WO2017164390A1 - Antibody capable of binding to undifferentiated germ cells of scombridae fish - Google Patents

Antibody capable of binding to undifferentiated germ cells of scombridae fish Download PDF

Info

Publication number
WO2017164390A1
WO2017164390A1 PCT/JP2017/012111 JP2017012111W WO2017164390A1 WO 2017164390 A1 WO2017164390 A1 WO 2017164390A1 JP 2017012111 W JP2017012111 W JP 2017012111W WO 2017164390 A1 WO2017164390 A1 WO 2017164390A1
Authority
WO
WIPO (PCT)
Prior art keywords
fish
germ cells
mackerel
undifferentiated germ
undifferentiated
Prior art date
Application number
PCT/JP2017/012111
Other languages
French (fr)
Japanese (ja)
Inventor
健介 市田
林 誠
良輔 矢澤
竹内 裕
吉崎 悟朗
Original Assignee
国立大学法人東京海洋大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京海洋大学 filed Critical 国立大学法人東京海洋大学
Priority to JP2018507454A priority Critical patent/JP7006939B2/en
Priority to AU2017238706A priority patent/AU2017238706A1/en
Publication of WO2017164390A1 publication Critical patent/WO2017164390A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New breeds of animals
    • A01K67/02Breeding vertebrates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Definitions

  • the present invention relates to an antibody that specifically recognizes an undifferentiated germ cell of a mackerel fish, a method for concentrating and inducing differentiation of an undifferentiated germ cell of a mackerel fish, and a mackerel using these methods.
  • the present invention relates to a method for producing sperm or egg of a family fish and a method for producing a mackerel fish.
  • Bluefin tuna and other mackerel fish are important fisheries with high economic value.
  • large-scale mackerel fish such as bluefin tuna and southern bluefin tuna, which are in high demand as high-grade fish, has a problem of a significant decrease in the amount of natural resources due to overfishing. Therefore, artificial seedling production and artificial seedling (fry) release for the purpose of increasing the amount of resources are being studied.
  • artificial seedling production and artificial seedling (fry) release for the purpose of increasing the amount of resources are being studied.
  • genetic diversity of individuals that become parent fish is required, and therefore it is necessary to grow a large number of parent fish.
  • bluefin tuna for example, weighs more than 100 kg, has a length of 1 m or more, matures only when it is 3-5 years of age, so it takes a long time to become a parent fish and requires a very large breeding space for swimming at high speed. And Furthermore, artificial ripening is technically difficult due to its weak handling stress, and the success rate of one-to-one mating is low. From such a background, it is extremely difficult in terms of cost and technology to raise a large number of parent fish under artificial management and collect sperm and eggs, including problems of feed and breeding space.
  • the present inventors have transplanted germ cells derived from different types of fish (donor fish) different from the host (recipient) fish into the abdominal cavity of the individual host fish before and after hatching.
  • germ cells can be induced to differentiate into germ line (gametes), and have succeeded in inducing differentiation of gametes of target fish using heterologous host fish (for example, patents) Reference 1).
  • This technique is also called surrogate parent fish technique or borrowed belly farming technique, and sperm and eggs of fish that are difficult to breed such as bluefin tuna are produced by heterogeneous host fish that are easy to breed and are mated at low cost and simple seedling production It is expected as a technology that enables
  • Patent Document 1 in order to isolate only primordial germ cells, genetic recombination in which a GFP (Green Fluorescent Protein) gene is introduced into the transcriptional regulatory region of the vasa gene that is specifically expressed in primordial germ cells.
  • GFP Green Fluorescent Protein
  • sperm and eggs obtained by inducing differentiation of primordial germ cells derived from such genetically modified fish are those into which the GFP gene has been introduced, and the same applies to fry produced using these sperm and eggs. Seedlings into which the GFP gene has been introduced. Therefore, it cannot be used as edible fish or released seedlings and is not suitable as a practical production technique.
  • Patent Document 2 discloses an anti-tuna vasa antibody that can specifically detect tuna-derived germ cells. However, because this antibody has an antigen recognition site in the cytoplasm, it can detect germ cells in fixed cells and tissues, but it cannot detect or isolate living cells. Impossible.
  • Non-Patent Document 1 the spermatogonia that serve as the antigen are derived from transgenic fish, and it is difficult to establish transgenic fish in mackerel fish such as bluefin tuna. is there.
  • the present inventors used the rainbow trout antibody of Non-Patent Document 1 to selectively separate bluefin tuna spermatogonia.
  • the rainbow trout antibody was able to detect a signal to the gonad cells of bluefin tuna, but could not specifically detect and isolate undifferentiated germ cells such as live spermatogonia of bluefin tuna.
  • the present inventors have so far succeeded in establishing a gate (fraction) containing many undifferentiated germ cells such as spermatogonia in bluefin tuna without using a gene transfer technique. Further, when a monoclonal antibody was prepared using the obtained fraction as an antigen, it was found that the monoclonal antibody specifically recognizes the surface of undifferentiated germ cells, particularly the undifferentiated germ cells. In addition, the inventors succeeded in specifically separating and concentrating undifferentiated germ cells of mackerel fish using the monoclonal antibody as a label.
  • the present invention relates to a novel antibody specifically recognizing mackerel fish undifferentiated germ cells, a method of enriching mackerel fish undifferentiated germ cells, a method of inducing differentiation, and a method of producing mackerel fish using these methods.
  • the purpose is to provide.
  • a monoclonal antibody that specifically recognizes undifferentiated germ cells of mackerel fish A monoclonal antibody, wherein the monoclonal antibody is an antibody against undifferentiated germ cells isolated from the testis or ovary of a mackerel fish.
  • a monoclonal antibody that specifically recognizes undifferentiated germ cells of mackerel fish The monoclonal antibody is a hybridoma TA-No. 6-28 (NITE ABP-02222) or TA-No.
  • the monoclonal antibody according to (1) which is produced by 15-1 (NITE ABP-02223).
  • a method for inducing differentiation of undifferentiated germ cells into gametes comprising transplanting undifferentiated germ cells isolated from the testis or ovary of a mackerel fish into the abdominal cavity of a host fish individual before and after hatching
  • the undifferentiated reproduction of the mackerel fish from the testis or ovary of the mackerel fish comprising undifferentiated germ cells derived from the mackerel fish Isolate and concentrate cells
  • a method for inducing differentiation of undifferentiated germ cells into gametes comprising transplanting the separated and concentrated undifferentiated germ cells into the abdominal cavity of a host fish individual before and after hatching.
  • the host fish is one kind selected from mackerel fish, and the mackerel fish that provides undifferentiated germ cells to be transplanted is one kind selected from tuna, (7) to (9)
  • a method for producing sperm or egg of a mackerel fish comprising transplanting undifferentiated germ cells isolated from a testis or ovary of a mackerel fish into the abdominal cavity of a host fish individual before and after hatching. And Before transplantation, using the antibody according to any one of (1) to (5), the undifferentiated reproduction of the mackerel fish from the testis or ovary of the mackerel fish comprising undifferentiated germ cells derived from the mackerel fish Isolate and concentrate cells, Transplanting the separated and concentrated undifferentiated germ cells into the peritoneal cavity of a host fish individual before and after hatching, A method for producing a sperm or egg of a mackerel fish, comprising inducing differentiation of the transplanted differentiated germ cell into a gamete to obtain a sperm or egg of a mackerel fish.
  • a method for producing a mackerel fish comprising transplanting undifferentiated germ cells isolated from a testis or ovary of a mackerel fish into the abdominal cavity of a host fish individual before and after hatching, Before transplantation, using the antibody according to any one of (1) to (5), the undifferentiated reproduction of the mackerel fish from the testis or ovary of the mackerel fish comprising undifferentiated germ cells derived from the mackerel fish Isolate and concentrate cells, Transplanting the separated and concentrated undifferentiated germ cells into the peritoneal cavity of a host fish individual before and after hatching, Inducing differentiation of transplanted undifferentiated germ cells into gametes, A method for producing a mackerel fish comprising crossing the obtained sperm and egg.
  • the antibody of the present invention it is possible to specifically recognize undifferentiated germ cells of mackerel fish.
  • the antibody of the present invention it is possible to specifically separate and concentrate mackerel fish undifferentiated germ cells.
  • FIG. 1a shows the results of HE staining and in situ hybridization on a bluefin tuna paraffin-embedded tissue section (testis tissue).
  • FIG. 1b is a scatter plot of cells contained in a bluefin tuna cell suspension obtained by flow cytometry (FCM) analysis.
  • FCM flow cytometry
  • FS represents the size of the cell
  • SS represents the complexity of the internal structure of the cell.
  • FIG. 1c shows photographs (biological microscope, Olympus) of the morphology of the cells contained in the AG gates (fractions) of the scatter plot, respectively.
  • FIG. 2a shows a scatter diagram of cells contained in a bluefin tuna cell suspension obtained by FCM analysis in an immature individual (age 1), and in situ cells contained in the A to G gates of the scatter diagram, respectively.
  • FIG. 2b shows the percentage of vasa positive cells (vasa + ratio) for each gate relative to the total cells.
  • FIG. 3a shows the results of testicular HE staining and in situ hybridization (vasa) in mature individuals (age 3).
  • FIG. 3b shows the results of a scatter plot of cells contained in the bluefin tuna crude cell suspension obtained by FCM analysis.
  • FIG. 3c shows the morphology of the isolated cells contained in the A gate and the results of in situ hybridization.
  • FIG. 3d shows the percentage of vasa positive cells (vasa + ratio) for each gate relative to the total cells.
  • FIG. 4 shows the results of immune cell staining in the secondary screening.
  • FIG. 5a shows a scatter plot obtained by FCM analysis (FS-SS development) of all cells used in the tertiary screening.
  • FIG. 5b shows a histogram of antibody positive (right arrow) and antibody negative (left arrow). The horizontal axis indicates the signal intensity of the antibody, and the vertical axis indicates the number of cells.
  • FIG. 5c shows a scatter plot obtained by FCM analysis (FS-SS development) of an antibody positive cell population. 6 shows TA-No.
  • FIG. 8 shows HE staining in testicular tissue sections of bluefin tuna and TA-No.
  • the result of immunohistochemical staining using 6-28 hybridoma-producing antibody is shown.
  • FIG. 9 shows HE staining (left) in testicular tissue sections of bluefin tuna and TA-No. 6-28 hybridoma producing antibody (top) and TA-No.
  • FIG. 10 shows TA-No. 6-28 hybridoma producing antibody (left) and TA-No.
  • A Photograph of cell morphology (biological microscope, Olympus) (flow fraction (Flow) and elution fraction) of flow cytometric analysis of bluefin tuna MACS-enriched undifferentiated germ cells using 15-1 hybridoma-producing antibody (right) Minute (Elute)) and (b) photo of vasa in situs hybridization (biological microscope, Olympus) (flow fraction (Flow) and elution fraction (Elute)).
  • FIG. 11 shows a laparotomy photograph of the transplanted nibe.
  • FIG. 12 is a graph showing the engraftment rate of the transplanted cells to the Nibe host germ line.
  • shaft shows the ratio (%) of the individual in which the engraftment of the transplanted bluefin tuna undifferentiated germ cell was observed among all the observed panicle hosts.
  • a monoclonal antibody that specifically recognizes the surface of a mackerel fish undifferentiated germ cell, preferably a mackerel fish undifferentiated germ cell.
  • the term “mackerid fish” means a fish included in the periaceae mackerel family, for example, tuna fish, suma fish, bonito fish, mackerel fish, sawara fish, soda bonito, bonito genus, isola genus And preferred are tuna fish, suma fish, bonito fish and mackerel fish.
  • tuna fish for example, bluefin bluefin tuna, bluefin tuna
  • southern bluefin tuna bigeye tuna
  • yellowfin tuna albacore tuna
  • Atlantic bluefin tuna cochinaga.
  • Suma fishes include Suma and Atlantic Yait.
  • bonito fish examples include bonito.
  • Mackerel and sesame mackerel are examples of mackerel fish.
  • the fish species of the mackerel family of the present invention are preferably bluefin tuna, southern bluefin tuna, bigeye tuna, yellowfin tuna, albacore tuna, Atlantic bluefin tuna or cochinaga, which are sometimes collectively referred to as tuna. More preferably, the fish species of the mackerel family fish of the present invention is bluefin tuna, southern bluefin tuna, Atlantic bluefin tuna or suma in that resource protection by artificial seedling production is expected.
  • Undifferentiated germ cells are primordial germ cells, oocytes, spermatogonia, oocytes, spermatocytes, sperm cells, eggs and sperm, which are classified as germ cells, are hardly differentiated. It means a germ cell, and examples thereof include primordial germ cells, spermatogonia, and oocytes. Whether a germ cell is an undifferentiated germ cell can be determined by its morphological characteristics. For example, histological observation of type A spermatogonia is a germ cell that is surrounded by somatic cells in testis cells and is present alone, and should be identified by histological observation. Is possible.
  • the oocyte is a cell population in which the first meiosis has not started among the small germ cells before the yolk formation phase, and therefore expresses meiosis marker genes such as Sycp3. Absence can also be an indicator for identifying oocyte cells.
  • the undifferentiated germ cell of the present invention is preferably an undifferentiated germ cell having the engraftment ability to the host gonad, which has the engraftment ability when transplanted to the host fish gonad in the surrogate parent fish technique. Examples of the undifferentiated germ cells having engraftment ability to the host gonad include primordial germ cells, type A spermatogonia, or oocytes.
  • the type A spermatogonia are undifferentiated germ cells that exist together with somatic cells in the undifferentiated testis.
  • the type A spermatogonia are B-type spermatogonia, spermatocytes in the testis that has started to mature or mature testis. Cells that differentiate into cells, sperm cells, and sperm.
  • An oocyte is an undifferentiated germ cell that exists together with a somatic cell in an undifferentiated ovary, and is a cell that differentiates into an oocyte or an egg as it matures.
  • Whether or not a germ cell is an undifferentiated germ cell capable of engraftment in the host gonad can be determined by the presence or absence of engraftment when transplanted into the host fish gonad in the surrogate parent fish technique.
  • undifferentiated reproductive cells that have a high expression of the vasa gene and that have been engrafted in the gonad of the host fish in the surrogate parent fish technique have the ability to engraft in the gonad of the host.
  • Non-Patent Document 1 can be referred to.
  • “Specific recognition of maize fish undifferentiated germ cells” means that it specifically binds to undifferentiated germ cells of mackerel fish and is specific to differentiated germ cells and somatic cells of mackerel fish. Is preferably bound specifically to cell surface antigens of undifferentiated germ cells of mackerel fish. “Specifically recognizing mackerel fish undifferentiated germ cells” preferably refers to specifically recognizing the surface of maize fish undifferentiated germ cells, more preferably the germ cell membrane surface. In the present invention, “specific binding” includes binding preferentially.
  • “Monoclonal antibody” means an antibody (immunoglobulin molecule) obtained from a clone derived from a single antibody-producing cell, and is not particularly limited as an immunoglobulin class.
  • IgG, IgM, IgA, IgD and IgE can be mentioned, and IgG is preferable.
  • the monoclonal antibody of the present invention produces an antibody-producing hybridoma using an undifferentiated germ cell of a mackerel fish as an antigen, and detects that the antibody produced by the hybridoma is an antibody that recognizes an undifferentiated germ cell. You can get it.
  • the antigen for producing the monoclonal antibody of the present invention is preferably undifferentiated isolated from the testis or ovary of a mackerel fish in that it is easy to secure the number of undifferentiated germ cells used for transplantation of surrogate parent fish technique. It is a germ cell.
  • an undifferentiated germ cell separated from the testis or ovary is used as a cell population in which only undifferentiated germ cells are separated and concentrated from a cell suspension containing somatic cells derived from the testis or ovary.
  • FS and SS are displayed as linear values for a fraction of a cell population containing many undifferentiated germ cells obtained by flow cytometry (FCM) analysis
  • FCM flow cytometry
  • a fraction having a large FS value and a small SS value can be used. More specifically, as shown in Example 1 of the Example described later, when an FCM analysis is performed with an Epics Altra (Beckman Coulter) equipped with a 488 nm argon laser, testis cells in a single state can be obtained by cell dispersion.
  • the fraction with a relatively large FS and a small SS preferably about 1/3 the higher the FS value, the lower the SS value.
  • a cell population that appears in about a third of the fraction can be used.
  • Such a cell population containing a large number of undifferentiated germ cells can be prepared as an A gate in the method of Example 1 of the Examples described later.
  • an antigen for preparing an antibody that specifically recognizes the undifferentiated germ cell of the present invention is preferably flow cytometry ( FCM) Fraction of cell population containing many undifferentiated germ cells obtained by analysis, when FS and SS are displayed as linear values, the fraction with relatively large FS value and small SS value It is.
  • FCM flow cytometry
  • the monoclonal antibody of the present invention is prepared using an undifferentiated germ cell isolated from a testicular or ovary of a mackerel fish as an antigen to produce an antibody-producing hybridoma, and for the antibody produced by the hybridoma, It can be obtained by detecting that the antibody recognizes undifferentiated germ cells.
  • An antibody-producing hybridoma can be prepared according to a conventional method. For example, an antigen is administered to an animal (eg, mouse, rat, rabbit, etc.), immunized, and lymph node-derived cells obtained from the animal are used. It can be prepared by fusing with myeloma cells.
  • Detection of an antibody recognizing an undifferentiated germ cell is performed by, for example, Cell ELISA method, immune cell staining, in situ hybridization described in Example 2 of Example described later, RT-PCR method for vasa gene, and the like. It can be carried out. Detection of an antibody recognizing an undifferentiated germ cell having an engraftment ability to the host gonad confirms the engraftment ability to the host gonad when transplanted to the host gonad by the surrogate parent fish technique (Non-patent Document 1). Can be performed.
  • the monoclonal antibody specifically recognizing the undifferentiated germ cell of the mackerel fish of the present invention is an antibody-producing hybridoma TA deposited at the Patent Evaluation Center of the National Institute of Technology and Evaluation. -No. 6-28 (reception number: NITE ABP-02222) or TA-No. 15-1 (reception number: NITE ABP-02223).
  • TA-No. 6-28 is a hybridoma that produces an antibody that specifically recognizes spermatogonial spermatogonia, dated March 22, 2016 (original deposit date), and deposited with a patent microorganism of the National Institute of Technology and Evaluation Technology
  • the reception number is NITE ABP-02222 (transferred from domestic deposit NITE P-02222) at the center (Kazusa Kamashitsu 2-chome, 5-8-8, Kisarazu, Chiba, Japan) (Indication of identification: TA-No. 6-28) Has been deposited.
  • TA-No. 6-28 is a hybridoma prepared by cell fusion of myeloma cells and antibody-producing B lymphocytes.
  • the hybridoma is circular and weakly adherent, with a final concentration of 1% Penicillin-Streptomycin, Liquid ( Gibco) and growth in Hybridoma-SFM medium (Gibco, 12300-067) containing 10% fetal bovine serum (FBS) by incubation at 37 ° C., 5% CO2. It has mouse antibody production ability (IgG antibody), and its production amount is about 1 to 10 ⁇ g / ml.
  • TA-No. 15-1 is a hybridoma that produces an antibody that specifically recognizes spermatogonial spermatogonial cells, and was deposited on March 22, 2016 (original deposit date) by the National Institute of Technology and Evaluation Patent Microorganisms.
  • the reception number is NITE ABP-02223 (transferred from domestic deposit NITE P-02223) at the center (Kazusa Kamashitsu 2-chome No. 5-8, Kisarazu City, Chiba, Japan) (Indication of identification: TA-No. 15-1) Has been deposited.
  • TA-No. 15-1 is a hybridoma that produces an antibody that specifically recognizes spermatogonial spermatogonial cells, and was deposited on March 22, 2016 (original deposit date) by the National Institute of Technology and Evaluation Patent Microorganisms.
  • the reception number is NITE ABP-02223 (transferred from domestic deposit NITE P-02223) at the center (Kazusa Kamashitsu 2-
  • 15-1 is a hybridoma prepared by fusing myeloma cells and antibody-producing B lymphocytes into cells, the form of which is circular and weakly adhesive, with a final concentration of 1% Penicillin-Streptomycin, Liquid ( Gibco) and growth in Hybridoma-SFM medium (Gibco, 12300-067) containing 10% fetal bovine serum (FBS) by incubation at 37 ° C., 5% CO2. It has mouse antibody production ability (IgG antibody), and its production amount is about 1 to 10 ⁇ g / ml.
  • IgG antibody mouse antibody production ability
  • the monoclonal antibody of the present invention can separate undifferentiated germ cells of mackerel fish from the testes or ovaries of mackerel fish.
  • the method for separating undifferentiated germ cells of mackerel fish using the monoclonal antibody of the present invention is not particularly limited as long as undifferentiated germ cells can be isolated while alive, and a known method can be used, for example, Cell separation (isolation) by flow cytometry analysis using a fluorescently labeled antibody such as FITC or magnetic cell separation using an antibody with magnetic beads can be used.
  • the magnetic cell separation (MACS) method is preferable because it does not require sophisticated equipment or technology.
  • the magnetic cell separation method is advantageous in that it can be easily processed even with a large amount of cells because it is separated by magnetic beads, compared to cell separation in flow cytometry analysis.
  • the MACS method using the monoclonal antibody of the present invention is advantageous in that it does not need to use a cytotoxic solution unlike the density gradient centrifugation method using Percoll, so that it does not adversely affect the cell properties.
  • the undifferentiated germ cells can be concentrated by collecting the undifferentiated germ cells separated (isolated) by the monoclonal antibody of the present invention. Therefore, according to one embodiment of the present invention, an undifferentiated reproduction derived from a mackerel fish is obtained from a testis or ovary of a mackerel fish comprising undifferentiated germ cells derived from a mackerel fish using the antibody of the present invention. A method is provided for enriching maize undifferentiated germ cells comprising separating the cells. Since the concentrated undifferentiated germ cells obtained by the concentration method of the present invention are living cells, the use of the undifferentiated germ cells used for transplantation of the surrogate parent fish technique can be expected to improve transplantation efficiency.
  • an undifferentiated reproduction derived from a mackerel fish is obtained from a testis or ovary of a mackerel fish comprising undifferentiated germ cells derived from a mackerel fish using the antibody of the present invention.
  • a method is provided for producing undifferentiated germ cells of mackerel fish comprising separating the cells.
  • the transplanted undifferentiated germ cells can be induced to differentiate into gametes efficiently in the surrogate parent fish technique.
  • inducing differentiation of transplanted undifferentiated germ cells into gametes means that undifferentiated germ cells transplanted into the abdominal cavity move into the gonad of the transplanted host and engraft, and in the gonad of the host It means that it matures and is induced to differentiate into gametes.
  • the success or failure of induction of differentiation of transplanted undifferentiated germ cells into gametes can be determined by the presence or absence of transplanted undifferentiated germ cells in the gonad of the host (Okutsu, T., Suzuki, K. , Takeuchi, Y., Takeuchi, T & Yoshizaki, G. (2006) Testicular germ cells can colonize sexually undifferentiated embryonic gonad and produce functional eggs in fish. Proceedings of the National Academy of S -2729). If engraftment of transplanted undifferentiated germ cells can be confirmed in the gonad of the host, it can be said that the transplanted undifferentiated germ cells can be induced to differentiate into gametes with high probability.
  • a surrogate surrogate fish technique i.e., transplanting undifferentiated germ cells of a mackerel fish into the peritoneal cavity of a host fish individual before and after hatching
  • the testis or ovary of a mackerel fish comprising undifferentiated germ cells derived from a mackerel fish
  • Inducing differentiation of undifferentiated germ cells into gametes comprising isolating and concentrating undifferentiated germ cells and transplanting the separated and enriched undifferentiated germ cells into the abdominal cavity of a host fish individual before and after hatching
  • mackerel fish i.e., undifferentiated germ cells isolated from the testes or ovaries of mackerel fish are transplanted into the peritoneal cavity of the individual host fish before and after hatching.
  • the testis of a mackerel fish comprising undifferentiated germ cells derived from a mackerel fish
  • undifferentiated germ cells comprising separating and concentrating undifferentiated germ cells of mackerel fish from the ovary, and transplanting the separated and concentrated undifferentiated germ cells into the abdominal cavity of a host fish individual before and after hatching
  • the testis or ovary of a mackerel fish comprising undifferentiated germ cells derived from a mackerel fish using the antibody of the present invention before transplantation in the differentiation inducing method of the present invention. And then isolating and concentrating undifferentiated germ cells of mackerel fish that have the ability to engraft the host gonads, and transplanting the separated and enriched undifferentiated germ cells into the peritoneal cavity of the individual host fish before and after hatching.
  • a method for inducing differentiation of undifferentiated germ cells into gametes can be provided.
  • the mackerel fish that provides undifferentiated germ cells to be transplanted as donor fish may be different from or same as the host fish, and preferably different. That the donor fish and the host fish are the same species means that the species of the mackerel fish that provides undifferentiated germ cells and the species of the host fish are the same. By making good varieties into donor fish, good varieties can be produced in large quantities in a short time without selective breeding.
  • the fact that the donor fish and the host fish are heterogeneous means that the species of mackerel fish that provides undifferentiated germ cells differs from the species of the host fish, for example, the mackerel family that provides undifferentiated germ cells.
  • the fish species is a fish species different from the genus of the host fish and the case where the fish species are other fish species included in the same genus are included.
  • the combination of donor fish and host fish can be determined in consideration of the similarity of their habitats, the size of the gonads, and the like.
  • the mackerel fish as donor fish is preferably larger fish than the host fish.
  • large fishes of mackerel fish include bluefin tuna (for example, bluefin tuna, Atlantic bluefin tuna) and southern bluefin tuna.
  • bluefin tuna for example, bluefin tuna, Atlantic bluefin tuna
  • southern bluefin tuna since fish grows larger with age, large fish includes parent fish that have grown enormously. By separating germ cells of large fish, transplanting them into the gonads of small host fish, and inducing differentiation into gametes, it is possible to reduce the feed and breeding space that are a problem for parent fish of large fish .
  • the host fish is one selected from mackerel fish, and the donor fish provides the undifferentiated germ cells to be transplanted as a mackerel fish.
  • the host fish is one selected from mackerel fish
  • the donor fish provides the undifferentiated germ cells to be transplanted as a mackerel fish.
  • tuna ie, bluefin tuna, southern bluefin tuna, bigeye tuna, yellowfin tuna, albacore tuna, Atlantic bluefin tuna or cocinaga.
  • the host fish is a mackerel or a mare
  • the mackerel fish used as a donor for the transplanted undifferentiated germ cells is a bluefin tuna (eg, Atlantic bluefin tuna and Atlantic bluefin tuna) or southern bluefin tuna.
  • the combination of the host fish and the mackerel fish that provides the undifferentiated germ cells to be transplanted is a species that is difficult to breed, and can produce seeds in a small aquarium that is closely related to the donor.
  • mackerel and Atlantic bluefin tuna In terms of the combination of species, mackerel and Atlantic bluefin tuna, mackerel and southern bluefin tuna, mackerel and Atlantic bluefin tuna, suma and Thai bluefin tuna, suma and southern bluefin tuna, suma and southern bluefin tuna, suma and Atlantic bluefin tuna.
  • a method for producing sperm or eggs of a mackerel fish comprising the differentiation induction method of the present invention. That is, according to one aspect of the present invention, a mackerel fish comprising transplanting undifferentiated germ cells isolated from the testis or ovary of a mackerel fish into the peritoneal cavity of a host fish individual before and after hatching.
  • a method for producing a sperm or egg of a mackerel fish comprises inducing differentiation into a sperm or egg of a mackerel fish.
  • the production of a mackerel fish comprising transplanting undifferentiated germ cells isolated from a testis or ovary of a mackerel fish into the peritoneal cavity of a host fish individual before and after hatching.
  • the method is a mackerel family that has the ability to engraft the host gonad from the testis or ovary of a mackerel fish comprising undifferentiated germ cells derived from a mackerel fish using the antibody of the present invention prior to transplantation.
  • a method of producing mackerel fish comprises mating sperm and eggs.
  • the method for producing sperm or egg of mackerel fish and the method for producing mackerel fish according to the present invention can be carried out according to the contents described in the present specification for the concentration method and differentiation induction method of the present invention.
  • Example 1 Acquisition of undifferentiated germ cell fraction of mackerel fish (1) Extraction of the testis The testis is extracted from a single bluefin tuna (2 to 3 years old body weight 30 to 40 kg, gonad weight of about 100 to 200 g) and chopped into small pieces It is. Collagenase H (Roche) at a final concentration of 2 mg / ml, Dispase II (joint spirit) / L-15 medium (Invitrogen) (5% fetal bovine serum (FBS)) at a final concentration of 1.65 mg / ml 10 ml was added and incubated for 2 hours at 20 ° C. with physical dispersion by pipetting.
  • Collagenase H (Roche) at a final concentration of 2 mg / ml
  • Dispase II joint spirit
  • L-15 medium Invitrogen
  • FBS fetal bovine serum
  • the enzyme reaction was stopped by adding 1 ml of L-15 medium (Invitrogen).
  • L-15 medium Invitrogen
  • the obtained cell suspension (about 10 million cells / ml) was roughly purified by GE Healthcare density gradient centrifugation and used for flow cytometry (FCM) analysis and cell separation.
  • testicular maturity used was confirmed by HE staining and in situ hybridization analysis of paraffin-embedded tissue sections (4 ⁇ m) of bluefin tuna testis tissue fixed with 4% paraformaldehyde (PFA) / PBS fixative. .
  • the obtained sections were post-fixed with 4% paraformaldehyde and subjected to inactivation of endogenous alkaline phosphatase (AP) with 1% hydrogen peroxide, proteolysis with protease K (Wako), and acetylation.
  • AP endogenous alkaline phosphatase
  • the bluefin tuna vasa probe amplifies a 1085 bp fragment by PCR using a primer specific for the bluefin tuna vasa gene (vasa F 5′-CAACCAGGGAGCTCATCAACCAGA-3 ′ / vasa R 5′-GCAACTCAGGTCAATGCTGTGTGG-3 ′) Using the DIG Labeling kit (Roche) as a template, the plasmid DNA contained in was synthesized according to the standard method of DIG-labeled probes.
  • DIG digoxigenin
  • the non-specifically bound probe was removed with RNase A (Invitrogen). Masking was performed with a blocking solution (2% Blockin reagent (Roche) / TBST), and an AP-labeled anti-DIG antibody solution (Roche) (diluted 1: 500 with a blocking solution) was added dropwise. It left still at room temperature for 1 hour, and visualized using NBT / BCIP chromogenic substrate. The slide glass was sealed with ethanol using ethanol series xylene. Microscopic observation was performed and images were digitally recorded.
  • FIG. 1a anterior individuals
  • FIG. 3a mature individuals
  • FCM Flow cytometry
  • each cell was irradiated with a laser, and the cells were classified into seven types of gates A to G based on the characteristics of each cell obtained by the obtained scattered light.
  • spermatogonia are larger and rounder than other testicular cells.
  • a large fraction with a simple internal structure was estimated as a fraction with many spermatogonia (A gate in FIG. 1c).
  • In situ hybridization analysis was performed according to the in situ hybridization analysis described in (1) above, except that cells of each gate were smeared on a slide glass instead of paraffin-embedded tissue sections, and 4% paraformaldehyde (PFA) / PBS. Fixed cell smears were used.
  • FIG. 1b Scatter plot results are shown in FIG. 1b (immature individuals) and FIG. 2a (mature individuals), and analysis results are shown in FIG. 1c, FIG. 2 (immature individuals) and FIG. 3 (mature individuals).
  • the A gate contains many undifferentiated germ cells such as spermatogonia.
  • the ratio of undifferentiated germ cells such as spermatogonia contained in A gate is 80.7 ⁇ 1.5% (standard error) with respect to the total number of cells in the case of immature individuals, It was 77.2 ⁇ 4.9% (standard error).
  • Example 2 Acquisition of undifferentiated germ cell identifying antibody (1) Preparation of monoclonal antibody-producing hybridoma A mouse monoclonal antibody was prepared using the cell population contained in the A-gate obtained in Example 1 as an antigen. Specifically, immunization was carried out by dividing the A-gate cell population (5 ⁇ 10 6 cells / ml) into 4 mice (Balb / c strain) in 5 portions. For immunization, a cell population of A gate was diluted 2 times with Freund's complete adjuvant (Sigma) with PBS, and 100 ⁇ l of each mouse foot was immunized.
  • lymph nodes On the 8th day after the 5th immunization, the enlarged lymph nodes were aseptically removed from the above-mentioned mouse 5 feet, and the lymph node cells were collected.
  • the recovered lymph node cells and myeloma cells (P3U1, Tokyo Marine University) were mixed in the presence of 50% polyethylene glycol (PEG) to perform cell fusion.
  • PEG polyethylene glycol
  • the obtained mixture of fused cells was diluted with a HAT medium containing 15% FBS and seeded on 12 96-well plates.
  • FCM analysis It is clarified whether the antibody produced by the 50 loan obtained in the secondary screening can specifically recognize A-gate cells, that is, undifferentiated germ cell fractions.
  • FCM analysis was performed on whole cells and antibody-positive cells. Specifically, a scatter diagram (FIG. 5a) was obtained by FCM analysis (FS-SS development) of all cells, and the A gate rate was calculated. The whole cells were reacted with a fluorescently labeled secondary antibody and subjected to FCM analysis to obtain a histogram of antibody positive cell population and antibody negative cell population (FIG. 5b).
  • a scatter diagram FIG.
  • a gate rate was calculated.
  • the ratio of A-gate in the antibody-positive cell population thus obtained (A-gate ratio in the antibody-positive fraction) and A-gate in all cells including antibody-positive and antibody-negative cells. From the ratio (A gate rate in all cells), the concentration rate of undifferentiated germ cells by the antibody was calculated using the following formula.
  • Germ cell concentration rate by antibody A gate rate in antibody positive fraction / A gate rate in whole cells
  • the cell populations separated by the antibody produced from the 15-1 hybridoma contain vasa positive cells at the rate of 85.2% and 78.9%, respectively, ie, by using these antibodies, the bluefin tuna undifferentiated It was confirmed that germ cells could be separated (isolated) and concentrated at a high concentration.
  • FIG. 8 and FIG. 9 show the results of immunohistochemical staining using these two types of clone-produced antibodies. Immunohistochemical staining was performed according to the method of Example 1 (1).
  • these two types of antibodies specifically recognized the spermatogonia population, that is, the undifferentiated germ cell population, in the tissue section.
  • these two types of antibodies have been confirmed to bind to the antibody by reacting the antibody solution with living cells that have not been fixed and digested with cell membranes. Was confirmed to specifically recognize the cell membrane surface.
  • Example 3 Concentration of tuna undifferentiated germ cells by MACS (Magnetic Activated Cell Sorting) method Using MACS method, undifferentiated from tuna testis cells using the two antibodies obtained in Example 2 above Germ cell enrichment was performed. Specifically, it is as follows. First, tuna testis cells were dispersed using collagenase H (Roche) having a final concentration of 2 mg / ml and dispase II (joint spirit) / L-15 medium (Invitrogen) having a final concentration of 1.65 mg / ml. Adjusted to 10 6 cells.
  • MACS Magnetic Activated Cell Sorting
  • antibody biotination kit Miltenyi biotech
  • 6-28 hybridoma and TA-No. 100 ⁇ l of antibody produced from the 15-1 hybridoma was added and reacted at 4 ° C. for 30 minutes.
  • centrifugation 200 ⁇ g, 5 minutes was performed, and the resulting cell precipitate was washed with L-15 medium.
  • the cell precipitate was resuspended in 240 ⁇ l of L-15 medium, 60 ⁇ l of anti-biotin microbeads (manufactured by Miltenyi biotech) was added as a secondary antibody, and the mixture was reacted at 4 ° C. for 15 minutes. After completion of the reaction, centrifugation (200 ⁇ g, 5 minutes) was performed, the resulting cell precipitate was washed with L-15 medium, and the cell precipitate was further added to 500 ⁇ l of auto-MACS buffer (Miltenyi biotech In the product). From the suspension, magnetic beads-bound cells were recovered using a magnetic separator: Mini MACS separator (Miltenyi biotech) and MS column (Miltenyi biotech) to obtain MACS-enriched undifferentiated germ cells.
  • the obtained MACS-enriched undifferentiated germ cells were subjected to flow cytometry analysis and vasa in situ hybridization analysis according to the method of Example 1. The results are shown in FIG.
  • testis cells concentrated by the MACS method contained many vasa positive cells.
  • Example 4 Transplantation of bluefin tuna-enriched undifferentiated germ cells into nibs (host)
  • the bluefin tuna MACS-enriched undifferentiated germ cells obtained in Example 3 were transplanted into the peritoneal cavity of nibes, and the engraftment ability of the transplanted cells to the nibe gonad It was confirmed. Specifically, it is as follows.
  • the nibs transplanted with bluefin tuna MACS-enriched undifferentiated germ cells were confirmed to be positive in the gonad in the fluorescence field, that is, the transplanted bluefin tuna MACS-enriched undifferentiated germ cells were engrafted in the nibe gonads. It was confirmed that On the other hand, no positive reaction was confirmed in the control (unconcentrated).
  • the ratio of each engrafted individual is shown in FIG. 12 as the engraftment rate. The survival rate was calculated based on the following formula.
  • Engraftment rate (%) Number of individuals engrafted with transplanted cells / Number of individuals who have undergone transplantation and opened
  • the engraftment rate of bluefin tuna MACS-enriched undifferentiated germ cells markedly increased compared to the engraftment rate of unenriched cells.

Abstract

The present invention relates to a monoclonal antibody that specifically recognizes undifferentiated germ cells of scombridae fish, wherein the monoclonal antibody is an antibody against undifferentiated germ cells isolated from a testis or an ovary of scombridae fish. The present invention provides an antibody that can isolate undifferentiated germ cells of scombridae fish.

Description

サバ科魚類未分化生殖細胞結合抗体Mackerel fish undifferentiated germ cell binding antibody 関連出願の参照Reference to related applications
 本特許出願は、先に出願された日本国特許出願である特願2016-60908(出願日:2016年3月24日)に基づくものであって、その優先権の利益を主張するものであり、その開示内容全体を参照することによりここに組み込まれる。 This patent application is based on Japanese Patent Application No. 2016-60908 (filing date: March 24, 2016), which was previously filed in Japan, and claims the benefit of its priority. , Incorporated herein by reference in its entirety.
発明の背景Background of the Invention
技術分野
 本発明はサバ科魚類未分化生殖細胞を特異的に認識する抗体に関し、また、これを用いたサバ科魚類未分化生殖細胞の濃縮方法および分化誘導方法、ならびにこれらの方法を用いたサバ科魚類の精子または卵の生産方法およびサバ科魚類の生産方法に関する。
TECHNICAL FIELD The present invention relates to an antibody that specifically recognizes an undifferentiated germ cell of a mackerel fish, a method for concentrating and inducing differentiation of an undifferentiated germ cell of a mackerel fish, and a mackerel using these methods. The present invention relates to a method for producing sperm or egg of a family fish and a method for producing a mackerel fish.
背景技術
 クロマグロをはじめとするサバ科魚類は、経済的価値の高い漁業上重要な魚類である。一方、高級魚として需要の高いクロマグロやミナミマグロなど大型サバ科魚類は、過剰漁獲による天然資源量の著しい減少が問題となっている。そのため、資源量増加を目的とした人工種苗生産および人工種苗(稚魚)放流が検討されている。人工種苗生産では、近親交配や特定疾病の発症による全滅を避けるために、親魚となる個体の遺伝的多様性が必要とされ、従って、多数の親魚を育成する必要がある。しかしながら、例えば、クロマグロでは、体重100kg以上、体長1m以上、年齢3~5歳になって初めて成熟するため親魚となるまでの時間が長いうえ、高速で遊泳するため非常に広大な飼育スペースを必要とする。さらに、ハンドリングに対するストレスに弱いことから人為催熟は技術的に難しく1対1交配の成功率も低い。こうした背景から、多数の親魚を人為的な管理下で育成し、精子や卵を採取することは、飼料や飼育スペースの問題を含め、コスト的および技術的に極めて難しい。
Background Art Bluefin tuna and other mackerel fish are important fisheries with high economic value. On the other hand, large-scale mackerel fish such as bluefin tuna and southern bluefin tuna, which are in high demand as high-grade fish, has a problem of a significant decrease in the amount of natural resources due to overfishing. Therefore, artificial seedling production and artificial seedling (fry) release for the purpose of increasing the amount of resources are being studied. In the production of artificial seeds and seeds, in order to avoid annihilation due to inbreeding and the onset of specific diseases, genetic diversity of individuals that become parent fish is required, and therefore it is necessary to grow a large number of parent fish. However, bluefin tuna, for example, weighs more than 100 kg, has a length of 1 m or more, matures only when it is 3-5 years of age, so it takes a long time to become a parent fish and requires a very large breeding space for swimming at high speed. And Furthermore, artificial ripening is technically difficult due to its weak handling stress, and the success rate of one-to-one mating is low. From such a background, it is extremely difficult in terms of cost and technology to raise a large number of parent fish under artificial management and collect sperm and eggs, including problems of feed and breeding space.
 魚類の人工種苗生産技術として、本発明者らは、宿主(レシピエント)魚類とは異なる異種の魚類(ドナー魚類)由来の生殖細胞を、孵化前後の宿主魚類個体の腹腔内へ移植することによって、生殖細胞を生殖細胞系列(配偶子)へ分化誘導することができることを見いだし、異種の宿主魚類を利用し、目的とする魚類の配偶子を分化誘導することに成功している(例えば、特許文献1参照)。この技術は、代理親魚技法または借り腹養殖技法とも呼ばれ、クロマグロなど飼育が難しい魚類の精子や卵を、飼育しやすい異種の宿主魚類によって生産し、交配することにより低コストで簡便な種苗生産を可能にする技術として、期待されている。 As an artificial seed production technology for fish, the present inventors have transplanted germ cells derived from different types of fish (donor fish) different from the host (recipient) fish into the abdominal cavity of the individual host fish before and after hatching. Have found that germ cells can be induced to differentiate into germ line (gametes), and have succeeded in inducing differentiation of gametes of target fish using heterologous host fish (for example, patents) Reference 1). This technique is also called surrogate parent fish technique or borrowed belly farming technique, and sperm and eggs of fish that are difficult to breed such as bluefin tuna are produced by heterogeneous host fish that are easy to breed and are mated at low cost and simple seedling production It is expected as a technology that enables
 この代理親魚技法においては、商業的な量産化に十分な移植効率を確保するために、ドナー魚類の生殖腺、精巣または卵巣から、未分化生殖細胞のみを分離して、それを移植に用いる必要がある。特許文献1では、始原生殖細胞のみを分離するために、始原生殖細胞に対して特異的に発現するvasa遺伝子の転写調節領域にGFP(Green Fluorescent Protein:緑色蛍光タンパク質)遺伝子を導入した遺伝子組換えニジマスをドナー魚類として使用し、GFP遺伝子が発現している細胞を始原生殖細胞として分離している。しかしながら、このような遺伝子組換え魚類由来の始原生殖細胞を分化誘導して得られる精子や卵はGFP遺伝子が導入されたものであり、これらの精子や卵を利用して生産される稚魚も同様にGFP遺伝子が導入された種苗となる。そのため、食用魚や放流種苗として利用することはできず、実用化生産技術としては適さない。 In this surrogate parent fish technique, it is necessary to isolate only undifferentiated germ cells from the gonad, testis or ovary of the donor fish and use it for transplantation in order to ensure sufficient transplantation efficiency for commercial mass production. is there. In Patent Document 1, in order to isolate only primordial germ cells, genetic recombination in which a GFP (Green Fluorescent Protein) gene is introduced into the transcriptional regulatory region of the vasa gene that is specifically expressed in primordial germ cells. Rainbow trout is used as a donor fish, and cells expressing the GFP gene are isolated as primordial germ cells. However, sperm and eggs obtained by inducing differentiation of primordial germ cells derived from such genetically modified fish are those into which the GFP gene has been introduced, and the same applies to fry produced using these sperm and eggs. Seedlings into which the GFP gene has been introduced. Therefore, it cannot be used as edible fish or released seedlings and is not suitable as a practical production technique.
 GFP遺伝子などのレポーター遺伝子の導入を行わずに、ドナー魚類から始原生殖細胞等の未分化生殖細胞を分離する方法として、生殖細胞に特異的に結合する抗体を用いた生殖細胞の分離方法が検討されている。例えば、特許文献2ではマグロ由来生殖細胞を特異的に検出することができる抗マグロvasa抗体が開示されている。しかしながら、この抗体はその抗原認識部位が細胞質内に存在するため、固定した細胞や組織中で生殖細胞を検出することは可能であるが、生きた状態の細胞を検出することや分離することは不可能である。 As a method for separating undifferentiated germ cells such as primordial germ cells from donor fish without introducing a reporter gene such as GFP gene, a method for separating germ cells using an antibody that specifically binds to germ cells is examined. Has been. For example, Patent Document 2 discloses an anti-tuna vasa antibody that can specifically detect tuna-derived germ cells. However, because this antibody has an antigen recognition site in the cytoplasm, it can detect germ cells in fixed cells and tissues, but it cannot detect or isolate living cells. Impossible.
 一方、本発明者らは、ニジマスなどサケ科魚類では、GFP遺伝子導入ニジマスより単離した生きた精原細胞を抗原としてマウスに免疫することにより得られた抗体が、精原細胞を選択的に標識でき、その抗体を用いることで遺伝子導入魚でなくても生殖細胞を分離できることを確認している(非特許文献1参照)。しかしながら、非特許文献1の方法では、抗原となる精原細胞が遺伝子導入魚由来であり、クロマグロなどサバ科魚類では、遺伝子導入魚の樹立が困難であるため、該方法による抗体の生産は困難である。 On the other hand, in salmonids such as rainbow trout, the present inventors selectively detect spermatogonia by antibodies obtained by immunizing mice with live spermatogonia isolated from GFP-transfected rainbow trout. It has been confirmed that germ cells can be separated even if they are not transgenic fish by using the antibody (see Non-Patent Document 1). However, in the method of Non-Patent Document 1, the spermatogonia that serve as the antigen are derived from transgenic fish, and it is difficult to establish transgenic fish in mackerel fish such as bluefin tuna. is there.
特許第4300287号公報Japanese Patent No. 4300287 WO2010/035465号WO2010 / 035465
 本発明者らは、非特許文献1のニジマスの抗体を、クロマグロの精原細胞を選択的に分離するために用いた。しかしながら、ニジマスの抗体は、クロマグロの生殖腺細胞に対するシグナルの検出はできるものであったが、クロマグロの生きた精原細胞など未分化生殖細胞を特異的に検出、分離することはできなかった。 The present inventors used the rainbow trout antibody of Non-Patent Document 1 to selectively separate bluefin tuna spermatogonia. However, the rainbow trout antibody was able to detect a signal to the gonad cells of bluefin tuna, but could not specifically detect and isolate undifferentiated germ cells such as live spermatogonia of bluefin tuna.
 このように、クロマグロなどサバ科魚類の代理親魚技法の実用化のために用いられる抗体として、十分満足のいくものは発明者らが知る限りこれまで報告されていない。 As described above, as far as the inventors know, no antibody has been reported that is sufficiently satisfactory as an antibody used for the practical application of surrogate parent fish techniques for mackerel fish such as bluefin tuna.
 本発明者らは、これまでに、遺伝子導入技術を利用することなく、クロマグロにおいて、精原細胞など未分化生殖細胞を多く含むゲート(画分)の樹立に成功した。また、その得られた画分を抗原として、モノクローナル抗体を調製したところ、該モノクローナル抗体が、未分化生殖細胞、特に未分化生殖細胞の表面を特異的に認識することを見いだした。また、該モノクローナル抗体を標識に、サバ科魚類未分化生殖細胞を特異的に、分離、濃縮することに成功した。さらに、該モノクローナル抗体で濃縮したクロマグロ未分化生殖細胞と、濃縮をしていないクロマグロ未分化生殖細胞を含む精巣分散細胞(生殖腺細胞)とをニベの腹腔内に、それぞれ同じ細胞数移植したところ、驚くべきことに、濃縮をしていないクロマグロ精巣分散細胞を移植した場合においては移植細胞のニベ宿主生殖腺への生着が全く観察されなかったのに対し、該モノクローナル抗体で濃縮したクロマグロ未分化生殖細胞を移植した場合においては、移植細胞がニベ宿主生殖腺に生着したことを確認した。上記の結果より該モノクローナル抗体で濃縮したクロマグロ未分化生殖細胞を移植細胞に用いることで、宿主生殖腺への生着効率が著しく上昇することを見出した。本発明はこれらの知見に基づくものである。 The present inventors have so far succeeded in establishing a gate (fraction) containing many undifferentiated germ cells such as spermatogonia in bluefin tuna without using a gene transfer technique. Further, when a monoclonal antibody was prepared using the obtained fraction as an antigen, it was found that the monoclonal antibody specifically recognizes the surface of undifferentiated germ cells, particularly the undifferentiated germ cells. In addition, the inventors succeeded in specifically separating and concentrating undifferentiated germ cells of mackerel fish using the monoclonal antibody as a label. Furthermore, when the bluefin tuna undifferentiated germ cells concentrated with the monoclonal antibody and the testis dispersed cells (gonad cells) containing the undifferentiated bluefin tuna undifferentiated germ cells were transplanted into the peritoneal cavity of the nibe, respectively, Surprisingly, in the case of transplanting non-enriched bluefin tuna testis-dispersed cells, no engraftment of the transplanted cells in the host gonad was observed, whereas bluefin tuna undifferentiated reproduction enriched with the monoclonal antibody was not observed. In the case where the cells were transplanted, it was confirmed that the transplanted cells had engrafted in the nibe host gonad. From the above results, it has been found that the use of bluefin tuna undifferentiated germ cells concentrated with the monoclonal antibody as transplanted cells significantly increases the engraftment efficiency in the host gonad. The present invention is based on these findings.
 すなわち、本発明は、新規なサバ科魚類未分化生殖細胞を特異的に認識する抗体、サバ科魚類未分化生殖細胞の濃縮方法、分化誘導法、これらの方法を用いたサバ科魚類の生産方法を提供することをその目的とする。 That is, the present invention relates to a novel antibody specifically recognizing mackerel fish undifferentiated germ cells, a method of enriching mackerel fish undifferentiated germ cells, a method of inducing differentiation, and a method of producing mackerel fish using these methods. The purpose is to provide.
 本発明によれば、以下の発明が提供される。
(1)サバ科魚類未分化生殖細胞を特異的に認識する、モノクローナル抗体であって、
 モノクローナル抗体が、サバ科魚類の精巣または卵巣から分離された未分化生殖細胞に対する抗体である、モノクローナル抗体。
(2)サバ科魚類未分化生殖細胞を特異的に認識する、モノクローナル抗体であって、
 モノクローナル抗体が、ハイブリドーマTA-No.6-28(NITE ABP-02222)またはTA-No.15-1(NITE ABP-02223)により産生される、(1)に記載のモノクローナル抗体。
(3)未分化生殖細胞が、始原生殖細胞、A型精原細胞または卵原細胞である、(1)または(2)に記載のモノクローナル抗体。
(4)サバ科魚類が、マグロ属魚類、スマ属魚類、カツオ属魚類およびサバ属魚類から選択される1種である、(1)~(3)のいずれかに記載のモノクローナル抗体。
(5)サバ科魚類未分化生殖細胞の表面を特異的に認識する、(1)~(4)のいずれかに記載のモノクローナル抗体。
(6)(1)~(5)のいずれかに記載の抗体を用いて、サバ科魚類由来の未分化生殖細胞を含んでなるサバ科魚類の精巣または卵巣から、サバ科魚類由来の未分化生殖細胞を分離することを含んでなる、サバ科魚類未分化生殖細胞濃縮方法。
(7)サバ科魚類の精巣または卵巣から分離された未分化生殖細胞を、孵化前後の宿主魚類個体の腹腔内へ移植することを含んでなる、未分化生殖細胞の配偶子への分化誘導方法において、
 移植前に、(1)~(5)のいずれかに記載の抗体を用いて、サバ科魚類由来の未分化生殖細胞を含んでなるサバ科魚類の精巣または卵巣から、サバ科魚類未分化生殖細胞を分離、濃縮し、
 該分離、濃縮した未分化生殖細胞を、孵化前後の宿主魚類個体の腹腔内へ移植する
ことを含んでなる、未分化生殖細胞の配偶子への分化誘導方法。
(8)移植する未分化生殖細胞を提供するサバ科魚類が、宿主魚類とは異種である、(7)に記載の未分化生殖細胞の配偶子への分化誘導方法。
(9)移植する未分化生殖細胞を提供するサバ科魚類が、宿主個体より大型魚類である、(7)または(8)に記載の未分化生殖細胞の配偶子への分化誘導方法。
(10)宿主魚類が、サバ科魚類から選択される1種であり、移植する未分化生殖細胞を提供するサバ科魚類がマグロから選択される1種である、(7)~(9)のいずれかに記載の未分化生殖細胞の配偶子への分化誘導方法。
(11)サバ科魚類の精巣または卵巣から分離された未分化生殖細胞を、孵化前後の宿主魚類個体の腹腔内へ移植することを含んでなる、サバ科魚類の精子または卵の生産方法であって、
 移植前に、(1)~(5)のいずれかに記載の抗体を用いて、サバ科魚類由来の未分化生殖細胞を含んでなるサバ科魚類の精巣または卵巣から、サバ科魚類未分化生殖細胞を分離、濃縮し、
 該分離、濃縮した未分化生殖細胞を孵化前後の宿主魚類個体の腹腔内へ移植し、
 該移植した末分化生殖細胞を配偶子へ分化誘導して、サバ科魚類の精子または卵子を得る
ことを含んでなる、サバ科魚類の精子または卵の生産方法。
(12)サバ科魚類の精巣または卵巣から分離された未分化生殖細胞を、孵化前後の宿主魚類個体の腹腔内へ移植することを含んでなる、サバ科魚類の生産方法であって、
 移植前に、(1)~(5)のいずれかに記載の抗体を用いて、サバ科魚類由来の未分化生殖細胞を含んでなるサバ科魚類の精巣または卵巣から、サバ科魚類未分化生殖細胞を分離、濃縮し、
 該分離、濃縮した未分化生殖細胞を孵化前後の宿主魚類個体の腹腔内へ移植し、
 移植した未分化生殖細胞を配偶子へ分化誘導し、
 得られた精子および卵を交配する
ことを含んでなる、サバ科魚類の生産方法。
According to the present invention, the following inventions are provided.
(1) A monoclonal antibody that specifically recognizes undifferentiated germ cells of mackerel fish,
A monoclonal antibody, wherein the monoclonal antibody is an antibody against undifferentiated germ cells isolated from the testis or ovary of a mackerel fish.
(2) a monoclonal antibody that specifically recognizes undifferentiated germ cells of mackerel fish,
The monoclonal antibody is a hybridoma TA-No. 6-28 (NITE ABP-02222) or TA-No. The monoclonal antibody according to (1), which is produced by 15-1 (NITE ABP-02223).
(3) The monoclonal antibody according to (1) or (2), wherein the undifferentiated germ cells are primordial germ cells, A-type spermatogonia or oocytes.
(4) The monoclonal antibody according to any one of (1) to (3), wherein the mackerel fish is one selected from the group of Tuna fish, Suma fish, Bonito fish, and Mackerel fish.
(5) The monoclonal antibody according to any one of (1) to (4), which specifically recognizes the surface of undifferentiated germ cells of mackerel fish.
(6) Using the antibody according to any one of (1) to (5), from the testis or ovary of a mackerel fish comprising undifferentiated germ cells derived from a mackerel fish, undifferentiated from a mackerel fish A method for enriching undifferentiated germ cells of mackerel fish, comprising isolating germ cells.
(7) A method for inducing differentiation of undifferentiated germ cells into gametes, comprising transplanting undifferentiated germ cells isolated from the testis or ovary of a mackerel fish into the abdominal cavity of a host fish individual before and after hatching In
Before transplantation, using the antibody according to any one of (1) to (5), the undifferentiated reproduction of the mackerel fish from the testis or ovary of the mackerel fish comprising undifferentiated germ cells derived from the mackerel fish Isolate and concentrate cells,
A method for inducing differentiation of undifferentiated germ cells into gametes, comprising transplanting the separated and concentrated undifferentiated germ cells into the abdominal cavity of a host fish individual before and after hatching.
(8) The method for inducing differentiation of undifferentiated germ cells into gametes according to (7), wherein the mackerel fish that provides the undifferentiated germ cells to be transplanted is different from the host fish.
(9) The method for inducing differentiation of undifferentiated germ cells into gametes according to (7) or (8), wherein the mackerel fish that provides the undifferentiated germ cells to be transplanted is larger than the host individual.
(10) The host fish is one kind selected from mackerel fish, and the mackerel fish that provides undifferentiated germ cells to be transplanted is one kind selected from tuna, (7) to (9) The method for inducing differentiation of undifferentiated germ cells into gametes according to any one of the above.
(11) A method for producing sperm or egg of a mackerel fish comprising transplanting undifferentiated germ cells isolated from a testis or ovary of a mackerel fish into the abdominal cavity of a host fish individual before and after hatching. And
Before transplantation, using the antibody according to any one of (1) to (5), the undifferentiated reproduction of the mackerel fish from the testis or ovary of the mackerel fish comprising undifferentiated germ cells derived from the mackerel fish Isolate and concentrate cells,
Transplanting the separated and concentrated undifferentiated germ cells into the peritoneal cavity of a host fish individual before and after hatching,
A method for producing a sperm or egg of a mackerel fish, comprising inducing differentiation of the transplanted differentiated germ cell into a gamete to obtain a sperm or egg of a mackerel fish.
(12) A method for producing a mackerel fish comprising transplanting undifferentiated germ cells isolated from a testis or ovary of a mackerel fish into the abdominal cavity of a host fish individual before and after hatching,
Before transplantation, using the antibody according to any one of (1) to (5), the undifferentiated reproduction of the mackerel fish from the testis or ovary of the mackerel fish comprising undifferentiated germ cells derived from the mackerel fish Isolate and concentrate cells,
Transplanting the separated and concentrated undifferentiated germ cells into the peritoneal cavity of a host fish individual before and after hatching,
Inducing differentiation of transplanted undifferentiated germ cells into gametes,
A method for producing a mackerel fish comprising crossing the obtained sperm and egg.
 本発明の抗体を用いることにより、サバ科魚類未分化生殖細胞を特異的に認識することができる。また、本発明の抗体を用いることで、サバ科魚類未分化生殖細胞を特異的に分離、濃縮することができる。 By using the antibody of the present invention, it is possible to specifically recognize undifferentiated germ cells of mackerel fish. In addition, by using the antibody of the present invention, it is possible to specifically separate and concentrate mackerel fish undifferentiated germ cells.
図1aは、クロマグロのパラフィン包埋組織切片(精巣組織)でのHE染色およびin situハイブリダイゼーションの結果を示す。図1bは、フローサイトメトリー(FCM)解析により得られた、クロマグロ細胞懸濁液に含まれる細胞の散布図である。FSは細胞の大きさを表し、SSは細胞の内部構造の複雑さを表す。図1cは、それぞれ、散布図のA~Gゲート(画分)に含まれる細胞の形態の写真(生物顕微鏡、Olympus)を示す。FIG. 1a shows the results of HE staining and in situ hybridization on a bluefin tuna paraffin-embedded tissue section (testis tissue). FIG. 1b is a scatter plot of cells contained in a bluefin tuna cell suspension obtained by flow cytometry (FCM) analysis. FS represents the size of the cell, and SS represents the complexity of the internal structure of the cell. FIG. 1c shows photographs (biological microscope, Olympus) of the morphology of the cells contained in the AG gates (fractions) of the scatter plot, respectively. 図2aは、未成熟個体(1齢)での、FCM解析により得られたクロマグロ細胞懸濁液に含まれる細胞の散布図と、それぞれ、散布図のA~Gゲートに含まれる細胞のin situハイブリダイゼーションの結果を示す。図2bは、全細胞に対する各ゲートのvasa陽性細胞割合(vasa ratio)を示す。FIG. 2a shows a scatter diagram of cells contained in a bluefin tuna cell suspension obtained by FCM analysis in an immature individual (age 1), and in situ cells contained in the A to G gates of the scatter diagram, respectively. The result of hybridization is shown. FIG. 2b shows the percentage of vasa positive cells (vasa + ratio) for each gate relative to the total cells. 図3aは、成熟個体(3齢)での精巣のHE染色およびin situハイブリダイゼーション(vasa)の結果を示す。図3bは、FCM解析により得られたクロマグロ粗精製細胞懸濁液に含まれる細胞の散布図の結果を示す。図3cは、Aゲートに含まれる分離された細胞の形態およびin situハイブリダイゼーションの結果を示す。図3dは、全細胞に対する各ゲートのvasa陽性細胞割合(vasa ratio)を示す。FIG. 3a shows the results of testicular HE staining and in situ hybridization (vasa) in mature individuals (age 3). FIG. 3b shows the results of a scatter plot of cells contained in the bluefin tuna crude cell suspension obtained by FCM analysis. FIG. 3c shows the morphology of the isolated cells contained in the A gate and the results of in situ hybridization. FIG. 3d shows the percentage of vasa positive cells (vasa + ratio) for each gate relative to the total cells. 図4は、二次スクリーニングでの免疫細胞染色の結果を示す。aは、緑色蛍光が明瞭に細胞膜で観察された細胞(陽性シグナル)であり、bは、血球細胞やデブリなど非特異的なシグナルが観察された細胞であり、cは、シグナルが認められなかった細胞の一例を示す。FIG. 4 shows the results of immune cell staining in the secondary screening. a is a cell in which green fluorescence is clearly observed on the cell membrane (positive signal), b is a cell in which non-specific signals such as blood cells and debris are observed, and c is no signal. An example of a cultured cell is shown. 図5aは、三次スクリーニングで用いた全細胞のFCM解析(FS-SS展開)により得られた散布図を示す。図5bは、抗体陽性(右側の矢印)と抗体陰性(左側の矢印)のヒストグラムを示す。横軸が抗体のシグナル強度を示し、縦軸が細胞数を示す。図5cは、抗体陽性の細胞集団のFCM解析(FS-SS展開)により得られた散布図を示す。FIG. 5a shows a scatter plot obtained by FCM analysis (FS-SS development) of all cells used in the tertiary screening. FIG. 5b shows a histogram of antibody positive (right arrow) and antibody negative (left arrow). The horizontal axis indicates the signal intensity of the antibody, and the vertical axis indicates the number of cells. FIG. 5c shows a scatter plot obtained by FCM analysis (FS-SS development) of an antibody positive cell population. 図6は、TA-No.6-28ハイブリドーマ産生抗体を用いた、免疫細胞染色およびin situ ハイブリダイゼーションの結果を示す。6 shows TA-No. The results of immune cell staining and in situ hybridization using a 6-28 hybridoma-producing antibody are shown. 図7は、TA-No.6-28ハイブリドーマ産生抗体(a)およびTA-No.15-1ハイブリドーマ産生抗体(b)を用いたin situハイブリダイゼーションの結果を示す。濃縮率は、それぞれ、85.2%、78.9%であった。7 shows TA-No. 6-28 hybridoma producing antibody (a) and TA-No. The results of in situ hybridization using the 15-1 hybridoma-producing antibody (b) are shown. Concentration rates were 85.2% and 78.9%, respectively. 図8は、クロマグロの精巣組織切片でのHE染色およびTA-No.6-28ハイブリドーマ産生抗体を用いた免疫組織染色結果を示す。FIG. 8 shows HE staining in testicular tissue sections of bluefin tuna and TA-No. The result of immunohistochemical staining using 6-28 hybridoma-producing antibody is shown. 図9は、クロマグロの精巣組織切片でのHE染色(左)ならびにTA-No.6-28ハイブリドーマ産生抗体(上段)およびTA-No.15-1ハイブリドーマ産生抗体(下段)を用いた免疫組織染色(右)の結果を示す。FIG. 9 shows HE staining (left) in testicular tissue sections of bluefin tuna and TA-No. 6-28 hybridoma producing antibody (top) and TA-No. The results of immunohistochemical staining (right) using a 15-1 hybridoma-producing antibody (bottom) are shown. 図10は、TA-No.6-28ハイブリドーマ産生抗体(左)およびTA-No.15-1ハイブリドーマ産生抗体(右)を用いた、クロマグロMACS濃縮未分化生殖細胞のフローサイトメトリー解析の(a)細胞の形態の写真(生物顕微鏡、Olympus)(フロー画分(Flow)と溶出画分(Elute))ならびに(b)vasa in situ ハイブリダイゼーションの写真(生物顕微鏡、Olympus)(フロー画分(Flow)と溶出画分(Elute))を示す。FIG. 10 shows TA-No. 6-28 hybridoma producing antibody (left) and TA-No. (A) Photograph of cell morphology (biological microscope, Olympus) (flow fraction (Flow) and elution fraction) of flow cytometric analysis of bluefin tuna MACS-enriched undifferentiated germ cells using 15-1 hybridoma-producing antibody (right) Minute (Elute)) and (b) photo of vasa in situs hybridization (biological microscope, Olympus) (flow fraction (Flow) and elution fraction (Elute)). 図11は、移植したニベの開腹写真を示す。蛍光視野(蛍光生物顕微鏡、Olympus)および明視野の写真である。FIG. 11 shows a laparotomy photograph of the transplanted nibe. Fluorescence field (fluorescence biological microscope, Olympus) and bright field photograph. 図12は、移植した細胞の、ニベ宿主生殖線への生着率を示すグラフである。縦軸は、観察した全ニベ宿主中で、移植したクロマグロ未分化生殖細胞の生着が観察された個体の割合(%)を示す。FIG. 12 is a graph showing the engraftment rate of the transplanted cells to the Nibe host germ line. A vertical axis | shaft shows the ratio (%) of the individual in which the engraftment of the transplanted bluefin tuna undifferentiated germ cell was observed among all the observed panicle hosts.
発明の具体的説明Detailed description of the invention
 本発明の一つの態様によれば、サバ科魚類未分化生殖細胞、好ましくはサバ科魚類未分化生殖細胞の表面を特異的に認識するモノクローナル抗体が提供される。 According to one aspect of the present invention, there is provided a monoclonal antibody that specifically recognizes the surface of a mackerel fish undifferentiated germ cell, preferably a mackerel fish undifferentiated germ cell.
 「サバ科魚類」とは、スズキ目サバ科に含まれる魚類を意味し、例えば、マグロ属魚類、スマ属魚類、カツオ属魚類、サバ属魚類、サワラ属魚類、ソウダガツオ属、ハガツオ属、イソマグロ属が挙げられ、好ましくは、マグロ属魚類、スマ属魚類、カツオ属魚類またはサバ属魚類である。サバ科魚類の代表的な魚種として、マグロ属魚類では、例えば、クロマグロ(例えば、タイヘイヨウクロマグロ、タイセイヨウクロマグロ)、ミナミマグロ、メバチマグロ、キハダマグロ、ビンナガマグロ、タイセイヨウマグロ、コシナガが挙げられる。スマ属魚類では、例えば、スマ、タイセイヨウヤイトが挙げられる。カツオ属魚類では、例えば、カツオが挙げられる。サバ属魚類では、マサバ、ゴマサバが挙げられる。本発明のサバ科魚類の魚種は、好ましくは、クロマグロ、ミナミマグロ、メバチマグロ、キハダマグロ、ビンナガマグロ、タイセイヨウマグロまたはコシナガであり、これらは総称としてマグロと呼ばれることもある。本発明のサバ科魚類の魚種は、より好ましくは、人工種苗生産による資源保護が期待されている点で、クロマグロ、ミナミマグロ、タイセイヨウマグロまたはスマである。 The term “mackerid fish” means a fish included in the periaceae mackerel family, for example, tuna fish, suma fish, bonito fish, mackerel fish, sawara fish, soda bonito, bonito genus, isola genus And preferred are tuna fish, suma fish, bonito fish and mackerel fish. As typical fish species of mackerelid fishes, for example, bluefin tuna (for example, bluefin bluefin tuna, bluefin tuna), southern bluefin tuna, bigeye tuna, yellowfin tuna, albacore tuna, Atlantic bluefin tuna, cochinaga. Examples of Suma fishes include Suma and Atlantic Yait. Examples of bonito fish include bonito. Mackerel and sesame mackerel are examples of mackerel fish. The fish species of the mackerel family of the present invention are preferably bluefin tuna, southern bluefin tuna, bigeye tuna, yellowfin tuna, albacore tuna, Atlantic bluefin tuna or cochinaga, which are sometimes collectively referred to as tuna. More preferably, the fish species of the mackerel family fish of the present invention is bluefin tuna, southern bluefin tuna, Atlantic bluefin tuna or suma in that resource protection by artificial seedling production is expected.
 「未分化生殖細胞」とは、生殖細胞に分類される、始原生殖細胞、卵原細胞、精原細胞、卵母細胞、精母細胞、精細胞、卵および精子の内、ほとんど分化していない生殖細胞を意味し、例えば、始原生殖細胞、精原細胞、卵原細胞が挙げられる。生殖細胞が、未分化生殖細胞であるか否かは、その形態的特徴によって判断することができる。例えば、A型精原細胞は、組織学的観察を行った際、精巣細胞中で周囲を体細胞に囲まれた状態かつ単独で存在する生殖細胞であるため、組織学的観察により同定することが可能である。また卵原細胞は、卵黄形成期になる前の小型の生殖細胞のうち、第1減数分裂が開始していない細胞集団であり、よって、Sycp3等をはじめとする減数分裂マーカー遺伝子を発現していないことも、卵原細胞を同定する一つの指標となりうる。本発明の未分化生殖細胞は、好ましくは、代理親魚技法において、宿主魚類生殖腺に移植した際の生着能をもつ、宿主生殖腺への生着能を有する未分化生殖細胞である。宿主生殖腺への生着能を有する未分化生殖細胞としては、始原生殖細胞、A型精原細胞または卵原細胞が挙げられる。A型精原細胞とは、未分化精巣において体細胞と共に存在する未分化生殖細胞であり、該A型精原細胞は、成熟を開始した精巣または成熟精巣において、B型精原細胞、精母細胞、精細胞、精子へと分化する細胞である。卵原細胞とは、未分化卵巣に体細胞と共に存在する未分化生殖細胞であり、成熟に従って卵母細胞、卵へと分化する細胞である。生殖細胞が、宿主生殖腺への生着能を有する未分化生殖細胞であるか否かは、代理親魚技法において、宿主魚類生殖腺に移植した際の生着能の有無により判断することができる。具体的には、vasa遺伝子の高い発現が認められ、かつ、代理親魚技法において宿主魚類生殖腺へ移植した際の生着能が認められた細胞を、宿主生殖腺への生着能を有する未分化生殖細胞と判断することができ、例えば、非特許文献1を参照することができる。 “Undifferentiated germ cells” are primordial germ cells, oocytes, spermatogonia, oocytes, spermatocytes, sperm cells, eggs and sperm, which are classified as germ cells, are hardly differentiated. It means a germ cell, and examples thereof include primordial germ cells, spermatogonia, and oocytes. Whether a germ cell is an undifferentiated germ cell can be determined by its morphological characteristics. For example, histological observation of type A spermatogonia is a germ cell that is surrounded by somatic cells in testis cells and is present alone, and should be identified by histological observation. Is possible. In addition, the oocyte is a cell population in which the first meiosis has not started among the small germ cells before the yolk formation phase, and therefore expresses meiosis marker genes such as Sycp3. Absence can also be an indicator for identifying oocyte cells. The undifferentiated germ cell of the present invention is preferably an undifferentiated germ cell having the engraftment ability to the host gonad, which has the engraftment ability when transplanted to the host fish gonad in the surrogate parent fish technique. Examples of the undifferentiated germ cells having engraftment ability to the host gonad include primordial germ cells, type A spermatogonia, or oocytes. The type A spermatogonia are undifferentiated germ cells that exist together with somatic cells in the undifferentiated testis. The type A spermatogonia are B-type spermatogonia, spermatocytes in the testis that has started to mature or mature testis. Cells that differentiate into cells, sperm cells, and sperm. An oocyte is an undifferentiated germ cell that exists together with a somatic cell in an undifferentiated ovary, and is a cell that differentiates into an oocyte or an egg as it matures. Whether or not a germ cell is an undifferentiated germ cell capable of engraftment in the host gonad can be determined by the presence or absence of engraftment when transplanted into the host fish gonad in the surrogate parent fish technique. Specifically, undifferentiated reproductive cells that have a high expression of the vasa gene and that have been engrafted in the gonad of the host fish in the surrogate parent fish technique have the ability to engraft in the gonad of the host. For example, Non-Patent Document 1 can be referred to.
 「サバ科魚類未分化生殖細胞を特異的に認識する」とは、サバ科魚類の未分化生殖細胞に対して特異的に結合し、サバ科魚類の分化生殖細胞、体細胞には、特異的には結合しないことを意味し、好ましくは、サバ科魚類の未分化生殖細胞の細胞表面抗原に対して特異的に結合することである。「サバ科魚類未分化生殖細胞を特異的に認識する」は、好ましくは、サバ科魚類未分化生殖細胞の表面、より好ましくは、生殖細胞膜表面を特異的に認識することをいう。本発明において、「特異的に結合」には、優先的に結合することも含まれる。 “Specific recognition of maize fish undifferentiated germ cells” means that it specifically binds to undifferentiated germ cells of mackerel fish and is specific to differentiated germ cells and somatic cells of mackerel fish. Is preferably bound specifically to cell surface antigens of undifferentiated germ cells of mackerel fish. “Specifically recognizing mackerel fish undifferentiated germ cells” preferably refers to specifically recognizing the surface of maize fish undifferentiated germ cells, more preferably the germ cell membrane surface. In the present invention, “specific binding” includes binding preferentially.
 「モノクローナル抗体」とは、単一の抗体産生細胞に由来するクローンから得られた抗体(免疫グロブリン分子)を意味し、免疫グロブリンのクラスとしては特に限定されず、例えば、IgG、IgM、IgA、IgD、IgEが挙げられ、好ましくは、IgGである。 “Monoclonal antibody” means an antibody (immunoglobulin molecule) obtained from a clone derived from a single antibody-producing cell, and is not particularly limited as an immunoglobulin class. For example, IgG, IgM, IgA, IgD and IgE can be mentioned, and IgG is preferable.
 本発明のモノクローナル抗体は、サバ科魚類の未分化生殖細胞を抗原として、抗体産生ハイブリドーマを作製し、該ハイブリドーマが産生する抗体について、未分化生殖細胞を認識する抗体であることを検出することによって取得できる。 The monoclonal antibody of the present invention produces an antibody-producing hybridoma using an undifferentiated germ cell of a mackerel fish as an antigen, and detects that the antibody produced by the hybridoma is an antibody that recognizes an undifferentiated germ cell. You can get it.
 本発明のモノクローナル抗体を作製するための抗原は、好ましくは、代理親魚技法の移植に用いる未分化生殖細胞の数の確保が容易な点で、サバ科魚類の精巣または卵巣から分離された未分化生殖細胞である。本発明の好ましい態様では、精巣または卵巣から分離された未分化生殖細胞として、精巣または卵巣由来の体細胞なども含む細胞懸濁液から、未分化生殖細胞のみが分離、濃縮された細胞集団を用いることができ、具体的には、フローサイトメトリー(FCM)解析により得られた未分化生殖細胞が多く含まれる細胞集団の画分について、FS、SSをリニア値で表示した際に、相対的にFSの値が大きく、SSの値が小さい画分を用いることができる。より具体的には、後述する実施例の例1で示される様に、488nmアルゴンレーザーを備えたEpics Altra(ベックマンコールター)でFCM解析した場合、細胞分散により、単一の状態である精巣細胞を全て検出可能な条件でFS-SSのプロット図で展開をした際に、相対的にFSが大きく、SSが小さい画分、好ましくは、FS値が高い方におよそ1/3、SS値が低い方におよそ1/3の画分、に出現する細胞集団を用いることができる。このような、未分化生殖細胞が多く含まれる細胞集団は、後述する実施例の例1の方法では、Aゲートとして調製できる。よって、本発明の一つの態様によれば、本発明のサバ科魚類未分化生殖細胞を特異的に認識する抗体を調製するための抗原が提供され、該抗原は、好ましくは、フローサイトメトリー(FCM)解析により得られた未分化生殖細胞が多く含まれる細胞集団の画分について、FS、SSをリニア値で表示した際に、相対的にFSの値が大きく、SSの値が小さい画分である。 The antigen for producing the monoclonal antibody of the present invention is preferably undifferentiated isolated from the testis or ovary of a mackerel fish in that it is easy to secure the number of undifferentiated germ cells used for transplantation of surrogate parent fish technique. It is a germ cell. In a preferred embodiment of the present invention, an undifferentiated germ cell separated from the testis or ovary is used as a cell population in which only undifferentiated germ cells are separated and concentrated from a cell suspension containing somatic cells derived from the testis or ovary. Specifically, when FS and SS are displayed as linear values for a fraction of a cell population containing many undifferentiated germ cells obtained by flow cytometry (FCM) analysis, A fraction having a large FS value and a small SS value can be used. More specifically, as shown in Example 1 of the Example described later, when an FCM analysis is performed with an Epics Altra (Beckman Coulter) equipped with a 488 nm argon laser, testis cells in a single state can be obtained by cell dispersion. When the FS-SS plot is developed under all detectable conditions, the fraction with a relatively large FS and a small SS, preferably about 1/3 the higher the FS value, the lower the SS value. A cell population that appears in about a third of the fraction can be used. Such a cell population containing a large number of undifferentiated germ cells can be prepared as an A gate in the method of Example 1 of the Examples described later. Thus, according to one aspect of the present invention, there is provided an antigen for preparing an antibody that specifically recognizes the undifferentiated germ cell of the present invention, and the antigen is preferably flow cytometry ( FCM) Fraction of cell population containing many undifferentiated germ cells obtained by analysis, when FS and SS are displayed as linear values, the fraction with relatively large FS value and small SS value It is.
 本発明の好ましい態様によれば、本発明のモノクローナル抗体は、サバ科魚類の精巣または卵巣から分離された未分化生殖細胞を抗原として、抗体産生ハイブリドーマを作製し、該ハイブリドーマが産生する抗体について、未分化生殖細胞を認識する抗体であることを検出することによって取得できる。抗体産生ハイブリドーマの作製は、常法に従って調製でき、例えば、抗原を、動物(例えば、マウス、ラット、ウサギなど)に投与し、免疫感作させ、該動物から得られたリンパ節由来の細胞とミエローマ細胞とを融合させることにより調製できる。未分化生殖細胞を認識する抗体であることの検出は、例えば後述する実施例の例2に記載のCell ELISA法、免疫細胞染色、in situハイブリダイゼーションのほか、vasa遺伝子に対するRT-PCR法などによって行うことができる。宿主生殖腺への生着能を有する未分化生殖細胞を認識する抗体であることの検出は、代理親魚技法において宿主生殖腺に移植した際の宿主生殖腺への生着能を確認する(非特許文献1を参照)ことにより行うことができる。 According to a preferred embodiment of the present invention, the monoclonal antibody of the present invention is prepared using an undifferentiated germ cell isolated from a testicular or ovary of a mackerel fish as an antigen to produce an antibody-producing hybridoma, and for the antibody produced by the hybridoma, It can be obtained by detecting that the antibody recognizes undifferentiated germ cells. An antibody-producing hybridoma can be prepared according to a conventional method. For example, an antigen is administered to an animal (eg, mouse, rat, rabbit, etc.), immunized, and lymph node-derived cells obtained from the animal are used. It can be prepared by fusing with myeloma cells. Detection of an antibody recognizing an undifferentiated germ cell is performed by, for example, Cell ELISA method, immune cell staining, in situ hybridization described in Example 2 of Example described later, RT-PCR method for vasa gene, and the like. It can be carried out. Detection of an antibody recognizing an undifferentiated germ cell having an engraftment ability to the host gonad confirms the engraftment ability to the host gonad when transplanted to the host gonad by the surrogate parent fish technique (Non-patent Document 1). Can be performed.
 本発明の好ましい態様によれば、本発明のサバ科魚類未分化生殖細胞を特異的に認識するモノクローナル抗体は、独立行政法人製品評価技術基盤機構特許微生物寄託センターに寄託されている抗体産生ハイブリドーマTA-No.6-28(受領番号:NITE ABP-02222)またはTA-No.15-1(受領番号:NITE ABP-02223)により産生される。 According to a preferred embodiment of the present invention, the monoclonal antibody specifically recognizing the undifferentiated germ cell of the mackerel fish of the present invention is an antibody-producing hybridoma TA deposited at the Patent Evaluation Center of the National Institute of Technology and Evaluation. -No. 6-28 (reception number: NITE ABP-02222) or TA-No. 15-1 (reception number: NITE ABP-02223).
 TA-No.6-28は、サバ科魚類精原細胞を特異的に認識する抗体を産生するハイブリドーマであり、2016年3月22日(原寄託日)付で、独立行政法人製品評価技術基盤機構特許微生物寄託センター(日本国千葉県木更津市かずさ鎌足2丁目5番8号)に、受領番号がNITE ABP-02222(国内寄託NITE P-02222より移管)(識別の表示:TA-No.6-28)として寄託されている。TA-No.6-28は、骨髄腫細胞と抗体産生細胞であるBリンパ細胞を細胞融合させ作製されたハイブリドーマであり、その形態は円形で弱接着性であり、終濃度1%のPenicillin-Streptomycin,Liquid(Gibco)および10%ウシ胎児血清(FBS)を含むHybirdoma-SFM培地(Gibco、12300-067)中で37℃、5%CO2下のインキュベートにより増殖する。マウス抗体産生能(IgG抗体)を有し、その産生量は1~10μg/ml程度である。 TA-No. 6-28 is a hybridoma that produces an antibody that specifically recognizes spermatogonial spermatogonia, dated March 22, 2016 (original deposit date), and deposited with a patent microorganism of the National Institute of Technology and Evaluation Technology The reception number is NITE ABP-02222 (transferred from domestic deposit NITE P-02222) at the center (Kazusa Kamashitsu 2-chome, 5-8-8, Kisarazu, Chiba, Japan) (Indication of identification: TA-No. 6-28) Has been deposited. TA-No. 6-28 is a hybridoma prepared by cell fusion of myeloma cells and antibody-producing B lymphocytes. The hybridoma is circular and weakly adherent, with a final concentration of 1% Penicillin-Streptomycin, Liquid ( Gibco) and growth in Hybridoma-SFM medium (Gibco, 12300-067) containing 10% fetal bovine serum (FBS) by incubation at 37 ° C., 5% CO2. It has mouse antibody production ability (IgG antibody), and its production amount is about 1 to 10 μg / ml.
 TA-No.15-1は、サバ科魚類精原細胞を特異的に認識する抗体を産生するハイブリドーマであり、2016年3月22日(原寄託日)付で、独立行政法人製品評価技術基盤機構特許微生物寄託センター(日本国千葉県木更津市かずさ鎌足2丁目5番8号)に、受領番号がNITE ABP-02223(国内寄託NITE P-02223より移管)(識別の表示:TA-No.15-1)として寄託されている。TA-No.15-1は、骨髄腫細胞と抗体産生細胞であるBリンパ細胞を細胞融合させ作製されたハイブリドーマであり、その形態は円形で弱接着性であり、終濃度1%のPenicillin-Streptomycin,Liquid(Gibco)および10%ウシ胎児血清(FBS)を含むHybirdoma-SFM培地(Gibco、12300-067)中で37℃、5%CO2下のインキュベートにより増殖する。マウス抗体産生能(IgG抗体)を有し、その産生量は1~10μg/ml程度である。 TA-No. 15-1 is a hybridoma that produces an antibody that specifically recognizes spermatogonial spermatogonial cells, and was deposited on March 22, 2016 (original deposit date) by the National Institute of Technology and Evaluation Patent Microorganisms. The reception number is NITE ABP-02223 (transferred from domestic deposit NITE P-02223) at the center (Kazusa Kamashitsu 2-chome No. 5-8, Kisarazu City, Chiba, Japan) (Indication of identification: TA-No. 15-1) Has been deposited. TA-No. 15-1 is a hybridoma prepared by fusing myeloma cells and antibody-producing B lymphocytes into cells, the form of which is circular and weakly adhesive, with a final concentration of 1% Penicillin-Streptomycin, Liquid ( Gibco) and growth in Hybridoma-SFM medium (Gibco, 12300-067) containing 10% fetal bovine serum (FBS) by incubation at 37 ° C., 5% CO2. It has mouse antibody production ability (IgG antibody), and its production amount is about 1 to 10 μg / ml.
 本発明のモノクローナル抗体は、サバ科魚類の精巣または卵巣からサバ科魚類の未分化生殖細胞を分離することができる。本発明のモノクローナル抗体を用いたサバ科魚類の未分化生殖細胞の分離方法は、生きたまま未分化生殖細胞を分離することができれば特に限定されず、公知の方法を用いることができ、例えば、FITCなどの蛍光標識をした抗体を用いたフローサイトメトリー解析での細胞分離(単離)や、磁気ビーズをつけた抗体を用いた磁気細胞分離を用いることができる。好ましくは、高度な設備や技術を必要としない点で、磁気細胞分離(MACS)法である。磁気細胞分離法は、フローサイトメトリー解析での細胞分離と比較して、磁気ビーズによって分離するため大量の細胞であっても簡便に処理ができる点で有利である。また、本発明のモノクローナル抗体を用いたMACS法は、パーコールを用いた密度勾配遠心法のように細胞毒性がある溶液を使用する必要がないことから細胞の性状に悪影響を与えにくい点で有利であり、さらに比重が近い細胞集団においても一部の細胞集団を濃縮可能な点で有利である。 The monoclonal antibody of the present invention can separate undifferentiated germ cells of mackerel fish from the testes or ovaries of mackerel fish. The method for separating undifferentiated germ cells of mackerel fish using the monoclonal antibody of the present invention is not particularly limited as long as undifferentiated germ cells can be isolated while alive, and a known method can be used, for example, Cell separation (isolation) by flow cytometry analysis using a fluorescently labeled antibody such as FITC or magnetic cell separation using an antibody with magnetic beads can be used. The magnetic cell separation (MACS) method is preferable because it does not require sophisticated equipment or technology. The magnetic cell separation method is advantageous in that it can be easily processed even with a large amount of cells because it is separated by magnetic beads, compared to cell separation in flow cytometry analysis. In addition, the MACS method using the monoclonal antibody of the present invention is advantageous in that it does not need to use a cytotoxic solution unlike the density gradient centrifugation method using Percoll, so that it does not adversely affect the cell properties. In addition, it is advantageous in that a part of the cell population can be concentrated even in a cell population having a specific gravity close.
 本発明のモノクローナル抗体により分離(単離)した未分化生殖細胞を集めることにより、未分化生殖細胞を濃縮することができる。よって、本発明の一つの態様によれば、本発明の抗体を用いて、サバ科魚類由来の未分化生殖細胞を含んでなるサバ科魚類の精巣または卵巣から、サバ科魚類由来の未分化生殖細胞を分離することを含んでなる、サバ科魚類未分化生殖細胞濃縮方法が提供される。本発明の濃縮方法により得られた濃縮された未分化生殖細胞は、生きた細胞であるため代理親魚技法の移植に用いる未分化生殖細胞として用いることにより、移植効率の向上が期待できる。すなわち、本発明の一つの態様によれば、本発明の抗体を用いて、サバ科魚類由来の未分化生殖細胞を含んでなるサバ科魚類の精巣または卵巣から、サバ科魚類由来の未分化生殖細胞を分離することを含んでなる、サバ科魚類未分化生殖細胞生産方法が提供される。 The undifferentiated germ cells can be concentrated by collecting the undifferentiated germ cells separated (isolated) by the monoclonal antibody of the present invention. Therefore, according to one embodiment of the present invention, an undifferentiated reproduction derived from a mackerel fish is obtained from a testis or ovary of a mackerel fish comprising undifferentiated germ cells derived from a mackerel fish using the antibody of the present invention. A method is provided for enriching maize undifferentiated germ cells comprising separating the cells. Since the concentrated undifferentiated germ cells obtained by the concentration method of the present invention are living cells, the use of the undifferentiated germ cells used for transplantation of the surrogate parent fish technique can be expected to improve transplantation efficiency. That is, according to one aspect of the present invention, an undifferentiated reproduction derived from a mackerel fish is obtained from a testis or ovary of a mackerel fish comprising undifferentiated germ cells derived from a mackerel fish using the antibody of the present invention. A method is provided for producing undifferentiated germ cells of mackerel fish comprising separating the cells.
 本発明のモノクローナル抗体により分離(単離)した未分化生殖細胞を用いることで、代理親魚技法において、効率良く、移植した未分化生殖細胞を配偶子へ分化誘導することができる。ここで、移植した未分化生殖細胞を配偶子へ分化誘導することは、腹腔内へ移植した未分化生殖細胞が、自ら移植された宿主の生殖腺へ移動して生着し、該宿主の生殖腺において成熟して配偶子に分化誘導されることを意味する。よって、移植した未分化生殖細胞の配偶子への分化誘導の成否は、宿主の生殖腺において移植した未分化生殖細胞の生着の有無により判断することができる(Okutsu, T., Suzuki, K., Takeuchi, Y.,Takeuchi, T & Yoshizaki, G. (2006) Testicular germ cells can colonize sexually undifferentiated embryonic gonad and produce functional eggs in fish. Proceedings of the National Academy of Sciences of the United States of America, 103, 2725-2729参照)。宿主の生殖腺において移植した未分化生殖細胞の生着が確認できれば、高い確率で、移植した未分化生殖細胞を配偶子へ分化誘導することができるといえる。よって、本発明の一つの態様によれば、サバ科魚類の代理親魚技法、すなわち、サバ科魚類の未分化生殖細胞を、孵化前後の宿主魚類個体の腹腔内へ移植することを含んでなる、未分化生殖細胞の配偶子への分化誘導方法において、移植前に、本発明の抗体を用いて、サバ科魚類由来の未分化生殖細胞を含んでなるサバ科魚類の精巣または卵巣からサバ科魚類未分化生殖細胞を分離、濃縮し、該分離、濃縮した未分化生殖細胞を、孵化前後の宿主魚類個体の腹腔内へ移植することを含んでなる、未分化生殖細胞の配偶子への分化誘導方法が提供される。 By using undifferentiated germ cells separated (isolated) by the monoclonal antibody of the present invention, the transplanted undifferentiated germ cells can be induced to differentiate into gametes efficiently in the surrogate parent fish technique. Here, inducing differentiation of transplanted undifferentiated germ cells into gametes means that undifferentiated germ cells transplanted into the abdominal cavity move into the gonad of the transplanted host and engraft, and in the gonad of the host It means that it matures and is induced to differentiate into gametes. Therefore, the success or failure of induction of differentiation of transplanted undifferentiated germ cells into gametes can be determined by the presence or absence of transplanted undifferentiated germ cells in the gonad of the host (Okutsu, T., Suzuki, K. , Takeuchi, Y., Takeuchi, T & Yoshizaki, G. (2006) Testicular germ cells can colonize sexually undifferentiated embryonic gonad and produce functional eggs in fish. Proceedings of the National Academy of S -2729). If engraftment of transplanted undifferentiated germ cells can be confirmed in the gonad of the host, it can be said that the transplanted undifferentiated germ cells can be induced to differentiate into gametes with high probability. Thus, according to one aspect of the present invention, a surrogate surrogate fish technique, i.e., transplanting undifferentiated germ cells of a mackerel fish into the peritoneal cavity of a host fish individual before and after hatching, In the method for inducing differentiation of undifferentiated germ cells into gametes, using the antibody of the present invention before transplantation, the testis or ovary of a mackerel fish comprising undifferentiated germ cells derived from a mackerel fish Inducing differentiation of undifferentiated germ cells into gametes, comprising isolating and concentrating undifferentiated germ cells and transplanting the separated and enriched undifferentiated germ cells into the abdominal cavity of a host fish individual before and after hatching A method is provided.
 本発明の一つの態様によれば、サバ科魚類の代理親魚技法において、すなわち、サバ科魚類の精巣または卵巣から分離された未分化生殖細胞を、孵化前後の宿主魚類個体の腹腔内へ移植することを含んでなる、未分化生殖細胞の配偶子への分化誘導方法において、移植前に、本発明の抗体を用いて、サバ科魚類由来の未分化生殖細胞を含んでなるサバ科魚類の精巣または卵巣から、サバ科魚類未分化生殖細胞を分離、濃縮し、該分離、濃縮した未分化生殖細胞を、孵化前後の宿主魚類個体の腹腔内へ移植することを含んでなる、未分化生殖細胞の配偶子への分化誘導方法が提供される。 According to one embodiment of the present invention, in the surrogate progeny technique of mackerel fish, i.e., undifferentiated germ cells isolated from the testes or ovaries of mackerel fish are transplanted into the peritoneal cavity of the individual host fish before and after hatching. In the method for inducing differentiation of undifferentiated germ cells into gametes, using the antibody of the present invention before transplantation, the testis of a mackerel fish comprising undifferentiated germ cells derived from a mackerel fish Alternatively, undifferentiated germ cells comprising separating and concentrating undifferentiated germ cells of mackerel fish from the ovary, and transplanting the separated and concentrated undifferentiated germ cells into the abdominal cavity of a host fish individual before and after hatching A method for inducing differentiation into a gamete is provided.
 本発明の一つの態様によれば、本発明の分化誘導方法において、移植前に、本発明の抗体を用いて、サバ科魚類由来の未分化生殖細胞を含んでなるサバ科魚類の精巣または卵巣から、宿主生殖腺への生着能を有するサバ科魚類未分化生殖細胞を分離、濃縮し、該分離、濃縮した未分化生殖細胞を、孵化前後の宿主魚類個体の腹腔内へ移植することを含んでなる、未分化生殖細胞の配偶子への分化誘導方法が提供されうる。 According to one aspect of the present invention, the testis or ovary of a mackerel fish comprising undifferentiated germ cells derived from a mackerel fish using the antibody of the present invention before transplantation in the differentiation inducing method of the present invention. And then isolating and concentrating undifferentiated germ cells of mackerel fish that have the ability to engraft the host gonads, and transplanting the separated and enriched undifferentiated germ cells into the peritoneal cavity of the individual host fish before and after hatching. A method for inducing differentiation of undifferentiated germ cells into gametes can be provided.
 本発明の分化誘導方法において、ドナー魚類として、移植される未分化生殖細胞を提供するサバ科魚類は、宿主魚類とは異種であっても、同種であってもよく、好ましくは異種である。ドナー魚類と宿主魚類とが、同種であるとは、未分化生殖細胞を提供するサバ科魚類の種と、宿主魚類の種が同じことを意味し、この方法を用いることで、例えば、形質の良好な品種をドナー魚類とすることで、選抜育種をすることなく、短時間に大量に良好な品種を生産することができる。ドナー魚類と宿主魚類とが、異種であるとは、未分化生殖細胞を提供するサバ科魚類の種と、宿主魚類の種が異なることを意味し、例えば、未分化生殖細胞を提供するサバ科魚類の種が、宿主魚類の属と異なる魚種である場合や、同じ属に含まれる他の魚種である場合が含まれる。異種である場合、ドナー魚類と宿主魚類の組み合わせは、それぞれの生息環境の類似性、生殖腺の大きさなどを考慮して決定することができる。 In the differentiation-inducing method of the present invention, the mackerel fish that provides undifferentiated germ cells to be transplanted as donor fish may be different from or same as the host fish, and preferably different. That the donor fish and the host fish are the same species means that the species of the mackerel fish that provides undifferentiated germ cells and the species of the host fish are the same. By making good varieties into donor fish, good varieties can be produced in large quantities in a short time without selective breeding. The fact that the donor fish and the host fish are heterogeneous means that the species of mackerel fish that provides undifferentiated germ cells differs from the species of the host fish, for example, the mackerel family that provides undifferentiated germ cells. The case where the fish species is a fish species different from the genus of the host fish and the case where the fish species are other fish species included in the same genus are included. When they are heterogeneous, the combination of donor fish and host fish can be determined in consideration of the similarity of their habitats, the size of the gonads, and the like.
 ドナー魚類としてのサバ科魚類は、好ましくは、宿主魚類より大型魚類である。サバ科魚類の大型魚類としては、例えば、クロマグロ(例えば、タイヘイヨウクロマグロ、タイセイヨウクロマグロ)およびミナミマグロが挙げられる。また、魚類は年齢と共に大型化するため、大型魚類には巨大に成長した親魚も含まれる。大型魚類の生殖細胞を、分離し、小型の宿主魚類の生殖腺に移植して、配偶子に分化誘導することにより、大型魚類の親魚で問題となっている飼料や飼育スペースを減少することができる。 The mackerel fish as donor fish is preferably larger fish than the host fish. Examples of large fishes of mackerel fish include bluefin tuna (for example, bluefin tuna, Atlantic bluefin tuna) and southern bluefin tuna. In addition, since fish grows larger with age, large fish includes parent fish that have grown enormously. By separating germ cells of large fish, transplanting them into the gonads of small host fish, and inducing differentiation into gametes, it is possible to reduce the feed and breeding space that are a problem for parent fish of large fish .
 本発明のより好ましい態様によれば、本発明の分化誘導法において、宿主魚類は、サバ科魚類から選択される1種であり、ドナー魚類として、移植する未分化生殖細胞を提供するサバ科魚類が、マグロ、すなわち、クロマグロ、ミナミマグロ、メバチマグロ、キハダマグロ、ビンナガマグロ、タイセイヨウマグロまたはコシナガから選択される1種である。本発明のさらに好ましい態様によれば、宿主魚類は、サバまたはスマであり、移植する未分化生殖細胞のドナーとして用いるサバ科魚類は、クロマグロ(例えば、タイヘイヨウマグロおよびタイセイヨウマグロ)またはミナミマグロであり、より好ましくは、宿主魚類と移植する未分化生殖細胞を提供するサバ科魚類の組み合わせは、飼育困難な魚種をドナーとし、ドナーの近縁種かつ小型の水槽内で種苗生産が可能な種の組み合わせである点で、サバとタイヘイヨウクロマグロ、サバとミナミマグロ、サバとタイセイヨウクロマグロ、スマとタイヘイヨウクロマグロ、スマとミナミマグロ、スマとタイセイヨウクロマグロである。 According to a more preferred embodiment of the present invention, in the differentiation induction method of the present invention, the host fish is one selected from mackerel fish, and the donor fish provides the undifferentiated germ cells to be transplanted as a mackerel fish. Is one selected from tuna, ie, bluefin tuna, southern bluefin tuna, bigeye tuna, yellowfin tuna, albacore tuna, Atlantic bluefin tuna or cocinaga. According to a further preferred embodiment of the present invention, the host fish is a mackerel or a mare, and the mackerel fish used as a donor for the transplanted undifferentiated germ cells is a bluefin tuna (eg, Atlantic bluefin tuna and Atlantic bluefin tuna) or southern bluefin tuna. More preferably, the combination of the host fish and the mackerel fish that provides the undifferentiated germ cells to be transplanted is a species that is difficult to breed, and can produce seeds in a small aquarium that is closely related to the donor. In terms of the combination of species, mackerel and Atlantic bluefin tuna, mackerel and southern bluefin tuna, mackerel and Atlantic bluefin tuna, suma and Thai bluefin tuna, suma and southern bluefin tuna, suma and southern bluefin tuna, suma and Atlantic bluefin tuna.
 本発明の一つの態様によれば、本発明の分化誘導法を含んでなる、サバ科魚類の精子または卵の生産方法が提供される。すなわち、本発明の一つの態様によれば、サバ科魚類の精巣または卵巣から分離された未分化生殖細胞を、孵化前後の宿主魚類個体の腹腔内へ移植することを含んでなる、サバ科魚類の精子または卵の生産方法であって、移植前に、本発明の抗体を用いて、サバ科魚類由来の未分化生殖細胞を含んでなるサバ科魚類の精巣または卵巣から、宿主生殖腺への生着能を有するサバ科魚類未分化生殖細胞を分離、濃縮し、該分離、濃縮した未分化生殖細胞を孵化前後の宿主魚類個体の腹腔内へ移植し、該移植した末分化生殖細胞を配偶子へ分化誘導して、サバ科魚類の精子または卵子を得ることを含んでなる、サバ科魚類の精子または卵の生産方法が提供される。 According to one aspect of the present invention, there is provided a method for producing sperm or eggs of a mackerel fish comprising the differentiation induction method of the present invention. That is, according to one aspect of the present invention, a mackerel fish comprising transplanting undifferentiated germ cells isolated from the testis or ovary of a mackerel fish into the peritoneal cavity of a host fish individual before and after hatching. A method for producing a sperm or egg of an animal from a testis or ovary of a mackerel fish comprising undifferentiated germ cells derived from a mackerel fish prior to transplantation using the antibody of the present invention. Isolating and concentrating undifferentiated germ cells of sebaceous fish having an ability to adhere, transplanting the separated and concentrated undifferentiated germ cells into the peritoneal cavity of the host fish individual before and after hatching, and transplanting the terminally differentiated germ cells into gametes A method for producing a sperm or egg of a mackerel fish is provided that comprises inducing differentiation into a sperm or egg of a mackerel fish.
 本発明の別の態様によれば、サバ科魚類の精巣または卵巣から分離された未分化生殖細胞を、孵化前後の宿主魚類個体の腹腔内へ移植することを含んでなる、サバ科魚類の生産方法であって、移植前に、本発明の抗体を用いて、サバ科魚類由来の未分化生殖細胞を含んでなるサバ科魚類の精巣または卵巣から、宿主生殖腺への生着能を有するサバ科魚類未分化生殖細胞を分離、濃縮し、該分離、濃縮した未分化生殖細胞を孵化前後の宿主魚類個体の腹腔内へ移植し、移植した未分化生殖細胞を配偶子へ分化誘導し、得られた精子および卵を交配することを含んでなる、サバ科魚類の生産方法が提供される。 According to another aspect of the present invention, the production of a mackerel fish comprising transplanting undifferentiated germ cells isolated from a testis or ovary of a mackerel fish into the peritoneal cavity of a host fish individual before and after hatching. The method is a mackerel family that has the ability to engraft the host gonad from the testis or ovary of a mackerel fish comprising undifferentiated germ cells derived from a mackerel fish using the antibody of the present invention prior to transplantation. Obtained by isolating and concentrating undifferentiated fish cells, transplanting the separated and enriched undifferentiated germ cells into the peritoneal cavity of the host fish individual before and after hatching, and inducing differentiation of the transplanted undifferentiated germ cells into gametes A method of producing mackerel fish is provided that comprises mating sperm and eggs.
 本発明のサバ科魚類の精子または卵の生産方法およびサバ科魚類の生産方法は、本発明の濃縮方法および分化誘導方法について本願明細書に記載された内容に従って実施することができる。 The method for producing sperm or egg of mackerel fish and the method for producing mackerel fish according to the present invention can be carried out according to the contents described in the present specification for the concentration method and differentiation induction method of the present invention.
 本発明を以下の実施例によって詳細に説明するが、本発明は、これらに限定されるものではない。 The present invention will be described in detail by the following examples, but the present invention is not limited thereto.
例1:サバ科魚類の未分化生殖細胞画分の取得
(1)精巣の摘出
 1個体のクロマグロ(2~3歳体重30~40kg、生殖腺重量100~200g程度)から精巣を摘出し、細かく切り刻んだ。細かく刻んだ精巣に、終濃度2mg/mlのコラゲナーゼH(Roche)、終濃度1.65mg/mlのディスパーゼII(合同酒精)/L-15培地(インビトロジェン)(5%ウシ胎児血清(FBS))10mlを添加し、2時間、20℃で、ピペッティングによる物理的な分散を行いながらインキュベートした。L-15培地(インビトロジェン)1mlを添加して酵素反応を停止した。得られた細胞懸濁液(約1000万細胞/ml)を、パーコール(GE Healthcare)密度勾配遠心法により粗精製し、フローサイトメトリー(FCM)解析および細胞分離に用いた。
Example 1: Acquisition of undifferentiated germ cell fraction of mackerel fish (1) Extraction of the testis The testis is extracted from a single bluefin tuna (2 to 3 years old body weight 30 to 40 kg, gonad weight of about 100 to 200 g) and chopped into small pieces It is. Collagenase H (Roche) at a final concentration of 2 mg / ml, Dispase II (joint spirit) / L-15 medium (Invitrogen) (5% fetal bovine serum (FBS)) at a final concentration of 1.65 mg / ml 10 ml was added and incubated for 2 hours at 20 ° C. with physical dispersion by pipetting. The enzyme reaction was stopped by adding 1 ml of L-15 medium (Invitrogen). The obtained cell suspension (about 10 million cells / ml) was roughly purified by GE Healthcare density gradient centrifugation and used for flow cytometry (FCM) analysis and cell separation.
 使用した精巣の成熟度は、4%パラホルムアルデヒド(PFA)/PBS固定液で固定されたクロマグロ精巣組織のパラフィン包埋組織切片(4μm)を、HE染色およびin situハイブリダイゼーション解析することにより確認した。 The testicular maturity used was confirmed by HE staining and in situ hybridization analysis of paraffin-embedded tissue sections (4 μm) of bluefin tuna testis tissue fixed with 4% paraformaldehyde (PFA) / PBS fixative. .
in situハイブリダイゼーション解析
 in situハイブリダイゼーション解析は(Nagasawa, K., Takeuchi, Y., Miwa, M., Higuchi, K., Morita, T., Mitsuboshi, T., & Yoshizaki, G. (2009). cDNA cloning and expression analysis of a vasa-like gene in Pacific bluefin tuna Thunnus orientalis. Fisheries Science, 75(1), 71-79.)に従い行った。具体的には組織切片に対してキシレン・エタノールシリーズ及び水和により脱パラフィン処理を行った。得られた切片を、4%パラホルムアルデヒドにより後固定し、1%過酸化水素による内在性アルカリフォスファターゼ(AP)の失活、プロテアーゼK(Wako)によるタンパク質分解、そしてアセチル化を行った。ハイブリダイゼーション緩衝液(50%ホルムアミド、2xSSC、50ng/ml酵母tRNA、50ng/mlヘパリン、0.02%SDS、10%デキストラン硫酸)中にて65℃で1時間静置した後、クロマグロvasaプローブ:ジゴキシゲニン(DIG)標識RNAプローブを1ng/μlの濃度になるように加えたハイブリダイゼーション緩衝液中で65℃で一晩ハイブリダイゼーションを行った。クロマグロvasaプローブは、クロマグロvasa遺伝子に特異的なプライマー(vasa F 5’-CAACCAGGGAGCTCATCAACCAGA-3’/ vasa R 5’-GCAACTCAGGTCAATGCTGTGTGG-3’)を用いたPCRにより、1085bpの断片を増幅し、これをインサートに含むプラスミドDNAを鋳型にDIG Labeling kit(Roche)を用いてDIG標識プローブの標準方法に従って合成した。
In Situ Hybridization Analysis In Situ Hybridization Analysis (Nagasawa, K., Takeuchi, Y., Miwa, M., Higuchi, K., Morita, T., Mitsuboshi, T., & Yoshizaki, G. (2009) cDNA cloning and expression analysis of avasa-like gene in Pacific bluefin tuna Thunnus orientalis. Fisheries Science, 75 (1), 71-79.). Specifically, the tissue sections were deparaffinized by xylene / ethanol series and hydration. The obtained sections were post-fixed with 4% paraformaldehyde and subjected to inactivation of endogenous alkaline phosphatase (AP) with 1% hydrogen peroxide, proteolysis with protease K (Wako), and acetylation. After standing for 1 hour at 65 ° C. in hybridization buffer (50% formamide, 2 × SSC, 50 ng / ml yeast tRNA, 50 ng / ml heparin, 0.02% SDS, 10% dextran sulfate), the bluefin tuna vasa probe: Hybridization was performed overnight at 65 ° C. in a hybridization buffer to which digoxigenin (DIG) -labeled RNA probe was added to a concentration of 1 ng / μl. The bluefin tuna vasa probe amplifies a 1085 bp fragment by PCR using a primer specific for the bluefin tuna vasa gene (vasa F 5′-CAACCAGGGAGCTCATCAACCAGA-3 ′ / vasa R 5′-GCAACTCAGGTCAATGCTGTGTGG-3 ′) Using the DIG Labeling kit (Roche) as a template, the plasmid DNA contained in was synthesized according to the standard method of DIG-labeled probes.
 十分な洗浄を行った後、RNaseA(Invitrogen)により非特異的に結合しているプローブを除去した。ブロッキング溶液(2% Blockin reagent(Roche)/TBST)によりマスキングを施し、AP標識抗DIG抗体溶液(Roche)(ブロッキング溶液にて1:500に希釈したもの)を滴下した。室温で1時間静置し、NBT/BCIP発色基質を用いて可視化した。エタノールシリーズ・キシレンを通し、エンテランを用いてスライドガラスの封入を行った。顕微観察を行い、画像をデジタル記録した。 After sufficient washing, the non-specifically bound probe was removed with RNase A (Invitrogen). Masking was performed with a blocking solution (2% Blockin reagent (Roche) / TBST), and an AP-labeled anti-DIG antibody solution (Roche) (diluted 1: 500 with a blocking solution) was added dropwise. It left still at room temperature for 1 hour, and visualized using NBT / BCIP chromogenic substrate. The slide glass was sealed with ethanol using ethanol series xylene. Microscopic observation was performed and images were digitally recorded.
 組織切片の結果を、図1a(未成熟個体)および図3a(成熟個体)に示す。 The results of the tissue sections are shown in FIG. 1a (immature individuals) and FIG. 3a (mature individuals).
(2)フローサイトメトリー(FCM)解析
 フローサイトメトリー分析は、488nmアルゴンレーザーを備えたEpics Altra(ベックマンコールター)を用いて行った。これまでの研究により魚類の精原細胞は他の生殖細胞よりも大型かつ丸い形態をしていることが明らかとなっており、vasa-GFP遺伝子導入魚を用いてフローサイトメトリー分析を行うと、精原細胞集団が大型かつ内部構造が単純な集団に分画化されることが明らかとなっている。そのため、クロマグロ精原細胞においても同様に分画化可能であると仮定し、パーコール密度交配法により得られた粗精製細胞懸濁液に対してレーザーを照射し、得られた散乱光を解析し、細胞の大きさ(Forward light scatter:FS)および内部構造の複雑さ(side light scatter:SS)のシグナルを測定した。得られた散布図に基づいて、各細胞集団が密集して分布している分画をA~Gゲート(画分)に分け、各ゲートに細胞分離を行った。分離した各ゲートの細胞集団を、形態およびin situハイブリダイゼーションにより解析した。
(2) Flow cytometry (FCM) analysis Flow cytometry analysis was performed using an Epis Altra (Beckman Coulter) equipped with a 488 nm argon laser. Previous studies have revealed that fish spermatogonia have larger and rounder morphology than other germ cells, and when flow cytometric analysis was performed using vasa-GFP transgenic fish, It has been revealed that the spermatogonia population is fractionated into a large population with a simple internal structure. For this reason, it is assumed that fractionation is also possible in bluefin tuna spermatogonia, and the crudely purified cell suspension obtained by the Percoll density mating method is irradiated with laser, and the obtained scattered light is analyzed. Signals of cell size (Forward light scatter: FS) and internal structure complexity (side light scatter: SS) were measured. Based on the obtained scatter diagram, the fraction in which each cell population is densely distributed was divided into A to G gates (fractions), and cell separation was performed on each gate. The cell population of each separated gate was analyzed by morphology and in situ hybridization.
 形態の分析は、細胞の一つ一つにレーザーを照射し、得られた散乱光により得られた各細胞の特徴から、細胞をA~Gの7種類のゲートに分類した。一般的に、精原細胞は他の精巣細胞より大型で丸い形態をしている。そこで、大型で内部構造が単純な分画を、精原細胞が多い分画と推定した(図1cでのAゲート)。 In the analysis of morphology, each cell was irradiated with a laser, and the cells were classified into seven types of gates A to G based on the characteristics of each cell obtained by the obtained scattered light. In general, spermatogonia are larger and rounder than other testicular cells. Thus, a large fraction with a simple internal structure was estimated as a fraction with many spermatogonia (A gate in FIG. 1c).
 in situハイブリダイゼーション解析は、上記(1)のin situハイブリダイゼーション解析に従い、パラフィン包埋組織切片の代わりに、各ゲートの細胞をそれぞれスライドグラスに塗抹し、4%パラホルムアルデヒド(PFA)/PBSにより固定した細胞塗抹標本を用いた。 In situ hybridization analysis was performed according to the in situ hybridization analysis described in (1) above, except that cells of each gate were smeared on a slide glass instead of paraffin-embedded tissue sections, and 4% paraformaldehyde (PFA) / PBS. Fixed cell smears were used.
 散布図の結果を、図1b(未成熟個体)および図2a(成熟個体)に示し、解析結果を、図1c、図2(未成熟個体)および図3(成熟個体)に示す。 Scatter plot results are shown in FIG. 1b (immature individuals) and FIG. 2a (mature individuals), and analysis results are shown in FIG. 1c, FIG. 2 (immature individuals) and FIG. 3 (mature individuals).
 図2および図3に示されるように、Aゲートに、精原細胞など未分化生殖細胞が多く含まれることが確認された。Aゲートに含まれる精原細胞など未分化生殖細胞の割合は、未成熟個体の場合、全細胞数に対して80.7±1.5%(標準誤差)であり、成熟個体の場合、約77.2±4.9%(標準誤差)だった。 As shown in FIGS. 2 and 3, it was confirmed that the A gate contains many undifferentiated germ cells such as spermatogonia. The ratio of undifferentiated germ cells such as spermatogonia contained in A gate is 80.7 ± 1.5% (standard error) with respect to the total number of cells in the case of immature individuals, It was 77.2 ± 4.9% (standard error).
例2:未分化生殖細胞識別抗体の取得
(1)モノクローナル抗体産生ハイブリドーマの作製
 上記例1で得られたA-ゲートに含まれる細胞集団を抗原として用いてマウスモノクローナル抗体の作製を行った。具体的には、Aゲートの細胞集団(5×10細胞/ml)を4尾のマウス(Balb/c系統)に対して、5回に分けて免疫を行った。免疫には、Aゲートの細胞集団をフロイントコンプリートアジュバンド(Sigma)をPBSで2倍希釈したものを用い、マウス足裏に100μlずつ免疫した。
Example 2: Acquisition of undifferentiated germ cell identifying antibody (1) Preparation of monoclonal antibody-producing hybridoma A mouse monoclonal antibody was prepared using the cell population contained in the A-gate obtained in Example 1 as an antigen. Specifically, immunization was carried out by dividing the A-gate cell population (5 × 10 6 cells / ml) into 4 mice (Balb / c strain) in 5 portions. For immunization, a cell population of A gate was diluted 2 times with Freund's complete adjuvant (Sigma) with PBS, and 100 μl of each mouse foot was immunized.
 5回目の免疫から8日目に、上記マウス5尾の足から肥大したリンパ節を無菌的に摘出し、リンパ節細胞を回収した。回収したリンパ節細胞と、ミエローマ細胞(P3U1、東京海洋大学)とを、50%ポリエチレングリコール(PEG)存在下にて混合し、細胞融合を行った。得られた融合細胞(ハイブリドーマ)の混合液を、15%FBSを含むHAT培地で希釈し、96wellプレート12枚に播種した。 On the 8th day after the 5th immunization, the enlarged lymph nodes were aseptically removed from the above-mentioned mouse 5 feet, and the lymph node cells were collected. The recovered lymph node cells and myeloma cells (P3U1, Tokyo Marine University) were mixed in the presence of 50% polyethylene glycol (PEG) to perform cell fusion. The obtained mixture of fused cells (hybridoma) was diluted with a HAT medium containing 15% FBS and seeded on 12 96-well plates.
(2)一次スクリーニング:Cell ELISA
 14日間インキュベート(37℃)したところ、1152コロニーの形成が認められた。そこで、これらのハイブリドーマが未分化生殖細胞を認識する抗体を産生しているか否かを明らかにするために、Cell ELISAによるスクリーニングを行った。具体的には、パーコール密度勾配遠心法により得られた粗精製精原細胞をプレートに播種(10細胞/well)し、このプレートを用いて、ハイブリドーマが産生する抗体の免疫した抗原に対する力価を測定した。力価の測定には、HRP発色系を用いた。Cell ELISAでのシグナル値が0.100以上のクローンを、力価の高い(親和性の高い)陽性クローンとして選択した。
(2) Primary screening: Cell ELISA
When incubated for 14 days (37 ° C.), formation of 1152 colonies was observed. Therefore, in order to clarify whether or not these hybridomas produce antibodies that recognize undifferentiated germ cells, screening by Cell ELISA was performed. Specifically, crude purified spermatogonia obtained by Percoll density gradient centrifugation were seeded on a plate (10 5 cells / well), and using this plate, the titer of the antibody produced by the hybridoma against the immunized antigen was used. Was measured. An HRP color development system was used for the titer measurement. A clone having a cell ELISA signal value of 0.100 or more was selected as a positive clone having a high titer (high affinity).
(3)二次スクリーニング:免疫細胞染色(蛍光顕微鏡観察)
 一次スクリーニングで陽性シグナルが得られた384クローンから産生された抗体が、未分化生殖細胞の細胞表面抗原を認識することができるか否か明らかにするために、免疫細胞染色によるスクリーニングを行った。クロマグロ(2~3齢、2尾)から摘出した精巣を、コラゲナーゼIV(Sigma)による酵素消化(20℃、2時間)し、得られた分散細胞を生きた状態のまま、上記384クローン由来の抗体と結合させ、緑色蛍光物質が標識された二次抗体alexa Flour 488 anti-mouse igG(life technology)を用いて、クロマグロ精巣細胞を間接標識した。その後、蛍光顕微鏡下で観察し、緑色蛍光が明瞭に細胞膜で観察されたクローンを、細胞表面抗原を認識可能なクローンとして選択した。二次スクリーニングにおける蛍光顕微鏡下で観察した結果を、図4に示す。
(3) Secondary screening: immune cell staining (fluorescence microscope observation)
In order to clarify whether or not the antibody produced from the 384 clone that gave a positive signal in the primary screening can recognize the cell surface antigen of undifferentiated germ cells, screening by immune cell staining was performed. Testis isolated from bluefin tuna (2-3 years old, 2 tails) was subjected to enzyme digestion (20 ° C., 2 hours) with collagenase IV (Sigma), and the resulting dispersed cells were left alive and derived from the 384 clone. Bluefin tuna testis cells were indirectly labeled using a secondary antibody alexa flour 488 anti-mouse igG (life technology) labeled with a green fluorescent substance. Thereafter, the clones, which were observed under a fluorescence microscope and the green fluorescence was clearly observed on the cell membrane, were selected as clones capable of recognizing cell surface antigens. The results of observation under a fluorescence microscope in the secondary screening are shown in FIG.
(4)三次スクリーニング:FCM解析
 二次スクリーニングで得られた50ローンにより産生される抗体が、Aゲートの細胞、すなわち未分化生殖細胞分画を特異的に認識することができるか否かを明らかにするために、全細胞および抗体陽性細胞に対してFCM解析を行った。具体的には、全細胞のFCM解析(FS-SS展開)により散布図(図5a)を得て、Aゲート率を算出した。その全細胞に対して、蛍光標識された2次抗体を反応させ、FCM解析に供し抗体陽性の細胞集団と抗体陰性の細胞集団のヒストグラムを得た(図5b)。得られた抗体陽性の細胞集団のFCM解析(FS-SS展開)により散布図(図5c)を得て、Aゲート率を算出した。このようにして得られた抗体陽性細胞集団中でのAゲートの割合(抗体陽性分画中のAゲート率)と、抗体陽性細胞と抗体陰性細胞とを含めた全細胞中でのAゲートの割合(全細胞中のAゲート率)から、抗体による未分化生殖細胞の濃縮率を、下記式を用いて算出した。
(4) Tertiary screening: FCM analysis It is clarified whether the antibody produced by the 50 loan obtained in the secondary screening can specifically recognize A-gate cells, that is, undifferentiated germ cell fractions. In order to achieve this, FCM analysis was performed on whole cells and antibody-positive cells. Specifically, a scatter diagram (FIG. 5a) was obtained by FCM analysis (FS-SS development) of all cells, and the A gate rate was calculated. The whole cells were reacted with a fluorescently labeled secondary antibody and subjected to FCM analysis to obtain a histogram of antibody positive cell population and antibody negative cell population (FIG. 5b). A scatter diagram (FIG. 5c) was obtained by FCM analysis (FS-SS development) of the obtained antibody-positive cell population, and the A gate rate was calculated. The ratio of A-gate in the antibody-positive cell population thus obtained (A-gate ratio in the antibody-positive fraction) and A-gate in all cells including antibody-positive and antibody-negative cells. From the ratio (A gate rate in all cells), the concentration rate of undifferentiated germ cells by the antibody was calculated using the following formula.
[式1]
抗体による生殖細胞の濃縮率
=抗体陽性分画中のAゲート率/全細胞中のAゲート率
[Formula 1]
Germ cell concentration rate by antibody = A gate rate in antibody positive fraction / A gate rate in whole cells
 濃縮率が1.0以上の抗体を陽性クローンとして選択した。結果を表1に示す。 An antibody with a concentration ratio of 1.0 or more was selected as a positive clone. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(4)四次スクリーニング:in situハイブリダイゼーション
 三次スクリーニングで得られた20クローンについて、抗体を用いてクロマグロ精原細胞をFCM解析により細胞分離することができるか否か明らかにするために、in situハイブリダイゼーション解析によりスクリーニングを行った。例1(1)の方法に従い、クロマグロの精巣から調製した粗精製細胞懸濁液に対して1次抗体として各抗体を結合させたのち、2次抗体として緑色蛍光物質が標識された抗体を結合させ、FCM解析を用いて緑色蛍光を指標に抗体陽性分画を単離した。次に単離した細胞をスライドグラスに塗抹し、細胞塗抹標本を作製した。これらの細胞塗抹標本に対して、例2(2)の方法に従って、未分化生殖細胞マーカーとして知られているvasa遺伝子のRNAプローブを用いてin situハイブリダイゼーション解析を行い、vasa陽性細胞の割合を求めた。
(4) Quaternary screening: in situ hybridization In order to clarify whether the bluefin tuna spermatogonia can be separated by FCM analysis using 20 antibodies from the 20 clones obtained by the tertiary screening, in situ. Screening was performed by hybridization analysis. In accordance with the method of Example 1 (1), each antibody was bound as a primary antibody to a crude cell suspension prepared from bluefin tuna testis, and then an antibody labeled with a green fluorescent substance was bound as a secondary antibody. FCM analysis was used to isolate an antibody positive fraction using green fluorescence as an index. Next, the isolated cells were smeared on a slide glass to prepare a cell smear. These cell smears were subjected to in situ hybridization analysis using an RNA probe of vasa gene known as an undifferentiated germ cell marker according to the method of Example 2 (2), and the percentage of vasa positive cells was determined. Asked.
 結果を図6および7に示す。 The results are shown in FIGS.
 図7に示されるように、得られた2種類のクローン、TA-No.6-28ハイブリドーマおよびTA-No.15-1ハイブリドーマから産生される抗体により分離された細胞集団は、それぞれ、85.2%および78.9%の割合でvasa陽性細胞を含み、すなわち、これらの抗体を用いることにより、クロマグロ未分化生殖細胞を高濃度に分離(単離)、濃縮することができたことが確認された。 As shown in FIG. 7, the two obtained clones, TA-No. 6-28 hybridoma and TA-No. The cell populations separated by the antibody produced from the 15-1 hybridoma contain vasa positive cells at the rate of 85.2% and 78.9%, respectively, ie, by using these antibodies, the bluefin tuna undifferentiated It was confirmed that germ cells could be separated (isolated) and concentrated at a high concentration.
 これらの2種類のクローン産生抗体を用いた免疫組織染色の結果を図8および図9に示す。免疫組織染色は例1(1)の方法に従って行った。 FIG. 8 and FIG. 9 show the results of immunohistochemical staining using these two types of clone-produced antibodies. Immunohistochemical staining was performed according to the method of Example 1 (1).
 図8および図9に示されるとおり、これらの2種類の抗体は、組織切片において、精原細胞集団、すなわち未分化生殖細胞集団を特異的に認識していることが確認された。またこれらの2種類の抗体は、固定および細胞膜の消化を施していない生きた状態の細胞に抗体溶液を反応させる操作で抗体の結合が確認されたことから、未分化生殖細胞の表面、具体的には、細胞膜表面を特異的に認識していることが確認された。 As shown in FIG. 8 and FIG. 9, it was confirmed that these two types of antibodies specifically recognized the spermatogonia population, that is, the undifferentiated germ cell population, in the tissue section. In addition, these two types of antibodies have been confirmed to bind to the antibody by reacting the antibody solution with living cells that have not been fixed and digested with cell membranes. Was confirmed to specifically recognize the cell membrane surface.
例3:マグロ未分化生殖細胞のMACS(磁気細胞分離、Magnetic activated cell sorting)法による濃縮
 上記例2で得られた2種類の抗体を用いて、MACS法を用いてマグロの精巣細胞から未分化生殖細胞の濃縮を行った。具体的には以下の通りである。まず、マグロ精巣細胞を終濃度2mg/mlのコラゲナーゼH(Roche)、終濃度1.65mg/mlのディスパーゼII(合同酒精)/L-15培地(インビトロジェン)を用いて分散し、細胞数を3×10細胞に調整した。そこに、1次抗体として、one step antibody biotinlation kit(Miltenyi biotech製)に懸濁し、室温、24時間反応させることでビオチン化した、TA-No.6-28ハイブリドーマおよびTA-No.15-1ハイブリドーマから産生される抗体を、100μl添加し、4℃下にて、30分間反応させた。反応終了後、遠心分離(200×g、5分)を行い、得られた細胞沈殿物に対してL-15培地で洗浄を行った。さらに該細胞沈殿物を240μlのL-15培地に再懸濁し、2次抗体としてanti-biotinマイクロビーズ(miltenyi biotech製)を60μl加えて、4℃下にて、15分間反応させた。反応終了後、遠心分離(200×g、5分)を行い、得られた細胞沈殿物に対してL-15培地で洗浄を行い、さらに該細胞沈殿物を500μlのauto-MACS buffer(Miltenyi biotech製)に懸濁した。懸濁液から、磁気分離装置:Mini MACS separator(Miltenyi biotech製)およびMSカラム(Miltenyi biotech製)を用いて、磁気ビーズの結合した細胞を回収し、MACS濃縮未分化生殖細胞を得た。
Example 3: Concentration of tuna undifferentiated germ cells by MACS (Magnetic Activated Cell Sorting) method Using MACS method, undifferentiated from tuna testis cells using the two antibodies obtained in Example 2 above Germ cell enrichment was performed. Specifically, it is as follows. First, tuna testis cells were dispersed using collagenase H (Roche) having a final concentration of 2 mg / ml and dispase II (joint spirit) / L-15 medium (Invitrogen) having a final concentration of 1.65 mg / ml. Adjusted to 10 6 cells. Therein, as a primary antibody, it was suspended in one step antibody biotination kit (Miltenyi biotech) and biotinylated by reacting at room temperature for 24 hours. 6-28 hybridoma and TA-No. 100 μl of antibody produced from the 15-1 hybridoma was added and reacted at 4 ° C. for 30 minutes. After completion of the reaction, centrifugation (200 × g, 5 minutes) was performed, and the resulting cell precipitate was washed with L-15 medium. Further, the cell precipitate was resuspended in 240 μl of L-15 medium, 60 μl of anti-biotin microbeads (manufactured by Miltenyi biotech) was added as a secondary antibody, and the mixture was reacted at 4 ° C. for 15 minutes. After completion of the reaction, centrifugation (200 × g, 5 minutes) was performed, the resulting cell precipitate was washed with L-15 medium, and the cell precipitate was further added to 500 μl of auto-MACS buffer (Miltenyi biotech In the product). From the suspension, magnetic beads-bound cells were recovered using a magnetic separator: Mini MACS separator (Miltenyi biotech) and MS column (Miltenyi biotech) to obtain MACS-enriched undifferentiated germ cells.
 得られたMACS濃縮未分化生殖細胞に対して、例1の方法に従って、フローサイトメトリー解析とvasa in situハイブリダイゼーション解析とを行った。結果を図10に示す。 The obtained MACS-enriched undifferentiated germ cells were subjected to flow cytometry analysis and vasa in situ hybridization analysis according to the method of Example 1. The results are shown in FIG.
 図10に示されるようにMACS法により濃縮された精巣細胞は、vasa陽性細胞を多く含むものであった。 As shown in FIG. 10, testis cells concentrated by the MACS method contained many vasa positive cells.
例4:クロマグロ濃縮未分化生殖細胞のニベ(宿主)への移植
 例3で得られたクロマグロMACS濃縮未分化生殖細胞を、ニベの腹腔内に移植し、移植細胞のニベ生殖腺への生着能を確認した。具体的には以下の通りである。
Example 4: Transplantation of bluefin tuna-enriched undifferentiated germ cells into nibs (host) The bluefin tuna MACS-enriched undifferentiated germ cells obtained in Example 3 were transplanted into the peritoneal cavity of nibes, and the engraftment ability of the transplanted cells to the nibe gonad It was confirmed. Specifically, it is as follows.
 ニベ宿主として、2週齢のニベ(東京海洋大学、館山ステーション産)、246個体を用いた。例3で得られたクロマグロMACS濃縮未分化生殖細胞を、PKH26(SIGMA社製)で染色した。染色したクロマグロMACS濃縮未分化生殖細胞を、約7000~10000細胞/尾となるように、マイクロインジェクション法(Yazawa, R., Takeuchi, Y., Higuchi, K., Yatabe, T., Kabeya, N & Yoshizaki, Goro(2010)Chub mackerel gonads support colonization, survival, and proliferation of intraperitoneally transplanted xenogenic germ cells. Biology of reproduction, 82, 896-904参照)に従って、ニベ宿主の腹腔内に移植した。移植後20日後に開腹して蛍光解析を行った。コントロール(未濃縮)とて、濃縮を行っていないクロマグロ精巣細胞を、終濃度2mg/mlのコラゲナーゼH(Roche)、終濃度1.65mg/mlのディスパーゼII(合同酒精)/L-15培地(インビトロジェン)を用いて分散して得た精巣分散細胞を用いた。結果を図11に示す。 As a nibe host, 246 individuals of 2-week-old nibe (produced by Tokyo University of Marine Science and Tateyama Station) were used. The bluefin tuna MACS-enriched undifferentiated germ cells obtained in Example 3 were stained with PKH26 (manufactured by SIGMA). Stained bluefin tuna MACS-enriched undifferentiated germ cells are microinjected (Yazawa, R., Takeuchi, Y., Higuchi, K., Yatabe, T., Kabeya, N) so as to obtain about 7000-10000 cells / tail. & Yoshizaki, Goro (2010) Chub mackerel gonads support colonization, survival, and proliferation of intraperitoneally transplanted xenogenic germ cells. Biology of reproduction, 82, 896-904). After 20 days from transplantation, laparotomy was performed and fluorescence analysis was performed. As a control (unconcentrated), bluefin tuna testis cells that had not been concentrated were treated with collagenase H (Roche) at a final concentration of 2 mg / ml, dispase II (joint spirit) / L-15 medium (final concentration of 1.65 mg / ml). Testis-dispersed cells obtained by dispersion using Invitrogen) were used. The results are shown in FIG.
 図11に示されるように、クロマグロMACS濃縮未分化生殖細胞を移植したニベは、蛍光視野において生殖腺での陽性が確認され、すなわち、移植したクロマグロMACS濃縮未分化生殖細胞が、ニベ生殖腺に生着したことが確認された。一方、コントロール(未濃縮)では、陽性反応は一切確認されなかった。それぞれの生着した個体の割合を生着率として、図12に示す。生着率は下記式に基づいて算出した。 As shown in FIG. 11, the nibs transplanted with bluefin tuna MACS-enriched undifferentiated germ cells were confirmed to be positive in the gonad in the fluorescence field, that is, the transplanted bluefin tuna MACS-enriched undifferentiated germ cells were engrafted in the nibe gonads. It was confirmed that On the other hand, no positive reaction was confirmed in the control (unconcentrated). The ratio of each engrafted individual is shown in FIG. 12 as the engraftment rate. The survival rate was calculated based on the following formula.
[式2]
生着率(%)=移植細胞が生着した個体数/移植を施し開腹した個体数
[Formula 2]
Engraftment rate (%) = Number of individuals engrafted with transplanted cells / Number of individuals who have undergone transplantation and opened
 図12に示されるように、クロマグロMACS濃縮未分化生殖細胞の生着率が、未濃縮の細胞の生着率に比べ著しく上昇した。 As shown in FIG. 12, the engraftment rate of bluefin tuna MACS-enriched undifferentiated germ cells markedly increased compared to the engraftment rate of unenriched cells.

Claims (12)

  1.  サバ科魚類未分化生殖細胞を特異的に認識する、モノクローナル抗体であって、
     モノクローナル抗体が、サバ科魚類の精巣または卵巣から分離された未分化生殖細胞に対する抗体である、モノクローナル抗体。
    A monoclonal antibody that specifically recognizes undifferentiated germ cells of mackerel fish,
    A monoclonal antibody, wherein the monoclonal antibody is an antibody against undifferentiated germ cells isolated from the testis or ovary of a mackerel fish.
  2.  サバ科魚類未分化生殖細胞を特異的に認識する、モノクローナル抗体であって、
     モノクローナル抗体が、抗体産生ハイブリドーマTA-No.6-28(NITE ABP-02222)またはTA-No.15-1(NITE ABP-02223)により産生される、請求項1に記載のモノクローナル抗体。
    A monoclonal antibody that specifically recognizes undifferentiated germ cells of mackerel fish,
    The monoclonal antibody is an antibody producing hybridoma TA-No. 6-28 (NITE ABP-02222) or TA-No. The monoclonal antibody according to claim 1, which is produced by 15-1 (NITE ABP-02223).
  3.  未分化生殖細胞が、始原生殖細胞、A型精原細胞または卵原細胞である、請求項1または2に記載のモノクローナル抗体。 3. The monoclonal antibody according to claim 1 or 2, wherein the undifferentiated germ cells are primordial germ cells, type A spermatogonia or oocyte cells.
  4.  サバ科魚類が、マグロ属魚類、スマ属魚類、カツオ属魚類およびサバ属魚類から選択される1種である、請求項1~3のいずれか一項に記載のモノクローナル抗体。 The monoclonal antibody according to any one of claims 1 to 3, wherein the mackerel fish is one selected from a tuna fish, a genus fish, a bonito fish, and a mackerel fish.
  5.  サバ科魚類未分化生殖細胞の表面を特異的に認識する、請求項1~4のいずれか一項に記載のモノクローナル抗体。 The monoclonal antibody according to any one of claims 1 to 4, which specifically recognizes the surface of undifferentiated germ cells of mackerel fish.
  6.  請求項1~5のいずれか一項に記載の抗体を用いて、サバ科魚類由来の未分化生殖細胞を含んでなるサバ科魚類の精巣または卵巣から、サバ科魚類由来の未分化生殖細胞を分離することを含んでなる、サバ科魚類未分化生殖細胞濃縮方法。 An undifferentiated germ cell derived from a mackerel fish is obtained from the testis or ovary of a mackerel fish comprising the undifferentiated germ cell derived from a mackerel fish using the antibody according to any one of claims 1 to 5. A method for enriching undifferentiated germ cells of mackerel fish, comprising separating.
  7.  サバ科魚類の精巣または卵巣から分離された未分化生殖細胞を、孵化前後の宿主魚類個体の腹腔内へ移植することを含んでなる、未分化生殖細胞の配偶子への分化誘導方法において、
     移植前に、請求項1~5のいずれか一項に記載の抗体を用いて、サバ科魚類由来の未分化生殖細胞を含んでなるサバ科魚類の精巣または卵巣から、サバ科魚類未分化生殖細胞を分離、濃縮し、
     該分離、濃縮した未分化生殖細胞を、孵化前後の宿主魚類個体の腹腔内へ移植する
    ことを含んでなる、未分化生殖細胞の配偶子への分化誘導方法。
    In a method for inducing differentiation of undifferentiated germ cells into gametes, comprising transplanting undifferentiated germ cells isolated from a testis or ovary of a mackerel fish into the peritoneal cavity of a host fish individual before and after hatching,
    Before transplantation, using the antibody according to any one of claims 1 to 5, from the testis or ovary of a mackerel fish comprising undifferentiated germ cells derived from a mackerel fish, the maize fish undifferentiated reproduction Isolate and concentrate cells,
    A method for inducing differentiation of undifferentiated germ cells into gametes, comprising transplanting the separated and concentrated undifferentiated germ cells into the abdominal cavity of a host fish individual before and after hatching.
  8.  移植する未分化生殖細胞を提供するサバ科魚類が、宿主魚類とは異種である、請求項7に記載の未分化生殖細胞の配偶子への分化誘導方法。 The method for inducing differentiation of undifferentiated germ cells into gametes according to claim 7, wherein the mackerel fish that provides the undifferentiated germ cells to be transplanted is different from the host fish.
  9.  移植する未分化生殖細胞を提供するサバ科魚類が、宿主魚類より大型魚類である、請求項7または8に記載の未分化生殖細胞の配偶子への分化誘導方法。 9. The method for inducing differentiation of undifferentiated germ cells into gametes according to claim 7 or 8, wherein the mackerel fish that provides the undifferentiated germ cells to be transplanted is a larger fish than the host fish.
  10.  宿主魚類が、サバ科魚類から選択される1種であり、移植する未分化生殖細胞を提供するサバ科魚類がマグロから選択される1種である、請求項7~9のいずれか一項に記載の未分化生殖細胞の配偶子への分化誘導方法。 10. The host fish is one species selected from mackerel fish, and the mackerel fish that provides undifferentiated germ cells to be transplanted is one species selected from tuna. The method for inducing differentiation of undifferentiated germ cells into gametes as described.
  11.  サバ科魚類の精巣または卵巣から分離された未分化生殖細胞を、孵化前後の宿主魚類個体の腹腔内へ移植することを含んでなる、サバ科魚類の精子または卵の生産方法であって、
     移植前に、請求項1~5のいずれか一項に記載の抗体を用いて、サバ科魚類由来の未分化生殖細胞を含んでなるサバ科魚類の精巣または卵巣から、サバ科魚類未分化生殖細胞を分離、濃縮し、
     該分離、濃縮した未分化生殖細胞を孵化前後の宿主魚類個体の腹腔内へ移植し、
     該移植した末分化生殖細胞を配偶子へ分化誘導して、サバ科魚類の精子または卵子を得る
    ことを含んでなる、サバ科魚類の精子または卵の生産方法。
    A method for producing a sperm or egg of a mackerel fish comprising transplanting undifferentiated germ cells isolated from a testis or ovary of a mackerel fish into the peritoneal cavity of a host fish individual before and after hatching,
    Before transplantation, using the antibody according to any one of claims 1 to 5, from the testis or ovary of a mackerel fish comprising undifferentiated germ cells derived from a mackerel fish, the maize fish undifferentiated reproduction Isolate and concentrate cells,
    Transplanting the separated and concentrated undifferentiated germ cells into the peritoneal cavity of a host fish individual before and after hatching,
    A method for producing a sperm or egg of a mackerel fish, comprising inducing differentiation of the transplanted differentiated germ cell into a gamete to obtain a sperm or egg of a mackerel fish.
  12.  サバ科魚類の精巣または卵巣から分離された未分化生殖細胞を、孵化前後の宿主魚類個体の腹腔内へ移植することを含んでなる、サバ科魚類の生産方法であって、
     移植前に、請求項1~5のいずれか一項に記載の抗体を用いて、サバ科魚類由来の未分化生殖細胞を含んでなるサバ科魚類の精巣または卵巣から、サバ科魚類未分化生殖細胞を分離、濃縮し、
     該分離、濃縮した未分化生殖細胞を孵化前後の宿主魚類個体の腹腔内へ移植し、
     移植した未分化生殖細胞を配偶子へ分化誘導し、
     得られた精子および卵を交配する
    ことを含んでなる、サバ科魚類の生産方法。
    A method for producing a mackerel fish comprising transplanting undifferentiated germ cells isolated from a testis or ovary of a mackerel fish into the abdominal cavity of a host fish individual before and after hatching,
    Before transplantation, using the antibody according to any one of claims 1 to 5, from the testis or ovary of a mackerel fish comprising undifferentiated germ cells derived from a mackerel fish, the maize fish undifferentiated reproduction Isolate and concentrate cells,
    Transplanting the separated and concentrated undifferentiated germ cells into the peritoneal cavity of a host fish individual before and after hatching,
    Inducing differentiation of transplanted undifferentiated germ cells into gametes,
    A method for producing a mackerel fish comprising crossing the obtained sperm and egg.
PCT/JP2017/012111 2016-03-24 2017-03-24 Antibody capable of binding to undifferentiated germ cells of scombridae fish WO2017164390A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018507454A JP7006939B2 (en) 2016-03-24 2017-03-24 Scombridae fish undifferentiated germ cell binding antibody
AU2017238706A AU2017238706A1 (en) 2016-03-24 2017-03-24 Antibody capable of binding to undifferentiated germ cells of scombridae fish

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-060908 2016-03-24
JP2016060908 2016-03-24

Publications (1)

Publication Number Publication Date
WO2017164390A1 true WO2017164390A1 (en) 2017-09-28

Family

ID=59900440

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/012111 WO2017164390A1 (en) 2016-03-24 2017-03-24 Antibody capable of binding to undifferentiated germ cells of scombridae fish

Country Status (3)

Country Link
JP (1) JP7006939B2 (en)
AU (1) AU2017238706A1 (en)
WO (1) WO2017164390A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020137486A (en) * 2019-02-28 2020-09-03 国立大学法人愛媛大学 Production method of transplanted fish, seedling and adult fish, and differentiation guiding method of germ cell to germline

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010035465A1 (en) * 2008-09-25 2010-04-01 国立大学法人東京海洋大学 Anti-tuna vasa antibody
WO2016042684A1 (en) * 2014-09-16 2016-03-24 国立大学法人東京海洋大学 Method for inducing differentiation into germline using concentrated undifferentiated germ cells having engraftment ability

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010035465A1 (en) * 2008-09-25 2010-04-01 国立大学法人東京海洋大学 Anti-tuna vasa antibody
WO2016042684A1 (en) * 2014-09-16 2016-03-24 国立大学法人東京海洋大学 Method for inducing differentiation into germline using concentrated undifferentiated germ cells having engraftment ability

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
KENSUKE ICHIDA ET AL.: "Jiki Saibo Bunriho ni yoru Nijimasu Seishoku Saibo no Noshuku", HEISEI 26 NENDO THE JAPANESE SOCIETY OF FISHERIES SCIENCE SHUNKI TAIKAI KOEN YOSHISHU, 27 March 2014 (2014-03-27), pages 46 *
KENSUKE ICHIDA ET AL.: "Kuromaguro Seigen Saibo no Maku Hyomen o Ninshiki suru Monoclonal Kotai no Sakusei", HEISEI 28 NENDO THE JAPANESE SOCIETY OF FISHERIES SCIENCE SHUNKI TAIKAI KOEN YOSHISHU, 26 March 2016 (2016-03-26), pages 21 *
MAKOTO HAYASHI ET AL.: "Shukushu Seishokusen eno Takai Seichakuno o Yusuru Nijimasu Seigen Saibo no Noshuku II -Side population no Riyo", HEISEI 24 NENDO THE JAPANESE SOCIETY OF FISHERIES SCIENCE SHUNKI TAIKAI KOEN YOSHISHU, 26 March 2012 (2012-03-26), pages 37 *
MAKOTO HAYASHI ET AL.: "Shukushu Seishokusen eno Takai Seichakuno o Yusuru Nijimasu Seigen Saibo no Noshuku -Side population no Riyo", HEISEI 23 NENDO THE JAPANESE SOCIETY OF FISHERIES SCIENCE SHUNKI TAIKAI KOEN YOSHISHU, 27 March 2011 (2011-03-27), pages 36 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020137486A (en) * 2019-02-28 2020-09-03 国立大学法人愛媛大学 Production method of transplanted fish, seedling and adult fish, and differentiation guiding method of germ cell to germline
JP7280597B2 (en) 2019-02-28 2023-05-24 国立大学法人愛媛大学 Method for producing transplanted fish, seedlings, and adult fish, and method for inducing differentiation of germ cells into germ cell lineage

Also Published As

Publication number Publication date
JPWO2017164390A1 (en) 2019-02-14
JP7006939B2 (en) 2022-02-10
AU2017238706A1 (en) 2018-11-15

Similar Documents

Publication Publication Date Title
Pšenička et al. Isolation and transplantation of sturgeon early-stage germ cells
CN100379857C (en) Chimeric animal and method for constructing the same
Takeuchi et al. Development of spermatogonial cell transplantation in Nibe croaker, Nibea mitsukurii (Perciformes, Sciaenidae)
US8921643B2 (en) Method for acquiring genetically identical gamete from lethal fish haploid-derived germ cell via germ line chimera
Herrid et al. A comparison of methods for preparing enriched populations of bovine spermatogonia
JP2010158245A (en) Tissue specific expression of exogenous protein in transgenic chicken
AU738357B2 (en) Production of avian embryonic germ (EG) cell lines by prolonged culturing of PGCS, use thereof for cloning and chimerization
US20050244958A1 (en) Production of avian embryonic germ (EG) cell lines by prolonged culturing of PGCs, use thereof for cloning and chimerization
Ono et al. Immunomagnetic purification of viable primordial germ cells of Japanese quail (Coturnix japonica)
Hayashi et al. Establishment of novel monoclonal antibodies for identification of type A spermatogonia in teleosts
JP7006939B2 (en) Scombridae fish undifferentiated germ cell binding antibody
JP6897952B2 (en) Method for inducing differentiation into germline using undifferentiated germ cells with concentrated engraftment ability
JP7068681B2 (en) Germ cell tracking antibody
CN106834271A (en) A kind of high-throughput screening method of deletion mutant
Allis et al. Pole cells of Drosophila melanogaster in culture: Normal metabolism, ultrastructure, and functional capabilities
Ballarin et al. Relationships among hemocytes, tunic cells, germ cells, and accessory cells in the colonial ascidian Botryllus schlosseri
Varley et al. Pluripotent, germ cell competent adult stem cells underlie cnidarian plant-like life history
KR101032335B1 (en) Method for separating male germ-line stem cells from testes in mammal
WO2019004217A1 (en) Method for separating mammalian sperms, artificial insemination method, and in vitro fertilization method
WO2023085104A1 (en) Method for inducing differentiation of undifferentiated germ cells into germline
JPH05227947A (en) Method for separating avian primordial germ cell
US20050149996A1 (en) Generation of chicken cell lines from embryonic stem cells and germ cells
US20200236913A1 (en) A chimeric animal comprising stably transplanted bat cells
KR100470170B1 (en) Method for Isolating Gonadal Primordial Germ Cells and Method for Preparing Germline Chimeric Aves
CN116858754A (en) Method for evaluating mouse sperm antigen specific T cell response

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018507454

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017238706

Country of ref document: AU

Date of ref document: 20170324

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17770430

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17770430

Country of ref document: EP

Kind code of ref document: A1