五种格式(Format),分别是Format0-4,每种格式对应不同的小区覆盖。小区覆盖半径由序列的循环移位和GI共同决定。
首先,循环移位决定了小区边缘用户能否区分不同的循环移位窗,循环移位的选取必须保证,小区边缘用户的前导序列和本地序列相关峰值落 在该循环移位对应的时间窗内,该时间窗的长度为TNcs
Figure PCTCN2017078862-appb-000001
其中,Nzc是ZC序列的长度,对于Format0-3,Nzc的取值为839,对于Format4,Nzc的取值为139。TSEQ是RACH前导序列的长度。
由Ncs决定的小区覆盖半径可以由下式得到,
CellRadius1=0.5×TNcs×3×105km/s
由于下行同步完成后,到达接收机端的时间基准已经有D1的延时,接收机上发物理随机接入信道(PRACH)子帧到基站后,又有D2的延时,D=D1≈D2,所以一个循环移位对应的时间窗TNcs要吸收两个延时2D,故所支持的小区半径要减半。
另外,小区半径也与GI有关,CP和GI的长度决定了小区边缘用户的随机接入信道(RACH)子帧不会干扰到后面的子帧。同样有上下行2D延时的问题,其计算公式如下:
CellRadius2=0.5×TGI×3×105km/s其中,TGT是保护间隔的长度。
综上,小区半径由Ncs和GI长度共同决定:
CellRadius=min(CellRadius1,CellRadius2)
按照上述计算方法,分别计算Format 0~Format 4所支持的最大小区半径,表1不同Format的小区覆盖半径,如表1所示,其中Ts是采样间隔,Ts=1/30.72μs。
表1
Format TCP TSEQ TGI 支持的小区半径
Format 0 3168Ts 24576Ts 2976Ts 14.5km
Format 1 21024Ts 24576Ts 15840Ts 77km
Format 2 6240Ts 2*24576Ts 6048Ts 30km
Format 3 21024Ts 2*24576Ts 21984Ts 100km
Format 4 448Ts 4096Ts 614Ts 3km
极限情况,对于Format3而言,Ncs取839时,所支持小区的最大范围是100km,可以看出,现有LTE随机接入的五种格式均无法支持超过100km的超远覆盖,而对于航线的超远覆盖,需要支持超过100km甚至300km的覆盖。针对相关技术中的上述问题,目前尚未存在有效的解决方案。
发明内容
本发明实施例提供了一种随机接入的方法及装置、计算机存储介质,以至少解决相关技术中LTE系统支持的五种格式所支持小区的小区覆盖范围固定,且最大只能支持100km之内的覆盖范围的问题。
根据本发明实施例的一个方面,提供了一种随机接入的方法,包括:在当前随机接入子帧所需支持的小区覆盖半径的大小大于预设半径大小时,根据所述当前随机接入子帧中的前导序列的所需支持的小区覆盖半径的大小确定扩展后的随机接入子帧中前导序列的长度;根据所述当前随机接入子帧中的CP和GI所需支持的小区覆盖半径的大小确定所述扩展后的随机接入子帧中所述CP和所述GI的长度;根据所述当前随机接入子帧所在系统的采样率、前导序列的长度、CP的长度以及GI的长度得到的扩展后的前导序列、扩展后的GI以及扩展后的CP的采样点数,确定扩展后的随机接入子帧的时域格式;根据所述当前随机接入子帧的扩展后的前导序列的长度和前导序列的频域资源大小得到的扩展后的前导序列的频域ZC序列长度,确定扩展后的随机接入子帧的频域格式;通过扩展后的随机接入子帧的频域格式和/或时域格式发送随机接入子帧。
本发明实施例中,所述前导序列的个数为一个或多个。
本发明实施例中,扩展后的CP的长度满足以下条件之一:小于扩展后的GI的长度、大于扩展后的GI的长度、等于扩展后的GI的长度。
本发明实施例中,扩展后的CP和扩展后的GI所需支持的小区覆盖半 径的大小大于或等于扩展后的前导序列要支持的小区覆盖半径的大小。
本发明实施例中,所述扩展后的前导序列的长度与扩展后的CP和扩展后的GI的长度和为当前系统子帧长度的整数倍。
本发明实施例中,所述扩展后的随机接入子帧的频域格式包括所述前导序列的频域ZC序列和保护载波。
根据本发明实施例的另一个方面,提供了一种随机接入装置,包括:第一确定模块,配置为在当前随机接入子帧所需支持的小区覆盖半径的大小大于预设半径大小时,根据所述当前随机接入子帧中的前导序列的所需支持的小区覆盖半径的大小确定扩展后的随机接入子帧中前导序列的长度;第二确定模块,配置为根据所述当前随机接入子帧中的CP和GI所需支持的小区覆盖半径的大小确定所述扩展后的随机接入子帧中所述CP和所述GI的长度;第三确定模块,配置为根据所述当前随机接入子帧所在系统的采样率、前导序列的长度、CP的长度以及GI的长度得到的扩展后的前导序列、扩展后的GI以及扩展后的CP的采样点数,确定扩展后的随机接入子帧的时域格式;第四确定模块,配置为根据所述当前随机接入子帧的扩展后的前导序列的长度和前导序列的频域资源大小得到的扩展后的前导序列的频域ZC序列长度确定扩展后的随机接入子帧的频域格式;发送模块,配置为通过扩展后的随机接入子帧的频域格式和/或时域格式发送随机接入子帧。
本发明实施例中,所述前导序列的个数为一个或多个。
本发明实施例中,扩展后的CP的长度满足以下条件之一:小于扩展后的GI的长度、大于扩展后的GI的长度、等于扩展后的GI的长度。
本发明实施例中,扩展后的CP和扩展后的GI所需支持的小区覆盖半径的大小大于或等于扩展后的前导序列要支持的小区覆盖半径的大小。
本发明实施例中,所述扩展后的前导序列的长度与扩展后的CP和扩展 后的GI的长度和为当前系统子帧长度的整数倍。
本发明实施例中,所述扩展后的随机接入子帧的频域格式包括所述前导序列的频域ZC序列和保护载波。
根据本发明实施例的再一个方面,提供了一种计算机存储介质,该计算机存储介质存储有计算机程序,该计算机程序配置为执行上述随机接入的方法。
通过本发明实施例的技术方案,采用在当前随机接入子帧所需支持的小区覆盖半径的大小大于预设半径大小时,根据扩展后的前导序列、扩展后的GI以及扩展后的CP的采样点数确定扩展后的随机接入子帧的时域格式,以及根据扩展后的前导序列的长度和前导序列的频域资源大小得到扩展后的前导序列的频域ZC序列长度,确定扩展后的随机接入子帧的频域格式,进而根据扩展后的随机接入子帧的频域格式和/或时域格式发送随机接入子帧的方式;从而解决了相关技术中LTE系统支持的五种格式所支持小区的小区覆盖范围固定,且最大只能支持100km之内的覆盖范围的问题,达到了扩大小区覆盖范围的效果。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是相关技术中随机接入子帧的格式示意图;
图2是根据本发明实施例的随机接入的方法的流程图;
图3是根据本发明实施例的随机接入的装置结构框图;
图4是根据本发明可选实施例的随机接入子帧格式的获得方法流程图;
图5是根据本发明可选实施例的扩展的随机接入子帧的时域格式示意图一;
图6是根据本发明可选实施例的扩展的随机接入子帧的频域格式示意图二;
图7是根据本发明可选实施例的接收机结构示意图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
在本实施例中提供了一种随机接入的方法,图2是根据本发明实施例的随机接入的方法的流程图,如图2所示,该流程包括如下步骤:
步骤S202:在当前随机接入子帧所需支持的小区覆盖半径的大小大于预设半径大小时,根据当前随机接入子帧中的前导序列的所需支持的小区覆盖半径的大小确定扩展后的随机接入子帧中前导序列的长度;
步骤S204:根据当前随机接入子帧中的CP和GI所需支持的小区覆盖半径的大小确定扩展后的随机接入子帧中CP和GI的长度;
步骤S206:根据当前随机接入子帧所在系统的采样率、前导序列的长度、CP的长度以及GI的长度得到的扩展后的前导序列、扩展后的GI以及扩展后的CP的采样点数,确定扩展后的随机接入子帧的时域格式;
步骤S208:根据当前随机接入子帧的扩展后的前导序列的长度和前导序列的频域资源大小得到扩展后的前导序列的频域ZC序列长度,确定扩展后的随机接入子帧的频域格式;
步骤S210:通过扩展后的随机接入子帧的频域格式和/或时域格式发送随机接入子帧。
通过本实施例的上述步骤S202至步骤S206,采用在当前随机接入子帧 所需支持的小区覆盖半径的大小大于预设半径大小时,根据扩展后的前导序列、扩展后的GI以及扩展后的CP的采样点数确定扩展后的随机接入子帧的时域格式,以及根据扩展后的前导序列的长度和前导序列的频域资源大小得到扩展后的前导序列的频域ZC序列长度,确定扩展后的随机接入子帧的频域格式,进而根据扩展后的随机接入子帧的频域格式和/或时域格式发送随机接入子帧的方式;从而解决了相关技术中LTE系统支持的五种格式所支持小区的小区覆盖范围固定,且最大只能支持100km之内的覆盖范围的问题,达到了扩大小区覆盖范围的效果。
需要说明的是,由于相关技术中最大只能支持100km的小区覆盖范围,因此,在本实施例的优选实施方式中,本实施例中涉及到的预设半径大小为100km,当然其他的预设半径大小也是在本发明的保护范围之内,这里仅仅是用来进行举例说明。此外,本实施例中执行动作的主体可选为接收机。
对于本实施例步骤S202中涉及到的根据当前随机接入子帧中的前导序列的所需支持的小区覆盖半径的大小确定扩展后的随机接入子帧中前导序列的长度的方式,在本实施例的可选实施方式中,在具体应用场景中可以通过如下方式来实现:
根据前导序列所要支持的小区覆盖半径CellRadius_Seq,确定当前前导序列的长度TSEQ
Figure PCTCN2017078862-appb-000002
该接收机可以根据扩展后的随机接入子帧中包含的当前前导序列的个数确定扩展后的随机接入子帧中前导序列的长度,该当前前导序列的个数为一个或多个,即前导序列部分是可以重复的,以获得性能增益;
而堆在本实施例步骤S204根据当前随机接入子帧中的CP和GI所需支持的小区覆盖半径的大小确定扩展后的随机接入子帧中CP和GI的长度的 方式,在具体应用场景中可以通过如下方式来实现;
根据当前CP和GI所要支持的小区半径CellRadius,确定随机接入子帧中CP和GI的长度,其中CP的长度可以小于等于GI的长度;
Figure PCTCN2017078862-appb-000003
Figure PCTCN2017078862-appb-000004
对于上述步骤S202和S204中扩展后的CP的长度小于或等于扩展后的GI的长度。此外,扩展后的CP和扩展后的GI所需支持的小区覆盖半径的大小大于或等于扩展后的前导序列要支持的小区覆盖半径的大小。所述前导序列的长度以及扩展后的CP和扩展后的GI的长度和为当前系统子帧长度的整数倍。
步骤S206中涉及到的根据当前随机接入子帧所在系统的采样率、前导序列的长度、CP的长度以及GI的长度得到的扩展后的前导序列、扩展后的GI以及扩展后的CP的采样点数,确定扩展后的随机接入子帧的时域格式的方式,在本实施例的具体应用场景中可以通过如下方式来实现;
根据系统的采样率Ts、TSEQ,TGI和TCP的值计算随机接入前导,GI和CP的采样点数;
Figure PCTCN2017078862-appb-000005
Figure PCTCN2017078862-appb-000006
Figure PCTCN2017078862-appb-000007
则扩展后的随机接入子帧的时域格式已确定,时域长度为:
TPRACH=(TCP_NUM+TSEQ_NUM+TGI_NUM)×Ts
此外,对于本实施例步骤S208中涉及到的根据当前随机接入子帧的扩 展后的前导序列的长度和前导序列的频域资源大小得到扩展后的前导序列的频域ZC序列长度,确定扩展后的随机接入子帧的频域格式的方式,在本实施例的具体应用场景中可以通过如下方式来实现:
设前导序列的频域资源大小为BW_PRACH(KHz),则前导序列频域占用的RE个数RE_PRACH为:
RE_PRACH=BW_PRACH×TSEQ
则前导序列的频域Nzc为小于该值的最大素数,其余载波为保护载波。
而对于上述涉及到的扩展后的随机接入子帧的频域格式包括前导序列的频域ZC序列和保护载波。
需要说明的是,本实施例中涉及到的前导序列的个数可以为一个或多个。
另外,本实施例中涉及到的扩展后的CP的长度满足以下条件之一:小于扩展后的GI的长度、大于扩展后的GI的长度、等于扩展后的GI的长度。以及,扩展后的CP和扩展后的GI所需支持的小区覆盖半径的大小或等于扩展后的前导序列要支持的小区覆盖半径的大小,其中,扩展后的前导序列的长度与扩展后的CP和扩展后的GI的长度和为当前系统子帧长度的整数倍。
在本实施例的可选实施方式中,本实施例中涉及到的扩展后的随机接入子帧的频域格式包括前导序列的频域ZC序列和保护载波。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以 是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
在本实施例中还提供了一种随机接入的装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图3是根据本发明实施例的随机接入的装置结构框图,如图3所示,该装置包括:第一确定模块302,配置为在当前随机接入子帧所需支持的小区覆盖半径的大小大于预设半径大小时,根据当前随机接入子帧中的前导序列的所需支持的小区覆盖半径的大小确定扩展后的随机接入子帧中前导序列的长度;第二确定模块304,与第一确定模块302耦合连接,配置为根据当前随机接入子帧中的CP和GI所需支持的小区覆盖半径的大小确定扩展后的随机接入子帧中CP和GI的长度;第三确定模块306,与第二确定模块304耦合连接,配置为根据当前随机接入子帧所在系统的采样率、前导序列的长度、CP的长度以及GI的长度得到的扩展后的前导序列、扩展后的GI以及扩展后的CP的采样点数,确定扩展后的随机接入子帧的时域格式;第四确定模块308,配置为根据当前随机接入子帧的扩展后的前导序列的长度和前导序列的频域资源大小得到扩展后的前导序列的频域ZC序列长度,确定扩展后的随机接入子帧的频域格式;发送模块310,与第三确定模块306和/或第四确定模块308耦合连接,配置为通过扩展后的随机接入子帧的频域格式和/或时域格式发送随机接入子帧。
本发明实施例中,前导序列的个数为一个或多个。
本发明实施例中,扩展后的CP的长度满足以下条件之一:小于扩展后的GI的长度、大于扩展后的GI的长度、等于扩展后的GI的长度。
本发明实施例中,扩展后的CP和扩展后的GI所需支持的小区覆盖半径的大小大于或等于扩展后的前导序列要支持的小区覆盖半径的大小。
本发明实施例中,扩展后的前导序列的长度与扩展后的CP和扩展后的GI的长度和为当前系统子帧长度的整数倍。
本发明实施例中,扩展后的随机接入子帧的频域格式包括前导序列的频域ZC序列和保护载波。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述模块分别位于多个处理器中。
下面结合本发明的可选实施例对本发明进行举例说明;
本可选实施例提供了一种随机接入子帧格式的获得方法及接收机,其中,本可选实施例的该方法包括:
步骤S302:接收机根据当前随机接入子帧中前导序列所要支持的小区覆盖半径的大小,确定扩展后的随机接入子帧中前导序列的长度;
步骤S304:接收机根据当前循CP和GI所要支持的小区覆盖半径的大小,确定扩展后的随机接入子帧中CP和GI的长度;
其中,CP的长度可以小于等于GI的长度。CP和GI所要支持的小区覆盖半径的大小,可以大于等于前导序列要支持的小区覆盖半径的大小;
本发明实施例中,接收机根据当前系统子帧的长度,调整CP和GI的长度,使得前导序列的长度与CP和GI的长度和为系统子帧长度的整数倍;
步骤S306:接收机根据所在系统的采样率、前导序列的长度、CP的长度和GI的长度,分别计算前导序列、GI和CP的采样点数,并确定扩展后的随机接入子帧的时域格式;
步骤S308:接收机根据前导序列的长度和前导序列的频域资源大小,确定前导序列的频域Nzc,并确定扩展后的随机接入子帧的频域格式;
其中,扩展后的随机接入子帧的频域格式包含前导序列的频域ZC序列和保护载波;
基于上述步骤S302至步骤S308,接收机根据所在系统的参数选择随机接入子帧的时域格式,若现有格式无法支持当前所要支持的小区,则使用扩展后的随机接入子帧时域格式发送随机接入子帧。以及接收机根据所在系统的参数选择随机接入子帧的频域格式,若现有格式无法支持当前所要支持的小区,则使用扩展后的随机接入子帧频域格式发送随机接入子帧。
本可选实施例还提供了一种接收机,该接收机包括:第一确定模块、第二确定模块、第一格式确定模块和第二格式确定模块,其中:
第一确定模块,配置为根据当前随机接入子帧中前导序列所要支持的小区覆盖半径的大小,确定扩展后的随机接入子帧中前导序列的长度;
第二确定模块,配置为根据当前CP和GI所要支持的小区覆盖半径的大小,确定扩展后的随机接入子帧中CP和GI的长度;
第一格式确定模块,配置为根据该接收机根据所在系统的采样率、前导序列的长度、CP的长度和GI的长度,分别计算前导序列、GI和CP的采样点数,并确定扩展后的随机接入子帧的时域格式;
第二格式确定模块,配置为根据前导序列的长度和前导序列的频域资源大小,确定前导序列的频域Nzc,并确定扩展后的随机接入子帧的频域格式。
本发明实施例中,第一确定模块设置成按照如下方式确定扩展后的随机接入子帧中前导序列的长度:根据前导序列所要支持的小区覆盖半径的大小,确定当前前导序列的长度;根据扩展后的随机接入子帧中包含的当前前导序列的个数确定扩展后的随机接入子帧中前导序列的长度,个数为一个或多个。
本发明实施例中,第二确定模块设置成按照如下方式确定扩展后的随 机接入子帧中CP和GI的长度:根据当前CP和GI所要支持的小区覆盖半径的大小,确定扩展后的随机接入子帧中CP和GI的长度;CP的长度可以小于等于GI的长度。
本发明实施例中,CP和GI所要支持的小区覆盖半径的大小,可以大于等于前导序列要支持的小区覆盖半径的大小;
本发明实施例中,接收机根据当前系统子帧的长度,调整CP和GI的长度,使得前导序列的长度与CP和GI的长度和为系统子帧长度的整数倍;
本发明实施例中,第二格式确定模块中扩展后的随机接入子帧的频域格式包含前导序列的频域ZC序列和保护载波两部分;
另外,在本可选实施例中,该接收机还包括发送模块,其中:发送模块,配置为根据所在系统的参数选择随机接入子帧的时域格式,若现有格式无法支持当前所要支持的小区,则使用扩展后的随机接入子帧时域格式发送随机接入子帧。以及,用于根据所在系统的参数选择随机接入子帧的频域格式,若现有格式无法支持当前所要支持的小区,则使用扩展后的随机接入子帧频域格式发送随机接入子帧。
可加,通过本可选实施例,利用扩展后的随机接入子帧格式,增加了小区的覆盖半径;根据上述扩展原则,可以保证覆盖到任何的小区半径,并且可以灵活配置随机接入子帧的时域和频域资源。通过本可选实施的该方法可以解决相关技术无法支持超过100km的超远覆盖的问题。
下面结合附图和具体实施例对本可选实施例进行相应说明;
本可选实施例的方法的步骤包括:
步骤S401,接收机开机后,进行小区搜索及下行同步;
步骤S402,根据接收机所在系统的参数,选择随机接入子帧的格式,若现有五种格式均无法支持所需小区覆盖,则需要选择扩展后的随机接入子帧格式,该扩展后的随机接入子帧格式的获得过程,如图4所示,包括 步骤S4021-S4024,图4是根据本发明可选实施例的随机接入子帧格式的获得方法流程图,
步骤S4021,接收机根据当前随机接入子帧中前导序列所要支持的小区覆盖半径的大小,确定扩展后的随机接入子帧中前导序列的长度;
在具体应用场景中,根据前导序列所要支持的小区覆盖半径CellRadius_Seq,确定当前前导序列的长度TSEQ
Figure PCTCN2017078862-appb-000008
该接收机可以根据扩展后的随机接入子帧中包含的当前前导序列的个数确定扩展后的随机接入子帧中前导序列的长度,个数为一个或多个,即前导序列部分是可以重复的,以获得性能增益;
步骤S4022,接收机根据当前CP和GI所要支持的小区覆盖半径的大小,确定扩展后的随机接入子帧中CP和GI的长度;
根据当前CP和GI所要支持的小区半径CellRadius,确定随机接入子帧中CP和GI的长度,其中CP的长度可以小于等于GI的长度;
Figure PCTCN2017078862-appb-000009
Figure PCTCN2017078862-appb-000010
步骤S4023,根据所在系统采样率、前导序列的长度、CP的长度和GI的长度,分别计算前导序列、GI和CP的采样点数,并确定扩展后的随机接入子帧的时域格式;
具体地,根据系统的采样率Ts、TSEQ,TGI和TCP的值计算随机接入前导,GI和CP的采样点数;
Figure PCTCN2017078862-appb-000011
Figure PCTCN2017078862-appb-000012
Figure PCTCN2017078862-appb-000013
则扩展后的随机接入子帧的时域格式已确定,时域长度为:
TPRACH=(TCP_NUM+TSEQ_NUM+TGI_NUM)×Ts
步骤S4024,根据前导序列的长度和前导序列的频域资源大小,确定前导序列的频域Nzc,并确定扩展后的随机接入子帧的频域格式。
设前导序列的频域资源大小为BW_PRACH(KHz),则前导序列频域占用的RE个数RE_PRACH为:
RE_PRACH=BW_PRACH×TSEQ
则前导序列的频域Nzc为小于该值的最大素数,其余载波为保护载波。
需要说明的是,本可选实施例中的步骤S402中S4021-S4024,并不代表严格的先后顺序,还可以有其他的组合顺序,比如至少还包括如下顺序:
此外,步骤S402,也可以按照S4021、S4024、S4022、S4023的顺序;
步骤S402,还可以按照S4021、S4022、S4024、S4423的顺序;
步骤S402,还可以按照S4022、S4021、S4023、S4024的顺序;
步骤S402,还可以按照S4022、S4021、S4024、S4023的顺序;
步骤S403、按照步骤S402中所选择的扩展后的随机接入子帧格式,发送随机接入子帧。
上述随机接入方法,利用扩展后的随机接入子帧格式,增加了小区的覆盖半径;根据上述扩展原则,可以保证覆盖到任何的小区半径,并且可以灵活配置随机接入子帧的时域和频域资源。
实施例一
本实施例的步骤包括:
步骤S501,接收机开机后,进行小区搜索及下行同步;
通过搜索主同步序列,接收机可以获得5ms的基准时间,然后通过搜索辅同步序列,接收机可以获得帧同步和物理层小区组,最后通过参考信号,接收机获得物理层小区标识(Identification,简称为ID),至此完成了下行同步,获得时间基准T0
步骤S502,假设前导序列要支持150km的小区覆盖,CP和GI要支持300km的小区覆盖,频域资源为1.08M,现有Format均无法支持,故重新设计扩展后的随机接入子帧格式如下:
首先,根据前导序列要支持150km的小区覆盖,确定随机接入前导序列的长度TSEQ
Figure PCTCN2017078862-appb-000014
在该实施例中,TSEQ=1ms。
其次,根据CP和GI要支持300km的小区覆盖,确定随机接入子帧中CP和GI的长度,其中CP的长度可以小于等于GI的长度,:
Figure PCTCN2017078862-appb-000015
Figure PCTCN2017078862-appb-000016
在该实施例中,TCP=TGI=2ms。
再次,根据系统采样率Ts=1/30.72μs,TSEQ,TGI的长度计算随机接入前导,GI和CP的采样点数;
Figure PCTCN2017078862-appb-000017
Figure PCTCN2017078862-appb-000018
Figure PCTCN2017078862-appb-000019
最后,计算随机接入子帧的长度
TPRACH=(TCP_NUM+TSEQ_NUM+TGI_NUM)×Ts=5ms
图5是根据本发明可选实施例的扩展的随机接入子帧的时域格式示意图一,如图5所示,根据前导序列的长度和前导序列的频域资源大小,得到前导序列频域占用的PRACH RE个数RE_PRACH为:
RE_PRACH=BW_PRACH×TSEQ=1080
则前导序列的频域Nzc为小于该值的最大素数1069,即NZC=1069;剩余11个PRACHRE为保护载波,本实施例中将11个PRACHRE分布在频域ZC序列的两侧,左右分别为6个和5个,如图6所示,图6是根据本发明可选实施例的扩展的随机接入子帧的频域格式示意图二;
步骤S503,按照步骤S502所得的扩展后的随机接入子帧格式,发送随机接入子帧。
图7是根据本发明可选实施例的接收机结构示意图,如图7所示,为本发明接收机实施例的结构示意图,该接收机包括:第一确定模块71、第二确定模块72、第一格式确定模块73和第二格式确定模块74,其中:
第一确定模块71设置成:根据当前随机接入子帧中前导序列所要支持的小区覆盖半径的大小,确定扩展后的随机接入子帧中前导序列的长度;
第二确定模块72设置成:根据当前CP和GI所要支持的小区覆盖半径的大小,确定扩展后的随机接入子帧中CP和GI的长度;
第一格式确定模块73设置成:根据该接收机根据所在系统的采样率、前导序列的长度、CP的长度和GI的长度,分别计算前导序列、GI和CP的采样点数,并确定扩展后的随机接入子帧的时域格式;
第二格式确定模块74设置成:根据前导序列的长度和前导序列的频域资源大小,确定前导序列的频域Nzc,并确定扩展后的随机接入子帧的频域 格式。
其中,第一确定模块71设置成按照如下方式确定扩展后的随机接入子帧中前导序列的长度:根据当前随机接入子帧中前导序列所要支持的小区覆盖半径的大小,确定扩展后的随机接入子帧中前导序列的长度;根据扩展后的随机接入子帧中包含的当前前导序列的个数确定扩展后的随机接入子帧中前导序列的长度,个数为一个或多个。
第二确定模块72设置成按照如下方式确定扩展后的随机接入子帧中CP和GI的长度:根据当前CP和GI所要支持的小区覆盖半径的大小,确定扩展后的随机接入子帧中CP和GI的长度;其中,CP的长度可以小于等于GI的长度;
本发明实施例中,接收机可以根据当前系统子帧的长度,调整CP和GI的长度,使得前导序列的长度与CP和GI的长度和为系统子帧长度的整数倍;
第二格式确定模块74中扩展后的随机接入子帧的频域格式包含前导序列的频域ZC序列和保护载波两部分;
本发明实施例中,接收机还包括:发送模块75,根据所在系统的参数选择随机接入子帧的时域格式,若现有格式无法支持当前所要支持的小区,则使用扩展后的随机接入子帧时域格式发送随机接入子帧。
进一步地,发送模块75还配置为:根据所在系统的参数选择随机接入子帧的频域格式,若现有格式无法支持当前所要支持的小区,则使用扩展后的随机接入子帧频域格式发送随机接入子帧。
本发明实施例还提供了一种包含上述接收机的终端。
接收机和终端可应用于长期演进系统中。
上述接收机及终端,利用扩展后的随机接入子帧格式,增加了小区的覆盖半径;根据上述扩展原则,可以保证覆盖到任何的小区半径,并且可 以灵活配置随机接入子帧的时域和频域资源。
本发明的实施例还提供了一种计算机存储介质。在本实施例中,上述计算机存储介质可以被设置为存储用于执行以下步骤的程序代码:
步骤S1:在当前随机接入子帧所需支持的小区覆盖半径的大小大于预设半径大小时,根据当前随机接入子帧中的前导序列的所需支持的小区覆盖半径的大小确定扩展后的随机接入子帧中前导序列的长度;
步骤S2:根据当前随机接入子帧中的CP和GI所需支持的小区覆盖半径的大小确定扩展后的随机接入子帧中CP和GI的长度;
步骤S3:根据当前随机接入子帧所在系统的采样率、前导序列的长度、CP的长度以及GI的长度得到的扩展后的前导序列、扩展后的GI以及扩展后的CP的采样点数,确定扩展后的随机接入子帧的时域格式;
步骤S4:根据当前随机接入子帧的扩展后的前导序列的长度和前导序列的频域资源大小得到扩展后的前导序列的频域ZC序列长度,确定扩展后的随机接入子帧的频域格式;
步骤S5:通过扩展后的随机接入子帧的频域格式和/或时域格式发送随机接入子帧。
本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特 定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
本发明实施例的技术方案,采用在当前随机接入子帧所需支持的小区覆盖半径的大小大于预设半径大小时,根据扩展后的前导序列、扩展后的GI以及扩展后的CP的采样点数确定扩展后的随机接入子帧的时域格式,以及根据扩展后的前导序列的长度和前导序列的频域资源大小得到扩展后的前导序列的频域ZC序列长度,确定扩展后的随机接入子帧的频域格式,进而根据扩展后的随机接入子帧的频域格式和/或时域格式发送随机接入子帧的方式;从而解决了相关技术中LTE系统支持的五种格式所支持小区的小区覆盖范围固定,且最大只能支持100km之内的覆盖范围的问题,达到了扩大小区覆盖范围的效果。

Claims (13)

  1. 一种随机接入的方法,包括:
    在当前随机接入子帧所需支持的小区覆盖半径的大小大于预设半径大小时,根据所述当前随机接入子帧中的前导序列的所需支持的小区覆盖半径的大小确定扩展后的随机接入子帧中前导序列的长度;
    根据所述当前随机接入子帧中的循环前缀CP和保护间隔GI所需支持的小区覆盖半径的大小确定所述扩展后的随机接入子帧中所述CP和所述GI的长度;
    根据所述当前随机接入子帧所在系统的采样率、前导序列的长度、CP的长度以及GI的长度得到的扩展后的前导序列、扩展后的GI以及扩展后的CP的采样点数,确定扩展后的随机接入子帧的时域格式;
    根据所述当前随机接入子帧的扩展后的前导序列的长度和前导序列的频域资源大小得到扩展后的前导序列的频域ZC序列长度,确定扩展后的随机接入子帧的频域格式;
    通过扩展后的随机接入子帧的频域格式和/或时域格式发送随机接入子帧。
  2. 根据权利要求1所述的方法,其中,所述前导序列的个数为一个或多个。
  3. 根据权利要求1所述的方法,其中,扩展后的CP的长度满足以下条件之一:小于扩展后的GI的长度、大于扩展后的GI的长度、等于扩展后的GI的长度。
  4. 根据权利要求1所述的方法,其中,扩展后的CP和扩展后的GI所需支持的小区覆盖半径的大小大于或等于扩展后的前导序列要支持的小区覆盖半径的大小。
  5. 根据权利要求3所述的方法,其中,所述扩展后的前导序列的长 度与扩展后的CP和扩展后的GI的长度和为当前系统子帧长度的整数倍。
  6. 根据权利要求1所述的方法,其中,所述扩展后的随机接入子帧的频域格式包括所述前导序列的频域ZC序列和保护载波。
  7. 一种随机接入装置,包括:
    第一确定模块,配置为在当前随机接入子帧所需支持的小区覆盖半径的大小大于预设半径大小时,根据所述当前随机接入子帧中的前导序列的所需支持的小区覆盖半径的大小确定扩展后的随机接入子帧中前导序列的长度;
    第二确定模块,配置为根据所述当前随机接入子帧中的循环前缀CP和保护间隔GI所需支持的小区覆盖半径的大小确定所述扩展后的随机接入子帧中所述CP和所述GI的长度;
    第三确定模块,配置为根据所述当前随机接入子帧所在系统的采样率、前导序列的长度、CP的长度以及GI的长度得到的扩展后的前导序列、扩展后的GI以及扩展后的CP的采样点数,确定扩展后的随机接入子帧的时域格式;
    第四确定模块,配置为根据所述当前随机接入子帧的扩展后的前导序列的长度和前导序列的频域资源大小得到扩展后的前导序列的频域ZC序列长度,确定扩展后的随机接入子帧的频域格式;
    发送模块,配置为通过扩展后的随机接入子帧的频域格式和/或时域格式发送随机接入子帧。
  8. 根据权利要求7所述的装置,其中,所述前导序列的个数为一个或多个。
  9. 根据权利要求7所述的装置,其中,扩展后的CP的长度满足以下条件之一:小于扩展后的GI的长度、大于扩展后的GI的长度、等于扩展后的GI的长度。
  10. 根据权利要求7所述的装置,其中,扩展后的CP和扩展后的GI所需支持的小区覆盖半径的大小大于或等于扩展后的前导序列要支持的小区覆盖半径的大小。
  11. 根据权利要求10所述的装置,其中,所述扩展后的前导序列的长度与扩展后的CP和扩展后的GI的长度和为当前系统子帧长度的整数倍。
  12. 根据权利要求7所述的装置,其中,所述扩展后的随机接入子帧的频域格式包括所述前导序列的频域ZC序列和保护载波。
  13. 一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,该计算机可执行指令配置为执行权利要求1-6任一项所述的随机接入的方法。
PCT/CN2017/078862 2016-03-30 2017-03-30 随机接入的方法及装置、计算机存储介质 WO2017167243A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610194232.4A CN107295692B (zh) 2016-03-30 2016-03-30 随机接入的方法及装置
CN201610194232.4 2016-03-30

Publications (1)

Publication Number Publication Date
WO2017167243A1 true WO2017167243A1 (zh) 2017-10-05

Family

ID=59962618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/078862 WO2017167243A1 (zh) 2016-03-30 2017-03-30 随机接入的方法及装置、计算机存储介质

Country Status (2)

Country Link
CN (1) CN107295692B (zh)
WO (1) WO2017167243A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110392443A (zh) * 2018-04-18 2019-10-29 华为技术有限公司 一种数据信道传输方法、接收方法及装置
WO2021048462A1 (en) * 2019-09-10 2021-03-18 Nokia Technologies Oy Time of arrival based method for extended connection range

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109729580B (zh) 2018-01-12 2020-01-03 华为技术有限公司 通信方法及装置
WO2019140546A1 (en) 2018-01-16 2019-07-25 Zte Corporation System and method for performing a random access procedure
CN114095112B (zh) * 2021-10-12 2023-09-15 北京长焜科技有限公司 一种基于5g nr无线通信技术的长距离接入方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102938931A (zh) * 2011-08-15 2013-02-20 北京为邦远航无线技术有限公司 大范围非同步上行接入方法及装置
CN103582152A (zh) * 2012-07-23 2014-02-12 中兴通讯股份有限公司 随机接入子帧格式的获得方法及接收机
CN103582151A (zh) * 2012-07-23 2014-02-12 中兴通讯股份有限公司 随机接入方法及接收机
CN103889069A (zh) * 2014-03-27 2014-06-25 武汉邮电科学研究院 一种应用于大覆盖范围的随机接入信号发送和接收方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101860395B (zh) * 2010-05-31 2012-05-30 合肥东芯通信股份有限公司 一种前导preamble序列的生成方法和设备
CN103906260A (zh) * 2012-12-28 2014-07-02 中兴通讯股份有限公司 随机接入前导处理方法及装置
CN103906261B (zh) * 2012-12-28 2018-06-05 中兴通讯股份有限公司 随机接入前导处理方法及装置
WO2014110757A1 (en) * 2013-01-17 2014-07-24 Broadcom Corporation Method and apparatus for facilitating extended time-domain granularity for uplink frequency hopping

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102938931A (zh) * 2011-08-15 2013-02-20 北京为邦远航无线技术有限公司 大范围非同步上行接入方法及装置
CN103582152A (zh) * 2012-07-23 2014-02-12 中兴通讯股份有限公司 随机接入子帧格式的获得方法及接收机
CN103582151A (zh) * 2012-07-23 2014-02-12 中兴通讯股份有限公司 随机接入方法及接收机
CN103889069A (zh) * 2014-03-27 2014-06-25 武汉邮电科学研究院 一种应用于大覆盖范围的随机接入信号发送和接收方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110392443A (zh) * 2018-04-18 2019-10-29 华为技术有限公司 一种数据信道传输方法、接收方法及装置
US11394593B2 (en) 2018-04-18 2022-07-19 Huawei Technologies Co., Ltd. Data channel transmission method, data channel receiving method, and apparatus
WO2021048462A1 (en) * 2019-09-10 2021-03-18 Nokia Technologies Oy Time of arrival based method for extended connection range

Also Published As

Publication number Publication date
CN107295692A (zh) 2017-10-24
CN107295692B (zh) 2022-08-02

Similar Documents

Publication Publication Date Title
WO2017167243A1 (zh) 随机接入的方法及装置、计算机存储介质
US10798747B2 (en) Simple RACH (SRACH)
EP3119049B1 (en) Detecting physical random access channel preambles in a long term evolution communication system
US8391131B2 (en) Method for processing the random access transmission in the frequency domain
US9736863B2 (en) Method and apparatus for preamble determination
EP3393167B1 (en) Resource allocation method and device, and base station
US8797994B2 (en) Frequency offset estimation method, communication apparatus, wireless communication system, and program
US11812416B2 (en) Coherent detection of large physical random access control channel (PRACH) delays
CN107820273B (zh) 一种检测D2D中sidelink的同步信号的方法及装置
CN107113757B (zh) Sc-fdma中的没有前导码的上行链路同步
US8670402B2 (en) Method and an apparatus for transmitting physical random access channel signal
US8391229B2 (en) Method and apparatus for sequencing ZC sequences of a random access channel
US10200229B2 (en) Method and apparatus for extracting resource block from signal
WO2018113570A1 (zh) 一种随机接入方法及设备
WO2018064909A1 (zh) 干扰源小区定位方法和装置以及对应的基站
US11546726B2 (en) Receiver-based computation of transmitter parameters and state for communications beyond design ranges of a cellular network protocol
EP3694264A1 (en) Synchronization method and apparatus
US20230179990A1 (en) Receiver-Based Computation of Transmitter Parameters and State for Communications Beyond Design Ranges of a Cellular Network Protocol
CN110868722A (zh) 一种增加信号覆盖距离的方法和装置
US10805890B2 (en) Synchronization signal sending method and apparatus
WO2016064450A1 (en) Device-to-device synchronization sequences

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17773273

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17773273

Country of ref document: EP

Kind code of ref document: A1