WO2017164230A1 - Phosphorylated sarm1, antibody, sarm1 phosphorylation inhibitor, prophylactic or therapeutic agent for neurodegenerative diseases, screening method, modified sarm1, and use - Google Patents

Phosphorylated sarm1, antibody, sarm1 phosphorylation inhibitor, prophylactic or therapeutic agent for neurodegenerative diseases, screening method, modified sarm1, and use Download PDF

Info

Publication number
WO2017164230A1
WO2017164230A1 PCT/JP2017/011418 JP2017011418W WO2017164230A1 WO 2017164230 A1 WO2017164230 A1 WO 2017164230A1 JP 2017011418 W JP2017011418 W JP 2017011418W WO 2017164230 A1 WO2017164230 A1 WO 2017164230A1
Authority
WO
WIPO (PCT)
Prior art keywords
sarm1
ser
phosphorylated
phosphorylation
antibody
Prior art date
Application number
PCT/JP2017/011418
Other languages
French (fr)
Japanese (ja)
Inventor
村田 等
阪口 政清
木下 理恵
山本 健一
Original Assignee
国立大学法人 岡山大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 岡山大学 filed Critical 国立大学法人 岡山大学
Priority to JP2018507366A priority Critical patent/JP7198489B2/en
Publication of WO2017164230A1 publication Critical patent/WO2017164230A1/en
Priority to JP2022196983A priority patent/JP2023027235A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4702Regulators; Modulating activity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/02Peptides of undefined number of amino acids; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/02Drugs for disorders of the nervous system for peripheral neuropathies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • A61P25/16Anti-Parkinson drugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology

Definitions

  • the present invention relates to phosphorylated SARM1, antibody, SARM1 phosphorylation inhibitor, preventive or therapeutic agent for neurodegenerative diseases, screening method, SARM1 variant and use.
  • SARM1 (Sterile alpha and TIR motif-containing protein 1) is a TIR adapter protein with a mitochondrial translocation signal and consists of 724 amino acids. SARM1 is strongly expressed mainly in cells of the nervous system (Non-patent Document 1), and is reported to be a causative molecule for ischemic neuronal cell death and neuronal axonal degeneration (Non-patent Documents 2 and 3).
  • This neuronal cell death can be remarkably suppressed by knocking out SARM1, so if there is a drug targeting SARM1, neuronal cell death is suppressed, and various neurodegeneration such as Parkinson's disease and amyotrophic lateral sclerosis (ALS) It is considered that it can be applied to the treatment of diseases (Patent Document 1). However, there are currently no drugs targeting SARM1.
  • Patent Documents 2 to 5 disclose that an inhibitor of CDK8 or CDK19 is effective in treating cancer.
  • the present invention aims to suppress the function of SARM1 and prevent or treat neurodegenerative diseases.
  • the present inventor analyzed changes and functions of SARM1 in cells and found that SARM1 acts on mitochondrial respiratory chain complex V to inhibit ATP synthesis and induce cell death.
  • SARM1 acts on mitochondrial respiratory chain complex V to inhibit ATP synthesis and induce cell death.
  • JNK c-Jun N-terminal kinase
  • the present inventor further phosphorylates at least one serine residue selected from the group consisting of 54th, 548th and 622th by using a region including ARM domain, SAM domain and TIR domain in SARM1.
  • a region including ARM domain, SAM domain and TIR domain in SARM1.
  • an inhibitor of SARM1 was found.
  • the present invention provides the following phosphorylated SARM1, antibody, SARM1 phosphorylation inhibitor, preventive or therapeutic agent for neurodegenerative diseases, screening method, SARM1 variant and use.
  • Item 1. Phosphorylated SARM1 in which at least one Ser residue selected from the group consisting of positions 54, 548 and 622 of SARM1 (Sterile alpha and TIR motif-containing protein 1) is phosphorylated.
  • Item 2. Item 2. The phosphorylated SARM1 according to item 1, wherein the SARM1 is derived from a human.
  • An anti-phosphorylated SARM1 antibody that specifically recognizes a phosphorylated Ser residue at positions 54, 548 or 622 of SARM1 and does not recognize non-phosphorylated Ser residues at positions 54, 548 and 622 of SARM1.
  • a SARM1 phosphorylation inhibitor comprising, as an active ingredient, at least one inhibitor selected from the group consisting of cyclin-dependent kinase 8 (CDK8), cyclin-dependent kinase 19 (CDK19), and JNK.
  • a prophylactic or therapeutic agent for a neurodegenerative disease comprising as an active ingredient at least one inhibitor selected from the group consisting of cyclin-dependent kinase 8 (CDK8), cyclin-dependent kinase 19 (CDK19) and JNK.
  • Item 6 A preventive or therapeutic agent for neurodegenerative diseases, comprising as an active ingredient a SARM1 inhibitor selected from the group consisting of an anti-SARM1 antibody, a SARM1 decoy peptide and an antagonist.
  • Anti-SARM1 antibody specifically recognizes non-phosphorylated SARM1 that can suppress phosphorylation at position 54, 548 or 622 of SARM1 or phosphorylated Ser residue at positions 54, 548 or 622 of SARM1 Item 7.
  • the preventive or therapeutic agent for neurodegenerative diseases according to Item 6 which is an anti-phosphorylated SARM1 antibody that does not recognize non-phosphorylated Ser residues at positions 54, 548 and 622 of SARM1.
  • SARM1 decoy peptide is a fragment peptide or modifications thereof including Ser 54, Ser 548 or Ser 622 of SARM1, prophylactic or therapeutic agent for neurodegenerative diseases according to claim 6.
  • Item 9. Item 9.
  • Item 10 is an anti-phosphorylated SARM1 antibody that does not recognize non-phosphorylated Ser residues at positions 54, 548 and 622 of SARM1.
  • SARM1 decoy peptide is a fragment peptide or modifications thereof including Ser 54, Ser 548 or Ser 622
  • a method for screening a prophylactic or therapeutic agent for a neurodegenerative disease comprising a step of detecting phosphorylation of at least one Ser residue selected from the group consisting of positions 54, 548 and 622 of SARM1.
  • Item 11 A method for screening a SARM1 inhibitor, comprising a step of detecting phosphorylation of at least one Ser residue selected from the group consisting of positions 54, 548 and 622 of SARM1.
  • Item 12. A SARM1 variant in which Ser corresponding to at least one selected from the group consisting of 54th, 548th and 622th human SARM1 is substituted with Glu or Asp.
  • Item 13 Item 13.
  • Use of the SARM1 variant according to Item 12 for the production of a model cell or model animal for a neurodegenerative disease.
  • the present invention detects the active state of SARM1 and suppresses neuronal cell death by measuring phosphorylation and cell viability of at least one serine residue selected from the group consisting of 54th, 548th and 622th of SARM1. It is a technology that can search for effective substances.
  • SARM1 has been reported to be a causative molecule for ischemic neuronal cell death and neuronal axonal degeneration, and if an inhibitor of SARM1 is developed, various factors such as Parkinson's disease and ALS caused by neuronal cell death and axonal degeneration are reported. It can be applied to the treatment of various neurodegenerative diseases.
  • an ARM domain 28 to 405aa), SAM domain (406 to 550aa), TIR domain (551 to 724aa) contained in SARM1, or a fragment containing the 54th, 548th or 622th Ser residue was used for phosphorylation analysis, and it became possible to detect phosphorylation of SARM1 serine 54th, 548th or 622th with high sensitivity and ease.
  • a TIR domain a core region (D594 to E670 aa) containing S622, TIR BB-loop and DD-loop structures may be used (FIG. 10B).
  • CDK19 and CDK8 that enhance phosphorylation of JNK1, JNK2, JNK3, and SARM1 that phosphorylate SARM1 were found, and these phosphorylase inhibitors are promising candidates for neuronal cell death inhibitors.
  • analysis of the phosphorylation state of at least one serine residue selected from the group consisting of serine 54th, 548th and 622th of SARM1 using neurons derived from iPS cells derived from patients with neurodegenerative diseases can be applied to the evaluation of disease progression.
  • SARM1 is a protein consisting of 724 amino acids localized in mitochondria, and has mitochondrial localization sequence, ARM, SAM, and TIR domains (FIG. 2A).
  • the amino acid sequence of human SARM1 is shown in SEQ ID NO: 1.
  • the human SARM1 has a pI of 6.1 and a molecular weight of 79388.
  • Ser 54 , Ser 548 and Ser 622 , preferably Ser 548 and Ser 622 are phosphorylation sites.
  • At least one selected from the group consisting of Ser 54 , Ser 548 and Ser 622 , preferably SARM1 is activated by phosphorylating Ser 548 and / or Ser 622 , inhibiting mitochondrial respiration and inducing cell death Therefore, inhibition of mitochondrial respiration is released by inhibiting phosphorylation of at least one selected from the group consisting of Ser 54 , Ser 548 and Ser 622 , preferably Ser 548 and / or Ser 622 , and neuronal cell death Can be suppressed. Therefore, at least one selected from the group consisting of Ser 54 , Ser 548 and Ser 622 , preferably a phosphorylation inhibitor of Ser 548 and / or Ser 622 is useful as a preventive or therapeutic agent for neurodegenerative diseases.
  • neurodegenerative diseases include Parkinson's disease, amyotrophic lateral sclerosis (ALS), multiple sclerosis and Alzheimer's disease, and in particular, Parkinson's disease and amyotrophic lateral sclerosis (ALS).
  • ALS amyotrophic lateral sclerosis
  • ALS amyotrophic lateral sclerosis
  • the present inventor confirmed that phosphorylation of SARM1 is cyclin-dependent kinase 8 (CDK8) and / or cyclin-dependent kinase 19 (CDK19), and also JNK (JNK-1, JNK-2, JNK-3, particularly JNK-3) Found out to be done.
  • CDK8 and CDK19 preferably both
  • JNK JNK-1, JNK-2, JNK-3, especially JNK-3
  • the activation of SARM1 can be suppressed
  • Cell death can be suppressed
  • neurodegenerative diseases can be prevented or treated.
  • Nerve cells do not regenerate after cell death even if one or both of CDK8 and CDK19 (preferably both), and also JNK (JNK-1, JNK-2, JNK-3, especially JNK-3) are inhibited, CDK8 And / or inhibitors of CDK19, and also JNK (JNK-1, JNK-2, JNK-3, especially JNK-3) are useful to prevent or delay the prevention or progression of neurodegenerative diseases.
  • JNK-1, JNK-2, JNK-3, especially JNK-3 are useful to prevent or delay the prevention or progression of neurodegenerative diseases.
  • axonal degeneration it can be regenerated with the preventive or therapeutic agent for neurodegenerative diseases of the present invention.
  • SARM1 The phosphorylation motif of SARM1 by JNK is shown below.
  • Ser 54 REV S PGAG Ser 548 : MLH S PLPC Ser 622 : LVL S PGAL
  • a neurodegenerative disease can be prevented or treated with a SARM1 inhibitor selected from the group consisting of an anti-SARM1 antibody, a SARM1 decoy peptide, and an antagonist.
  • the decoy peptides SARM1 include fragments peptide or modifications thereof including Ser 54, Ser 548 or Ser 622 of SARM1.
  • the modified products are those in which the N-terminal amino group is acylated (acetylated, propionylated, etc.) or alkylated (methylated, ethylated, etc.), or the C-terminal carboxyl group is esterified or amidated. Can be mentioned.
  • Such a decoy peptide can be easily designed by those skilled in the art from the amino acid sequence of human SARM1 of SEQ ID NO: 1.
  • SARM1 antagonists include SAM domain (molecular weight about 17000), ARM domain (molecular weight about 40000), TIR domain (molecular weight about 19000), but may be lower molecular weight antagonists. Decoy peptides are encompassed by SARM1 antagonists.
  • Anti-SARM1 antibody effective for prevention or treatment of neurodegenerative diseases is at least one selected from the group consisting of positions 54, 548 and 622 of SARM1, preferably of Ser residues at positions 548 and / or 622.
  • Peptides that can be used to make such antibodies include RGPREVSPGAGTEVQ (peptides with phosphorylated Ser (S) residues can be used to generate anti-phosphorylated SARM1 antibodies, and peptides without Ser (S) residues phosphorylated on Ser54 Ser 54 Can be used to generate antibodies to suppressible non-phosphorylated SARM1), AREMLHSPLPCTGGK (Ser (S) residues phosphorylated peptides can be used to make anti-phosphorylated SARM1 antibodies, while Ser (S) residues unphosphorylated peptides have SARM1 Ser 548 phosphorylation.
  • NFVLVLSPGALDKCM peptides with phosphorylated Ser (S) residues can be used to generate anti-phosphorylated SARM1 antibodies
  • peptides without Ser (S) residues phosphorylated on Ser 622 Ser 622 Can be used to generate antibodies to suppressible non-phosphorylated SARM1 Peptides including, but not limited to, Ser 54 , Ser 548 or Ser 622 can be used.
  • an "at least one phosphorylated antibodies to non-phosphorylated SARM1 capable of suppressing selected from the group consisting of Ser 54, Ser 548 and Ser 622 of SARM1", including Ser54, Ser548 or Ser622 May recognize an epitope in the vicinity of Ser54, Ser548 or Ser622 and suppress at least one phosphorylation selected from the group consisting of Ser 54 , Ser 548 and Ser 622 by antibody binding. It may be an antibody.
  • inhibitors of CDK8 and / or CDK19 include those described in WO2015 / 159937, US20120071477, US20120071477, WO2013 / 116786, Special Table 2015-506376, Special Table 2016-503408, and are currently known or found in the future. Any inhibitor of CDK8 and / or CDK19 is included in the present invention as a prophylactic or therapeutic agent for neurodegenerative diseases or a phosphorylation inhibitor / activation inhibitor of SARM1.
  • ARM domain SARM1, SAM domain, a fragment containing the TIR domain or Ser 54, Ser 548 or Ser 622 is because it competitively inhibit the phosphorylation of SARM1, phosphorylation inhibitor / activator inhibitor SARM1 / Useful as a preventive or therapeutic agent for neurodegenerative diseases.
  • JNK-1, JNK-2, JNK-3, especially JNK-3 are known and are now known or found in the future JNK (JNK-1, JNK-2, JNK- In particular, all inhibitors of JNK-3) are included in the present invention as agents for preventing or treating neurodegenerative diseases or phosphorylation inhibitors / activation inhibitors of SARM1.
  • Replacing Ser at position 54, 548 or 622 of SARM1 with Asp (D) or Glu (E) can enhance the inducing effect of neuronal cell death, and position 54, 548 or 622 of SARM1
  • Ser at the position By substituting Ser at the position with an amino acid that is not phosphorylated and is not acidic, such as Ala, the activation of SARM1 can be inhibited, and the effect of SARM1 inducing neuronal cell death can be reduced or eliminated.
  • Asp 54 or Glu 54 variant of SARM1, Asp 548, or Glu 548 variants, Asp 622, or Glu 622 variants it is possible to enhance the neuronal cell death inducing effects of SARM1, 54-position, 548-position and 622-position
  • a variant of SARM1 obtained by modifying at least one Ser selected from the group consisting of Asp (D) or Glu (E) is useful for producing a model animal or model cell of a neurodegenerative disease.
  • a transgenic non-human mammal / cell into which a Glu 54 variant gene, Asp 548 or Glu 548 variant gene, Asp 622 or Glu 622 variant gene has been introduced is a model animal / model cell of a neurodegenerative disease Included). Two or more of positions 54, 548 and 622 may be modified.
  • mammals examples include humans, mice, rats, guinea pigs, hamsters, rabbits, goats, dogs, cats, monkeys, cows and pigs.
  • the base sequence and amino acid sequence of SARM1 of these mammals are known, or the gene can be easily obtained from the known base sequence of SARM1 to determine the amino acid sequence.
  • the anti-phosphorylated SARM1 antibody of the present invention comprises at least one phosphorylated SARM1 or phosphorylated Ser 54 and / or Ser 548 and / or Ser 622 selected from the group consisting of Ser 54 , Ser 548 and Ser 622 A monoclonal antibody or a polyclonal antibody produced from a hybridoma obtained by immunizing a mouse with a monoclonal antibody, preferably a monoclonal antibody.
  • Ser 54 and / or Ser 548 and / or Ser 622 and "Ser 54 / Ser 548 / Ser 622".
  • hybridomas are obtained after immunization of mammals such as mice with Ser 54 / Ser 548 / Ser 622 phosphorylated SARM1 or fragments thereof containing phosphorylated Ser 54 / Ser 548 / Ser 622 .
  • Antibodies required therein will react to Ser 54 / Ser 548 / Ser 622 phosphorylation SARM1, a hybridoma producing an antibody which does not react to non-phosphorylated SARM1.
  • the anti-non-phosphorylated SARM1 antibody of the present invention is obtained from a hybridoma obtained by immunizing mice with Ser 54 / Ser 548 / Ser 622 non-phosphorylated SARM1 or a fragment thereof containing non-phosphorylated Ser 54 / Ser 548 / Ser 622. Monoclonal antibodies or polyclonal antibodies produced, with monoclonal antibodies being preferred. After immunizing a mammal such as a mouse with Ser 54 / Ser 548 / Ser 622 non-phosphorylated SARM1 or a fragment thereof comprising non-phosphorylated Ser 54 / Ser 548 / Ser 622 , several hybridomas are obtained. Antibodies required therein will react to Ser 54 / Ser 548 / Ser 622 unphosphorylated SARM1, a hybridoma producing an antibody which does not react in the Ser 54 / Ser 548 / Ser 622 phosphorylation SARM1.
  • a hybridoma can be prepared using Ser 54 / Ser 548 / Ser 622 phosphorylated / non-phosphorylated SARM1 or a phosphorylated / non-phosphorylated Ser 54 / Ser 548 / Ser 622 fragment as an immunogen. After producing, it is necessary to select a hybridoma producing an antibody which specifically reacts with Ser 54 / Ser 548 / Ser 622 phosphorylation / unphosphorylated SARM1. Induction of immunity can usually be performed by administering an immunogen in an amount of 1 ng to 10 mg in 1 to 5 divided doses every 10 to 14 days.
  • organs capable of producing antibodies are aseptically removed from mammals and used as parent strains during cell fusion.
  • the spleen is most preferable as an organ to be removed.
  • Myeloma cells are used as cell fusion partners. Myeloma cells include mouse origin, rat origin, human origin, etc., but mouse origin is preferred. Examples of cell fusion include a method using polyethylene glycol, a cell electrofusion method, and the like. Selection of spleen cells or myeloma cells that have not undergone cell fusion and hybridomas can be performed, for example, by culturing in a serum medium supplemented with HAT supplements.
  • Selection of a hybridoma that produces an antibody that specifically binds to Ser 54 / Ser 548 / Ser 622 phosphorylated / non-phosphorylated SARM1 is obtained by collecting the above-mentioned culture supernatant, Ser 54 / Ser 548 / Ser 622 phosphorylated / Direct ELISA on non-phosphorylated SARM1 or its fragment containing phosphorylated / non-phosphorylated Ser 54 / Ser 548 / Ser 622 and non-phosphorylated / phosphorylated SARM1 on an EIA plate is preferred.
  • Ser 54 / Ser 548 / Ser 622 phosphorylated / non-phosphorylated SARM1 or phosphorylated / non-phosphorylated Ser 54 / Ser 548 / Ser 622 and its fragments are strongly colored, non-phosphorylated / phosphorylated
  • a well that does not develop color with SARM1 is selected, and the cells in that well are subjected to cloning.
  • the hybridoma corresponding to the culture supernatant is selected as a hybridoma producing an antibody that specifically reacts with Ser 54 / Ser 548 / Ser 622 phosphorylated / unphosphorylated SARM1.
  • Cloning is an operation for selecting and unifying antibody-producing hybridomas.
  • the hybridoma which produces the target monoclonal antibody is acquirable.
  • nerve cells are induced from iPS cells derived from healthy subjects and patients with neurodegenerative diseases, a candidate drug or a solvent control group is added, and then phosphorylated SARM1 It can be performed by evaluating SARM1 phosphorylation and neuronal cell viability by immunostaining using antibodies, Western blotting, and MTS assay.
  • a candidate drug or a solvent control group is administered to a neurodegenerative disease model mouse, and then a frozen section of the brain is prepared. Evaluation of the oxidation level and neuronal cell viability can be carried out to screen for preventive or therapeutic agents for neurodegenerative diseases.
  • SARM1 expressing cells include SARM1 with tags such as HA tag, His tag, and FLAG tag, and ARM domain, SAM domain, TIR domain with other tags, or Ser 54 , Ser 548 , Ser 622 . More preferred is a cell in which the fragment is coexpressed.
  • Cell culture is performed by adding a candidate substance to the culture medium of such cells, immunoprecipitation of tagged SARM1 using antibody-binding beads against the tag of SARM1, and whether the antibody of the present invention is phosphorylated. It can be detected using an antibody such as a phosphorylated serine / threonine detection antibody.
  • a substance that suppresses phosphorylation of SARM1 can be selected as a target substance.
  • Example 1 Inhibition of neuronal cell death by suppressing SARM1 expression
  • siRNA siRNA
  • 3 ⁇ 10 5 human neuroblastoma SH-SY5Y cells are seeded in a 12-well plate, mixed with 8 ⁇ l of transfection reagent Lipofectamine RNAiMAX (Thermo Fisher Scientific) in 4 ⁇ l of 10 ⁇ M siRNA (QIAGEN) against control or SARM1, and finally Transfection was performed at a concentration of 20 nM.
  • SARM1 Cell death induction by inhibition of mitochondrial respiration of SARM1
  • SARM1 is a protein with a mitochondrial translocation signal
  • SARM1 inhibits mitochondrial respiration and decreases ATP synthesis.
  • SARM1 is a protein of 724 amino acids and has a mitochondrial translocation signal, an ARM domain, two SAM domains, and a TIR domain (FIG. 2A).
  • Each domain functions to analyze HEK293T 3 ⁇ 10 5 cells were plated in 12-well plates, SARM1 (1 ⁇ 724aa) of the full-length, .DELTA.N excluding the mitochondrial targeting signal (28 ⁇ 724aa), except TIR domain 2 ⁇ g of pDNA encoding ⁇ A (1 to 550 aa) and ⁇ A (406 to 724 aa) excluding the N-terminal including the ARM domain was mixed with 4 ⁇ l of transfection reagent FuGENE-HD (Promega) for transfection . After 8 hours, the cells were peeled off, and 3 ⁇ 10 4 cells were seeded again in a 96-well plate.
  • H 2 flux analyzer XFe96 mitochondrial respiration capacity (Fig. 2D) using (SeahorseBioscience), which is one of active oxygen species using the ROS-Glo H 2 O 2 assay (Promega)
  • the amount of O 2 (FIG. 2E) was measured.
  • full-length SARM1 and ⁇ A decreased mitochondrial respiratory capacity, especially reserve respiratory capacity, and increased ⁇ T.
  • the amount of H 2 O 2 increased with the expression of full-length SARM1 and ⁇ A (FIG. 2E).
  • the SAM domain (406-550aa) contains 12 serines and 9 threonines. In order to identify which of these amino acids was phosphorylated, all 21 amino acids were replaced with alanine one by one and compared with the wild type (WT) SAM domain. Of the 21 amino acids, the band detected by the P-Ser / Thr antibody disappeared only when serine 548 was substituted with alanine (FIG. 3C). From these results, it was found that serine 548 is a phosphorylation site of SARM1.
  • CDK19 Cyclin dependent kinase 19
  • CDK19 is one of the CDK family proteins, and it is known that CDK8 exists as a paralog with similar functions.
  • CDK19 and CDK8 HA-CDK19, HA-CDK8 expression vectors added with an HA tag were prepared in order to confirm the binding and phosphorylation control of the SAM domain with CDK19 and CDK8.
  • HEK293T cells (8 ⁇ 10 5 cells / 6 well plate) in the control, SAM-Flag, performed transfection of HA-CDK19 and HA-CDK8 (pDNA 4 ⁇ g + FuGENE-HD 8 ⁇ l), Flag antibody binding after 24 hours Immunoprecipitation was performed using beads.
  • CDK19 and CDK8 bound to the SAM domain and markedly enhanced SAM domain phosphorylation. From these results, it was found that CDK19 and CDK8 enhance phosphorylation of serine 548 of SARM1.
  • HEK293T cells (8 ⁇ 10 5 cells / 6 well plate) control, HA tag-added SARM1 (SARM1-HA) and conditions for co-expression of SARM1-HA and SAM-Flag (pDNA 4 ⁇ g + FuGENE-HD 8 ⁇ l ) And 24 hours later, SARM1-HA was immunoprecipitated using HA antibody-bound beads (SIGMA). As shown in FIG. 5A, phosphorylation of SARM1 was detected when SARM1-HA alone was used, but phosphorylation was not detected when SAM-Flag was co-expressed.
  • SIGMA HA antibody-bound beads
  • Senexin A inhibited phosphorylation of the SAM domain in a concentration-dependent manner (FIG. 5C).
  • FIG. 5C the effect of Senexin A on oxidative stress-induced cell death was examined. 3 ⁇ 10 4 neuroblastoma SH-SY5Y cells were seeded in a 96-well plate, and 0-20 ⁇ M Senexin A and 1 mM paraquat were added. After 48 hours, cell viability was measured using CellTiter 96 Aqueous One Solution Cell Proliferation Assay reagent. As shown in FIG. 5D, Senexin A suppressed cell death induced by oxidative stress in a concentration-dependent manner. From these results, it was found that cell death induced by SARM1 can be suppressed by developing a substance that inhibits phosphorylation of SARM1.
  • HEK293T cells (3 ⁇ 10 5 cells / 12 well plate) were transfected with SAM-Flag expression vector (pDNA 2 ⁇ g + FuGENE-HD 4 ⁇ l), and after 8 hours, various kinase inhibitors (EGFR-I, MEK- I, p38-I, JNK-I, Akt-I) were added and cultured for 16 hours, and then the cells were collected and subjected to Western blotting.
  • a JNK inhibitor JNK-I: JNK inhibitor VIII (Cayman)
  • JNK-I JNK inhibitor VIII (Cayman)
  • an in vitro kinase assay was performed by reacting a SAM domain with a GST tag and a kinase (p38 ⁇ , JNK1, JNK2, JNK3) in the presence of ATP. As shown in FIG. 6B, it was confirmed that JNK (particularly JNK3) directly induces phosphorylation of serine 548 of the SAM domain.
  • An antibody was prepared in order to specifically detect serine 548 phosphorylation of SARM1.
  • Mice were immunized with AREMLHSPLPCTGGK phosphorylated peptide containing serine 548 to obtain hybridomas.
  • the reactivity of the monoclonal antibody produced from the hybridoma was confirmed by ELISA, and a clone that reacted with the phosphorylated peptide and was less reactive with the non-phosphorylated peptide was selected (FIG. 6C), and the antibody was purified.
  • the acquired SARM1 serine # 548 phosphorylation-recognizing antibody specifically recognized the phosphorylation of full-length SARM1.
  • SARM1 was phosphorylated in a stress environment and induced cell death. Therefore, if a substance that inhibits phosphorylation of SARM1 is found, it is possible that neuronal cell death induced by SARM1 can be suppressed. Therefore, a screening method for SARM1 phosphorylation inhibitors using SARM1-Ser548 phosphorylation detection was presented.
  • JNK inhibitor is JNK inhibitor VIII (Cayman)
  • decoy peptide is peptide with AREMLHSPLPCTGGK sequence containing serine 548
  • mouse control IgG is normal mouse IgG (Wako)
  • SARM1 antibody is peptide containing serine 548 Antibodies (No.
  • JNK inhibitor (FIG. 7A), decoy peptide (FIG. 7B), and antibody (FIG. 7C) each had an effect of suppressing SARM1-Ser548 phosphorylation.
  • JNK inhibitors JNK-I
  • SARM1 antibodies Nos. 1, 2, and 16 have a strong phosphorylation-inhibiting effect, and these substances suppressed cell death induced by SARM1.
  • HEK293T cells were transfected with SARM1 pDNA, and after 8 hours, JNK inhibitors and antibodies were added and cultured for 16 hours. The same JNK inhibitor and antibody as those used for phosphorylation analysis were used. The antibody was introduced by electroporation (Neon transfection system, Thermo Fisher Scientific). Cell viability was then assessed by MTS assay. JNK inhibitors and SARM1 antibodies have the effect of suppressing cell death (Fig. 7D, E). By combining SARM1 phosphorylation detection and cell viability assessment assays, it is possible to screen for substances that inhibit SARM1 activation. It shows that there is.
  • SARM1 serine and threonine of SARM1 may be phosphorylated by JNK
  • SARM1 found three motifs that could be phosphorylated by JNK (Ser 54 : REV S PGAG, Ser 548 : MLH S PLPC, Ser 622 : LVL S PGAL). Therefore, a mutant expression vector was prepared by substituting serine 54, serine 548 and serine 622 with one or more alanines, and compared with wild-type SARM1 by MTS assay.
  • Phosphorylation of serine 54 and serine 622 could not be detected by the method using the phosphorylated serine / threonine recognition antibody shown in Fig. 3. Detection by another method using Phos-tag (Wako) Tried.
  • Phos-tag is a substance that binds to a phosphate group, and when mixed with an SDS-PAGE gel, the phosphorylated protein migrates more slowly than the non-phosphorylated protein, and the phosphorylated protein can be detected.
  • a glycerol stock prepared by cloning the SAM domain into an expression vector pET28a having a T7 promoter (pET28a-SAM-Flag (6His-T7-SAM-Flag)) and transforming it into E. coli BL21 (DE3) -RP was prepared as LB-Kan. (Kanamycin 30 ⁇ g / ml) was cultured with shaking at 37 ° C. for 10 hours, and then IPTG was added to a final concentration of 1 ⁇ m and shaken at 25 ° C. for 16 hours to express the SAM domain. By sonication in 20% by mass of sucrose buffer, Escherichia coli crushed material was obtained.
  • a partial region (D594 to E670 aa) of the TIR domain was cloned into an expression vector pGEX-6P-1 having a tac promoter (pGEX-6P-1-TIR (GST-TIR)) and transformed into E. coli BL21 (DE3) -RP.
  • the glycerol stock prepared by conversion is cultured with shaking in LB-Amp (ampicillin 100 ⁇ g / ml) medium at 37 ° C. for 10 hours, and then IPTG is added to a final concentration of 1 ⁇ mM, and then at 25 ° C. for 16 hours.
  • the TIR domain was expressed by shaking culture. By sonication in 20% by mass of sucrose buffer, Escherichia coli crushed material was obtained.
  • Biacore sensor chip was prepared for molecular interaction analysis using the purified SAM domain.
  • SAM domain 0.4 mg / ml dissolved in PBS was diluted 4-fold (0.1 mg / ml) with 10 mM mM acetate buffer (pH 4.5) and immobilized on a CM5 sensor chip by the amine coupling method.
  • HBS-EPHbuffer GE Healthcare
  • the analyte was diluted to 20 ⁇ g / ml with the running buffer.
  • SARM1 antibody and SAM domain were added and analyzed (FIG. 10C).
  • SARM1 is one of the molecules that cause neuronal cell death and neuroaxonal degeneration observed in neurodegenerative diseases.
  • SARM1 If the function of SARM1 can be inhibited, it may be possible to prevent and treat various neurodegenerative diseases.
  • SARM1 serine 54, serine 548 and serine 622 are phosphorylated by JNK for the activation of SARM1.
  • the present inventor has developed a screening method for drugs that inhibit SARM1 activation by combining the detection of phosphorylation of SARM1 and the measurement of cell viability.
  • the use of the present invention makes it possible to develop SARM1 inhibitors that are promising for the prevention and treatment of neurodegenerative diseases.

Abstract

The present invention provides a phosphorylated SARM1 (Sterile alpha and TIR motif-containing protein 1) in which at least one Ser residue selected from the group consisting of position 54, position 548, and position 622 of SARM1 is phosphorylated.

Description

リン酸化SARM1、抗体、SARM1リン酸化阻害剤、神経変性疾患の予防又は治療薬、スクリーニング方法、SARM1改変体及び使用Phosphorylated SARM1, antibody, SARM1 phosphorylation inhibitor, preventive or therapeutic agent for neurodegenerative diseases, screening method, SARM1 variant and use
 本発明は、リン酸化SARM1、抗体、SARM1リン酸化阻害剤、神経変性疾患の予防又は治療薬、スクリーニング方法、SARM1改変体及び使用に関する。 The present invention relates to phosphorylated SARM1, antibody, SARM1 phosphorylation inhibitor, preventive or therapeutic agent for neurodegenerative diseases, screening method, SARM1 variant and use.
 SARM1(Sterile alpha and TIR motif-containing protein 1)はミトコンドリア移行シグナルをもつTIRアダプタータンパク質の1つで、724アミノ酸からなっている。SARM1は主に神経系の細胞に発現が強く (非特許文献1)、虚血性の神経細胞死や神経軸索変性の原因分子となることが報告されている (非特許文献2、3)。この神経細胞死はSARM1をノックアウトすることによって著しく抑制できることから、SARM1を標的とした薬剤があれば神経細胞死を抑制し、パーキンソン病や筋萎縮性側索硬化症(ALS)など様々な神経変性疾患の治療に応用できると考えられている(特許文献1)。しかしSARM1を標的とした薬剤は現在存在しない。 SARM1 (Sterile alpha and TIR motif-containing protein 1) is a TIR adapter protein with a mitochondrial translocation signal and consists of 724 amino acids. SARM1 is strongly expressed mainly in cells of the nervous system (Non-patent Document 1), and is reported to be a causative molecule for ischemic neuronal cell death and neuronal axonal degeneration (Non-patent Documents 2 and 3). This neuronal cell death can be remarkably suppressed by knocking out SARM1, so if there is a drug targeting SARM1, neuronal cell death is suppressed, and various neurodegeneration such as Parkinson's disease and amyotrophic lateral sclerosis (ALS) It is considered that it can be applied to the treatment of diseases (Patent Document 1). However, there are currently no drugs targeting SARM1.
 特許文献2~5は、CDK8又はCDK19の阻害剤ががんの治療に有効であることを開示している。 Patent Documents 2 to 5 disclose that an inhibitor of CDK8 or CDK19 is effective in treating cancer.
US20120328629US20120328629 WO2015/159937WO2015 / 159937 特表2016-501845Special table 2016-501845 特表2016-503408Special table 2016-503408 特表2015-506376Special table 2015-506376
 本発明は、SARM1の機能を抑制し、神経変性疾患を予防又は治療することを目的とする。 The present invention aims to suppress the function of SARM1 and prevent or treat neurodegenerative diseases.
 本発明者は細胞内でのSARM1の変化や機能を解析し、SARM1がミトコンドリア呼吸鎖複合体Vに作用することによってATP合成を阻害し、細胞死を誘導することを見出した。またc-Jun N-terminal kinase (JNK)がSARM1の54番目、548番目及び622番目からなる群から選ばれる少なくとも1種のセリン残基をリン酸化することでSARM1を活性化することを見出した。SARM1の54番目、548番目及び622番目からなる群から選ばれる少なくとも1種のセリン残基のリン酸化を検出する方法を開発することで、SARM1の活性状態の確認や阻害剤開発に利用していくことが可能になる。本発明者は、さらにSARM1の中にあるARMドメイン、SAMドメイン、TIRドメインを含む領域を用いることで54番目、548番目及び622番目からなる群から選ばれる少なくとも1種のセリン残基のリン酸化を感度よく検出する方法を開発した。また本検出方法を用いて、SARM1の阻害剤を見出した。 The present inventor analyzed changes and functions of SARM1 in cells and found that SARM1 acts on mitochondrial respiratory chain complex V to inhibit ATP synthesis and induce cell death. We also found that c-Jun N-terminal kinase (JNK) activates SARM1 by phosphorylating at least one serine residue selected from the 54th, 548th and 622th groups of SARM1. . By developing a method to detect phosphorylation of at least one serine residue selected from the group consisting of 54th, 548th and 622th of SARM1, it can be used to confirm the active state of SARM1 and to develop inhibitors It becomes possible to go. The present inventor further phosphorylates at least one serine residue selected from the group consisting of 54th, 548th and 622th by using a region including ARM domain, SAM domain and TIR domain in SARM1. Has developed a method for detecting urine with high sensitivity. In addition, using this detection method, an inhibitor of SARM1 was found.
 本発明は、以下のリン酸化SARM1、抗体、SARM1リン酸化阻害剤、神経変性疾患の予防又は治療薬、スクリーニング方法、SARM1改変体及び使用を提供するものである。
項1. SARM1(Sterile alpha and TIR motif-containing protein 1)の54位、548位及び622位からなる群から選ばれる少なくとも1種のSer残基がリン酸化された、リン酸化SARM1。
項2. SARM1がヒト由来である、項1に記載のリン酸化SARM1。
項3. SARM1の54位、548位又は622位のリン酸化Ser残基を特異的に認識し、SARM1の54位、548位及び622位の非リン酸化Ser残基を認識しない、抗リン酸化SARM1抗体。
項4. サイクリン依存性キナーゼ8(CDK8)、サイクリン依存性キナーゼ19(CDK19)及びJNKからなる群から選ばれる少なくとも1種の阻害剤を有効成分とするSARM1リン酸化阻害剤。
項5. サイクリン依存性キナーゼ8(CDK8)、サイクリン依存性キナーゼ19(CDK19)及びJNKからなる群から選ばれる少なくとも1種の阻害剤を有効成分とする神経変性疾患の予防又は治療薬。
項6. 抗SARM1抗体、SARM1のデコイペプチド及びアンタゴニストからなる群から選ばれるSARM1阻害剤を有効成分とする、神経変性疾患の予防又は治療薬。
項7. 抗SARM1抗体が、SARM1の54位、548位又は622位のリン酸化を抑制可能な非リン酸化SARM1に対する抗体またはSARM1の54位、548位又は622位のリン酸化Ser残基を特異的に認識し、SARM1の54位、548位及び622位の非リン酸化Ser残基を認識しない抗リン酸化SARM1抗体である、項6に記載の神経変性疾患の予防又は治療薬。
項8. SARM1のデコイペプチドがSARM1のSer54、Ser548又はSer622を含む断片ペプチドまたはその修飾体である、項6に記載の神経変性疾患の予防又は治療薬。
項9. 神経変性疾患がパーキンソン病、筋萎縮性側索硬化症(ALS)、多発性硬化症、ニューロパチー及びアルツハイマー病からなる群から選ばれる項5~8のいずれか1項に記載の神経変性疾患の予防又は治療薬。
項10. SARM1の54位、548位及び622位からなる群から選ばれる少なくとも1種のSer残基のリン酸化を検出する工程を含む、神経変性疾患の予防又は治療薬のスクリーニング方法。
項11. SARM1の54位、548位及び622位からなる群から選ばれる少なくとも1種のSer残基のリン酸化を検出する工程を含む、SARM1阻害剤のスクリーニング方法。
項12. ヒトSARM1の54番目、548番目及び622番目からなる群から選ばれる少なくとも1種に相当するSerがGlu又はAspで置換されたSARM1改変体。
項13. 神経変性疾患のモデル細胞又はモデル動物の作成のための項12に記載のSARM1改変体の使用。
The present invention provides the following phosphorylated SARM1, antibody, SARM1 phosphorylation inhibitor, preventive or therapeutic agent for neurodegenerative diseases, screening method, SARM1 variant and use.
Item 1. Phosphorylated SARM1 in which at least one Ser residue selected from the group consisting of positions 54, 548 and 622 of SARM1 (Sterile alpha and TIR motif-containing protein 1) is phosphorylated.
Item 2. Item 2. The phosphorylated SARM1 according to item 1, wherein the SARM1 is derived from a human.
Item 3. An anti-phosphorylated SARM1 antibody that specifically recognizes a phosphorylated Ser residue at positions 54, 548 or 622 of SARM1 and does not recognize non-phosphorylated Ser residues at positions 54, 548 and 622 of SARM1.
Item 4. A SARM1 phosphorylation inhibitor comprising, as an active ingredient, at least one inhibitor selected from the group consisting of cyclin-dependent kinase 8 (CDK8), cyclin-dependent kinase 19 (CDK19), and JNK.
Item 5. A prophylactic or therapeutic agent for a neurodegenerative disease comprising as an active ingredient at least one inhibitor selected from the group consisting of cyclin-dependent kinase 8 (CDK8), cyclin-dependent kinase 19 (CDK19) and JNK.
Item 6. A preventive or therapeutic agent for neurodegenerative diseases, comprising as an active ingredient a SARM1 inhibitor selected from the group consisting of an anti-SARM1 antibody, a SARM1 decoy peptide and an antagonist.
Item 7. Anti-SARM1 antibody specifically recognizes non-phosphorylated SARM1 that can suppress phosphorylation at position 54, 548 or 622 of SARM1 or phosphorylated Ser residue at positions 54, 548 or 622 of SARM1 Item 7. The preventive or therapeutic agent for neurodegenerative diseases according to Item 6, which is an anti-phosphorylated SARM1 antibody that does not recognize non-phosphorylated Ser residues at positions 54, 548 and 622 of SARM1.
Item 8. SARM1 decoy peptide is a fragment peptide or modifications thereof including Ser 54, Ser 548 or Ser 622 of SARM1, prophylactic or therapeutic agent for neurodegenerative diseases according to claim 6.
Item 9. Item 9. The neurodegenerative disease prevention according to any one of Items 5 to 8, wherein the neurodegenerative disease is selected from the group consisting of Parkinson's disease, amyotrophic lateral sclerosis (ALS), multiple sclerosis, neuropathy, and Alzheimer's disease. Or a therapeutic agent.
Item 10. A method for screening a prophylactic or therapeutic agent for a neurodegenerative disease, comprising a step of detecting phosphorylation of at least one Ser residue selected from the group consisting of positions 54, 548 and 622 of SARM1.
Item 11. A method for screening a SARM1 inhibitor, comprising a step of detecting phosphorylation of at least one Ser residue selected from the group consisting of positions 54, 548 and 622 of SARM1.
Item 12. A SARM1 variant in which Ser corresponding to at least one selected from the group consisting of 54th, 548th and 622th human SARM1 is substituted with Glu or Asp.
Item 13. Item 13. Use of the SARM1 variant according to Item 12 for the production of a model cell or model animal for a neurodegenerative disease.
 本発明はSARM1の54番目、548番目及び622番目からなる群から選ばれる少なくとも1種のセリン残基のリン酸化と細胞生存率を測定することによって、SARM1の活性状態の検出及び神経細胞死抑制効果のある物質を探索することが可能な技術である。SARM1は虚血性の神経細胞死や神経軸索変性の原因分子となることが報告されており、SARM1の阻害剤を開発すれば神経細胞死や軸索変性が原因で起こるパーキンソン病やALSなど様々な神経変性疾患の治療に応用できる。これまではSARM1の細胞内での活性状態を測定できる技術が存在しなかったので、SARM1を標的とした薬剤は開発できなかった。本発明によってSARM1のリン酸化を指標にしたSARM1阻害剤のスクリーニングが可能になる。本発明ではSARM1の中に含まれるARMドメイン(28~405aa)、SAMドメイン(406~550aa)、TIRドメイン(551~724aa)、或いは54番目、548番目又は622番目のSer残基を含むその断片をリン酸化解析に用いることによって高感度かつ簡便にSARM1セリン54番目、548番目又は622番目のリン酸化を検出できるようになった。TIRドメインとして、S622、TIRのBB-loop及びDD-loop構造を含むコア領域(D594~E670 aa)を使用してもよい(図10B)。 The present invention detects the active state of SARM1 and suppresses neuronal cell death by measuring phosphorylation and cell viability of at least one serine residue selected from the group consisting of 54th, 548th and 622th of SARM1. It is a technology that can search for effective substances. SARM1 has been reported to be a causative molecule for ischemic neuronal cell death and neuronal axonal degeneration, and if an inhibitor of SARM1 is developed, various factors such as Parkinson's disease and ALS caused by neuronal cell death and axonal degeneration are reported. It can be applied to the treatment of various neurodegenerative diseases. Until now, there was no technology that could measure the activity state of SARM1 in cells, so it was not possible to develop drugs targeting SARM1. The present invention enables screening for SARM1 inhibitors using SARM1 phosphorylation as an index. In the present invention, an ARM domain (28 to 405aa), SAM domain (406 to 550aa), TIR domain (551 to 724aa) contained in SARM1, or a fragment containing the 54th, 548th or 622th Ser residue Was used for phosphorylation analysis, and it became possible to detect phosphorylation of SARM1 serine 54th, 548th or 622th with high sensitivity and ease. As a TIR domain, a core region (D594 to E670 aa) containing S622, TIR BB-loop and DD-loop structures may be used (FIG. 10B).
 またSARM1をリン酸化するJNK1、JNK2、JNK3およびSARM1のリン酸化を増強するCDK19、CDK8を見出したので、これらリン酸化酵素の阻害剤は有望な神経細胞死抑制剤の候補となる。また神経変性疾患患者由来iPS細胞から分化誘導した神経細胞などを用いてSARM1のセリン54番目、548番目及び622番目からなる群から選ばれる少なくとも1種のセリン残基のリン酸化状態を解析することによって、病気の進行度などの評価に応用できる。 Furthermore, CDK19 and CDK8 that enhance phosphorylation of JNK1, JNK2, JNK3, and SARM1 that phosphorylate SARM1 were found, and these phosphorylase inhibitors are promising candidates for neuronal cell death inhibitors. In addition, analysis of the phosphorylation state of at least one serine residue selected from the group consisting of serine 54th, 548th and 622th of SARM1 using neurons derived from iPS cells derived from patients with neurodegenerative diseases Can be applied to the evaluation of disease progression.
SARM1の発現抑制条件下でのストレス誘導性細胞死率の測定Measurement of stress-induced cell death rate under SARM1 expression suppression conditions SARM1のミトコンドリア呼吸阻害による細胞死誘導Cell death induction by inhibition of mitochondrial respiration of SARM1 SARM1のセリン548番のリン酸化Phosphorylation of serine 548 of SARM1 CDK19、CDK8によるSARM1のリン酸化及び活性制御Regulation of phosphorylation and activity of SARM1 by CDK19 and CDK8 リン酸化を指標にしたSARM1阻害剤の開発Development of SARM1 inhibitors using phosphorylation as an indicator JNKによるSARM1のリン酸化Phosphorylation of SARM1 by JNK SARM1-Ser548リン酸化検出を利用したSARM1リン酸化阻害剤のスクリーニング法Screening method for SARM1 phosphorylation inhibitors using SARM1-Ser 548 phosphorylation detection SARM1-Ser54、Ser548、Ser622のリン酸化Phosphorylation of SARM1-Ser 54 , Ser 548 , Ser 622 SARM1のリン酸化による結合タンパク質の変化Changes in binding protein by phosphorylation of SARM1 SAMドメイン、TIRドメインを利用したSARM1結合物質のスクリーニング法Screening method of SARM1 binding substance using SAM domain and TIR domain
 本明細書において、SARM1はミトコンドリアに局在する724アミノ酸からなるタンパク質であり、ミトコンドリア局在配列、ARM、SAM、TIRの各ドメインを有する(図2A)。 In the present specification, SARM1 is a protein consisting of 724 amino acids localized in mitochondria, and has mitochondrial localization sequence, ARM, SAM, and TIR domains (FIG. 2A).
 ヒトSARM1のアミノ酸配列を配列番号1に示す。ヒトSARM1のpIは6.1であり、分子量は79388である。 The amino acid sequence of human SARM1 is shown in SEQ ID NO: 1. The human SARM1 has a pI of 6.1 and a molecular weight of 79388.
 SARM1には多数のリン酸化可能なThr残基、Ser残基があるが、本発明者はSer54、Ser548及びSer622、好ましくはSer548及びSer622がリン酸化部位であることを見出した。Ser54、Ser548及びSer622からなる群から選ばれる少なくとも1種、好ましくはSer548及び/又はSer622がリン酸化されることでSARM1は活性化され、ミトコンドリア呼吸を阻害し、細胞死を誘導するので、Ser54、Ser548及びSer622からなる群から選ばれる少なくとも1種、好ましくはSer548及び/又はSer622のリン酸化を阻害することで、ミトコンドリア呼吸の阻害が解除され、神経細胞死の誘導を抑制できる。したがって、Ser54、Ser548及びSer622からなる群から選ばれる少なくとも1種、好ましくはSer548及び/又はSer622のリン酸化阻害物質は、神経変性疾患の予防又は治療剤として有用である。 Although SARM1 has many phosphorylable Thr and Ser residues, the present inventors have found that Ser 54 , Ser 548 and Ser 622 , preferably Ser 548 and Ser 622 are phosphorylation sites. . At least one selected from the group consisting of Ser 54 , Ser 548 and Ser 622 , preferably SARM1 is activated by phosphorylating Ser 548 and / or Ser 622 , inhibiting mitochondrial respiration and inducing cell death Therefore, inhibition of mitochondrial respiration is released by inhibiting phosphorylation of at least one selected from the group consisting of Ser 54 , Ser 548 and Ser 622 , preferably Ser 548 and / or Ser 622 , and neuronal cell death Can be suppressed. Therefore, at least one selected from the group consisting of Ser 54 , Ser 548 and Ser 622 , preferably a phosphorylation inhibitor of Ser 548 and / or Ser 622 is useful as a preventive or therapeutic agent for neurodegenerative diseases.
 神経変性疾患としては、パーキンソン病、筋萎縮性側索硬化症(ALS)、多発性硬化症及びアルツハイマー病が挙げられ、特にパーキンソン病、筋萎縮性側索硬化症(ALS)が挙げられる。 Examples of neurodegenerative diseases include Parkinson's disease, amyotrophic lateral sclerosis (ALS), multiple sclerosis and Alzheimer's disease, and in particular, Parkinson's disease and amyotrophic lateral sclerosis (ALS).
 本発明者は、SARM1のリン酸化がサイクリン依存性キナーゼ8(CDK8)及び/又はサイクリン依存性キナーゼ19(CDK19)、さらにJNK(JNK-1、JNK-2、JNK-3、特にJNK-3)により行われることを見出した。CDK8とCDK19の一方又は両方(好ましくは両方)、JNK(JNK-1、JNK-2、JNK-3、特にJNK-3)を阻害することで、SARM1の活性化を抑制することができ、神経細胞死を抑制し、神経変性疾患を予防又は治療することができる。神経細胞は、細胞死後にCDK8とCDK19の一方又は両方(好ましくは両方)、さらにJNK(JNK-1、JNK-2、JNK-3、特にJNK-3)を阻害しても再生しないので、CDK8及び/又はCDK19、さらにJNK(JNK-1、JNK-2、JNK-3、特にJNK-3)の阻害剤は、神経変性疾患の予防もしくは進行を止めるか遅らせるのに有用である。また、軸索変性の場合には、本発明の神経変性疾患の予防又は治療薬で再生可能である。 The present inventor confirmed that phosphorylation of SARM1 is cyclin-dependent kinase 8 (CDK8) and / or cyclin-dependent kinase 19 (CDK19), and also JNK (JNK-1, JNK-2, JNK-3, particularly JNK-3) Found out to be done. By inhibiting one or both of CDK8 and CDK19 (preferably both), JNK (JNK-1, JNK-2, JNK-3, especially JNK-3), the activation of SARM1 can be suppressed, Cell death can be suppressed, and neurodegenerative diseases can be prevented or treated. Nerve cells do not regenerate after cell death even if one or both of CDK8 and CDK19 (preferably both), and also JNK (JNK-1, JNK-2, JNK-3, especially JNK-3) are inhibited, CDK8 And / or inhibitors of CDK19, and also JNK (JNK-1, JNK-2, JNK-3, especially JNK-3) are useful to prevent or delay the prevention or progression of neurodegenerative diseases. In the case of axonal degeneration, it can be regenerated with the preventive or therapeutic agent for neurodegenerative diseases of the present invention.
 JNKによるSARM1のリン酸化モチーフを以下に示す。
Ser54: REVSPGAG
Ser548: MLHSPLPC
Ser622: LVLSPGAL
 また、神経変性疾患は、抗SARM1抗体、SARM1のデコイペプチド及びアンタゴニストからなる群から選ばれるSARM1阻害剤により予防又は治療することができる。SARM1のデコイペプチドとしては、SARM1のSer54、Ser548又はSer622を含む断片ペプチドまたはその修飾体が挙げられる。修飾体は、N末端のアミノ基がアシル化(アセチル化、プロピオニル化など)、アルキル化(メチル化、エチル化など)されたもの、C末端のカルボキシル基がエステル化、アミド化されたものが挙げられる。このようなデコイペプチドは配列番号1のヒトSARM1のアミノ酸配列から当業者であれば容易に設計できる。SARM1のアンタゴニストとしては、SAMドメイン(分子量約17000)、ARMドメイン(分子量約40000)、TIRドメイン(分子量約19000)が挙げられるが、より低分子量のアンタゴニストであってもよい。デコイペプチドはSARM1のアンタゴニストに包含される。
The phosphorylation motif of SARM1 by JNK is shown below.
Ser 54: REV S PGAG
Ser 548 : MLH S PLPC
Ser 622 : LVL S PGAL
A neurodegenerative disease can be prevented or treated with a SARM1 inhibitor selected from the group consisting of an anti-SARM1 antibody, a SARM1 decoy peptide, and an antagonist. The decoy peptides SARM1, include fragments peptide or modifications thereof including Ser 54, Ser 548 or Ser 622 of SARM1. The modified products are those in which the N-terminal amino group is acylated (acetylated, propionylated, etc.) or alkylated (methylated, ethylated, etc.), or the C-terminal carboxyl group is esterified or amidated. Can be mentioned. Such a decoy peptide can be easily designed by those skilled in the art from the amino acid sequence of human SARM1 of SEQ ID NO: 1. SARM1 antagonists include SAM domain (molecular weight about 17000), ARM domain (molecular weight about 40000), TIR domain (molecular weight about 19000), but may be lower molecular weight antagonists. Decoy peptides are encompassed by SARM1 antagonists.
 神経変性疾患の予防又は治療に有効である抗SARM1抗体は、SARM1の54位、548位及び622位からなる群から選ばれる少なくとも1種、好ましくは548位及び/又は622位のSer残基のリン酸化を抑制可能な非リン酸化SARM1に対する抗体またはSARM1の54位、548位及び622位からなる群から選ばれる少なくとも1種のリン酸化Ser残基を特異的に認識し、SARM1の54位、548位及び622位の非リン酸化Ser残基を認識しない抗リン酸化SARM1抗体が挙げられる。このような抗体の作製に使用可能なペプチドとしては、
RGPREVSPGAGTEVQ(Ser(S)残基がリン酸化されたペプチドは、抗リン酸化SARM1抗体の作製に使用でき、Ser(S)残基がリン酸化されていないペプチドは、SARM1のSer54のリン酸化を抑制可能な非リン酸化SARM1に対する抗体の作製に使用できる)、
AREMLHSPLPCTGGK(Ser(S)残基がリン酸化されたペプチドは、抗リン酸化SARM1抗体の作製に使用でき、Ser(S)残基がリン酸化されていないペプチドは、SARM1のSer548のリン酸化を抑制可能な非リン酸化SARM1に対する抗体の作製に使用できる)、
NFVLVLSPGALDKCM(Ser(S)残基がリン酸化されたペプチドは、抗リン酸化SARM1抗体の作製に使用でき、Ser(S)残基がリン酸化されていないペプチドは、SARM1のSer622のリン酸化を抑制可能な非リン酸化SARM1に対する抗体の作製に使用できる)
が挙げられるが、これらに限定されず、Ser54、Ser548又はSer622を含むペプチドが使用可能である。
Anti-SARM1 antibody effective for prevention or treatment of neurodegenerative diseases is at least one selected from the group consisting of positions 54, 548 and 622 of SARM1, preferably of Ser residues at positions 548 and / or 622. An antibody against non-phosphorylated SARM1 capable of suppressing phosphorylation or specifically recognizes at least one phosphorylated Ser residue selected from the group consisting of positions 54, 548 and 622 of SARM1, position 54 of SARM1, And anti-phosphorylated SARM1 antibody that does not recognize the non-phosphorylated Ser residues at positions 548 and 622. Peptides that can be used to make such antibodies include
RGPREVSPGAGTEVQ (peptides with phosphorylated Ser (S) residues can be used to generate anti-phosphorylated SARM1 antibodies, and peptides without Ser (S) residues phosphorylated on Ser54 Ser 54 Can be used to generate antibodies to suppressible non-phosphorylated SARM1),
AREMLHSPLPCTGGK (Ser (S) residues phosphorylated peptides can be used to make anti-phosphorylated SARM1 antibodies, while Ser (S) residues unphosphorylated peptides have SARM1 Ser 548 phosphorylation. Can be used to generate antibodies to suppressible non-phosphorylated SARM1),
NFVLVLSPGALDKCM (peptides with phosphorylated Ser (S) residues can be used to generate anti-phosphorylated SARM1 antibodies, and peptides without Ser (S) residues phosphorylated on Ser 622 Ser 622 Can be used to generate antibodies to suppressible non-phosphorylated SARM1)
Peptides including, but not limited to, Ser 54 , Ser 548 or Ser 622 can be used.
 本明細書で、「SARM1のSer54、Ser548及びSer622からなる群から選ばれる少なくとも1種のリン酸化を抑制可能な非リン酸化SARM1に対する抗体」とは、Ser54、Ser548又はSer622を含むエピトープを認識する抗体であってもよく、Ser54、Ser548又はSer622の近傍のエピトープを認識し、抗体結合により Ser54、Ser548及びSer622からなる群から選ばれる少なくとも1種のリン酸化を抑制可能な抗体であってもよい。 Epitope herein, an "at least one phosphorylated antibodies to non-phosphorylated SARM1 capable of suppressing selected from the group consisting of Ser 54, Ser 548 and Ser 622 of SARM1", including Ser54, Ser548 or Ser622 May recognize an epitope in the vicinity of Ser54, Ser548 or Ser622 and suppress at least one phosphorylation selected from the group consisting of Ser 54 , Ser 548 and Ser 622 by antibody binding. It may be an antibody.
 CDK8及び/又はCDK19の阻害剤は、例えばWO2015/159937、US20120071477、US20120071477、WO2013/116786、特表2015-506376、特表2016-503408に記載のものが挙げられ、現在公知であるか、将来見出されるCDK8及び/又はCDK19の阻害剤は全て神経変性疾患の予防又は治療剤或いはSARM1のリン酸化阻害剤/活性化阻害剤として本発明に包含される。また、SARM1のARMドメイン、SAMドメイン、TIRドメイン或いはSer54、Ser548又はSer622を含むその断片は、SARM1のリン酸化を競合的に阻害できるので、SARM1のリン酸化阻害剤/活性化阻害剤/神経変性疾患の予防又は治療剤として有用である。 Examples of inhibitors of CDK8 and / or CDK19 include those described in WO2015 / 159937, US20120071477, US20120071477, WO2013 / 116786, Special Table 2015-506376, Special Table 2016-503408, and are currently known or found in the future. Any inhibitor of CDK8 and / or CDK19 is included in the present invention as a prophylactic or therapeutic agent for neurodegenerative diseases or a phosphorylation inhibitor / activation inhibitor of SARM1. Further, ARM domain SARM1, SAM domain, a fragment containing the TIR domain or Ser 54, Ser 548 or Ser 622 is because it competitively inhibit the phosphorylation of SARM1, phosphorylation inhibitor / activator inhibitor SARM1 / Useful as a preventive or therapeutic agent for neurodegenerative diseases.
 JNK(JNK-1、JNK-2、JNK-3、特にJNK-3) の阻害剤は多数知られており、現在公知であるか、将来見出されるJNK(JNK-1、JNK-2、JNK-3、特にJNK-3)の阻害剤は全て神経変性疾患の予防又は治療剤或いはSARM1のリン酸化阻害剤/活性化阻害剤として本発明に包含される。 Many inhibitors of JNK (JNK-1, JNK-2, JNK-3, especially JNK-3) are known and are now known or found in the future JNK (JNK-1, JNK-2, JNK- In particular, all inhibitors of JNK-3) are included in the present invention as agents for preventing or treating neurodegenerative diseases or phosphorylation inhibitors / activation inhibitors of SARM1.
 SARM1の54位、548位又は622位のSerをAsp(D)又はGlu(E)に置換することで、神経細胞死の誘導作用を増強することができ、SARM1の54位、548位又は622位のSerをAlaなどのリン酸化されず、かつ、酸性でないアミノ酸に置換することでSARM1の活性化を阻害し、SARM1による神経細胞死の誘導作用を軽減もしくは消失させることができる。SARM1のAsp54又はGlu54改変体、Asp548又はGlu548改変体、Asp622又はGlu622改変体は、SARM1の神経細胞死誘導作用を増強することができるので、54位、548位及び622位からなる群から選ばれる少なくとも1種のSerをAsp(D)又はGlu(E)に改変したSARM1改変体は、神経変性疾患のモデル動物又はモデル細胞を作成するのに有用である。例えば野生型SARM1遺伝子をAsp54又はGlu54改変体遺伝子、Asp548又はGlu548改変体遺伝子、Asp622又はGlu622改変体遺伝子に置換(ノックイン)した非ヒト哺乳動物/細胞、或いは、Asp54又はGlu54改変体遺伝子、Asp548又はGlu548改変体遺伝子、Asp622又はGlu622改変体遺伝子を導入したトランスジェニック非ヒト哺乳動物/細胞は、神経変性疾患のモデル動物/モデル細胞(細胞はヒトを含む)となり得る。54位、548位、622位の2種以上を改変してもよい。 Replacing Ser at position 54, 548 or 622 of SARM1 with Asp (D) or Glu (E) can enhance the inducing effect of neuronal cell death, and position 54, 548 or 622 of SARM1 By substituting Ser at the position with an amino acid that is not phosphorylated and is not acidic, such as Ala, the activation of SARM1 can be inhibited, and the effect of SARM1 inducing neuronal cell death can be reduced or eliminated. Asp 54 or Glu 54 variant of SARM1, Asp 548, or Glu 548 variants, Asp 622, or Glu 622 variants, it is possible to enhance the neuronal cell death inducing effects of SARM1, 54-position, 548-position and 622-position A variant of SARM1 obtained by modifying at least one Ser selected from the group consisting of Asp (D) or Glu (E) is useful for producing a model animal or model cell of a neurodegenerative disease. For example, a non-human mammal / cell in which the wild-type SARM1 gene is replaced (knocked in) with an Asp 54 or Glu 54 variant gene, an Asp 548 or Glu 548 variant gene, an Asp 622 or Glu 622 variant gene, or Asp 54 or A transgenic non-human mammal / cell into which a Glu 54 variant gene, Asp 548 or Glu 548 variant gene, Asp 622 or Glu 622 variant gene has been introduced is a model animal / model cell of a neurodegenerative disease Included). Two or more of positions 54, 548 and 622 may be modified.
 哺乳動物としては、ヒト、マウス、ラット、モルモット、ハムスター、ウサギ、ヤギ、イヌ、ネコ、サル、ウシ、ブタなどが挙げられる。これら哺乳動物のSARM1の塩基配列及びアミノ酸配列は公知であるか、公知のSARM1の塩基配列から容易に遺伝子を取得し、アミノ酸配列を決定することができる。 Examples of mammals include humans, mice, rats, guinea pigs, hamsters, rabbits, goats, dogs, cats, monkeys, cows and pigs. The base sequence and amino acid sequence of SARM1 of these mammals are known, or the gene can be easily obtained from the known base sequence of SARM1 to determine the amino acid sequence.
 本発明の抗リン酸化SARM1抗体は、Ser54、Ser548及びSer622からなる群から選ばれる少なくとも1種のリン酸化SARM1又はリン酸化Ser54及び/又はSer548及び/又はSer622を含むその断片をマウスに免疫して得られたハイブリドーマから産生されるモノクローナル抗体又はポリクローナル抗体であり、モノクローナル抗体が好ましい。以下において、「Ser54及び/又はSer548及び/又はSer622」を「Ser54/Ser548/Ser622」と略すことがある。 The anti-phosphorylated SARM1 antibody of the present invention comprises at least one phosphorylated SARM1 or phosphorylated Ser 54 and / or Ser 548 and / or Ser 622 selected from the group consisting of Ser 54 , Ser 548 and Ser 622 A monoclonal antibody or a polyclonal antibody produced from a hybridoma obtained by immunizing a mouse with a monoclonal antibody, preferably a monoclonal antibody. In the following, it may be abbreviated to "Ser 54 and / or Ser 548 and / or Ser 622" and "Ser 54 / Ser 548 / Ser 622".
 Ser54/Ser548/Ser622リン酸化SARM1又はリン酸化Ser54/Ser548/Ser622を含むその断片でマウスなどの哺乳動物に免疫した後、いくつかのハイブリドーマが得られる。その中で必要となる抗体は、Ser54/Ser548/Ser622リン酸化SARM1に反応し、非リン酸化SARM1に反応しない抗体を産生するハイブリドーマである。 Several hybridomas are obtained after immunization of mammals such as mice with Ser 54 / Ser 548 / Ser 622 phosphorylated SARM1 or fragments thereof containing phosphorylated Ser 54 / Ser 548 / Ser 622 . Antibodies required therein will react to Ser 54 / Ser 548 / Ser 622 phosphorylation SARM1, a hybridoma producing an antibody which does not react to non-phosphorylated SARM1.
 本発明の抗非リン酸化SARM1抗体は、Ser54/Ser548/Ser622非リン酸化SARM1又は非リン酸化Ser54/Ser548/Ser622を含むその断片をマウスに免疫して得られたハイブリドーマから産生されるモノクローナル抗体又はポリクローナル抗体であり、モノクローナル抗体が好ましい。Ser54/Ser548/Ser622非リン酸化SARM1又は非リン酸化Ser54/Ser548/Ser622を含むその断片でマウスなどの哺乳動物に免疫した後、いくつかのハイブリドーマが得られる。その中で必要となる抗体は、Ser54/Ser548/Ser622非リン酸化SARM1に反応し、Ser54/Ser548/Ser622リン酸化SARM1に反応しない抗体を産生するハイブリドーマである。 The anti-non-phosphorylated SARM1 antibody of the present invention is obtained from a hybridoma obtained by immunizing mice with Ser 54 / Ser 548 / Ser 622 non-phosphorylated SARM1 or a fragment thereof containing non-phosphorylated Ser 54 / Ser 548 / Ser 622. Monoclonal antibodies or polyclonal antibodies produced, with monoclonal antibodies being preferred. After immunizing a mammal such as a mouse with Ser 54 / Ser 548 / Ser 622 non-phosphorylated SARM1 or a fragment thereof comprising non-phosphorylated Ser 54 / Ser 548 / Ser 622 , several hybridomas are obtained. Antibodies required therein will react to Ser 54 / Ser 548 / Ser 622 unphosphorylated SARM1, a hybridoma producing an antibody which does not react in the Ser 54 / Ser 548 / Ser 622 phosphorylation SARM1.
 免疫に用いられる哺乳動物には、マウス、ラット、ウサギ、ヤギ等が挙げられるが、マウスが特に好ましい。本発明の抗体を得るためには、Ser54/Ser548/Ser622リン酸化/非リン酸化SARM1またはリン酸化/非リン酸化Ser54/Ser548/Ser622を含むその断片を免疫原としてハイブリドーマを作製した後、Ser54/Ser548/Ser622リン酸化/非リン酸化SARM1に特異的に反応する抗体を産生するハイブリドーマを選択する必要がある。免疫の惹起は、通常1ng~10mgの量の免疫原を10~14日の日数を開けて1~5回に分けて投与することで行うことができる。十分な免疫後、抗体産生能を有する器官(脾臓やリンパ節)を哺乳動物から無菌的に摘出し、細胞融合時の親株とする。なお、摘出する器官としては、脾臓が最も好ましい。細胞融合のパートナーとしては、ミエローマ細胞が用いられる。ミエローマ細胞には、マウス由来、ラット由来、ヒト由来等があるが、マウス由来が好ましい。細胞融合には、ポリエチレングリコールを用いる方法、細胞電気融合法等が挙げられる。細胞融合しなかった脾臓細胞やミエローマ細胞とハイブリドーマとの選択は、例えばHATサプリメントを添加した血清培地で培養することで行うことができる。 Mammals used for immunization include mice, rats, rabbits, goats and the like, with mice being particularly preferred. In order to obtain the antibody of the present invention, a hybridoma can be prepared using Ser 54 / Ser 548 / Ser 622 phosphorylated / non-phosphorylated SARM1 or a phosphorylated / non-phosphorylated Ser 54 / Ser 548 / Ser 622 fragment as an immunogen. after producing, it is necessary to select a hybridoma producing an antibody which specifically reacts with Ser 54 / Ser 548 / Ser 622 phosphorylation / unphosphorylated SARM1. Induction of immunity can usually be performed by administering an immunogen in an amount of 1 ng to 10 mg in 1 to 5 divided doses every 10 to 14 days. After sufficient immunization, organs capable of producing antibodies (spleen and lymph nodes) are aseptically removed from mammals and used as parent strains during cell fusion. The spleen is most preferable as an organ to be removed. Myeloma cells are used as cell fusion partners. Myeloma cells include mouse origin, rat origin, human origin, etc., but mouse origin is preferred. Examples of cell fusion include a method using polyethylene glycol, a cell electrofusion method, and the like. Selection of spleen cells or myeloma cells that have not undergone cell fusion and hybridomas can be performed, for example, by culturing in a serum medium supplemented with HAT supplements.
 Ser54/Ser548/Ser622リン酸化/非リン酸化SARM1に特異的に結合する抗体を産生するハイブリドーマの選択は、前述の培養上清を採取し、Ser54/Ser548/Ser622リン酸化/非リン酸化SARM1またはリン酸化/非リン酸化Ser54/Ser548/Ser622を含むその断片と非リン酸化/リン酸化SARM1を固相化したEIAプレートでの直接ELISAが好ましい。直接ELISAの結果、Ser54/Ser548/Ser622リン酸化/非リン酸化SARM1またはリン酸化/非リン酸化Ser54/Ser548/Ser622を含むその断片と強く発色し、非リン酸化/リン酸化SARM1とは発色しないウエルを選択し、そのウエルの細胞をクローニングに供する。その培養上清に対応するハイブリドーマを、Ser54/Ser548/Ser622リン酸化/非リン酸化SARM1に特異的に反応する抗体を産生するハイブリドーマとして選択する。クローニングとは、抗体産生ハイブリドーマを選別し単一化する作業であり、限界希釈法、フィブリンゲル法、セルソーターを用いる方法等があるが限界希釈法が好ましい。これにより、目的とするモノクローナル抗体を産生するハイブリドーマを獲得することができる。 上記方法により得られたハイブリドーマを培養することで、培養上清中にモノクローナル抗体を得ることができる。 Selection of a hybridoma that produces an antibody that specifically binds to Ser 54 / Ser 548 / Ser 622 phosphorylated / non-phosphorylated SARM1 is obtained by collecting the above-mentioned culture supernatant, Ser 54 / Ser 548 / Ser 622 phosphorylated / Direct ELISA on non-phosphorylated SARM1 or its fragment containing phosphorylated / non-phosphorylated Ser 54 / Ser 548 / Ser 622 and non-phosphorylated / phosphorylated SARM1 on an EIA plate is preferred. As a result of direct ELISA, Ser 54 / Ser 548 / Ser 622 phosphorylated / non-phosphorylated SARM1 or phosphorylated / non-phosphorylated Ser 54 / Ser 548 / Ser 622 and its fragments are strongly colored, non-phosphorylated / phosphorylated A well that does not develop color with SARM1 is selected, and the cells in that well are subjected to cloning. The hybridoma corresponding to the culture supernatant is selected as a hybridoma producing an antibody that specifically reacts with Ser 54 / Ser 548 / Ser 622 phosphorylated / unphosphorylated SARM1. Cloning is an operation for selecting and unifying antibody-producing hybridomas. There are a limiting dilution method, a fibrin gel method, a method using a cell sorter, etc., but the limiting dilution method is preferred. Thereby, the hybridoma which produces the target monoclonal antibody is acquirable. By culturing the hybridoma obtained by the above method, a monoclonal antibody can be obtained in the culture supernatant.
 神経変性疾患の予防又は治療薬のスクリーニング方法としては、具体的には、健常者及び神経変性疾患患者由来iPS細胞から神経細胞を誘導し、候補薬剤または溶媒対照群を添加し、その後リン酸化SARM1抗体を用いた免疫染色、ウェスタンブロッティング、MTSアッセイでSARM1リン酸化と神経細胞生存率の評価を行うことで実施可能である。或いは、神経変性疾患モデルマウスに候補薬剤または溶媒対照群を投与し、その後脳の凍結切片を作製し、リン酸化SARM1抗体、Tyrosine hydroxylase抗体(パーキンソン病モデルの場合)を用いた組織染色でSARM1リン酸化レベルと神経細胞生存率の評価を行い、神経変性疾患の予防又は治療薬をスクリーニングすることができる。 As a screening method for a prophylactic or therapeutic agent for neurodegenerative diseases, specifically, nerve cells are induced from iPS cells derived from healthy subjects and patients with neurodegenerative diseases, a candidate drug or a solvent control group is added, and then phosphorylated SARM1 It can be performed by evaluating SARM1 phosphorylation and neuronal cell viability by immunostaining using antibodies, Western blotting, and MTS assay. Alternatively, a candidate drug or a solvent control group is administered to a neurodegenerative disease model mouse, and then a frozen section of the brain is prepared. Evaluation of the oxidation level and neuronal cell viability can be carried out to screen for preventive or therapeutic agents for neurodegenerative diseases.
 SARM1を発現する細胞として、HAタグ、Hisタグ、FLAGタグなどのタグを付加したSARM1と別のタグが付加されたARMドメイン、SAMドメイン、TIRドメイン、或いは、Ser54、Ser548、Ser622を含むその断片を共発現させた細胞がより好ましい。このような細胞の培養液に候補物質を添加して細胞培養を行い、SARM1のタグに対する抗体結合ビーズを用いてタグ化SARM1の免疫沈降を行い、リン酸化されているかを、本発明の抗体或いはリン酸化セリン・スレオニン検出抗体などの抗体を用いて検出することができる。本発明のスクリーニング方法では、SARM1のリン酸化を抑制する物質を目的物質として選別することができる。 SARM1 expressing cells include SARM1 with tags such as HA tag, His tag, and FLAG tag, and ARM domain, SAM domain, TIR domain with other tags, or Ser 54 , Ser 548 , Ser 622 . More preferred is a cell in which the fragment is coexpressed. Cell culture is performed by adding a candidate substance to the culture medium of such cells, immunoprecipitation of tagged SARM1 using antibody-binding beads against the tag of SARM1, and whether the antibody of the present invention is phosphorylated. It can be detected using an antibody such as a phosphorylated serine / threonine detection antibody. In the screening method of the present invention, a substance that suppresses phosphorylation of SARM1 can be selected as a target substance.
 以下、本発明を実施例に基づいてより詳細に説明する。 Hereinafter, the present invention will be described in more detail based on examples.
実施例1
 (1) SARM1発現抑制による神経細胞死抑制
 SARM1が神経細胞死誘導に関与するか否かを確認するために、siRNAを用いた発現抑制実験を行った。ヒト神経芽腫SH-SY5Y細胞3×105個を12 ウェルプレートにまき、コントロールもしくはSARM1に対する10 μM siRNA(QIAGEN) 4 μlにトランスフェクション試薬Lipofectamine RNAiMAX(Thermo Fisher Scientific)8 μlを混合し、最終濃度20 nMでトランスフェクションを行った。48時間後に酸化ストレス試薬でパーキンソン病様症状誘発試薬として用いられる40 μM 6-ヒドロキシドーパミン(6-OHDA)、1 mM パラコート、1 μMロテノンを添加し、24時間後にヘキスト溶液(Thermo Fisher Scientific)で染色し、細胞死誘導率を測定した(図1)。コントロール群と比較して、SARM1の発現抑制は有意に細胞死を抑制した。この結果はSARM1の発現や機能を阻害することで、ストレス誘導性の神経細胞死を抑制できる可能性があることを示している。
Example 1
(1) Inhibition of neuronal cell death by suppressing SARM1 expression In order to confirm whether SARM1 is involved in inducing neuronal cell death, an expression suppression experiment using siRNA was performed. 3 × 10 5 human neuroblastoma SH-SY5Y cells are seeded in a 12-well plate, mixed with 8 μl of transfection reagent Lipofectamine RNAiMAX (Thermo Fisher Scientific) in 4 μl of 10 μM siRNA (QIAGEN) against control or SARM1, and finally Transfection was performed at a concentration of 20 nM. After 48 hours, add 40 μM 6-hydroxydopamine (6-OHDA), 1 mM paraquat, 1 μM rotenone, which is used as an oxidative stress reagent and induces Parkinson's disease-like symptoms. After 24 hours, add Hoechst solution (Thermo Fisher Scientific). After staining, the cell death induction rate was measured (FIG. 1). Compared with the control group, suppression of SARM1 expression significantly suppressed cell death. This result indicates that inhibition of SARM1 expression and function may suppress stress-induced neuronal cell death.
(2) SARM1のミトコンドリア呼吸阻害による細胞死誘導
 次にSARM1の細胞死誘導機構について検討を行った。SARM1がミトコンドリア移行シグナルをもつタンパク質であることから、ミトコンドリアの機能に着目して実験を行った。その結果SARM1がミトコンドリア呼吸を阻害し、ATP合成を減少させることを見出した。SARM1は724アミノ酸からなるタンパク質でミトコンドリア移行シグナル、ARMドメイン、2つのSAMドメイン、TIRドメインを有している(図2A)。それぞれのドメインの機能を解析するためにHEK293T細胞3×105個を12 ウェルプレートにまき、全長のSARM1(1~724aa)、ミトコンドリア移行シグナルを除いたΔN(28~724aa)、TIRドメインを除いたΔT(1~550aa)、ARMドメインを含むN末端側を除いたΔA(406~724aa)をコードするpDNA 2 μgをトランスフェクション試薬FuGENE-HD(Promega)4 μlと混合しトランスフェクションを行った。8時間後に細胞をはがし、96ウェルプレートに3×104個ずつ再播種を行った。トランスフェクションから48時間後にCellTiter 96 Aqueous One Solution Cell Proliferation Assay試薬(Promega)(図2B)及びCellTiter-Glo Assay試薬(Promega)(図2C)を用いて細胞生存率とATP量を測定した。コントロールと比較してSARM1は細胞生存率を減少させた。この効果はミトコンドリア移行シグナルを除くと多少緩和され(ΔN)、ΔTで完全になくなり、ΔAでは増強された。この値に相関して細胞のATP量も変化した(図2C)。これらの結果は細胞死誘導及びATP合成の阻害にはTIRドメインが重要であり、ARMドメインを含む領域はSARM1の活性を抑制するために重要であることを示唆する。同様のトランスフェクション条件の下、フラックスアナライザーXFe96(SeahorseBioscience)を用いてミトコンドリア呼吸能(図2D)を、ROS-Glo H2O2 assay(Promega)を用いて活性酸素種の1つであるH2O2の量(図2E)を測定した。ATP量と相関して、全長のSARM1やΔAはミトコンドリア呼吸能、特に予備呼吸能を減少させ、ΔTは増加させた。またH2O2の量は全長のSARM1やΔAの発現によって増加した(図2E)。これらの結果はSARM1がミトコンドリア呼吸鎖複合体に作用してミトコンドリア呼吸を阻害し、ATP合成の減少、活性酸素種発生の誘発によって細胞死を誘導することを示している。
(2) Cell death induction by inhibition of mitochondrial respiration of SARM1 Next, the mechanism of SARM1 cell death induction was examined. Since SARM1 is a protein with a mitochondrial translocation signal, we conducted an experiment focusing on the function of mitochondria. As a result, we found that SARM1 inhibits mitochondrial respiration and decreases ATP synthesis. SARM1 is a protein of 724 amino acids and has a mitochondrial translocation signal, an ARM domain, two SAM domains, and a TIR domain (FIG. 2A). Each domain functions to analyze HEK293T 3 × 10 5 cells were plated in 12-well plates, SARM1 (1 ~ 724aa) of the full-length, .DELTA.N excluding the mitochondrial targeting signal (28 ~ 724aa), except TIR domain 2 μg of pDNA encoding ΔA (1 to 550 aa) and ΔA (406 to 724 aa) excluding the N-terminal including the ARM domain was mixed with 4 μl of transfection reagent FuGENE-HD (Promega) for transfection . After 8 hours, the cells were peeled off, and 3 × 10 4 cells were seeded again in a 96-well plate. 48 hours after transfection, cell viability and ATP amount were measured using CellTiter 96 Aqueous One Solution Cell Proliferation Assay reagent (Promega) (FIG. 2B) and CellTiter-Glo Assay reagent (Promega) (FIG. 2C). Compared to the control, SARM1 decreased cell viability. This effect was somewhat mitigated except for the mitochondrial translocation signal (ΔN), disappeared completely at ΔT, and enhanced at ΔA. Correlating with this value, the amount of ATP in the cells also changed (FIG. 2C). These results suggest that the TIR domain is important for cell death induction and inhibition of ATP synthesis, and that the region containing the ARM domain is important for suppressing the activity of SARM1. Similarly under transfection conditions, H 2 flux analyzer XFe96 mitochondrial respiration capacity (Fig. 2D) using (SeahorseBioscience), which is one of active oxygen species using the ROS-Glo H 2 O 2 assay (Promega) The amount of O 2 (FIG. 2E) was measured. Correlating with the amount of ATP, full-length SARM1 and ΔA decreased mitochondrial respiratory capacity, especially reserve respiratory capacity, and increased ΔT. The amount of H 2 O 2 increased with the expression of full-length SARM1 and ΔA (FIG. 2E). These results indicate that SARM1 acts on the mitochondrial respiratory chain complex to inhibit mitochondrial respiration and induces cell death by reducing ATP synthesis and inducing reactive oxygen species generation.
(3) SARM1のセリン548番のリン酸化検出
 次にSARM1の活性がいかにして制御されているかの解析を行った。その解析の中、SARM1の強制発現でATP合成が阻害される条件において、SARM1がリン酸化されることを見出した。HEK293T細胞(8×105個/6ウェルプレート)にコントロールもしくはSARM1-Flag(pDNA 4 μg + FuGENE-HD 8 μl)のトランスフェクションを行い、24時間後にFlag抗体結合ビーズを用いて免疫沈降を行った。その後、リン酸化セリン・スレオニン(P-Ser/Thr)検出抗体(BD Bioscience)、Flag抗体を用いてウェスタンブロッティングを行った結果、SARM1のバンドと同様の位置にP-Ser/Thr抗体で検出されるバンドが出現した(図3A)。SARM1のどの部分のセリン、スレオニンがリン酸化されているのかを確認するために、SARM1を3つの領域(ARM : 1~405aa、SAM : 406~550aa、TIR : 551~724aa)に分けて図3Aと同様の手法でリン酸化の検出を行った。図3Bに示すように3つの領域の中でSAMドメインがリン酸化されていた。SAMドメイン(406~550aa)の中にはセリンが12個、スレオニンが9個含まれている。この中のどのアミノ酸がリン酸化されているのかを特定するために、21個全てのアミノ酸を1つずつアラニンに置換して野生型(WT)のSAMドメインとの比較を行った。21個のアミノ酸のうち、セリン548番をアラニンに置換した場合のみP-Ser/Thr抗体で検出されるバンドが消失した(図3C)。これらの結果からセリン548番がSARM1のリン酸化部位であることが判明した。
(3) Detection of phosphorylation at serine 548 of SARM1 Next, we analyzed how the activity of SARM1 is regulated. In the analysis, it was found that SARM1 was phosphorylated under conditions where ATP synthesis was inhibited by forced expression of SARM1. Performed HEK293T transfected cells (8 × 10 5 cells / 6 well plate) in the control or SARM1-Flag (pDNA 4 μg + FuGENE-HD 8 μl), subjected to immunoprecipitation using Flag antibody-conjugated beads after 24 hours It was. Subsequently, as a result of Western blotting using a phosphorylated serine / threonine (P-Ser / Thr) detection antibody (BD Bioscience) and Flag antibody, it was detected with the P-Ser / Thr antibody at the same position as the SARM1 band. A band appeared (Fig. 3A). In order to confirm which part of SARM1 serine and threonine are phosphorylated, SARM1 is divided into three regions (ARM: 1 to 405aa, SAM: 406 to 550aa, TIR: 551 to 724aa). Phosphorylation was detected by the same method. As shown in FIG. 3B, the SAM domain was phosphorylated in the three regions. The SAM domain (406-550aa) contains 12 serines and 9 threonines. In order to identify which of these amino acids was phosphorylated, all 21 amino acids were replaced with alanine one by one and compared with the wild type (WT) SAM domain. Of the 21 amino acids, the band detected by the P-Ser / Thr antibody disappeared only when serine 548 was substituted with alanine (FIG. 3C). From these results, it was found that serine 548 is a phosphorylation site of SARM1.
(4) CDK19、CDK8によるSARM1のリン酸化亢進
 SARM1のリン酸化を制御するリン酸化酵素を同定するために質量分析計を用いた実験を行った。HEK293T細胞(8×105個/6ウェルプレート)にコントロールもしくはSAM (406~550aa)-Flag(pDNA 4 μg + FuGENE-HD 8 μl)のトランスフェクションを行い、24時間後にFlag抗体結合ビーズを用いて免疫沈降を行った。銀染色によってSAM-Flagと共沈降したバンドを検出し(図4A)、質量分析計で結合タンパク質の解析を行った。その結果、SAMドメインと結合するタンパク質としてCyclin dependent kinase 19 (CDK19)を同定した。CDK19はCDKファミリータンパク質の1つで、よく機能が似たパラログとしてCDK8が存在することが知られている。SAMドメインとCDK19、CDK8の結合及びリン酸化制御を確認するためにHAタグを付加したCDK19及びCDK8(HA-CDK19、HA-CDK8)発現ベクターを作製した。HEK293T細胞(8×105個/6ウェルプレート)にコントロール、SAM-Flag、HA-CDK19及びHA-CDK8 (pDNA 4 μg + FuGENE-HD 8 μl)のトランスフェクションを行い、24時間後にFlag抗体結合ビーズを用いて免疫沈降を行った。図4Bに示すようにCDK19、CDK8はSAMドメインと結合し、SAMドメインのリン酸化を著しく増強した。これらの結果からCDK19、CDK8がSARM1のセリン548番のリン酸化を亢進させることが判明した。次にCDK19もしくはCDK8をSARM1と共発現させた場合の細胞生存率をMTSアッセイ(CellTiter 96 Aqueous One Solution Cell Proliferation Assay試薬)で測定した。CDK19及びCDK8の強制発現によって細胞生存率は低下し、SARM1との共発現によって細胞生存率は更に低下した(図4C)。これらの結果はCDK19、CDK8によるSARM1セリン548番のリン酸化がSARM1の活性化及び細胞死誘導に重要であることを示している。
(4) Enhancement of phosphorylation of SARM1 by CDK19 and CDK8 An experiment using a mass spectrometer was conducted to identify a phosphorylase that controls phosphorylation of SARM1. In HEK293T cells (8 × 10 5 cells / 6 well plate) subjected to transfection control or SAM (406 ~ 550aa) -Flag ( pDNA 4 μg + FuGENE-HD 8 μl), with a Flag antibody-conjugated beads after 24 hours Immunoprecipitation was performed. Bands co-precipitated with SAM-Flag were detected by silver staining (FIG. 4A), and binding proteins were analyzed with a mass spectrometer. As a result, Cyclin dependent kinase 19 (CDK19) was identified as a protein that binds to the SAM domain. CDK19 is one of the CDK family proteins, and it is known that CDK8 exists as a paralog with similar functions. CDK19 and CDK8 (HA-CDK19, HA-CDK8) expression vectors added with an HA tag were prepared in order to confirm the binding and phosphorylation control of the SAM domain with CDK19 and CDK8. HEK293T cells (8 × 10 5 cells / 6 well plate) in the control, SAM-Flag, performed transfection of HA-CDK19 and HA-CDK8 (pDNA 4 μg + FuGENE-HD 8 μl), Flag antibody binding after 24 hours Immunoprecipitation was performed using beads. As shown in FIG. 4B, CDK19 and CDK8 bound to the SAM domain and markedly enhanced SAM domain phosphorylation. From these results, it was found that CDK19 and CDK8 enhance phosphorylation of serine 548 of SARM1. Next, the cell viability when CDK19 or CDK8 was coexpressed with SARM1 was measured by MTS assay (CellTiter 96 Aqueous One Solution Cell Proliferation Assay reagent). Cell viability was reduced by forced expression of CDK19 and CDK8, and cell viability was further reduced by co-expression with SARM1 (FIG. 4C). These results indicate that phosphorylation of SARM1 serine # 548 by CDK19 and CDK8 is important for SARM1 activation and cell death induction.
(5) リン酸化を指標にしたSARM1阻害剤の開発
 図4の結果から、SARM1のセリン548番のリン酸化を阻害すれば細胞死を抑制できる可能性があることが判明した。そこでSARM1のリン酸化状態を指標にしてSARM1の阻害剤開発が可能か否かの検討を行った。図3で示したようにSARM1のSAMドメイン(406~550aa)は細胞内で強力にリン酸化されることから、細胞内で全長のSARM1のリン酸化を阻害するアンタゴニストとして機能することが考えられる。HEK293T細胞(8×105個/6ウェルプレート)にコントロール、HAタグを付加したSARM1(SARM1-HA)及びSARM1-HAとSAM-Flagを共発現させる条件(pDNA 4 μg + FuGENE-HD 8 μl)でトランスフェクションを行い、24時間後にHA抗体結合ビーズ(SIGMA)を用いてSARM1-HAの免疫沈降を行った。図5Aに示すようにSARM1-HA単独の場合はSARM1のリン酸化が検出されたが、SAM-Flagを共発現させた場合はリン酸化が検出されなかった。更に同様のトランスフェクション条件でCellTiter 96 Aqueous One Solution Cell Proliferation Assay試薬を用いて細胞生存率を測定したところ、SARM1の強制発現によって誘導される細胞死の割合が、SAMドメインの共発現によって減少した(図5B)。次にSARM1のCDK19/CDK8によるリン酸化を阻害するために、CDK19/CDK8阻害剤であるSenexin A (TOCRIS)を用いてリン酸化の検討を行った。HEK293T細胞(8×105個/6ウェルプレート)にコントロールもしくはSAM-Flag(pDNA 4 μg + FuGENE-HD 8 μl)のトランスフェクションを行い、8時間後に0~10 μMのSenexin Aを添加した。トランスフェクションから24時間後にFlag抗体結合ビーズを用いて免疫沈降を行った。Senexin Aは濃度依存的にSAMドメインのリン酸化を抑制した(図5C)。次に酸化ストレス誘導性の細胞死に対するSenexin Aの効果を検証した。神経芽腫SH-SY5Y細胞3×104個を96 ウェルプレートにまき、0~20 μMのSenexin A及び1 mMパラコートを添加した。48時間後にCellTiter 96 Aqueous One Solution Cell Proliferation Assay試薬を用いて細胞生存率を測定した。図5Dに示すように、Senexin Aは濃度依存的に酸化ストレスによって誘導される細胞死を抑制した。これらの結果よりSARM1のリン酸化を阻害する物質を開発すれば、SARM1によって誘導される細胞死を抑制できることが判明した。
(5) Development of SARM1 inhibitor using phosphorylation as an index From the results in FIG. 4, it was found that cell death may be suppressed by inhibiting phosphorylation of serine 548 of SARM1. Therefore, we examined whether it is possible to develop inhibitors of SARM1 using the phosphorylation state of SARM1 as an index. As shown in FIG. 3, the SAM domain (406 to 550aa) of SARM1 is strongly phosphorylated in the cell, and thus may function as an antagonist that inhibits phosphorylation of full-length SARM1 in the cell. HEK293T cells (8 × 10 5 cells / 6 well plate) control, HA tag-added SARM1 (SARM1-HA) and conditions for co-expression of SARM1-HA and SAM-Flag (pDNA 4 μg + FuGENE-HD 8 μl ) And 24 hours later, SARM1-HA was immunoprecipitated using HA antibody-bound beads (SIGMA). As shown in FIG. 5A, phosphorylation of SARM1 was detected when SARM1-HA alone was used, but phosphorylation was not detected when SAM-Flag was co-expressed. Furthermore, when cell viability was measured using CellTiter 96 Aqueous One Solution Cell Proliferation Assay reagent under the same transfection conditions, the rate of cell death induced by forced expression of SARM1 was reduced by co-expression of the SAM domain ( Figure 5B). Next, in order to inhibit phosphorylation of SARM1 by CDK19 / CDK8, phosphorylation was examined using Sennexin A (TOCRIS), a CDK19 / CDK8 inhibitor. HEK293T cells (8 × 10 5 cells / 6 well plate) were transfected with control or SAM-Flag (pDNA 4 μg + FuGENE-HD 8 μl), and 0-10 μM Senexin A was added 8 hours later. 24 hours after transfection, immunoprecipitation was performed using Flag antibody-conjugated beads. Senexin A inhibited phosphorylation of the SAM domain in a concentration-dependent manner (FIG. 5C). Next, the effect of Senexin A on oxidative stress-induced cell death was examined. 3 × 10 4 neuroblastoma SH-SY5Y cells were seeded in a 96-well plate, and 0-20 μM Senexin A and 1 mM paraquat were added. After 48 hours, cell viability was measured using CellTiter 96 Aqueous One Solution Cell Proliferation Assay reagent. As shown in FIG. 5D, Senexin A suppressed cell death induced by oxidative stress in a concentration-dependent manner. From these results, it was found that cell death induced by SARM1 can be suppressed by developing a substance that inhibits phosphorylation of SARM1.
(6) JNKによるSARM1セリン548番のリン酸化誘導
 図4に示したようにCDK19やCDK8の強制発現はSAMドメインのリン酸化を亢進させた。CDK19及びCDK8が直接SAMドメインのリン酸化を誘導するか否かを確かめるためにin vitro kinase assayを行った。しかしSAMドメインとCDK19もしくはCDK8をATP存在下で反応させたところ、SAMドメインのリン酸化は確認できなかった。そこでSARM1を直接リン酸化する別のキナーゼを見出すために、キナーゼ阻害剤を用いた検討を行った。HEK293T細胞(3×105個/12ウェルプレート)にSAM-Flag発現ベクター(pDNA 2μg + FuGENE-HD 4 μl)のトランスフェクションを行い、8時間後に種々のキナーゼ阻害剤(EGFR-I、MEK-I、p38-I、JNK-I、Akt-I)を添加し16時間培養後、細胞を回収しウェスタンブロッティングを行った。キナーゼ阻害剤のスクリーニングにおいてJNK阻害剤(JNK-I : JNK inhibitor VIII (Cayman))がSAMドメインのリン酸化を抑制した(図6A)。次にJNKによるSAMドメインの直接のリン酸化を確認するためにGSTタグを付加したSAMドメインとキナーゼ(p38α、JNK1、JNK2、JNK3)をATP存在下で反応させin vitro kinase assayを行った。図6Bに示すように、JNK(特にJNK3)が直接SAMドメインのセリン548番のリン酸化を誘導することを確認した。
(6) Induction of phosphorylation of SARM1 serine # 548 by JNK As shown in FIG. 4, forced expression of CDK19 and CDK8 enhanced phosphorylation of the SAM domain. To confirm whether CDK19 and CDK8 directly induce phosphorylation of the SAM domain, an in vitro kinase assay was performed. However, when the SAM domain was reacted with CDK19 or CDK8 in the presence of ATP, phosphorylation of the SAM domain could not be confirmed. Therefore, in order to find another kinase that directly phosphorylates SARM1, we examined using a kinase inhibitor. HEK293T cells (3 × 10 5 cells / 12 well plate) were transfected with SAM-Flag expression vector (pDNA 2 μg + FuGENE-HD 4 μl), and after 8 hours, various kinase inhibitors (EGFR-I, MEK- I, p38-I, JNK-I, Akt-I) were added and cultured for 16 hours, and then the cells were collected and subjected to Western blotting. In screening for kinase inhibitors, a JNK inhibitor (JNK-I: JNK inhibitor VIII (Cayman)) suppressed phosphorylation of the SAM domain (FIG. 6A). Next, in order to confirm the direct phosphorylation of the SAM domain by JNK, an in vitro kinase assay was performed by reacting a SAM domain with a GST tag and a kinase (p38α, JNK1, JNK2, JNK3) in the presence of ATP. As shown in FIG. 6B, it was confirmed that JNK (particularly JNK3) directly induces phosphorylation of serine 548 of the SAM domain.
 SARM1のセリン548番のリン酸化を特異的に検出するために抗体の作製を行った。セリン548番を含むAREMLHSPLPCTGGKのリン酸化ペプチドをマウスに免疫し、ハイブリドーマを得た。ハイブリドーマから産生されたモノクローナル抗体の反応性をELISAで確認し、リン酸化ペプチドに反応し、非リン酸化ペプチドに反応性の低いクローンを選定し(図6C)、抗体の精製を行った。獲得したSARM1セリン548番リン酸化認識抗体は全長のSARM1のリン酸化を特異的に認識した。この抗体を用いてウェスタンブロッティングを行ったところ、強制発現したSARM1のリン酸化が検出され、JNK1~3の共発現によってリン酸化が更に亢進した(図6D)。また内在性SARM1のセリン548番リン酸化も検出可能であった。SH-SY5Y細胞に種々のストレス刺激を加え24時間培養を行い、細胞抽出液を回収した。細胞死が誘導されるストレス刺激(パラコート、6-OHDA、ロテノン処理)によってSARM1のセリン548番リン酸化が亢進した(図6E)。これらの結果より、JNKがSARM1セリン548番の直接のリン酸化を担っており、細胞死が誘導されるようなストレス環境下でJNKが活性化し、SARM1のリン酸化を行い、神経細胞死誘導に寄与していることが考えられた。 An antibody was prepared in order to specifically detect serine 548 phosphorylation of SARM1. Mice were immunized with AREMLHSPLPCTGGK phosphorylated peptide containing serine 548 to obtain hybridomas. The reactivity of the monoclonal antibody produced from the hybridoma was confirmed by ELISA, and a clone that reacted with the phosphorylated peptide and was less reactive with the non-phosphorylated peptide was selected (FIG. 6C), and the antibody was purified. The acquired SARM1 serine # 548 phosphorylation-recognizing antibody specifically recognized the phosphorylation of full-length SARM1. When Western blotting was performed using this antibody, phosphorylation of forcedly expressed SARM1 was detected, and phosphorylation was further enhanced by co-expression of JNK1-3 (FIG. 6D). In addition, serine 548 phosphorylation of endogenous SARM1 was detectable. Various stress stimuli were added to SH-SY5Y cells and cultured for 24 hours, and the cell extract was collected. Stress stimulation that induced cell death (paraquat, 6-OHDA, rotenone treatment) increased SARM1 serine 548 phosphorylation (FIG. 6E). From these results, JNK is responsible for direct phosphorylation of SARM1 serine 548. JNK is activated in a stress environment that induces cell death, phosphorylates SARM1, and induces neuronal cell death. It was thought that it contributed.
(7) SARM1-Ser548リン酸化検出を利用したSARM1リン酸化阻害剤のスクリーニング法
 図6に示したように、ストレス環境下でSARM1はリン酸化され、細胞死を誘導した。このことからSARM1のリン酸化を阻害する物質を見出せば、SARM1によって誘導される神経細胞死を抑制できる可能性がある。そこでSARM1-Ser548リン酸化検出を利用したSARM1リン酸化阻害剤のスクリーニング方法を示した。GST-SAM 1 μgを50 mM Tris-HCl (pH 7.5)、150 mM NaCl、10 mM MgCl2、1.8 mM ATP、1 mM DTTのバッファー中に加え、JNK3 100 ng及びJNK阻害剤やデコイペプチド、抗体などを加え37℃で1時間反応させた。JNK阻害剤はJNK inhibitor VIII (Cayman)、デコイペプチドはセリン548番を含むAREMLHSPLPCTGGKの配列をもつペプチド、マウスコントロールIgG(mIgG)は正常マウスIgG (Wako)、SARM1抗体はセリン548番を含むペプチドをマウスに免疫し、そこから得られたハイブリドーマから精製した抗体(No. 1、2、16、18、30及び33)を使用した。その後3 x SDSサンプルバッファーを加え反応を止め、ウェスタンブロッティングでSARM1のリン酸化レベルを評価した。JNK阻害剤(図7A)、デコイペプチド(図7B)、抗体(図7C)はそれぞれSARM1-Ser548リン酸化を抑制する効果をもっていた。特にJNK阻害剤(JNK-I)やSARM1抗体(No. 1、2、16)は強いリン酸化抑制効果をもっており、これらの物質はSARM1によって誘導される細胞死を抑制した。HEK293T細胞にSARM1 pDNAのトランスフェクションを行い、8時間後にJNK阻害剤や抗体を加え16時間培養を行った。JNK阻害剤及び抗体はリン酸化解析に使用したものと同様のものを使用した。抗体はエレクトロポレーション法(Neon transfection system, Thermo Fisher Scientific)で導入を行った。その後MTSアッセイによって細胞生存率を評価した。JNK阻害剤やSARM1抗体は細胞死抑制効果をもっており(図7D、E)、SARM1のリン酸化検出と細胞生存率評価のアッセイを組み合わせることにより、SARM1の活性化を阻害する物質のスクリーニングが可能であることを示している。
(7) Screening Method for SARM1 Phosphorylation Inhibitor Using Detection of SARM1-Ser548 Phosphorylation As shown in FIG. 6, SARM1 was phosphorylated in a stress environment and induced cell death. Therefore, if a substance that inhibits phosphorylation of SARM1 is found, it is possible that neuronal cell death induced by SARM1 can be suppressed. Therefore, a screening method for SARM1 phosphorylation inhibitors using SARM1-Ser548 phosphorylation detection was presented. Add 1 μg of GST-SAM in 50 mM Tris-HCl (pH 7.5), 150 mM NaCl, 10 mM MgCl 2 , 1.8 mM ATP, 1 mM DTT buffer, JNK3 100 ng, JNK inhibitor, decoy peptide, antibody Etc. were added and reacted at 37 ° C. for 1 hour. JNK inhibitor is JNK inhibitor VIII (Cayman), decoy peptide is peptide with AREMLHSPLPCTGGK sequence containing serine 548, mouse control IgG (mIgG) is normal mouse IgG (Wako), SARM1 antibody is peptide containing serine 548 Antibodies (No. 1, 2, 16, 18, 30, and 33) purified from hybridomas obtained by immunizing mice were used. Thereafter, 3 x SDS sample buffer was added to stop the reaction, and the phosphorylation level of SARM1 was evaluated by Western blotting. JNK inhibitor (FIG. 7A), decoy peptide (FIG. 7B), and antibody (FIG. 7C) each had an effect of suppressing SARM1-Ser548 phosphorylation. In particular, JNK inhibitors (JNK-I) and SARM1 antibodies (Nos. 1, 2, and 16) have a strong phosphorylation-inhibiting effect, and these substances suppressed cell death induced by SARM1. HEK293T cells were transfected with SARM1 pDNA, and after 8 hours, JNK inhibitors and antibodies were added and cultured for 16 hours. The same JNK inhibitor and antibody as those used for phosphorylation analysis were used. The antibody was introduced by electroporation (Neon transfection system, Thermo Fisher Scientific). Cell viability was then assessed by MTS assay. JNK inhibitors and SARM1 antibodies have the effect of suppressing cell death (Fig. 7D, E). By combining SARM1 phosphorylation detection and cell viability assessment assays, it is possible to screen for substances that inhibit SARM1 activation. It shows that there is.
(8) JNKによるSARM1セリン54番、セリン548番、セリン622番のリン酸化誘導
 JNKはSARM1セリン548番のリン酸化を誘導し、JNKの阻害はSARM1セリン548番のリン酸化を減少させ細胞死誘導を抑制した。SARM1セリン548番のリン酸化がSARM1の活性に与える影響を確認するために、セリン548番をアラニンに置換したSARM1変異体発現ベクター(S548A)を作製し、野生型SARM1との比較をMTSアッセイで行った。その結果、野生型SARM1と比較してS548Aの活性は低下するが、それほど大きな差ではないことがわかった(図7A)。そこでJNKによってSARM1の他のセリン・スレオニンもリン酸化される可能性を考え、SARM1の全配列を調査したところ、SARM1はJNKによってリン酸化される可能性のあるモチーフを3箇所(Ser54:REVSPGAG、Ser548:MLHSPLPC、Ser622:LVLSPGAL)含んでいた。そこでセリン54番、セリン548番、セリン622番を1箇所ずつもしくは複数箇所アラニンに置換した変異体発現ベクターを作製し、野生型SARM1との比較をMTSアッセイで行った。その結果、S622AがSARM1の活性を最も低下させ、次いでS548A、S54Aの順番であり、3箇所全てを変異させるとSARM1の細胞死誘導活性がほとんど消失した(図8A)。セリン54番、セリン622番のリン酸化は図3に示したリン酸化セリン・スレオニン認識抗体を用いた方法では検出できなかったことから、Phos-tag(Wako)を用いた別の方法での検出を試みた。Phos-tagはリン酸基と結合する性質がある物質で、SDS-PAGEゲルに混ぜることによってリン酸化タンパク質の泳動が非リン酸化タンパク質よりも遅くなり、リン酸化タンパク質を検出できる方法である。この方法を用いてSARM1変異体の比較を行った。図8Bの上の写真で示すように、通常のSDS-PAGEゲルを用いた検出ではSARM1のバンドは1本で検出される。しかし図8Bの下の写真で示すように、Phos-tagを含むSDS-PAGEゲルでは泳動が早い黒矢印で示すバンドと泳動が遅い白矢印で示すバンドが現れ、SARM1がリン酸化されていることが確認された(白矢印)。更にセリン548番だけでなくセリン54番、セリン622番をアラニンに置換した変異体においても野生型SARM1と比較するとバンドパターンが変化しており、これらのセリンもリン酸化されていることが示唆された。しかしセリン54番、548番、622番を全てアラニンに置換した変異体においてもリン酸化のバンドが検出されることから、これらのセリン以外にもSARM1にはリン酸化を受けるアミノ酸が存在することが示唆される。セリン54番、548番、622番がJNKによってリン酸化されていることを更に明らかにするために、SARM1をドメインごとに発現させ、JNK1~3との共発現を行い、Phos-tagを用いた検出を行った。図8Cに示すように、セリン54番を含むARMドメイン、セリン548番を含むSAMドメイン、セリン622番を含むTIRドメインそれぞれにおいてJNK(特にJNK3)の共発現によってリン酸化バンドが増加することが確認された。これらの結果より、JNKはSARM1のセリン54番、セリン548番、セリン622番のリン酸化を誘導すると考えられる。
(8) Induction of phosphorylation of SARM1 serine 54, serine 548 and serine 622 by JNK JNK induces phosphorylation of SARM1 serine 548, and inhibition of JNK decreases phosphorylation of SARM1 serine 548 and cell death Induction was suppressed. To confirm the effect of phosphorylation of SARM1 serine # 548 on SARM1 activity, a SARM1 mutant expression vector (S548A) in which serine # 548 was replaced with alanine was prepared and compared with wild-type SARM1 using an MTS assay. went. As a result, it was found that the activity of S548A decreased compared to wild-type SARM1, but not so large (FIG. 7A). Therefore, considering the possibility that other serine and threonine of SARM1 may be phosphorylated by JNK, we investigated the entire sequence of SARM1, and SARM1 found three motifs that could be phosphorylated by JNK (Ser 54 : REV S PGAG, Ser 548 : MLH S PLPC, Ser 622 : LVL S PGAL). Therefore, a mutant expression vector was prepared by substituting serine 54, serine 548 and serine 622 with one or more alanines, and compared with wild-type SARM1 by MTS assay. As a result, S622A most decreased the activity of SARM1, followed by S548A and S54A, and when all three sites were mutated, the cell death-inducing activity of SARM1 was almost lost (FIG. 8A). Phosphorylation of serine 54 and serine 622 could not be detected by the method using the phosphorylated serine / threonine recognition antibody shown in Fig. 3. Detection by another method using Phos-tag (Wako) Tried. Phos-tag is a substance that binds to a phosphate group, and when mixed with an SDS-PAGE gel, the phosphorylated protein migrates more slowly than the non-phosphorylated protein, and the phosphorylated protein can be detected. This method was used to compare SARM1 mutants. As shown in the upper photograph in FIG. 8B, in the detection using a normal SDS-PAGE gel, one SARM1 band is detected. However, as shown in the lower photo in Fig. 8B, in the SDS-PAGE gel containing Phos-tag, a band indicated by a fast black arrow and a band indicated by a slow white arrow appear and SARM1 is phosphorylated. Was confirmed (white arrow). Furthermore, not only serine 548 but also mutants in which serine 54 and serine 622 were substituted with alanine had a band pattern change compared to wild-type SARM1, suggesting that these serines are also phosphorylated. It was. However, since phosphorylation bands are also detected in mutants in which serine 54, 548, and 622 are all substituted with alanine, in addition to these serines, there may be amino acids that undergo phosphorylation in SARM1. It is suggested. To further clarify that serines 54, 548, and 622 are phosphorylated by JNK, SARM1 was expressed for each domain, co-expressed with JNK1-3, and Phos-tag was used. Detection was performed. As shown in Fig. 8C, it was confirmed that phosphorylation bands increased by co-expression of JNK (especially JNK3) in ARM domain containing serine 54, SAM domain containing serine 548, and TIR domain containing serine 622 It was done. From these results, JNK is thought to induce phosphorylation of serine 54, serine 548 and serine 622 of SARM1.
(9) SARM1のリン酸化による結合タンパク質の変化
 SARM1のリン酸化の意義を明らかにするために、SARM1変異体の結合タンパク質の比較を行った。HEK293T細胞(8×105個/6ウェルプレート)にコントロール、野生型SARM1-Flagもしくは変異体SARM1-Flag (pDNA 4 μg + FuGENE-HD 8 μl)のトランスフェクションを行った。24時間後に1% Triton-X100を含む細胞溶解液で細胞抽出液を調製し、Flag抗体結合ビーズ(SIGMA)20 μlを用いて2時間免疫沈降を行い、0.1 M グリシン溶液(pH2.5)で免疫沈降物を回収した。1 Mトリス溶液(pH 9)、SDS溶液を混合した後、SDS-PAGEで展開した。銀染色キット(Wako)によってSARM1-Flagと共沈降したバンドを検出し(図9A)、質量分析計で結合タンパク質の解析を行った。その結果、野生型や点変異を含む全長のSARM1はミトコンドリア呼吸鎖複合体complex VのサブユニットATP5B、ATP5C1、ATP5Oとの結合が確認され、その結合はS548A変異で減少していた。一方、SARM1活性が全くないΔTIRや活性がほとんどなくなるS622A変異体では70 kDa付近にSARM1との結合が増加しているバンドが検出され、このバンドはHeat shock protein 70 (HSP70)であった。この結合は免疫沈降後のウェスタンブロッティングによっても確認された(図9B)。これらの結果からSARM1はcomplex Vとの相互作用によりATP合成を阻害し(図2C)、HSP70がその作用を抑制していることが示唆される。更にセリン622番のリン酸化がHSP70との解離に重要で、セリン548番のリン酸化がcomplex Vとの結合に寄与していることが考えられる。
(9) Change of binding protein by phosphorylation of SARM1 In order to clarify the significance of phosphorylation of SARM1, the binding proteins of SARM1 mutants were compared. HEK293T cells (8 × 10 5 cells / 6 well plate) were transfected with control, wild type SARM1-Flag or mutant SARM1-Flag (pDNA 4 μg + FuGENE-HD 8 μl). After 24 hours, prepare a cell extract with cell lysate containing 1% Triton-X100, perform immunoprecipitation with 20 μl of Flag antibody-bound beads (SIGMA) for 2 hours, and then add 0.1 M glycine solution (pH 2.5). The immunoprecipitate was collected. 1 M Tris solution (pH 9) and SDS solution were mixed, and then developed by SDS-PAGE. A band co-precipitated with SARM1-Flag was detected with a silver staining kit (Wako) (FIG. 9A), and the binding protein was analyzed with a mass spectrometer. As a result, full-length SARM1, including wild type and point mutations, was confirmed to bind to subunits ATP5B, ATP5C1, and ATP5O of the mitochondrial respiratory complex complex V, and the binding was reduced by the S548A mutation. On the other hand, a band with increased binding to SARM1 was detected in the vicinity of 70 kDa in ΔTIR having no SARM1 activity and in the S622A mutant with almost no activity, and this band was Heat shock protein 70 (HSP70). This binding was also confirmed by Western blotting after immunoprecipitation (FIG. 9B). These results suggest that SARM1 inhibits ATP synthesis by interacting with complex V (FIG. 2C), and that HSP70 suppresses the action. Furthermore, phosphorylation of serine 622 is important for dissociation from HSP70, and it is considered that phosphorylation of serine 548 contributes to the binding to complex V.
 SARM1がcomplex Vに結合しATP合成を阻害することが細胞死誘導につながると想定した場合、complex Vのサブユニットを過剰に導入し、デコイとして機能させることで、SARM1によって誘導される細胞死を抑制することができると推察される。HEK293T細胞(3×105個/12ウェルプレート)にSARM1-Flagとコントロール、ATP5B、ATP5O pDNA(pDNA 4 μg + FuGENE-HD 8 μl)の共発現を行い、24時間後にMTSアッセイによって細胞生存率を解析した。ATP5B、ATP5OのSARM1との共発現はSARM1によって誘導される細胞死を有意に抑制した(図9C)この結果から、SARM1がcomplex Vに結合しATP合成を阻害することが、SARM1による細胞死誘導に重要な作用であることが判明し、結合に重要なSARM1のリン酸化を阻害する物質を見出すことによってSARM1の機能を抑制することが可能であると考えられる。 Assuming that SARM1 binds to complex V and inhibits ATP synthesis leads to cell death induction, excessive introduction of complex V subunits and functioning as decoys will reduce cell death induced by SARM1. It is assumed that it can be suppressed. HEK293T cells (3 × 10 5 cells / 12 well plate) were co-expressed with SARM1-Flag and control, ATP5B, ATP5O pDNA (pDNA 4 μg + FuGENE-HD 8 μl), and 24 hours later, cell viability by MTS assay Was analyzed. Co-expression of ATP5B and ATP5O with SARM1 significantly suppressed SARM1-induced cell death (Fig. 9C). From this result, SARM1 binding to complex V and inhibiting ATP synthesis induced SARM1-induced cell death It is considered that it is possible to suppress the function of SARM1 by finding a substance that inhibits phosphorylation of SARM1 important for binding.
(10) SAMドメイン、TIRドメインを利用したSARM1結合物質のスクリーニング方法
 図9の結果からcomplex Vとの結合に重要なセリン548番のリン酸化を抑制する化合物や、HSP70との解離に必要なセリン622番のリン酸化を抑制する化合物はSARM1の活性化を阻害し、神経細胞死を抑制するために効果のある化合物であることが想定される。このことからこれらの物質のスクリーニングのための方法を開発した。
(10) Screening method for SARM1-binding substances using SAM domain and TIR domain Based on the results shown in Fig. 9, compounds that suppress phosphorylation of serine 548, which is important for binding to complex V, and serine required for dissociation from HSP70 A compound that suppresses phosphorylation of No. 622 is assumed to be an effective compound for inhibiting SARM1 activation and suppressing neuronal cell death. This has led to the development of a method for screening these substances.
 SAMドメインをT7プロモーターを有する発現ベクターpET28aにクローンし(pET28a-SAM-Flag(6His-T7-SAM-Flag))、大腸菌BL21(DE3)-RPに形質転換して作製したグリセロールストックをLB-Kan(カナマイシン 30 μg/ml)培地で37℃、10時間振盪培養し、次に、IPTGを、1 mMの最終濃度となるまで加え、25℃で16時間振盪培養してSAMドメインを発現させた。20質量%のショ糖バッファー中で超音波処理を行うことで大腸菌の破砕物を得た。この破砕物を遠心分離し、上清をコバルトカラムに添加後、PBS-T (Phsophate Buffered Saline with Tween 20)+10mMイミダゾールを洗浄液とし、PBS+500mMイミダゾールを溶離液として精製し、さらにPBSに対して透析を行うことでSAMドメインを精製した(図10A)。 A glycerol stock prepared by cloning the SAM domain into an expression vector pET28a having a T7 promoter (pET28a-SAM-Flag (6His-T7-SAM-Flag)) and transforming it into E. coli BL21 (DE3) -RP was prepared as LB-Kan. (Kanamycin 30 μg / ml) was cultured with shaking at 37 ° C. for 10 hours, and then IPTG was added to a final concentration of 1 μm and shaken at 25 ° C. for 16 hours to express the SAM domain. By sonication in 20% by mass of sucrose buffer, Escherichia coli crushed material was obtained. This crushed material is centrifuged, and the supernatant is added to a cobalt column. Then, PBS-T (Phsophate Buffered Saline with Tween 20) + 10 mM imidazole is used as the washing solution, and PBS + 500 mM imidazole is used as the eluent. As a result, the SAM domain was purified (FIG. 10A).
 TIRドメインの部分領域(D594~E670 aa)をtacプロモーターを有する発現ベクターpGEX-6P-1にクローンし(pGEX-6P-1-TIR(GST-TIR))、大腸菌BL21(DE3)-RPに形質転換して作製したグリセロールストックをLB-Amp(アンピシリン 100 μg/ml)培地で37℃、10時間振盪培養し、次に、IPTGを、1 mMの最終濃度となるまで加え、25℃で16時間振盪培養してTIRドメインを発現させた。20質量%のショ糖バッファー中で超音波処理を行うことで大腸菌の破砕物を得た。この破砕物を遠心分離し、上清をSephadex-4Bカラム(GEヘルスケア)に添加後、PBS-T (Phsophate Buffered Saline with Tween 20)を洗浄液とし、50 mM Tris-HCl (pH 8)+10 mM還元型グルタチオンを溶離液として精製し、さらにPBSに対して透析を行うことでTIRドメインを精製した(図10B)。 A partial region (D594 to E670 aa) of the TIR domain was cloned into an expression vector pGEX-6P-1 having a tac promoter (pGEX-6P-1-TIR (GST-TIR)) and transformed into E. coli BL21 (DE3) -RP. The glycerol stock prepared by conversion is cultured with shaking in LB-Amp (ampicillin 100 μg / ml) medium at 37 ° C. for 10 hours, and then IPTG is added to a final concentration of 1 μmM, and then at 25 ° C. for 16 hours. The TIR domain was expressed by shaking culture. By sonication in 20% by mass of sucrose buffer, Escherichia coli crushed material was obtained. This crushed material is centrifuged, and the supernatant is added to a Sephadex-4B column (GE Healthcare). PBS-T- (Phsophate Buffered Saline with Tween 20) is used as a washing solution, and 50 mM Tris-HCl (pH 8) + 10 mM The TIR domain was purified by purifying reduced glutathione as an eluent and further dialyzing against PBS (FIG. 10B).
 精製したSAMドメインを用いて分子相互作用解析を行うためにBiacoreセンサーチップを作製した。PBSに溶けているSAMドメイン0.4 mg/mlを10 mM酢酸緩衝液(pH 4.5)で4倍希釈(0.1 mg/ml)し、アミンカップリング法でCM5センサーチップに固定化した。アナライトとの相互作用測定方法として、ランニング緩衝液はHBS-EP buffer(GEヘルスケア)を用い、アナライトはランニング緩衝液で20 μg/mlに希釈し使用した。SAMドメインへの分子相互作用を確認するためにSARM1抗体及びSAMドメインを添加し、解析を行った(図10C)。SAMドメインは2量体形成を行うので、SAMドメインを添加することによってSAMドメイン同士の結合が確認された。いくつかのSAMドメインのセリン548番近傍を認識する抗体はSAMドメインの結合よりも強い結合が確認され、これらの抗体はSAMドメインの2量体形成を阻害し、SARM1の機能を阻害することが示唆された。一方、コントロールIgGやSARM1の他の領域を認識する抗体ではSAMドメインとの結合は確認されなかった。これらの結果よりBiacoreによる分子相互作用解析を用いることでSARM1のドメインに結合する化合物を選定できることが示された。 Biacore sensor chip was prepared for molecular interaction analysis using the purified SAM domain. SAM domain 0.4 mg / ml dissolved in PBS was diluted 4-fold (0.1 mg / ml) with 10 mM mM acetate buffer (pH 4.5) and immobilized on a CM5 sensor chip by the amine coupling method. As a method for measuring the interaction with the analyte, HBS-EPHbuffer (GE Healthcare) was used as the running buffer, and the analyte was diluted to 20 μg / ml with the running buffer. In order to confirm the molecular interaction with the SAM domain, SARM1 antibody and SAM domain were added and analyzed (FIG. 10C). Since SAM domains dimerize, binding of SAM domains was confirmed by adding SAM domains. Antibodies recognizing the vicinity of serine 548 of several SAM domains have been found to bind stronger than SAM domains, and these antibodies can inhibit SAM domain dimerization and inhibit SARM1 function. It was suggested. On the other hand, binding to the SAM domain was not confirmed with antibodies recognizing other regions of control IgG and SARM1. From these results, it was shown that compounds that bind to the domain of SARM1 can be selected by using molecular interaction analysis by Biacore.
 現在、神経変性疾患(パーキンソン病、ALSなど)の進行を予防、治療できる薬剤は存在しない。 Currently, there are no drugs that can prevent or treat the progression of neurodegenerative diseases (Parkinson's disease, ALS, etc.).
 SARM1は神経変性疾患で観察される神経細胞死や神経軸索変性の原因となる分子の1つである。 SARM1 is one of the molecules that cause neuronal cell death and neuroaxonal degeneration observed in neurodegenerative diseases.
 SARM1の機能を阻害できれば、様々な神経変性疾患の予防、治療が可能になるかもしれない。 If the function of SARM1 can be inhibited, it may be possible to prevent and treat various neurodegenerative diseases.
 しかしSARM1の細胞内での活性化機構が不明であったので、現在利用できるSARM1の阻害剤は存在しなかった。 However, since the activation mechanism of SARM1 in cells was unknown, there was no SARM1 inhibitor currently available.
 本発明者はSARM1のセリン54番、セリン548番、セリン622番がJNKによってリン酸化されることがSARM1の活性化に必要であることを見出した。 The present inventor has found that SARM1 serine 54, serine 548 and serine 622 are phosphorylated by JNK for the activation of SARM1.
 本発明者はSARM1のリン酸化検出と細胞生存率の測定を組み合わせることで、SARM1の活性化を阻害する薬剤のスクリーニング法を開発した。 The present inventor has developed a screening method for drugs that inhibit SARM1 activation by combining the detection of phosphorylation of SARM1 and the measurement of cell viability.
 本発明を用いることによって神経変性疾患の予防、治療に有望なSARM1阻害剤の開発が可能になる。 The use of the present invention makes it possible to develop SARM1 inhibitors that are promising for the prevention and treatment of neurodegenerative diseases.

Claims (13)

  1. SARM1(Sterile alpha and TIR motif-containing protein 1)の54位、548位及び622位からなる群から選ばれる少なくとも1種のSer残基がリン酸化された、リン酸化SARM1。 Phosphorylated SARM1 in which at least one Ser residue selected from the group consisting of positions 54, 548 and 622 of SARM1 (Sterile alpha and TIR motif-containing protein 1) is phosphorylated.
  2. SARM1がヒト由来である、請求項1に記載のリン酸化SARM1。 The phosphorylated SARM1 of claim 1, wherein the SARM1 is derived from a human.
  3. SARM1の54位、548位又は622位のリン酸化Ser残基を特異的に認識し、SARM1の54位、548位及び622位の非リン酸化Ser残基を認識しない、抗リン酸化SARM1抗体。 An anti-phosphorylated SARM1 antibody that specifically recognizes a phosphorylated Ser residue at positions 54, 548 or 622 of SARM1 and does not recognize non-phosphorylated Ser residues at positions 54, 548 and 622 of SARM1.
  4. サイクリン依存性キナーゼ8(CDK8)、サイクリン依存性キナーゼ19(CDK19)及びJNKからなる群から選ばれる少なくとも1種の阻害剤を有効成分とするSARM1リン酸化阻害剤。 A SARM1 phosphorylation inhibitor comprising, as an active ingredient, at least one inhibitor selected from the group consisting of cyclin-dependent kinase 8 (CDK8), cyclin-dependent kinase 19 (CDK19), and JNK.
  5. サイクリン依存性キナーゼ8(CDK8)、サイクリン依存性キナーゼ19(CDK19)及びJNKからなる群から選ばれる少なくとも1種の阻害剤を有効成分とする神経変性疾患の予防又は治療薬。 A prophylactic or therapeutic agent for a neurodegenerative disease comprising as an active ingredient at least one inhibitor selected from the group consisting of cyclin-dependent kinase 8 (CDK8), cyclin-dependent kinase 19 (CDK19) and JNK.
  6. 抗SARM1抗体、SARM1のデコイペプチド及びアンタゴニストからなる群から選ばれるSARM1阻害剤を有効成分とする、神経変性疾患の予防又は治療薬。 A preventive or therapeutic agent for neurodegenerative diseases, comprising as an active ingredient a SARM1 inhibitor selected from the group consisting of an anti-SARM1 antibody, a SARM1 decoy peptide and an antagonist.
  7. 抗SARM1抗体が、SARM1の54位、548位又は622位のリン酸化を抑制可能な非リン酸化SARM1に対する抗体またはSARM1の54位、548位又は622位のリン酸化Ser残基を特異的に認識し、SARM1の54位、548位及び622位の非リン酸化Ser残基を認識しない抗リン酸化SARM1抗体である、請求項6に記載の神経変性疾患の予防又は治療薬。 Anti-SARM1 antibody specifically recognizes non-phosphorylated SARM1 that can suppress phosphorylation at position 54, 548 or 622 of SARM1 or phosphorylated Ser residue at positions 54, 548 or 622 of SARM1 The preventive or therapeutic agent for neurodegenerative diseases according to claim 6, which is an anti-phosphorylated SARM1 antibody that does not recognize unphosphorylated Ser residues at positions 54, 548 and 622 of SARM1.
  8. SARM1のデコイペプチドがSARM1のSer54、Ser548又はSer622を含む断片ペプチドまたはその修飾体である、請求項6に記載の神経変性疾患の予防又は治療薬。 SARM1 decoy peptide is a fragment peptide or modifications thereof including Ser 54, Ser 548 or Ser 622 of SARM1, prophylactic or therapeutic agent for neurodegenerative diseases according to claim 6.
  9. 神経変性疾患がパーキンソン病、筋萎縮性側索硬化症(ALS)、多発性硬化症、ニューロパチー及びアルツハイマー病からなる群から選ばれる請求項5~8のいずれか1項に記載の神経変性疾患の予防又は治療薬。 The neurodegenerative disease according to any one of claims 5 to 8, wherein the neurodegenerative disease is selected from the group consisting of Parkinson's disease, amyotrophic lateral sclerosis (ALS), multiple sclerosis, neuropathy and Alzheimer's disease. Prophylactic or therapeutic drug.
  10. SARM1の54位、548位及び622位からなる群から選ばれる少なくとも1種のSer残基のリン酸化を検出する工程を含む、神経変性疾患の予防又は治療薬のスクリーニング方法。 A method for screening a prophylactic or therapeutic agent for a neurodegenerative disease, comprising a step of detecting phosphorylation of at least one Ser residue selected from the group consisting of positions 54, 548 and 622 of SARM1.
  11. SARM1の54位、548位及び622位からなる群から選ばれる少なくとも1種のSer残基のリン酸化を検出する工程を含む、SARM1阻害剤のスクリーニング方法。 A method for screening a SARM1 inhibitor, comprising a step of detecting phosphorylation of at least one Ser residue selected from the group consisting of positions 54, 548 and 622 of SARM1.
  12. ヒトSARM1の54番目、548番目及び622番目からなる群から選ばれる少なくとも1種に相当するSerがGlu又はAspで置換されたSARM1改変体。 A SARM1 variant in which Ser corresponding to at least one selected from the group consisting of 54th, 548th and 622th human SARM1 is substituted with Glu or Asp.
  13. 神経変性疾患のモデル細胞又はモデル動物の作成のための請求項12に記載のSARM1改変体の使用。 Use of the SARM1 variant according to claim 12 for the production of a model cell or model animal of a neurodegenerative disease.
PCT/JP2017/011418 2016-03-23 2017-03-22 Phosphorylated sarm1, antibody, sarm1 phosphorylation inhibitor, prophylactic or therapeutic agent for neurodegenerative diseases, screening method, modified sarm1, and use WO2017164230A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018507366A JP7198489B2 (en) 2016-03-23 2017-03-22 Phosphorylated SARM1, antibody, SARM1 phosphorylation inhibitor, preventive or therapeutic drug for neurodegenerative disease, screening method, SARM1 variant and use
JP2022196983A JP2023027235A (en) 2016-03-23 2022-12-09 Phosphorylated sarm1, antibody, sarm1 phosphorylation inhibitor, preventative or therapeutic drug for neurodegenerative disease, screening method, sarm1 variant, and use

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016058130 2016-03-23
JP2016-058130 2016-03-23

Publications (1)

Publication Number Publication Date
WO2017164230A1 true WO2017164230A1 (en) 2017-09-28

Family

ID=59900254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/011418 WO2017164230A1 (en) 2016-03-23 2017-03-22 Phosphorylated sarm1, antibody, sarm1 phosphorylation inhibitor, prophylactic or therapeutic agent for neurodegenerative diseases, screening method, modified sarm1, and use

Country Status (2)

Country Link
JP (2) JP7198489B2 (en)
WO (1) WO2017164230A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114470215A (en) * 2020-11-12 2022-05-13 北京科辉智药生物科技有限责任公司 SARM1 enzyme activity inhibitor and application thereof in neurodegenerative diseases

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114437223A (en) * 2022-02-09 2022-05-06 香港中文大学(深圳) Nano antibody for specifically recognizing SARM1 and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120328629A1 (en) * 2011-06-24 2012-12-27 University Of Miami Therapeutic Applications Targeting SARM1
JP2015506376A (en) * 2012-02-02 2015-03-02 セネックス バイオテクノロジー インク.Senex Biotechnology Inc. CDK8 / CDK19 selective inhibitors and their use in methods of anti-metastasis and chemoprotection for cancer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120328629A1 (en) * 2011-06-24 2012-12-27 University Of Miami Therapeutic Applications Targeting SARM1
JP2015506376A (en) * 2012-02-02 2015-03-02 セネックス バイオテクノロジー インク.Senex Biotechnology Inc. CDK8 / CDK19 selective inhibitors and their use in methods of anti-metastasis and chemoprotection for cancer

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GERDTS J. ET AL.: "Axon Self-Destruction: New Links among SARM1, MAPKs, and NAD+ Metabolism.", NEURON, vol. 89, no. 3, 2016, pages 449 - 460, XP029406975, DOI: doi:10.1016/j.neuron.2015.12.023 *
MUKHERJEE P. ET AL.: "Activation of the innate signaling molecule MAVS by bunyavirus infection upregulates the adaptor protein SARM1, leading to neuronal death.", IMMUNITY, vol. 38, no. 4, 2013, pages 705 - 716, XP055602037 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114470215A (en) * 2020-11-12 2022-05-13 北京科辉智药生物科技有限责任公司 SARM1 enzyme activity inhibitor and application thereof in neurodegenerative diseases

Also Published As

Publication number Publication date
JPWO2017164230A1 (en) 2019-02-07
JP2023027235A (en) 2023-03-01
JP7198489B2 (en) 2023-01-04

Similar Documents

Publication Publication Date Title
Leonoudakis et al. A multiprotein trafficking complex composed of SAP97, CASK, Veli, and Mint1 is associated with inward rectifier Kir2 potassium channels
Garcia et al. SAP90 binds and clusters kainate receptors causing incomplete desensitization
Xu et al. NFBD1/MDC1 regulates ionizing radiation‐induced focus formation by DNA checkpoint signaling and repair factors
Ando et al. IRBIT, a novel inositol 1, 4, 5-trisphosphate (IP3) receptor-binding protein, is released from the IP3 receptor upon IP3 binding to the receptor
Wu et al. Interaction of SAP97 with minus-end-directed actin motor myosin VI: implications for AMPA receptor trafficking
JP2023027235A (en) Phosphorylated sarm1, antibody, sarm1 phosphorylation inhibitor, preventative or therapeutic drug for neurodegenerative disease, screening method, sarm1 variant, and use
Uematsu et al. Protein kinase A directly phosphorylates metabotropic glutamate receptor 5 to modulate its function
Tokumitsu et al. Identification and characterization of PRG-1 as a neuronal calmodulin-binding protein
Paolini et al. The epsilon hinge‐ear region regulates membrane localization of the AP‐4 complex
CA3000275A1 (en) Small molecules blocking histone reader domains
Dempsey et al. Identification of calcium-independent and calcium-enhanced binding between S100B and the dopamine D2 receptor
Smith et al. Identification and characterisation of a Maf1/Macoco protein complex that interacts with GABAA receptors in neurons
JP5997394B2 (en) Biomarkers for Parkinson's disease and their use
WO2014161875A1 (en) METHOD FOR DETECTING Aβ-SPECIFIC ANTIBODIES IN A BIOLOGICAL SAMPLE
US20140079713A1 (en) Modulation of the sonic hedgehog pathway and uses thereof
Garri et al. Identification, characterization and application of a new peptide against anterior gradient homolog 2 (AGR2)
WO2003014142A2 (en) Phosphorylated histone h2b as an apoptosis marker
Liu et al. Characterization of the molecular mechanism of the autophagy-related Atg8–Atg3 protein interaction in Toxoplasma gondii
Tomassi et al. The central proline rich region of POB1/REPS2 plays a regulatory role in epidermal growth factor receptor endocytosis by binding to 14-3-3 and SH3 domain-containing proteins
KR101634612B1 (en) AGR2 homo-dimer attenuating ER stress induced cell death
EP1408049A2 (en) A novel inositol 1,4,5-trisphosphate (IP3) receptor-binding protein and an IP3 indicator
Ishii et al. Scavenger receptor expressed by endothelial cells (SREC)-I interacts with protein phosphatase 1α in L cells to induce neurite-like outgrowth
KR101588285B1 (en) AGR2 homo-dimer attenuating ER stress induced cell death
Liu Reexamination of G protein activation model by non-dissociable Gα-Gβ fusion proteins
Scharf et al. results: Most samples used in this study produced speckled, granular, or homogenous stainings of the hippocampal and cerebellar molecular and/or granular layers. Others exclusively stained the Purkinje cells. Up to now, more than 20 different autoantigens could be identified by this approach, among them ATP1A3, CPT1C, Flotillin1/2, ITPR1, NBCe1, NCDN, RGS8, ROCK2, and Syntaxin-1B as novel autoantigens.

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018507366

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17770270

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17770270

Country of ref document: EP

Kind code of ref document: A1