WO2017166982A1 - 上行功率的控制方法、装置及存储介质 - Google Patents

上行功率的控制方法、装置及存储介质 Download PDF

Info

Publication number
WO2017166982A1
WO2017166982A1 PCT/CN2017/075896 CN2017075896W WO2017166982A1 WO 2017166982 A1 WO2017166982 A1 WO 2017166982A1 CN 2017075896 W CN2017075896 W CN 2017075896W WO 2017166982 A1 WO2017166982 A1 WO 2017166982A1
Authority
WO
WIPO (PCT)
Prior art keywords
subframe
transmit power
terminal
pusch
previous
Prior art date
Application number
PCT/CN2017/075896
Other languages
English (en)
French (fr)
Inventor
张晨晨
赵亚军
苟伟
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017166982A1 publication Critical patent/WO2017166982A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/243TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/362Aspects of the step size

Definitions

  • the present disclosure relates to the field of communications, and in particular, to a method, an apparatus, and a storage medium for controlling uplink power.
  • the heterogeneous system node may perform Listening Before Talk because of the data transmission requirement. LBT) Clear Channel Assessment (CCA), but the LAA system cannot know the time when the heterogeneous system node transmits the PUSCH/SRS.
  • the transmit power P_PUSCH of the PUSCH of a certain subframe is greater than the transmit power P_SRS of the sub-frame SRS, the difference is different.
  • the system node is unsuccessful in the PUSCH domain CCA, but the CSA in the SRS domain is successful, which causes the different system to occupy the channel in the SRS domain.
  • the embodiments of the present disclosure are directed to a method, an apparatus, and a storage medium for controlling uplink power, so as to at least solve the problem that interference occurs due to hidden nodes when multiple systems and multiple nodes coexist in the related art.
  • a method for controlling uplink power includes: transmitting power control (Transmit Power Control, TPC) in the PUSCH power control of the base station when the base station performs continuous multi-subframe uplink scheduling on the terminal.
  • the domain is configured to add a dynamic adjustment domain to the configured TPC domain; the base station controls, by the configured TPC domain, the PUSCH transmit power of the previous subframe of the uplink scheduling is greater than or equal to the subsequent subframe.
  • the PUSCH transmit power of the subframe.
  • the dynamic adjustment domain is m c (i) in the following PUSCH power control formula:
  • f c (i) is the TPC before expansion
  • f c (i)+m c (i) is the expanded TPC domain
  • the method further includes: the base station notifying the configured TPC domain only for the first one of the plurality of consecutive subframe schedules, wherein the configured TPC domain is used to indicate the location The PUSCH transmit power of the first subframe is used; or the base station separately reports the configured TPC domain to the multiple consecutive subframes, where each configured TPC domain is used to indicate the multiple consecutive sub- Frame scheduled PUSCH transmit power.
  • a method for controlling uplink power includes: receiving, by a terminal, a contiguous subframe of uplink scheduling of a base station, where a PUSCH transmit power of a previous subframe in the consecutive subframe is not less than The PUSCH transmit power of the subsequent subframe of the previous subframe.
  • the method further includes: adjusting, by the terminal, a Modulation and Coding Scheme (MCS) of a subsequent subframe of the previous subframe in consecutive subframes.
  • MCS Modulation and Coding Scheme
  • the adjusting, by the terminal, the MCS of the subsequent subframe of the previous subframe in the contiguous subframe further comprises: the terminal following the previous fixed subframe according to a preset fixed step size The MCS of the subframe is adjusted; or the terminal determines a plurality of PUSCH transmit power offset values between the previous subframe in the consecutive subframe and the subsequent subframe in the previous subframe; the terminal According to The plurality of the offset values determine a plurality of step sizes; the terminal separately adjusts the MCS of the subsequent subframes of the previous subframe according to the determined plurality of step sizes.
  • the adjusting, by the terminal, the MCS of the subsequent subframe of the previous subframe in the contiguous subframe includes: when the SRS is included in the consecutive subframe, the terminal is fixed according to a preset The step size adjusts an MCS of a subsequent subframe of the previous subframe; or, when the SRS is included in the consecutive subframe, the terminal determines a previous subframe in the consecutive subframe and the a plurality of PUSCH transmit power offset values between the subsequent subframes of the previous subframe, and a deviation value of the PUSCH transmit power SRS transmit power in the subframe; the terminal determining the plurality of steps according to the plurality of the offset values The terminal adjusts the MCS of the subsequent subframe of the previous subframe according to the determined multiple step sizes.
  • the method when the SRS is included in the consecutive subframes, the method further includes: the terminal adjusting, that the transmit power of the SRS is consistent with the PUSCH transmit power.
  • the method further includes: configuring, by the terminal, the last subframe of the consecutive subframes A sub-frame for the SRS.
  • a control apparatus for uplink power which is applied to a base station side, and includes: a first configuration module configured to perform configuration on a PUSCH when a base station performs continuous multi-subframe uplink scheduling on a terminal
  • the TPC domain in the power control is configured, wherein the configured TPC domain adds a dynamic adjustment domain to the TPC before the configuration
  • the control module is configured to control the PUSCH transmit power of the previous subframe of the uplink scheduling by the configured TPC.
  • a PUSCH transmit power that is less than a subsequent subframe of the previous subframe.
  • the apparatus further includes: a first notification module, configured to notify the configured TPC domain only for the first one of the plurality of consecutive subframe schedules, wherein the configured TPC domain
  • the second notification module is configured to separately notify the plurality of configured TPC domains for scheduling the plurality of consecutive subframes, where the multiple The set TPC domain is used to indicate the PUSCH transmit power scheduled by the multiple consecutive subframes.
  • a control apparatus for uplink power which is applied to a terminal side, and includes: a receiving module, configured to receive a contiguous subframe that is uplink scheduled by a base station, where a previous one of the consecutive subframes The PUSCH transmit power of the subframe is not less than the PUSCH transmit power of the subsequent subframe of the previous subframe.
  • the apparatus further includes: a first adjustment module configured to adjust an MCS of a subsequent subframe of the previous subframe.
  • the first adjusting module includes: a first adjusting unit, configured to adjust an MCS of a subsequent subframe of the previous subframe according to a preset fixed step; or, a first determining unit, And configured to determine a plurality of PUSCH transmit power offset values between the previous subframe in the consecutive subframe and the subsequent subframe in the previous subframe; the second determining unit is configured to be configured by the terminal according to the multiple The offset value determines a plurality of step sizes; and the second adjusting unit is configured to separately adjust the MCS of the subsequent subframe of the previous subframe according to the determined plurality of step sizes.
  • the first adjustment module includes: a third adjustment unit configured to: when the SRS is included in the consecutive subframes, follow a preset fixed step size for a subsequent subframe of the previous subframe The MCS performs adjustment; or, the third determining unit is configured to determine, between the previous subframe in the consecutive subframes and the subsequent subframe in the previous subframe, when the SRS is included in the consecutive subframes a plurality of PUSCH transmit power offset values, and a deviation value of the PUSCH transmit power SRS transmit power in the subframe; a fourth determining unit configured to determine a plurality of step sizes according to the plurality of the offset values; a fourth adjustment unit, The method is configured to separately adjust MCSs of subsequent subframes of the previous subframe according to the determined multiple step sizes.
  • the apparatus when the SRS is included in the consecutive subframes, the apparatus further includes: a second adjustment module, configured to adjust a transmit power of the SRS to be consistent with the PUSCH transmit power.
  • the SRS is included in the consecutive subframes and the terminal is on an unlicensed carrier
  • the apparatus further includes: a second configuration module, configured to configure a last subframe of the consecutive subframes to be a transmission subframe of the SRS.
  • the embodiment of the present disclosure further provides a computer storage medium storing a computer program configured to perform the above-described uplink power control method of the embodiment of the present disclosure.
  • the TPC domain in the PUSCH power control in the related art is configured (expanded) to add a dynamic adjustment domain, and then the extended TPC is adjusted to control the PUSCH transmit power of the uplink subframe of the uplink scheduling. It is not less than the PUSCH transmission power of the subsequent subframe of the previous subframe, thereby solving the problem that interference occurs due to hidden nodes when multiple systems and multiple nodes coexist in the related art.
  • FIG. 1 is a flowchart 1 of a method of controlling uplink power according to an embodiment of the present disclosure
  • FIG. 2 is a second flowchart of a method for controlling uplink power according to an embodiment of the present disclosure
  • FIG. 3 is a structural block diagram of an apparatus for controlling uplink power according to an embodiment of the present disclosure
  • FIG. 4 is a structural block diagram of an apparatus for controlling uplink power according to an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of uplink multi-subframe scheduling according to an alternative embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of multi-user frequency division multiplexing uplink multi-subframe scheduling according to an alternative embodiment of the present disclosure.
  • LTE Long Term Evolution
  • the unlicensed spectrum has the following characteristics and advantages:
  • M2M Machine to Machine
  • V2V Vehicle to Vehicle
  • the unlicensed spectrum may be an important evolution direction of the wireless communication system.
  • the LAA issue discussion was introduced, and some consensus was reached on the application of unlicensed spectrum in downlink transmission.
  • the Release 14 phase the application of unlicensed spectrum in uplink transmission will be discussed.
  • the uplink power control is indispensable, as long as the transmission power is minimized on the premise of ensuring accurate reception of uplink data, and the uplink power control is indispensable. Provisions of the LTE Release 13 Agreement, The uplink power control for different uplink channels/signals is given, with emphasis on the uplink power control formula for the following channels/signals:
  • P SRS,c (i) min ⁇ P CMAX,c (i),P SRS_OFFSET,c (m)+10log 10 (M SRS,c )+P O_PUSCH,c (j)+ ⁇ c (j) ⁇ PL c +f c (i) ⁇ ;
  • each component in the above channel/signal uplink power calculation has a clear resolution in the LTE Release 13 protocol.
  • P PUSCH,c (i), f c (i), ⁇ TF,c (i) are parameters that can be dynamically changed
  • M PUSCH,c (i) corresponds to a PUSCH frequency domain resource block (Resource Block, semi-static configuration RB) number
  • f c (i) is the dynamic adjustment of the power control parameters notified in the UL Grant
  • ⁇ TF, c (i) is determined by the content of MCS and a PUSCH transmission properties, other parameters are set by higher layer signaling parameter.
  • f c (i) is a dynamically changeable parameter, other parameters are semi-statically configured by higher layer signaling, and f c (i) is the TPC in PUSCH power control, so once The Power Spectral Density (PSD) of the subframes of the PUSCH determines that if the subframe also transmits the SRS, the PSD of the subframe SRS is also determined, and then the SRS transmission power cannot be realized independently of the PUSCH transmission power. Dynamic change.
  • PSD Power Spectral Density
  • the conventional uplink scheduling is a single subframe scheduling, that is, the terminal receives an uplink (UL) authorized Grant in the downlink subframe, and the uplink grant scheduling UL Grant indication corresponds to the subsequent uplink.
  • the LAA system When the LAA system transmits the PUSCH/SRS, the LAA system cannot know whether the heterogeneous system node transmits the PUSCH/SRS during the PUSCH transmission of the LAA system or the LBT CCA during the SRS transmission. It is assumed that the CCA threshold of the different system is CCA_ED, a certain subframe. The PUSCH transmission power is P_PUSCH, and the SRS transmission power of the subframe is P_SRS. If the P_PUSCH is greater than the P_SRS, the different system node may not succeed in the PUSCH domain CCA, but the SRS domain CCA is successful. When this happens, the different system will The SRS domain starts to occupy the channel, which may have no effect on the SRS demodulation itself. However, if the different system continuously occupies the channel to the PUSCH domain of the next subframe, the heterogeneous system data transmission and the LAA PUSCH transmission may collide, resulting in Hidden node problems can cause demodulation errors in both systems.
  • FIG. 1 is a flowchart 1 of a method for controlling uplink power according to an embodiment of the present disclosure. As shown in FIG. 1, the method includes the following steps:
  • Step S102 When the base station performs continuous multi-subframe uplink scheduling on the terminal, the base station configures the TPC domain in the PUSCH power control to add a dynamic adjustment domain to the configured TPC domain.
  • the base station configures the TPC domain in the PUSCH power control, that is, the TPC domain is expanded, so that the expanded TPC domain is added with a dynamic adjustment domain before the expansion.
  • Step S104 The base station controls, by using the configured TPC domain, that the PUSCH transmit power of the previous subframe of the uplink scheduling is not less than the PUSCH transmit power of the subsequent subframe of the previous subframe.
  • the PUSCH power control formula TPC domain in the related art is expanded to add a dynamic adjustment domain, and then the extended TPC domain is adjusted to control the PUSCH transmit power of the previous subframe of the uplink scheduling is not less than
  • the PUSCH transmission power of the subsequent subframe of the previous subframe solves the problem that interference occurs due to hidden nodes when multiple systems and multiple nodes coexist in the related art.
  • f c (i) is the TPC before expansion
  • f c (i)+m c (i) is the expanded TPC domain
  • the transformation can be as follows (1) and (2):
  • m c (i)-m c (i+1)> 10log 10 (M PUSCH,c (i+1))+ ⁇ TF,c (i+1)+f c (i+1)-10log 10 ( M PUSCH,c (i))- ⁇ TF,c (i)-f c (i)(1) or,
  • the condition of the foregoing transmit power may be guaranteed, that is, the PUSCH transmit power of the previous subframe of the uplink scheduling is not less than the PUSCH transmission of the subsequent subframe of the previous subframe. power.
  • the method in this embodiment may further include: the base station not only notifying the expanded TPC domain of the first subframe of the multiple consecutive subframe schedules, where the expansion The downlink TPC field is used to indicate the PUSCH transmit power of the first subframe; or the base station separately reports the plurality of extended TPC domains for the multiple consecutive subframe schedules, where the multiple extended TPC domains are used to indicate PUSCH transmit power scheduled for multiple consecutive subframes.
  • Application scenario 1 The base station performs continuous multi-subframe uplink scheduling on the terminal.
  • the TPC domain indicates the first PUSCH subframe that is continuously scheduled.
  • the TPC value is not notified, and the UE follows multiple consecutive scheduling when determining the PUSCH transmit power of other consecutive scheduling subframes.
  • the PUSCH power of the subframe remains the same principle, so that the above formula (1) or (2) can be satisfied.
  • Application scenario 2 The base station performs continuous multi-subframe uplink scheduling on the terminal.
  • the UL Grant corresponding to the multiple scheduled PUSCH subframes separately transmits the TPC domain to each subframe.
  • the PUSCH transmit power of each subframe may be calculated. If the PUSCH transmit power of the subframe n+1 is higher than or not equal to the subframe n, the terminal needs to re-do the UL LBT before transmitting the PUSCH by using the subframe n+1. After the UL LBT of the subframe n+1 is successful, the terminal may send the PUSCH on the subframe n+1 according to the indication of the corresponding UL Grant.
  • FIG. 2 is a second flowchart of a method for controlling uplink power according to an embodiment of the present disclosure. As shown in FIG. 2, the method includes:
  • Step S202 The terminal receives the contiguous subframe of the uplink scheduling of the base station, where the PUSCH transmission power of the previous subframe in the contiguous subframe is not less than the PUSCH transmission power of the subsequent subframe of the previous subframe.
  • Step S204 The terminal adjusts the MCS of the subsequent subframe of the previous subframe in the continuous subframe.
  • the terminal when the terminal receives the contiguous subframe of the uplink scheduling of the base station, and the PUSCH transmit power of the previous subframe in the contiguous subframe is not less than the PUSCH transmit power of the subsequent subframe of the previous subframe, the terminal may The MCS of the subsequent subframe of the previous subframe is adjusted to avoid the MCS of the terminal itself being pre-allocated too high.
  • the manner in which the terminal in step S204 of the embodiment adjusts the MCS of the subsequent subframe of the previous subframe may be implemented as follows:
  • the terminal adjusts the MCS of the subsequent subframe of the previous subframe according to the preset fixed step size
  • step S204 is involved in this embodiment.
  • the manner in which the terminal adjusts the MCS of the subsequent subframe of the previous subframe can be implemented as follows:
  • the terminal adjusts the MCS of the subsequent subframe of the previous subframe according to the preset fixed step size
  • the terminal determines a plurality of PUSCH transmit power offset values between the previous subframe in the consecutive subframe and the subsequent subframe in the previous subframe, and determines the PUSCH transmit power in the subframe. a deviation value from the SRS transmission power; the terminal determines a plurality of step sizes according to the plurality of deviation values; and the terminal respectively adjusts the MCS of the subsequent subframe of the previous subframe according to the determined plurality of step sizes.
  • the method for adjusting the MSC may be as follows: in a specific application scenario, the base station may perform continuous multi-subframe uplink scheduling on the terminal, where multiple consecutive subframes are n, n+1, n+2; The first 13 OFDM symbols are used for PUSCH transmission, the last symbol is used for SRS transmission, and subframe n+1 and subframe n+2 are PUSCH transmissions.
  • the terminal determines, according to the indication of the UL Grant, the PUSCH transmit power P1_PUSCH of the subframe n, the SRS transmit power P1_SRS of the subframe n, and the PUSCH transmit power P2_PUSCH of the subframe n+1, if the determined transmit power satisfies P1_SRS ⁇ P1_PUSCH or P2_PUSCH ⁇ P1_PUSCH, then the terminal can understand that there may be a new coexistence node on the subframe n+1, then the terminal needs to fine-tune the MCS allocated to the subframe n+1 in the previous UL Grant, and the adjustment trend is a downward trend, and the specific adjustment is performed.
  • the MCS of the real transmitting PUSCH is adjusted according to the step size. If it is a non-stationary step size, according to the degree of deviation between P1_SRS and P1_PUSCH, P2_PUSCH and P1_PUSCH, select a suitable step size from a step adjustment range. The selection principle is: the larger the power deviation, the larger the latter is than the former The more the MCS adjustment step size should be, the smaller the converse is. Finally, the terminal transmits the PUSCH of the subframe n+1 according to the adjusted MCS.
  • the method in this embodiment may also include The terminal adjusts the transmit power of the SRS to be consistent with the PUSCH transmit power.
  • the method may be: the scheduling station performs continuous multi-subframe uplink scheduling on the terminal, where the first 13 OFDM symbols on the subframe n in the continuous scheduling subframe are used for PUSCH transmission, and the last symbol is used for SRS.
  • the transmission, subframe n+1, and subframe n+2 are all PUSCH transmissions.
  • the terminal determines the PUSCH transmit power and the SRS transmit power on the subframe n according to the TPC value notified in the UL Grant of the corresponding subframe n. If the transmit powers of the two are not equal, the terminal adjusts the SRS transmit power and adjusts to the SRS transmit power.
  • the PUSCH transmission power is the same.
  • the method in this embodiment further includes: the terminal configuring the last subframe of the contiguous subframe as the transmitting subframe of the SRS.
  • the SRS transmission subframe is configured according to the configuration method and the triggering principle of the aperiodic SRS, and the scheduling station continuously schedules the subframe n and the sub-substation to a terminal.
  • the scheduling station indicates in the UL Grant that the terminal needs to send the aperiodic SRS on the subframe n (the subframe n satisfies the SRS configuration period of the RRC signaling notification and the subframe offset), After receiving the aperiodic SRS triggering command, the terminal adjusts the SRS transmission subframe to the last subframe of the continuous scheduling, that is, the subframe n+2, thereby ensuring that the SRS transmission power is not affected by the subframe n and the sub-frame.
  • the scheduling site may also directly indicate in the UL Grant that the terminal transmits the aperiodic SRS on subframe n+2 instead of transmitting the aperiodic SRS on subframe n.
  • a control device for the uplink power is provided, which is used to implement the foregoing embodiments and preferred embodiments, and is not described again.
  • the term “module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 3 is a structural block diagram of an apparatus for controlling uplink power according to an embodiment of the present disclosure.
  • the apparatus is applied to a base station side.
  • the apparatus includes: a first configuration module 32 configured to continuously and continuously perform a terminal at a base station.
  • the TPC domain in the PUSCH power control is configured to add a dynamic adjustment domain to the configured TPC domain.
  • the control module 34 is coupled to the first configuration module 32 and configured to pass the configured TPC.
  • the PUSCH transmit power of the previous subframe that controls the uplink scheduling is not less than the PUSCH transmit power of the subsequent subframe of the previous subframe.
  • f c (i) is the TPC before expansion
  • f c (i)+m c (i) is the expanded TPC domain
  • the apparatus of this embodiment may further include: a first notification module configured to notify the expanded (ie, configured) TPC domain only for the first one of the plurality of consecutive subframe schedules, where The extended TPC field is used to indicate the PUSCH transmit power of the first subframe; or the second notification module is configured to separately notify the plurality of extended TPC domains for scheduling the multiple consecutive subframes, where after multiple expansions
  • the TPC fields are respectively used to indicate PUSCH transmission power of a plurality of consecutive subframe scheduling.
  • the apparatus includes: a receiving module 42 configured to receive consecutive subframes scheduled by the base station for uplink scheduling, where the PUSCH transmit power of the previous subframe in the consecutive subframes is not less than the previous subframe The PUSCH transmit power of the subsequent subframe of the frame; the first adjustment module 44 is configured to adjust the MCS of the subsequent subframe of the previous subframe of the consecutive subframe.
  • the first adjustment module 44 in this embodiment includes: a first adjustment unit configured to adjust an MCS of a subsequent subframe of a previous subframe according to a preset fixed step size; or, the first determining a unit, configured to determine a plurality of PUSCH transmit power offset values between a previous subframe in a consecutive subframe and a subsequent subframe in a previous subframe; and a second determining unit configured to determine, according to the multiple offset values, the terminal The second adjustment unit is configured to separately adjust the MCS of the subsequent subframe of the previous subframe according to the determined plurality of step sizes.
  • the first adjusting module 44 is further configured to: adjust, by the third adjusting unit, the MCS of the subsequent subframe of the previous subframe according to the preset fixed step size; or a third determining unit, configured to determine a plurality of PUSCH transmit power offset values between the previous subframe in the consecutive subframe and the subsequent subframe in the previous subframe, and determine the PUSCH transmit power SRS transmit power in the subframe
  • the fourth determining unit is configured to determine a plurality of step sizes according to the plurality of deviation values; and the fourth adjusting unit is configured to separately adjust the MCS of the subsequent subframe of the previous subframe according to the determined plurality of step sizes.
  • the apparatus when the SRS is included in the contiguous subframe, the apparatus in this embodiment further includes: a second adjustment module, configured to adjust the transmit power of the SRS to be consistent with the PUSCH transmit power. And when the SRS is included in the contiguous subframe and the terminal sends the SRS on the unlicensed carrier, the apparatus further includes: a second configuration module configured to configure the last subframe of the contiguous subframe to be the transmit subframe of the SRS.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the modules are located in multiple In the processor.
  • FIG. 5 is a schematic diagram of uplink multi-subframe scheduling according to an alternative embodiment of the present disclosure.
  • SF# The PUSCH transmission power of n is P1_PUSCH
  • the SRS transmission power of SF#n is P1_SRS
  • the PUSCH transmission power of SF#n+1 is P2_PUSCH.
  • SF#n is the first subframe scheduled for consecutive subframes. It should be noted that it is assumed in the alternative embodiment that P1_PUSCH itself does not cause a hidden node problem.
  • the SRS domain of the SF#n may be successful in the SRS domain. From the perspective of 1), SF#n+1 does not have a hidden node problem for the different system. Starting from the angle 2), the node may experience channel quality deterioration at SF#n+1, so that the MCS allocated by the UL Grant is too optimistic.
  • the different system may succeed in CCA in SF#n+1.
  • SF#n+1 will not cause hidden node problems in different systems.
  • the node may experience channel quality deterioration at SF#n+1, so that the MCS allocated by the UL Grant is too optimistic.
  • the different system may succeed in CSA in the SRS domain of SF#n.
  • SF#n+1 will have a hidden node problem for the different system.
  • the node may experience channel quality deterioration at SF#n+1, so that the MCS allocated by the UL Grant is too optimistic.
  • the different system may be successful in CSA in SSR domain or SF#n+1 of SF#n, from the angle 1) Departure, SF#n+1 will not cause hidden node problems in different systems. Starting from the angle 2), the node may experience channel quality deterioration at SF#n+1, so that the MCS allocated by the UL Grant is too optimistic.
  • the heterogeneous system does not succeed in CSA in the SRS domain of SF#n and in SF#n+1, but if the CCA succeeds in the SRS domain of SF#n, if it is continuously occupied to the SF#n+1 domain Then, starting from the angle 1), SF#n+1 will have hidden node problems in different systems. Starting from angle 2), there is no impact on the node itself.
  • the heterogeneous system does not succeed in CSA in the SRS domain of SF#n and in SF#n+1, but if the CCA succeeds in the SRS domain of SF#n, if it is continuously occupied to the SF#n+1 domain Then, starting from the angle 1), SF#n+1 will have hidden node problems in different systems. Starting from angle 2), there is no impact on the node itself.
  • the UE should be adaptively adjusted to pre-allocate the MCS on SF#n+1.
  • the multi-subframe scheduling UL Grant mentioned in the following embodiments may be a UL Grant corresponding to a certain terminal.
  • the scheduled PUSCH subframe may be a plurality of UL Grants corresponding to a plurality of scheduled PUSCH subframes.
  • one UL Grant may include multiple types of PUSCH transmission attribute indications such as a frequency domain resource allocation indication, an MCS indication, and a TPC indication. Instructions.
  • the power control method for appropriately modifying the PUSCH is:
  • m c (i)-m c (i+1)> 10log 10 (M PUSCH,c (i+1))+ ⁇ TF,c (i+1)+f c (i+1)-10log 10 ( M PUSCH,c (i))- ⁇ TF,c (i)-f c (i)(1) or,
  • Mode 2 The scheduling site needs to additionally notify m c (i) in addition to notifying the terminal of the TPC corresponding to the scheduling subframe in the UL Grant, and (1) should be satisfied for m c (i) of each consecutive subframe.
  • the scheduling station performs continuous multi-subframe uplink scheduling on the terminal, and in the UL Grant corresponding to the plurality of scheduled PUSCH subframes, only one TPC domain is sent, and the TPC domain indicates the f c of the first PUSCH subframe that is continuously scheduled. For other consecutive scheduling subframes, the TPC value is not notified.
  • the UE determines the PUSCH transmit power of other consecutive scheduling subframes, the PUSCH power of multiple subframes that are continuously scheduled remains the same principle, so that the UE can satisfy (1) or (2).
  • the scheduling station performs continuous multi-subframe uplink scheduling on the terminal.
  • the UL Grant corresponding to the multiple scheduled PUSCH subframes separately transmits the TPC domain to each subframe.
  • the terminal can calculate For the PUSCH transmit power of each subframe, if the PUSCH transmit power of the subframe n+1 is higher than or equal to the subframe n, the terminal needs to re-do the UL LBT before transmitting the PUSCH by using the subframe n+1, only for the subframe. After the UL LBT of n+1 is successful, the terminal can send the PUSCH on the subframe n+1 according to the indication of the corresponding UL Grant.
  • the scheduling station performs continuous multi-subframe uplink scheduling on the terminal, and the continuous scheduling sub-frame is as shown in FIG. 3, the first 13 OFDM symbols on the subframe n are used for PUSCH transmission, and the last symbol is used for SRS transmission, and the subframe n+1
  • the subframe n+2 is a PUSCH transmission.
  • the terminal determines the PUSCH transmit power and the SRS transmit power on the subframe n according to the TPC value notified in the UL Grant of the corresponding subframe n. If the transmit powers of the two are not equal, the terminal adjusts the SRS transmit power and adjusts to the SRS transmit power.
  • the PUSCH transmission power is the same.
  • the scheduling station performs continuous multi-subframe uplink scheduling on the terminal, and the continuous scheduling sub-frame is as shown in FIG. 5, the first 13 OFDM symbols on the subframe n are used for PUSCH transmission, and the last symbol is used for SRS transmission, and the subframe n+1 The subframe n+2 is a PUSCH transmission.
  • the terminal determines, according to the indication of the UL Grant, the PUSCH transmit power P1_PUSCH of the subframe n, the SRS transmit power P1_SRS of the subframe n, and the PUSCH transmit power P2_PUSCH of the subframe n+1, if the determined transmit power satisfies P1_SRS ⁇ P1_PUSCH or P2_PUSCH ⁇ P1_PUSCH, then the terminal can understand that there may be a new coexistence node on the subframe n+1, then the terminal needs to fine-tune the MCS allocated to the subframe n+1 in the previous UL Grant, and the adjustment trend is a downward trend, and the specific adjustment is performed.
  • the MCS of the real transmitting PUSCH is adjusted according to the step size. If it is a non-stationary step size, according to the degree of deviation between P1_SRS and P1_PUSCH, P2_PUSCH and P1_PUSCH, select a suitable step size from a step adjustment range. The selection principle is: the larger the power deviation, the larger the latter is than the former The more the MCS adjustment step size should be, the smaller the converse is. Finally, the terminal transmits the PUSCH of the subframe n+1 according to the adjusted MCS.
  • the scheduling station performs continuous multi-subframe uplink scheduling on the terminal.
  • the terminal receives the UL Grant for the subsequent uplink subframe n, the subframe n+1, and the subframe n+2, and the base station indicates in the UL Grant.
  • the TPC field of the subframe n it may be in the accumulation mode or the absolute mode.
  • the base station indicates the manner of accumulating on the basis of the subframe n, and the accumulated TPC value is a fixed value, for example, a value. For 0 dB or -1 dB, for subframe n+2, the same cumulative TPC specific value indication method as subframe n+1 is also used.
  • the TPC domain for the subframe n+1 and the subframe n+2 may also be referred to as an uplink transmit power offset value relative to the previous subframe, that is, the TPC for the subframe n notified by the base station according to the base station notification.
  • the value 1 and the power offset value 2 are respectively the power offset value of the subframe n+1, the subframe n+2 relative to the previous subframe, or the subframe n+1 and the subframe n+2 relative subframe respectively.
  • the power offset value of n, the two values may be the same, for example, both are configured to be 0 dB, or may be different.
  • FIG. 6 is a case including multi-user frequency division multiplexing, and FIG. 6 is optional according to the present disclosure.
  • the terminal 1, the terminal 2, and the terminal 3 are all users in the scheduling station coverage cell, and the scheduling station continuously schedules the uplink sub-category to the terminal 1.
  • the scheduling station continuously schedules the uplink subframe n-1 and the subframe n to the terminal 2, and the scheduling station continuously schedules the uplink subframe n+1 and the subframe n+2 to the terminal 3, that is, It can be seen that, in the subframe n, the terminal 1 and the terminal 2 frequency-multiplex multiplex the uplink bandwidth, and in the subframe n+1, the terminal 1 and the terminal 3 frequency-multiplex multiplex the uplink bandwidth.
  • the scheduling station determines the TPC value for the terminal 1 and the terminal 2, it needs to satisfy:
  • RB all indicates the uplink system bandwidth, measured by the number of RBs; Indicates the uplink bandwidth that the terminal x is scheduled on the subframe y, measured by the number of RBs; Indicates the power spectral density of the uplink channel/signal transmitted by the terminal x on the subframe y, that is, the power on the unit RB.
  • the station determines the requirement of the power spectral density of each user according to the number of RBs of each user scheduled in each subframe, and ensures that one uplink burst is scheduled by the user, and the total uplink transmit power of the subsequent subframe does not exceed the total uplink transmit power of the previous subframe. Based on this principle, the base station determines the TPC value of each subframe of the scheduled user, and notifies the corresponding terminal of the value.
  • the SRS transmission subframe is configured according to the configuration method and the triggering principle of the aperiodic SRS, and the scheduling station continuously schedules the subframe n, the subframe n+1, and the subframe n+2 for a terminal.
  • the scheduling station indicates in the UL Grant that the terminal needs to send the aperiodic SRS on the subframe n (the subframe n satisfies the SRS configuration period of the RRC signaling notification and the subframe offset), and the terminal receives the aperiodic SRS triggering command.
  • the SRS transmission subframe is self-adjusted to the last subframe of the continuous scheduling, that is, the subframe n+2, thereby ensuring that the transmission power of the SRS is not affected by the uplink channel transmission power of the subframe n and the subframe n+1.
  • the effect is such that the terminal can independently determine the transmit power of the SRS on subframe n+2.
  • the scheduling site may also directly indicate in the UL Grant that the terminal is in subframe n+2. Instead of transmitting an aperiodic SRS on subframe n, an aperiodic SRS is sent.
  • Embodiments of the present disclosure also provide a storage medium.
  • the above storage medium may be configured to store program code for performing the following steps:
  • Step S1 When the base station performs continuous multi-subframe uplink scheduling on the terminal, the base station configures the TPC domain in the physical uplink shared channel power control to add a dynamic adjustment domain to the configured TPC domain TPC.
  • Step S2 The base station controls, by the configured TPC domain, that the PUSCH transmit power of the previous subframe of the uplink scheduling is not less than the PUSCH transmit power of the subsequent subframe of the previous subframe.
  • Embodiments of the present disclosure also provide a storage medium.
  • the above storage medium may be configured to store program code for performing the following steps:
  • Step S1 The terminal receives the contiguous subframe of the uplink scheduling of the base station, where the PUSCH transmission power of the previous subframe in the contiguous subframe is not less than the PUSCH transmission power of the subsequent subframe of the previous subframe.
  • Step S2 The terminal adjusts the MCS of the subsequent subframe of the previous subframe in the continuous subframe.
  • modules or steps of the present disclosure described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices.
  • they may be implemented by program code executable by a computing device such that they may be stored in a storage device for execution by the computing device and, in some cases, may be different from
  • the steps shown or described are performed sequentially, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated into a single integrated circuit module.
  • the disclosure is not limited to any specific combination of hardware and software.
  • the uplink power control is implemented in the form of a software function module
  • the method, and when sold or used as a stand-alone product, can also be stored in a computer readable storage medium.
  • the technical solution of the embodiments of the present disclosure may be embodied in the form of a software product in essence or in the form of a software product stored in a storage medium, including a plurality of instructions.
  • a computer device (which may be a personal computer, server, or network device, etc.) is caused to perform all or part of the methods described in various embodiments of the present disclosure.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a mobile hard disk, a ROM, a magnetic disk, or an optical disk.
  • program codes such as a USB flash drive, a mobile hard disk, a ROM, a magnetic disk, or an optical disk.
  • an embodiment of the present disclosure further provides a computer storage medium, where the computer storage medium stores a computer program for performing the foregoing uplink power control method of the embodiment of the present disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种上行功率的控制方法,该方法包括:在基站对终端进行连续多子帧上行调度时,基站对物理上行共享信道功率控制中的发射功率控制(TPC)域进行配置,其中,扩充后的TPC域为扩充前的TPC域增加一个动态调整域;基站通过配置后的TPC域控制上行调度的前一子帧的PUSCH发射功率不小于前一子帧的后续子帧的PUSCH发射功率。通过本公开,解决了相关技术中多系统、多节点共存时出现因隐藏节点而带来干扰的问题。本公开还同时提供了一种上行功率的控制装置及存储介质。

Description

上行功率的控制方法、装置及存储介质 技术领域
本公开涉及通信领域,尤其涉及上行功率的控制方法、装置及存储介质。
背景技术
随着数据业务的快速增长,非授权频谱会承担越来越多授权载波中的数据流量,成为无线通信系统中一个重要的演进方向,在3GPP RAN1Release13阶段,引入了授权辅助接入(Licensed-Assisted Access,LAA)议题讨论,对非授权频谱在下行传输中的应用达成了若干共识。
在LAA系统发送物理上行共享信道(Physical Uplink Shared Channel,PUSCH)/探测参考信号(Sounding Reference Signal,SRS)时,异系统节点可能会因为有数据传输需求而执行先听后说(Listen Before Talk,LBT)空闲信道评估(Clear Channel Assessment,CCA),但LAA系统无法得知异系统节点发送PUSCH/SRS的时间,当某子帧PUSCH的发射功率P_PUSCH大于该子帧SRS的发射功率P_SRS时,异系统节点在PUSCH域CCA不成功,但在SRS域CCA成功,便导致了异系统在SRS域占用信道,如果异系统连续占用信道至下一个子帧的PUSCH域(即不再做额外的CCA),那么异系统数据传输与LAA PUSCH发送会产生冲突,造成隐藏节点问题,从而可能导致两个系统的解调错误。
发明内容
有鉴于此,本公开实施例期望提供一种上行功率的控制方法、装置及存储介质,以至少解决相关技术中多系统、多节点共存时出现因隐藏节点而带来干扰的问题。
根据本公开的一个方面,提供了一种上行功率的控制方法,包括:在基站对终端进行连续多子帧上行调度时,所述基站对PUSCH功率控制中的发射功率控制(Transmit Power Control,TPC)域进行配置,以使配置后的TPC域增加一个动态调整域;所述基站通过配置后的TPC域控制上行调度的前一子帧的PUSCH发射功率大于或等于所述前一子帧的后续子帧的PUSCH发射功率。
在一实施方式中,所述动态调整域为以下PUSCH功率控制公式中的mc(i):
Figure PCTCN2017075896-appb-000001
其中,fc(i)为扩充前的TPC,fc(i)+mc(i)为扩充后的TPC域。
在一实施例中,所述方法还包括:所述基站只对多个连续子帧调度中的第一个子帧通知配置后的TPC域,其中,所述配置后的TPC域用于指示所述第一个子帧的PUSCH发射功率;或,所述基站对多个连续子帧调度分别通知配置后的TPC域,其中,每个配置后的TPC域分别用于指示所述多个连续子帧调度的PUSCH发射功率。
根据本公开的另一个方面,提供了一种上行功率的控制方法,包括:终端接收基站上行调度的连续子帧,其中,所述连续子帧中的前一子帧的PUSCH发射功率不小于所述前一子帧的后续子帧的PUSCH发射功率。
在一实施例中,还包括:所述终端对连续子帧中的所述前一子帧的后续子帧的调制与编码策略(Modulation and Coding Scheme,MCS)进行调整。
在一实施例中,所述终端对连续子帧中的所述前一子帧的后续子帧的MCS进行调整还包括:所述终端根据预设固定步长对所述前一子帧的后续子帧的MCS进行调整;或,所述终端确定所述连续子帧中的前一子帧和所述前一子帧的后一子帧之间的多个PUSCH发射功率偏差值;所述终端根据 多个所述偏差值确定多个步长;所述终端根据确定的多个步长分别调整所述前一子帧的后续子帧的MCS。
在一实施例中,所述终端对连续子帧中的所述前一子帧的后续子帧的MCS进行调整包括:当在所述连续子帧中包括SRS时,所述终端根据预设固定步长对所述前一子帧的后续子帧的MCS进行调整;或,当在所述连续子帧中包括SRS时,所述终端确定所述连续子帧中的前一子帧和所述前一子帧的后一子帧之间的多个PUSCH发射功率偏差值,以及确定子帧中的PUSCH发射功率SRS发射功率的偏差值;所述终端根据多个所述偏差值确定多个步长;所述终端根据确定的多个步长分别调整所述前一子帧的后续子帧的MCS。
在一实施例中,在所述连续子帧中包括SRS时,所述方法还包括:所述终端调整所述SRS的发射功率与所述PUSCH发射功率一致。
在一实施例中,在所述连续子帧中包括SRS且所述终端在非授权载波上发送所述SRS时,所述方法还包括:所述终端配置所述连续子帧的最后一个子帧为SRS的发送子帧。
根据本公开的另一个方面,提供了一种上行功率的控制装置,应用于基站侧,包括:第一配置模块,配置为在基站对终端进行连续多子帧上行调度时,对配置后的PUSCH功率控制中的TPC域进行配置,其中,配置后的TPC域为配置前的TPC增加一个动态调整域;控制模块,配置为通过配置后的TPC控制上行调度的前一子帧的PUSCH发射功率不小于所述前一子帧的后续子帧的PUSCH发射功率。
在一实施例中,所述装置还包括:第一通知模块,配置为只对多个连续子帧调度中的第一个子帧通知配置后的TPC域,其中,所述配置后的TPC域用于指示所述第一个子帧的PUSCH发射功率;或,第二通知模块,配置为对多个连续子帧调度分别通知多个配置后的TPC域,其中,所述多个配 置后的TPC域分别用于指示所述多个连续子帧调度的PUSCH发射功率。
根据本公开的再一个方面,提供了一种上行功率的控制装置,应用于终端侧,包括:接收模块,配置为接收基站上行调度的连续子帧,其中,所述连续子帧中的前一子帧的PUSCH发射功率不小于所述前一子帧的后续子帧的PUSCH发射功率。
在一实施例中,所述装置还包括:第一调整模块,配置为对所述前一子帧的后续子帧的MCS进行调整。
在一实施例中,所述第一调整模块包括:第一调整单元,配置为根据预设固定步长对所述前一子帧的后续子帧的MCS进行调整;或,第一确定单元,配置为确定所述连续子帧中的前一子帧和所述前一子帧的后一子帧之间的多个PUSCH发射功率偏差值;第二确定单元,配置为终端根据多个所述偏差值确定多个步长;第二调整单元,配置为根据确定的多个步长分别调整所述前一子帧的后续子帧的MCS。
在一实施例中,所述第一调整模块包括:第三调整单元,配置为在所述连续子帧中包括SRS时,根据预设固定步长对所述前一子帧的后续子帧的MCS进行调整;或,第三确定单元,配置为在所述连续子帧中包括SRS时,确定所述连续子帧中的前一子帧和所述前一子帧的后一子帧之间的多个PUSCH发射功率偏差值,以及确定子帧中的PUSCH发射功率SRS发射功率的偏差值;第四确定单元,配置为根据多个所述偏差值确定多个步长;第四调整单元,配置为根据确定的多个步长分别调整所述前一子帧的后续子帧的MCS。
在一实施例中,在所述连续子帧中包括SRS时,所述装置还包括:第二调整模块,配置为调整所述SRS的发射功率与所述PUSCH发射功率一致。
在一实施例中,在所述连续子帧中包括SRS且所述终端在非授权载波 上发送所述SRS时,所述装置还包括:第二配置模块,配置为配置所述连续子帧的最后一个子帧为SRS的发送子帧。
本公开实施例还提供了一种计算机存储介质,所述计算机存储介质存储有计算机程序,该计算机程序配置为执行本公开实施例的上述上行功率的控制方法。
通过本公开,采用对相关技术中的PUSCH功率控制中的TPC域进行配置(扩充)以增加一个动态调整域,进而对扩充后的TPC进行调整以控制上行调度的前一子帧的PUSCH发射功率不小于前一子帧的后续子帧的PUSCH发射功率,从而解决了相关技术中多系统、多节点共存时出现因隐藏节点而带来干扰的问题。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本申请的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1是根据本公开实施例的上行功率的控制方法的流程图一;
图2是根据本公开实施例的上行功率的控制方法的流程图二;
图3是根据本公开实施例的上行功率的控制装置的结构框图;
图4是根据本公开实施例的上行功率的控制装置的结构框图;
图5是根据本公开可选实施例的上行多子帧调度示意图;
图6是根据本公开可选实施例的多用户频分复用上行多子帧调度示意图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本公开。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本公开的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
发明人在研究中发现,目前长期演进(Long Term Evolution,LTE)是部署在授权载波中运营的。但是随着数据业务的快速增长,在不久的将来,授权频谱将不能再承受下如此巨大的数据量。因此需要在非授权频谱中部署LTE,通过非授权频谱来分担授权载波中的数据流量。
另外,对于非授权频谱,也是存在很多优势的。例如,非授权频谱具有下面的特征和优势:
1、免费/低费用(不需要购买非频谱,频谱资源为零成本)。
2、准入要求低,成本低(个人、企业都可以参与部署,设备商的设备可以任意)。
3、共享资源(多个不同系统都运营其中时或者同一系统的不同运营商运营其中时,可以考虑一些共享资源的方式,提高频谱效率)。
4、无线接入技术多(跨不同的通信标准、协作难、网络拓扑多样)。
5、无线接入站点多(用户数量大、协作难度大、集中式管理开销大)。
6、应用多(多业务被提及可以在其中运营,例如机器到机器(Machine to machine,M2M)、车辆到车辆(Vehicle to vehicle,V2V))。
上述的基本特征,决定了非授权频谱可能是无线通信系统一个重要的演进方向。在3GPP RAN1Release13阶段,引入了LAA议题讨论,对非授权频谱在下行传输中的应用达成了若干共识,在Release 14阶段,将会讨论非授权频谱在上行传输中的应用。
对于上行传输,为了保证一定的服务质量(Quality of Service,QoS)需求,在保证对上行数据准确接收的前提下尽量降低发射功率,并且应对用户的远近效应,上行功控是不可缺少的,根据LTE Release 13协议的规定, 给出了对于不同上行信道/信号的上行功控,重点包括对以下信道/信号的上行功率控制公式:
Figure PCTCN2017075896-appb-000002
PSRS,c(i)=min{PCMAX,c(i),PSRS_OFFSET,c(m)+10log10(MSRS,c)+PO_PUSCH,c(j)+αc(j)·PLc+fc(i)};
需要说明的是,以上信道/信号上行功率计算中各个组成部分,在LTE Release 13协议中给出了明确的解析。
对于PUSCH功控,PPUSCH,c(i)、fc(i)、ΔTF,c(i)是可以动态变化的参数,MPUSCH,c(i)对应PUSCH频域资源块(Resource Block,RB)数目,fc(i)为UL Grant中通知的功控动态调整参数,ΔTF,c(i)由MCS以及PUSCH传输内容属性决定,其他参数都是由高层信令设置的半静态配置参数。
对于SRS功控调整,只有fc(i)是可以动态变化的参数,其他参数都是由高层信令半静态配置的,而fc(i)即为PUSCH功控中的TPC,因此一旦某个子帧PUSCH的功率谱密度(Power Spectral Density,PSD)确定了,如果该子帧还发送SRS,那么该子帧SRS的PSD就也确定了,那么SRS发送功率其实无法实现独立于PUSCH发送功率的动态改变。
如果不考虑半静态上行调度,常规的上行调度为单子帧调度,即终端在下行子帧中收到一个对应自身的上行(UpLink,UL)授权Grant,该上行授权调度UL Grant指示对应后续一个上行子帧的PUSCH传输,在Release14的上行授权辅助接入UL LAA中,结合UL LAA的特点,上行多子帧调度是一种更加高效的方式,很有可能应用在UL LAA中,在上行多子帧调度中,终端在一个下行子帧会收到一个或多个UL Grant,对应后续多个连续子帧的PUSCH调度,那么只需要一次成功的上行UL LBT,终端就可以根据UL Grant的指示,连续发送多个PUSCH子帧,大大提高了上行传输效率,并减小了传输时延。但在上行多子帧调度中,如果多子帧连续传输, 期间不再进行UL LBT,那么在多个系统共存时(例如LTE系统与WiFi系统,或多个LTE系统),如果每个子帧的PUSCH/SRS按照Release 13方式独立进行功控,可能会带来一些问题。
在LAA系统发送PUSCH/SRS时,LAA系统是无法了解异系统节点发送PUSCH/SRS是在LAA系统的PUSCH发送期间还是在SRS发送期间执行LBT CCA,假设异系统的CCA门限为CCA_ED,某子帧PUSCH发设功率为P_PUSCH,该子帧SRS发送功率为P_SRS,如果P_PUSCH大于P_SRS,那么异系统节点可能在PUSCH域CCA不成功,但在SRS域CCA成功,当出现这种情况时,异系统会在SRS域开始占用信道,这对SRS解调本身可能不会有什么影响,但如果异系统连续占用信道至下一个子帧的PUSCH域,那么异系统数据传输与LAA PUSCH发送会产生冲突,造成隐藏节点问题,从而可能导致两个系统的解调错误。
在本实施例中提供了一种上行功率的控制方法,图1是根据本公开实施例的上行功率的控制方法的流程图一,如图1所示,包括如下步骤:
步骤S102:在基站对终端进行连续多子帧上行调度时,基站对PUSCH功率控制中的TPC域进行配置,以使配置后的TPC域增加一个动态调整域。
这里,基站对PUSCH功率控制中的TPC域进行配置,即对TPC域进行扩充,以使扩充后的TPC域比扩充前的增加一个动态调整域。
步骤S104:基站通过配置后的TPC域控制上行调度的前一子帧的PUSCH发射功率不小于前一子帧的后续子帧的PUSCH发射功率。
通过本实施例可知,对相关技术中的PUSCH功率控制公式TPC域进行扩充以增加一个动态调整域,进而对扩充后的TPC域进行调整以控制上行调度的前一子帧的PUSCH发射功率不小于前一子帧的后续子帧的PUSCH发射功率,从而解决了相关技术中多系统、多节点共存时出现因隐藏节点而带来干扰的问题。
需要说明的是,本实施例中涉及到的动态调整域为以下PUSCH功率控制公式中的mc(i):
Figure PCTCN2017075896-appb-000003
其中,fc(i)为扩充前的TPC,fc(i)+mc(i)为扩充后的TPC域。
基于该公式,在本实施例的可选实施方式中为了满足上行调度的前一子帧的PUSCH发射功率不小于前一子帧的后续子帧的PUSCH发射功率,需要满足:
10log10(MPUSCH,c(i))+ΔTF,c(i)+fc(i)+mc(i)>=10log10(MPUSCH,c(i+1))+ΔTF,c(i+1)+fc(i+1)+mc(i+1)
进而变换可以是如下(1)和(2):
mc(i)-mc(i+1)>=10log10(MPUSCH,c(i+1))+ΔTF,c(i+1)+fc(i+1)-10log10(MPUSCH,c(i))-ΔTF,c(i)-fc(i)(1)或,
mc(i)+fc(i)-[mc(i+1)+fc(i+1)]>=10log10(MPUSCH,c(i+1))+ΔTF,c(i+1)-10log10(MPUSCH,c(i))-ΔTF,c(i)(2)。
在进行上行调度时,遵守条件(1)或(2),可以保证上述发射功率的条件,也即上行调度的前一子帧的PUSCH发射功率不小于前一子帧的后续子帧的PUSCH发射功率。
此外,在本实施例的另一个可选实施方式中,本实施例的方法还可以包括:基站只对多个连续子帧调度中的第一个子帧通知扩充后的TPC域,其中,扩充后的TPC域用于指示第一个子帧的PUSCH发射功率;或,基站对多个连续子帧调度分别通知多个扩充后的TPC域,其中,多个扩充后的TPC域分别用于指示多个连续子帧调度的PUSCH发射功率。
基于上述方式,在具体应用场景中可以是,
应用场景一:基站对终端进行连续多子帧上行调度,在对应多个被调度PUSCH子帧的UL Grant中,只发送一个TPC域,该TPC域指示连续调度的第一个PUSCH子帧的,对于其他连续调度子帧,不再通知TPC值,UE在确定其他连续调度子帧的PUSCH发射功率时,遵循连续调度的多个 子帧的PUSCH功率保持相同原则,从而可以满足上述公式(1)或(2)。
应用场景二:基站对终端进行连续多子帧上行调度,对应多个被调度PUSCH子帧的UL Grant中,会对各个子帧独立发送TPC域,终端收到对应各子帧的UL Grant后,可以计算出各个子帧的PUSCH发射功率,如果子帧n+1的PUSCH发射功率高于或者不等于子帧n,那么终端在利用子帧n+1发送PUSCH之前,需要重新做UL LBT,只有针对子帧n+1的UL LBT成功后,终端才可以根据对应UL Grant的指示,在子帧n+1上发送PUSCH。
图2是根据本公开实施例的上行功率的控制方法的流程图二,如图2所示,该方法包括:
步骤S202:终端接收基站上行调度的连续子帧,其中,连续子帧中的前一子帧的PUSCH发射功率不小于前一子帧的后续子帧的PUSCH发射功率。
步骤S204:终端对连续子帧中的前一子帧的后续子帧的MCS进行调整。
通过本实施例可知,在终端接收基站上行调度的连续子帧,且连续子帧中的前一子帧的PUSCH发射功率不小于前一子帧的后续子帧的PUSCH发射功率时,终端会对前一子帧的后续子帧的MCS进行调整,以避免终端自身预分配的MCS过高。
在本实施例的可选实施方式中,本实施例的步骤S204涉及到的终端对前一子帧的后续子帧的MCS进行调整的方式,可以通过如下方式来实现:
终端根据预设固定步长对前一子帧的后续子帧的MCS进行调整;或,
终端确定连续子帧中的前一子帧和前一子帧的后一子帧之间的多个PUSCH发射功率偏差值;终端根据多个偏差值确定多个步长;终端根据确定的多个步长分别调整前一子帧的后续子帧的MCS。
在本实施例的另一个可选实施方式中,本实施例中步骤S204中涉及到 的终端对前一子帧的后续子帧的MCS进行调整的方式,可以通过如下方式来实现:
在连续子帧中包括SRS时,终端根据预设固定步长对前一子帧的后续子帧的MCS进行调整;或,
在连续子帧中包括SRS时,终端确定连续子帧中的前一子帧和前一子帧的后一子帧之间的多个PUSCH发射功率偏差值,以及确定子帧中的PUSCH发射功率与SRS发射功率的偏差值;终端根据多个偏差值确定多个步长;终端根据确定的多个步长分别调整前一子帧的后续子帧的MCS。
由上述对MSC进行调整的方式可知,在具体应用场景中可以是:基站对终端进行连续多子帧上行调度,多个连续子帧为n、n+1、n+2;子帧n上的前13个OFDM符号用于PUSCH传输,最后一个符号用于SRS传输,子帧n+1、子帧n+2均为PUSCH传输。终端根据UL Grant的指示,确定子帧n的PUSCH发射功率P1_PUSCH,子帧n的SRS发射功率P1_SRS,子帧n+1的PUSCH发射功率P2_PUSCH,如果确定后的发射功率满足P1_SRS<P1_PUSCH或P2_PUSCH<P1_PUSCH,那么终端可以了解,子帧n+1上可能存在新的共存节点,那么终端需要对之前UL Grant中已经对子帧n+1分配的MCS进行微调,调整趋势为降低的趋势,具体调整时,可以按照某个固定或非固定步长来调整,如果是固定步长,那么无论P1_SRS与P1_PUSCH、P2_PUSCH与P1_PUSCH偏差多大,都按照该步长来调整子帧n+1真实发送PUSCH的MCS;如果是非固定步长,那么根据P1_SRS与P1_PUSCH、P2_PUSCH与P1_PUSCH的偏差程度,来从一个步长调整范围中选择适合的步长,选择原则是:功率偏差越大,即后者比前者大得越多,那么MCS调整步长就应该越大,反之越小,最后,终端按照调整后的MCS来发送子帧n+1的PUSCH。
需要说明的是,在连续子帧中包括SRS时,本实施例的方法还可以包 括:终端调整SRS的发射功率与PUSCH发射功率一致。在具体应用场景中,该方式可以是:调度站点对终端进行连续多子帧上行调度,该连续调度子帧中子帧n上的前13个OFDM符号用于PUSCH传输,最后一个符号用于SRS传输,子帧n+1、子帧n+2均为PUSCH传输。终端根据对应子帧n的UL Grant中通知的TPC值,确定子帧n上的PUSCH发射功率和SRS发射功率,如果两者发射功率不等,则终端调整SRS发射功率,调整至SRS发射功率与PUSCH发射功率相同。
在一实施例中,在连续子帧中包括SRS且终端在非授权载波上发送SRS时,本实施例的方法还包括:终端配置连续子帧的最后一个子帧为SRS的发送子帧。
其中,在具体应用场景中可以是,终端在非授权载波上发送SRS时,按照非周期SRS的配置方法和触发原则来配置SRS发送子帧,调度站点对某终端连续调度了子帧n、子帧n+1、子帧n+2,调度站点在UL Grant中指示在子帧n上需要该终端发送非周期SRS(子帧n满足RRC信令通知的SRS配置周期以及子帧偏置),终端收到该非周期SRS触发指令后,会把SRS发送子帧自行调整为本次连续调度的最后一个子帧,即子帧n+2,从而保证SRS的发送功率不受子帧n、子帧n+1的上行信道发射功率的影响,从而该终端可以独立确定子帧n+2上SRS的发射功率。调度站点也可以在UL Grant中直接指示该终端在子帧n+2上发送非周期SRS,而非在子帧n上发送非周期SRS。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如只读 存储器(Read Only Memory,ROM)/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本公开各个实施例所述的方法。
在本实施例中还提供了一种上行功率的控制装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图3是根据本公开实施例的上行功率的控制装置的结构框图,该装置应用于基站侧,如图3所示,该装置包括:第一配置模块32,配置为在基站对终端进行连续多子帧上行调度时,对PUSCH功率控制中的TPC域进行配置,以使配置后的TPC域增加一个动态调整域;控制模块34,与第一配置模块32耦合连接,配置为通过配置后的TPC控制上行调度的前一子帧的PUSCH发射功率不小于前一子帧的后续子帧的PUSCH发射功率。
需要说明的是,预先增加的动态调整域为以下PUSCH功率控制公式中的mc(i):
Figure PCTCN2017075896-appb-000004
其中,fc(i)为扩充前的TPC,fc(i)+mc(i)为扩充后的TPC域。
在一实施例中,本实施例的装置还可以包括:第一通知模块,配置为只对多个连续子帧调度中的第一个子帧通知扩充(即配置)后的TPC域,其中,扩充后的TPC域用于指示第一个子帧的PUSCH发射功率;或,第二通知模块,配置为对多个连续子帧调度分别通知多个扩充后的TPC域,其中,多个扩充后的TPC域分别用于指示多个连续子帧调度的PUSCH发射功率。
图4是根据本公开实施例的上行功率的控制装置的结构框图,该装置 应用于终端侧,如图4所示,该装置包括:接收模块42,配置为接收基站上行调度的连续子帧,其中,连续子帧中的前一子帧的PUSCH发射功率不小于前一子帧的后续子帧的PUSCH发射功率;第一调整模块44,配置为对连续子帧前一子帧的后续子帧的MCS进行调整。
在一实施例中,本实施例中的第一调整模块44包括:第一调整单元,配置为根据预设固定步长对前一子帧的后续子帧的MCS进行调整;或,第一确定单元,配置为确定连续子帧中的前一子帧和前一子帧的后一子帧之间的多个PUSCH发射功率偏差值;第二确定单元,配置为终端根据多个偏差值确定多个步长;第二调整单元,配置为根据确定的多个步长分别调整前一子帧的后续子帧的MCS。
以及,在连续子帧中包括SRS时,该第一调整模块44还可以包括:第三调整单元,配置为根据预设固定步长对前一子帧的后续子帧的MCS进行调整;或,第三确定单元,配置为确定连续子帧中的前一子帧和前一子帧的后一子帧之间的多个PUSCH发射功率偏差值,以及确定子帧中的PUSCH发射功率SRS发射功率的偏差值;第四确定单元,配置为根据多个偏差值确定多个步长;第四调整单元,配置为根据确定的多个步长分别调整前一子帧的后续子帧的MCS。
在一实施例中,在连续子帧中包括SRS时,本实施例的装置还包括:第二调整模块,配置为调整SRS的发射功率与PUSCH发射功率一致。以及在连续子帧中包括SRS且终端在非授权载波上发送SRS时,该装置还包括:第二配置模块,配置为配置连续子帧的最后一个子帧为SRS的发送子帧。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述模块分别位于多个处理器中。
下面结合本公开的可选实施例对本公开进行举例说明;
本可选实施例提供了一种上行连续子帧调度下的信道/信号功率控制方法,图5是根据本公开可选实施例的上行多子帧调度示意图,如图5所示,假设SF#n的PUSCH发射功率为P1_PUSCH,SF#n的SRS发射功率为P1_SRS,SF#n+1的PUSCH发射功率为P2_PUSCH。注意,SF#n为连续子帧调度的第一个子帧,需要说明的是,在本可选实施例中假设P1_PUSCH本身不会造成隐藏节点问题。
下面将从两个角度出发对本可选实施例进行详细说明:1)对异系统的影响,即是否会出现隐藏节点问题而影响异系统性能;2)对自身MCS准确性的影响。
Case 1:P1_PUSCH>=P1_SRS>=P2_PUSCH;
其中,异系统在SF#n的SRS域可能CCA成功,从角度1)出发,SF#n+1不会对异系统出现隐藏节点问题。从角度2)出发,该节点在SF#n+1可能出现信道质量恶化,从而UL Grant分配的MCS过于乐观。
Case 2:P1_SRS>=P1_PUSCH>=P2_PUSCH;
其中,异系统在SF#n+1可能CCA成功,从角度1)出发,SF#n+1不会对异系统出现隐藏节点问题。从角度2)出发,该节点在SF#n+1可能出现信道质量恶化,从而UL Grant分配的MCS过于乐观。
Case 3:P2_PUSCH>=P1_PUSCH>=P1_SRS;
其中,异系统在SF#n的SRS域可能CCA成功,从角度1)出发,如果异系统连续占用信道,则SF#n+1会对异系统出现隐藏节点问题。从角度2)出发,该节点在SF#n+1可能出现信道质量恶化,从而UL Grant分配的MCS过于乐观。
Case 4:P1_PUSCH>=P2_PUSCH>=P1_SRS;
其中,异系统在SF#n的SRS域或SF#n+1都可能CCA成功,从角度 1)出发,SF#n+1不会对异系统出现隐藏节点问题。从角度2)出发,该节点在SF#n+1可能出现信道质量恶化,从而UL Grant分配的MCS过于乐观。
Case 5:P1_SRS>=P2_PUSCH>=P1_PUSCH;
其中,异系统在SF#n的SRS域、在SF#n+1都不会CCA成功,但对于在SF#n的SRS域之前CCA成功的异系统,如果连续占用至SF#n+1域,那么从角度1)出发,SF#n+1会对异系统出现隐藏节点问题。从角度2)出发,对该节点自身没什么影响。
Case 6:P2_PUSCH>=P1_SRS>=P1_PUSCH;
其中,异系统在SF#n的SRS域、在SF#n+1都不会CCA成功,但对于在SF#n的SRS域之前CCA成功的异系统,如果连续占用至SF#n+1域,那么从角度1)出发,SF#n+1会对异系统出现隐藏节点问题。从角度2)出发,对该节点自身没什么影响。
由上述6种情况的分析可知,从角度1)出发,即为了在SF#n+1不对异系统出现隐藏节点问题,应该满足:P2_PUSCH<=P1_PUSCH。
而从角度2)出发,为了避免节点自身预分配的MCS过高,一旦出现P1_SRS<P1_PUSCH或P2_PUSCH<P1_PUSCH,则需要UE应该自适应调整SF#n+1上预分配的MCS。
下面结合本公开可选实施例的具体实施例对本公开进行详细说明,需要说明的是,下面实施例中提到的多子帧调度UL Grant,对于某个终端,可以是一个UL Grant对应多个被调度的PUSCH子帧,也可以是多个UL Grant分别对应多个被调度的PUSCH子帧。无论是一个UL Grant对应多个PUSCH子帧还是多个UL Grant对应多个PUSCH子帧,一个UL Grant中可能会包含频域资源分配指示、MCS指示、TPC指示等PUSCH传输属性指示中的多种指示。
实施例1:
在多子帧调度下,适当修改PUSCH的功控方法为:
Figure PCTCN2017075896-appb-000005
在PUSCH功控中,增加了mc(i),该值表示因多子帧调度而对PUSCH进行的额外PSD调整,对于单子帧调度情况或多子帧调度的第一个子帧,mc(i)=0。
在mc(i)不为0的情况下,为了满足P2_PUSCH<=P1_PUSCH,则有:
10log10(MPUSCH,c(i))+ΔTF,c(i)+fc(i)+mc(i)>=10log10(MPUSCH,c(i+1))+ΔTF,c(i+1)+fc(i+1)+mc(i+1),因此,
mc(i)-mc(i+1)>=10log10(MPUSCH,c(i+1))+ΔTF,c(i+1)+fc(i+1)-10log10(MPUSCH,c(i))-ΔTF,c(i)-fc(i)(1)或,
mc(i)+fc(i)-[mc(i+1)+fc(i+1)]>=10log10(MPUSCH,c(i+1))+ΔTF,c(i+1)-10log10(MPUSCH,c(i))-ΔTF,c(i)(2)。
需要说明的是,上述(1)与(2)是完全等效的。
调度站点对终端进行上行调度时,应该遵守上述条件(1)或(2),从而保证P2_PUSCH<=P1_PUSCH。在具体应用场景可以有以下几种方式:
方式1:把mc(i)与fc(i)融合得到新的TPC,即调度站点除了在UL Grant中通知终端对应调度子帧的TPC外,可以不做其他额外通知,仅仅是调度站点在计算对应各连续子帧的TPC时,满足条件(2)。
方式2:调度站点除了在UL Grant中通知终端对应调度子帧的TPC外,还需要额外通知mc(i),并且对于各连续子帧的mc(i),应该满足(1)。
实施例2:
调度站点对终端进行连续多子帧上行调度,在对应多个被调度PUSCH子帧的UL Grant中,只发送一个TPC域,该TPC域指示连续调度的第一个PUSCH子帧的fc(i),对于其他连续调度子帧,不再通知TPC值,UE在 确定其他连续调度子帧的PUSCH发射功率时,遵循连续调度的多个子帧的PUSCH功率保持相同原则,从而可以满足(1)或(2)。
实施例3:
调度站点对终端进行连续多子帧上行调度,对应多个被调度PUSCH子帧的UL Grant中,会对各个子帧独立发送TPC域,终端收到对应各子帧的UL Grant后,可以计算出各个子帧的PUSCH发射功率,如果子帧n+1的PUSCH发射功率高于或者不等于子帧n,那么终端在利用子帧n+1发送PUSCH之前,需要重新做UL LBT,只有针对子帧n+1的UL LBT成功后,终端才可以根据对应UL Grant的指示,在子帧n+1上发送PUSCH。
实施例4:
调度站点对终端进行连续多子帧上行调度,连续调度子帧如图3所示,子帧n上的前13个OFDM符号用于PUSCH传输,最后一个符号用于SRS传输,子帧n+1、子帧n+2均为PUSCH传输。终端根据对应子帧n的UL Grant中通知的TPC值,确定子帧n上的PUSCH发射功率和SRS发射功率,如果两者发射功率不等,则终端调整SRS发射功率,调整至SRS发射功率与PUSCH发射功率相同。
实施例5:
调度站点对终端进行连续多子帧上行调度,连续调度子帧如图5所示,子帧n上的前13个OFDM符号用于PUSCH传输,最后一个符号用于SRS传输,子帧n+1、子帧n+2均为PUSCH传输。终端根据UL Grant的指示,确定子帧n的PUSCH发射功率P1_PUSCH,子帧n的SRS发射功率P1_SRS,子帧n+1的PUSCH发射功率P2_PUSCH,如果确定后的发射功率满足P1_SRS<P1_PUSCH或P2_PUSCH<P1_PUSCH,那么终端可以了解,子帧n+1上可能存在新的共存节点,那么终端需要对之前UL Grant中已经对子帧n+1分配的MCS进行微调,调整趋势为降低的趋势,具体调整 时,可以按照某个固定或非固定步长来调整,如果是固定步长,那么无论P1_SRS与P1_PUSCH、P2_PUSCH与P1_PUSCH偏差多大,都按照该步长来调整子帧n+1真实发送PUSCH的MCS;如果是非固定步长,那么根据P1_SRS与P1_PUSCH、P2_PUSCH与P1_PUSCH的偏差程度,来从一个步长调整范围中选择适合的步长,选择原则是:功率偏差越大,即后者比前者大得越多,那么MCS调整步长就应该越大,反之越小,最后,终端按照调整后的MCS来发送子帧n+1的PUSCH。
实施例6:
调度站点对终端进行连续多子帧上行调度,在一个下行子帧中终端收到了针对后续上行子帧n、子帧n+1、子帧n+2的UL Grant,在UL Grant中基站指示了针对子帧n的TPC域,可以是累积方式或者绝对方式,针对子帧n+1的TPC域,基站指示采用在子帧n基础上累积的方式,并且累积TPC值为一个固定值,例如值为0dB或-1dB,针对子帧n+2,也采用同子帧n+1相同的累积TPC特定值指示方法。该实施例中,针对子帧n+1和子帧n+2的TPC域,也可以称之为相对前一子帧的上行发射功率偏置值,即基站根据基站通知的针对子帧n的TPC值,计算出子帧n的上行发射功率后,在计算子帧n+1的上行发射功率时,计算方法为:子帧n+1的上行发射功率=子帧n的上行发射功率+功率偏置值1,在计算子帧n+2的上行发射功率时,计算方法为:子帧n+2的上行发射功率=子帧n+1的上行发射功率+功率偏置值2,其中功率偏置值1和功率偏置值2分别为子帧n+1、子帧n+2相对前一子帧的功率偏置值,或者分别为子帧n+1、子帧n+2相对子帧n的功率偏置值,这两个值可以相同,例如都配置为0dB,也可以不同。
实施例7:
本实施例为一种包含多用户频分复用的情况,图6是根据本公开可选 实施例的多用户频分复用上行多子帧调度示意图,如图6所示,终端1、终端2、终端3都是调度站点覆盖小区内的用户,调度站点对终端1连续调度了上行子帧n、子帧n+1,调度站点对终端2连续调度了上行子帧n-1、子帧n,调度站点对终端3连续调度了上行子帧n+1、子帧n+2,即可以看出来,在子帧n上,终端1和终端2频分复用上行带宽,在子帧n+1上,终端1和终端3频分复用上行带宽。调度站点在对终端1、终端2确定TPC值时,需要满足:
Figure PCTCN2017075896-appb-000006
Figure PCTCN2017075896-appb-000007
Figure PCTCN2017075896-appb-000008
其中,RBall表示上行系统带宽,以RB数目衡量;
Figure PCTCN2017075896-appb-000009
表示终端x在子帧y上被调度的上行带宽,以RB数目衡量;
Figure PCTCN2017075896-appb-000010
表示终端x在子帧y上所传输上行信道/信号的功率谱密度,即单位RB上的功率。
即站点根据每个子帧调度的各用户RB数目,确定对各用户功率谱密度的需求,保证该用户调度的一个上行burst,后一个子帧总上行发射功率不超过前一个子帧总上行发射功率,在此原则基础上,基站确定被调度用户各个子帧的TPC值,并把该值通知给对应终端。
实施例8:
终端在非授权载波上发送SRS时,按照非周期SRS的配置方法和触发原则来配置SRS发送子帧,调度站点对某终端连续调度了子帧n、子帧n+1、子帧n+2,调度站点在UL Grant中指示在子帧n上需要该终端发送非周期SRS(子帧n满足RRC信令通知的SRS配置周期以及子帧偏置),终端收到该非周期SRS触发指令后,会把SRS发送子帧自行调整为本次连续调度的最后一个子帧,即子帧n+2,从而保证SRS的发送功率不受子帧n、子帧n+1的上行信道发射功率的影响,从而该终端可以独立确定子帧n+2上SRS的发射功率。调度站点也可以在UL Grant中直接指示该终端在子帧n+2上 发送非周期SRS,而非在子帧n上发送非周期SRS。
本公开的实施例还提供了一种存储介质。在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:
步骤S1:在基站对终端进行连续多子帧上行调度时,基站对物理上行共享信道功率控制中的TPC域进行配置,以使配置后的TPC域TPC增加一个动态调整域。
步骤S2:基站通过配置后的TPC域控制上行调度的前一子帧的PUSCH发射功率不小于前一子帧的后续子帧的PUSCH发射功率。
本公开的实施例还提供了一种存储介质。在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:
步骤S1:终端接收基站上行调度的连续子帧,其中,连续子帧中的前一子帧的PUSCH发射功率不小于前一子帧的后续子帧的PUSCH发射功率。
步骤S2:终端对连续子帧中的前一子帧的后续子帧的MCS进行调整。
在一实施例中,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本公开的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,在一实施例中,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本公开不限制于任何特定的硬件和软件结合。
本公开实施例中,如果以软件功能模块的形式实现上述上行功率的控 制方法,并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开实施例的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机、服务器、或者网络设备等)执行本公开各个实施例所述方法的全部或部分。而前述的存储介质包括:U盘、移动硬盘、ROM、磁碟或者光盘等各种可以存储程序代码的介质。这样,本公开实施例不限制于任何特定的硬件和软件结合。
相应地,本公开实施例还提供一种计算机存储介质,该计算机存储介质中存储有计算机程序,该计算机程序用于执行本公开实施例的上述上行功率的控制方法。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (18)

  1. 一种上行功率的控制方法,包括:
    在基站对终端进行连续多子帧上行调度时,所述基站对物理上行共享信道功率控制中的发射功率控制域进行配置,以使配置后的发射功率控制域增加一个动态调整域;
    所述基站通过配置后的发射功率控制域控制上行调度的前一子帧的物理上行共享信道发射功率大于或等于所述前一子帧的后续子帧的物理上行共享信道发射功率。
  2. 根据权利要求1所述的方法,其中,所述方法还包括:
    所述基站只对多个连续子帧上行调度中的第一个子帧通知配置后的发射功率控制域,其中,所述配置后的发射功率控制域用于指示所述第一个子帧的物理上行共享信道发射功率;或,
    所述基站对多个连续子帧上行调度分别通知配置后的发射功率控制域,其中,每个配置后的发射功率控制域分别用于指示所述多个连续子帧上行调度的物理上行共享信道发射功率。
  3. 一种上行功率的控制方法,包括:
    终端接收基站上行调度的连续子帧,其中,所述连续子帧中的前一子帧的物理上行共享信道发射功率大于或等于所述前一子帧的后续子帧的PUSCH发射功率。
  4. 根据权利要求3所述的方法,其中,还包括:
    所述终端对连续子帧中的所述前一子帧的后续子帧的调制与编码策略进行调整。
  5. 根据权利要求4所述的方法,其中,所述终端对连续子帧中的所述前一子帧的后续子帧的调制与编码策略进行调整包括:
    所述终端根据预设固定步长对所述前一子帧的后续子帧的调制与编码 策略进行调整;或,
    所述终端确定所述连续子帧中的前一子帧和所述前一子帧的后一子帧之间的多个物理上行共享信道发射功率偏差值;所述终端根据多个所述偏差值确定多个步长;所述终端根据确定的多个步长分别调整所述前一子帧的后续子帧的调制与编码策略。
  6. 根据权利要求4所述的方法,其中,所述终端对连续子帧中的所述前一子帧的后续子帧的调制与编码策略进行调整包括:
    当在所述连续子帧中包括探测参考信号时,所述终端根据预设固定步长对所述前一子帧的后续子帧的调制与编码策略进行调整;或,
    当在所述连续子帧中包括探测参考信号时,所述终端确定所述连续子帧中的前一子帧和所述前一子帧的后一子帧之间的多个物理上行共享信道发射功率偏差值,以及确定子帧中的物理上行共享信道发射功率探测参考信号发射功率的偏差值;所述终端根据多个所述偏差值确定多个步长;所述终端根据确定的多个步长分别调整所述前一子帧的后续子帧的调制与编码策略。
  7. 根据权利要求3所述的方法,其中,在所述连续子帧中包括探测参考信号时,所述方法还包括:
    所述终端调整所述探测参考信号的发射功率与所述物理上行共享信道发射功率一致。
  8. 根据权利要求3所述的方法,其中,在所述连续子帧中包括探测参考信号且所述终端在非授权载波上发送所述探测参考信号时,所述方法还包括:
    所述终端配置所述连续子帧的最后一个子帧为探测参考信号的发送子帧。
  9. 一种上行功率的控制装置,应用于基站侧,包括:
    第一配置模块,配置为在基站对终端进行连续多子帧上行调度时,对物理上行共享信道功率控制中的发射功率控制域进行配置,以使配置后的发射功率控制域增加一个动态调整域;
    控制模块,配置为通过配置后的发射功率控制域控制上行调度的前一子帧的物理上行共享信道发射功率大于或等于所述前一子帧的后续子帧的物理上行共享信道发射功率。
  10. 根据权利要求9所述的装置,其中,所述装置还包括:
    第一通知模块,配置为只对多个连续子帧上行调度中的第一个子帧通知配置后的发射功率控制域,其中,所述配置后的发射功率控制域用于指示所述第一个子帧的物理上行共享信道发射功率;或,
    第二通知模块,配置为对多个连续子帧上行调度分别通知配置后的发射功率控制域,其中,每个配置后的发射功率控制域分别用于指示所述多个连续子帧上行调度的物理上行共享信道发射功率。
  11. 一种上行功率的控制装置,应用于终端侧,包括:
    接收模块,配置为接收基站上行调度的连续子帧,其中,所述连续子帧中的前一子帧的物理上行共享信道发射功率大于或等于所述前一子帧的后续子帧的物理上行共享信道发射功率。
  12. 根据权利要求11所述的装置,其中,所述装置还包括:
    第一调整模块,配置为对所述前一子帧的后续子帧的调制与编码策略进行调整。
  13. 根据权利要求12所述的装置,其中,所述第一调整模块包括:
    第一调整单元,配置为根据预设固定步长对所述前一子帧的后续子帧的调制与编码策略进行调整;或,
    第一确定单元,配置为确定所述连续子帧中的前一子帧和所述前一子帧的后一子帧之间的多个物理上行共享信道发射功率偏差值;第二确定单 元,配置为终端根据多个所述偏差值确定多个步长;第二调整单元,配置为根据确定的多个步长分别调整所述前一子帧的后续子帧的调制与编码策略。
  14. 根据权利要求12所述的装置,其中,所述第一调整模块包括:
    第三调整单元,配置为在所述连续子帧中包括探测参考信号时,根据预设固定步长对所述前一子帧的后续子帧的调制与编码策略进行调整;或,
    第三确定单元,配置为在所述连续子帧中包括探测参考信号时,确定所述连续子帧中的前一子帧和所述前一子帧的后一子帧之间的多个物理上行共享信道发射功率偏差值,以及确定子帧中的物理上行共享信道发射功率探测参考信号发射功率的偏差值;第四确定单元,配置为根据多个所述偏差值确定多个步长;第四调整单元,配置为根据确定的多个步长分别调整所述前一子帧的后续子帧的调制与编码策略。
  15. 根据权利要求11所述的装置,其中,在所述连续子帧中包括探测参考信号时,所述装置还包括:
    第二调整模块,配置为调整所述探测参考信号的发射功率与所述物理上行共享信道发射功率一致。
  16. 根据权利要求11所述的装置,其中,在所述连续子帧中包括探测参考信号且所述终端在非授权载波上发送所述探测参考信号时,所述装置还包括:
    第二配置模块,配置为将所述连续子帧的最后一个子帧配置为探测参考信号的发送子帧。
  17. 一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,该计算机可执行指令用于执行权利要求1或2所述的上行功率的控制方法。
  18. 一种计算机存储介质,所述计算机存储介质中存储有计算机可执 行指令,该计算机可执行指令用于执行权利要求3至8任一项所述的上行功率的控制方法。
PCT/CN2017/075896 2016-03-30 2017-03-07 上行功率的控制方法、装置及存储介质 WO2017166982A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610192843.5A CN107295620A (zh) 2016-03-30 2016-03-30 上行功率的控制方法及装置
CN201610192843.5 2016-03-30

Publications (1)

Publication Number Publication Date
WO2017166982A1 true WO2017166982A1 (zh) 2017-10-05

Family

ID=59963411

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/075896 WO2017166982A1 (zh) 2016-03-30 2017-03-07 上行功率的控制方法、装置及存储介质

Country Status (2)

Country Link
CN (1) CN107295620A (zh)
WO (1) WO2017166982A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110891305A (zh) * 2019-12-11 2020-03-17 维沃移动通信有限公司 一种功率控制装置、方法及电子设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110248402B (zh) 2018-03-09 2022-02-25 华为技术有限公司 一种功率控制方法及设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103369653A (zh) * 2012-03-30 2013-10-23 华为技术有限公司 异构网络中用户设备的上行功率控制方法和网络设备
US20150280847A1 (en) * 2014-03-28 2015-10-01 Qualcomm Incorporated Techniques for acquiring measurements of a shared spectrum and performing channel selection for access points using the shared spectrum

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103369653A (zh) * 2012-03-30 2013-10-23 华为技术有限公司 异构网络中用户设备的上行功率控制方法和网络设备
US20150280847A1 (en) * 2014-03-28 2015-10-01 Qualcomm Incorporated Techniques for acquiring measurements of a shared spectrum and performing channel selection for access points using the shared spectrum

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "Discussion on UL Power Control for UL LAA", 3GPP TSG RAN WG1 MEETING #84 RL-160561, 19 February 2016 (2016-02-19), XP051053893 *
ZTE: "TPC for UL LM", 3GPPTSG RAN WG1 MEETING #84 RL-160339, 19 February 2016 (2016-02-19), XP051053679 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110891305A (zh) * 2019-12-11 2020-03-17 维沃移动通信有限公司 一种功率控制装置、方法及电子设备

Also Published As

Publication number Publication date
CN107295620A (zh) 2017-10-24

Similar Documents

Publication Publication Date Title
US10425962B2 (en) PUCCH design with flexible symbol configuration
US10798662B2 (en) Method for reporting power headroom and corresponding user equipment
US8139531B2 (en) Methods for sending small packets in a peer-to-peer (P2P) network
TWI726996B (zh) 無線通訊媒體上的上行鏈路程序
US9723621B2 (en) Priority assignment in FlashLinQ distributed scheduling algorithm to fine-tune performance
WO2017130592A1 (ja) ネットワーク装置、無線端末、及びこれらの方法
CN114600535A (zh) 用于感测和资源分配的新无线电(nr)车联万物(v2x)方法
US8812008B2 (en) Methods and apparatus for assigning resources to schedule peer-to-peer communications in WWAN
JP2016187189A (ja) 無線通信ネットワークにおける方法及び装置
US11750349B2 (en) Telecommunications apparatus and methods
US20130308524A1 (en) Distributed interference management algorithm
CN113853823A (zh) 无线通信系统中控制ue的传输功率的方法和装置
CN113748713A (zh) 增强型随机接入过程的系统和方法
US9237553B2 (en) Coexistence of priority broadcast and unicast in peer-to-peer networks
WO2013052126A1 (en) Methods and apparatus for distributed medium access in wireless peer-to-peer networks
WO2017079870A1 (zh) 转换传输时间间隔的方法和通信系统、用户设备及基站
WO2017166982A1 (zh) 上行功率的控制方法、装置及存储介质
CN117413578A (zh) 用于多时隙传输块传输的上行链路功率控制
JP5955973B2 (ja) リンク内の送信優先度決定のための方法および装置
KR102225167B1 (ko) 신호 전송 방법, 신호 전송 제어 방법, 사용자 디바이스, 및 기지국
JP2007116674A (ja) 動的なサブチャネル割り当てのための方法、送信機、受信機およびシステム
US20230164829A1 (en) Method and device for transmitting uplink data in wireless communication system
KR20230005135A (ko) 랜덤 액세스 대역폭에 기초한 통신 구성
KR20200099058A (ko) 무선 통신 시스템에서 단말의 송신전력 제어 방법 및 장치
CN104796976A (zh) 一种终端接收增益自适应调整方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17773013

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17773013

Country of ref document: EP

Kind code of ref document: A1