WO2017166082A1 - Procédé et technique de biopsie de tissu non destructive rapide pour résolution à grande surface de microstructure sur la base d'une modulation de domaine fréquentiel spatial - Google Patents

Procédé et technique de biopsie de tissu non destructive rapide pour résolution à grande surface de microstructure sur la base d'une modulation de domaine fréquentiel spatial Download PDF

Info

Publication number
WO2017166082A1
WO2017166082A1 PCT/CN2016/077785 CN2016077785W WO2017166082A1 WO 2017166082 A1 WO2017166082 A1 WO 2017166082A1 CN 2016077785 W CN2016077785 W CN 2016077785W WO 2017166082 A1 WO2017166082 A1 WO 2017166082A1
Authority
WO
WIPO (PCT)
Prior art keywords
spatial frequency
light
frequency domain
scattering
ssi
Prior art date
Application number
PCT/CN2016/077785
Other languages
English (en)
Chinese (zh)
Inventor
徐敏
曾碧新
林维豪
曹自立
Original Assignee
温州医科大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 温州医科大学 filed Critical 温州医科大学
Priority to PCT/CN2016/077785 priority Critical patent/WO2017166082A1/fr
Publication of WO2017166082A1 publication Critical patent/WO2017166082A1/fr

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid

Definitions

  • the invention relates to a rapid non-destructive tissue biopsy method and technology based on spatial frequency domain modulation large-area analytical microstructure.
  • the present invention provides a fast non-destructive tissue biopsy method and technique based on spatial frequency domain modulation large-area analytical microstructure.
  • the invention provides a rapid non-destructive tissue biopsy method based on spatial frequency domain modulation large-area analytical microstructure, which comprises the following steps:
  • the reflected light intensity after scattering of the tissue sample is collected by the CCD multiple times;
  • the AC, DC component and modulation transfer function of different frequencies are demodulated by standard three-phase shift method or SSMD demodulation method;
  • the scattering structure coefficient SSI is obtained by the following steps, first according to
  • phase function p SAA ( ⁇ ) and the scattering structure coefficient SSI are obtained.
  • a high spatial frequency domain imaging technique based on the above-described fast non-destructive tissue biopsy method, comprising a light source emitting device, a lens, a beam splitting mirror and a collecting device, wherein the light emitted by the light source emitting device is irradiated onto the beam splitting mirror through a lens, and Reflected by the beam splitter on the tissue sample, the backscattered light of the tissue sample is imaged at the acquisition device through the image itself.
  • the light source emitting device is a digital micromirror device.
  • the acquisition device is a camera.
  • the HSFDI realized by the high spatial frequency modulation of the present invention can obtain not only the absorption coefficient and the scattering coefficient, but also the phase function and the scattering structure coefficient (SSI) of the scattered light.
  • HSFDI has important applications in large-area histological diagnosis. It can quantitatively acquire the optical properties of large-area tissues and the distribution of scattering features for the objective diagnosis of biological tissues.
  • Figure 1 is a schematic diagram of the principle of the present invention.
  • the bottom shows a cut-away view of the frequencies from low frequency (red), intermediate frequency (green) and high frequency (blue).
  • the backscattered light in the forward light scattering medium consists of three types: the first is SAA photons that have undergone multiple small angle scatters and one completely large angle scatter; the second is experienced twice completely large Angle-scattered "snake” shaped light; the third is diffused light that has undergone more than two large angles of scattering.
  • the reflected light formula according to their respective ranges can be divided into two parts: low spatial frequency and high spatial frequency:
  • the random phase function p SAA ( ⁇ ) of the scattering medium can be expressed as follows:
  • the true phase function p( ⁇ ) of the simulation system ie the p b value is determined by the number of photons backscattered to the back hemisphere.
  • the root mean square of the scattering angle is related to the large structures in the tissue and cells, especially the anisotropy.
  • SSI Scattering Structural Index
  • the present invention provides a fast non-destructive tissue biopsy method based on spatial frequency domain modulation large-area analytical microstructure, which comprises the following steps:
  • the reflected light intensity after scattering of the tissue sample is collected by the CCD multiple times;
  • the standard three-phase shift method or SSMD demodulation method is used to call up the AC and DC components and modulation transfer functions of different frequencies;
  • SFDI Spatial Frequency Domain Imaging
  • S 0 , M 0 , f x and ⁇ are the source density, modulation depth, spatial frequency and spatial phase, respectively, and the intensity of the reflection form is as follows:
  • I OUT I DC +M AC (x)cos(2 ⁇ f x x+ ⁇ ) (10)
  • the modulation of the reflected photon density wave M AC (x) in a turbid medium depends on the optical properties of the tissue and can be modeled by the propagation equation of light.
  • a single demodulation method is required.
  • the commonly used method is the three-phase demodulation method and the other single-frequency snapshot demodulation technique (SSMD) has been implemented on the real-time imaging platform.
  • M AC (x) can be obtained by measurement of a plurality of high spatial frequencies (f x > ⁇ ' s / 3).
  • SAA analysis model to quantitatively estimate the distribution of scattering structure values (SSI).
  • SSI scattering structure values
  • the invention also discloses a high spatial frequency domain imaging technology based on the above-mentioned fast non-destructive tissue biopsy method, which comprises a light source emitting device, a lens lens, a beam splitter beam splitter and a collecting device, and the light emitted by the light source emitting device passes through
  • the lens is illuminated on the beam splitter and reflected by the beam splitter on the tissue sample, and the backscattered light of the tissue sample is imaged at the acquisition device through the image itself.
  • a thin film beam splitter is used for the central optical device of the illumination system to eliminate ghosting.
  • the pattern of the DMD is enlarged and projected onto the sample, and the backscattered light of the sample is imaged by the image itself. On the camera.
  • the light source emitting device is a digital micro mirror device, and the model thereof is a digital micro mirror device.
  • LightCrafter TM 4500, Texas Instruments With the red channel (623nm), the DMD is set to the pattern mode, and the transition time of each picture is 10000 ⁇ s.
  • the acquisition device is a camera, model Canon 3D Mark III camera, for collecting reflected images with an exposure time of 1/10S.
  • the intensity of the DMD output is not linear, and the Lambertian reflection standard is used to correct this nonlinearity by diffuse reflection.
  • the surface of the sample is 13mm x 13mm, the resolution of the HSFDI system is 7.7 ⁇ m x 7.7 ⁇ m, and the maximum modulation spatial frequency is 3.412mm -1 .
  • the modulated sinusoidal patterns of different frequencies were respectively irradiated on a 2% fat emulsion suspension (10% fat emulsion was diluted 1:4) as shown in Fig. 2.
  • the average values of ⁇ a and ⁇ ' s calculated based on the diffusion propagation equation are shown in Table 1. When the effect of boundary effect on HSFDI is excluded, the calculated values of ⁇ a and ⁇ ′ s are closer to the theoretical value as the frequency increases.
  • the wavelength of incident light in Figure 2 is 0.623 ⁇ m, and the pixel lattice is 7.7. ⁇ m ⁇ 7.7 ⁇ m.
  • Table 1 shows the ⁇ a and ⁇ ' s of the 2% strength fat emulsion suspension at different frequencies.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

L'invention concerne un procédé de biopsie de tissu non destructive rapide pour une résolution à grande surface d'une microstructure sur la base d'une modulation de domaine fréquentiel spatial. Le procédé comprend les étapes consistant à : 1. commander une source de lumière pour délivrer en sortie de multiples motifs de bande de lumière spatialement modulés de différentes fréquences à un échantillon de tissu; 2. collecter de façon répétée, au moyen d'un dispositif de couplage de charge (CCD), l'intensité de la lumière réfléchie après que ladite lumière est diffusée par l'échantillon de tissu; 3. analyser et traiter les données d'intensité collectées de la lumière réfléchie; 4. démoduler les données en une composante de courant alternatif (CA), une composante de courant continu (CC) et une fonction de transfert de modulation à l'aide d'un procédé de décalage de trois phases classique, un procédé de démodulation SSMD ou similaire, la composante CA et la composante CC ayant des fréquences différentes; et 5. obtenir un indice structural de diffusion (SSI).
PCT/CN2016/077785 2016-03-30 2016-03-30 Procédé et technique de biopsie de tissu non destructive rapide pour résolution à grande surface de microstructure sur la base d'une modulation de domaine fréquentiel spatial WO2017166082A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/077785 WO2017166082A1 (fr) 2016-03-30 2016-03-30 Procédé et technique de biopsie de tissu non destructive rapide pour résolution à grande surface de microstructure sur la base d'une modulation de domaine fréquentiel spatial

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/077785 WO2017166082A1 (fr) 2016-03-30 2016-03-30 Procédé et technique de biopsie de tissu non destructive rapide pour résolution à grande surface de microstructure sur la base d'une modulation de domaine fréquentiel spatial

Publications (1)

Publication Number Publication Date
WO2017166082A1 true WO2017166082A1 (fr) 2017-10-05

Family

ID=59963356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/077785 WO2017166082A1 (fr) 2016-03-30 2016-03-30 Procédé et technique de biopsie de tissu non destructive rapide pour résolution à grande surface de microstructure sur la base d'une modulation de domaine fréquentiel spatial

Country Status (1)

Country Link
WO (1) WO2017166082A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114018819A (zh) * 2021-03-22 2022-02-08 北京航空航天大学 基于空间频域成像的光学特性测量方法、装置及系统
CN114354599A (zh) * 2021-12-15 2022-04-15 江苏大学 基于空间频域成像的作物早期病害便携式检测装置与方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102883658A (zh) * 2009-11-19 2013-01-16 调节成像公司 用于使用结构化照明经由单元件检测来分析浑浊介质的方法和设备
WO2015105780A1 (fr) * 2014-01-07 2015-07-16 The Regents Of The University Of California Procédé d'extraction d'informations de fréquence spatiale pour l'imagerie tissulaire quantitative
CN105190308A (zh) * 2012-11-07 2015-12-23 调节成像公司 高效调制成像
CN105245761A (zh) * 2015-09-30 2016-01-13 温州医科大学 单次快照多频解调方法
CN105300928A (zh) * 2015-10-15 2016-02-03 温州医科大学 一种大面积获取组织光学参数及微观结构的光反射成像技术

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102883658A (zh) * 2009-11-19 2013-01-16 调节成像公司 用于使用结构化照明经由单元件检测来分析浑浊介质的方法和设备
CN105190308A (zh) * 2012-11-07 2015-12-23 调节成像公司 高效调制成像
WO2015105780A1 (fr) * 2014-01-07 2015-07-16 The Regents Of The University Of California Procédé d'extraction d'informations de fréquence spatiale pour l'imagerie tissulaire quantitative
CN105245761A (zh) * 2015-09-30 2016-01-13 温州医科大学 单次快照多频解调方法
CN105300928A (zh) * 2015-10-15 2016-02-03 温州医科大学 一种大面积获取组织光学参数及微观结构的光反射成像技术

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114018819A (zh) * 2021-03-22 2022-02-08 北京航空航天大学 基于空间频域成像的光学特性测量方法、装置及系统
CN114354599A (zh) * 2021-12-15 2022-04-15 江苏大学 基于空间频域成像的作物早期病害便携式检测装置与方法
CN114354599B (zh) * 2021-12-15 2024-01-05 江苏大学 基于空间频域成像的作物早期病害便携式检测装置与方法

Similar Documents

Publication Publication Date Title
US20230020195A1 (en) Structured-light imaging systems and methods for determining sub-diffuse scattering parameters
Schmitt et al. Model of optical coherence tomography of heterogeneous tissue
Nandy et al. Characterizing optical properties and spatial heterogeneity of human ovarian tissue using spatial frequency domain imaging
Foschum et al. Fully automated spatially resolved reflectance spectrometer for the determination of the absorption and scattering in turbid media
US10664685B2 (en) Methods, systems, and devices for optical sectioning
Bodenschatz et al. Sources of errors in spatial frequency domain imaging of scattering media
McClatchy et al. Calibration and analysis of a multimodal micro-CT and structured light imaging system for the evaluation of excised breast tissue
CN105866035B (zh) 一种基于空间频域调制大面积解析微观结构的快速无损组织活检方法与技术
Sheikhzadeh et al. Quantification of confocal fluorescence microscopy for the detection of cervical intraepithelial neoplasia
McClatchy III et al. Light scattering measured with spatial frequency domain imaging can predict stromal versus epithelial proportions in surgically resected breast tissue
WO2017166082A1 (fr) Procédé et technique de biopsie de tissu non destructive rapide pour résolution à grande surface de microstructure sur la base d'une modulation de domaine fréquentiel spatial
Varkentin et al. Simple model to simulate oct-depth signal in weakly and strongly scattering homogeneous media
Su et al. Investigation of influences of the paraformaldehyde fixation and paraffin embedding removal process on refractive indices and scattering properties of epithelial cells
Stier et al. Imaging sub-diffuse optical properties of cancerous and normal skin tissue using machine learning-aided spatial frequency domain imaging
Paul et al. A simple algorithm for diffuse optical tomography without Jacobian inversion
CN206603773U (zh) 基于血红细胞浓度测量的烧伤程度与面积检测系统
Bartek et al. Estimation of subcellular particle size histograms<? xpp qa?> with electron microscopy for prediction of optical scattering in breast tissue
CN106580328B (zh) 基于血红细胞浓度测量的烧伤程度与面积检测系统及方法
Hoffman et al. Single-image structured illumination using Hilbert transform demodulation
Dwork et al. Automated estimation of OCT confocal function parameters from two B-scans
US20230351648A1 (en) A tomography system and a method for analysis of biological cells
Draham Phase-sensitive angular light-scattering microscopy of single cells
Mu et al. Image contrast correction method in full-field optical coherence tomography
Lisenko Method for Separation of Blood Vessels on the Three-Color Images of Biological Tissues
TW201918703A (zh) 微分相位對比顯微系統與方法

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16895863

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16895863

Country of ref document: EP

Kind code of ref document: A1