WO2017166302A1 - 一种pid调节算法、pid调节器和pid调节系统 - Google Patents

一种pid调节算法、pid调节器和pid调节系统 Download PDF

Info

Publication number
WO2017166302A1
WO2017166302A1 PCT/CN2016/078353 CN2016078353W WO2017166302A1 WO 2017166302 A1 WO2017166302 A1 WO 2017166302A1 CN 2016078353 W CN2016078353 W CN 2016078353W WO 2017166302 A1 WO2017166302 A1 WO 2017166302A1
Authority
WO
WIPO (PCT)
Prior art keywords
pid
formula
deviation amount
input deviation
algorithm
Prior art date
Application number
PCT/CN2016/078353
Other languages
English (en)
French (fr)
Inventor
张东花
石超
Original Assignee
深圳市英威腾电气股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市英威腾电气股份有限公司 filed Critical 深圳市英威腾电气股份有限公司
Priority to PCT/CN2016/078353 priority Critical patent/WO2017166302A1/zh
Priority to CN201680070450.5A priority patent/CN108700850B/zh
Publication of WO2017166302A1 publication Critical patent/WO2017166302A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B11/00Automatic controllers

Definitions

  • the invention relates to the technical field of PID regulation, and in particular to a PID adjustment algorithm and a PID regulator and a PID adjustment system.
  • PID control is widely used in industrial process control.
  • the basic principle is to control according to the linear combination of deviation proportional, integral and differential.
  • PID control can be easily divided into two types: regular PID and intelligent PID.
  • regular PID control exists.
  • the problem of proportional gain, integration time and differential time is difficult to determine. For this reason, the extended critical proportional band method is emerged.
  • different tuning parameters are obtained. After tuning, only the proportional gain is obtained.
  • the simplified incremental expression therefore, only need to adjust the proportional gain in the field debugging, which reduces the difficulty of debugging, but the method has a slower control response to the adjustment of the large inertia process quantity, and the suppression overshooting ability is poor. .
  • the object of the present invention is to provide a PID adjustment algorithm, a PID regulator and a PID adjustment system, which are used to solve the problem that the PID adjustment algorithm in the prior art has a slow control response time for a large inertia process quantity and a poor overshoot suppression capability. problem.
  • a PID adjustment algorithm is applied to a PID regulator for calculating an adjustment signal according to a PID incremental algorithm formula, including:
  • the second input deviation amount e ⁇ (k) e(k)- e(k-1)-p*e(k), where k is used to represent the kth sampling period, p is a convergence factor, and p ⁇ 0.
  • the adjustment signal is calculated according to the PID incremental algorithm formula, including:
  • the second input deviation amount e ⁇ (k) is substituted into the PID incremental algorithm formula instead of the first input deviation amount e(k), and the adjustment signal is calculated and output according to the PID incremental algorithm formula.
  • the adjustment signal is calculated and output according to the PID incremental algorithm formula, including:
  • the adjustment signal u(k) is calculated and output.
  • the method includes:
  • a first collection module configured to acquire a preset given value
  • a second acquisition module configured to acquire real-time measured values of the target system output in real time
  • a second calculating module configured to substitute the second input deviation amount e ⁇ (k) into the PID incremental algorithm formula instead of the first input deviation amount e(k), and calculate and output according to the PID incremental algorithm formula Adjust the signal.
  • the second calculation module is specifically configured to:
  • the adjustment signal u(k) is calculated and output.
  • a PID adjustment system comprising: a target system and a PID regulator disclosed in any of the above;
  • An input end of the target system is connected to a control end of the second calculation module, and an output end is connected to an input end of a second acquisition module of the PID regulator, and the target system is configured to use the adjustment signal u ( k) Adjust the output.
  • FIG. 1 is a schematic diagram of a principle of a regulation process of a prior art PID adjustment algorithm
  • FIG. 2 is a schematic diagram showing changes in deviations between process target values and actual values during PID adjustment
  • FIG. 3 is a schematic diagram of a PID adjustment algorithm disclosed in the implementation of the present application.
  • FIG. 4 is a schematic flowchart of a PID adjustment algorithm disclosed in an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a PID regulator disclosed in an embodiment of the present application.
  • FIG. 1 is a schematic diagram showing the principle of the adjustment process of the PID adjustment algorithm in the prior art.
  • the applicant has studied the traditional PID adjustment algorithm and found that the basic principle of the PID adjustment algorithm is a linear combination of the ratio P, the integral I and the differential D according to the deviation.
  • the control block diagram can be seen in Figure 1, the analog expression is as follows:
  • e can converge to 0, and then the PID feedback value is used to track the PID given value.
  • the convergence speed in the above process is converged.
  • the factor p control can improve the control responsiveness of the process quantity by adjusting the size of the convergence factor p, so that the output of the target system reaches the target value faster, thereby improving the process control effect.
  • the present application discloses a PID adjustment algorithm and a PID regulator and a PID adjustment system.
  • the method is applied to a PID regulator for calculating an adjustment signal according to a PID incremental algorithm formula, and the method includes:
  • the target system disclosed in the above embodiment of the present application differs according to different test objects, for example, it can be a temperature process control adjustment system for industrial control occasions, and pressure process control
  • the adjustment system, the constant voltage, the constant current regulation circuit, and the like can of course be applied to other adjustment systems, which are not described in this application.
  • the working process of the PID adjustment algorithm disclosed in the foregoing embodiment of the present application may include:
  • Step S101 acquiring a preset given value r
  • the size of the given value can be adjusted according to user requirements
  • Step S102 real-time acquisition of the measured value y of the target system output
  • Step S103 Calculating a first input deviation amount e(k) between the given value r and the measured value y;
  • Step S105 Substituting the second input deviation amount e ⁇ (k) into the PID incremental algorithm formula instead of the first input deviation amount e(k), and calculating and outputting the adjustment signal according to the PID incremental algorithm formula;
  • the calculating and outputting the adjustment signal according to the PID incremental algorithm formula may be:
  • the adjustment signal is input to the control end of the target system as an adjustment amount of the target system, and the target system adjusts its output according to the adjustment signal, and proceeds to step S102, thereby completing closed-loop adjustment of the PID algorithm, so that the The output of the target system is constantly approaching the given value.
  • the embodiment of the present application further discloses a PID regulator for calculating an adjustment signal according to a PID incremental algorithm formula, where the PID regulator is used.
  • the PID adjustment algorithm disclosed in the above embodiment of the present application when used to adjust the output of the target system, only two parameters of the proportional gain and the convergence factor can be debugged, and the proportional gain is reasonably debugged. Under the premise of ensuring that the process quantity does not oscillate, by setting the convergence factor p reasonably, the control responsiveness of the process quantity can be further improved, so that the target value can be reached faster and the overshoot amount is reduced, compared with the existing algorithm control effect. There are significant improvements.
  • the PID regulator disclosed in the foregoing embodiment of the present application may specifically include:
  • the first collecting module 10 is configured to acquire a preset given value
  • the second collecting module 20 is configured to acquire the measured value of the output of the target system in real time
  • a second calculation module 40 connected to the first calculation module 30, configured to substitute the second input deviation amount e ⁇ (k) instead of the first input deviation amount e(k) into the PID incremental algorithm formula, according to The PID incremental algorithm formula calculates and outputs an adjustment signal.
  • the second calculation module is specifically configured to:
  • the present application also discloses a PID adjustment system using the above PID regulator, the system comprising: the target system 50 and the PID regulator disclosed in any of the above embodiments of the present application;
  • An input end of the target system 50 is connected to a control end of the second calculation module 40, and an output end is connected to an input end of the second acquisition module 20 of the PID regulator, and the target system 50 is configured to
  • the adjustment signal u(k) adjusts the amount of output.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)

Abstract

一种PID调节算法和PID调节器和PID调节系统,PID调节算法应用于PID调节器中,用于依据PID增量式算法公式计算得到调节信号,PID增量式算法公式中用到的输入偏差量e^ (k)满足公式:e^(k)=e(k)-e(k-1)-p*e(k),其中,k为采样周期,p为收敛因子,de/dt=p*e,且p<0。当采用该PID调节算法调节目标系统的输出量时,只需调试比例增益和收敛因子两个参数即可,在合理调试比例增益保证过程量不振荡的前提下,通过合理设置收敛因子p,可进一步提高过程量的控制响应性,使其更快达到目标值,并减少了超调量,相对于现有的算法控制效果,具有明显的改进。

Description

一种PID调节算法、PID调节器和PID调节系统 技术领域
本发明涉PID调节技术领域,具体涉及一种PID调节算法和PID调节器和PID调节系统。
背景技术
PID控制广泛应用于工业过程控制中,其基本原理是按照偏差的比例、积分、微分的线性组合来进行控制的,PID控制可简单分为常规PID和智能PID两种,其中,常规PID控制存在比例增益、积分时间、微分时间较难确定的问题,针对于此,基于扩充临界比例带法应运而生,该方法根据不同的控制度,得到PID不同的整定参数,整定后得到只含有比例增益的简化了的增量式表达式,因此,现场调试中只需调整比例增益即可,降低了调试难度,但该方法对于大惯性过程量的调节响应控制速度较慢,抑制超调能力较差。
发明内容
本发明的目的在于提供一种PID调节算法和PID调节器和PID调节系统,用于解决现有技术中PID调节算法对于大惯性过程量的调节响应控制速度较慢,抑制超调能力较差的问题。
一种PID调节算法,应用于PID调节器中,用于依据PID增量式算法公式计算得到调节信号,包括:
将第二输入偏差量e(k)代替所述PID增量式算法公式中的第一输入偏差量e(k),所述第二输入偏差量e(k)=e(k)-e(k-1)-p*e(k),其中,所述k用于表示第k个采样周期,p为收敛因子,且p<0。
优选的,上述PID调节算法中,用于依据PID增量式算法公式计算得到调节信号,包括:
获取预设的给定值;
实时获取对目标系统输出量的实测值;
计算得到所述给定值与所述实测值之间的第一输入偏差量e(k);
依据公式e(k)=e(k)-e(k-1)-p*e(k)计算得到第二输入偏差量e(k);
将所述第二输入偏差量e(k)代替第一输入偏差量e(k)代入PID增量式算法公式,依据所述PID增量式算法公式计算并输出调节信号。
优选的,上述PID调节算法中,依据所述PID增量式算法公式计算并输出调节信号,包括:
依据公式
Figure PCTCN2016078353-appb-000001
计算并输出调节信号u(k)。
一种PID调节器,用于依据PID增量式算法公式计算得到调节信号,所述PID调节器中的PID增量式算法公式中的第一输入偏差量e(k)被第二输入偏差量e(k)所代替,所述第二输入偏差量e(k)=e(k)-e(k-1)-p*e(k),其中,所述k用于表示第k个采样周期,p为收敛因子,且p<0。
优选的,上述PID调节器中,包括:
第一采集模块,用于获取预设的给定值;
第二采集模块,用于实时获取对目标系统输出量的实测值;
第一计算模块,用于依据计算得到所述给定值与所述实测值之间的第一输入偏差量e(k),依据公式e(k)=e(k)-e(k-1)-p*e(k)计算得到第二输入偏差量e(k);
第二计算模块,用于将所述第二输入偏差量e(k)代替第一输入偏差量e(k)代入PID增量式算法公式,依据所述PID增量式算法公式计算并输出调节信号。
优选的,上述PID调节器中,所述第二计算模块具体用于:
依据公式
Figure PCTCN2016078353-appb-000002
计算并输出调节信号u(k)。
一种PID调节系统,包括:目标系统和上述任意一项公开的PID调节器;
所述目标系统的输入端与所述第二计算模块的控制端相连、输出端与所述PID调节器的第二采集模块的输入端相连,所述目标系统用于依据所述调节信号u(k)调节输出量。
通过以上方案可知,当采用本申请上述实施例公开的PID调节算法调节目标系统的输出量时,只需调试比例增益和收敛因子两个参数即可,在合理调试比例增益保证过程量不振荡的前提下,通过合理设置收敛因子p,可进一步提高过程量的控制响应性,使其更快达到目标值,并减少了超调量,相对于现有的算法控制效果,具有明显的改进。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为现有技术PID调节算法的调节过程原理示意图;
图2为PID调节过程中过程量目标值与实际值的偏差变化示意图;
图3为本申请实施公开的一种PID调节算法的原理图;
图4为本申请实施实施例公开的PID调节算法的流程示意图;
图5为本申请实施例公开的一种PID调节器的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造 性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图1为现有技术中PID调节算法的调节过程原理示意图,申请人经过对传统的PID调节算法进行研究发现,PID调节算法的基本原理是按照偏差的比例P、积分I和微分D的线性组合来进行控制,其控制框图可见附图1,其模拟量表达式如下:
Figure PCTCN2016078353-appb-000003
其中,所述e(t)为PID输入偏差,u(t)为PID调节器输出量,Kp为比例增益,Ti为积分时间,Td为微分时间,Ts为采样周期,通过将上述公式离散化后,可得到第K个采样周期时刻对应的表达式,如下:
Figure PCTCN2016078353-appb-000004
同理,第K-1个采样周期时刻对应的表达式为:
Figure PCTCN2016078353-appb-000005
综合上式,可得离散化PID增量式算法公式为:
Figure PCTCN2016078353-appb-000006
根据Ziegler J.G.和Nichols N.B提出的Z-N模拟量整定公式,设Tcr为纯比例作用下的临界振荡周期,则可整定出Ti=0.5Tcr,Td=0.125Tcr,根据简化的扩充临界比例带法,人为设定以下约束条件:令Ts=0.1Tcr,将上述参数代入PID增量式算法公式,对公式1进行化简可得:
Figure PCTCN2016078353-appb-000007
在固定目标值阶跃输入下,PID调节过程中,过程量目标值与实际值的偏差变化示意图可参见附图2,从图2中可看出:
(1)当偏差e<0,需要控制de/dt>0,e才会趋近于0,见附图2标识①,反之,e会偏离0,见附图2标识②;
(2)当偏差e>0,需要控制de/dt<0,e才会趋近于0,见附图2标识③,反之,e会偏离0,见附图2标识④。
针对于此,故可设计de/dt=p*e,当满足p<0,可实现e收敛于0,进而实现了PID反馈值跟踪PID给定值的目的,上述过程中收敛的速度由收敛因子p控制,通过调整所述收敛因子p的大小即可实现提高对过程量的控制响应性,使目标系统的输出量更快达到目标值,从而提高了过程控制效果。
针对于此,本申请公开了一种PID调节算法和PID调节器和PID调节系统。其中,所述方法应用于PID调节器中,用于依据PID增量式算法公式计算得到调节信号,该方法包括:
将第二输入偏差量e(k)代替所述PID增量式算法公式(1)中的第一输入偏差量e(k),所述第二输入偏差量e(k)=e(k)-e(k-1)-p*e(k),其中,所述k用于表示第k个采样周期,p为收敛因子,且p<0,de/dt=p*e,且p<0。
当采用本申请上述实施例公开的PID调节算法调节目标系统的输出量时,只需调试比例增益和收敛因子两个参数即可,在合理调试比例增益保证过程量不振荡的前提下,通过根据不同的控制对象设置与之匹配的比例增益和收敛因子p,使得控制过程快速、准确且稳定,可进一步提高过程量的控制响应性,使其更快达到目标值,并减少了超调量,相对于现有的算法控制效果,具有明显的改进。
其中,本申请上述实施例公开的所述目标系统根据测试对象的不同而不同,例如,其可以为工业控制场合的温度过程控制调节系统中、压力过程控制 调节系统、恒压、恒流调节电路等,当然也可以应用于其他调节系统中,对此本申请不在一一说明。
针对于上述方法,参见图3和图4,本申请上述实施例公开的PID调节算法的工作过程可以包括:
步骤S101:获取预设的给定值r;
其中,所述给定值的大小可以依据用户需求自行调整;
步骤S102:实时获取对目标系统输出量的实测值y;
步骤S103:计算得到所述给定值r与所述实测值y之间的第一输入偏差量e(k);
步骤S104:依据公式e(k)=e(k)-e(k-1)-p*e(k)(公式3)计算得到第二输入偏差量e(k);
步骤S105:将所述第二输入偏差量e(k)代替第一输入偏差量e(k)代入PID增量式算法公式,依据所述PID增量式算法公式计算并输出调节信号;
其中,该步骤中,参见上述实施例中的介绍说明,所述依据所述PID增量式算法公式计算并输出调节信号,具体可以为:
依据公式
Figure PCTCN2016078353-appb-000008
Figure PCTCN2016078353-appb-000009
计算并输出调节信号u(k),将所述e(k)替代公式1中的e(k)后即可得到的公式3。
所述调节信号作为目标系统的调节量输入至所述目标系统的控制端,所述目标系统依据所述调节信号调节自身的输出量,进入步骤S102,从而完成PID算法的闭环调节,使得所述目标系统的输出量不断向所述给定值接近。
可以理解的是,针对于上述PID调节算法,本申请实施例还公开了一种PID调节器,用于依据PID增量式算法公式计算得到调节信号,其中,所述PID调节器中用到的PID增量式算法公式中的第一输入偏差量e(k)被第二输入偏差量e(k)所代替,所述第二输入偏差量e(k)=e(k)-e(k-1)-p*e(k),其中,所述k用于表示第k个采样周期,p为收敛因子,且p<0,de/dt=p*e,且p<0。
上述实施例公开的所述PID调节器,当采用本申请上述实施例公开的PID调节算法调节目标系统的输出量时,只需调试比例增益和收敛因子两个参数即可,在合理调试比例增益保证过程量不振荡的前提下,通过合理设置收敛因子p,可进一步提高过程量的控制响应性,使其更快达到目标值,并减少了超调量,相对于现有的算法控制效果,具有明显的改进。
可以理解的是,针对于上述方法,本申请上述实施例公开的所述PID调节器具体可以包括:
第一采集模块10,用于获取预设的给定值;
第二采集模块20,用于实时获取对目标系统输出量的实测值;
与所述第一采集模块10和第二采集模块20相连的第一计算模块30,用于依据计算得到所述给定值与所述实测值之间的第一输入偏差量e,依据公式e(k)=e(k)-e(k-1)-p*e(k)计算得到第二输入偏差量e(k),其中所述k为采样周期,p为收敛因子,de/dt=p*e,且所述p<0;
与所述第一计算模块30相连的第二计算模块40,用于将所述第二输入偏差量e(k)代替第一输入偏差量e(k)代入PID增量式算法公式,依据所述PID增量式算法公式计算并输出调节信号。
与上述方法相对应,所述第二计算模块具体用于:
依据由PID增量式算法公式代入PID增量式算法公式后得到的公式
Figure PCTCN2016078353-appb-000010
计算并输出调节信号u(k)。
可以理解的是,参见图5,本申请还公开了一种应用上述PID调节器的PID调节系统,该系统包括:目标系统50和本申请上述任意一项实施例公开的PID调节器;
所述目标系统50的输入端与所述第二计算模块40的控制端相连、输出端与所述PID调节器的第二采集模块20的输入端相连,所述目标系统50用于依据所述调节信号u(k)调节输出量的大小。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (7)

  1. 一种PID调节算法,应用于PID调节器中,用于依据PID增量式算法公式计算得到调节信号,其特征在于,包括:
    将第二输入偏差量e(k)代替所述PID增量式算法公式中的第一输入偏差量e(k),所述第二输入偏差量e(k)=e(k)-e(k-1)-p*e(k),其中,所述k用于表示第k个采样周期,p为收敛因子,且p<0。
  2. 根据权利要求1所述的PID调节算法,其特征在于,用于依据PID增量式算法公式计算得到调节信号,包括:
    获取预设的给定值;
    实时获取对目标系统输出量的实测值;
    计算得到所述给定值与所述实测值之间的第一输入偏差量e(k);
    依据公式e(k)=e(k)-e(k-1)-p*e(k)计算得到第二输入偏差量e(k);
    将所述第二输入偏差量e(k)代替第一输入偏差量e(k)代入PID增量式算法公式,依据所述PID增量式算法公式计算并输出调节信号。
  3. 根据权利要求2所述的PID调节算法,其特征在于,依据所述PID增量式算法公式计算并输出调节信号,包括:
    依据公式
    Figure PCTCN2016078353-appb-100001
    计算并输出调节信号u(k)。
  4. 一种PID调节器,用于依据PID增量式算法公式计算得到调节信号,其特征在于,所述PID调节器中的PID增量式算法公式中的第一输入偏差量e(k)被第二输入偏差量e(k)所代替,所述第二输入偏差量e(k)=e(k)-e(k-1)-p*e(k),其中,所述k用于表示第k个采样周期,p为收敛因子,且p<0。
  5. 根据权利要求4所述的PID调节器,其特征在于,包括:
    第一采集模块,用于获取预设的给定值;
    第二采集模块,用于实时获取对目标系统输出量的实测值;
    第一计算模块,用于依据计算得到所述给定值与所述实测值之间的第一输 入偏差量e(k),依据公式e(k)=e(k)-e(k-1)-p*e(k)计算得到第二输入偏差量e(k);
    第二计算模块,用于将所述第二输入偏差量e(k)代替第一输入偏差量e(k)代入PID增量式算法公式,依据所述PID增量式算法公式计算并输出调节信号。
  6. 根据权利要求5所述的PID调节器,其特征在于,所述第二计算模块具体用于:
    依据公式
    Figure PCTCN2016078353-appb-100002
    计算并输出调节信号u(k)。
  7. 一种PID调节系统,其特征在于,包括:目标系统和权利要求4-6任意一项公开的PID调节器;
    所述目标系统的输入端与所述第二计算模块的控制端相连、输出端与所述PID调节器的第二采集模块的输入端相连,所述目标系统用于依据所述调节信号u(k)调节输出量。
PCT/CN2016/078353 2016-04-01 2016-04-01 一种pid调节算法、pid调节器和pid调节系统 WO2017166302A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2016/078353 WO2017166302A1 (zh) 2016-04-01 2016-04-01 一种pid调节算法、pid调节器和pid调节系统
CN201680070450.5A CN108700850B (zh) 2016-04-01 2016-04-01 一种pid调节算法、pid调节器和pid调节系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/078353 WO2017166302A1 (zh) 2016-04-01 2016-04-01 一种pid调节算法、pid调节器和pid调节系统

Publications (1)

Publication Number Publication Date
WO2017166302A1 true WO2017166302A1 (zh) 2017-10-05

Family

ID=59962406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/078353 WO2017166302A1 (zh) 2016-04-01 2016-04-01 一种pid调节算法、pid调节器和pid调节系统

Country Status (2)

Country Link
CN (1) CN108700850B (zh)
WO (1) WO2017166302A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109632305A (zh) * 2018-12-25 2019-04-16 哈尔滨工业大学 一种低速轴承真空跑合测试控制系统
CN113341700A (zh) * 2021-06-25 2021-09-03 攀钢集团攀枝花钢钒有限公司 用于控制设备的预控制pid调节方法及装置
CN114740712A (zh) * 2021-12-21 2022-07-12 百倍云(浙江)物联科技有限公司 一种面向碳中和的温室二氧化碳净吸收调控方法
CN115793557A (zh) * 2022-11-18 2023-03-14 瑞邦环境治理(广东)有限公司 一种存量垃圾原位腐殖干化系统的控制方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104062898A (zh) * 2014-06-30 2014-09-24 河南科技大学 一种数字pid控制算法实验平台及其实现方法
CN105260520A (zh) * 2015-09-25 2016-01-20 江苏绿扬电子仪器集团有限公司 Dc-dc变换器建模中的控制算法的确定方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104062898A (zh) * 2014-06-30 2014-09-24 河南科技大学 一种数字pid控制算法实验平台及其实现方法
CN105260520A (zh) * 2015-09-25 2016-01-20 江苏绿扬电子仪器集团有限公司 Dc-dc变换器建模中的控制算法的确定方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DONG, XUEQIN ET AL.: "Improved Algorithm Based on Increment PID", JOURNAL OF ZHEJIANG, vol. 11, no. 3, 30 September 2012 (2012-09-30), pages 32 - 35 *
LI, YUCHUN ET AL.: "Correction of Incremental-algorithm PID in Electric Regulating Valve", JOURNAL OF SHUNDE POLYTECHNIC, vol. 9, no. 2, 30 April 2011 (2011-04-30), pages 1 - 3 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109632305A (zh) * 2018-12-25 2019-04-16 哈尔滨工业大学 一种低速轴承真空跑合测试控制系统
CN113341700A (zh) * 2021-06-25 2021-09-03 攀钢集团攀枝花钢钒有限公司 用于控制设备的预控制pid调节方法及装置
CN114740712A (zh) * 2021-12-21 2022-07-12 百倍云(浙江)物联科技有限公司 一种面向碳中和的温室二氧化碳净吸收调控方法
CN114740712B (zh) * 2021-12-21 2023-10-17 百倍云(浙江)物联科技有限公司 一种面向碳中和的温室二氧化碳净吸收调控方法
CN115793557A (zh) * 2022-11-18 2023-03-14 瑞邦环境治理(广东)有限公司 一种存量垃圾原位腐殖干化系统的控制方法

Also Published As

Publication number Publication date
CN108700850B (zh) 2020-04-03
CN108700850A (zh) 2018-10-23

Similar Documents

Publication Publication Date Title
WO2017166302A1 (zh) 一种pid调节算法、pid调节器和pid调节系统
CN104570729A (zh) 一种改进型的Smith预估控制器
CN101968628A (zh) 时变时滞不确定系统的饱和自调整控制器
EP3321759A1 (en) Flow control method for proportional valve of breathing machine
CN104199293A (zh) 基于最大灵敏度指标的稳定分数阶pid参数优化方法
CN109634123A (zh) 用于pH中和过程的自抗扰控制参数整定方法
CN107014028A (zh) 冷冻水阀的控制方法
CN103207562A (zh) 一种针对真空下玻璃加热的改进型pid算法
CN109343338A (zh) 一种用于电阻炉温度控制的模糊pid系统和方法
JPH06119001A (ja) 調節装置
Kaneko et al. FRIT based PID parameter tuning for linear time delay systems-Simultaneous attainment of models and controllers
CN111650829B (zh) 基于人工智能的内嵌pid模块参数调节方法、系统及装置
Liu Design of flow control system based on expert PID
CN108762085A (zh) 一种鲁棒快速点对点运动控制方法
CN112152530A (zh) 模型参考自适应磁链辨识参数整定方法
Cirtoaje et al. On a model based practical control algorithm
Wu et al. Research on simulation of temperature control system for gyro based on single neuron PID
Gabasov et al. Robust optimal control on imperfect measurements of dynamic systems states
Zhang et al. Application and Research of Fuzzy PID Control in Resistance Furnace Temperature Control System
CN104503245B (zh) 一种非自衡对象的控制方法和装置
KR20210024128A (ko) 제어장치 및 제어방법
RU2587526C1 (ru) Регулятор давления воздуха в форкамере аэродинамической трубы
CN105278612A (zh) 一种最大功率点的跟踪方法
Hudaya A Reference-Model Controller to Mitigate the Effect of Time Delay Change in a Networked Control Systems
Symons Lies, damned lies and software metrics

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16896081

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 05/02/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16896081

Country of ref document: EP

Kind code of ref document: A1