WO2017167083A1 - 无线通信系统中的装置和方法以及无线通信系统 - Google Patents

无线通信系统中的装置和方法以及无线通信系统 Download PDF

Info

Publication number
WO2017167083A1
WO2017167083A1 PCT/CN2017/077633 CN2017077633W WO2017167083A1 WO 2017167083 A1 WO2017167083 A1 WO 2017167083A1 CN 2017077633 W CN2017077633 W CN 2017077633W WO 2017167083 A1 WO2017167083 A1 WO 2017167083A1
Authority
WO
WIPO (PCT)
Prior art keywords
inter
signal
operator
pattern
operator coordination
Prior art date
Application number
PCT/CN2017/077633
Other languages
English (en)
French (fr)
Inventor
王玮
张源
徐平平
胡秉珊
呂本舜
Original Assignee
索尼公司
王玮
张源
徐平平
胡秉珊
呂本舜
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼公司, 王玮, 张源, 徐平平, 胡秉珊, 呂本舜 filed Critical 索尼公司
Priority to EP17773113.0A priority Critical patent/EP3439350A1/en
Priority to CN201780009416.1A priority patent/CN108605235A/zh
Priority to US16/088,956 priority patent/US11363633B2/en
Priority to AU2017243531A priority patent/AU2017243531A1/en
Publication of WO2017167083A1 publication Critical patent/WO2017167083A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0006Assessment of spectral gaps suitable for allocating digitally modulated signals, e.g. for carrier allocation in cognitive radio
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • H04W74/0816Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA] with collision avoidance

Definitions

  • the present disclosure relates to the field of wireless communication technologies, and in particular, to a wireless communication system, particularly an apparatus and method in a Licensed Assisted Access (LAA) system, and a wireless communication system capable of implementing the wireless communication system Information exchange between different carrier devices to resolve coordination issues between different carrier devices on unlicensed bands.
  • LAA Licensed Assisted Access
  • the LAA framework has a wider transmit bandwidth.
  • different operators may compete for the same channel, resulting in inevitable data transmission conflicts. If different cells with overlapping geographical locations can identify each other, the corresponding collision avoidance mechanism can be used to improve channel utilization.
  • the Wi-Fi system uses the overlapping basic service set coloring to realize the identification of different service sets.
  • the traditional LTE operators purchase different frequency bands for data transmission. Therefore, there is no problem that different operators compete for the same channel.
  • the inter-operator coordination scheme proposed in the literature is mainly used for spectrum sharing of licensed bands.
  • a single operator has exclusive spectrum and low spectrum utilization.
  • the existing literature proposes a shared primary channel scheme, that is, multiple operators jointly purchase the same channel and coordinately use the same channel resource. Different operators may use different physical layer technologies, which makes it difficult to decode between operators. Therefore, the current inter-operator coordination scheme mainly starts from two aspects: frequency selection and power control.
  • the existing inter-operator coordination scheme either divides the spectrum into multiple small blocks, and the devices of different operators perform dynamic frequency selection; or construct a frequency pool, and use different channel selection algorithms to ensure that the collision frequency that different operators may select is the smallest; or Minimize equipment conflicts between operators through power control.
  • the licensed band purchase has been completed, and the use of unlicensed band is subject to many restrictions, so the inter-operator coordination scheme of the above licensed band cannot be directly used for the unlicensed band.
  • PLMN ID Public Land Mobile Network ID
  • CSI-RS Channel State Information-Reference Signal
  • the PLMN ID needs to be sent repeatedly to achieve mutual recognition between operators.
  • the PLMN ID carries limited information and may not be properly demodulated in the event of interference during transmission, and thus may not be suitable for inter-operator coordination on unlicensed bands.
  • an object of the present disclosure is to provide a mechanism for inter-operator coordination on an unlicensed frequency band in a wireless communication system, which fully considers the difficulty of signal detection, reception, and demodulation between different carrier devices.
  • the information interaction between operators is realized by using energy signal carrying information, thereby effectively coordinating between different operators' devices to avoid conflicts.
  • an apparatus for a transmitting end in a wireless communication system comprising: a channel detecting unit configured to detect whether a transmitting end channel on an unlicensed band is idle; and a coordinating unit configured to When the transmitting end channel is idle, the transmitting end broadcasts an inter-operator coordination signal before the data stream is sent, so as to implement information interaction between different carrier devices, where the inter-operator coordination signal is utilized on the specified frequency band. Whether there is energy to achieve different carrier equipment The information between the time domain and the energy pattern signal on the frequency domain plane.
  • the inter-operator coordination signal includes at least one of a flag pattern and a link information pattern, the flag pattern is a predetermined periodic repetition energy pattern of the energy carrying subcarrier position, and the link information pattern is A subcarrier position carrying energy and a variable duration codeable energy pattern.
  • the flag pattern is used to indicate that the inter-operator coordination signal starts, and the link information pattern is used to carry the link information.
  • the link information includes one or more of a device type and number of the transmitting end, a device type and number of the receiving end, operator information, and estimated channel occupation time.
  • the logo pattern includes one of a comb stripe pattern, a zigzag pattern, and a checkerboard pattern
  • the link information pattern includes one of a stripe pattern, a barcode pattern, and a two-dimensional code pattern.
  • the coordinating unit is further configured to cause the transmitting end to stop broadcasting the inter-operator coordination signal in case receiving a notification from the receiving end indicating that the receiving end channel is busy.
  • the coordinating unit is further configured to, in the case of uplink transmission, control the transmitting end to send an uplink scheduling request to the base station according to the inter-operator coordination signal broadcast by the other operator equipment.
  • the coordinating unit is further configured to, in the case of uplink transmission, report link information determined according to the inter-operator coordination signal broadcasted by the other operator equipment to the base station to be performed by the base station Upstream scheduling.
  • the coordinating unit is further configured to achieve uniformity of inter-operator coordination signals with other carrier devices by adjusting the number of subcarriers of the inter-operator coordination signal and/or the signal transmission duration.
  • the coordinating unit is further configured to adjust the inter-operator coordination signal sub-carrier according to the number of subcarriers of the inter-operator coordination signal and/or the least common multiple or the greatest common factor of the signal transmission duration The number of carriers and / or signal transmission duration.
  • the wireless communication system is an authorized secondary access system.
  • the apparatus further includes: a communication unit configured to perform Line signal transceiving processing.
  • an apparatus for a receiving end in a wireless communication system comprising: a channel detecting unit configured to detect whether a receiving end channel on an unlicensed band is idle; and a coordinating unit When the receiving end channel is idle, the receiving end broadcasts the shortened inter-operator coordination signal synchronously with the inter-operator coordination signal from the transmitting end at a predetermined time after receiving the inter-operator coordination signal broadcasted by the transmitting end.
  • the inter-operator coordination signal is to use the energy in the specified frequency band to realize information interaction between different carrier devices on the time domain-frequency domain plane. Energy pattern signal.
  • a wireless communication system comprising: a transmitting device comprising a first processing circuit, the first processing circuit configured to: detect whether a transmitting channel on an unlicensed band is idle, and In the case that the transmitting end channel is idle, the inter-operator coordination signal is broadcasted before the data stream is transmitted for realizing information exchange between different carrier devices; and the receiving device includes a second processing circuit, and the second processing circuit is The configuration is: detecting whether the receiving end channel on the unlicensed frequency band is idle, and in the case that the receiving end channel is idle, between the scheduled time after receiving the inter-operator coordination signal broadcasted by the transmitting device, and the operator from the transmitting device
  • the coordinated signal synchronously broadcasts the shortened inter-operator coordination signal, wherein the inter-operator coordination signal is energy in the time domain-frequency domain plane that utilizes the presence or absence of energy in the specified frequency band to implement information interaction between different operator devices. Pattern signal.
  • a method of a transmitting end in a wireless communication system comprising: detecting whether a transmitting end channel on an unlicensed frequency band is idle; and transmitting in a case where the transmitting end channel is idle
  • the inter-operator coordination signal is broadcasted before the data stream is sent, so as to implement information interaction between different carrier devices, where the inter-operator coordination signal uses different energy in the specified frequency band to implement different carrier equipment.
  • the energy pattern signal on the time domain-frequency domain plane of the information exchange.
  • a method of a receiving end in a wireless communication system comprising: detecting whether a receiving end channel on an unlicensed frequency band is idle; and receiving in a case where the receiving end channel is idle The predetermined time after the inter-operator coordination signal broadcasted by the transmitting end, so that the receiving end and the inter-operator coordination signal from the transmitting end broadcast the shortened inter-operator coordination signal for realizing information between different carrier devices.
  • the inter-operator coordination signal is An energy pattern signal on a time domain-frequency domain plane that enables information exchange between different carrier devices by using energy in a specified frequency band.
  • an electronic device can include a transceiver and one or more processors, the one or more processors can be configured to perform the wireless communication described above in accordance with the present disclosure The method in the system or the function of the corresponding unit.
  • the information interaction between operators is realized by using the energy signal carrying information, the difficulty of signal detection receiving and demodulating between different operator devices is solved, and the unauthorized authorization in the wireless communication system is effectively realized.
  • Coordination between different carrier devices in the frequency band improves system performance.
  • FIG. 1 is a block diagram showing a functional configuration example of an apparatus of a transmitting end in a wireless communication system according to an embodiment of the present disclosure
  • IOC Inter-Operator Coordination
  • 3A through 3C are schematic diagrams showing examples of flag patterns of inter-operator coordination signals according to an embodiment of the present disclosure
  • FIGS. 4A through 4C are schematic diagrams showing examples of link information patterns of inter-operator coordination signals according to an embodiment of the present disclosure
  • FIG. 5 is a block diagram showing a functional configuration example of an apparatus of a receiving end in a wireless communication system according to an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram showing an example form of a transmitting end broadcast inter-operator coordination signal according to an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram showing an example form of a receiving end broadcast inter-operator coordination signal according to an embodiment of the present disclosure
  • FIG. 8 is a diagram showing an example of a signaling interaction process using inter-operator coordination signals, according to an embodiment of the present disclosure
  • FIG. 9 is a schematic diagram showing an example of an interaction scenario between operators according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram showing an example of a signaling interaction process between operators in the scenario example shown in FIG. 9;
  • FIG. 11 is a schematic diagram showing another example of a signaling interaction process between operators in the scenario example shown in FIG. 9;
  • FIG. 12 is a schematic diagram showing another example of an interaction scenario between operators according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic diagram showing an example of a signaling interaction process between operators in the scenario example shown in FIG. 12;
  • FIG. 14 is a block diagram showing an example configuration of a wireless communication system according to an embodiment of the present disclosure.
  • 15 is a flowchart illustrating a process example of a method of a transmitting end in a wireless communication system according to an embodiment of the present disclosure
  • 16 is a flowchart illustrating a process example of a method of a receiving end in a wireless communication system according to an embodiment of the present disclosure
  • FIG. 17 is a block diagram showing an example structure of a personal computer which is an information processing device which can be employed in an embodiment of the present disclosure
  • FIG. 18 is a block diagram showing a first example of a schematic configuration of an evolved node (eNB) to which the technology of the present disclosure may be applied;
  • eNB evolved node
  • 19 is a block diagram showing a second example of a schematic configuration of an eNB to which the technology of the present disclosure may be applied;
  • FIG. 20 is a block diagram showing an example of a schematic configuration of a smartphone to which the technology of the present disclosure can be applied.
  • 21 is a block diagram showing an example of a schematic configuration of a car navigation device to which the technology of the present disclosure can be applied.
  • FIG. 1 is a block diagram showing a functional configuration example of an apparatus of a transmitting end in a wireless communication system according to an embodiment of the present disclosure.
  • the apparatus 100 may include a channel detecting unit 102 and a coordinating unit 104.
  • Channel detection unit 102 can be configured to detect whether a transmit channel on an unlicensed band is idle. Specifically, in order to avoid interference with existing links on the same frequency band, the device needs to first listen before transmitting signals on the unlicensed frequency band to ensure that the signal is sent when the channel is idle. This process may be called listening first. After that (Listen-Before-Talk, LBT).
  • the channel detecting unit 102 can detect whether the transmitting channel is idle, for example, by any means known in the art, and the simplest method is energy detection. If it is detected that the energy on the current channel exceeds a predetermined energy threshold (eg, a Clear Channel Assessment (CCA) threshold), then the current channel is considered busy, otherwise the current channel is considered idle.
  • a predetermined energy threshold eg, a Clear Channel Assessment (CCA) threshold
  • the CCA threshold is -62dBm
  • the energy value is higher than -62dBm, it is considered that the channel of the transmitting end is currently busy, otherwise the channel of the transmitting end is considered to be idle.
  • the coordinating unit 104 can be configured to enable the transmitting end to broadcast an inter-operator coordination signal for transmitting information between different carrier devices before the transmitting channel is idle.
  • the inter-operator coordination signal here is an energy pattern signal on the time domain-frequency domain plane that utilizes the presence or absence of energy in a specified frequency band to implement information exchange between different carrier devices, and may be simply referred to as an IOC signal.
  • the simplest channel detection method is energy detection, so if the energy on a particular subcarrier is designed as a pattern, the energy pattern can be utilized to carry the relevant link information, thereby receiving
  • the equipment for coordinating signals between operators can determine the link information carried by the signal by means of energy detection, so as to realize information interaction between devices of different operators, thereby achieving coordination between operators and devices.
  • the present invention has been made based on this design idea.
  • the energy pattern signal that is, by setting the presence and absence of energy and duration over each frequency band
  • a transformable pattern can be formed in the time domain-frequency domain, and different patterns can correspond to different link information.
  • both parties need to know the modulation coding scheme and the codebook of the two parties and demodulate the electromagnetic wave signals to implement information interaction.
  • the inter-operator coordination signal of the present disclosure only the energy on each subcarrier is detected. The information carried by the inter-operator coordination signal can be easily determined, thereby facilitating information exchange between operators.
  • FIG. 2 is a schematic diagram showing an illustration of a pattern representation of an inter-operator coordination signal, in accordance with an embodiment of the present disclosure.
  • each grid represents a pattern unit, which may be one or more sub-carrier widths in the frequency domain, and may be one or more minimum time units that the actual physical device can transmit and detect in the time domain.
  • the shaded grid indicates that there is energy on these subcarriers, that is, there is signal transmission on these subcarriers
  • the blank grid indicates that there is no energy on these subcarriers, that is, There is no signal transmission on these subcarriers, the same applies to the other figures.
  • the checkerboard pattern is presented; in the fourth part, the subcarriers are sent in different lengths, first incremented and then decremented, presenting a symmetric sawtooth shape.
  • an energy pattern signal in the time domain-frequency domain can be formed, and different energy pattern signals can correspond to different signal contents, so that the energy pattern can be utilized. Signals to achieve information transfer for the purpose of interaction.
  • the inter-operator coordination signal may include at least one of a flag pattern and a link information pattern, wherein the flag pattern is a predetermined periodic repetition energy pattern of the energy carrying subcarrier position, and the link information pattern is carrying energy The subcarrier position and the variable duration codeable energy pattern.
  • a repeating pattern in the time domain-frequency domain may be adopted, that is, a subcarrier that specifies a certain regular position is used as an agreed position, and an energy signal is transmitted at these agreed positions for a certain time, thereby forming a time domain.
  • 3A to 3C are schematic views each showing an example of a logo pattern, however, examples of the repeat pattern may include, but are not limited to, a comb stripe pattern, a zigzag pattern, and a checkerboard pattern respectively shown in FIGS. 3A to 3C, any simple
  • the frequency domain repeat pattern signal can realize the function of the pattern signal.
  • the logo pattern can be used to carry some simple information, taking the comb stripe pattern as an example.
  • the width and position of the stripe can be used, for example, to distinguish different operators or carry other simple information.
  • the pattern of the logo pattern is simple, the information carried is very limited. To achieve the purpose of effectively avoiding conflicts between operators, it is not enough to simply repeat the information carried by the pattern, so in order to save storage resources, energy
  • the pattern should be coded to carry more abundant link information.
  • the position carrying energy can be encoded as 1 and the position without energy encoded as 0, such that an energy pattern signal can be represented as a sequence of binary codes so that different link information can be represented.
  • those skilled in the art can also think of using other coding methods as long as the energy position and duration can be encoded.
  • the link information pattern is an irregular energy pattern formed on the time domain-frequency domain plane by specifying the subcarrier position and duration of the energy carrying to carry complex link information.
  • the link information may include, for example, but is not limited to, one or more of a device type and number of the transmitting end, a device type and number of the receiving end, operator information, and estimated channel occupation time.
  • the device that receives the inter-operator coordination signal can parse the link information pattern through energy detection, thereby obtaining relevant link information carried by the pattern, so as to implement inter-operator coordination to avoid data transmission conflicts.
  • the link information pattern may include, but is not limited to, a stripe pattern, a barcode pattern, and a two-dimensional code pattern, and any irregular time-domain energy domain pattern may be used to implement the function of the pattern signal.
  • 4A to 4C respectively show an example form of a link information pattern, for example, FIG. 4A shows an example of designating a binary coded stripe pattern, FIG. 4B shows an example of a simple barcode pattern, and FIG. 4C shows a simple two. An example of a dimension code pattern.
  • the two pattern signals are used in combination. That is, the logo pattern can be used as a pre-signal signal for the inter-operator coordination signal to notify the inter-operator to coordinate the start of the signal, and can also carry some simple link information, and the link information pattern can appear after the logo pattern. Used to carry more complex link information before the data stream.
  • the transmitting device can transmit the data stream immediately after the end of the broadcast of the link information pattern.
  • the inter-operator coordination signal as the energy pattern signal solves the difficulty of signal detection reception and demodulation, and effectively realizes the different carriers in the unlicensed frequency band. Information exchange.
  • the time domain length and frequency domain width of inter-operator coordination signals can be set according to specific conditions, and the specific use of inter-operator coordination signals can be set according to the future development trend of wireless networks and the actual situation of each operator.
  • the pattern is not limited in this disclosure.
  • the wireless communication system is an LAA system, but the present disclosure is not limited thereto, but is also applicable to a Device to Device (D2D) communication system, LTE- In a wireless communication system such as a WiFi interconnection system, in other words, the energy pattern method of the present invention can be realized as long as the system in the time-frequency domain is a finite signal.
  • D2D Device to Device
  • each carrier device typically uses the same OFDM symbol, and therefore, there is generally no problem of unifying the inter-operator coordination signals of the respective carrier devices.
  • the LTE-WiFi interconnection system For example, suppose that for the LTE system, the OFDM symbol is used for a bandwidth of 15 kHz and the duration is 72 microseconds. For a WiFi system, the bandwidth is 312.5 kHz for a duration of 4 microseconds, if the devices of the two systems want to send The inter-operator coordination signals are similar to each other.
  • the equipment of the LTE system can transmit 20 subcarriers as a group, and the devices of the WiFi system can transmit a duration of 18 symbols to achieve signal unification. It should be understood that the signal bandwidth and duration given herein are for illustrative purposes only and are not limiting, and that for energy detection, the detectable bandwidth and duration may not be so severely limited.
  • the coordinating unit 104 may be further configured to achieve unification of inter-operator coordination signals with other carrier devices by adjusting the number of subcarriers of the inter-operator coordination signal and/or the signal transmission duration. Further, preferably, the coordinating unit 104 may be further configured to adjust the number of subcarriers of the inter-operator coordination signal according to the number of subcarriers of the inter-carrier coordination signal and/or the least common multiple or the greatest common factor of the signal transmission duration. And / or signal transmission duration.
  • the functional units in the apparatus 100 described above with reference to FIG. 1 may be separate physical entities or logical entities, or different functional units may also be by the same physical entity (eg, central processing unit (CPU), large scale An integrated circuit (ASIC), etc. is implemented.
  • the device 100 may be located in the transmitting device or may be the transmitting device itself. In the case where the device 100 is the transmitting device itself, the device 100 may further include a communication unit such as a transceiver to implement the device 100 and other Signal transmission between devices.
  • FIG. 5 is a block diagram showing a functional configuration example of an apparatus of a receiving end in a wireless communication system according to an embodiment of the present disclosure.
  • the wireless communication system is an LAA system.
  • the apparatus 500 may include a channel detecting unit 502 and a coordinating unit 504.
  • the channel detecting unit 502 can be configured to detect whether the receiving end channel on the unlicensed band is idle, to ensure that the inter-operator coordination signal broadcasted by the transmitting end can be correctly received.
  • the specific channel detection mode refer to the description of the corresponding location above, and details are not described herein again.
  • the channel detecting unit 502 detects that the receiving end channel is idle, the receiving end can correctly receive the inter-operator coordination signal broadcasted by the transmitting end, and if it is detected that the receiving end channel is busy and cannot receive the signal, the channel can be passed. For example, the licensed band is notified to the sender, so that the sender stops broadcasting. Coordination signals between operators. At this time, the coordinating unit 104 of the transmitting end may cause the transmitting end to stop broadcasting the inter-operator coordination signal when receiving the notification from the receiving end indicating that the receiving end channel is busy.
  • the coordinating unit 504 may be configured to broadcast the shortened synchronization of the receiving end and the inter-operator coordination signal from the transmitting end at a predetermined time after receiving the inter-operator coordination signal broadcasted by the transmitting end in the case that the receiving end channel is idle. Inter-operator coordination signals for information exchange between different carrier devices.
  • the receiving end can learn that the transmitting end has successfully executed the LBT and obtained the channel, so that the coordinating unit 504 can enable the receiving end to receive a small inter-operator.
  • Coordinating the signal (for example, a segment of the pre-mark pattern) waits for a small delay and then starts synchronizing the broadcast shortened inter-operator coordination signal. Waiting for a small delay here is to confirm that the sender has broadcast the inter-operator coordination signal, and the delay can be preset according to the actual situation.
  • shortened inter-operator coordination signal refers to that the inter-operator coordination signal broadcasted by the receiving end is completely synchronized with the inter-operator coordination signal broadcasted by the transmitting end, except for the inter-operator communication broadcasted by the receiving end.
  • the coordination signal starts later than the inter-operator coordination signal broadcasted by the sender, and therefore has a shorter duration than the inter-operator coordination signal broadcasted by the sender.
  • FIG. 6 and 7 respectively show an exemplary form of a broadcast broadcast inter-carrier coordination signal and a broadcast broadcast inter-carrier coordination signal at the transmitting end.
  • the gray shaded portion indicates the preamble pattern of the inter-operator coordination signal
  • the hatched portion of the vertical line indicates the link information pattern of the inter-operator coordination signal, and the inter-operator coordination signal ends.
  • the inter-operator coordination signal broadcasted by the receiving end is completely synchronized with the inter-operator coordination signal broadcasted by the transmitting end, and only the starting time is slightly later, so the length of the inter-operator coordination signal is short.
  • the above operations can also be adjusted according to actual conditions.
  • the coordinating unit 504 can cause the receiving end to end the broadcast shortened inter-operator coordination signal in advance, that is, the broadcast inter-operator coordination signal is terminated before the transmitting end to prepare to receive the data stream.
  • the inter-operator coordination signal is an energy pattern signal
  • the simultaneous transmission of the inter-operator coordination signal between the transmitting end and the receiving end may result in superposition of energy at corresponding positions of the inter-operator coordination signals, thereby increasing inter-operator coordination signals. Coverage and strength without causing superposition errors, Therefore, it does not interfere with the reception of coordinated signals between operators.
  • the device near the receiving end detects the current transmission link information by receiving the inter-operator coordination signal, and can wait for the channel if it determines that the transmission will affect the current link reception. After idle, transfer or select another channel for transmission, thus improving transmission efficiency.
  • the functional units in the apparatus 500 described above with reference to FIG. 5 may be separate physical entities or logical entities, or different functional units may also be by the same physical entity (eg, central processing unit (CPU), LSI. (ASIC), etc.) to achieve.
  • the device 500 may be located in the receiving device or may be the receiving device itself.
  • the device 500 may further include a communication unit such as a transceiver to implement the device 500 and others. Signal transmission between devices.
  • FIG. 8 shows an example of a signaling interaction process using inter-operator coordination signals.
  • FIG. 8 is a diagram showing an example of a signaling interaction procedure using inter-operator coordination signals, according to an embodiment of the present disclosure.
  • the uplink transmission in the LAA system is taken as an example, that is, the transmitting end is a user equipment (UE), and the receiving end is a base station (BS), which is given between operators.
  • UE user equipment
  • BS base station
  • the signaling interaction process between the user equipment and the base station in the case of the coordination signal but this is only an example and not a limitation, and the present disclosure obviously also applies downlink transmission, device to device (D2D) communication, LTE-WiFi.
  • D2D device to device
  • the user equipment in the case of uplink transmission, the user equipment first sends an uplink scheduling request to the base station to obtain an uplink transmission resource, and the base station may then send an uplink scheduling grant (ie, a UL grant) to the user equipment according to the channel condition.
  • the uplink scheduling grant ie, a UL grant
  • the user equipment After receiving the uplink scheduling grant, the user equipment performs LBT on the sending end channel to ensure that the transmitting end channel is idle and the transmitting end does not interfere with the existing link, and the base station also performs LBT on the receiving end channel to ensure that the receiving end channel is idle.
  • the user equipment Upon detecting that the transmitting end channel is idle, the user equipment starts broadcasting the inter-operator coordination signal, and the base station receives the The inter-carrier coordination signal is also synchronized after the first few time slots of the inter-operator coordination signal. After the inter-operator coordination signal broadcast ends, the user equipment transmits a data stream to the base station.
  • the signaling interaction process shown in FIG. 8 is merely a simple example interaction process for describing the use of inter-operator coordination signals, and those skilled in the art can obviously modify the process according to the principles of the present disclosure.
  • the base station may notify the user equipment through the licensed frequency band to stop the user equipment from broadcasting the inter-operator coordination signal.
  • inter-operator coordination signals are applied to inter-operator coordination
  • an inter-operator interaction scenario and corresponding signaling in the case of applying inter-operator coordination signals of the present disclosure will be described next with reference to FIGS. 9 through 13.
  • FIG. 9 is a schematic diagram showing an example of an interaction scenario between operators according to an embodiment of the present disclosure.
  • the user equipment UE2 can listen to the inter-operator coordination signal broadcasted by the base station BS1 before receiving the data stream, so that the user equipment UE2 can obtain the base station BS1 obtained by parsing the inter-operator coordination signal.
  • the link information of the link 1 between the user equipments UE1 is reported to the base station BS2 to be reasonably scheduled by the base station BS2 to avoid affecting the link 1, thereby achieving coordination among operators.
  • FIG. 10 is a schematic diagram showing an example of a signaling interaction process between operators in the scenario example shown in FIG.
  • the signaling interaction process between the user equipment UE1 and the base station BS1 is the same as the signaling interaction process previously described with reference to FIG. 8, and is not repeated here.
  • the signaling related to inter-operator interaction will be mainly described in detail herein.
  • the user equipment UE2 of the operator 2 in the vicinity of the base station BS1 can parse the inter-operator coordination signal broadcasted by the received base station BS1 to obtain the information of the link 1, and report the information of the link 1.
  • the base station BS2 may wait for the transmission on the link 1 to end before scheduling the user equipment UE2 (ie, transmitting the uplink grant signaling). ).
  • the signaling interaction process between the user equipment UE2 and the base station BS2 may be similar to the signaling interaction process using the inter-operator coordination signal described above with reference to FIG. 8, or may not use the inter-operator coordination signal, but is as prior art.
  • the user equipment UE2 directly detects the channel on the unlicensed band after being idle. Perform uplink data transmission.
  • the base station BS2 may also select to schedule other user equipments that do not affect the link 1 at this time. For example, as shown in FIG. 9, the user equipment UE3 is far away from the base station BS1, so if the base station BS2 determines that the transmission on the link 2 affects the link 1, the user equipment UE3 can also be scheduled to establish the link 3, and the transmission on the link 3 Will not affect link 1.
  • Figure 11 shows the signaling interaction process in this case.
  • FIG. 11 is a schematic diagram showing another example of a signaling interaction process between operators in the scenario example shown in FIG.
  • the signaling interaction process shown in FIG. 11 is basically similar to the process shown in FIG. 10, except that the base station BS2 does not select to wait for the end of the transmission of the link 1 after receiving the information of the link 1.
  • the user equipment UE2 is then scheduled, but the user equipment UE3 is scheduled to establish link 3 for transmission, and the transmission on link 3 does not interfere with link 1.
  • the signaling interaction process between the user equipment UE3 and the base station BS2 may be similar to the signaling interaction process using the inter-operator coordination signal described above with reference to FIG. 8, or may not use the inter-operator coordination signal, but is as prior art.
  • the user equipment UE3 directly performs uplink data transmission after detecting that the channel on the unlicensed band is idle.
  • FIG. 12 is a schematic diagram showing another example of an inter-operator interaction scenario according to an embodiment of the present disclosure.
  • the base station BS2 can listen to the inter-operator coordination signal broadcasted by the user equipment UE1 before transmitting the data stream, and the user equipment UE2 can listen to the inter-operator coordination broadcasted by the base station BS1 before receiving the data stream.
  • the signal in this way, can ensure that after the establishment of the link 1 between the base station BS1 and the user equipment UE1, the user equipment UE2 does not send an uplink scheduling request to the base station BS2 to affect the transmission on the link 1.
  • the base station BS2 can re-schedule the user equipment UE2 at an appropriate time according to the inter-operator coordination signal broadcasted by the user equipment UE1 to avoid affecting the link 1, thereby achieving inter-operator coordination.
  • FIG. 13 is a schematic diagram showing an example of a signaling interaction process between operators in the scenario example shown in FIG.
  • the interaction process is the same as the signaling interaction process previously described with reference to FIG. 8, and will not be repeated here.
  • the signaling related to inter-operator interaction will be mainly described in detail herein.
  • the base station BS2 can listen to the inter-operator coordination signal broadcasted by the user equipment UE1, the base station BS2 can learn only by analyzing the inter-operator coordination signal, unlike the signaling interaction process shown in FIG.
  • the status of link 1 does not need to receive the link information report of user equipment UE2, so that base station BS2 can schedule user equipment UE2 after the end of transmission on link 1 to avoid collision.
  • the signaling interaction process between the user equipment UE2 and the base station BS2 may be similar to the signaling interaction process using the inter-operator coordination signal described above with reference to FIG. 8, or may not use the inter-operator coordination signal, but is as prior art.
  • the user equipment UE2 directly performs uplink data transmission after detecting that the channel on the unlicensed band is idle.
  • FIG. 12 instead of the signaling interaction process described above with reference to FIG. 11, instead of the base station BS2 waiting for the link 1 in the signaling interaction process as shown in FIG.
  • the user equipment UE2 After the end of the transmission, the user equipment UE2 is scheduled, and the base station BS2 can also select that the user equipment UE3, which does not affect the link 1 at this time, establishes a link for transmission.
  • the specific signaling interaction process is similar to that shown in FIG. 11 and will not be repeated here.
  • the coordinating unit 104 of the device 100 at the transmitting end can control the transmitting end to send an uplink scheduling request to the base station according to the inter-operator coordination signal broadcasted by other carrier devices in the case of uplink transmission.
  • the link information determined according to the inter-operator coordination signal broadcasted by other carrier devices may also be reported to the base station for uplink scheduling by the base station.
  • the coordinating unit 504 of the device 500 at the receiving end can perform uplink scheduling according to the inter-operator coordination signal broadcasted by other carrier devices or the link information reported by the transmitting end in the case of uplink transmission. In this way, inter-operator coordination signals can be used to easily achieve inter-operator coordination and avoid data transmission conflicts, thereby improving overall system performance.
  • the base station Determining that the current link transmission will affect the existing link, the base station
  • the user equipment may be forwarded for data transmission after the end of the existing link transmission, or may be established with other user equipments that do not affect the existing link.
  • the signaling interaction process in other scenarios is a suitable modification that can be implemented by those skilled in the art according to the prior knowledge and the principles of the present disclosure, and details are not listed herein.
  • FIG. 14 is a block diagram showing an example configuration of a wireless communication system according to an embodiment of the present disclosure.
  • the wireless communication system 1400 may include a transmitting device 1410 and a receiving device 1420.
  • the wireless communication system 1400 can be an LAA system.
  • Transmitting device 1410 can include processing circuitry 1411 and communication unit 1412.
  • the processing circuit 1411 can be configured to perform the operations of the channel detecting unit 102 and the coordinating unit 104 described above with reference to FIG. 1, that is, to detect whether the transmitting end channel on the unlicensed band is idle, and in the case where the transmitting end channel is idle, The inter-operator coordination signal is broadcasted before the data stream is sent for information interaction between different carrier devices.
  • Communication unit 1412 can be configured to perform communication between transmitting device 1410 and other devices.
  • the receiving device 1420 can include a processing circuit 1421 and a communication unit 1422.
  • the processing circuit 1421 may be configured to perform the operations of the channel detecting unit 502 and the coordinating unit 504 described above with reference to FIG. 5, that is, detecting whether the receiving end channel on the unlicensed band is idle, and in the case where the receiving end channel is idle,
  • the shortened inter-operator coordination signal is broadcast in synchronization with the inter-operator coordination signal from the transmitting device 1410 at a predetermined time after receiving the inter-operator coordination signal broadcast by the transmitting device 1410.
  • the communication unit 1422 can be configured to perform communication between the receiving device 1420 and other devices.
  • processing circuits 1411 and 1421 may include a central processing unit (CPU), a digital signal processor (DSP), a large scale integrated circuit (ASIC), a field programmable gate array (FPGA), and the like, and Specific implementations of communication units 1421 and 1422 may include transceivers, antennas, and the like.
  • CPU central processing unit
  • DSP digital signal processor
  • ASIC large scale integrated circuit
  • FPGA field programmable gate array
  • FIG. 15 is a diagram showing a method of a transmitting end in a wireless communication system according to an embodiment of the present disclosure. Flow chart of the example of the process.
  • the channel detecting step S1502 it is detected whether or not the transmitting end channel on the unlicensed band is free. Then, in the coordination step S1504, in the case that the channel of the transmitting end is idle, the transmitting end broadcasts the inter-operator coordination signal before transmitting the data stream, so as to implement information interaction between different carrier devices.
  • the inter-operator coordination signal here is an energy pattern signal on the time domain-frequency domain plane that utilizes the presence or absence of energy in a specified frequency band to implement information exchange between different operators.
  • the wireless communication system is an LAA system.
  • the transmitting end may stop the broadcast inter-operator coordination signal if receiving a notification from the receiving end indicating that the receiving end channel is busy.
  • the transmitting end may also be configured to send an uplink scheduling request to the base station according to the inter-operator coordination signal broadcasted by other carrier devices.
  • the link information determined according to the inter-operator coordination signal broadcasted by other operator equipments may also be reported to the base station to perform uplink scheduling by the base station.
  • the unification of the inter-operator coordination signals with other carrier devices can be achieved by adjusting the number of subcarriers of the inter-operator coordination signal and/or the signal transmission duration.
  • the number of subcarriers of the inter-operator coordination signal may be adjusted according to the number of subcarriers of the inter-operator coordination signal and/or the least common multiple or the greatest common factor of the signal transmission duration. / or signal transmission duration.
  • FIG. 16 is a flowchart illustrating a process example of a method of a receiving end in a wireless communication system according to an embodiment of the present disclosure.
  • the channel detecting step S1602 it is detected whether or not the receiving side channel on the unlicensed band is free. Then, in the coordination step S1604, in the case that the receiving end channel is idle, after receiving the inter-operator coordination signal broadcasted by the transmitting end, the receiving end synchronizes with the inter-operator coordination signal from the transmitting end to shorten the broadcast. Inter-operator coordination signals for information exchange between different carrier devices.
  • the transmitting end may also be notified when it is detected that the receiving end channel is busy, so that the transmitting end stops broadcasting the inter-operator coordination signal.
  • the receiving end may coordinate with the operator of the transmitting end after receiving a part of the identifier pattern of the inter-operator coordination signal broadcasted by the transmitting end to confirm that the transmitting end has broadcasted the inter-operator coordination signal.
  • the signals synchronously broadcast shortened inter-operator coordination signals.
  • the receiving end may be caused to end the broadcast shortened inter-operator coordination signal before the transmitting end ends the broadcast inter-operator coordination signal.
  • the uplink scheduling may be performed according to the inter-operator coordination signal broadcasted by other carrier devices.
  • the uplink scheduling may be performed based on the link information determined by the transmitting end and determined according to the inter-operator coordination signal broadcasted by other carrier devices.
  • the technical solution of the present invention is applied to the LAA system as an example here, with the development of communication technologies in the future, the technical solution of the present invention can also be extended to apply to any wireless communication having similar problems.
  • the system that is, the technical solution of the present invention can be applied to a system in which the time-frequency domain is a finite signal.
  • an electronic device which can include a transceiver and one or more processors, the one or more processors can be configured to perform the implementations described above in accordance with the present disclosure The method in the wireless communication system or the function of the corresponding unit.
  • machine-executable instructions in the storage medium and the program product according to the embodiments of the present disclosure may also be configured to perform the method corresponding to the apparatus embodiment described above, and thus the content not described in detail herein may refer to the previous corresponding The description of the location will not be repeated here.
  • a storage medium for carrying the above-described program product including machine-executable instructions is also included in the disclosure of the present invention.
  • the storage medium includes, but is not limited to, a floppy disk, an optical disk, a magneto-optical disk, a memory card, a memory stick, and the like.
  • a program constituting the software is installed from a storage medium or a network to a computer having a dedicated hardware structure, such as the general-purpose personal computer 1700 shown in FIG. 17, which is installed with various programs.
  • a program constituting the software is installed from a storage medium or a network to a computer having a dedicated hardware structure, such as the general-purpose personal computer 1700 shown in FIG. 17, which is installed with various programs.
  • 17 is a block diagram showing an example structure of a personal computer which is an information processing device which can be employed in an embodiment of the present disclosure.
  • a central processing unit (CPU) 1701 executes various processes in accordance with a program stored in a read only memory (ROM) 1702 or a program loaded from a storage portion 1708 to a random access memory (RAM) 1703.
  • ROM read only memory
  • RAM random access memory
  • data required when the CPU 1701 executes various processes and the like is also stored as needed.
  • the CPU 1701, the ROM 1702, and the RAM 1703 are connected to each other via a bus 1704.
  • Input/output interface 1705 is also coupled to bus 1704.
  • the following components are connected to the input/output interface 1705: an input portion 1706 including a keyboard, a mouse, etc.; an output portion 1707 including a display such as a cathode ray tube (CRT), a liquid crystal display (LCD), etc., and a speaker, etc.; a storage portion 1708 , including a hard disk, etc.; and a communication portion 1709, including a network interface card such as a LAN card, a modem, and the like.
  • the communication section 1709 performs communication processing via a network such as the Internet.
  • the driver 1710 is also connected to the input/output interface 1705 as needed.
  • a removable medium 1711 such as a magnetic disk, an optical disk, a magneto-optical disk, a semiconductor memory or the like is mounted on the drive 1710 as needed, so that the computer program read therefrom is installed into the storage portion 1708 as needed.
  • a program constituting the software is installed from a network such as the Internet or a storage medium such as the detachable medium 1711.
  • such a storage medium is not limited to the detachable medium 1711 shown in FIG. 17 in which a program is stored and distributed separately from the device to provide a program to the user.
  • Examples of the detachable medium 1711 include a magnetic disk (including a floppy disk (registered trademark)), an optical disk (including a compact disk read only memory (CD-ROM) and a digital versatile disk (DVD)), and a magneto-optical disk (including a mini disk (MD) (registered trademark) )) and semiconductor memory.
  • the storage medium may be a ROM 1702 and a storage portion 1708.
  • the eNB 1800 is a block diagram showing a first example of a schematic configuration of an eNB to which the technology of the present disclosure can be applied.
  • the eNB 1800 includes one or more antennas 1810 and base station devices 1820.
  • the base station device 1820 and each antenna 1810 may be connected to each other via an RF cable.
  • Each of the antennas 1810 includes a single or multiple antenna elements, such as multiple antenna elements included in a multiple input multiple output (MIMO) antenna, and is used by the base station device 1820 to transmit and receive wireless signals.
  • eNB 1800 can include multiple antennas 1810.
  • multiple antennas 1810 can be compatible with multiple frequency bands used by eNB 1800.
  • FIG. 18 illustrates an example in which the eNB 1800 includes multiple antennas 1810, the eNB 1800 may also include a single antenna 1810.
  • Base station device 1820 includes a controller 1821, a memory 1822, a network interface 1823, and a wireless communication interface 1825.
  • the controller 1821 may be, for example, a CPU or a DSP, and operates various functions of higher layers of the base station device 1820. For example, controller 1821 generates data packets based on data in signals processed by wireless communication interface 1825 and communicates the generated packets via network interface 1823. The controller 1821 can bundle data from a plurality of baseband processors to generate bundled packets and deliver the generated bundled packets. The controller 1821 may have a logical function of performing control such as radio resource control, radio bearer control, mobility management, admission control, and scheduling. This control can be performed in conjunction with nearby eNBs or core network nodes.
  • the memory 1822 includes a RAM and a ROM, and stores programs executed by the controller 1821 and various types of control data such as a terminal list, transmission power data, and scheduling data.
  • Network interface 1823 is a communication interface for connecting base station device 1820 to core network 1824. Controller 1821 can communicate with a core network node or another eNB via network interface 1823. In this case, the eNB 1800 and the core network node or other eNBs may be connected to each other through a logical interface such as an S1 interface and an X2 interface. Network interface 1823 may also be a wired communication interface or a wireless communication interface for wireless backhaul lines. If the network interface 1823 is a wireless communication interface, the network interface 1823 can use a higher frequency band for none than the frequency band used by the wireless communication interface 1825. Line communication.
  • the wireless communication interface 1825 supports any cellular communication scheme, such as Long Term Evolution (LTE) and LTE-Advanced, and provides wireless connectivity to terminals located in cells of the eNB 1800 via the antenna 1810.
  • Wireless communication interface 1825 may typically include, for example, a baseband (BB) processor 1826 and RF circuitry 1827.
  • the BB processor 1826 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs layers (eg, L1, Medium Access Control (MAC), Radio Link Control (RLC), and Packet Data Convergence Protocol (PDCP)) Various types of signal processing.
  • BB processor 1826 may have some or all of the above described logic functions.
  • the BB processor 1826 can be a memory that stores a communication control program, or a module that includes a processor and associated circuitry configured to execute the program.
  • the update program can cause the function of the BB processor 1826 to change.
  • the module can be a card or blade that is inserted into a slot of base station device 1820. Alternatively, the module can also be a chip mounted on a card or blade.
  • the RF circuit 1827 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives a wireless signal via the antenna 1810.
  • the wireless communication interface 1825 can include a plurality of BB processors 1826.
  • multiple BB processors 1826 can be compatible with multiple frequency bands used by eNB 1800.
  • the wireless communication interface 1825 can include a plurality of RF circuits 1827.
  • multiple RF circuits 1827 can be compatible with multiple antenna elements.
  • FIG. 18 illustrates an example in which the wireless communication interface 1825 includes a plurality of BB processors 1826 and a plurality of RF circuits 1827, the wireless communication interface 1825 may also include a single BB processor 1826 or a single RF circuit 1827.
  • the eNB 1930 includes one or more antennas 1940, a base station device 1950, and an RRH 1960.
  • the RRH 1960 and each antenna 1940 may be connected to each other via an RF cable.
  • the base station device 1950 and the RRH 1960 can be connected to each other via a high speed line such as a fiber optic cable.
  • Each of the antennas 1940 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used for the RRH 1960 to transmit and receive wireless signals.
  • the eNB 1930 can include multiple antennas 1940.
  • multiple antennas 1940 can be compatible with multiple frequency bands used by eNB 1930.
  • FIG. 19 illustrates an example in which eNB 1930 includes multiple antennas 1940, eNB 1930 may also include a single antenna 1940.
  • the base station device 1950 includes a controller 1951, a memory 1952, a network interface 1953, a wireless communication interface 1955, and a connection interface 1957.
  • the controller 1951, the memory 1952, and the network interface 1953 are the same as the controller 1821, the memory 1822, and the network interface 1823 described with reference to FIG.
  • the wireless communication interface 1955 supports any cellular communication scheme (such as LTE and LTE-Advanced) and provides wireless communication to terminals located in sectors corresponding to the RRH 1960 via the RRH 1960 and the antenna 1940.
  • Wireless communication interface 1955 can generally include, for example, BB processor 1956.
  • the BB processor 1956 is identical to the BB processor 1826 described with reference to FIG. 18 except that the BB processor 1956 is connected to the RF circuit 1964 of the RRH 1960 via the connection interface 1957.
  • the wireless communication interface 1955 can include a plurality of BB processors 1956.
  • multiple BB processors 1956 can be compatible with multiple frequency bands used by eNB 1930.
  • FIG. 19 illustrates an example in which the wireless communication interface 1955 includes a plurality of BB processors 1956, the wireless communication interface 1955 may also include a single BB processor 1956.
  • connection interface 1957 is an interface for connecting the base station device 1950 (wireless communication interface 1955) to the RRH 1960.
  • the connection interface 1957 may also be a communication module for communicating the base station device 1950 (wireless communication interface 1955) to the above-described high speed line of the RRH 1960.
  • the RRH 1960 includes a connection interface 1961 and a wireless communication interface 1963.
  • connection interface 1961 is an interface for connecting the RRH 1960 (wireless communication interface 1963) to the base station device 1950.
  • the connection interface 1961 can also be a communication module for communication in the above high speed line.
  • Wireless communication interface 1963 transmits and receives wireless signals via antenna 1940.
  • Wireless communication interface 1963 may generally include, for example, RF circuitry 1964.
  • the RF circuit 1964 can include, for example, a mixer, a filter, and an amplifier, and transmits and receives wireless signals via the antenna 1940.
  • the wireless communication interface 1963 can include a plurality of RF circuits 1964.
  • multiple RF circuits 1964 can support multiple antenna elements.
  • FIG. 19 illustrates an example in which the wireless communication interface 1963 includes a plurality of RF circuits 1964, the wireless communication interface 1963 may also include a single RF circuit 1964.
  • the communication unit in the device 500 can be implemented by the wireless communication interface 1825 and the wireless communication interface 1955 and/or the wireless communication interface 1963. At least a portion of the functions of channel detection unit 502 and coordination unit 504 may also be implemented by controller 1821 and controller 1951.
  • FIG. 20 is a block diagram showing an example of a schematic configuration of a smartphone 2000 to which the technology of the present disclosure can be applied.
  • the smart phone 2000 includes a processor 2001, a memory 2002, a storage device 2003, an external connection interface 2004, an imaging device 2006, a sensor 2007, a microphone 2008, an input device 2009, a display device 2010, a speaker 2011, a wireless communication interface 2012, one or more Antenna switch 2015, one or more antennas 2016, bus 2017, battery 2018, and auxiliary controller 2019.
  • the processor 2001 can be, for example, a CPU or a system on chip (SoC), and controls the functions of the application layer and the other layers of the smartphone 2000.
  • the memory 2002 includes a RAM and a ROM, and stores data and programs executed by the processor 2001.
  • the storage device 2003 may include a storage medium such as a semiconductor memory and a hard disk.
  • the external connection interface 2004 is an interface for connecting an external device such as a memory card and a universal serial bus (USB) device to the smartphone 2000.
  • the image pickup device 2006 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • Sensor 2007 can include a set of sensors, such as measurement sensors, gyro sensors, geomagnetic sensors, and acceleration sensors.
  • the microphone 2008 converts the sound input to the smartphone 2000 into an audio signal.
  • the input device 2009 includes, for example, a touch sensor, a keypad, a keyboard, a button, or a switch configured to detect a touch on the screen of the display device 2010, and receives an operation or information input from a user.
  • the display device 2010 includes screens such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the smartphone 2000.
  • the speaker 2011 converts the audio signal output from the smartphone 2000 into sound.
  • the wireless communication interface 2012 supports any cellular communication scheme (such as LTE and LTE-Advanced) and performs wireless communication.
  • the wireless communication interface 2012 may generally include, for example, a BB processor 2013 and an RF circuit 2014.
  • the BB processor 2013 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs various types of signal processing for wireless communication.
  • the RF circuit 2014 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives a wireless signal via the antenna 2016.
  • the wireless communication interface 2012 can be a chip module on which the BB processor 2013 and the RF circuit 2014 are integrated. As shown in FIG.
  • the wireless communication interface 2012 may include a plurality of BB processors 2013 and a plurality of RF circuits 2014. Although FIG. 20 shows that the wireless communication interface 2012 includes a plurality of The BB processor 2013 and examples of multiple RF circuits 2014, but the wireless communication interface 2012 may also include a single BB processor 2013 or a single RF circuit 2014.
  • wireless communication interface 2012 can support additional types of wireless communication schemes, such as short-range wireless communication schemes, near field communication schemes, and wireless local area network (LAN) schemes.
  • the wireless communication interface 2012 can include the BB processor 2013 and the RF circuit 2014 for each wireless communication scheme.
  • Each of the antenna switches 2015 switches the connection destination of the antenna 2016 between a plurality of circuits included in the wireless communication interface 2012, such as circuits for different wireless communication schemes.
  • Each of the antennas 2016 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the wireless communication interface 2012 to transmit and receive wireless signals.
  • the smartphone 2000 may include a plurality of antennas 2016.
  • FIG. 20 shows an example in which the smartphone 2000 includes a plurality of antennas 2016, the smartphone 2000 may also include a single antenna 2016.
  • smart phone 2000 can include an antenna 2016 for each wireless communication scheme.
  • the antenna switch 2015 can be omitted from the configuration of the smartphone 2000.
  • Bus 2017 will processor 2001, memory 2002, storage device 2003, external connection interface 2004, camera device 2006, sensor 2007, microphone 2008, input device 2009, display device 2010, speaker 2011, wireless communication interface 2012 and auxiliary controller 2019 connection.
  • Battery 2018 provides power to various blocks of smart phone 2000 shown in FIG. 20 via feeders, which are partially shown as dashed lines in the figure.
  • the secondary controller 2019 operates the minimum required function of the smartphone 2000, for example, in a sleep mode.
  • the communication unit in the device 100 can be implemented by the wireless communication interface 2012. At least a portion of the functions of channel detection unit 102 and coordination unit 104 may also be implemented by processor 2001 or auxiliary controller 2019.
  • the car navigation device 2120 includes a processor 2121, a memory 2122, a global positioning system (GPS) module 2124, a sensor 2125, a data interface 2126, a content player 2127, a storage medium interface 2128, an input device 2129, a display device 2130, a speaker 2131, and a wireless device.
  • the processor 2121 can be, for example, a CPU or SoC and controls the navigation functions and additional functions of the car navigation device 2120.
  • the memory 2122 includes a RAM and a ROM, and stores data and programs executed by the processor 2121.
  • the GPS module 2124 uses the GPS signals received from the GPS satellites to measure the position (such as latitude, longitude, and altitude) of the car navigation device 2120.
  • Sensor 2125 can include a set of sensors, such as a gyro sensor, a geomagnetic sensor, and an air pressure sensor.
  • the data interface 2126 is connected to, for example, the in-vehicle network 2141 via a terminal not shown, and acquires data (such as vehicle speed data) generated by the vehicle.
  • the content player 2127 reproduces content stored in a storage medium such as a CD and a DVD, which is inserted into the storage medium interface 2128.
  • the input device 2129 includes, for example, a touch sensor, a button or a switch configured to detect a touch on the screen of the display device 2130, and receives an operation or information input from a user.
  • the display device 2130 includes a screen such as an LCD or an OLED display, and displays an image of the navigation function or reproduced content.
  • the speaker 2131 outputs the sound of the navigation function or the reproduced content.
  • the wireless communication interface 2133 supports any cellular communication scheme (such as LTE and LTE-Advanced) and performs wireless communication.
  • Wireless communication interface 2133 may typically include, for example, BB processor 2134 and RF circuitry 2135.
  • the BB processor 2134 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs various types of signal processing for wireless communication.
  • the RF circuit 2135 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives a wireless signal via the antenna 2137.
  • the wireless communication interface 2133 can also be a chip module on which the BB processor 2134 and the RF circuit 2135 are integrated. As shown in FIG.
  • the wireless communication interface 2133 may include a plurality of BB processors 2134 and a plurality of RF circuits 2135.
  • FIG. 21 illustrates an example in which the wireless communication interface 2133 includes a plurality of BB processors 2134 and a plurality of RF circuits 2135, the wireless communication interface 2133 may also include a single BB processor 2134 or a single RF circuit 2135.
  • the wireless communication interface 2133 can support additional types of wireless communication schemes, such as short-range wireless communication schemes, near field communication schemes, and wireless LAN schemes.
  • the wireless communication interface 2133 may include a BB processor 2134 and an RF circuit 2135 for each wireless communication scheme.
  • Each of the antenna switches 2136 switches the connection destination of the antenna 2137 between a plurality of circuits included in the wireless communication interface 2133, such as circuits for different wireless communication schemes.
  • Each of the antennas 2137 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the wireless communication interface 2133 to transmit and receive wireless signals.
  • the car navigation device 2120 can include a plurality of antennas 2137.
  • FIG. 21 shows an example in which the car navigation device 2120 includes a plurality of antennas 2137, the car navigation device 2120 may also include a single antenna 2137.
  • car navigation device 2120 can include an antenna 2137 for each wireless communication scheme.
  • the antenna switch 2136 can be omitted from the configuration of the car navigation device 2120.
  • Battery 2138 provides power to various blocks of car navigation device 2120 shown in FIG. 21 via a feeder, which is partially shown as a dashed line in the figure. Battery 2138 accumulates power supplied from the vehicle.
  • the communication unit in the device 100 can be implemented by the wireless communication interface 2133. At least a portion of the functionality of channel detection unit 102 and coordination unit 104 may also be implemented by processor 2121.
  • the technology of the present disclosure may also be implemented as an onboard system (or vehicle) 2140 that includes one or more of the car navigation device 2120, the in-vehicle network 2141, and the vehicle module 2142.
  • vehicle module 2142 generates vehicle data such as vehicle speed, engine speed, and fault information, and outputs the generated data to the in-vehicle network 2141.
  • a plurality of functions included in one unit in the above embodiment may be implemented by separate devices.
  • a plurality of functions implemented by a plurality of units in the above embodiments may be implemented by separate devices, respectively.
  • one of the above functions may be implemented by a plurality of units. Needless to say, such a configuration is included in the technical scope of the present disclosure.
  • the steps described in the flowcharts include not only processes performed in time series in the stated order, but also processes performed in parallel or individually rather than necessarily in time series. Further, even in the step of processing in time series, it is needless to say that the order can be appropriately changed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

提供了一种无线通信系统中的装置和方法以及无线通信系统,其中,发送端的装置包括:信道检测单元,被配置成检测未授权频段上的发送端信道是否空闲;以及协调单元,被配置成在发送端信道空闲的情况下,使得发送端在发送数据流之前广播运营商间协调信号,以用于实现不同运营商设备之间的信息交互,其中,运营商间协调信号是利用指定频段上的能量有无来实现不同运营商设备之间的信息交互的时域-频域平面上的能量图案信号。根据本公开的实施例,通过利用能量图案信号来实现未授权频段上的运营商间信息交互,解决了不同运营商设备间的信号检测接收和解调的困难,有效地实现了不同运营商设备间的协调,提高了系统性能。

Description

无线通信系统中的装置和方法以及无线通信系统
本申请要求于2016年3月30日提交中国专利局、申请号为201610191483.7、发明名称为“无线通信系统中的装置和方法以及无线通信系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及无线通信技术领域,更具体地,涉及一种无线通信系统尤其是授权辅助接入(Licensed Assisted Access,LAA)系统中的装置和方法以及该无线通信系统,其能够实现无线通信系统中的不同运营商设备之间的信息交互以解决未授权频段上的不同运营商设备之间的协调问题。
背景技术
未来无线网络设备部署更为密集,在有限的地理区域内可能存在使用不同物理层技术的多个运营商。与传统LTE系统不同,LAA框架的可发送带宽更宽。在未授权频段,不同运营商可能竞争同一信道,导致数据传输冲突不可避免。地理位置重叠的不同小区如果能做到相互识别,则可以使用相应的冲突避免机制提高信道利用率。Wi-Fi系统采用重叠基本服务集着色的方式实现不同服务集的识别,传统LTE运营商购买不同频段进行数据传输,因此不存在不同运营商竞争同一信道的问题。
已有文献提出的运营商间协调方案主要用于授权频段频谱共享。在传统频谱分配方案中,单个运营商独享频谱,频谱利用率低。为解决这一问题,已有文献提出共享主信道方案,即多个运营商共同购买同一信道并协调使用同一信道资源。不同运营商可能使用不同的物理层技术,造成运营商间解码困难,所以当前运营商间协调方案主要从频率选择和功率控制两方面着手。已有的运营商间协调方案或者将频谱分割成多个小块,不同运营商的设备进行动态频率选择;或者构建频率池,通过不同信道选择算法保证不同运营商可能选择的冲突频率最小;或者通过功率控制方式,尽量减少运营商间设备冲突。然而,对 于当前大部分运营商,授权频段购买已经完成,并且未授权频段使用受到诸多限制,因此不能直接将上述授权频段的运营商间协调方案用于未授权频段。
对于未授权频段上运营商间的协调,首先需解决不同运营商的识别问题。LTE系统的公共陆地移动网络标识(Public Land Mobile Network ID,PLMN ID)可用于识别不同运营商。高通公司(Qualcomm Incorporated)提出的多个标准化提案中提出使用信道状态信息参考信号(Channel State Information-Reference Signal,CSI-RS)等参考信号携带PLMN ID,可用于不同运营商的识别,并可能进一步用于运营商间的交互过程。然而,已有文献也提到同一参考信号不能携带多个PLMN ID;对于已有标准参考信号,不同运营商的小区参考信号格式可能相同,造成识别冲突;并且由于不同运营商间同步、对齐等问题,可能需要重复发送PLMN ID,才能达到运营商间相互识别的效果。此外,PLMN ID携带的信息有限,传输过程中如遇干扰则可能不会被正确解调,因此可能不适用于未授权频段上的运营商间协调。
发明内容
在下文中给出了关于本公开的简要概述,以便提供关于本公开的某些方面的基本理解。但是,应当理解,这个概述并不是关于本公开的穷举性概述。它并不是意图用来确定本公开的关键性部分或重要部分,也不是意图用来限定本公开的范围。其目的仅仅是以简化的形式给出关于本公开的某些概念,以此作为稍后给出的更详细描述的前序。
鉴于以上情形,本公开的目的是提供一种适用于无线通信系统中的未授权频段上的运营商间协调的机制,其充分考虑了不同运营商设备间的信号检测接收和解调的困难,通过利用能量信号携带信息来实现运营商间的信息交互,从而有效地实现不同运营商设备间的协调以避免冲突。
根据本公开的一方面,提供了一种无线通信系统中的发送端的装置,该装置包括:信道检测单元,被配置成检测未授权频段上的发送端信道是否空闲;以及协调单元,被配置成在发送端信道空闲的情况下,使得发送端在发送数据流之前广播运营商间协调信号,以用于实现不同运营商设备之间的信息交互,其中,运营商间协调信号是利用指定频段上的能量有无来实现不同运营商设备 之间的信息交互的时域-频域平面上的能量图案信号。
根据本公开的优选实施例,运营商间协调信号包括标志图案和链路信息图案中的至少一个,标志图案是携带能量的子载波位置预先确定的周期性重复能量图案,并且链路信息图案是携带能量的子载波位置和持续时间可变的可编码能量图案。
根据本公开的另一优选实施例,标志图案用于指示运营商间协调信号开始,并且链路信息图案用于承载链路信息。
根据本公开的另一优选实施例,链路信息包括发送端的设备类型及编号、接收端的设备类型及编号、运营商信息和估计信道占用时间中的一个或多个。
根据本公开的另一优选实施例,标志图案包括梳状条纹图案、锯齿图案和棋盘格图案之一,并且链路信息图案包括条纹图案、条形码图案和二维码图案之一。
根据本公开的另一优选实施例,协调单元进一步被配置成在接收到来自接收端的指示接收端信道忙的通知的情况下,使得发送端停止广播运营商间协调信号。
根据本公开的另一优选实施例,协调单元进一步被配置成在上行传输的情况下,根据其它运营商设备广播的运营商间协调信号,控制发送端向基站发送上行调度请求。
根据本公开的另一优选实施例,协调单元进一步被配置成在上行传输的情况下,将根据其它运营商设备广播的运营商间协调信号而确定的链路信息报告给基站,以由基站进行上行调度。
根据本公开的另一优选实施例,协调单元进一步被配置成通过调整运营商间协调信号的子载波个数和/或信号传输持续时间来实现与其它运营商设备的运营商间协调信号的统一。
根据本公开的另一优选实施例,协调单元进一步被配置成根据运营商间协调信号的子载波个数和/或信号传输持续时间的最小公倍数或最大公因数来调整运营商间协调信号的子载波个数和/或信号传输持续时间。
根据本公开的另一优选实施例,无线通信系统是授权辅助接入系统。
根据本公开的另一优选实施例,该装置还包括:通信单元,被配置成执 行信号收发处理。
根据本公开的另一方面,还提供了一种无线通信系统中的接收端的装置,该装置包括:信道检测单元,被配置成检测未授权频段上的接收端信道是否空闲;以及协调单元,被配置成在接收端信道空闲的情况下,在接收到发送端广播的运营商间协调信号之后的预定时间,使得接收端与来自发送端的运营商间协调信号同步地广播缩短的运营商间协调信号,以用于实现不同运营商设备之间的信息交互,其中,运营商间协调信号是利用指定频段上的能量有无来实现不同运营商设备之间的信息交互的时域-频域平面上的能量图案信号。
根据本公开的另一方面,还提供了一种无线通信系统,其包括:发送设备,包括第一处理电路,第一处理电路被配置成:检测未授权频段上的发送端信道是否空闲,以及在发送端信道空闲的情况下,在发送数据流之前广播运营商间协调信号,以用于实现不同运营商设备之间的信息交互;以及接收设备,包括第二处理电路,第二处理电路被配置成:检测未授权频段上的接收端信道是否空闲,以及在接收端信道空闲的情况下,在接收到发送设备广播的运营商间协调信号之后的预定时间,与来自发送设备的运营商间协调信号同步地广播缩短的运营商间协调信号,其中,运营商间协调信号是利用指定频段上的能量有无来实现不同运营商设备之间的信息交互的时域-频域平面上的能量图案信号。
根据本公开的另一方面,还提供了一种无线通信系统中的发送端的方法,该方法包括:检测未授权频段上的发送端信道是否空闲;以及在发送端信道空闲的情况下,使得发送端在发送数据流之前广播运营商间协调信号,以用于实现不同运营商设备之间的信息交互,其中,运营商间协调信号是利用指定频段上的能量有无来实现不同运营商设备之间的信息交互的时域-频域平面上的能量图案信号。
根据本公开的另一方面,还提供了一种无线通信系统中的接收端的方法,该方法包括:检测未授权频段上的接收端信道是否空闲;以及在接收端信道空闲的情况下,在接收到发送端广播的运营商间协调信号之后的预定时间,使得接收端与来自发送端的运营商间协调信号同步地广播缩短的运营商间协调信号,以用于实现不同运营商设备之间的信息交互,其中,运营商间协调信号是 利用指定频段上的能量有无来实现不同运营商设备之间的信息交互的时域-频域平面上的能量图案信号。
根据本公开的另一方面,还提供了一种电子设备,该电子设备可包括收发机和一个或多个处理器,这一个或多个处理器可被配置成执行上述根据本公开的无线通信系统中的方法或相应单元的功能。
根据本公开的其它方面,还提供了用于实现上述根据本公开的方法的计算机程序代码和计算机程序产品以及其上记录有该用于实现上述根据本公开的方法的计算机程序代码的计算机可读存储介质。
根据本公开的实施例,通过利用能量信号携带信息来实现运营商间的信息交互,解决了不同运营商设备间的信号检测接收和解调的困难,有效地实现了无线通信系统中的未授权频段上的不同运营商设备间的协调,提高了系统性能。
在下面的说明书部分中给出本公开实施例的其它方面,其中,详细说明用于充分地公开本公开实施例的优选实施例,而不对其施加限定。
附图说明
本公开可以通过参考下文中结合附图所给出的详细描述而得到更好的理解,其中在所有附图中使用了相同或相似的附图标记来表示相同或者相似的部件。所述附图连同下面的详细说明一起包含在本说明书中并形成说明书的一部分,用来进一步举例说明本公开的优选实施例和解释本公开的原理和优点。其中:
图1是示出根据本公开的实施例的无线通信系统中的发送端的装置的功能配置示例的框图;
图2是示出根据本公开的实施例的运营商间协调(Inter-Operator Coordination,IOC)信号的图案表示的说明的示意图;
图3A至图3C是示出根据本公开的实施例的运营商间协调信号的标志图案的示例的示意图;
图4A至图4C是示出根据本公开的实施例的运营商间协调信号的链路信息图案的示例的示意图;
图5是示出根据本公开的实施例的无线通信系统中的接收端的装置的功能配置示例的框图;
图6是示出根据本公开的实施例的发送端广播运营商间协调信号的示例形式的示意图;
图7是示出根据本公开的实施例的接收端广播运营商间协调信号的示例形式的示意图;
图8是示出根据本公开的实施例的使用运营商间协调信号的信令交互过程的示例示意图;
图9是示出根据本公开的实施例的运营商间的交互场景的示例的示意图;
图10是示出在图9所示的场景示例中运营商间的信令交互过程的示例的示意图;
图11是示出在图9所示的场景示例中运营商间的信令交互过程的另一示例的示意图;
图12是示出根据本公开的实施例的运营商间的交互场景的另一示例的示意图;
图13是示出在图12所示的场景示例中运营商间的信令交互过程的示例的示意图;
图14是示出根据本公开的实施例的无线通信系统的示例配置的框图;
图15是示出根据本公开的实施例的无线通信系统中的发送端的方法的过程示例的流程图;
图16是示出根据本公开的实施例的无线通信系统中的接收端的方法的过程示例的流程图;
图17是示出作为本公开的实施例中可采用的信息处理设备的个人计算机的示例结构的框图;
图18是示出可以应用本公开的技术的演进型节点(eNB)的示意性配置的第一示例的框图;
图19是示出可以应用本公开的技术的eNB的示意性配置的第二示例的框图;
图20是示出可以应用本公开的技术的智能电话的示意性配置的示例的框 图;以及
图21是示出可以应用本公开的技术的汽车导航设备的示意性配置的示例的框图。
具体实施方式
在下文中将结合附图对本公开的示范性实施例进行描述。为了清楚和简明起见,在说明书中并未描述实际实施方式的所有特征。然而,应该了解,在开发任何这种实际实施例的过程中必须做出很多特定于实施方式的决定,以便实现开发人员的具体目标,例如,符合与系统及业务相关的那些限制条件,并且这些限制条件可能会随着实施方式的不同而有所改变。此外,还应该了解,虽然开发工作有可能是非常复杂和费时的,但对得益于本公开内容的本领域技术人员来说,这种开发工作仅仅是例行的任务。
在此,还需要说明的一点是,为了避免因不必要的细节而模糊了本公开,在附图中仅仅示出了与根据本公开的方案密切相关的设备结构和/或处理步骤,而省略了与本公开关系不大的其它细节。
接下来,将参照图1至图21描述本公开的实施例。
首先,将参照图1描述根据本公开的实施例的无线通信系统中的发送端的装置的功能配置示例。图1是示出根据本公开的实施例的无线通信系统中的发送端的装置的功能配置示例的框图。
如图1所示,根据该实施例的装置100可包括信道检测单元102和协调单元104。
信道检测单元102可被配置成检测未授权频段上的发送端信道是否空闲。具体地,为了避免干扰相同频段上已存在的链路,在未授权频段上发送信号之前,设备需要首先进行侦听,以确保在信道空闲的情况下才发送信号,该过程可称为先听后说(Listen-Before-Talk,LBT)。信道检测单元102例如可以通过本领域公知的任何方式来检测发送端信道是否空闲,而最简单的方式为能量检测。如果检测到当前信道上的能量超过预定能量阈值(例如,空闲信道评估(Clear Channel Assessment,CCA)阈值),则认为当前信道忙,否则认为当前信道空闲。作为示例,假设CCA阈值为-62dBm,如果检测到发送端信道中 的能量值高于-62dBm,则认为发送端信道当前正忙,否则认为发送端信道空闲。
应指出,尽管在这里作为示例描述了通过能量检测方式来检测未授权频段上的信道是否空闲,但是本公开不限于此,而是也可通过本领域公知的任何其它方式来检测信道是否空闲。
协调单元104可被配置成在发送端信道空闲的情况下,使得发送端在发送数据流之前广播运营商间协调信号,以用于实现不同运营商设备之间的信息交互。
这里的运营商间协调信号是利用指定频段上的能量有无来实现不同运营商设备之间的信息交互的时域-频域平面上的能量图案信号,并且可以简称为IOC信号。具体来说,如上所述,最简单的信道检测方式是能量检测,因此如果将特定子载波上的能量有无设计成图案,就可以利用这种能量图案来携带相关链路信息,从而接收到运营商间协调信号的设备可以通过能量检测的方式来确定该信号所携带的链路信息,以实现不同运营商设备之间的信息交互,从而实现运营商设备间的协调。
本发明正是基于该设计思想而做出的。通过对能量图案信号进行编码,即,通过设定各频段上的能量有无和持续时间,可在时域-频域上形成可变换图案,不同的图案可对应不同的链路信息。这样,取代现有技术中通信双方需要获知双方的调制编码方案和码本并据此解调电磁波信号来实现信息交互,根据本公开的运营商间协调信号,仅通过检测各个子载波上的能量即可容易地确定该运营商间协调信号所携带的信息,从而容易地实现运营商间的信息交互。
图2是示出根据本公开的实施例的运营商间协调信号的图案表示的说明的示意图。
如图2所示,横轴表示时间,并且纵轴表示子载波编号,并且在该示例中,可认为子载波按照频率高低排布,即子载波编号从低到高表示子载波中心频率从低到高。在图2中,每个格子表示一个图案单元,在频域上可以是一个或多个子载波宽度,并且在时域上可以是实际物理设备可以发送并且检测到的一个或多个最小时间单元。在图2中,有阴影的格子表示这些子载波上有能量,即,在这些子载波上有信号发送,而空白的格子表示这些子载波上无能量,即, 在这些子载波上无信号发送,这同样适用于其它附图。
具体地,在图2所示的示例中,第一部分中每间隔一定数目的子载波,就有一个或者少量子载波发送能量,发送能量持续时间等长,呈现条纹图案;第二部分与第一部分类似,条纹间隔与条纹宽度不等;第三部分中,在第一个时间段,每间隔一组子载波发送一组能量,第二个时间段发送能量的子载波与间隔子载波位置调换,呈现棋盘格图案;第四部分中,子载波发送时长不等,先递增后递减,呈现对称的锯齿形状。
可以看出,通过设定各频段上的能量有无以及能量持续时间,可以形成时域-频域上的能量图案信号,而不同的能量图案信号可对应不同的信号内容,从而可以利用能量图案信号来实现信息传递以达到交互的目的。
优选地,运营商间协调信号可包括标志图案和链路信息图案中的至少一个,其中,标志图案是携带能量的子载波位置预先确定的周期性重复能量图案,并且链路信息图案是携带能量的子载波位置和持续时间可变的可编码能量图案。
具体来说,对于标志图案,可以采用时域-频域上的重复图案,即,指定一定规律位置的子载波作为约定位置,在这些约定位置上发送能量信号并持续一定时间,从而形成时域-频域上的重复图案。图3A至图3C是分别示出标志图案的示例的示意图,然而,重复图案的示例可包括但不限于图3A至图3C分别示出的梳状条纹图案、锯齿图案和棋盘格图案,任何简单的频率域重复图案信号都可实现该图案信号的功能。标志图案可用来携带一些简单的信息,以梳状条纹图案为例,条纹的宽度和位置可例如用来区别不同的运营商或携带其它一些简单信息。
然而,由于标志图案的图案简单,因此携带的信息非常有限,为实现运营商间信息交互以达到有效避免冲突的目的,简单重复图案携带的信息是远远不够的,因此为节约存储资源,能量图案应该可编码以携带更加丰富的链路信息。作为一种示例编码方式,例如,可将携带能量的位置编码为1,而无能量的位置编码为0,这样一个能量图案信号可以表示为一个二进制代码序列,从而可以表示不同的链路信息。当然,本领域技术人员也可以想到使用其它编码方式,只要能够实现对能量位置和持续时间进行编码即可。
链路信息图案是通过指定携带能量的子载波位置和持续时间而在时域-频域平面上形成的不规则能量图案,用以携带复杂链路信息。链路信息例如可包括但不限于发送端的设备类型及编号、接收端的设备类型及编号、运营商信息和估计信道占用时间中的一个或多个。这样,接收到运营商间协调信号的设备可以通过能量检测来解析链路信息图案,从而得到该图案所携带的相关链路信息,用以实现运营商间协调以避免数据传输冲突。链路信息图案可包括但不限于条纹图案、条形码图案和二维码图案,并且任何不规则的时域-频域能量图案均可用于实现该图案信号的功能。图4A至4C分别示出了链路信息图案的示例形式,例如,图4A示出了指定二进制编码条纹图案的示例,图4B示出了简单条形码图案的示例,并且图4C示出了简单二维码图案的示例。
应指出,上述标志图案和链路信息图案可单独使用也可结合使用,考虑到未来无线网络部署更加密集,运营商间可能需要交换更多更精确的信息以达到更好的协调目的,因此在本公开的实施例中,将这两种图案信号结合使用。即,标志图案可用作运营商间协调信号的前置标志信号,用以通知运营商间协调信号开始,并且也可以携带一些简单的链路信息,并且链路信息图案可出现在标志图案之后数据流之前,用以携带更复杂的链路信息。发送端设备可在链路信息图案的广播结束之后立即发送数据流。
如上所述,考虑到标准的延续性与设备的兼容性,作为能量图案信号的运营商间协调信号解决了信号检测接收和解调的困难,有效地实现了不同运营商在未授权频段上的信息交互。此外,应指出,可根据具体情况设定运营商间协调信号的时域长度和频域宽度,并可根据未来无线网络发展趋势和各运营商实际情况来设定运营商间协调信号使用的具体图案,本公开对此不作限制。
应指出,在本公开的描述中,优选地,该无线通信系统是LAA系统,但是本公开并不限于此,而是也可应用于设备到设备(Device to Device,D2D)通信系统、LTE-WiFi互连系统等无线通信系统中,换言之,只要在时间-频率域为有限信号的系统,均可实现本发明的能量图案方式。
此外,应指出,在LAA系统中,各个运营商设备通常使用相同的OFDM符号,因此,通常不存在使得各个运营商设备的运营商间协调信号统一的问题。然而,当应用于除LAA系统之外的其它通信系统时,例如,LTE-WiFi互连系 统,例如,假设对于LTE系统而言,使用OFDM符号为带宽15KHz,持续时间72微秒,对于WiFi系统而言,带宽为312.5kHz,持续时间4微秒,如果这两个系统的设备想发送彼此类似的运营商间协调信号,LTE系统的设备可以发送20个子载波为一组,WiFi系统的设备可发送持续时间为18个符号长度,以实现信号统一。应理解,这里所给出的信号带宽和持续时间仅是为了便于说明给出的示例而非限制,对于能量检测来说,可检测的带宽和持续时间可能没有如此严格的限制。
即,优选地,协调单元104可进一步被配置成通过调整运营商间协调信号的子载波个数和/或信号传输持续时间来实现与其它运营商设备的运营商间协调信号的统一。进一步,优选地,协调单元104可进一步被配置成根据运营商间协调信号的子载波个数和/或信号传输持续时间的最小公倍数或最大公因数来调整运营商间协调信号的子载波个数和/或信号传输持续时间。
此外,应指出,以上参照图1描述的装置100中的功能单元可以是分立的物理实体或逻辑实体,或者不同的功能单元也可由同一个物理实体(例如,中央处理单元(CPU)、大规模集成电路(ASIC)等)来实现。此外,装置100可位于发送端设备中或者也可以是发送端设备本身,在装置100是发送端设备本身的情况下,装置100还可包括诸如收发机的通信单元,用以实现装置100与其它设备间的信号传输。
接下来,将参照图5描述接收端的装置的功能配置示例。图5是示出根据本公开的实施例的无线通信系统中的接收端的装置的功能配置示例的框图。优选地,该无线通信系统是LAA系统。
如图5所示,根据该实施例的装置500可包括信道检测单元502和协调单元504。
信道检测单元502可被配置成检测未授权频段上的接收端信道是否空闲,以确保可以正确接收到发送端广播的运营商间协调信号。具体的信道检测方式可参见以上相应位置的描述,在此不再赘述。
优选地,如果信道检测单元502检测到接收端信道空闲,则接收端可以正确接收到发送端广播的运营商间协调信号,而如果检测到此时接收端信道忙从而无法接收信号,则可通过例如授权频段通知发送端,使得发送端停止广播 运营商间协调信号。此时,发送端的协调单元104可在接收到来自接收端的指示接收端信道忙的通知的情况下,使得发送端停止广播运营商间协调信号。
协调单元504可被配置成在接收端信道空闲的情况下,在接收到发送端广播的运营商间协调信号之后的预定时间,使得接收端与来自发送端的运营商间协调信号同步地广播缩短的运营商间协调信号,以用于实现不同运营商设备之间的信息交互。
具体地,接收端在接收到发送端广播的运营商间协调信号之后可以得知,发送端已成功执行了LBT并获得了信道,从而协调单元504可以使得接收端在接收到一小段运营商间协调信号(例如,前置标志图案的一段)后等待一个小的延时,然后开始同步广播缩短的运营商间协调信号。这里等待一个小的延时是用来确认发送端已广播运营商间协调信号,并且该延时可根据实际情况而预先设定。应指出,这里所谓的“缩短的运营商间协调信号”指的是接收端广播的运营商间协调信号与发送端广播的运营商间协调信号是完全同步的,除了接收端广播的运营商间协调信号晚于发送端广播的运营商间协调信号开始,因此与发送端广播的运营商间协调信号相比,持续时间较短。
图6和图7分别示出了发送端广播运营商间协调信号和接收端广播运营商间协调信号的示例形式。如图6和图7所示,其中的灰色阴影部分表示运营商间协调信号的前置标志图案,竖线阴影部分表示运营商间协调信号的链路信息图案,并且在运营商间协调信号结束之后,发送端开始发送数据流,并且接收端开始接收数据流。可以看出,接收端广播的运营商间协调信号与发送端广播的运营商间协调信号完全同步,仅是开始时间略晚,因此其运营商间协调信号的长度较短。
优选地,根据实际情况,也可对上述操作进行调整。例如,为了确保接收端能够及时接收数据,协调单元504可使得接收端提前结束广播缩短的运营商间协调信号,即,先于发送端结束广播运营商间协调信号,以准备好接收数据流。
如上所述,由于运营商间协调信号是能量图案信号,因此发送端与接收端同时广播运营商间协调信号会导致运营商间协调信号的相应位置上的能量叠加,从而增加运营商间协调信号的覆盖范围和强度,而不会造成叠加错误, 因而不会干扰对于运营商间协调信号的接收。
可以理解,通过发送端广播运营商间协调信号,发送端附近的其它设备可以在接收到该运营商间协调信号之后检测当前传输链路信息,如果确定自身传输不会影响当前链路接收,则可以建立新的传输链路,这样,可以提高信道利用率。相反,对于传统设备而言,单纯通过能量检测判断信道状态不能判断附近链路设备在接收还是在发送,只能判断信道忙闲,在信道忙时保持静音,等待信道空闲,这对于发送端周围设备而言是资源浪费。另一方面,通过接收端广播运营商间协调信号,接收端附近的设备在接收到该运营商间协调信号检测当前传输链路信息,如果确定自身传输会影响当前链路接收,则可以等待信道空闲之后再进行传输或者选择其它信道进行传输,这样,可以提高传输效率。
应指出,以上参照图5描述的装置500中的功能单元可以是分立的物理实体或逻辑实体,或者不同的功能单元也可由同一个物理实体(例如,中央处理单元(CPU)、大规模集成电路(ASIC)等)来实现。此外,装置500可位于接收端设备中或者也可以是接收端设备本身,在装置500是接收端设备本身的情况下,装置500还可包括诸如收发机的通信单元,用以实现装置500与其它设备间的信号传输。
图8给出了使用运营商间协调信号的信令交互过程的示例。图8是示出根据本公开的实施例的使用运营商间协调信号的信令交互过程的示例示意图。
应指出,在图8所示的示例中,以LAA系统中的上行传输为例,即,发送端为用户设备(UE),而接收端为基站(BS),给出了在使用运营商间协调信号的情况下用户设备与基站之间的信令交互过程,但是这仅是示例而非限制,本公开显然也可以应用下行传输、设备到设备(Device to Device,D2D)通信、LTE-WiFi互连等场景中,并且这同样适用于随后的描述。
如图8所示,在上行传输的情况下,用户设备首先向基站发送上行调度请求以获得上行传输资源,基站可随后根据信道状况向用户设备发送上行调度授权(即,UL grant)。用户设备在接收到上行调度授权之后对发送端信道进行LBT以确保发送端信道空闲并且发送端的发送不会对已存在链路造成干扰,同时基站也对接收端信道进行LBT以确保接收端信道空闲。在检测到发送端信道空闲的情况下,用户设备开始广播运营商间协调信号,并且基站在接收到 运营商间协调信号的前几个时隙之后也开始同步广播运营商间协调信号。在运营商间协调信号广播结束之后,用户设备向基站发送数据流。
可以理解,图8所示的信令交互过程仅是为了描述运营商间协调信号的使用而给出的简单示例交互过程,本领域技术人员显然可以根据本公开的原理而对该过程进行修改。例如,如上所述,在基站检测到接收端信道忙的情况下,基站可通过授权频段通知用户设备以使用户设备停止广播运营商间协调信号。
为了便于理解运营商间协调信号如何应用于运营商间协调,接下来将参照图9至图13描述在应用本公开的运营商间协调信号的情况下运营商间的交互场景及相应的信令交互过程的示例。
图9是示出根据本公开的实施例的运营商间的交互场景的示例的示意图。
如图9所示,在该示例场景中存在运营商1的基站BS1和用户设备UE1以及运营商2的基站BS2和用户设备UE2和UE3,其中的圆圈分别表示以各个设备为中心的功率覆盖范围。在这里仍以上行传输为例,用户设备UE2可收听到基站BS1在接收数据流之前广播的运营商间协调信号,从而用户设备UE2可以将通过解析该运营商间协调信号而获得的基站BS1与用户设备UE1之间的链路1的链路信息报告给基站BS2,以由基站BS2进行合理调度从而避免影响链路1,从而实现了运营商间的协调。
图10是示出在图9所示的场景示例中运营商间的信令交互过程的示例的示意图。
在图10所示的信令交互过程中,其中用户设备UE1与基站BS1之间的信令交互过程与之前参照图8描述的信令交互过程相同,在此不再重复。这里将主要详细描述涉及运营商间交互的信令。如图10所示,基站BS1附近的运营商2的用户设备UE2可对所接收到的基站BS1广播的运营商间协调信号进行解析以获得链路1的信息,并且将链路1的信息报告给基站BS2,如果基站BS2根据该链路信息判断链路2的传输会影响链路1,则基站BS2可等待链路1上的传输结束之后再调度用户设备UE2(即,发送上行授权信令)。用户设备UE2与基站BS2之间的信令交互过程可与以上参照图8描述的使用运营商间协调信号的信令交互过程类似,或者也可不使用运营商间协调信号,而是如现有技术中一样,用户设备UE2在检测到未授权频段上的信道空闲之后直接 进行上行数据传输。
替选地,取代如图10所示的信令交互过程一样等待链路1的传输结束之后再调度用户设备UE2,基站BS2也可以选择此时调度其它不会影响链路1的用户设备。例如,如图9所示,用户设备UE3远离基站BS1,因此如果基站BS2判断链路2上的传输会影响链路1,也可调度用户设备UE3建立链路3,并且链路3上的传输不会影响链路1。图11示出了该情况下的信令交互过程。
图11是示出在图9所示的场景示例中运营商间的信令交互过程的另一示例的示意图。
如图11所示,图11所示的信令交互过程与图10所示的过程基本上类似,区别仅在于基站BS2在接收到链路1的信息之后,不是选择等待链路1的传输结束之后再调度用户设备UE2,而是调度用户设备UE3以建立链路3进行传输,并且链路3上的传输不会干扰链路1。用户设备UE3与基站BS2之间的信令交互过程可与以上参照图8描述的使用运营商间协调信号的信令交互过程类似,或者也可不使用运营商间协调信号,而是如现有技术中一样,用户设备UE3在检测到未授权频段上的信道空闲之后直接进行上行数据传输。
图12是示出根据本公开的实施例的运营商间交互场景的另一示例的示意图。
如图12所示,在该示例场景中存在运营商1的基站BS1和用户设备UE1以及运营商2的基站BS2和用户设备UE2和UE3,其中的圆圈分别表示以各个设备为中心的功率覆盖范围。在这里仍以上行传输为例,基站BS2可收听到用户设备UE1在发送数据流之前广播的运营商间协调信号,并且用户设备UE2可收听到基站BS1在接收数据流之前广播的运营商间协调信号,这样,可以保证在基站BS1与用户设备UE1之间的链路1建立之后,用户设备UE2不会向基站BS2发送上行调度请求从而影响链路1上的传输。基站BS2可根据用户设备UE1广播的运营商间协调信号而在适当的时间重新调度用户设备UE2以避免影响链路1,由此实现了运营商间的协调。
图13是示出在图12所示的场景示例中运营商间的信令交互过程的示例的示意图。
在图13所示的信令交互过程中,用户设备UE1与基站BS1之间的信令 交互过程与之前参照图8描述的信令交互过程相同,在此不再重复。这里将主要详细描述涉及运营商间交互的信令。如图13所示,由于基站BS2可收听到用户设备UE1广播的运营商间协调信号,因此不同于图11所示的信令交互过程,基站BS2仅通过解析该运营商间协调信号即可获知链路1的状况而无需接收用户设备UE2的链路信息报告,从而基站BS2可在链路1上的传输结束之后再调度用户设备UE2,以避免冲突。用户设备UE2与基站BS2之间的信令交互过程可与以上参照图8描述的使用运营商间协调信号的信令交互过程类似,或者也可不使用运营商间协调信号,而是如现有技术中一样,用户设备UE2在检测到未授权频段上的信道空闲之后直接进行上行数据传输。替选地,在图12所示的示例场景中,也可如以上参照图11描述的信令交互过程一样,取代在如图13所示的信令交互过程中基站BS2在等待链路1上的传输结束之后调度用户设备UE2,基站BS2也可选择此时调度不会影响链路1的用户设备UE3建立链路以进行传输。具体的信令交互过程与图11所示的类似,在此不再重复。
根据以上信令交互过程的描述,优选地,发送端的装置100的协调单元104可在上行传输的情况下,根据其它运营商设备广播的运营商间协调信号,控制发送端向基站发送上行调度请求,并且还可将根据其它运营商设备广播的运营商间协调信号而确定的链路信息报告给基站,以由基站进行上行调度。另一方面,接收端的装置500的协调单元504可在上行传输的情况下,根据其它运营商设备广播的运营商间协调信号或者发送端报告的链路信息而进行上行调度。这样,可以利用运营商间协调信号而容易地实现运营商间协调,避免数据传输冲突,从而提高系统总体性能。
应指出,以上给出的运营商间的交互场景和信令交互过程仅为示例而非限制,本领域技术人员显然可以根据本公开的原理而对上述过程进行修改以适用于其它场景(例如,下行传输、D2D传输等),只要各运营商设备可以通过利用运营商间协调信号进行信息交互以达到避免冲突的目的即可。例如,在下行传输的情况下,作为发送端的基站无需发送调度请求以得到允许之后才进行后续的LBT、广播运营商间协调信号等操作,并且在根据其它运营商设备广播的运营商间协调信号判断当前链路传输会影响已存在的链路的情况下,基站 可等待已存在的链路传输结束之后再对用户设备进行数据传输,或者也可与不会影响已存在的链路的其它用户设备建立链路进行传输。其它场景下的信令交互过程均是本领域技术人员根据已有的知识和本公开的原理可实现的适当变型,在此不再一一列举赘述。
图14是示出根据本公开的实施例的无线通信系统的示例配置的框图。
如图14所示,根据该实施例的无线通信系统1400可包括发送设备1410和接收设备1420。优选地,无线通信系统1400可以是LAA系统。
发送设备1410可包括处理电路1411和通信单元1412。处理电路1411可被配置成执行以上参照图1描述的信道检测单元102和协调单元104的操作,即,检测未授权频段上的发送端信道是否空闲,以及在发送端信道空闲的情况下,在发送数据流之前广播运营商间协调信号以用于实现不同运营商设备间的信息交互。通信单元1412可被配置成执行发送设备1410与其它设备间的通信。
接收设备1420可包括处理电路1421和通信单元1422。处理电路1421可被配置成执行以上参照图5描述的信道检测单元502和协调单元504的操作,即,检测未授权频段上的接收端信道是否空闲,以及在接收端信道空闲的情况下,在接收到发送设备1410广播的运营商间协调信号之后的预定时间,与来自发送设备1410的运营商间协调信号同步地广播缩短的运营商间协调信号。通信单元1422可被配置成执行接收设备1420与其它设备间的通信。
应指出,这里的处理电路1411和1421的具体实现形式可以包括中央处理单元(CPU)、数字信号处理器(DSP)、大规模集成电路(ASIC)、现场可编程门阵列(FPGA)等,并且通信单元1421和1422的具体实现形式可以包括收发机、天线等。
应指出,尽管以上描述了无线通信系统中的发送端和接收端的装置以及无线通信系统的配置示例,但是这仅是示例而非限制,本领域技术人员可根据本公开的原理而对上述配置进行修改,例如,对各个功能单元进行添加、删除、组合、子组合和变更等,并且这样的变型应认为落入本公开的范围内。
与上述装置实施例相对应地,还公开了相应的方法实施例。接下来将参照图15和图16描述本公开的方法实施例。
图15是示出根据本公开的实施例的无线通信系统中的发送端的方法的过 程示例的流程图。
如图15所示,首先,在信道检测步骤S1502中,检测未授权频段上的发送端信道是否空闲。然后,在协调步骤S1504中,在发送端信道空闲的情况下,使得发送端在发送数据流之前广播运营商间协调信号,以用于实现不同运营商设备之间的信息交互。这里的运营商间协调信号是利用指定频段上的能量有无来实现不同运营商吧之间的信息交互的时域-频域平面上的能量图案信号。关于运营商间协调信号的具体描述和使用可参见以上装置实施例中相应位置的描述,在此不再重复。
优选地,该无线通信系统是LAA系统。
优选地,在协调步骤S1504中,还可在接收到来自接收端的指示接收端信道忙的通知的情况下,使得发送端停止广播运营商间协调信号。
优选地,在协调步骤S1504中,在上行传输的情况下,还可根据其它运营商设备广播的运营商间协调信号,控制发送端向基站发送上行调度请求。
优选地,在协调步骤S1504中,在上行传输的情况下,还可将根据其它运营商设备广播的运营商间协调信号而确定的链路信息报告给基站,以由基站进行上行调度。
优选地,在协调步骤S1504中,可通过调整运营商间协调信号的子载波个数和/或信号传输持续时间来实现与其它运营商设备的运营商间协调信号的统一。
此外,优选地,在协调步骤S1504中,可根据运营商间协调信号的子载波个数和/或信号传输持续时间的最小公倍数或最大公因数来调整运营商间协调信号的子载波个数和/或信号传输持续时间。
图16是示出根据本公开的实施例的无线通信系统中的接收端的方法的过程示例的流程图。
如图16所示,首先,在信道检测步骤S1602中,检测未授权频段上的接收端信道是否空闲。然后,在协调步骤S1604中,在接收端信道空闲的情况下,在接收到发送端广播的运营商间协调信号之后的预定时间,使得接收端与来自发送端的运营商间协调信号同步地广播缩短的运营商间协调信号,以用于实现不同运营商设备之间的信息交互。
优选地,在信道检测步骤S1602中,还可在检测到接收端信道忙的情况下通知发送端,以使得发送端停止广播运营商间协调信号。
优选地,在协调步骤S1604中,可使得接收端在接收到发送端广播的运营商间协调信号的标志图案的一部分以确认发送端已广播运营商间协调信号之后,与发送端的运营商间协调信号同步地广播缩短的运营商间协调信号。
优选地,在协调步骤S1604中,可使得接收端在发送端结束广播运营商间协调信号之前结束广播缩短的运营商间协调信号。
优选地,在协调步骤S1604中,在上行传输的情况下,可根据其它运营商设备广播的运营商间协调信号而进行上行调度。
优选地,在协调步骤S1604中,在上行传输的情况下,可基于发送端所报告的、根据其它运营商设备广播的运营商间协调信号而确定的链路信息进行上行调度。
应理解,这里描述的方法实施例是与上述装置实施例对应的,因此在方法实施例中未详细描述的内容可参见以上装置实施例中相应位置的描述,在此不再重复。
应指出,尽管以上描述了根据本公开的实施例的无线通信系统中的方法的过程示例,但是这仅是示例而非限制,并且本领域技术人员可根据本公开的原理对以上实施例进行修改,例如可对各个实施例中的步骤进行添加、删除或者组合等,并且这样的修改均落入本公开的范围内。
此外,还应指出,尽管这里作为示例描述了本发明的技术方案应用于LAA系统,但是随着未来通信技术的发展,本发明的技术方案也可以相应地扩展应用于存在类似问题的任何无线通信系统,即,只要在时间-频率域为有限信号的系统均可适用本发明的技术方案。
此外,根据本公开的实施例,还提供了一种电子设备,该电子设备可包括收发机和一个或多个处理器,这一个或多个处理器可被配置成执行上述根据本公开的实施例的无线通信系统中的方法或相应单元的功能。
应理解,根据本公开的实施例的存储介质和程序产品中的机器可执行的指令还可以被配置成执行与上述装置实施例相对应的方法,因此在此未详细描述的内容可参考先前相应位置的描述,在此不再重复进行描述。
相应地,用于承载上述包括机器可执行的指令的程序产品的存储介质也包括在本发明的公开中。该存储介质包括但不限于软盘、光盘、磁光盘、存储卡、存储棒等等。
另外,还应该指出的是,上述系列处理和装置也可以通过软件和/或固件实现。在通过软件和/或固件实现的情况下,从存储介质或网络向具有专用硬件结构的计算机,例如图17所示的通用个人计算机1700安装构成该软件的程序,该计算机在安装有各种程序时,能够执行各种功能等等。图17是示出作为本公开的实施例中可采用的信息处理设备的个人计算机的示例结构的框图。
在图17中,中央处理单元(CPU)1701根据只读存储器(ROM)1702中存储的程序或从存储部分1708加载到随机存取存储器(RAM)1703的程序执行各种处理。在RAM 1703中,也根据需要存储当CPU 1701执行各种处理等时所需的数据。
CPU 1701、ROM 1702和RAM 1703经由总线1704彼此连接。输入/输出接口1705也连接到总线1704。
下述部件连接到输入/输出接口1705:输入部分1706,包括键盘、鼠标等;输出部分1707,包括显示器,比如阴极射线管(CRT)、液晶显示器(LCD)等,和扬声器等;存储部分1708,包括硬盘等;和通信部分1709,包括网络接口卡比如LAN卡、调制解调器等。通信部分1709经由网络比如因特网执行通信处理。
根据需要,驱动器1710也连接到输入/输出接口1705。可拆卸介质1711比如磁盘、光盘、磁光盘、半导体存储器等等根据需要被安装在驱动器1710上,使得从中读出的计算机程序根据需要被安装到存储部分1708中。
在通过软件实现上述系列处理的情况下,从网络比如因特网或存储介质比如可拆卸介质1711安装构成软件的程序。
本领域的技术人员应当理解,这种存储介质不局限于图17所示的其中存储有程序、与设备相分离地分发以向用户提供程序的可拆卸介质1711。可拆卸介质1711的例子包含磁盘(包含软盘(注册商标))、光盘(包含光盘只读存储器(CD-ROM)和数字通用盘(DVD))、磁光盘(包含迷你盘(MD)(注册商标))和半导体存储器。或者,存储介质可以是ROM 1702、存储部分1708 中包含的硬盘等等,其中存有程序,并且与包含它们的设备一起被分发给用户。
以下将参照图18至图21描述根据本公开的应用示例。
[关于基站的应用示例]
(第一应用示例)
图18是示出可以应用本公开内容的技术的eNB的示意性配置的第一示例的框图。eNB 1800包括一个或多个天线1810以及基站设备1820。基站设备1820和每个天线1810可以经由RF线缆彼此连接。
天线1810中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备1820发送和接收无线信号。如图18所示,eNB 1800可以包括多个天线1810。例如,多个天线1810可以与eNB 1800使用的多个频段兼容。虽然图18示出其中eNB 1800包括多个天线1810的示例,但是eNB 1800也可以包括单个天线1810。
基站设备1820包括控制器1821、存储器1822、网络接口1823以及无线通信接口1825。
控制器1821可以为例如CPU或DSP,并且操作基站设备1820的较高层的各种功能。例如,控制器1821根据由无线通信接口1825处理的信号中的数据来生成数据分组,并经由网络接口1823来传递所生成的分组。控制器1821可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器1821可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的eNB或核心网节点来执行。存储器1822包括RAM和ROM,并且存储由控制器1821执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口1823为用于将基站设备1820连接至核心网1824的通信接口。控制器1821可以经由网络接口1823而与核心网节点或另外的eNB进行通信。在此情况下,eNB 1800与核心网节点或其他eNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口1823还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口1823为无线通信接口,则与由无线通信接口1825使用的频段相比,网络接口1823可以使用较高频段用于无 线通信。
无线通信接口1825支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE-先进),并且经由天线1810来提供到位于eNB 1800的小区中的终端的无线连接。无线通信接口1825通常可以包括例如基带(BB)处理器1826和RF电路1827。BB处理器1826可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器1821,BB处理器1826可以具有上述逻辑功能的一部分或全部。BB处理器1826可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器1826的功能改变。该模块可以为插入到基站设备1820的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路1827可以包括例如混频器、滤波器和放大器,并且经由天线1810来传送和接收无线信号。
如图18所示,无线通信接口1825可以包括多个BB处理器1826。例如,多个BB处理器1826可以与eNB 1800使用的多个频段兼容。如图18所示,无线通信接口1825可以包括多个RF电路1827。例如,多个RF电路1827可以与多个天线元件兼容。虽然图18示出其中无线通信接口1825包括多个BB处理器1826和多个RF电路1827的示例,但是无线通信接口1825也可以包括单个BB处理器1826或单个RF电路1827。
(第二应用示例)
图19是示出可以应用本公开内容的技术的eNB的示意性配置的第二示例的框图。eNB 1930包括一个或多个天线1940、基站设备1950和RRH1960。RRH 1960和每个天线1940可以经由RF线缆而彼此连接。基站设备1950和RRH 1960可以经由诸如光纤线缆的高速线路而彼此连接。
天线1940中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件)并且用于RRH 1960发送和接收无线信号。如图19所示,eNB 1930可以包括多个天线1940。例如,多个天线1940可以与eNB1930使用的多个频段兼容。虽然图19示出其中eNB 1930包括多个天线1940的示例,但是eNB 1930也可以包括单个天线1940。
基站设备1950包括控制器1951、存储器1952、网络接口1953、无线通信接口1955以及连接接口1957。控制器1951、存储器1952和网络接口1953与参照图18描述的控制器1821、存储器1822和网络接口1823相同。
无线通信接口1955支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且经由RRH 1960和天线1940来提供到位于与RRH 1960对应的扇区中的终端的无线通信。无线通信接口1955通常可以包括例如BB处理器1956。除了BB处理器1956经由连接接口1957连接到RRH 1960的RF电路1964之外,BB处理器1956与参照图18描述的BB处理器1826相同。如图19所示,无线通信接口1955可以包括多个BB处理器1956。例如,多个BB处理器1956可以与eNB 1930使用的多个频段兼容。虽然图19示出其中无线通信接口1955包括多个BB处理器1956的示例,但是无线通信接口1955也可以包括单个BB处理器1956。
连接接口1957为用于将基站设备1950(无线通信接口1955)连接至RRH1960的接口。连接接口1957还可以为用于将基站设备1950(无线通信接口1955)连接至RRH 1960的上述高速线路中的通信的通信模块。
RRH 1960包括连接接口1961和无线通信接口1963。
连接接口1961为用于将RRH 1960(无线通信接口1963)连接至基站设备1950的接口。连接接口1961还可以为用于上述高速线路中的通信的通信模块。
无线通信接口1963经由天线1940来传送和接收无线信号。无线通信接口1963通常可以包括例如RF电路1964。RF电路1964可以包括例如混频器、滤波器和放大器,并且经由天线1940来传送和接收无线信号。如图19所示,无线通信接口1963可以包括多个RF电路1964。例如,多个RF电路1964可以支持多个天线元件。虽然图19示出其中无线通信接口1963包括多个RF电路1964的示例,但是无线通信接口1963也可以包括单个RF电路1964。
在图18和图19所示的eNB 1800和eNB 1930中,装置500中的通信单元可以由无线通信接口1825以及无线通信接口1955和/或无线通信接口1963实现。信道检测单元502和协调单元504的功能的至少一部分也可以由控制器1821和控制器1951实现。
[关于用户设备的应用示例]
(第一应用示例)
图20是示出可以应用本公开内容的技术的智能电话2000的示意性配置的示例的框图。智能电话2000包括处理器2001、存储器2002、存储装置2003、外部连接接口2004、摄像装置2006、传感器2007、麦克风2008、输入装置2009、显示装置2010、扬声器2011、无线通信接口2012、一个或多个天线开关2015、一个或多个天线2016、总线2017、电池2018以及辅助控制器2019。
处理器2001可以为例如CPU或片上系统(SoC),并且控制智能电话2000的应用层和另外层的功能。存储器2002包括RAM和ROM,并且存储数据和由处理器2001执行的程序。存储装置2003可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口2004为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话2000的接口。
摄像装置2006包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器2007可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风2008将输入到智能电话2000的声音转换为音频信号。输入装置2009包括例如被配置为检测显示装置2010的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置2010包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话2000的输出图像。扬声器2011将从智能电话2000输出的音频信号转换为声音。
无线通信接口2012支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口2012通常可以包括例如BB处理器2013和RF电路2014。BB处理器2013可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路2014可以包括例如混频器、滤波器和放大器,并且经由天线2016来传送和接收无线信号。无线通信接口2012可以为其上集成有BB处理器2013和RF电路2014的一个芯片模块。如图20所示,无线通信接口2012可以包括多个BB处理器2013和多个RF电路2014。虽然图20示出其中无线通信接口2012包括多个 BB处理器2013和多个RF电路2014的示例,但是无线通信接口2012也可以包括单个BB处理器2013或单个RF电路2014。
此外,除了蜂窝通信方案之外,无线通信接口2012可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口2012可以包括针对每种无线通信方案的BB处理器2013和RF电路2014。
天线开关2015中的每一个在包括在无线通信接口2012中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线2016的连接目的地。
天线2016中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口2012传送和接收无线信号。如图20所示,智能电话2000可以包括多个天线2016。虽然图20示出其中智能电话2000包括多个天线2016的示例,但是智能电话2000也可以包括单个天线2016。
此外,智能电话2000可以包括针对每种无线通信方案的天线2016。在此情况下,天线开关2015可以从智能电话2000的配置中省略。
总线2017将处理器2001、存储器2002、存储装置2003、外部连接接口2004、摄像装置2006、传感器2007、麦克风2008、输入装置2009、显示装置2010、扬声器2011、无线通信接口2012以及辅助控制器2019彼此连接。电池2018经由馈线向图20所示的智能电话2000的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器2019例如在睡眠模式下操作智能电话2000的最小必需功能。
在图20所示的智能电话2000中,装置100中的通信单元可以由无线通信接口2012实现。信道检测单元102和协调单元104的功能的至少一部分也可以由处理器2001或辅助控制器2019实现。
(第二应用示例)
图21是示出可以应用本公开内容的技术的汽车导航设备2120的示意性配置的示例的框图。汽车导航设备2120包括处理器2121、存储器2122、全球定位系统(GPS)模块2124、传感器2125、数据接口2126、内容播放器2127、存储介质接口2128、输入装置2129、显示装置2130、扬声器2131、无线通信 接口2133、一个或多个天线开关2136、一个或多个天线2137以及电池2138。
处理器2121可以为例如CPU或SoC,并且控制汽车导航设备2120的导航功能和另外的功能。存储器2122包括RAM和ROM,并且存储数据和由处理器2121执行的程序。
GPS模块2124使用从GPS卫星接收的GPS信号来测量汽车导航设备2120的位置(诸如纬度、经度和高度)。传感器2125可以包括一组传感器,诸如陀螺仪传感器、地磁传感器和空气压力传感器。数据接口2126经由未示出的终端而连接到例如车载网络2141,并且获取由车辆生成的数据(诸如车速数据)。
内容播放器2127再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质被插入到存储介质接口2128中。输入装置2129包括例如被配置为检测显示装置2130的屏幕上的触摸的触摸传感器、按钮或开关,并且接收从用户输入的操作或信息。显示装置2130包括诸如LCD或OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器2131输出导航功能的声音或再现的内容。
无线通信接口2133支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口2133通常可以包括例如BB处理器2134和RF电路2135。BB处理器2134可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路2135可以包括例如混频器、滤波器和放大器,并且经由天线2137来传送和接收无线信号。无线通信接口2133还可以为其上集成有BB处理器2134和RF电路2135的一个芯片模块。如图21所示,无线通信接口2133可以包括多个BB处理器2134和多个RF电路2135。虽然图21示出其中无线通信接口2133包括多个BB处理器2134和多个RF电路2135的示例,但是无线通信接口2133也可以包括单个BB处理器2134或单个RF电路2135。
此外,除了蜂窝通信方案之外,无线通信接口2133可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线LAN方案。在此情况下,针对每种无线通信方案,无线通信接口2133可以包括BB处理器2134和RF电路2135。
天线开关2136中的每一个在包括在无线通信接口2133中的多个电路(诸如用于不同的无线通信方案的电路)之间切换天线2137的连接目的地。
天线2137中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口2133传送和接收无线信号。如图21所示,汽车导航设备2120可以包括多个天线2137。虽然图21示出其中汽车导航设备2120包括多个天线2137的示例,但是汽车导航设备2120也可以包括单个天线2137。
此外,汽车导航设备2120可以包括针对每种无线通信方案的天线2137。在此情况下,天线开关2136可以从汽车导航设备2120的配置中省略。
电池2138经由馈线向图21所示的汽车导航设备2120的各个块提供电力,馈线在图中被部分地示为虚线。电池2138累积从车辆提供的电力。
在图21示出的汽车导航设备2120中,装置100中的通信单元可以由无线通信接口2133实现。信道检测单元102和协调单元104的功能的至少一部分也可以由处理器2121实现。
本公开内容的技术也可以被实现为包括汽车导航设备2120、车载网络2141以及车辆模块2142中的一个或多个块的车载系统(或车辆)2140。车辆模块2142生成车辆数据(诸如车速、发动机速度和故障信息),并且将所生成的数据输出至车载网络2141。
以上参照附图描述了本公开的优选实施例,但是本公开当然不限于以上示例。本领域技术人员可在所附权利要求的范围内得到各种变更和修改,并且应理解这些变更和修改自然将落入本公开的技术范围内。
例如,在以上实施例中包括在一个单元中的多个功能可以由分开的装置来实现。替选地,在以上实施例中由多个单元实现的多个功能可分别由分开的装置来实现。另外,以上功能之一可由多个单元来实现。无需说,这样的配置包括在本公开的技术范围内。
在该说明书中,流程图中所描述的步骤不仅包括以所述顺序按时间序列执行的处理,而且包括并行地或单独地而不是必须按时间序列执行的处理。此外,甚至在按时间序列处理的步骤中,无需说,也可以适当地改变该顺序。
虽然已经详细说明了本公开及其优点,但是应当理解在不脱离由所附的 权利要求所限定的本公开的精神和范围的情况下可以进行各种改变、替代和变换。而且,本公开实施例的术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。

Claims (26)

  1. 一种无线通信系统中的发送端的装置,所述装置包括:
    信道检测单元,被配置成检测未授权频段上的发送端信道是否空闲;以及
    协调单元,被配置成在所述发送端信道空闲的情况下,使得所述发送端在发送数据流之前广播运营商间协调信号,以用于实现不同运营商设备之间的信息交互,
    其中,所述运营商间协调信号是利用指定频段上的能量有无来实现不同运营商设备之间的信息交互的时域-频域平面上的能量图案信号。
  2. 根据权利要求1所述的装置,其中,所述运营商间协调信号包括标志图案和链路信息图案中的至少一个,所述标志图案是携带能量的子载波位置预先确定的周期性重复能量图案,并且所述链路信息图案是携带能量的子载波位置和持续时间可变的可编码能量图案。
  3. 根据权利要求2所述的装置,其中,所述标志图案用于指示所述运营商间协调信号开始,并且所述链路信息图案用于承载链路信息。
  4. 根据权利要求3所述的装置,其中,所述链路信息包括所述发送端的设备类型及编号、接收端的设备类型及编号、运营商信息和估计信道占用时间中的一个或多个。
  5. 根据权利要求2所述的装置,其中,所述标志图案包括梳状条纹图案、锯齿图案和棋盘格图案之一,并且所述链路信息图案包括条纹图案、条形码图案和二维码图案之一。
  6. 根据权利要求1所述的装置,其中,所述协调单元进一步被配置成在接收到来自接收端的指示接收端信道忙的通知的情况下,使得所述发送端停止广播所述运营商间协调信号。
  7. 根据权利要求1所述的装置,其中,所述协调单元进一步被配置成在上行传输的情况下,根据其它运营商设备广播的运营商间协调信号,控制所述发送端向基站发送上行调度请求。
  8. 根据权利要求1所述的装置,其中,所述协调单元进一步被配置成在上行传输的情况下,将根据其它运营商设备广播的运营商间协调信号而确定的链路信息报告给基站,以由所述基站进行上行调度。
  9. 根据权利要求1所述的装置,其中,所述协调单元进一步被配置成通过调整所述运营商间协调信号的子载波个数和/或信号传输持续时间来实现与其它运营商设备的运营商间协调信号的统一。
  10. 根据权利要求9所述的装置,其中,所述协调单元进一步被配置成根据所述运营商间协调信号的子载波个数和/或信号传输持续时间的最小公倍数或最大公因数来调整所述运营商间协调信号的子载波个数和/或信号传输持续时间。
  11. 根据权利要求1至10中任一项所述的装置,其中,所述无线通信系统是授权辅助接入系统。
  12. 根据权利要求1至10中任一项所述的装置,还包括:
    通信单元,被配置成执行信号收发处理。
  13. 一种无线通信系统中的接收端的装置,所述装置包括:
    信道检测单元,被配置成检测未授权频段上的接收端信道是否空闲;以及
    协调单元,被配置成在所述接收端信道空闲的情况下,在接收到发送端广播的运营商间协调信号之后的预定时间,使得所述接收端与来自所述发送端的运营商间协调信号同步地广播缩短的所述运营商间协调信号,以用于实现不同运营商设备之间的信息交互,
    其中,所述运营商间协调信号是利用指定频段上的能量有无来实现不同运营商设备之间的信息交互的时域-频域平面上的能量图案信号。
  14. 根据权利要求13所述的装置,其中,所述运营商间协调信号包括标志图案和链路信息图案中的至少一个,所述标志图案是携带能量的子载波位置预先确定的周期性重复能量图案,并且所述链路信息图案是携带能量的子载波位置和持续时间可变的可编码能量图案。
  15. 根据权利要求14所述的装置,其中,所述标志图案用于指示所述运营商间协调信号开始,并且所述链路信息图案用于承载链路信息。
  16. 根据权利要求13所述的装置,其中,所述信道检测单元进一步被配置成在检测到所述接收端信道忙的情况下通知所述发送端,以使得所述发送端停止广播所述运营商间协调信号。
  17. 根据权利要求14所述的装置,其中,所述协调单元进一步被配置成 使得所述接收端在接收到所述发送端广播的所述运营商间协调信号的所述标志图案的一部分以确认所述发送端已广播所述运营商间协调信号之后,与所述发送端的运营商间协调信号同步地广播缩短的所述运营商间协调信号。
  18. 根据权利要求13所述的装置,其中,所述协调单元进一步被配置成使得所述接收端在所述发送端结束广播所述运营商间协调信号之前结束广播缩短的所述运营商间协调信号。
  19. 根据权利要求13所述的装置,其中,所述协调单元进一步被配置成在上行传输的情况下,根据其它运营商设备广播的运营商间协调信号而进行上行调度。
  20. 根据权利要求13所述的装置,其中,所述协调单元进一步被配置成在上行传输的情况下,基于所述发送端所报告的、根据其它运营商设备广播的运营商间协调信号而确定的链路信息进行上行调度。
  21. 根据权利要求13至20中任一项所述的装置,其中,所述无线通信系统是授权辅助接入系统。
  22. 根据权利要求13至20中任一项所述的装置,还包括:
    通信单元,被配置成执行信号收发处理。
  23. 一种无线通信系统,包括:
    发送设备,包括第一处理电路,所述第一处理电路被配置成:
    检测未授权频段上的发送端信道是否空闲,以及
    在所述发送端信道空闲的情况下,在发送数据流之前广播运营商间协调信号,以用于实现不同运营商设备之间的信息交互;以及
    接收设备,包括第二处理电路,所述第二处理电路被配置成:
    检测所述未授权频段上的接收端信道是否空闲,以及
    在所述接收端信道空闲的情况下,在接收到所述发送设备广播的运营商间协调信号之后的预定时间,与来自所述发送设备的运营商间协调信号同步地广播缩短的所述运营商间协调信号,
    其中,所述运营商间协调信号是利用指定频段上的能量有无来实现不同运营商设备之间的信息交互的时域-频域平面上的能量图案信号。
  24. 根据权利要求23所述的无线通信系统,其中,所述无线通信系统是 授权辅助接入系统。
  25. 一种无线通信系统中的发送端的方法,所述方法包括:
    检测未授权频段上的发送端信道是否空闲;以及
    在所述发送端信道空闲的情况下,使得所述发送端在发送数据流之前广播运营商间协调信号,以用于实现不同运营商设备之间的信息交互,
    其中,所述运营商间协调信号是利用指定频段上的能量有无来实现不同运营商设备之间的信息交互的时域-频域平面上的能量图案信号。
  26. 一种无线通信系统中的接收端的方法,所述方法包括:
    检测未授权频段上的接收端信道是否空闲;以及
    在所述接收端信道空闲的情况下,在接收到发送端广播的运营商间协调信号之后的预定时间,使得所述接收端与来自所述发送端的运营商间协调信号同步地广播缩短的所述运营商间协调信号,以用于实现不同运营商设备之间的信息交互,
    其中,所述运营商间协调信号是利用指定频段上的能量有无来实现不同运营商设备之间的信息交互的时域-频域平面上的能量图案信号。
PCT/CN2017/077633 2016-03-30 2017-03-22 无线通信系统中的装置和方法以及无线通信系统 WO2017167083A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17773113.0A EP3439350A1 (en) 2016-03-30 2017-03-22 Device and method in radio communication system, and radio communication system
CN201780009416.1A CN108605235A (zh) 2016-03-30 2017-03-22 无线通信系统中的装置和方法以及无线通信系统
US16/088,956 US11363633B2 (en) 2016-03-30 2017-03-22 Device and method in radio communication system, and radio communication system
AU2017243531A AU2017243531A1 (en) 2016-03-30 2017-03-22 Device and method in radio communication system, and radio communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610191483.7A CN107294579A (zh) 2016-03-30 2016-03-30 无线通信系统中的装置和方法以及无线通信系统
CN201610191483.7 2016-03-30

Publications (1)

Publication Number Publication Date
WO2017167083A1 true WO2017167083A1 (zh) 2017-10-05

Family

ID=59963446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/077633 WO2017167083A1 (zh) 2016-03-30 2017-03-22 无线通信系统中的装置和方法以及无线通信系统

Country Status (5)

Country Link
US (1) US11363633B2 (zh)
EP (1) EP3439350A1 (zh)
CN (2) CN107294579A (zh)
AU (1) AU2017243531A1 (zh)
WO (1) WO2017167083A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019203568A1 (en) * 2018-04-18 2019-10-24 Samsung Electronics Co., Ltd. Method and apparatus for transmitting or receiving synchronization signal in wireless communication system
CN111819897A (zh) * 2018-03-08 2020-10-23 高通股份有限公司 用于频谱共享的干扰管理
CN112398548A (zh) * 2020-11-17 2021-02-23 上海旷通科技有限公司 发射信号检测信息处理方法、装置、存储介质及通信终端
CN115915021A (zh) * 2021-08-11 2023-04-04 Oppo广东移动通信有限公司 信号处理方法、装置、交互系统、电子设备及存储介质

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110324910B (zh) * 2018-03-30 2023-08-22 华为技术有限公司 通信方法和通信设备
CN109120362B (zh) * 2018-10-24 2021-01-01 南京航空航天大学 一种具有能量采集功能的认知无线电网络的信道选择方法
WO2020215278A1 (zh) * 2019-04-25 2020-10-29 北京小米移动软件有限公司 网络切换资源确定方法和网络切换资源配置方法
CN110383891B (zh) * 2019-05-29 2021-10-26 北京小米移动软件有限公司 网络切换资源确定方法和网络切换资源配置方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104333873A (zh) * 2014-11-28 2015-02-04 东莞宇龙通信科技有限公司 信道检测方法及系统、具有基站功能的设备和终端
CN104363657A (zh) * 2014-11-06 2015-02-18 东莞宇龙通信科技有限公司 数据传输方法、系统和具有基站功能的设备
US20150103782A1 (en) * 2013-10-14 2015-04-16 Qualcomm Incorporated Techniques for enabling asynchronous communications using unlicensed radio frequency spectrum
US20150110012A1 (en) * 2013-10-23 2015-04-23 Qualcomm Incorporated Techniques for channel access in asynchronous unlicensed radio frequency spectrum band deployments
CN104717686A (zh) * 2015-03-31 2015-06-17 深圳酷派技术有限公司 一种未授权频段的信道检测方法及网元设备

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003024049A1 (en) 2001-09-06 2003-03-20 Massachusetts Institute Of Technology Source coding for interference reduction
US20080177886A1 (en) * 2007-01-19 2008-07-24 Samsung Electronics Co., Ltd. Method and system for connection setup in wireless communications
KR101355376B1 (ko) 2007-04-30 2014-01-23 삼성전자주식회사 고주파수 영역 부호화 및 복호화 방법 및 장치
WO2012106843A1 (en) * 2011-02-11 2012-08-16 Renesas Mobile Corporation Signaling method to enable controlled tx deferring in mixed licensed and unlicensed spectrum carrier aggregation in future lte-a networks
CN103765824B (zh) * 2011-07-14 2017-03-22 美国博通公司 用于在系统的未许可频带上提供灵活时间共享方案的方法和装置
US9008585B2 (en) 2012-01-30 2015-04-14 Futurewei Technologies, Inc. System and method for wireless communications measurements and CSI feedback
WO2013131257A1 (en) * 2012-03-07 2013-09-12 Renesas Mobile Corporation Methods and apparatuses for facilitating multiple operator coordination for transmissions in an unlicensed band
WO2014021762A1 (en) 2012-07-30 2014-02-06 Telefonaktiebolaget L M Ericsson (Publ) Nodes and methods therein for managing time-frequency resources
EP4220636A1 (en) 2012-11-05 2023-08-02 Panasonic Intellectual Property Corporation of America Speech audio encoding device and speech audio encoding method
KR102057949B1 (ko) * 2013-03-19 2020-02-07 삼성전자주식회사 무선 통신 시스템에서 데이터 통신 수행 방법 및 장치
US9867054B2 (en) 2014-04-10 2018-01-09 Qualcomm Incorporated Techniques for transmitting patterns of signal transmissions or reference signals over an unlicensed radio frequency spectrum band
US9398586B2 (en) 2014-04-25 2016-07-19 Cisco Technology, Inc. Almost blank subframe based orthogonal resource allocation in a wireless network environment
EP3140944B1 (en) * 2014-05-08 2021-06-23 Nokia Solutions and Networks Oy Improving communication efficiency
CN105101223A (zh) * 2014-05-16 2015-11-25 北京三星通信技术研究有限公司 一种在免许可频段上进行数据传输的方法和设备
US9787443B2 (en) 2014-05-30 2017-10-10 Qualcomm Incorporated Techniques for managing transmissions of uplink data over an unlicensed radio frequency spectrum band
WO2016013387A1 (ja) * 2014-07-23 2016-01-28 株式会社Nttドコモ 無線基地局、ユーザ端末及び無線通信方法
CN105049136A (zh) * 2015-08-07 2015-11-11 宇龙计算机通信科技(深圳)有限公司 一种非授权频谱信道检测方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150103782A1 (en) * 2013-10-14 2015-04-16 Qualcomm Incorporated Techniques for enabling asynchronous communications using unlicensed radio frequency spectrum
US20150110012A1 (en) * 2013-10-23 2015-04-23 Qualcomm Incorporated Techniques for channel access in asynchronous unlicensed radio frequency spectrum band deployments
CN104363657A (zh) * 2014-11-06 2015-02-18 东莞宇龙通信科技有限公司 数据传输方法、系统和具有基站功能的设备
CN104333873A (zh) * 2014-11-28 2015-02-04 东莞宇龙通信科技有限公司 信道检测方法及系统、具有基站功能的设备和终端
CN104717686A (zh) * 2015-03-31 2015-06-17 深圳酷派技术有限公司 一种未授权频段的信道检测方法及网元设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3439350A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111819897A (zh) * 2018-03-08 2020-10-23 高通股份有限公司 用于频谱共享的干扰管理
CN111819897B (zh) * 2018-03-08 2024-08-13 高通股份有限公司 用于频谱共享的干扰管理
WO2019203568A1 (en) * 2018-04-18 2019-10-24 Samsung Electronics Co., Ltd. Method and apparatus for transmitting or receiving synchronization signal in wireless communication system
US10939396B2 (en) 2018-04-18 2021-03-02 Samsung Electronics Co., Ltd. Method and apparatus for transmitting or receiving synchronization signal in wireless communication system
US11419079B2 (en) 2018-04-18 2022-08-16 Samsung Electronics Co., Ltd. Method and apparatus for transmitting or receiving synchronization signal in wireless communication system
CN112398548A (zh) * 2020-11-17 2021-02-23 上海旷通科技有限公司 发射信号检测信息处理方法、装置、存储介质及通信终端
CN115915021A (zh) * 2021-08-11 2023-04-04 Oppo广东移动通信有限公司 信号处理方法、装置、交互系统、电子设备及存储介质

Also Published As

Publication number Publication date
CN108605235A (zh) 2018-09-28
AU2017243531A1 (en) 2018-11-22
EP3439350A4 (en) 2019-02-06
US11363633B2 (en) 2022-06-14
US20200329498A1 (en) 2020-10-15
CN107294579A (zh) 2017-10-24
EP3439350A1 (en) 2019-02-06

Similar Documents

Publication Publication Date Title
WO2017167083A1 (zh) 无线通信系统中的装置和方法以及无线通信系统
US11881913B2 (en) Electronic device, method and storage medium for wireless communication system
US11997716B2 (en) Electronic device for wireless communication system, method and storage medium
US11824607B2 (en) Electronic device, method and storage medium for wireless communication system
WO2019154387A1 (zh) 电子设备、无线通信方法和计算机可读存储介质
CN109862569B (zh) 基站或用于基站的模块及终端设备或用于终端设备的模块
WO2019154389A1 (zh) 电子设备、无线通信方法和计算机可读存储介质
WO2019019964A1 (zh) 电子装置、信息处理设备和信息处理方法
CN114071474A (zh) 用于无线通信的电子设备、方法和存储介质
JP2019208278A (ja) 基地局装置、ユーザ装置、基地局装置の制御方法及びユーザ装置の制御方法
WO2018032915A1 (zh) 一种非授权频谱上的数据传输方法和设备
US20170238281A1 (en) Device and system

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017773113

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017773113

Country of ref document: EP

Effective date: 20181030

ENP Entry into the national phase

Ref document number: 2017243531

Country of ref document: AU

Date of ref document: 20170322

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17773113

Country of ref document: EP

Kind code of ref document: A1