WO2017164401A1 - Endoscopic shape detection device - Google Patents

Endoscopic shape detection device Download PDF

Info

Publication number
WO2017164401A1
WO2017164401A1 PCT/JP2017/012140 JP2017012140W WO2017164401A1 WO 2017164401 A1 WO2017164401 A1 WO 2017164401A1 JP 2017012140 W JP2017012140 W JP 2017012140W WO 2017164401 A1 WO2017164401 A1 WO 2017164401A1
Authority
WO
WIPO (PCT)
Prior art keywords
cable
coil
holding member
endoscope
shape detection
Prior art date
Application number
PCT/JP2017/012140
Other languages
French (fr)
Japanese (ja)
Inventor
將 松井
Original Assignee
Hoya株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya株式会社 filed Critical Hoya株式会社
Priority to CN201780000927.7A priority Critical patent/CN107438391B/en
Priority to JP2017544046A priority patent/JP6397137B2/en
Publication of WO2017164401A1 publication Critical patent/WO2017164401A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/28Measuring arrangements characterised by the use of electric or magnetic techniques for measuring contours or curvatures

Definitions

  • the present invention relates to an endoscope shape detection device for detecting the shape of an endoscope.
  • Endoscope shape detection devices including a coil sensor for detecting the shape of a flexible tube or a bending portion of a flexible endoscope are known.
  • Patent Document 1 describes a specific configuration of this type of endoscope shape detection apparatus.
  • the endoscope shape detection device described in Patent Document 1 is configured by inserting a plurality of coil devices, which are bonded and fixed to a wire-like connecting member at intervals, into an outer tube. Also, when the endoscope shape detection device is bent and a load is applied to the coil device, the connection end of the coil and the connection end of the signal wire are coiled to avoid concentration of the load on the connection portion between the coil and the signal wire. It is soldered after being wound around an insulating member at the end of the apparatus.
  • the outer tube is omitted from the constituent elements.
  • the signal line is exposed, and for example, a load due to bending of the endoscope shape detection device is greatly applied to the signal line.
  • the load concentrates on the base portion of the signal wire exposed from the soldered portion with the coil wire, and the signal wire may break at this base portion.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is for an endoscope suitable for preventing disconnection of a signal line while having a structure with improved assemblability and maintainability.
  • a shape detection device is provided.
  • An endoscope shape detection device includes a plurality of sensor main bodies arranged in rows at predetermined intervals, a holding member that holds each sensor main body, and each sensor holding each sensor main body.
  • a cable that is disposed between the holding members and covers the insulated wires connected to the sensor main bodies with a covering material, and a fixing member that fixes the holding member and the end of the cable adjacent thereto between the holding members.
  • the fixing member is attached to the holding member or formed integrally with the holding member, and the protruding member is wound around the end of the protruding member and the cable. And a wire for fixing the end portion.
  • the fixing member may be configured to fix the holding member and the end of the cable at a position where the substantially cylindrical sensor body and the adjacent cable are substantially coaxial.
  • the holding member is a three-dimensional injection-molded circuit component in which a plurality of wiring patterns are formed, and the insulated wire in one cable adjacent to the holding member has a corresponding wiring pattern.
  • the insulated wire in the other cable connected to one end and adjacent to the holding member may be connected to the other end of the corresponding wiring pattern.
  • the senor body is, for example, a coil.
  • the holding member has a proximal end portion located on the proximal end side of the endoscope and a distal end portion located on the distal end side of the endoscope, and is electrically connected to the proximal end portion.
  • This wiring pattern is the remaining insulated wires in the insulated wires in the cable adjacent to the base end portion and the insulated wires in the cable adjacent to the distal end portion, and closer to the distal end side of the endoscope than the holding member.
  • maintained at the holding member located is connected.
  • an endoscope shape detection device suitable for preventing disconnection of a signal line while having a configuration with improved assemblability and maintainability.
  • FIG. 1 is an external view of an electronic endoscope system according to an embodiment of the present invention. It is a figure which shows the structure of the electronic scope with which the electronic endoscope system which concerns on one Embodiment of this invention is equipped. It is a figure which shows typically the external appearance of the probe for position detection with which the electronic scope which concerns on one Embodiment of this invention is equipped. It is a figure which expands and shows the composition of the probe for position detection concerning one embodiment of the present invention. It is a figure which shows the structure of the coil base with which the position detection probe which concerns on one Embodiment of this invention is equipped. It is a figure which shows the structure of the coil base with which the position detection probe which concerns on one Embodiment of this invention is equipped.
  • FIG. 1 is an external view of an electronic endoscope system 1 according to an embodiment of the present invention.
  • the electronic endoscope system 1 of this embodiment includes an electronic scope 10, an endoscope processor 20, an external coil device 30, a shape detection processor 40, and a monitor 50.
  • FIG. 1 for convenience of showing the drawing, connections between some devices are indicated by arrows.
  • the electronic scope 10 includes an insertion portion flexible tube 11 covered with a flexible sheath.
  • the proximal end of the bending portion 12 is connected to the distal end of the insertion portion flexible tube 11.
  • the bending portion 12 bends in response to a remote operation from the hand operation portion 13 connected to the proximal end of the insertion portion flexible tube 11.
  • the bending mechanism is a well-known mechanism incorporated in a general endoscope, and bends the bending portion 12 by pulling the operation wire in conjunction with the rotation operation of the bending operation knob of the hand operation portion 13.
  • the imaging region by the electronic scope 10 moves.
  • the universal cable 14 extends from the hand operating unit 13.
  • a connector portion 15 is connected to the base end of the universal cable 14.
  • the electronic scope 10 is connected to the endoscope processor 20 by connecting the connector portion 15 to a connector portion 21 provided on the front panel surface of the endoscope processor 20.
  • the endoscope processor 20 processes the captured image data input from the electronic scope 10 to generate a video signal and outputs it to the monitor 50. As a result, an image captured by the electronic scope 10 is displayed on the monitor 50.
  • FIG. 2 is a diagram showing a configuration of the electronic scope 10. As shown in FIG. 2, a position detection probe 100 is arranged in the electronic scope 10 over its entire length (bending portion 12 to connector portion 15). A circuit board 15 a is attached in the connector portion 15.
  • FIG. 3 is a diagram schematically showing the appearance of the position detection probe 100.
  • the position detection probe 100 includes a plurality (12 in the present embodiment) of sensor units 110 arranged in rows at predetermined intervals.
  • Each sensor unit 110 arranged in a row in the position detection probe 100 includes a coil sensor 111 that functions as a position detection sensor.
  • the position detection probe 100 includes a cable 120 in which the signal line 120 a connected to the coil sensor 111 is covered with a covering material between the sensor units 110.
  • the signal line 120a is an insulated wire, for example, an enameled wire.
  • FIG. 4 is an expanded view of the configuration of the position detection probe 100 (mainly the configuration related to wiring).
  • the sensor units 110 are arranged in the insertion portion of the electronic scope 10 (in the insertion portion flexible tube 11 and the bending portion 12) with an interval that does not mechanically interfere with each other. Yes.
  • the sensor units 110 are arranged at a pitch of 50 mm in the bending portion 12, and are arranged at a pitch of 100 mm in the insertion portion flexible tube 11.
  • each sensor unit 110 is connected to a circuit on the circuit board 15a via a corresponding signal line 120a.
  • the circuit on the circuit board 15a is connected to the shape detection processor 40 via the connector cable 16 (see FIG. 1).
  • External coil device 30 generates an alternating magnetic field from the built-in antenna. Due to the alternating magnetic field generated from the built-in antenna, an electromotive force is generated in each coil sensor 111 disposed in the position detection probe 100 and an induced current flows. The induced current flowing through each coil sensor 111 is input to the shape detection processor 40 via the signal line 120a, the circuit on the circuit board 15a, and the connector cable 16.
  • the shape detection processor 40 detects the position of each coil sensor 111 based on the induced current flowing through each coil sensor 111 and connects the detected position of each coil sensor 111 with a line, thereby inserting the insertion portion of the electronic scope 10.
  • the axis of is estimated.
  • the shape detection processor 40 outputs the model imitating the electronic scope 10 pasted along the axis to the monitor 50. Thereby, the estimated shape image of the electronic scope 10 inserted into the body cavity of the patient is displayed on the monitor 50. Note that the estimated shape image of the electronic scope 10 is displayed on the monitor 50 singly or side by side or superimposed with the image captured by the electronic scope 10.
  • the sensor unit 110 includes a coil base 112 that holds a coil sensor 111. 5 to 7 show the configuration of the coil base 112. FIG. FIG. 8 shows a state where the coil sensor 111 is held on the coil base 112. FIG. 9 is a view for explaining a method for manufacturing the position detection probe 100.
  • FIG. 5A is a side view of the coil base 112. 5 (b), FIG. 5 (c), FIG. 5 (d), and FIG. 5 (e) respectively show the coil base 112 in the direction of arrow B, arrow C, arrow D, and arrow in FIG. 5 (a). It is a figure when it sees from E direction. Note that in FIG. 5, for the sake of clarity of the drawing, illustration of a pad portion 112bD, a wiring pattern 112bE, and a land portion 112bF, which will be described later, is omitted.
  • the coil base 112 has a shape in which a part of the cylinder is hollowed out so as to have a U shape when viewed from the side.
  • the coil base 112 has one end portion (end portion shown in FIG. 5B or FIG. 5D) having a cylindrical shape and the other end portion (FIG. 5C or FIG. 5E). ) Shown in FIG. 5) is connected by a pillar portion whose cross-section in the direction perpendicular to the axis is substantially a six-moon shape.
  • the end portion of the coil base 112 shown in FIGS. 5B and 5D will be referred to as a “tip portion 112a”, and the coil shown in FIGS.
  • An end portion of the base 112 is referred to as a “base end portion 112b”.
  • the position detection probe 100 is incorporated into the electronic scope 10 so that the distal end portion 112a of the coil base 112 faces the distal end (curved portion 12) side of the electronic scope 10.
  • FIG. 6 is a cross-sectional view of the coil base 112 taken along line AA in FIG. 5 (b).
  • a shaft fixing hole 112 a ⁇ / i> A and a member fixing hole 112 a ⁇ / i> B are formed in the distal end portion 112 a of the coil base 112.
  • a shaft fixing hole 112bA, a member fixing hole 112bB, and a pair of through holes 112bC are formed in the base end portion 112b of the coil base 112.
  • FIG. 9 the wiring pattern 112bE is not shown for the sake of clarity.
  • Each process of the manufacturing method described below may be appropriately changed as long as it does not contradict.
  • Step 1 the protruding member 113 is attached and fixed in the member fixing hole 112aB formed in the tip portion 112a of the coil base 112. Further, the protruding member 113 is also attached and fixed to the member fixing hole 112bB formed in the base end portion 112b of the coil base 112.
  • the protruding member 113 is fixed to each member fixing hole by, for example, adhesion or press fitting.
  • the protruding member 113 may be integrally formed with the coil base 112. In this case, this process 1 becomes unnecessary.
  • FIG. 8A is a diagram illustrating the internal structure of the sensor unit 110.
  • FIG. 8B is a diagram when the sensor unit 110 is viewed from the direction of the arrow H in FIG.
  • the coil sensor 111 is formed by winding a coil wire on the outer peripheral surface of a core (magnetic core) 111a.
  • the winding portion of the coil wire wound around the core material 111a is referred to as “coil 111b”.
  • the coil sensor 111 is held on the coil base 112. Specifically, one end of the core material 111a is inserted into the shaft fixing hole 112aA formed in the distal end portion 112a of the coil base 112, and the core material 111a is inserted into the shaft fixing hole 112bA formed in the base end portion 112b. The other end of the coil sensor 111 is inserted, whereby the coil sensor 111 is held on the coil base 112.
  • the coil wire material (a pair of terminal wires 111bA) drawn from each end of the coil 111b is inserted into the pair of through holes 112bC formed in the base end portion 112b.
  • the Each terminal wire 111bA is soldered to a land portion 112bF having a distal end portion (connection end) inserted through the through hole 112bC formed in the proximal end portion 112b.
  • Step 3 In the cable 120 on the base end portion 112b side of the coil base 112 (hereinafter, referred to as “base end side cable 120 ′” for convenience of description), a pair of signal lines 120a (hereinafter, description) corresponding to the sensor unit 110 are provided. For the sake of convenience, the signal line 120 a ′ is indicated.) In addition, a plurality of signal lines 120 a corresponding to the sensor unit 110 that is positioned closer to the distal end side of the electronic scope 10 than the sensor unit 110 are covered and protected. ing.
  • the proximal-side cable 120 ′ connected to the sensor unit 110 that is positioned closest to the proximal end in the electronic scope 10 is a 24-core cable (a pair of signal lines 120 a ′ and the sensor unit). There are ten pairs of signal lines 120 a) connected to the remaining (11) sensor units 110 that are positioned closer to the distal end side of the electronic scope 10 than 110.
  • the cable 120 is connected to the sensor unit 110. Specifically, the connection ends of the pair of signal lines 120 a ′ in the base end side cable 120 ′ are soldered to the corresponding pad portions 112 b D formed on the base end portion 112 b of the coil base 112. Since the terminal line 111bA of the coil 111b is soldered to the land part 112bF connected to the pad part 112bD, the coil 111b and the signal line 120a 'are electrically connected.
  • FIG. 7A is a side view of the coil base 112.
  • FIG. 7B is a view when the coil base 112 is viewed from the arrow F direction or the arrow G direction of FIG.
  • illustration of each hole shape shown in FIG. 5 including the shaft fixing hole 112aA is omitted for the sake of clarity of the drawing.
  • the coil base 112 is a three-dimensional injection-molded circuit component (MID (Molded Interconnect Device)) having a plurality of wiring patterns formed on the surface thereof.
  • a plurality (22 in this case) of wiring patterns 112bE are formed on the coil base 112.
  • one end of each of the plurality of wiring patterns 112bE is formed on the outer peripheral surface of the base end portion 112b of the coil base 112 at equal intervals, and the base end portion 112b and the tip end portion 112a are formed. It is formed to extend linearly on the connecting column portion, and the other end is formed on the outer peripheral surface of the tip end portion 112a at regular intervals.
  • connection end of the remaining signal line 120a (the signal line other than the pair of signal lines 120a ′) in the base end side cable 120 ′ is one end of the corresponding wiring pattern 112bE formed at the base end portion 112b of the coil base 112. Soldered to.
  • a plurality of signal lines 120a are covered and protected in the cable 120 on the tip 112a side of the coil base 112 (hereinafter referred to as “tip cable 120” for convenience of explanation).
  • the connection end of each signal line 120a in the distal end side cable 120 ′′ is soldered to the other end of the corresponding wiring pattern 112bE formed in the distal end portion 112a. Thereby, each end in the proximal end side cable 120 ′ is soldered.
  • the signal line 120a and each signal line 120a in the distal end side cable 120 ′′ are electrically connected through the respective wiring patterns 112bE.
  • FIG. 10A is a diagram for assistance in explaining the connection of the signal line 120a.
  • FIG. 10B is an explanatory supplementary diagram of FIG.
  • the coil 111b is denoted by the symbol C
  • the wiring pattern 112bE is denoted by the symbol P.
  • a rectangular figure surrounding the code C and the code P indicates the sensor unit 110.
  • the number on the arrow input to the symbol C indicates the number of signal lines 120a ′ (here, always “2”) connected to each terminal line 111bA of the coil 111b, and the number on the arrow input to the symbol P. Indicates the number of signal lines 120a connected to each wiring pattern 112bE formed on the base end portion 112b of the coil base 112.
  • the numbers on the line connecting the reference sign P and the distal end side cable 120 ′′ indicate the number of signal lines 120a connected to the respective wiring patterns 112bE formed on the distal end portion 112a of the coil base 112.
  • FIG. 2 for convenience of explanation, alphabets are added in order from the sensor unit 110 that is positioned closest to the proximal end in the electronic scope 10.
  • 24 (12 pairs) signal lines 120a are covered and protected in the proximal cable 120 'connected to the sensor unit 110A.
  • 24 signal lines 120a two (a pair) of signal lines 120a 'are solder-connected to the sensor unit 110A by the terminal lines 111bA of the coil 111b and the pad portion 112bD, and the remaining 22 (ten pairs).
  • 22 (ten pairs) of signal lines 120a are covered and protected in the distal end side cable 120 ′′ connected to the sensor unit 110A. All 22 signal lines 120a are coiled with respect to the sensor unit 110A. The other end of each wiring pattern 112bE formed on the tip 112a of the base 112 is soldered.
  • the next sensor unit 110B two (a pair) of signal lines 120a ′ in the proximal end side cable 120 ′ (the above-mentioned distal end side cable 120 ′′) are connected to each terminal line 111bA and pad portion 112bD of the coil 111b.
  • the remaining 20 (ten pairs) signal lines 120a are solder-connected to one end of each wiring pattern 112bE formed on the base end portion 112b of the coil base 112.
  • the sensor unit 110A In the distal end side cable 120 ′′, 20 (ten pairs) signal lines 120a are covered and protected. All 20 signal lines 120a are solder-connected to the other end of each wiring pattern 112bE formed on the tip 112a of the coil base 112 to the sensor unit 110B.
  • the signal lines 120 a in the cable 120 are connected to the sensor unit 110 in pairs from the sensor unit 110 on the proximal end side, and the remaining signal lines 120 a in the cable 120 are connected to the next sensor unit 110.
  • the coil sensor 111 of each sensor unit 110 is connected to the circuit on the circuit board 15a via the corresponding signal line 120a as shown in the development view of FIG.
  • step 3 the sensor unit 110 and the end of the cable 120 are further fixed.
  • the sensor unit 110 and the cable are formed by winding the wire 114 around the protruding member 113 attached to each end of the coil base 112 and the end of the cable 120. 120 ends are fixed.
  • the coil base 112 and the protruding member 113 have a shape in which the coil 111b having a substantially cylindrical shape and the cable 120 are positioned substantially coaxially when the protruding member 113 and the end portion of the cable 120 are wound by the wire 114. ing. By positioning the coil 111b and the cable 120 substantially coaxially, the diameter of the position detection probe 100 can be reduced.
  • each end portion of the coil base 112 including the soldering portion, the protruding member 113, the wire 114, and the entire end portion of the cable 120 are reinforced with an adhesive.
  • step 5 the entire sensor unit 110 including the adhesive portion reinforced in step 4 is covered and protected by the heat shrinkable tube 115.
  • the position detection probe 100 is configured not to include an outer tube, it is not necessary to insert a plurality of sensor units 110 arranged in a row through the elongated outer tube. . Further, it is not necessary to remove the sensor unit 110 and the signal line 120a from the outer tube or to be inserted and arranged at the time of repair. Therefore, the assemblability and maintainability are improved as compared with the prior art.
  • the signal line 120a is not exposed and is covered and protected by a cable 120 having an appropriate rigidity that does not hinder the bending operation of the position detection probe 100.
  • the protruding member 113 and the end of the cable 120 are wound around the wire 114 and fixed. For this reason, a load at the time of bending of the position detection probe 100 is applied to the cable 120 having high bending resistance, and a portion where the load is generally likely to concentrate (the signal line 120a ′ exposed from the soldered portion of the pad portion 112bD). The entire signal line 120a including the root portion) is not substantially covered. Therefore, disconnection of the signal line 120a is prevented.
  • Embodiments of the present invention are not limited to those described above, and various modifications are possible within the scope of the technical idea of the present invention.
  • the embodiment of the present invention also includes contents appropriately combined with embodiments or the like clearly shown in the specification or obvious embodiments.
  • FIG. 11 is a view showing a modified example of the insertion portion flexible tube 11.
  • a portion (passive bending portion) 11 ′ that passively bends when a force is applied may be provided at a location between the bending portion 12 and the hand operating portion 13 in the insertion portion flexible tube 11. it can.
  • the portion 11 ′ is automatically bent.
  • the force which presses the curved part 12 with respect to an intestinal wall is converted into the force which advances the curved part 12 ahead (back part of an intestine). Therefore, the pain given to the patient when the bending portion 12 contacts the intestinal wall can be reduced.
  • the shape of the insertion portion flexible tube 11 can be accurately detected, which is preferable in a configuration including a passively curved portion 11 ′.
  • the endoscope system including the passive bending portion 11 ′ has the following configuration: Endoscope shape detection apparatus according to the present embodiment, A flexible tube to be inserted into a subject, With When the flexible tube is applied with a force to advance the flexible tube further toward the inside of the subject in a state where the distal end portion of the flexible tube is in contact with the inner wall of the subject.
  • the load concentrates on the root portion of the signal line 120a ′ when the position detection probe 100 is bent because the cable 120 is bent from the root. It is believed that there is.
  • the protruding member 113 reinforces the rigidity of the cable 120, at least a portion of the cable 120 adjacent to the protruding member 113 is less likely to bend than the other portions.
  • the cable 120 is bent not at the root portion of the signal line 120a 'but at the tip portion of the protruding member 113. Therefore, it is possible to prevent disconnection from the base portion of the signal line 120a '.
  • the rigidity of the protruding member 113 is higher than the rigidity of the cable 120, but this is not necessarily limited as long as the protruding member 113 can prevent the cable 120 from being bent or suppress the degree of bending.

Abstract

It is difficult to properly configure an endoscopic shape detection device to prevent disconnection of a signal line while also improving ease of assembly and serviceability. The present invention therefore achieves an endoscopic shape detection device provided with: a plurality of sensor bodies arranged in rows at predetermined intervals; a holding member for holding each sensor body; a cable which is arranged between the holding members each holding the sensor body, and in which an insulated wire connected to the sensor bodies is covered with a cladding; and a fixation member for fixing, between the holding members, the holding member and an end section of a cable adjacent thereto.

Description

内視鏡用形状検出装置Endoscope shape detection device
 本発明は、内視鏡の形状を検出するための内視鏡用形状検出装置に関する。 The present invention relates to an endoscope shape detection device for detecting the shape of an endoscope.
 可撓性を持つ内視鏡の挿入部可撓管や湾曲部の形状を検出するためのコイルセンサを備えた内視鏡用形状検出装置が知られている。例えば特許文献1に、この種の内視鏡用形状検出装置の具体的構成が記載されている。 2. Description of the Related Art Endoscope shape detection devices including a coil sensor for detecting the shape of a flexible tube or a bending portion of a flexible endoscope are known. For example, Patent Document 1 describes a specific configuration of this type of endoscope shape detection apparatus.
 特許文献1に記載の内視鏡用形状検出装置は、ワイヤ状の連結部材に間隔を空けて接着固定された複数のコイル装置を外皮チューブ内に挿通することによって構成されている。また、内視鏡用形状検出装置が屈曲されてコイル装置に負荷が加わる場合にコイルと信号線との接続部分への負荷の集中を避けるため、コイルの接続端及び信号線の接続端がコイル装置端部の絶縁部材に巻き付けられた上で半田付けされている。 The endoscope shape detection device described in Patent Document 1 is configured by inserting a plurality of coil devices, which are bonded and fixed to a wire-like connecting member at intervals, into an outer tube. Also, when the endoscope shape detection device is bent and a load is applied to the coil device, the connection end of the coil and the connection end of the signal wire are coiled to avoid concentration of the load on the connection portion between the coil and the signal wire. It is soldered after being wound around an insulating member at the end of the apparatus.
特開平10-75929号公報JP-A-10-75929
 しかし、特許文献1に記載の構成では、連結部材で連結された複数のコイル装置を、コイル装置の外径よりも極僅かに大きい程度の内径しか持たない細長い外皮チューブ内に挿通して配置する必要がある。そのため、組立ての難易度が高く、また、修理時の分解・再組立てを鑑みるとその保守性が低い。また、コイル装置が外皮チューブ内で固定されていないため、例えば外皮チューブの屈曲に伴いコイル装置が外皮チューブ内でずれる虞がある。コイル装置がずれることによって隣接するコイル装置同士の間隔が変わると、例えば外皮チューブの屈曲時に、コイル装置間に配線された信号線に負荷が集中して、信号線が断線する虞がある。 However, in the configuration described in Patent Document 1, a plurality of coil devices connected by a connecting member are inserted and arranged in an elongated skin tube having an inner diameter that is only slightly larger than the outer diameter of the coil device. There is a need. Therefore, the difficulty of assembly is high, and the maintainability is low in view of disassembly / reassembly during repair. Further, since the coil device is not fixed in the outer tube, for example, the coil device may be displaced in the outer tube with bending of the outer tube. If the spacing between adjacent coil devices changes due to the displacement of the coil device, for example, when the outer tube is bent, there is a possibility that the load concentrates on the signal lines wired between the coil devices and the signal lines are disconnected.
 上記の問題を解決するため、外皮チューブを構成要素から省くことが考えられる。しかし、特許文献1に記載の構成において外皮チューブを構成要素から省くと信号線が剥き出しになるため、例えば内視鏡用形状検出装置の屈曲に伴う負荷が信号線に大きく掛かってしまう。特に、コイル線材との半田付け部から露出する信号線の根元部分に負荷が集中し、この根元部分において信号線が断線する虞がある。 In order to solve the above problem, it is possible to omit the outer tube from the constituent elements. However, if the outer tube is omitted from the constituent elements in the configuration described in Patent Document 1, the signal line is exposed, and for example, a load due to bending of the endoscope shape detection device is greatly applied to the signal line. In particular, the load concentrates on the base portion of the signal wire exposed from the soldered portion with the coil wire, and the signal wire may break at this base portion.
 本発明は上記の事情に鑑みてなされたものであり、その目的とするところは、組立性及び保守性が改善された構成でありながらも信号線の断線を防ぐのに好適な内視鏡用形状検出装置を提供することである。 The present invention has been made in view of the above circumstances, and an object of the present invention is for an endoscope suitable for preventing disconnection of a signal line while having a structure with improved assemblability and maintainability. A shape detection device is provided.
 本発明の一実施形態に係る内視鏡用形状検出装置は、列状に所定の間隔で配置された複数のセンサ本体と、各センサ本体を保持する保持部材と、各センサ本体を保持する各保持部材間に配置され、各センサ本体と接続される絶縁電線を被覆材で被覆するケーブルと、各保持部材間において保持部材とこれに隣接するケーブルの端部とを固定する固定部材とを備える。 An endoscope shape detection device according to an embodiment of the present invention includes a plurality of sensor main bodies arranged in rows at predetermined intervals, a holding member that holds each sensor main body, and each sensor holding each sensor main body. A cable that is disposed between the holding members and covers the insulated wires connected to the sensor main bodies with a covering material, and a fixing member that fixes the holding member and the end of the cable adjacent thereto between the holding members. .
 また、本発明の一実施形態において、固定部材は、保持部材に取り付けられた又は該保持部材と一体に形成された突起部材と、突起部材とケーブルの端部に巻き付けられることにより、該突起部材と該端部とを固定するワイヤとを有する構成としてもよい。 In one embodiment of the present invention, the fixing member is attached to the holding member or formed integrally with the holding member, and the protruding member is wound around the end of the protruding member and the cable. And a wire for fixing the end portion.
 また、本発明の一実施形態において、固定部材は、略円筒形のセンサ本体と隣接するケーブルとが略同軸となる位置で保持部材と該ケーブルの端部とを固定する構成としてもよい。 In one embodiment of the present invention, the fixing member may be configured to fix the holding member and the end of the cable at a position where the substantially cylindrical sensor body and the adjacent cable are substantially coaxial.
 また、本発明の一実施形態において、保持部材は、複数の配線パターンが形成された3次元射出成形回路部品であり、保持部材と隣接する一方のケーブル内の絶縁電線が、対応する配線パターンの一端に接続され、該保持部材と隣接する他方のケーブル内の絶縁電線が、対応する配線パターンの他端に接続されている構成としてもよい。 In one embodiment of the present invention, the holding member is a three-dimensional injection-molded circuit component in which a plurality of wiring patterns are formed, and the insulated wire in one cable adjacent to the holding member has a corresponding wiring pattern. The insulated wire in the other cable connected to one end and adjacent to the holding member may be connected to the other end of the corresponding wiring pattern.
 また、本発明の一実施形態において、センサ本体は、例えばコイルである。 In one embodiment of the present invention, the sensor body is, for example, a coil.
 また、本発明の一実施形態において、保持部材は、内視鏡の基端側に位置する基端部と、内視鏡の先端側に位置する先端部とを有し、基端部に導通部が形成されており、保持しているコイルの各端より引き出された一対の端子線と、基端部と隣接するケーブル内の絶縁電線のうち該一対の端子線に対応する絶縁電線とを導通部を介して接続した構成としてもよい。この配線パターンは、基端部と隣接するケーブル内の絶縁電線のうち残りの絶縁電線と、先端部と隣接するケーブル内の絶縁電線であって、当該保持部材よりも内視鏡の先端側に位置する保持部材に保持されているセンサ本体が有する各端子線と接続される絶縁電線とを接続する。 In one embodiment of the present invention, the holding member has a proximal end portion located on the proximal end side of the endoscope and a distal end portion located on the distal end side of the endoscope, and is electrically connected to the proximal end portion. A pair of terminal wires led out from each end of the holding coil and an insulated wire corresponding to the pair of terminal wires among the insulated wires in the cable adjacent to the base end portion. It is good also as a structure connected through the conduction | electrical_connection part. This wiring pattern is the remaining insulated wires in the insulated wires in the cable adjacent to the base end portion and the insulated wires in the cable adjacent to the distal end portion, and closer to the distal end side of the endoscope than the holding member. The insulated wire connected with each terminal wire which the sensor main body currently hold | maintained at the holding member located is connected.
 本発明の一実施形態によれば、組立性及び保守性が改善された構成でありながらも信号線の断線を防ぐのに好適な内視鏡用形状検出装置が提供される。 According to an embodiment of the present invention, there is provided an endoscope shape detection device suitable for preventing disconnection of a signal line while having a configuration with improved assemblability and maintainability.
本発明の一実施形態に係る電子内視鏡システムの外観図である。1 is an external view of an electronic endoscope system according to an embodiment of the present invention. 本発明の一実施形態に係る電子内視鏡システムに備えられる電子スコープの構成を示す図である。It is a figure which shows the structure of the electronic scope with which the electronic endoscope system which concerns on one Embodiment of this invention is equipped. 本発明の一実施形態に係る電子スコープに備えられる位置検出用プローブの外観を模式的に示す図である。It is a figure which shows typically the external appearance of the probe for position detection with which the electronic scope which concerns on one Embodiment of this invention is equipped. 本発明の一実施形態に係る位置検出用プローブの構成を展開して示す図である。It is a figure which expands and shows the composition of the probe for position detection concerning one embodiment of the present invention. 本発明の一実施形態に係る位置検出用プローブに備えられるコイルベースの構成を示す図である。It is a figure which shows the structure of the coil base with which the position detection probe which concerns on one Embodiment of this invention is equipped. 本発明の一実施形態に係る位置検出用プローブに備えられるコイルベースの構成を示す図である。It is a figure which shows the structure of the coil base with which the position detection probe which concerns on one Embodiment of this invention is equipped. 本発明の一実施形態に係る位置検出用プローブに備えられるコイルベースの構成を示す図である。It is a figure which shows the structure of the coil base with which the position detection probe which concerns on one Embodiment of this invention is equipped. 本発明の一実施形態に係るコイルベースにコイルセンサを保持させた状態を示す図である。It is a figure which shows the state which hold | maintained the coil sensor to the coil base which concerns on one Embodiment of this invention. 本発明の一実施形態に係る位置検出用プローブの製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the probe for position detection which concerns on one Embodiment of this invention. 本発明の一実施形態に係る位置検出用プローブに備えられる信号線の接続について補助説明するための図である。It is a figure for auxiliary explanation about connection of a signal line with which a probe for position detection concerning one embodiment of the present invention is provided. 挿入部可撓管11の変形例を示す図である。It is a figure which shows the modification of the insertion part flexible tube.
 以下、本発明の実施形態について図面を参照しながら説明する。なお、以下においては、本発明の一実施形態として電子内視鏡システムを例に取り説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following, an electronic endoscope system will be described as an example of an embodiment of the present invention.
[電子内視鏡システム1の構成]
 図1は、本発明の一実施形態に係る電子内視鏡システム1の外観図である。図1に示されるように、本実施形態の電子内視鏡システム1は、電子スコープ10、内視鏡用プロセッサ20、外部コイル装置30、形状検出用プロセッサ40及びモニタ50を備えている。図1では、図面を簡潔に示す便宜上、一部の装置同士の接続を矢印で示している。
[Configuration of Electronic Endoscope System 1]
FIG. 1 is an external view of an electronic endoscope system 1 according to an embodiment of the present invention. As shown in FIG. 1, the electronic endoscope system 1 of this embodiment includes an electronic scope 10, an endoscope processor 20, an external coil device 30, a shape detection processor 40, and a monitor 50. In FIG. 1, for convenience of showing the drawing, connections between some devices are indicated by arrows.
 図1に示されるように、電子スコープ10は、可撓性を有するシースによって外装された挿入部可撓管11を備えている。挿入部可撓管11の先端には、湾曲部12の基端が連結されている。 As shown in FIG. 1, the electronic scope 10 includes an insertion portion flexible tube 11 covered with a flexible sheath. The proximal end of the bending portion 12 is connected to the distal end of the insertion portion flexible tube 11.
 湾曲部12は、挿入部可撓管11の基端に連結された手元操作部13からの遠隔操作に応じて屈曲する。屈曲機構は、一般的な内視鏡に組み込まれている周知の機構であり、手元操作部13の湾曲操作ノブの回転操作に連動した操作ワイヤの牽引によって湾曲部12を屈曲させる。湾曲部12の先端面の方向が湾曲操作ノブの回転操作による屈曲動作に応じて変わることにより、電子スコープ10による撮影領域が移動する。 The bending portion 12 bends in response to a remote operation from the hand operation portion 13 connected to the proximal end of the insertion portion flexible tube 11. The bending mechanism is a well-known mechanism incorporated in a general endoscope, and bends the bending portion 12 by pulling the operation wire in conjunction with the rotation operation of the bending operation knob of the hand operation portion 13. When the direction of the distal end surface of the bending portion 12 changes according to the bending operation by the rotation operation of the bending operation knob, the imaging region by the electronic scope 10 moves.
 手元操作部13からはユニバーサルケーブル14が延びている。ユニバーサルケーブル14の基端には、コネクタ部15が接続されている。電子スコープ10は、コネクタ部15が内視鏡用プロセッサ20のフロントパネル面に設けられたコネクタ部21に接続されることにより、内視鏡用プロセッサ20と接続される。 The universal cable 14 extends from the hand operating unit 13. A connector portion 15 is connected to the base end of the universal cable 14. The electronic scope 10 is connected to the endoscope processor 20 by connecting the connector portion 15 to a connector portion 21 provided on the front panel surface of the endoscope processor 20.
 内視鏡用プロセッサ20は、電子スコープ10より入力される撮影画像データを処理して映像信号を生成して、モニタ50に出力する。これにより、モニタ50に電子スコープ10による撮影画像が表示される。 The endoscope processor 20 processes the captured image data input from the electronic scope 10 to generate a video signal and outputs it to the monitor 50. As a result, an image captured by the electronic scope 10 is displayed on the monitor 50.
 図2は、電子スコープ10の構成を示す図である。図2に示されるように、電子スコープ10内部には、その全長(湾曲部12からコネクタ部15)に亘り位置検出用プローブ100が配置されている。また、コネクタ部15内には、回路基板15aが取り付けられている。 FIG. 2 is a diagram showing a configuration of the electronic scope 10. As shown in FIG. 2, a position detection probe 100 is arranged in the electronic scope 10 over its entire length (bending portion 12 to connector portion 15). A circuit board 15 a is attached in the connector portion 15.
 図3は、位置検出用プローブ100の外観を模式的に示す図である。図3に示されるように、位置検出用プローブ100は、列状に所定の間隔で配置された複数(本実施形態では12個)のセンサユニット110を備えている。 FIG. 3 is a diagram schematically showing the appearance of the position detection probe 100. As shown in FIG. 3, the position detection probe 100 includes a plurality (12 in the present embodiment) of sensor units 110 arranged in rows at predetermined intervals.
 位置検出用プローブ100内に列状に配置された各センサユニット110は、位置検出センサとして機能するコイルセンサ111を備えている。また、位置検出用プローブ100は、コイルセンサ111と接続される信号線120aを被覆材で被覆したケーブル120を各センサユニット110間に備えている。信号線120aは絶縁電線であり、例えばエナメル線である。 Each sensor unit 110 arranged in a row in the position detection probe 100 includes a coil sensor 111 that functions as a position detection sensor. In addition, the position detection probe 100 includes a cable 120 in which the signal line 120 a connected to the coil sensor 111 is covered with a covering material between the sensor units 110. The signal line 120a is an insulated wire, for example, an enameled wire.
 図4は、位置検出用プローブ100の構成(主に配線関連の構成)を展開して示す図である。図4に示されるように、各センサユニット110は、電子スコープ10の挿入部内(挿入部可撓管11内及び湾曲部12内)に互いに機械的に干渉しない程度の間隔を空けて配置されている。一例として、各センサユニット110は、湾曲部12内では50mmピッチで配置されており、挿入部可撓管11内では100mmピッチで配置されている。 FIG. 4 is an expanded view of the configuration of the position detection probe 100 (mainly the configuration related to wiring). As shown in FIG. 4, the sensor units 110 are arranged in the insertion portion of the electronic scope 10 (in the insertion portion flexible tube 11 and the bending portion 12) with an interval that does not mechanically interfere with each other. Yes. As an example, the sensor units 110 are arranged at a pitch of 50 mm in the bending portion 12, and are arranged at a pitch of 100 mm in the insertion portion flexible tube 11.
 各センサユニット110のコイルセンサ111は、対応する信号線120aを介して回路基板15a上の回路と接続されている。回路基板15a上の回路は、コネクタケーブル16(図1参照)を介して形状検出用プロセッサ40と接続されている。 The coil sensor 111 of each sensor unit 110 is connected to a circuit on the circuit board 15a via a corresponding signal line 120a. The circuit on the circuit board 15a is connected to the shape detection processor 40 via the connector cable 16 (see FIG. 1).
 外部コイル装置30は、内蔵アンテナから交流磁界を発生させる。内蔵アンテナから発生された交流磁界により、位置検出用プローブ100に配置された各コイルセンサ111に起電力が発生して誘導電流が流れる。各コイルセンサ111を流れる誘導電流は、信号線120a、回路基板15a上の回路及びコネクタケーブル16を介して形状検出用プロセッサ40に入力される。 External coil device 30 generates an alternating magnetic field from the built-in antenna. Due to the alternating magnetic field generated from the built-in antenna, an electromotive force is generated in each coil sensor 111 disposed in the position detection probe 100 and an induced current flows. The induced current flowing through each coil sensor 111 is input to the shape detection processor 40 via the signal line 120a, the circuit on the circuit board 15a, and the connector cable 16.
 形状検出用プロセッサ40は、各コイルセンサ111を流れる誘導電流に基づいて各コイルセンサ111の位置を検出し、検出された各コイルセンサ111の位置を線で繋ぐことにより、電子スコープ10の挿入部の軸線を推定する。形状検出用プロセッサ40は、電子スコープ10を模したモデルを上記軸線に沿って貼り付けたものをモニタ50に出力する。これにより、モニタ50に、患者の体腔内に挿入された電子スコープ10の推定形状画像が表示される。なお、モニタ50には、電子スコープ10の推定形状画像が単独で若しくは電子スコープ10による撮影画像と並べて又は重ねて表示される。 The shape detection processor 40 detects the position of each coil sensor 111 based on the induced current flowing through each coil sensor 111 and connects the detected position of each coil sensor 111 with a line, thereby inserting the insertion portion of the electronic scope 10. The axis of is estimated. The shape detection processor 40 outputs the model imitating the electronic scope 10 pasted along the axis to the monitor 50. Thereby, the estimated shape image of the electronic scope 10 inserted into the body cavity of the patient is displayed on the monitor 50. Note that the estimated shape image of the electronic scope 10 is displayed on the monitor 50 singly or side by side or superimposed with the image captured by the electronic scope 10.
[位置検出用プローブ100の構成及び製造方法]
 次に、位置検出用プローブ100の構成及び製造方法について具体的に説明する。
[Configuration and Manufacturing Method of Position Detection Probe 100]
Next, the configuration and manufacturing method of the position detection probe 100 will be specifically described.
 センサユニット110は、コイルセンサ111を保持するコイルベース112を備えている。図5~図7に、コイルベース112の構成を示す。また、図8に、コイルベース112にコイルセンサ111を保持させた状態を示す。また、図9に、位置検出用プローブ100の製造方法を説明するための図を示す。 The sensor unit 110 includes a coil base 112 that holds a coil sensor 111. 5 to 7 show the configuration of the coil base 112. FIG. FIG. 8 shows a state where the coil sensor 111 is held on the coil base 112. FIG. 9 is a view for explaining a method for manufacturing the position detection probe 100.
 図5(a)は、コイルベース112の側面図である。図5(b)、図5(c)、図5(d)、図5(e)は、それぞれ、コイルベース112を図5(a)の矢印B方向、矢印C方向、矢印D方向、矢印E方向から見たときの図である。なお、図5においては、図面の明瞭化の便宜上、後述のパッド部112bD、配線パターン112bE及びランド部112bFの図示を省略している。 FIG. 5A is a side view of the coil base 112. 5 (b), FIG. 5 (c), FIG. 5 (d), and FIG. 5 (e) respectively show the coil base 112 in the direction of arrow B, arrow C, arrow D, and arrow in FIG. 5 (a). It is a figure when it sees from E direction. Note that in FIG. 5, for the sake of clarity of the drawing, illustration of a pad portion 112bD, a wiring pattern 112bE, and a land portion 112bF, which will be described later, is omitted.
 図5に示されるように、コイルベース112は、側面から見たときにコの字状となるように、円筒を一部刳り抜いた形状となっている。言い換えると、コイルベース112は、円筒形状を持つ一方の端部(図5(b)や図5(d)に示される端部)と他方の端部(図5(c)や図5(e)に示される端部)とを軸線直交方向の断面が略六日月状となる柱部で接続した形状となっている。以下、説明の便宜上、図5(b)や図5(d)に示されるコイルベース112の端部を「先端部112a」と記し、図5(c)や図5(e)に示されるコイルベース112の端部を「基端部112b」と記す。位置検出用プローブ100は、コイルベース112の先端部112aが電子スコープ10の先端(湾曲部12)側に向くように、電子スコープ10内に組み込まれる。 As shown in FIG. 5, the coil base 112 has a shape in which a part of the cylinder is hollowed out so as to have a U shape when viewed from the side. In other words, the coil base 112 has one end portion (end portion shown in FIG. 5B or FIG. 5D) having a cylindrical shape and the other end portion (FIG. 5C or FIG. 5E). ) Shown in FIG. 5) is connected by a pillar portion whose cross-section in the direction perpendicular to the axis is substantially a six-moon shape. Hereinafter, for convenience of explanation, the end portion of the coil base 112 shown in FIGS. 5B and 5D will be referred to as a “tip portion 112a”, and the coil shown in FIGS. 5C and 5E will be described. An end portion of the base 112 is referred to as a “base end portion 112b”. The position detection probe 100 is incorporated into the electronic scope 10 so that the distal end portion 112a of the coil base 112 faces the distal end (curved portion 12) side of the electronic scope 10.
 図6は、コイルベース112を図5(b)のA-A線で切断したときの断面図である。図5及び図6に示されるように、コイルベース112の先端部112aには、軸固定穴112aA及び部材固定穴112aBが形成されている。また、コイルベース112の基端部112bには、軸固定穴112bA、部材固定穴112bB及び一対のスルーホール112bCが形成されている。 FIG. 6 is a cross-sectional view of the coil base 112 taken along line AA in FIG. 5 (b). As shown in FIGS. 5 and 6, a shaft fixing hole 112 a </ i> A and a member fixing hole 112 a </ i> B are formed in the distal end portion 112 a of the coil base 112. A shaft fixing hole 112bA, a member fixing hole 112bB, and a pair of through holes 112bC are formed in the base end portion 112b of the coil base 112.
 次に、主に図9を用いて、本発明の一実施形態に係る位置検出用プローブ100の製造方法について説明する。なお、図9においては、図面の明瞭化の便宜上、配線パターン112bEの図示を省略している。以下に説明する製造方法の各工程は、矛盾しない範囲であれば適宜前後してもよい。 Next, a method of manufacturing the position detection probe 100 according to an embodiment of the present invention will be described mainly using FIG. In FIG. 9, the wiring pattern 112bE is not shown for the sake of clarity. Each process of the manufacturing method described below may be appropriately changed as long as it does not contradict.
〔工程1:図9(a)〕
 本工程1では、コイルベース112の先端部112aに形成された部材固定穴112aBに、突起部材113が取り付けられて固定される。また、コイルベース112の基端部112bに形成された部材固定穴112bBにも、突起部材113が取り付けられて固定される。突起部材113は、例えば接着や圧入により各部材固定穴に固定される。なお、突起部材113は、コイルベース112に一体形成されたものであってもよい。この場合、本工程1が不要となる。
[Step 1: FIG. 9 (a)]
In this step 1, the protruding member 113 is attached and fixed in the member fixing hole 112aB formed in the tip portion 112a of the coil base 112. Further, the protruding member 113 is also attached and fixed to the member fixing hole 112bB formed in the base end portion 112b of the coil base 112. The protruding member 113 is fixed to each member fixing hole by, for example, adhesion or press fitting. The protruding member 113 may be integrally formed with the coil base 112. In this case, this process 1 becomes unnecessary.
〔工程2:図9(b)〕
 図8(a)は、センサユニット110の内部構造を示す図である。図8(b)は、センサユニット110を図8(a)の矢印H方向から見たときの図である。図8に示されるように、コイルセンサ111は、コイル線材が芯材(磁性コア)111aの外周面上に巻き回されることによって形成されている。以下、芯材111aに巻き回されたコイル線材の巻線部分を「コイル111b」と記す。
[Step 2: FIG. 9B]
FIG. 8A is a diagram illustrating the internal structure of the sensor unit 110. FIG. 8B is a diagram when the sensor unit 110 is viewed from the direction of the arrow H in FIG. As shown in FIG. 8, the coil sensor 111 is formed by winding a coil wire on the outer peripheral surface of a core (magnetic core) 111a. Hereinafter, the winding portion of the coil wire wound around the core material 111a is referred to as “coil 111b”.
 本工程2では、コイルベース112にコイルセンサ111を保持させる。具体的には、コイルベース112の先端部112aに形成された軸固定穴112aAに、芯材111aの一端が挿入され、且つ、基端部112bに形成された軸固定穴112bAに、芯材111aの他端が挿入されることにより、コイルセンサ111がコイルベース112に保持される。 In this process 2, the coil sensor 111 is held on the coil base 112. Specifically, one end of the core material 111a is inserted into the shaft fixing hole 112aA formed in the distal end portion 112a of the coil base 112, and the core material 111a is inserted into the shaft fixing hole 112bA formed in the base end portion 112b. The other end of the coil sensor 111 is inserted, whereby the coil sensor 111 is held on the coil base 112.
 各軸固定穴への芯材111aの挿入に先立ち、基端部112bに形成された一対のスルーホール112bCに、コイル111bの各端より引き出されたコイル線材(一対の端子線111bA)が挿通される。各端子線111bAは、スルーホール112bCを挿通された先端部分(接続端)が基端部112bに形成されたランド部112bFに半田付けされる。 Prior to the insertion of the core material 111a into each shaft fixing hole, the coil wire material (a pair of terminal wires 111bA) drawn from each end of the coil 111b is inserted into the pair of through holes 112bC formed in the base end portion 112b. The Each terminal wire 111bA is soldered to a land portion 112bF having a distal end portion (connection end) inserted through the through hole 112bC formed in the proximal end portion 112b.
〔工程3:図9(c)〕
 コイルベース112の基端部112b側のケーブル120(以下、説明の便宜上、「基端側ケーブル120’」と記す。)内には、センサユニット110に対応する一対の信号線120a(以下、説明の便宜上、「信号線120a’」と記す。)に加えて、当該センサユニット110よりも電子スコープ10の先端側に位置することになるセンサユニット110に対応する複数の信号線120aが被覆保護されている。例示的には、電子スコープ10内で最も基端側に位置することになるセンサユニット110に接続される基端側ケーブル120’は、24芯ケーブル(一対の信号線120a’と、当該センサユニット110よりも電子スコープ10の先端側に位置することになる残り(11個)の各センサユニット110に接続される十一対の信号線120a)となっている。
[Step 3: FIG. 9 (c)]
In the cable 120 on the base end portion 112b side of the coil base 112 (hereinafter, referred to as “base end side cable 120 ′” for convenience of description), a pair of signal lines 120a (hereinafter, description) corresponding to the sensor unit 110 are provided. For the sake of convenience, the signal line 120 a ′ is indicated.) In addition, a plurality of signal lines 120 a corresponding to the sensor unit 110 that is positioned closer to the distal end side of the electronic scope 10 than the sensor unit 110 are covered and protected. ing. Illustratively, the proximal-side cable 120 ′ connected to the sensor unit 110 that is positioned closest to the proximal end in the electronic scope 10 is a 24-core cable (a pair of signal lines 120 a ′ and the sensor unit). There are ten pairs of signal lines 120 a) connected to the remaining (11) sensor units 110 that are positioned closer to the distal end side of the electronic scope 10 than 110.
 本工程3では、センサユニット110にケーブル120が接続される。具体的には、基端側ケーブル120’内の一対の信号線120a’の接続端は、コイルベース112の基端部112bに形成された、対応するパッド部112bDに半田付けされる。パッド部112bDと接続されたランド部112bFにコイル111bの端子線111bAが半田付けされていることから、コイル111bと信号線120a’とが電気的に接続される。 In this process 3, the cable 120 is connected to the sensor unit 110. Specifically, the connection ends of the pair of signal lines 120 a ′ in the base end side cable 120 ′ are soldered to the corresponding pad portions 112 b D formed on the base end portion 112 b of the coil base 112. Since the terminal line 111bA of the coil 111b is soldered to the land part 112bF connected to the pad part 112bD, the coil 111b and the signal line 120a 'are electrically connected.
 図7(a)は、コイルベース112の側面図である。図7(b)は、コイルベース112を図7(a)の矢印F方向又は矢印G方向から見たときの図である。なお、図7においては、図面の明瞭化の便宜上、軸固定穴112aAをはじめとする、図5に示される各穴形状の図示を省略している。 FIG. 7A is a side view of the coil base 112. FIG. 7B is a view when the coil base 112 is viewed from the arrow F direction or the arrow G direction of FIG. In FIG. 7, illustration of each hole shape shown in FIG. 5 including the shaft fixing hole 112aA is omitted for the sake of clarity of the drawing.
 図7に示されるように、コイルベース112は、表面に複数の配線パターンが形成された3次元射出成形回路部品(MID(Molded Interconnect Device))である。コイルベース112には、複数(ここでは22本)の配線パターン112bEが形成されている。図7(b)に示されるように、複数の配線パターン112bEは、一端がコイルベース112の基端部112bの外周面上に等間隔で並べて形成され、基端部112bと先端部112aとを接続する柱部上に直線状に延びて形成され、他端が先端部112aの外周面上に等間隔で並べて形成されている。 As shown in FIG. 7, the coil base 112 is a three-dimensional injection-molded circuit component (MID (Molded Interconnect Device)) having a plurality of wiring patterns formed on the surface thereof. A plurality (22 in this case) of wiring patterns 112bE are formed on the coil base 112. As shown in FIG. 7B, one end of each of the plurality of wiring patterns 112bE is formed on the outer peripheral surface of the base end portion 112b of the coil base 112 at equal intervals, and the base end portion 112b and the tip end portion 112a are formed. It is formed to extend linearly on the connecting column portion, and the other end is formed on the outer peripheral surface of the tip end portion 112a at regular intervals.
 基端側ケーブル120’内の残りの信号線120a(一対の信号線120a’以外の信号線)の接続端は、コイルベース112の基端部112bに形成された、対応する配線パターン112bEの一端に半田付けされる。 The connection end of the remaining signal line 120a (the signal line other than the pair of signal lines 120a ′) in the base end side cable 120 ′ is one end of the corresponding wiring pattern 112bE formed at the base end portion 112b of the coil base 112. Soldered to.
 コイルベース112の先端部112a側のケーブル120(以下、説明の便宜上、「先端側ケーブル120”」と記す。)内には、複数の信号線120aが被覆保護されている。先端側ケーブル120”内の各信号線120aの接続端は、先端部112aに形成された、対応する配線パターン112bEの他端に半田付けされる。これにより、基端側ケーブル120’内の各信号線120aと先端側ケーブル120”内の各信号線120aとが各配線パターン112bEを介して電気的に接続される。 A plurality of signal lines 120a are covered and protected in the cable 120 on the tip 112a side of the coil base 112 (hereinafter referred to as “tip cable 120” for convenience of explanation). The connection end of each signal line 120a in the distal end side cable 120 ″ is soldered to the other end of the corresponding wiring pattern 112bE formed in the distal end portion 112a. Thereby, each end in the proximal end side cable 120 ′ is soldered. The signal line 120a and each signal line 120a in the distal end side cable 120 ″ are electrically connected through the respective wiring patterns 112bE.
 図10(a)は、信号線120aの接続について補助説明するための図である。図10(b)は、図10(a)の説明補足図である。図10(b)に示されるように、図10(a)では、コイル111bを符号Cで記し、配線パターン112bEを符号Pで記す。符号C及び符号Pを囲う矩形の図形は、センサユニット110を示している。符号Cに入力される矢印上の数字は、コイル111bの各端子線111bAに接続される信号線120a’の本数(ここでは必ず「2」)を示し、符号Pに入力される矢印上の数字は、コイルベース112の基端部112b上に形成された各配線パターン112bEに接続される信号線120aの本数を示す。符号Pと先端側ケーブル120”とを接続する線上の数字は、コイルベース112の先端部112a上に形成された各配線パターン112bEに接続される信号線120aの本数を示す。図10(a)においては、説明の便宜上、電子スコープ10内で最も基端側に位置することになるセンサユニット110から順にアルファベットを付す。 FIG. 10A is a diagram for assistance in explaining the connection of the signal line 120a. FIG. 10B is an explanatory supplementary diagram of FIG. As shown in FIG. 10 (b), in FIG. 10 (a), the coil 111b is denoted by the symbol C, and the wiring pattern 112bE is denoted by the symbol P. A rectangular figure surrounding the code C and the code P indicates the sensor unit 110. The number on the arrow input to the symbol C indicates the number of signal lines 120a ′ (here, always “2”) connected to each terminal line 111bA of the coil 111b, and the number on the arrow input to the symbol P. Indicates the number of signal lines 120a connected to each wiring pattern 112bE formed on the base end portion 112b of the coil base 112. The numbers on the line connecting the reference sign P and the distal end side cable 120 ″ indicate the number of signal lines 120a connected to the respective wiring patterns 112bE formed on the distal end portion 112a of the coil base 112. FIG. In FIG. 2, for convenience of explanation, alphabets are added in order from the sensor unit 110 that is positioned closest to the proximal end in the electronic scope 10.
 図10(a)に示されるように、センサユニット110Aに接続される基端側ケーブル120’内には24本(十二対)の信号線120aが被覆保護されている。センサユニット110Aに対し、24本の信号線120aのうち、2本(一対)の信号線120a’がコイル111bの各端子線111bAとパッド部112bDで半田接続され、残りの22本(十一対)の信号線120aがコイルベース112の基端部112b上に形成された各配線パターン112bEの一端と半田接続される。一方、センサユニット110Aに接続される先端側ケーブル120”内には22本(十一対)の信号線120aが被覆保護されている。センサユニット110Aに対し、22本全ての信号線120aがコイルベース112の先端部112a上に形成された各配線パターン112bEの他端と半田接続される。 As shown in FIG. 10A, 24 (12 pairs) signal lines 120a are covered and protected in the proximal cable 120 'connected to the sensor unit 110A. Of the 24 signal lines 120a, two (a pair) of signal lines 120a 'are solder-connected to the sensor unit 110A by the terminal lines 111bA of the coil 111b and the pad portion 112bD, and the remaining 22 (ten pairs). ) Is connected to one end of each wiring pattern 112bE formed on the base end portion 112b of the coil base 112 by soldering. On the other hand, 22 (ten pairs) of signal lines 120a are covered and protected in the distal end side cable 120 ″ connected to the sensor unit 110A. All 22 signal lines 120a are coiled with respect to the sensor unit 110A. The other end of each wiring pattern 112bE formed on the tip 112a of the base 112 is soldered.
 次のセンサユニット110Bに対しては、基端側ケーブル120’内(上記の先端側ケーブル120”)の2本(一対)の信号線120a’がコイル111bの各端子線111bAとパッド部112bDで半田接続され、残りの20本(十対)の信号線120aがコイルベース112の基端部112b上に形成された各配線パターン112bEの一端と半田接続される。一方、センサユニット110Aに接続される先端側ケーブル120”内には20本(十対)の信号線120aが被覆保護されている。センサユニット110Bに対し、20本全ての信号線120aがコイルベース112の先端部112a上に形成された各配線パターン112bEの他端と半田接続される。 For the next sensor unit 110B, two (a pair) of signal lines 120a ′ in the proximal end side cable 120 ′ (the above-mentioned distal end side cable 120 ″) are connected to each terminal line 111bA and pad portion 112bD of the coil 111b. The remaining 20 (ten pairs) signal lines 120a are solder-connected to one end of each wiring pattern 112bE formed on the base end portion 112b of the coil base 112. On the other hand, connected to the sensor unit 110A. In the distal end side cable 120 ″, 20 (ten pairs) signal lines 120a are covered and protected. All 20 signal lines 120a are solder-connected to the other end of each wiring pattern 112bE formed on the tip 112a of the coil base 112 to the sensor unit 110B.
 このように、基端側のセンサユニット110から順にケーブル120内の信号線120aをセンサユニット110に一対ずつ接続し、ケーブル120内の残りの信号線120aを次のセンサユニット110に接続する作業を繰り返すことにより、図4の展開図に示されるように、各センサユニット110のコイルセンサ111が、対応する信号線120aを介して回路基板15a上の回路と接続される。 In this manner, the signal lines 120 a in the cable 120 are connected to the sensor unit 110 in pairs from the sensor unit 110 on the proximal end side, and the remaining signal lines 120 a in the cable 120 are connected to the next sensor unit 110. By repeating, the coil sensor 111 of each sensor unit 110 is connected to the circuit on the circuit board 15a via the corresponding signal line 120a as shown in the development view of FIG.
 本工程3では、更に、センサユニット110とケーブル120の端部とが固定される。具体的には、図9(c)に示されるように、コイルベース112の各端部に取り付けられた突起部材113とケーブル120の端部にワイヤ114が巻き付けられることにより、センサユニット110とケーブル120の端部とが固定される。 In step 3, the sensor unit 110 and the end of the cable 120 are further fixed. Specifically, as shown in FIG. 9C, the sensor unit 110 and the cable are formed by winding the wire 114 around the protruding member 113 attached to each end of the coil base 112 and the end of the cable 120. 120 ends are fixed.
 なお、コイルベース112及び突起部材113は、突起部材113とケーブル120の端部とをワイヤ114で巻き付けたときに、略円筒形を持つコイル111bとケーブル120とを略同軸に位置させる形状となっている。コイル111bとケーブル120とを略同軸に位置させることにより、位置検出用プローブ100の細径化が図れる。 Note that the coil base 112 and the protruding member 113 have a shape in which the coil 111b having a substantially cylindrical shape and the cable 120 are positioned substantially coaxially when the protruding member 113 and the end portion of the cable 120 are wound by the wire 114. ing. By positioning the coil 111b and the cable 120 substantially coaxially, the diameter of the position detection probe 100 can be reduced.
〔工程4:図9(d)〕
 本工程4では、半田付け部を含むコイルベース112の各端部、突起部材113、ワイヤ114及びケーブル120の端部の全体が接着剤により補強される。
[Step 4: FIG. 9 (d)]
In step 4, each end portion of the coil base 112 including the soldering portion, the protruding member 113, the wire 114, and the entire end portion of the cable 120 are reinforced with an adhesive.
〔工程5:図9(e)〕
 本工程5では、工程4で補強された接着部を含むセンサユニット110の全体が熱収縮チューブ115によって被覆保護される。
[Step 5: FIG. 9 (e)]
In step 5, the entire sensor unit 110 including the adhesive portion reinforced in step 4 is covered and protected by the heat shrinkable tube 115.
 以上の各工程が各センサユニット110に対して行われることにより、位置検出用プローブ100の全体が完成する。 By performing the above steps for each sensor unit 110, the entire position detection probe 100 is completed.
 本発明の一実施形態に係る位置検出用プローブ100は、外皮チューブを備えない構成であるため、列状に配置された複数のセンサユニット110を細長い外皮チューブ内に挿通して配置する必要がない。また、修理時にセンサユニット110や信号線120aを外皮チューブから取り外したり挿通配置したりする必要がない。そのため、従来と比べて組立性及び保守性が改善されている。 Since the position detection probe 100 according to the embodiment of the present invention is configured not to include an outer tube, it is not necessary to insert a plurality of sensor units 110 arranged in a row through the elongated outer tube. . Further, it is not necessary to remove the sensor unit 110 and the signal line 120a from the outer tube or to be inserted and arranged at the time of repair. Therefore, the assemblability and maintainability are improved as compared with the prior art.
 また、信号線120aは、剥き出しになっておらず、位置検出用プローブ100の屈曲動作を妨げない程度の適度な剛性を持つケーブル120によって被覆保護されている。加えて、突起部材113とケーブル120の端部とがワイヤ114で巻き付けられて固定されている。そのため、位置検出用プローブ100の屈曲時等の負荷が耐屈曲性の高いケーブル120に掛かり、一般に負荷が集中しやすいと考えられる部分(パッド部112bDの半田付け部から露出する信号線120a’の根元部分)をはじめとする信号線120aの全体に実質的に掛からない。そのため、信号線120aの断線が防止される。 Further, the signal line 120a is not exposed and is covered and protected by a cable 120 having an appropriate rigidity that does not hinder the bending operation of the position detection probe 100. In addition, the protruding member 113 and the end of the cable 120 are wound around the wire 114 and fixed. For this reason, a load at the time of bending of the position detection probe 100 is applied to the cable 120 having high bending resistance, and a portion where the load is generally likely to concentrate (the signal line 120a ′ exposed from the soldered portion of the pad portion 112bD). The entire signal line 120a including the root portion) is not substantially covered. Therefore, disconnection of the signal line 120a is prevented.
 以上が本発明の例示的な実施形態の説明である。本発明の実施形態は、上記に説明したものに限定されず、本発明の技術的思想の範囲において様々な変形が可能である。例えば明細書中に例示的に明示される実施形態等又は自明な実施形態等を適宜組み合わせた内容も本発明の実施形態に含まれる。 This completes the description of the exemplary embodiment of the present invention. Embodiments of the present invention are not limited to those described above, and various modifications are possible within the scope of the technical idea of the present invention. For example, the embodiment of the present invention also includes contents appropriately combined with embodiments or the like clearly shown in the specification or obvious embodiments.
 図11は、挿入部可撓管11の変形例を示す図である。以上説明した実施形態において、挿入部可撓管11のうち湾曲部12と手元操作部13との間の箇所において、力がかかると受動的に湾曲する部分(受動湾曲部)11’を設けるともできる。例えば湾曲部12を腸内に挿入する場合、湾曲部12が腸壁に当たって力が加えられると、部分11’が自動的に撓む。これにより、湾曲部12を腸壁に対して押し付ける力が、湾曲部12を前方(腸のより奥部)へ進行させる力に変換されることになる。したがって、湾曲部12が腸壁に接触した際に、患者に対して与える痛みを軽減することができる。 FIG. 11 is a view showing a modified example of the insertion portion flexible tube 11. In the embodiment described above, a portion (passive bending portion) 11 ′ that passively bends when a force is applied may be provided at a location between the bending portion 12 and the hand operating portion 13 in the insertion portion flexible tube 11. it can. For example, when the bending portion 12 is inserted into the intestine, when the bending portion 12 hits the intestinal wall and a force is applied, the portion 11 ′ is automatically bent. Thereby, the force which presses the curved part 12 with respect to an intestinal wall is converted into the force which advances the curved part 12 ahead (back part of an intestine). Therefore, the pain given to the patient when the bending portion 12 contacts the intestinal wall can be reduced.
 挿入部可撓管11の一部を受動的に湾曲するように構成した場合、オペレータによる操作が必ずしもそのまま挿入部可撓管11の形状として反映されるとは限らないので、高い熟練度が必要になる傾向がある。本実施形態を適用することにより、挿入部可撓管11の形状を正確に検出することができるので、受動的に湾曲する部分11’を備える構成において好適である。 When a part of the insertion portion flexible tube 11 is passively bent, the operation by the operator is not necessarily reflected as it is in the shape of the insertion portion flexible tube 11, so a high degree of skill is required. Tend to be. By applying this embodiment, the shape of the insertion portion flexible tube 11 can be accurately detected, which is preferable in a configuration including a passively curved portion 11 ′.
 すなわち受動湾曲部11’を備える内視鏡システムは、以下の構成を備えるものである:
 本実施形態に係る内視鏡用形状検出装置、
 被検体に対して挿入する可撓管、
 を備え、
 前記可撓管は、前記可撓管の先端部が前記被検体の内部の壁部と接触した状態で、前記可撓管を前記被検体のさらに内部に向かって進行させる力が加えられたとき、受動的に湾曲する部位を有する
 ことを特徴とする内視鏡システム。
That is, the endoscope system including the passive bending portion 11 ′ has the following configuration:
Endoscope shape detection apparatus according to the present embodiment,
A flexible tube to be inserted into a subject,
With
When the flexible tube is applied with a force to advance the flexible tube further toward the inside of the subject in a state where the distal end portion of the flexible tube is in contact with the inner wall of the subject. An endoscope system characterized by having a passively curved portion.
 従来の内視鏡位置検出装置において外皮チューブを除去した場合、位置検出用プローブ100を屈曲させたとき信号線120a’の根元部分に負荷が集中するのは、ケーブル120が根元から屈曲するからであると考えられる。本発明においては、突起部材113がケーブル120の剛性を補強することにより、少なくともケーブル120のうち突起部材113と隣接している部分はその他部分と比較して屈曲しにくくなっている。換言すると本発明においては、位置検出用プローブ100を屈曲させたときケーブル120が屈曲するのは、信号線120a’の根元部分ではなく突起部材113の先端部分である。したがって信号線120a’の根元部分から断線することを防止できる。この観点においては、突起部材113の剛性はケーブル120の剛性よりも高いことが望ましいが、突起部材113によってケーブル120が屈曲することを防止または屈曲の程度を抑制できれば、必ずしもその限りではない。 When the outer tube is removed in the conventional endoscope position detection device, the load concentrates on the root portion of the signal line 120a ′ when the position detection probe 100 is bent because the cable 120 is bent from the root. It is believed that there is. In the present invention, since the protruding member 113 reinforces the rigidity of the cable 120, at least a portion of the cable 120 adjacent to the protruding member 113 is less likely to bend than the other portions. In other words, in the present invention, when the position detection probe 100 is bent, the cable 120 is bent not at the root portion of the signal line 120a 'but at the tip portion of the protruding member 113. Therefore, it is possible to prevent disconnection from the base portion of the signal line 120a '. From this point of view, it is desirable that the rigidity of the protruding member 113 is higher than the rigidity of the cable 120, but this is not necessarily limited as long as the protruding member 113 can prevent the cable 120 from being bent or suppress the degree of bending.
1 電子内視鏡システム
10 電子スコープ
11 挿入部可撓管
12 湾曲部
13 手元操作部
14 ユニバーサルケーブル
15 コネクタ部
15a 回路基板
16 コネクタケーブル
20 内視鏡用プロセッサ
21 コネクタ部
30 外部コイル装置
40 形状検出用プロセッサ
50 モニタ
100 位置検出用プローブ
110 センサユニット
111 コイルセンサ
111a 芯材
111b コイル
111bA 端子線
112 コイルベース
112a 先端部
112aA 軸固定穴
112aB 部材固定穴
112b 基端部
112bA 軸固定穴
112bB 部材固定穴
112bC スルーホール
112bD パッド部
112bE 配線パターン
112bF ランド部
113 突起部材
114 ワイヤ
115 熱圧縮チューブ
120 ケーブル
120a 信号線
DESCRIPTION OF SYMBOLS 1 Electronic endoscope system 10 Electronic scope 11 Insertion part flexible tube 12 Bending part 13 Hand operation part 14 Universal cable 15 Connector part 15a Circuit board 16 Connector cable 20 Endoscope processor 21 Connector part 30 External coil device 40 Shape detection Processor 50 Monitor 100 Position detection probe 110 Sensor unit 111 Coil sensor 111a Core material 111b Coil 111bA Terminal wire 112 Coil base 112a Tip 112aA Shaft fixing hole 112aB Member fixing hole 112b Base end 112bA Shaft fixing hole 112bB Member fixing hole 112bC Through hole 112bD Pad portion 112bE Wiring pattern 112bF Land portion 113 Projection member 114 Wire 115 Thermal compression tube 120 Cable 120a Signal line

Claims (7)

  1.  列状に所定の間隔で配置された複数のセンサ本体と、
     各前記センサ本体を保持する保持部材と、
     前記各センサ本体を保持する各保持部材間に配置され、前記各センサ本体と接続される絶縁電線を被覆材で被覆するケーブルと、
     前記各保持部材間において前記保持部材とこれに隣接する前記ケーブルの端部とを固定する固定部材と、
    を備える、
    内視鏡用形状検出装置。
    A plurality of sensor bodies arranged in rows at predetermined intervals;
    A holding member for holding each sensor body;
    A cable that is disposed between the holding members that hold the sensor bodies, and covers the insulated wires connected to the sensor bodies with a covering material;
    A fixing member that fixes the holding member and an end of the cable adjacent to the holding member between the holding members;
    Comprising
    Endoscope shape detection device.
  2.  前記固定部材は、
      前記保持部材に取り付けられた又は該保持部材と一体に形成された突起部材と、
      前記突起部材と前記ケーブルの端部に巻き付けられることにより、該突起部材と該端部とを固定するワイヤと、
     を有する、
    請求項1に記載の内視鏡用形状検出装置。
    The fixing member is
    A protruding member attached to or formed integrally with the holding member;
    A wire for fixing the protruding member and the end by being wound around the protruding member and the end of the cable;
    Having
    The shape detection apparatus for endoscopes according to claim 1.
  3.  前記固定部材は、
      略円筒形の前記センサ本体と前記隣接するケーブルとが略同軸となる位置で前記保持部材と該ケーブルの端部とを固定する、
    請求項1又は請求項2に記載の内視鏡用形状検出装置。
    The fixing member is
    Fixing the holding member and the end of the cable at a position where the substantially cylindrical sensor body and the adjacent cable are substantially coaxial;
    The shape detection apparatus for endoscopes according to claim 1 or 2.
  4.  前記保持部材は、
      複数の配線パターンが形成された3次元射出成形回路部品であり、
      前記保持部材と隣接する一方のケーブル内の絶縁電線が、対応する配線パターンの一端に接続され、該保持部材と隣接する他方のケーブル内の絶縁電線が、対応する配線パターンの他端に接続されている、
    請求項1から請求項3の何れか一項に記載の内視鏡用形状検出装置。
    The holding member is
    It is a three-dimensional injection molded circuit component in which a plurality of wiring patterns are formed,
    The insulated wire in one cable adjacent to the holding member is connected to one end of the corresponding wiring pattern, and the insulated wire in the other cable adjacent to the holding member is connected to the other end of the corresponding wiring pattern. ing,
    The shape detection apparatus for endoscopes as described in any one of Claims 1-3.
  5.  前記センサ本体は、
      コイルである、
    請求項1から請求項4の何れか一項に記載の内視鏡用形状検出装置。
    The sensor body is
    A coil,
    The endoscope shape detection apparatus according to any one of claims 1 to 4.
  6.  前記センサ本体はコイルであり、
     前記保持部材は、
      前記内視鏡の基端側に位置する基端部と、
      前記内視鏡の先端側に位置する先端部と、
     を有し、
      前記基端部に導通部が形成されており、
      保持している前記コイルの各端より引き出された一対の端子線と、前記基端部と隣接するケーブル内の絶縁電線のうち該一対の端子線に対応する絶縁電線とを、前記導通部を介して接続しており、
      前記配線パターンは、
       前記基端部と隣接するケーブル内の絶縁電線のうち残りの絶縁電線と、前記先端部と隣接するケーブル内の絶縁電線であって、当該保持部材よりも前記内視鏡の先端側に位置する保持部材に保持されているセンサ本体が有する各端子線と接続される絶縁電線とを、接続する、
    請求項1から4のいずれか1項に記載の内視鏡用形状検出装置。
    The sensor body is a coil,
    The holding member is
    A proximal end portion located on the proximal end side of the endoscope;
    A distal end portion located on the distal end side of the endoscope;
    Have
    A conductive portion is formed at the base end,
    A pair of terminal wires drawn from each end of the coil that is held, and an insulated wire corresponding to the pair of terminal wires among the insulated wires in the cable adjacent to the base end portion, the conductive portion Connected through
    The wiring pattern is
    Among the insulated wires in the cable adjacent to the proximal end portion, the remaining insulated wires and the insulated wires in the cable adjacent to the distal end portion, which are located closer to the distal end side of the endoscope than the holding member Connect the insulated wires connected to each terminal wire of the sensor body held by the holding member,
    The shape detection apparatus for endoscopes according to any one of claims 1 to 4.
  7.  請求項1から6のいずれか1項記載の内視鏡用形状検出装置、
     被検体に対して挿入する可撓管、
     を備え、
     前記可撓管は、前記可撓管の先端部が前記被検体の内部の壁部と接触した状態で、前記可撓管を前記被検体のさらに内部に向かって進行させる力が加えられたとき、受動的に湾曲する部位を有する
     ことを特徴とする内視鏡システム。
    The endoscope shape detection device according to any one of claims 1 to 6,
    A flexible tube to be inserted into a subject,
    With
    When the flexible tube is applied with a force to advance the flexible tube further toward the inside of the subject in a state where the distal end portion of the flexible tube is in contact with the inner wall of the subject. An endoscope system characterized by having a passively curved portion.
PCT/JP2017/012140 2016-03-25 2017-03-24 Endoscopic shape detection device WO2017164401A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780000927.7A CN107438391B (en) 2016-03-25 2017-03-24 Endoscope-use shape detecting apparatus
JP2017544046A JP6397137B2 (en) 2016-03-25 2017-03-24 Endoscope shape detection device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-062202 2016-03-25
JP2016062202 2016-03-25

Publications (1)

Publication Number Publication Date
WO2017164401A1 true WO2017164401A1 (en) 2017-09-28

Family

ID=59899548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/012140 WO2017164401A1 (en) 2016-03-25 2017-03-24 Endoscopic shape detection device

Country Status (3)

Country Link
JP (1) JP6397137B2 (en)
CN (1) CN107438391B (en)
WO (1) WO2017164401A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1075929A (en) * 1996-09-06 1998-03-24 Olympus Optical Co Ltd Coil device for detecting endoscope position
JP2002065583A (en) * 2000-08-29 2002-03-05 Olympus Optical Co Ltd Endoscope shape detecting probe
WO2014010288A1 (en) * 2012-07-13 2014-01-16 オリンパスメディカルシステムズ株式会社 Probe and endoscope
JP2015029642A (en) * 2013-08-01 2015-02-16 オリンパスメディカルシステムズ株式会社 Substrate part arranged in detection device of medical instrument and the substrate part-equipped detection device for medical instrument

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4766902B2 (en) * 2005-03-31 2011-09-07 オリンパスメディカルシステムズ株式会社 Surgery support device
WO2009097461A1 (en) * 2008-01-29 2009-08-06 Neoguide Systems Inc. Apparatus and methods for automatically controlling an endoscope
EP2581027B1 (en) * 2010-06-09 2014-11-26 Olympus Medical Systems Corp. Probe shape detection apparatus and probe shape detection method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1075929A (en) * 1996-09-06 1998-03-24 Olympus Optical Co Ltd Coil device for detecting endoscope position
JP2002065583A (en) * 2000-08-29 2002-03-05 Olympus Optical Co Ltd Endoscope shape detecting probe
WO2014010288A1 (en) * 2012-07-13 2014-01-16 オリンパスメディカルシステムズ株式会社 Probe and endoscope
JP2015029642A (en) * 2013-08-01 2015-02-16 オリンパスメディカルシステムズ株式会社 Substrate part arranged in detection device of medical instrument and the substrate part-equipped detection device for medical instrument

Also Published As

Publication number Publication date
CN107438391A (en) 2017-12-05
JP6397137B2 (en) 2018-09-26
CN107438391B (en) 2019-03-08
JPWO2017164401A1 (en) 2018-04-05

Similar Documents

Publication Publication Date Title
EP2979616B1 (en) Durable flexible circuit assembly
CN106886089B (en) Endoscope with a detachable handle
JP3631336B2 (en) Endoscope position detection coil device
JP6109079B2 (en) Cable connection structure and imaging device
JPH11507580A (en) Catheter with electromagnetic guidance sensor
JP5973761B2 (en) Cable connection structure
JP6358806B2 (en) Cable mounting structure, cable connection structure, endoscope apparatus
WO2013074036A1 (en) Catheter component
JPWO2013039059A1 (en) Endoscope insertion shape observation probe
JP4633282B2 (en) Endoscope
JP5546597B2 (en) Harness for medical device and assembly method of medical device
US20170181609A1 (en) Endoscope
JP6397137B2 (en) Endoscope shape detection device
WO2018094058A1 (en) High capacity connector for medical devices
JP6537508B2 (en) Cable connection structure and endoscope apparatus
JP3615169B2 (en) Insertion shape detection probe
JP3689188B2 (en) Imaging device
JP3586180B2 (en) Endoscope shape detection probe
JP2016137035A (en) Endoscope
JP6487094B2 (en) Cable mounting structure, cable connection structure, endoscope apparatus, and method for manufacturing cable mounting structure
JP2001051210A (en) Electronic endoscope
JP4681941B2 (en) Insertion shape detection probe
JP6132963B2 (en) Cable connection structure, ultrasound probe and ultrasound endoscope system
JP6379047B2 (en) Endoscope
JP6697273B2 (en) Endoscope with magnetic sensor unit

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017544046

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17770441

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17770441

Country of ref document: EP

Kind code of ref document: A1